WO2023184103A1 - 发光器件及其制备方法、显示装置 - Google Patents

发光器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2023184103A1
WO2023184103A1 PCT/CN2022/083462 CN2022083462W WO2023184103A1 WO 2023184103 A1 WO2023184103 A1 WO 2023184103A1 CN 2022083462 W CN2022083462 W CN 2022083462W WO 2023184103 A1 WO2023184103 A1 WO 2023184103A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
hole
electron
functional layer
Prior art date
Application number
PCT/CN2022/083462
Other languages
English (en)
French (fr)
Inventor
杜小波
吴海东
李彦松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000576.0A priority Critical patent/CN117178653A/zh
Priority to US18/020,714 priority patent/US20240292649A1/en
Priority to PCT/CN2022/083462 priority patent/WO2023184103A1/zh
Publication of WO2023184103A1 publication Critical patent/WO2023184103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present application relates to the field of display technology, and in particular to a light-emitting device, a preparation method thereof, and a display device.
  • OLED Organic Light-Emtting Diode
  • OLED panels have many advantages, such as a wide range of material selection, full-color display in the 380nm-700nm spectral region, wide viewing angle, fast response, low driving voltage, and flexible display. They have been rapidly developed over the past 20 years. development and application.
  • OLED uses organic small molecule semiconductor materials as functional materials to complete the transmission and recombination of carriers driven by an external electric field, thereby forming excitons, which radiate and transition to achieve luminescence.
  • Currently mass-produced OLEDs have high production costs and low yields, and need further optimization.
  • a light-emitting device including: at least one light-emitting unit.
  • the light-emitting unit includes: a light-emitting layer, an electron functional layer, and a hole functional layer.
  • the electron functional layer and the hole functional layer are respectively provided on Opposite sides of the luminescent layer;
  • the material of the light-emitting layer includes: a host material and a guest material doped in the host material; the host material includes: a hole transport material and an electron transport material;
  • the material of the electron functional layer is the same as the electron transport material, and the material of the hole functional layer is the same as the hole transport material;
  • the energy value HOMO A of the highest occupied molecular orbital of the hole-transporting material and the energy value HOMO B of the highest occupied molecular orbital of the electron-transporting material satisfy: HOMO A - HOMO B >0.2eV;
  • the energy value LUMO A of the lowest unoccupied molecular orbital of the hole transport type material and the energy value LUMO B of the lowest unoccupied molecular orbital of the electron transport type material satisfy: LUMO A - LUMO B > 0.2 eV.
  • the energy value HOMO A of the highest occupied molecular orbital of the hole-transporting material satisfies: -5.7eV ⁇ HOMOA ⁇ - 5.1eV ;
  • the energy value of the lowest unoccupied molecular orbital of the hole-transporting material satisfies: LUMO A satisfies: -2.7eV ⁇ LUMO A ⁇ -2.0eV;
  • the energy value HOMO B of the highest occupied molecular orbital of the electron transport material satisfies: -6.2eV ⁇ HOMO B ⁇ -5.4eV; the energy value LUMO B of the lowest unoccupied molecular orbital of the electron transport material satisfies: -3.1 eV ⁇ LUMO B ⁇ -2.3eV.
  • the light-emitting unit further includes: an anode and a cathode, the anode is arranged on a side of the hole functional layer away from the light-emitting layer, and the cathode is arranged on a side of the electron functional layer away from the light-emitting layer. side.
  • the light-emitting unit further includes: a hole transport layer and an electron transport layer; the hole transport layer is provided on a side of the hole functional layer close to the anode and is opposite to the hole functional layer. Contact; the electron transport layer is provided on the side of the electronic functional layer close to the cathode and is in contact with the electronic functional layer.
  • the light-emitting unit further includes: a hole injection layer and an electron injection layer; the hole injection layer is provided on a side of the hole transport layer close to the anode and in contact with the anode;
  • the electron injection layer is disposed on a side of the electron transport layer close to the cathode and in contact with the cathode.
  • the thickness of the hole functional layer ranges from 5 to 200 nm
  • the thickness of the electron functional layer ranges from 5 to 20 nm.
  • the light-emitting unit is a red light-emitting unit
  • the hole functional layer has a thickness in the range of 5-150 nm
  • the electron functional layer has a thickness in the range of 5-20 nm.
  • the light-emitting unit is a green light-emitting unit
  • the hole functional layer has a thickness in the range of 5-100 nm
  • the electron functional layer has a thickness in the range of 5-20 nm.
  • the light-emitting unit is a blue light-emitting unit
  • the hole functional layer has a thickness in the range of 5-40 nm
  • the electron functional layer has a thickness in the range of 5-20 nm.
  • the light-emitting unit further includes: a hole injection layer and an electron injection layer; the hole injection layer is provided on a side of the hole functional layer close to the anode and is opposite to the hole functional layer. Contact; the electron injection layer is provided on the side of the electronic functional layer close to the cathode and is in contact with the electronic functional layer.
  • the hole functional layer is in contact with the anode, and the electron functional layer is in contact with the cathode.
  • the thickness of the hole functional layer ranges from 5 to 300 nm, and the thickness of the electron functional layer ranges from 5 to 100 nm.
  • the light-emitting unit is a red light-emitting unit
  • the hole functional layer has a thickness in the range of 5-300 nm
  • the electron functional layer has a thickness in the range of 5-100 nm.
  • the light-emitting unit is a green light-emitting unit
  • the hole functional layer has a thickness in the range of 5-250 nm
  • the electron functional layer has a thickness in the range of 5-100 nm.
  • the light-emitting unit is a blue light-emitting unit
  • the hole functional layer has a thickness in the range of 5-200 nm
  • the electron functional layer has a thickness in the range of 5-100 nm.
  • the material of the anode includes: light-transmitting material, and the material of the cathode includes: light-transmitting material; or, the material of the anode includes: light-transmitting material, and the material of the cathode includes: light-transmitting material. Material.
  • the hole transporting material includes aromatic amine materials or dendrimer family materials
  • the electron transporting material includes aromatic compound materials
  • the hole transport material includes: compound C and/or derivatives of compound C, where the compound C includes: triphenylamine, fluorene, spirofluorene or phenothiazine;
  • the electron transport type material includes: a heterocyclic compound, the heterocyclic compound includes: D functional group and E atom, the D functional group includes: naphthalene, anthracene, quinoline or triazine, the E atom includes: nitrogen atom, Phosphorus or sulfur atoms.
  • the light-emitting unit is a red light-emitting unit
  • the hole-transporting material includes: a triphenylamine group and a thiofluorene functional group, or a triphenylamine group and an oxyfluorene functional group
  • the electron-transporting material includes: A first group and a first functional group, the first group includes a triazine group, a quinoline group, a naphthyl group or an anthracene group, the first functional group includes a carbazole functional group or a fluorene functional group.
