WO2023184207A1 - 一种注塑过程模具温度压力的双向补偿控制方法 - Google Patents

一种注塑过程模具温度压力的双向补偿控制方法 Download PDF

Info

Publication number
WO2023184207A1
WO2023184207A1 PCT/CN2022/083965 CN2022083965W WO2023184207A1 WO 2023184207 A1 WO2023184207 A1 WO 2023184207A1 CN 2022083965 W CN2022083965 W CN 2022083965W WO 2023184207 A1 WO2023184207 A1 WO 2023184207A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
flow rate
temperature
injection molding
control
Prior art date
Application number
PCT/CN2022/083965
Other languages
English (en)
French (fr)
Inventor
梁正华
李茂明
Original Assignee
浙江凯华模具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江凯华模具有限公司 filed Critical 浙江凯华模具有限公司
Priority to PCT/CN2022/083965 priority Critical patent/WO2023184207A1/zh
Publication of WO2023184207A1 publication Critical patent/WO2023184207A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Definitions

  • the invention relates to the field of mold temperature and pressure control, and in particular to a bidirectional compensation control method for mold temperature and pressure during injection molding.
  • Injection molds are used for injection molding.
  • Injection molding also known as injection molding, is a molding method that combines injection and molding.
  • the advantages of the injection molding method are fast production speed and high efficiency, the operation can be automated, there are many designs and colors, the shapes can be from simple to complex, and the sizes can be from large to small, and the product dimensions are accurate, the products are easy to replace, and can be made into complex shapes Parts, injection molding is suitable for mass production and complex-shaped products and other molding processing fields.
  • the temperature and pressure required during the injection molding process are factors that affect product quality. Pressure and temperature need to maintain a dynamic balance to ensure that the molten material can flow evenly and stably to all parts of the cavity; while ensuring the same fluidity of the molten material, as the pressure increases, the temperature can be appropriately reduced; as the pressure decreases, the temperature needs to Increase. The more complex the structure, the more it is necessary to ensure the fluidity of the molten material. When the gate pressure is constant, it is necessary to control the local temperature to change the fluidity of the molten material in this part. The gate pressure is also a factor that needs to be considered.
  • an injection mold with temperature sensing and pressure sensing disclosed in Chinese patent documents, its announcement number is CN113619029A, which includes a first template and a second template that are arranged oppositely, and the first template is fixed.
  • the second template can slide back and forth in a direction perpendicular to the first template.
  • the first template and the second template are enclosed to form an injection molding cavity.
  • the second template is provided with a first pressure sensor, a second pressure sensor and a temperature sensor.
  • the pressure sensor is disposed near the middle of the injection molding cavity
  • the second pressure sensor is disposed near the end of the injection molding cavity
  • the temperature sensor is disposed near the end of the injection molding cavity.
  • the present invention mainly solves the problem of temperature and pressure balance control in the prior art without considering ensuring the fluidity of the melt; it provides a bidirectional compensation control method for mold temperature and pressure in the injection molding process, and ensures different temperature and pressure differences through the compensation control of gate pressure and local temperature.
  • the fluidity of the molten material in the position meets the corresponding requirements, improving injection molding efficiency and energy utilization.
  • a bidirectional compensation control method for mold temperature and pressure in the injection molding process including the following steps:
  • the adjustment method is selected whether it is segmented pressure control or local temperature control, which not only ensures energy utilization and cost control, but also ensures the quality of the product.
  • the division process of the detection area is:
  • the area between two adjacent detection spheres is a detection area
  • Independent temperature sensors and pressure sensors are installed around the cavity of each detection area, which are used to monitor the temperature and pressure of the detection area respectively; the set radius is gradually expanded, because the pressure and temperature changes in the mold are related to the distance of the injection molding. , based on the distance from the cavity gate, the detection area is determined, making the detection more comprehensive, the data closer, and facilitating regional control.
  • the evaluation process of melt fluidity is:
  • A1 According to the shape of the product cavity, select several control demand positions to set the melt flow rate detection nodes; the control demand positions are set based on production experience, and are usually locations with complex and delicate structures that require a certain flow rate to complete filling. .
  • A2 Obtain the melt flow rate V of each detection node respectively;
  • A3 Compare the obtained melt flow rate V with the preset melt flow rate threshold V0 of the detection node to obtain the flow rate difference Ve. According to the size of the flow rate difference Ve, look up the table to obtain the corresponding melt fluidity evaluation level.
  • Different flow rate thresholds are set at different locations.
  • the fluidity evaluation level is obtained according to the difference between the threshold and the flow rate.
  • Different melt flow rate adjustment operations are performed according to the evaluation level to ensure the quality of the product.
  • the liquidity assessment levels include fast, appropriate and slow;
  • melt flow rate is adjusted, and pressure segmented control or temperature local control is selected based on the distance between the melt flow rate detection node and the cavity gate.
  • the pressure step-by-step control includes:
  • the duration T is obtained by dividing the length L of the control demand position by the melt linear flow rate Va multiplied by the structural coefficient w.
  • Pressurization at the gate is achieved by accelerating pushing, and the pressure is controlled in time periods.