  • the light-emitting unit is a green light-emitting unit
  • the hole-transporting material includes: a triphenylamine group and a carbazole functional group, or a triphenylamine group and a spirofluene functional group
  • the electron-transporting material includes: A triazine group and a carbazole functional group, or a triazine group and an oxyfluorene functional group.
  • the light-emitting unit is a blue light-emitting unit
  • the hole transport material includes: a triphenylamine group, a second functional group and a third functional group, the second functional group includes a carbazole functional group or a spirofluorene functional group, so
  • the third functional group includes naphthalene functional group or anthracene functional group;
  • the electron transport material includes a fourth functional group, and the fourth functional group includes: triazine functional group, naphthalene functional group, anthracene functional group or fluorene functional group.
  • the light-emitting unit is a red light-emitting unit, and the thickness of the light-emitting layer ranges from 20 to 80 nm;
  • the light-emitting unit is a green light-emitting unit, and the thickness of the light-emitting layer ranges from 20 to 60 nm.
  • the light-emitting unit is a blue light-emitting unit, and the thickness of the light-emitting layer ranges from 10 to 50 nm.
  • the doping ratio of the guest material ranges from 0.1% to 20%.
  • a display device including the above-mentioned light-emitting device.
  • a method for preparing the above-mentioned light-emitting device including:
  • the forming at least one light-emitting unit includes:
  • a luminescent layer, an electron functional layer and a hole functional layer are formed, wherein the electron functional layer and the hole functional layer are respectively arranged on opposite sides of the luminescent layer;
  • the material of the luminescent layer includes: a host material, And a guest material doped in the host material, the host material includes: a hole transport material and an electron transport material;
  • the material of the electronic functional layer is the same as the electron transport material, and the hole transport material
  • the material of the functional layer is the same as the hole transport material;
  • the energy value HOMO A of the highest occupied molecular orbital of the hole transport material and the energy value HOMO B of the highest occupied molecular orbital of the electron transport material satisfy: HOMO A - HOMO B >0.2eV;
  • the energy value LUMO A of the lowest unoccupied molecular orbital of the hole transport material and the energy value LUMO B of the lowest unoccupied molecular orbital of the electron transport material satisfy: LUMO A - LUMO B >0.2
  • the forming the light-emitting layer, the electron functional layer and the hole functional layer includes:
  • the light-emitting layer, the electron functional layer and the hole functional layer are formed by evaporation using the same evaporation chamber.
  • Figure 1 schematically shows the structural diagram of an OLED light-emitting device
  • Figure 2-6 schematically shows the structural diagrams of five kinds of light-emitting units
  • Figures 7-8 schematically show the structural diagrams of two display devices
  • Figure 9 schematically shows a schematic diagram of the evaporation process of a light-emitting unit, in which Figure a is a schematic diagram of forming a hole functional layer, Figure B is a schematic diagram of forming a light-emitting layer, and Figure C is a schematic diagram of forming an electronic functional layer.
  • an OLED light-emitting device includes an Anode electrode (anode) 10, an HTL layer (hole injection layer) 11, an HTL layer (hole transport layer) 12, and a Prime layer (light emitting leader) which are stacked in sequence. layer) 13, EML layer (light emitting layer) 14, HBL layer (hole blocking layer) 15, ETL (electron transport layer) 16, EIL (electron injection layer) 17 and Cathode electrode (cathode) 18.
  • the materials of the light-emitting layer include host materials and guest materials.
  • a light-emitting device including: at least one light-emitting unit 100 as shown in FIGS. 2-6.
  • the light-emitting unit 100 includes: a light-emitting layer 1, an electron functional layer 2 and a hole functional layer. 3.
  • the electron functional layer 2 and the hole functional layer 3 are respectively arranged on opposite sides of the light-emitting layer 1.
  • the materials of the light-emitting layer include: host material and guest material doped in the host material.
  • the host material includes: hole transport material and electron transport material.
  • the material of the electron functional layer is the same as the electron transport type material, and the material of the hole functional layer is the same as the hole transport type material.
  • the energy value HOMO A of the highest occupied molecular orbital of the hole transport material and the energy value HOMO B of the highest occupied molecular orbital of the electron transport material satisfy: HOMO A - HOMO B >0.2eV; the lowest energy value of the hole transport material
  • the energy value LUMO A of the unoccupied molecular orbital and the energy value LUMO B of the lowest unoccupied molecular orbital of the electron transport type material satisfy: LUMO A - LUMO B > 0.2 eV.
  • the above-mentioned light-emitting device may include light-emitting units of the same light-emitting color, such as a red light-emitting unit, a green light-emitting unit or a blue light-emitting unit. Applying the light-emitting device to a display device can achieve a single-color picture display; or, the light-emitting device may include multiple light-emitting units at the same time.
  • a light-emitting unit that emits light in different colors for example, includes a red light-emitting unit, a green light-emitting unit and a blue light-emitting unit at the same time. Applying the light-emitting device to a display device can realize color picture display.
  • the host material of the above-mentioned light-emitting layer includes hole transport material and electron transport material, which belongs to the dual-host material type.
  • Hole-transporting materials are conducive to the transmission of holes
  • electron-transporting materials are conducive to the transmission of electrons.
  • the hole functional layer at least needs to have the property of blocking electrons
  • the electron functional layer at least needs to have the property of blocking holes, so for hole transport
  • the energy levels of type materials and electron transport materials need to be limited.
  • the orbit with the highest energy level of occupied electrons is called the Highest Occupied Molecular Orbital (HOMO), and the orbit with the lowest energy level of unoccupied electrons is called the Lowest Unoccupied Molecular Orbital (Lowest Unoccupied Molecular Orbital). Orbital, LUMO).
  • HOMO Highest Occupied Molecular Orbital
  • LUMO Lowest Unoccupied Molecular Orbital
  • the energy value HOMO A of the highest occupied molecular orbital of the above-mentioned hole transport type material and the energy value HOMO B of the highest occupied molecular orbital of the electron transport type material satisfy: HOMO A - HOMO B > 0.2eV, which is beneficial to the electron functional layer blocking holes , which is beneficial to blocking the migration of holes in the light-emitting layer; the energy value LUMO A of the lowest unoccupied molecular orbital of the hole transport material and the energy value LUMO B of the lowest unoccupied molecular orbital of the electron transport material satisfy: LUMO A - LUMO B >0.2eV is helpful for the hole functional layer to block electrons, thereby blocking the migration of electrons in the light-emitting layer.
  • the light-emitting area is limited in the light-emitting layer, preventing the energy of the light-emitting layer from diffusing to the surrounding functional layers, thereby improving the luminous efficiency of the light-emitting device.
  • the specific types of the above-mentioned hole transport materials, electron transport materials and guest materials are not limited, as long as they meet the corresponding energy level requirements.
  • the above-mentioned guest material may include phosphorescent luminescent material or fluorescent luminescent material.
  • the guest material may include any one of Ir(ppy) 3 , Be(PP) 2 , and PPF.
  • Ir(ppy) 3 is tris(2-phenylpyridine)iridium
  • the Chinese name of Be(PP) 2 is bis(2-hydroxyphenylpyridine)
  • the Chinese name of PPF is polymer polyethylene polypropylene. , its chemical structural formula is
  • the material of the above-mentioned electron functional layer is the same as a main body material of the light-emitting layer, that is, the hole transport type material.
  • the material of the above-mentioned hole functional layer is the same as a main body material of the light-emitting layer, that is, the electron transport type material; then, when using evaporation
  • the process of forming the electronic functional layer, the luminescent layer and the hole functional layer only requires one evaporation chamber and one evaporation mask, thereby shortening the overall evaporation time, high yield, and low production cost.
  • the light-emitting device has a simple structure and low cost.
  • the energy value HOMO A of the highest occupied molecular orbital of the hole transport material satisfies: -5.7eV ⁇ HOMO A ⁇ -5.1eV
  • HOMO A can be -5.7eV, -5.5eV, -5.3eV or -5.1eV
  • the energy value LUMO A of the lowest unoccupied molecular orbital of the hole transport material satisfies: -2.7eV ⁇ LUMO A ⁇ -2.0eV
  • LUMO A can be -2.7eV, -2.5eV, -2.3eV or -2.0eV.
  • the energy value HOMO B of the highest occupied molecular orbital of the electron transport material satisfies: -6.2eV ⁇ HOMO B ⁇ -5.4eV.
  • HOMO B can be -6.2eV, -6.0eV, -5.8eV, -5.6eV or -5.4eV;
  • the energy value LUMO B of the lowest unoccupied molecular orbital of the electron transport material satisfies: -3.1eV ⁇ LUMO B ⁇ -2.3eV.
  • LUMO B can be -3.1eV, -2.9eV, -2.7eV , -2.5eV or -2.3eV.
  • the light-emitting device is a current-driven device, that is, as the current density increases under an external bias voltage, the brightness increases accordingly.
  • the light-emitting unit also includes: an anode 4 and a cathode 5.
  • the anode 4 is provided on the side of the hole functional layer 3 away from the light-emitting layer 1, and the cathode 5 It is arranged on the side of the electronic functional layer 2 away from the light-emitting layer 1 .
  • the materials of the anode and the cathode are not limited here.
  • the cathode and the anode can be formed of metal or metal oxide respectively.
  • the anode material includes ITO (Indium Tin Oxide, indium tin oxide), and the cathode material includes metal aluminum.
  • the light-emitting unit in order to further improve the transmission efficiency of holes and electrons, with reference to Figures 2 and 3, the light-emitting unit also includes: a hole transport layer 6 and an electron transport layer 7;
  • the hole transport layer 6 is arranged on the side of the hole functional layer 3 close to the anode 4 and in contact with the hole functional layer 3;
  • the electron transport layer 7 is arranged on the side of the electron functional layer 2 close to the cathode 5 and in contact with the electron function layer 3. Layers 2 are in contact.
  • the electron functional layer is used to block holes and is equivalent to a hole blocking layer; the hole functional layer is used to block electrons and is equivalent to a light-emitting leader layer or an electron blocking layer.
  • the materials of the hole transport layer and the electron transport layer are not limited here. Examples of the materials of the hole transport layer include any one of NPB, TPD, m-MTDATA, and SPPO13.
  • NPB is N,N′-diphenyl-N,N′-(1-naphthyl)-1,1′-biphenyl-4,4′-diamine
  • TPD is N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine
  • m-MTDATA is 4,4′ , 4′′-tris[phenyl(m-tolyl)amino]triphenylamine
  • SPPO13 is spirobifluorene2,7-bis(diphenylphosphinyl)-9,9′-spirobifluorene.
  • the material of the electron transport layer may include Any one of Bphen, TPBI, BCP, and B3PYMPM.
  • Bphen is o-phenanthroline
  • TPBI 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene
  • BCP is 2,9-dimethyl-4,7-biphenyl-1,10-phenanthrene Phinoline
  • B3PYMPM is 4,6-bis(3,5-di(3-pyridinylphenyl))-2-methylpyrimidine.
  • the light-emitting unit also includes: a hole injection layer 8 and an electron injection layer 9; the hole injection layer 8 is provided on the hole transport layer 6 is close to the side of the anode 4 and in contact with the anode 4; the electron injection layer 9 is provided on the side of the electron transport layer 7 close to the cathode 5 and in contact with the cathode 5.
  • the materials of the electron injection layer and the hole injection layer are not limited here.
  • the material of the hole injection layer may include single-component materials, such as HATCN, 2T-NATA, CuPc, MoO 3 (molybdenum trioxide). any of them.
  • HATCN here is 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazabenzophenanthrene, and its chemical structural formula is
  • the Chinese name of CuPc is copper phthalocyanine, and its chemical structural formula is
  • the Chinese name of MoO 3 is molybdenum trioxide.
  • the material of the hole injection layer may include a multi-component material, for example, it may include an axene-based or quinone-based compound doped with an aromatic amine compound.
  • the multi-component material may be F4TCNQ doped with NPB or TPD.
  • F4TCNQ is The Chinese name of NPB is N,N′-diphenyl-N,N′-(1-naphthyl)-1,1′-biphenyl-4,4′-diamine, and its chemical structural formula is:
  • the Chinese name of TPD is N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine, and its chemical structural formula is N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine, and its chemical structural formula is
  • the material of the electron injection layer may include any one of LiF, Yb, and Liq.
  • the Chinese name of LiF here is lithium fluoride; the Chinese name of Yb is ytterbium; the Chinese name of Liq is 8-hydroxyquinoline-lithium, and its chemical structural formula is
  • the electron transport layer 7 can be in contact with the cathode 5, without an electron injection layer between them; the hole transport layer 6 can be in contact with the anode 4, with no electron injection layer between them.
  • a hole injection layer 6 is provided.
  • the thickness of the hole functional layer ranges from 5-200nm
  • the thickness of the electron functional layer ranges from 5-20nm.
  • the thickness of the hole functional layer is H1 shown in Figure 2
  • the thickness of the electron functional layer is H2 shown in Figure 2.