  • the time period of pressurization is determined by the complexity of the path and structure.
  • the local temperature control includes arranging electric heating wires at each detection node; when local temperature control is required, the electric heating wires at corresponding positions are controlled to heat the melt; the electric heating wires are arranged upstream of each detection node. Location.
  • the electric heating wire is set upstream of the detection node, which can heat the molten material in advance, ensuring time for the temperature of the molten material to change, and ensuring that the temperature of the molten material is appropriate when passing the detection node.
  • an insulating water path is provided outside the insulating box, and the insulating water path is filled with outlet water from the cooling water circuit.
  • Figure 1 is a flow chart of the temperature and pressure bidirectional compensation control method of the present invention.
  • Figure 2 is a schematic diagram of detection area division according to the present invention.
  • a bidirectional compensation control method for mold temperature and pressure in the injection molding process of this embodiment, as shown in Figure 1, includes the following steps:
  • a bidirectional compensation control method for mold temperature and pressure in the injection molding process including the following steps:
  • the division process of the detection area is:
  • the set radius is expanded sequentially, including the first radius r1, the second radius r2, the third radius r3... the nth radius rn, until the end of the cavity 1 is also included. until the spherical surface is detected.
  • Each detection sphere is a concentric sphere with the same spherical shape.
  • the area between two adjacent detection spheres is a detection area.
  • Each detection area is numbered from inside to outside.
  • the first detection sphere is drawn with the first radius r1 as the radius, and the first detection area is the area between the first detection sphere and the center of the sphere; the second detection sphere is drawn with the second radius r2 as the radius.
  • the area between the first detection spherical surfaces is the second detection area; and by analogy, the area between the nth detection spherical surface and the n-1th detection spherical surface drawn with the nth radius rn as the radius is the nth detection area.
  • Independent temperature sensors and pressure sensors are installed around the cavity of each detection area to monitor the temperature and pressure of the detection area respectively.
  • the set radius is gradually expanded. Since the pressure and temperature changes in the mold are related to the distance of injection molding, the detection area is determined based on the distance from the cavity gate 3, making the detection more comprehensive and the data closer, which facilitates regional control. .
  • melt fluidity The evaluation process of melt fluidity is:
  • A1 According to the shape of the product cavity, select several control requirements to set the melt flow rate detection nodes.
  • the control demand position is set based on production experience. It is usually a position with complex and delicate structure, and a certain flow rate is required to complete filling. In this embodiment, complex structures or corners are selected as control required locations.
  • A2 Obtain the melt flow rate V of each detection node respectively;
  • A3 Compare the obtained melt flow rate V with the preset melt flow rate threshold V0 of the detection node to obtain the flow rate difference Ve. According to the size of the flow rate difference Ve, look up the table to obtain the corresponding melt fluidity evaluation level.
  • the liquidity assessment levels include fast, appropriate and slow; different assessment levels are determined according to the size of the difference, and level thresholds - Vd and Vd are set;
  • Different flow rate thresholds are set at different positions.
  • the fluidity evaluation level is obtained according to the difference between the threshold and the flow rate.
  • Different melt flow rate adjustment operations are performed according to the evaluation level to ensure the quality of the product.
  • S3 Based on the evaluated fluidity and the pressure and temperature data obtained from the detection area where the position is located, perform segmented pressure control or local temperature control to adjust the melt flow rate.
  • melt flow rate is adjusted, and pressure segmented control or temperature local control is selected based on the distance between the melt flow rate detection node and the cavity gate 3.
  • the pressure over-limit range is a preset threshold range. If the pressure exceeds the pressure over-limit range, there will be a risk of molten material entering the mold gap.
  • the first detection area is the area most affected by pressure control. By detecting the pressure value in this area Compare with the pressure over-limit range to ensure the safety of pressurization and the quality of products.
  • Pressure segmented control includes:
  • the duration T is obtained by dividing the length L of the control demand position by the melt linear flow rate Va multiplied by the structural coefficient w.
  • the pressure at gate 3 is achieved by accelerating pushing, and the pressure is controlled in time periods.
  • the time period of pressurization is determined by the complexity of the path and structure.
  • Local temperature control includes setting electric heating wires at each detection node.
  • the electric heating wire at the corresponding position is controlled to heat the melt; the electric heating wire is arranged at an upstream position of each detection node.
  • the electric heating wire is set upstream of the detection node, which can heat the molten material in advance, ensuring time for the temperature of the molten material to change, and ensuring that the temperature of the molten material is appropriate when passing the detection node.
  • the adjustment method is selected whether it is segmented pressure control or local temperature control, which not only ensures energy utilization and cost control, but also ensures the quality of the product.
  • the method of this implementation also includes the heat preservation process after the injection molding is completed, and other processes are the same as those in Embodiment 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