  • the light-emitting unit emits light in different colors, and the thickness ranges of the electronic functional layer and the hole functional layer are also different. Further optionally, the light-emitting unit is a red light-emitting unit, the hole functional layer has a thickness range of 5-150nm, and the electronic functional layer The thickness range is 5-20nm. Optionally, the light-emitting unit is a green light-emitting unit, the hole functional layer has a thickness in the range of 5-100 nm, and the electron functional layer has a thickness in the range of 5-20 nm.
  • the light-emitting unit is a blue light-emitting unit
  • the hole functional layer has a thickness in the range of 5-40nm
  • the electron functional layer has a thickness in the range of 5-20nm.
  • the specific thickness values of the electron functional layer and the hole functional layer need to be selected according to the actual situation, and will not be listed one by one here.
  • the light-emitting unit further includes: a hole injection layer 8 and an electron injection layer 9; the hole injection layer 8 is disposed in the hole.
  • the hole function layer 3 is on the side close to the anode 4 and in contact with the hole function layer 3; the electron injection layer 9 is provided on the side of the electron function layer 2 close to the cathode 5 and in contact with the electron function layer 2.
  • the hole functional layer is not only used to block electrons, but also used to transport holes, and has the functions of both the electron blocking layer and the hole transport layer;
  • the electron functional layer is not only used to block holes, but also used to transport holes. It also serves as a hole blocking layer and an electron transport layer.
  • the materials of the hole injection layer and the electron injection layer are not limited. For details, please refer to the foregoing description, which will not be described again here.
  • the thickness of the electronic functional layer can be the same as the thickness of the electronic functional layer of the structure shown in Figure 2
  • the thickness of the hole functional layer can be the same as the thickness of the hole functional layer of the structure shown in Figure 2; or, Referring to Figure 4, the thickness of the electronic functional layer can be the same as the total thickness of the electronic functional layer and the electron transport layer of the structure shown in Figure 2, and the thickness of the hole functional layer can be the same as the hole functional layer and the total thickness of the hole functional layer of the structure shown in Figure 2.
  • the total thickness of the hole transport layer is the same.
  • the specific thickness of the electron functional layer and hole functional layer can be determined according to actual requirements.
  • the hole functional layer 3 is in contact with the anode 4
  • the electron functional layer 2 is in contact with the cathode 5 .
  • the hole functional layer is not only used to block electrons, but also used to transport holes, and has the functions of both the electron blocking layer and the hole transport layer;
  • the electron functional layer is not only used to block holes, but also used to transport holes. It also serves as a hole blocking layer and an electron transport layer.
  • the light-emitting device does not have a hole injection layer and an electron injection layer, and the structure is simpler.
  • the thickness of the hole functional layer ranges from 5 to 300 nm
  • the thickness of the electron functional layer ranges from 5 to 100 nm.
  • the thickness of the hole functional layer is H1 shown in Figure 4
  • the thickness of the electron functional layer is H2 shown in Figure 4.
  • the light-emitting unit emits light in different colors, and the thickness ranges of the electronic functional layer and the hole functional layer are also different. Further optionally, the light-emitting unit is a red light-emitting unit, the hole functional layer has a thickness range of 5-300nm, and the electronic functional layer The thickness range is 5-100nm. Optionally, the light-emitting unit is a green light-emitting unit, the hole functional layer has a thickness in the range of 5-250nm, and the electron functional layer has a thickness in the range of 5-100nm.
  • the light-emitting unit is a blue light-emitting unit
  • the hole functional layer has a thickness in the range of 5-200nm
  • the electron functional layer has a thickness in the range of 5-100nm.
  • the specific thickness values of the electron functional layer and the hole functional layer need to be selected according to the actual situation, and will not be listed one by one here.
  • Optional materials for the anode include: light-transmitting materials, such as ITO (Indium Tin Oxide, indium tin oxide), and materials for the cathode include: opaque materials, such as: Metal materials, at this time, the light formed by the light-emitting layer is emitted from the anode and can be used in bottom-emitting devices; alternatively, the material of the anode includes: opaque materials, such as metal materials, and the materials of the cathode include: light-transmitting materials, such as : ITO (Indium Tin Oxide, indium tin oxide). At this time, the light formed by the luminescent layer is emitted from the cathode and can be used in top-emitting devices.
  • light-transmitting materials such as ITO (Indium Tin Oxide, indium tin oxide)
  • materials for the cathode include: opaque materials, such as metal materials
  • the materials of the cathode include: light-transmitting materials, such as : ITO (In
  • the hole transport material includes aromatic amine materials or dendrimer materials
  • the electron transport material includes aromatic compound materials
  • the hole transport material includes: compound C and/or a derivative of compound C.
  • Compound C includes: triphenylamine, fluorene, spirofluene or phenothiazine.
  • the hole-transporting material includes compound C and/or derivatives of compound C: first, the hole-transporting material includes compound C; second, the hole-transporting material includes derivatives of compound C; The third type, hole-transporting materials include compound C and derivatives of compound C.
  • Electron transport materials include: heterocyclic compounds.
  • the heterocyclic compounds include: D functional group and E atom.
  • the D functional group includes: naphthalene, anthracene, quinoline or triazine.
  • the E atom includes: nitrogen atom, phosphorus atom or sulfur atom.
  • the light-emitting unit is a red light-emitting unit
  • the hole-transporting material includes: a triphenylamine group and a thiofluorene functional group, or a triphenylamine group and an oxyfluorene functional group
  • the electron-transporting material includes: A group and a first functional group, the first group includes: triazine group, quinoline group, naphthalene group or anthracene group
  • the first functional group includes: carbazole functional group or fluorene functional group.
  • the light-emitting unit is a green light-emitting unit
  • the hole-transporting material includes: a triphenylamine group and a carbazole functional group, or a triphenylamine group and a spirofluene functional group
  • the electron-transporting material includes: a triphenylamine group and a carbazole functional group. an azine group and a carbazole functional group, or a triazine group and an oxyfluorene functional group.
  • the light-emitting unit is a blue light-emitting unit
  • the hole transport material includes: a triphenylamine group, a second functional group and a third functional group, the second functional group includes a carbazole functional group or a spirofluene functional group, and the third The functional group includes naphthalene functional group or anthracene functional group; the electron transport material includes a fourth functional group, and the fourth functional group includes: triazine functional group, naphthalene functional group, anthracene functional group or fluorene functional group.
  • the light-emitting unit is a red light-emitting unit, and the thickness of the light-emitting layer ranges from 20 to 80 nm. In one or more embodiments, the light-emitting unit is a green light-emitting unit, and the thickness of the light-emitting layer ranges from 20 to 60 nm. In one or more embodiments, the light-emitting unit is a blue light-emitting unit, and the thickness of the light-emitting layer ranges from 10 to 50 nm. Referring to FIGS. 2 and 4 , the thickness of the luminescent layer is H as shown in FIGS. 2 and 4 .
  • the doping ratio of the guest material ranges from 0.1% to 20%; the specific doping ratio can be selected according to the specific material.
  • An embodiment of the present application also provides a display device, which includes the above-mentioned light-emitting device.
  • the display device may be a flexible display device (also called a flexible screen) or a rigid display device (that is, a display device that cannot be bent), which is not limited here.
  • the display device may be an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display device, or may be any product or component with a display function such as a TV, digital camera, mobile phone, tablet computer, etc. including OLED.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the display device has the advantages of good display effect, long life, high stability, and high contrast.
  • the display device may include a red light-emitting unit 100r, a green light-emitting unit 100g, and a blue light-emitting unit 100b at the same time.
  • a red light-emitting unit 100r a green light-emitting unit 100g
  • a blue light-emitting unit 100b a blue light-emitting unit 100b at the same time.
  • the same film layers of the light-emitting units belonging to different light-emitting colors are marked with r, g, and b respectively.
  • the luminescent layer marked 1r represents the luminescent layer in the red luminescent unit
  • the luminescent layer marked 1g represents the luminescent layer in the green luminescent unit
  • the luminescent layer marked 1b represents the blue luminescent layer.
  • the light-emitting layer in the color light-emitting unit is similar to the other film layers and will not be described one by one here.
  • the structure of the light-emitting unit of the display device is the same as that shown in Figure 2.
  • the red light-emitting unit includes an anode 4r, a hole injection layer 8r, a hole transport layer 6r, and a hole functional layer.
  • the structure of the light-emitting unit of the display device is the same as that shown in Figure 4, taking the red light-emitting unit as an example.
  • the red light-emitting unit includes an anode 4r, a hole injection layer 8r, a hole functional layer 3r, a light-emitting layer 1r, an electron functional layer 2r, an electron injection layer 9r and a cathode 5r.
  • Embodiments of the present application also provide a method for preparing the above-mentioned light-emitting device, including:
  • the above S10, forming at least one light-emitting unit includes:
  • the materials of the luminescent layer include: a host material, and a host material doped in the host material
  • the guest materials and host materials include: hole transport materials and electron transport materials; the material of the electron functional layer is the same as the electron transport material, and the material of the hole functional layer is the same as the hole transport material; the hole transport type
  • the energy value HOMO A of the highest occupied molecular orbital of the material and the energy value HOMO B of the highest occupied molecular orbital of the electron transport material satisfy: HOMO A - HOMO B >0.2eV; the energy of the lowest unoccupied molecular orbital of the hole transport material
  • the value A LUMO and the energy value LUMO B of the lowest unoccupied molecular orbital of the electron transport type material satisfy: LUMO A -LUMO B > 0.2eV.
  • the order in which the light-emitting layer, the electron functional layer and the hole functional layer are formed in S20 is not limited.
  • a hole functional layer, a light-emitting layer and an electron functional layer may be formed in sequence; or, an electron functional layer, a light-emitting layer and a hole functional layer may be formed in sequence.
  • the material of the electron functional layer is the same as a host material of the light-emitting layer, that is, a hole transport material