提供了一种注塑过程模具温度压力的双向补偿控制方法。为了克服现有技术没有考虑保证熔料流动性而进行温度压力平衡控制的问题;包括以下步骤:S1:以型腔浇口为起点,到型腔末端划分为若干个检测区域;S2:注塑过程中,实时监测各检测区域的压力、温度与熔料流速;根据熔料在型腔中流经的位置及其流速,与预设的流速阈值比较评估熔料流动性;S3:根据评估的流动性以及位置所处检测区域获取的压力和温度数据,执行压力分段控制或温度局部控制,调节熔料流速;S4:完成模具注塑过程。通过浇口压力与局部温度的补偿控制,保证不同位置熔料的流动性达到对应需求,提高注塑效率与能源利用率。

Description

一种注塑过程模具温度压力的双向补偿控制方法 技术领域
本发明涉及模具温度压力控制领域,尤其涉及一种注塑过程模具温度压力的双向补偿控制方法。
背景技术
注塑模具用来注塑成型。注塑成型又称注射模塑成型,它是一种注射兼模塑的成型方法。注塑成型方法的优点是生产速度快、效率高,操作可实现自动化,花色品种多,形状可以由简到繁,尺寸可以由大到小,而且制品尺寸精确,产品易更新换代,能成形状复杂的制件,注塑成型适用于大量生产与形状复杂产品等成型加工领域。
注塑过程中需要的温度与压力均是影响制品质量的因素。压力与温度需要保持一个动态平衡,保证熔料能均匀稳定地流动到型腔的各处;在保证熔料相同的流动性下,压力增大,温度可以适当减小;压力减小,温度需要增加。越是复杂的结构就更需要保证熔料的流动性,在浇口压力一定的情况下就需要控制局部的温度来改变该部位熔料的流动性。而浇口压力的大小也是需要考虑的因素,压力过大,会造成制品密度过大,增加制备成本;压力过小,不足以推动距离浇口较远处的熔料流动。因此,如何在制备过程中平衡温度与压力的关系是一个值得研究的方向。
例如,一种在中国专利文献上公开的“一种具有温度感应及压力感应的注塑模具”,其公告号CN113619029A,其包括相对设置的第一模板和第二模板,第一模板固定不动,第二模板可沿垂直于第一模板的方向前后滑动,第一模板和第二模板围合形成注塑型腔,第二模板上设有第一压力传感器、第二压力传 感器和温度传感器,第一压力传感器靠近注塑型腔的中部设置,第二压力传感器靠近注塑型腔的端部设置,温度传感器靠近所述注塑型腔的端部设置。
该方案能及时有效的获取注塑模具型腔内的各种参数变化情况,但是没有平衡温度与压力保证熔料流动性的补偿控制。
发明内容
本发明主要解决现有技术没有考虑保证熔料流动性而进行温度压力平衡控制的问题;提供一种注塑过程模具温度压力的双向补偿控制方法,通过浇口压力与局部温度的补偿控制,保证不同位置熔料的流动性达到对应需求,提高注塑效率与能源利用率。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种注塑过程模具温度压力的双向补偿控制方法,包括以下步骤:
S1:以型腔浇口为起点,到型腔末端划分为若干个检测区域;
S2:注塑过程中,实时监测各检测区域的压力、温度与熔料流速;根据熔料在型腔中流经的位置及其流速,与预设的流速阈值比较评估熔料流动性;
S3:根据评估的流动性以及位置所处检测区域获取的压力和温度数据,执行压力分段控制或温度局部控制,调节熔料流速;
S4:完成模具注塑过程。