  • the material of the hole functional layer is the same as a host material of the light-emitting layer, that is, an electron transport material. , which can simplify the production process and reduce costs.
  • optional S20 forming the light-emitting layer, electronic functional layer, and hole functional layer includes:
  • S30 use the same evaporation chamber to evaporate to form the luminescent layer, electronic functional layer and hole functional layer including:
  • S50 use the same evaporation chamber to sequentially evaporate to form an electronic functional layer, a light-emitting layer and a hole functional layer.
  • the substrate 200 on which the hole transport layer 6 is formed is placed into an evaporation chamber.
  • the shutter 20 includes an opening area 202 and a non-opening area 201 .
  • the evaporation source includes a hole transport type material.
  • Source 41, guest material source 42 and electron transport material source 43 refer to Figure 9 a, align the opening area 202 of the baffle 20 with the hole transport material source 41 of the evaporation source, thereby evaporating Form the hole functional layer 3; then, as shown in Figure 9b, move the baffle 20 so that the opening area 202 of the baffle 20 is in contact with the hole transport material source 41, the guest material source 42 and the electrons of the evaporation source.
  • the transmission material source 43 is aligned to evaporate to form the luminescent layer 1; then, as shown in Figure 9c, the baffle 20 is moved so that the opening area 202 of the baffle 20 is in contact with the electron transmission material source of the evaporation source. 43 are aligned to form the electronic functional layer 2 by evaporation. Using this method, only one mask is needed and aligned once, which greatly reduces evaporation time and cost while improving yield.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种发光器件及其制备方法、显示装置,涉及显示技术领域,该发光器件的结构简单、成本低。发光器件包括至少一个发光单元,发光单元包括发光层、电子功能层和空穴功能层;发光层的材料包括主体材料、以及掺杂在主体材料中的客体材料,主体材料包括:空穴传输型材料和电子传输型材料;电子功能层的材料与电子传输型材料相同,空穴功能层的材料与空穴传输型材料相同;空穴传输型材料的最高占据分子轨道的能量值HOMO A与电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV;空穴传输型材料的最低未占据分子轨道的能量值LUMO A与电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV。

Description

发光器件及其制备方法、显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种发光器件及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light-Emtting Diode,OLED)由于具有亮度高、色彩饱和度高、轻薄、可弯曲等优点,在平板显示与照明领域具有广泛应用。OLED面板具备诸多优势,如材料选择范围广、可实现380nm-700nm光谱区域的全彩显示、视角宽、响应速度快、驱动电压低、可实现柔性显示等优点,在过去20多年中得到了迅速的发展和应用。OLED是采用有机小分子半导体材料作为功能材料,在外电场驱动下完成载流子的传输和复合,从而形成激子,激子辐射跃迁实现发光。目前量产的OLED生产成本高、良率低,需要进一步优化。
发明内容
本申请的实施例采用如下技术方案:
一方面,提供了一种发光器件,包括:至少一个发光单元,所述发光单元包括:发光层、电子功能层和空穴功能层,所述电子功能层和所述空穴功能层分别设置在所述发光层相对的两侧;
所述发光层的材料包括:主体材料、以及掺杂在所述主体材料中的客体材料,所述主体材料包括:空穴传输型材料和电子传输型材料;
所述电子功能层的材料与所述电子传输型材料相同,所述空穴功能层的材料与所述空穴传输型材料相同;
其中,所述空穴传输型材料的最高占据分子轨道的能量值HOMO A与所述电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV;所述空穴传输型材料的最低未占据分子轨道的能量值LUMO A与所述电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV。
可选的,所述空穴传输型材料的最高占据分子轨道的能量值HOMO A满足:-5.7eV≤HOMO A≤-5.1eV;所述空穴传输型材料的最低未占据分子轨道的能量值LUMO A满足:-2.7eV≤LUMO A≤-2.0eV;
所述电子传输型材料的最高占据分子轨道的能量值HOMO B满足: -6.2eV≤HOMO B≤-5.4eV;所述电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:-3.1eV≤LUMO B≤-2.3eV。
可选的,所述发光单元还包括:阳极和阴极,所述阳极设置在所述空穴功能层远离所述发光层的一侧,所述阴极设置在所述电子功能层远离所述发光层的一侧。
可选的,所述发光单元还包括:空穴传输层和电子传输层;所述空穴传输层设置在所述空穴功能层靠近所述阳极的一侧且与所述空穴功能层相接触;所述电子传输层设置在所述电子功能层靠近所述阴极的一侧且与所述电子功能层相接触。
可选的,所述发光单元还包括:空穴注入层和电子注入层;所述空穴注入层设置在所述空穴传输层靠近所述阳极的一侧且与所述阳极相接触;所述电子注入层设置在所述电子传输层靠近所述阴极的一侧且与所述阴极相接触。
可选的,所述空穴功能层的厚度范围为5-200nm,所述电子功能层的厚度范围为5-20nm。
可选的,所述发光单元为红光发光单元,所述空穴功能层的厚度范围为5-150nm,所述电子功能层的厚度范围为5-20nm。
可选的,所述发光单元为绿光发光单元,所述空穴功能层的厚度范围为5-100nm,所述电子功能层的厚度范围为5-20nm。
可选的,所述发光单元为蓝光发光单元,所述空穴功能层的厚度范围为5-40nm,所述电子功能层的厚度范围为5-20nm。
可选的,所述发光单元还包括:空穴注入层和电子注入层;所述空穴注入层设置在所述空穴功能层靠近所述阳极的一侧且与所述空穴功能层相接触;所述电子注入层设置在所述电子功能层靠近所述阴极的一侧且与所述电子功能层相接触。