在型腔中不同位置与结构对熔料的流动性要求不同,本方案根据熔料流动的位置与流速评估其是否满足对应位置的流动性要求,以此来进行流动性控制,控制更加精准,提高了注塑的效率。根据该位置实时监测到的温度与压力数据选择调节的方式是压力分段控制还是温度局部控制,既保证能源的利用率与成本的控制,又能够保证制品的质量。
作为优选,所述的检测区域的划分过程为:
设定若干半径,以型腔浇口为球心,分别确定检测球面;
以两个相邻的检测球面之间的区域为一个检测区域;
对检测区域由内向外依次编号。
各检测区域的型腔周围均设置有独立的温度传感器和压力传感器,分别用于监测该检测区域的温度与压力;设定的半径依次扩大,由于模具中的压力、温度变化与注塑的距离相关,以与型腔浇口的距离为依据,确定检测区域,使得检测更加全面,数据更加接近,便于进行区域控制。
作为优选,熔料流动性的评估过程为:
A1:根据制品型腔的形状,选取若干控制需求位置设置熔料流速检测节点;所述的控制需求位置根据生产经验设置,通常为结构复杂、精细的位置,需要达到一定的流速才能够完成填充。
A2:分别获取各检测节点的熔料流速V;
若V≤0,则判断该检测节点无熔料通过,结束;
若V>0,进入步骤A3;
A3:将获取的熔料流速V与该检测节点预设的熔料流速阈值V0做差获得流速差Ve,根据流速差Ve的大小查表获得对应的熔料流动性评估等级。
不同的位置设置有不同的流速阈值,根据与阈值的差值大小对应获取流动性评估等级,根据评估等级执行不同的熔料流速调节操作,保证制品的质量。
作为优选,流动性评估等级包括偏快、适当和偏慢三种;
若流动性评估等级为偏快,则减小流道浇口处的压力;
若流动性评估等级为适当,则结束;
若流动性评估等级为偏慢,则进行熔料流速调节,根据熔料流速检测节点与型腔浇口的距离选择压力分段控制或温度局部控制。
根据评估等级判断是否需要流速调节以及调节的方式,如果流动偏慢,则根据需要调节的位置选择压力调节还是温度调节,在保证制品质量的前提下减少成本,在流速偏快的情况下控制浇口处的压力,减小流速,保证不会因为压力过大而将熔料挤入缝隙产生毛刺,能有效节约能源。
作为优选,获取需要调节的检测节点所处的检测区域编号m;
判断检测区域编号m是否大于编号阈值M0;若是,则选择温度局部控制;否则,选择压力分段控制;
若流速差Ve的绝对值大于速度控制阈值V1,则压力分段控制和温度局部控制同时进行。
距离浇口远,改变浇口处的压力大小对需要调节位置的熔料流速影响小,反之影响大,采用本方案的调节方式,既能有效改变熔料流速,保证制品质量,有能提高能源的利用率,采用效率最高的方式调节。
作为优选,所述的压力分段控制包括:
加速推挤流道中的熔料,持续时间T;
所述的持续时间T由控制需求位置的长度L除以熔料直线流速Va乘以结构系数w获得。
通过加速推挤实现浇口处的加压,分时间段加压控制,加压的时间段由路径和结构的复杂程度决定。
作为优选,所述的温度局部控制包括在各检测节点处设置电热丝;在需要温度局部控制时,控制对应位置的电热丝为熔料加热;所述的电热丝设置在各 检测节点靠上游的位置。
电热丝设置在检测节点靠上游位置,能提前为熔料加热,保证给熔料以温度变化的时间,保证熔料在经过检测节点时的温度适当。
作为优选,还包括以下步骤:
S5:将注塑完成后的制品转移到保温箱中保温额定时间。
将注塑完成后的制品在保温箱中保温,减少占用注塑模具的时间,提高注塑效率,避免制品在降温过程中出现形变。