可选的,所述空穴功能层与所述阳极相接触,所述电子功能层与所述阴极相接触。
可选的,所述空穴功能层的厚度范围为5-300nm,所述电子功能层的厚度范围为5-100nm。
可选的,所述发光单元为红光发光单元,所述空穴功能层的厚度范围为5-300nm,所述电子功能层的厚度范围为5-100nm。
可选的,所述发光单元为绿光发光单元,所述空穴功能层的厚度范围为 5-250nm,所述电子功能层的厚度范围为5-100nm。
可选的,所述发光单元为蓝光发光单元,所述空穴功能层的厚度范围为5-200nm,所述电子功能层的厚度范围为5-100nm。
可选的,所述阳极的材料包括:透光材料,所述阴极的材料包括:不透光材料;或者,所述阳极的材料包括:不透光材料,所述阴极的材料包括:透光材料。
可选的,所述空穴传输型材料包括:芳胺类材料或者枝聚物族类材料,所述电子传输型材料包括:芳香族化合物材料。
可选的,所述空穴传输型材料包括:化合物C和/或化合物C的衍生物,所述化合物C包括:三苯胺、芴、螺芴或者吩噻嗪;
所述电子传输型材料包括:杂环化合物,所述杂环化合物包括:D官能团和E原子,所述D官能团包括:萘、蒽、喹啉或者三嗪,所述E原子包括:氮原子、磷原子或者硫原子。
可选的,所述发光单元为红光发光单元,所述空穴传输型材料包括:三苯胺基团和硫芴官能团、或者三苯胺基团和氧芴官能团;所述电子传输型材料包括:第一基团和第一官能团,所述第一基团包括:三嗪基团、喹啉基团、萘基团或者蒽基团,所述第一官能团包括:咔唑官能团或者芴官能团。
可选的,所述发光单元为绿光发光单元,所述空穴传输型材料包括:三苯胺基团和咔唑官能团、或者三苯胺基团和螺芴官能团,所述电子传输型材料包括:三嗪基团和咔唑官能团、或者三嗪基团和氧芴官能团。
可选的,所述发光单元为蓝光发光单元,所述空穴传输型材料包括:三苯胺基团、第二官能团和第三官能团,所述第二官能团包括咔唑官能团或者螺芴官能团,所述第三官能团包括萘官能团或者蒽官能团;所述电子传输型材料包括第四官能团,所述第四官能团包括:三嗪官能团、萘官能团、蒽官能团或者芴官能团。
可选的,所述发光单元为红光发光单元,所述发光层的厚度范围为20-80nm;
可选的,所述发光单元为绿光发光单元,所述发光层的厚度范围为20-60nm。
可选的,所述发光单元为蓝光发光单元,所述发光层的厚度范围为10-50nm。
可选的,所述发光层中,所述客体材料的掺杂比例范围包括:0.1%-20%。
另一方面,提供了一种显示装置,包括上述的发光器件。
又一方面,提供了一种上述发光器件的制备方法,包括:
形成至少一个发光单元;
所述形成至少一个发光单元包括:
形成发光层、电子功能层和空穴功能层,其中,所述电子功能层和所述空穴功能层分别设置在所述发光层相对的两侧;所述发光层的材料包括:主体材料、以及掺杂在所述主体材料中的客体材料,所述主体材料包括:空穴传输型材料和电子传输型材料;所述电子功能层的材料与所述电子传输型材料相同,所述空穴功能层的材料与所述空穴传输型材料相同;所述空穴传输型材料的最高占据分子轨道的能量值HOMO A与所述电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV;所述空穴传输型材料的最低未占据分子轨道的能量值LUMO A与所述电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV。
可选的,所述形成发光层、电子功能层和空穴功能层包括:
采用同一蒸镀腔室蒸镀形成所述发光层、所述电子功能层和所述空穴功能层。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了一种OLED发光器件的结构示意图;
图2-6示意性地示出了五种发光单元的结构示意图;
图7-8示意性地示出了两种显示装置的结构示意图;
图9示意性地示出了一种发光单元的蒸镀流程示意图,其中,a图为形成空穴功能层的示意图,b图为形成发光层的示意图,c图为形成电子功能层的示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申 请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的实施例中,采用“第一”、“第二”、“第三”、“第四”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。另外,“多个”的含义是两个或两个以上,“至少一个”的含义是一个或一个以上,除非另有明确具体的限定。
相关技术中,参考图1所示,OLED发光器件包括依次层叠设置的Anode电极(阳极)10、HTL层(空穴注入层)11、HTL层(空穴传输层)12、Prime层(发光前导层)13、EML层(发光层)14、HBL层(空穴阻挡层)15、ETL(电子传输层)16、EIL(电子注入层)17和Cathode电极(阴极)18。其中,发光层的材料包括主体材料和客体材料。采用蒸镀工艺形成Prime层、EML层和HBL层时,需要三个蒸镀腔室,同时需要三张蒸镀掩膜板,并进行三次对位,整体蒸镀时间长,良率较低,另外不同材料发生劣化的可能性也较大。该OLED发光器件生产成本高、良率低,需要进一步优化。
基于上述,本申请的实施例提供了一种发光器件,包括:至少一个如图2-图6所示的发光单元100,发光单元100包括:发光层1、电子功能层2和空穴功能层3,电子功能层2和空穴功能层3分别设置在发光层1相对的两侧。
发光层的材料包括:主体材料、以及掺杂在主体材料中的客体材料,主体材料包括:空穴传输型材料和电子传输型材料。
电子功能层的材料与电子传输型材料相同,空穴功能层的材料与空穴传输型材料相同。
其中,空穴传输型材料的最高占据分子轨道的能量值HOMO A与电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV;空穴传输型材料的最低未占据分子轨道的能量值LUMO A与电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV。
上述发光器件可以包括同一发光颜色的发光单元,例如:红色发光单元、绿色发光单元或者蓝色发光单元,将该发光器件应用于显示装置可以实现单 一颜色画面显示;或者,该发光器件同时包括多种发光颜色的发光单元,例如:同时包括红色发光单元、绿色发光单元和蓝色发光单元,将该发光器件应用于显示装置可以实现彩色画面显示。
上述发光层的主体材料包括空穴传输型材料和电子传输型材料,属于双主体材料类型。空穴传输性材料有利于空穴的传输,电子传输型材料有利于电子的传输。为了使得电子和空穴被限制在发光层中,以获得更高的发光效率,空穴功能层至少需要具有阻挡电子的特性,电子功能层至少需要具有阻挡空穴的特性,因此对于空穴传输型材料和电子传输型材料的能级需要进行限定。
在前线轨道理论中,已占有电子的能级最高的轨道称为最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO),未占有电子的能级最低的轨道称为最低未占据分子轨道(Lowest Unoccupied Molecular Orbital,LUMO)。
上述空穴传输型材料的最高占据分子轨道的能量值HOMO A与电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV,有利于电子功能层阻挡空穴,从而有利于阻挡发光层中空穴的迁出;空穴传输型材料的最低未占据分子轨道的能量值LUMO A与电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV,有利于空穴功能层阻挡电子,从而有利于阻挡发光层中电子的迁出。通过设置空穴功能层和电子功能层,将发光区域限制在发光层中,防止发光层能量向周边功能层扩散,从而提高发光器件的发光效率。
上述空穴传输型材料、电子传输型材料和客体材料的具体类型不做限定,只要满足相应的能级要求即可。上述客体材料可以包括磷光发光材料或荧光发光材料,示例的,客体材料可以包括Ir(ppy) 3、Be(PP) 2、PPF中的任意一种。这里Ir(ppy) 3的中文名称为三(2-苯基吡啶)合铱;Be(PP) 2的中文名称为二(2-羟基苯基吡啶);PPF的中文名称为高分子聚乙烯丙纶,其化学结构式为
Figure PCTCN2022083462-appb-000001
上述电子功能层的材料与发光层的一种主体材料即空穴传输型材料相同,上述空穴功能层的材料与发光层的一种主体材料即电子传输型材料相同;那么,在采用蒸镀工艺形成电子功能层、发光层和空穴功能层,可以仅需要 一个蒸镀腔室、一张蒸镀掩膜板即可,从而缩短了整体蒸镀时间,良率高,生产成本低。该发光器件的结构简单、成本低。
为了进一步将发光区域限制在发光层中,从而进一步提高发光效率,可选的,空穴传输型材料的最高占据分子轨道的能量值HOMO A满足:-5.7eV≤HOMO A≤-5.1eV,示例的,HOMO A可以为-5.7eV、-5.5eV、-5.3eV或者-5.1eV;空穴传输型材料的最低未占据分子轨道的能量值LUMO A满足:-2.7eV≤LUMO A≤-2.0eV,示例的,LUMO A可以为-2.7eV、-2.5eV、-2.3eV或者-2.0eV。