作为优选,所述的保温箱外设置有保温水路,所述保温水路中灌注有冷却水回路的出水。
充分利用冷却水回路中的冷却水,将使用过后升温的冷却水回路用于保温,充分利用资源,减少能源消耗。
本发明的有益效果是:
1.根据熔料流动的位置与流速评估其是否满足对应位置的流动性要求,以此来进行流动性控制,控制更加精准,提高了注塑的效率。
2.根据该位置实时监测到的温度与压力数据选择调节的方式是压力分段控制还是温度局部控制,既保证能源的利用率与成本的控制,又能够保证制品的质量。
3.以与型腔浇口的距离为依据,确定检测区域,使得检测更加全面,数据更加接近,便于进行区域控制。
4.将注塑完成后的制品在保温箱中保温,减少占用注塑模具的时间,提高注塑效率,避免制品在降温过程中出现形变。
附图说明
图1是本发明的温度压力双向补偿控制方法的流程图。
图2是本发明的检测区域划分示意图。
图中1.型腔,2.流道,3.浇口。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例一:
本实施例的一种注塑过程模具温度压力的双向补偿控制方法,如图1所示,包括以下步骤:
一种注塑过程模具温度压力的双向补偿控制方法,包括以下步骤:
S1:以型腔浇口3为起点,到型腔末端划分为若干个检测区域。
检测区域的划分过程为:
设定若干半径,以型腔浇口3为球心,分别确定检测球面。
在本实施例中,如图2所示,设定的半径依次扩大,包括第一半径r1、第二半径r2、第三半径r3……第n半径rn,直至把型腔1末端也包含在检测球面为止。各检测球面为球形同一的同心球体。
以两个相邻的检测球面之间的区域为一个检测区域。各检测区域由内向外依次编号。
在本实施例中,以第一半径r1为半径绘制第一检测球面,第一检测球面与球心之间的区域的第一检测区域;以第二半径r2为半径绘制的第二检测球面与第一检测球面之间的区域为第二检测区域;以此类推,以第n半径rn为半径绘制的第n检测球面与第n-1检测球面之间的区域为第n检测区域。
各检测区域的型腔周围均设置有独立的温度传感器和压力传感器,分别用 于监测该检测区域的温度与压力。
设定的半径依次扩大,由于模具中的压力、温度变化与注塑的距离相关,以与型腔浇口3的距离为依据,确定检测区域,使得检测更加全面,数据更加接近,便于进行区域控制。
S2:注塑过程中,实时监测各检测区域的压力、温度与熔料流速;根据熔料在型腔中流经的位置及其流速,与预设的流速阈值比较评估熔料流动性。
熔料流动性的评估过程为:
A1:根据制品型腔的形状,选取若干控制需求位置设置熔料流速检测节点。
控制需求位置根据生产经验设置,通常为结构复杂、精细的位置,需要达到一定的流速才能够完成填充。在本实施例中选取结构复杂或拐角处为控制需求位置。
A2:分别获取各检测节点的熔料流速V;
若V≤0,则判断该检测节点无熔料通过,结束;
若V>0,进入步骤A3;
A3:将获取的熔料流速V与该检测节点预设的熔料流速阈值V0做差获得流速差Ve,根据流速差Ve的大小查表获得对应的熔料流动性评估等级。
流动性评估等级包括偏快、适当和偏慢三种;根据差值的大小确定不同的评估等级,设置有等级阈值-Vd和Vd;
当流速差Ve小于等于-Vd时,该位置的流动性评估等级为偏慢;
当流速差Ve处于-Vd到Vd之间时,该位置的流动性评估等级为适当;
当流速差Ve大于等于Vd时,该位置的流动性评估等级为偏快。
不同的位置设置有不同的流速阈值,根据与阈值的差值大小对应获取流动 性评估等级,根据评估等级执行不同的熔料流速调节操作,保证制品的质量。
在本实施例中为说明,仅取三种等级,可根据具体需求划分更多等级层次。
S3:根据评估的流动性以及位置所处检测区域获取的压力和温度数据,执行压力分段控制或温度局部控制,调节熔料流速。
若流动性评估等级为偏快,则减小流道2浇口3处的压力。
如果流动偏慢,则根据需要调节的位置选择压力调节还是温度调节,在保证制品质量的前提下减少成本,在流速偏快的情况下控制浇口3处的压力,减小流速,保证不会因为压力过大而将熔料挤入缝隙产生毛刺,能有效节约能源。
若流动性评估等级为适当,则结束。
若流动性评估等级为偏慢,则进行熔料流速调节,根据熔料流速检测节点与型腔浇口3的距离选择压力分段控制或温度局部控制。
获取需要调节的检测节点所处的检测区域编号m。
判断检测区域编号m是否大于编号阈值M0;若是,则选择温度局部控制;否则,选择压力分段控制。
距离浇口3远,改变浇口3处的压力大小对需要调节位置的熔料流速影响小,反之影响大,采用本方案的调节方式,既能有效改变熔料流速,保证制品质量,有能提高能源的利用率,采用效率最高的方式调节。
若流速差Ve的绝对值大于速度控制阈值V1,则压力分段控制和温度局部控制同时进行。该情况说明目前熔料流速原小于需求的流速,通过两种方式同时进行加快熔料流速。
若第一检测区域的压力处于压力超限范围时,仅采用温度局部加热控制。
压力超限范围为预设的阈值范围,若压力超过压力超限范围则会存在熔料 进入模具缝隙的风险,而第一检测区域为受压力控制影响最大的区域,通过检测该区域的压力值与压力超限范围比较,保证加压的安全与制品的质量。
压力分段控制包括:
加速推挤流道2中的熔料,持续时间T;
所述的持续时间T由控制需求位置的长度L除以熔料直线流速Va乘以结构系数w获得。
通过加速推挤实现浇口3处的加压,分时间段加压控制,加压的时间段由路径和结构的复杂程度决定。
温度局部控制包括在各检测节点处设置电热丝。
在需要温度局部控制时,控制对应位置的电热丝为熔料加热;所述的电热丝设置在各检测节点靠上游的位置。
电热丝设置在检测节点靠上游位置,能提前为熔料加热,保证给熔料以温度变化的时间,保证熔料在经过检测节点时的温度适当。
S4:完成模具注塑过程。
在型腔中不同位置与结构对熔料的流动性要求不同,根据熔料流动的位置与流速评估其是否满足对应位置的流动性要求,以此来进行流动性控制,控制更加精准,提高了注塑的效率。根据该位置实时监测到的温度与压力数据选择调节的方式是压力分段控制还是温度局部控制,既保证能源的利用率与成本的控制,又能够保证制品的质量。
实施例二:
本实施例的一种注塑过程模具温度压力的双向补偿控制方法,还包括:
S5:将注塑完成后的制品转移到保温箱中保温额定时间。
将注塑完成后的制品在保温箱中保温,减少占用注塑模具的时间,提高注塑效率。避免制品在冷却过程中由于降温过快而产生形变。
保温箱外设置有保温水路,保温水路中灌注有冷却水回路的出水。充分利用冷却水回路中的冷却水,将使用过后升温的冷却水回路用于保温,充分利用资源,减少能源消耗。
本实施的方法还包括了注塑完成后的保温过程,其他过程同实施例一。
应理解,实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (9)

  1. 一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,包括以下步骤:
    S1:以型腔浇口为起点,到型腔末端划分为若干个检测区域;
    S2:注塑过程中,实时监测各检测区域的压力、温度与熔料流速;根据熔料在型腔中流经的位置及其流速,与预设的流速阈值比较评估熔料流动性;
    S3:根据评估的流动性以及位置所处检测区域获取的压力和温度数据,执行压力分段控制或温度局部控制,调节熔料流速;
    S4:完成模具注塑过程。
  2. 根据权利要求1所述的一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,所述的检测区域的划分过程为:
    设定若干半径,以型腔浇口为球心,分别确定检测球面;
    以两个相邻的检测球面之间的区域为一个检测区域;
    对检测区域由内向外依次编号。
  3. 根据权利要求1或2所述的一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,熔料流动性的评估过程为:
    A1:根据制品型腔的形状,选取若干控制需求位置设置熔料流速检测节点;
    A2:分别获取各检测节点的熔料流速V;
    若V≤0,则判断该检测节点无熔料通过,结束;
    若V>0,进入步骤A3;
    A3:将获取的熔料流速V与该检测节点预设的熔料流速阈值V0做差获得流速差Ve,根据流速差Ve的大小查表获得对应的熔料流动性评估等级。
  4. 根据权利要求3所述的一种注塑过程模具温度压力的双向补偿控制方法, 其特征在于,流动性评估等级包括偏快、适当和偏慢三种;
    若流动性评估等级为偏快,则减小流道浇口处的压力;
    若流动性评估等级为适当,则结束;
    若流动性评估等级为偏慢,则进行熔料流速调节,根据熔料流速检测节点与型腔浇口的距离选择压力分段控制或温度局部控制。
  5. 根据权利要求4所述的一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,获取需要调节的检测节点所处的检测区域编号m;
    判断检测区域编号m是否大于编号阈值M0;若是,则选择温度局部控制;否则,选择压力分段控制;
    若流速差Ve的绝对值大于速度控制阈值V1,则压力分段控制和温度局部控制同时进行。
  6. 根据权利要求1或4或5所述的一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,所述的压力分段控制包括:
    加速推挤流道中的熔料,持续时间T;
    所述的持续时间T由控制需求位置的长度L除以熔料直线流速Va乘以结构系数w获得。
  7. 根据权利要求1或4或5所述的一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,所述的温度局部控制包括在各检测节点处设置电热丝;在需要温度局部控制时,控制对应位置的电热丝为熔料加热;所述的电热丝设置在各检测节点靠上游的位置。
  8. 根据权利要求1所述的一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,还包括以下步骤:
    S5:将注塑完成后的制品转移到保温箱中保温额定时间。
  9. 根据权利要求8所述的一种注塑过程模具温度压力的双向补偿控制方法,其特征在于,所述的保温箱外设置有保温水路,所述保温水路中灌注有冷却水回路的出水。
PCT/CN2022/083965 2022-03-30 2022-03-30 一种注塑过程模具温度压力的双向补偿控制方法 WO2023184207A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083965 WO2023184207A1 (zh) 2022-03-30 2022-03-30 一种注塑过程模具温度压力的双向补偿控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083965 WO2023184207A1 (zh) 2022-03-30 2022-03-30 一种注塑过程模具温度压力的双向补偿控制方法

Publications (1)

Publication Number Publication Date
WO2023184207A1 true WO2023184207A1 (zh) 2023-10-05

Family

ID=88198380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083965 WO2023184207A1 (zh) 2022-03-30 2022-03-30 一种注塑过程模具温度压力的双向补偿控制方法

Country Status (1)

Country Link
WO (1) WO2023184207A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079222A (ja) * 2009-10-07 2011-04-21 Nissei Plastics Ind Co 射出成形機の温度制御方法
CN103817890A (zh) * 2014-03-19 2014-05-28 常州大学 一种注塑模具的数据采集和反馈系统
CN109501185A (zh) * 2018-11-27 2019-03-22 湖北工业大学 注塑成型工艺在线监测方法
CN111438905A (zh) * 2020-02-27 2020-07-24 宁波创元信息科技有限公司 一种用于注塑模具的温度控制系统与方法
CN111958933A (zh) * 2020-06-01 2020-11-20 海天塑机集团有限公司 一种基于熔体粘度波动的注射成型自适应补偿法
CN112888544A (zh) * 2018-10-23 2021-06-01 克劳斯玛菲科技有限公司 用于尤其在改进恒定的模具填充方面运行注塑成型机的方法和用于实施该方法的注塑成型机
CN114083771A (zh) * 2020-08-24 2022-02-25 香港生产力促进局 智能注塑模具系统
CN114734602A (zh) * 2022-03-28 2022-07-12 浙江凯华模具有限公司 一种注塑过程模具温度压力的双向补偿控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079222A (ja) * 2009-10-07 2011-04-21 Nissei Plastics Ind Co 射出成形機の温度制御方法
CN103817890A (zh) * 2014-03-19 2014-05-28 常州大学 一种注塑模具的数据采集和反馈系统
CN112888544A (zh) * 2018-10-23 2021-06-01 克劳斯玛菲科技有限公司 用于尤其在改进恒定的模具填充方面运行注塑成型机的方法和用于实施该方法的注塑成型机
CN109501185A (zh) * 2018-11-27 2019-03-22 湖北工业大学 注塑成型工艺在线监测方法
CN111438905A (zh) * 2020-02-27 2020-07-24 宁波创元信息科技有限公司 一种用于注塑模具的温度控制系统与方法
CN111958933A (zh) * 2020-06-01 2020-11-20 海天塑机集团有限公司 一种基于熔体粘度波动的注射成型自适应补偿法
CN114083771A (zh) * 2020-08-24 2022-02-25 香港生产力促进局 智能注塑模具系统
CN114734602A (zh) * 2022-03-28 2022-07-12 浙江凯华模具有限公司 一种注塑过程模具温度压力的双向补偿控制方法

Similar Documents

Publication Publication Date Title
CN104441698B (zh) 一种调整热压罐内流场温度均匀性的方法
CN108772539A (zh) 一种铸造模具型腔快速加热和快速冷却系统
WO2023184207A1 (zh) 一种注塑过程模具温度压力的双向补偿控制方法
CN110154303A (zh) 一种基于热压成型机的控温系统及控温方法
CN204198580U (zh) 一种溢流下拉法生产基板玻璃中的温度控制装置
CN110687941B (zh) 一种3d盖板玻璃上下模具温度同步控制系统及方法
CN206983170U (zh) 一种具有冷却功能的注塑模具
CN114734602A (zh) 一种注塑过程模具温度压力的双向补偿控制方法
CN107498795A (zh) 一种可调节温度的注塑模具
CN106238695A (zh) 一种连铸过程结晶器内铸流凝固预测控制方法
WO2023184205A1 (zh) 一种注塑过程的模具温度在线控制方法
CN109332614A (zh) 一种单点非平衡浇铸异型坯结晶器冷却控制装置及控制方法
CN206884075U (zh) 笔记本电脑c壳注塑模
CN114734604B (zh) 一种注塑过程的模具温度在线控制方法
CN104589629A (zh) 用于打乱挤出的薄膜铸片的厚度分布的方法和挤出模头
CN204604888U (zh) 能局部调节膜泡厚度的吹膜设备模头
US11524437B2 (en) Mold structure
CN207222917U (zh) 一种新能源汽车电池箱体低压铸造模具
JPH11291300A (ja) プラスチック射出成形用金型及びこの金型の製法並びにこの金型を用いる射出成形法
CN209224456U (zh) 一种工控显示屏面框生产用注塑模具
CN206703434U (zh) 手机壳注塑模具
CN219522869U (zh) 一种直冷式注塑模具
CN117681401A (zh) 用于变厚度注塑制品的模具温度控制系统及方法
CN219703466U (zh) 一种轮毂模具分体式边模
CN205046188U (zh) 热浸镀前钢带温度均匀化精确化控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934061

Country of ref document: EP

Kind code of ref document: A1