电子传输型材料的最高占据分子轨道的能量值HOMO B满足:-6.2eV≤HOMO B≤-5.4eV,示例的,HOMO B可以为-6.2eV、-6.0eV、-5.8eV、-5.6eV或者-5.4eV;电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:-3.1eV≤LUMO B≤-2.3eV,示例的,LUMO B可以为-3.1eV、-2.9eV、-2.7eV、-2.5eV或者-2.3eV。
该发光器件为电流驱动器件,即在外置偏压下随电流密度的增加,亮度随之而增加。为了便于提供电压形成电场,可选的,参考图2-图6所示,发光单元还包括:阳极4和阴极5,阳极4设置在空穴功能层3远离发光层1的一侧,阴极5设置在电子功能层2远离发光层1的一侧。这里对于阳极和阴极的材料不做限定,示例的,阴极和阳极可以分别采用金属或者金属氧化物形成。例如:阳极的材料包括ITO(Indium Tin Oxide,氧化铟锡),阴极的材料包括金属铝。
下面提供一种发光器件,在一个或者多个实施例中,为了进一步提高空穴和电子的传输效率,参考图2和图3所示,发光单元还包括:空穴传输层6和电子传输层7;空穴传输层6设置在空穴功能层3靠近阳极4的一侧且与空穴功能层3相接触;电子传输层7设置在电子功能层2靠近阴极5的一侧且与电子功能层2相接触。
该结构中,电子功能层用于阻挡空穴,相当于空穴阻挡层;空穴功能层用于阻挡电子,相当于发光前导层或者电子阻挡层。这里对于空穴传输层和电子传输层的材料不做限定,示例的,空穴传输层的材料包括NPB、TPD、m-MTDATA、SPPO13中的任一种。NPB为N,N′-二苯基-N,N′-(1-萘基)-1,1′-联苯-4,4′-二胺,其化学结构式为:
Figure PCTCN2022083462-appb-000002
TPD为N,N′-二苯基-N,N′-二(3-甲基苯基)-1,1′-联苯-4,4′-二胺,m-MTDATA为4,4′,4″-三[苯基(间甲苯基)氨基]三苯胺,SPPO13为spirobifluorene2,7-双(二苯基氧膦基)-9,9′-螺二芴。电子传输层的材料可以包括Bphen、TPBI、BCP、B3PYMPM中的任一种。这里Bphen为邻二氮菲,其化学结构式为
Figure PCTCN2022083462-appb-000003
TPBI为1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯,BCP为2,9-二甲基-4,7-联苯-1,10-菲罗啉,B3PYMPM为4,6-双(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶。
为了进一步提高电子和空穴的注入效率,以进一步提高发光效率,参考图2所示,发光单元还包括:空穴注入层8和电子注入层9;空穴注入层8设置在空穴传输层6靠近阳极4的一侧且与阳极4相接触;电子注入层9设置在电子传输层7靠近阴极5的一侧且与阴极5相接触。
这里对于电子注入层和空穴注入层的材料不做限定,示例的,空穴注入层的材料可以包括单组分材料,例如可以包括HATCN、2T-NATA、CuPc、MoO 3(三氧化钼)中的任一种。这里HATCN的中文名称为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲,其化学结构式为
Figure PCTCN2022083462-appb-000004
CuPc 的中文名称为酞菁铜,其化学结构式为
Figure PCTCN2022083462-appb-000005
MoO 3的中文名称为三氧化钼。或者,上述空穴注入层的材料可以包括多组分材料,例如可以包括轴烯类或醌类化合物掺杂芳胺化合物,示例的,多组分材料可以为F4TCNQ掺杂NPB或者TPD。这里F4TCNQ的化学结构式为
Figure PCTCN2022083462-appb-000006
NPB的中文名称为N,N′-二苯基-N,N′-(1-萘基)-1,1′-联苯-4,4′-二胺,其化学结构式为:
Figure PCTCN2022083462-appb-000007
TPD的中文名称为N,N′-二苯基-N,N′-二(3-甲基苯基)-1,1′-联苯-4,4′-二胺,其化学结构式为
Figure PCTCN2022083462-appb-000008
上述电子注入层的材料可以包括LiF、Yb、Liq中的任一种。这里LiF的中文名称为氟化锂;Yb的中文名称为镱;Liq的中文名称为8-羟基喹啉- 锂,其化学结构式为
Figure PCTCN2022083462-appb-000009
当然,为了简化结构,参考图3所示,电子传输层7可以与阴极5相接触,两者之间不设置电子注入层;空穴传输层6可以与阳极4相接触,两者之间不设置空穴注入层6。
可选的,如图2和图3所示的发光器件中,空穴功能层的厚度范围为5-200nm,电子功能层的厚度范围为5-20nm。参考图2所示,空穴功能层的厚度即为图2所示的H1,电子功能层的厚度即为图2所示的H2。
发光单元的发光颜色不同,电子功能层和空穴功能层的厚度范围也有所不同,进一步可选的,发光单元为红光发光单元,空穴功能层的厚度范围为5-150nm,电子功能层的厚度范围为5-20nm。可选的,发光单元为绿光发光单元,空穴功能层的厚度范围为5-100nm,电子功能层的厚度范围为5-20nm。可选的,发光单元为蓝光发光单元,空穴功能层的厚度范围为5-40nm,电子功能层的厚度范围为5-20nm。电子功能层和空穴功能层的具体厚度值需要根据实际情况选择,这里不再一一列举。
下面提供又一种发光器件,在一个或者多个实施例中,参考图4和图5所示,发光单元还包括:空穴注入层8和电子注入层9;空穴注入层8设置在空穴功能层3靠近阳极4的一侧且与空穴功能层3相接触;电子注入层9设置在电子功能层2靠近阴极5的一侧且与电子功能层2相接触。
该发光器件中,空穴功能层不仅用于阻挡电子,还用于传输空穴,同时兼具电子阻挡层和空穴传输层的作用;电子功能层不仅用于阻挡空穴,还用于传输电子,同时兼具空穴阻挡层和电子传输层的作用。空穴注入层和电子注入层的材料不做限定,具体可以参考前述说明,这里不再赘述。
图4和图5所示结构中,两种结构的电子功能层的厚度不同,同时空穴功能层的厚度也不同。参考图5所示,电子功能层的厚度可以与图2所示结构的电子功能层的厚度相同,空穴功能层的厚度可以与图2所示结构的空穴功能层的厚度相同;或者,参考图4所示,电子功能层的厚度可以与图2所示结构的电子功能层和电子传输层的总厚度相同,空穴功能层的厚度可以与 图2所示结构的空穴功能层和空穴传输层的总厚度相同。电子功能层和空穴功能层的具体厚度可以根据实际要求确定。
下面提供再一种发光器件,在一个或者多个实施例中,参考图6所示,空穴功能层3与阳极4相接触,电子功能层2与阴极5相接触。
该发光器件中,空穴功能层不仅用于阻挡电子,还用于传输空穴,同时兼具电子阻挡层和空穴传输层的作用;电子功能层不仅用于阻挡空穴,还用于传输电子,同时兼具空穴阻挡层和电子传输层的作用。另外,该发光器件不设置空穴注入层和电子注入层,结构更加简单。
可选的,如图4-6所示的发光器件中,空穴功能层的厚度范围为5-300nm,电子功能层的厚度范围为5-100nm。参考图4所示,空穴功能层的厚度即为图4所示的H1,电子功能层的厚度即为图4所示的H2。
发光单元的发光颜色不同,电子功能层和空穴功能层的厚度范围也有所不同,进一步可选的,发光单元为红光发光单元,空穴功能层的厚度范围为5-300nm,电子功能层的厚度范围为5-100nm。可选的,发光单元为绿光发光单元,空穴功能层的厚度范围为5-250nm,电子功能层的厚度范围为5-100nm。可选的,发光单元为蓝光发光单元,空穴功能层的厚度范围为5-200nm,电子功能层的厚度范围为5-100nm。电子功能层和空穴功能层的具体厚度值需要根据实际情况选择,这里不再一一列举。
本申请对于阴极和阳极的材料不做限定,可选的,阳极的材料包括:透光材料,例如:ITO(Indium Tin Oxide,氧化铟锡),阴极的材料包括:不透光材料,例如:金属材料,此时,发光层形成的光线从阳极射出,可以用于底发射器件中;或者,阳极的材料包括:不透光材料,例如:金属材料,阴极的材料包括:透光材料,例如:ITO(Indium Tin Oxide,氧化铟锡),此时,发光层形成的光线从阴极射出,可以用于顶发射器件中。
在一个或者多个实施例中,空穴传输型材料包括:芳胺类材料或者枝聚物族类材料,电子传输型材料包括:芳香族化合物材料。
在一个或者多个实施例中,空穴传输型材料包括:化合物C和/或化合物C的衍生物,化合物C包括:三苯胺、芴、螺芴或者吩噻嗪。
空穴传输型材料包括化合物C和/或化合物C的衍生物包括三种情况:第一种,空穴传输型材料包括化合物C;第二种,空穴传输型材料包括化合物C的衍生物;第三种,空穴传输型材料包括化合物C和化合物C的衍生物。
电子传输型材料包括:杂环化合物,杂环化合物包括:D官能团和E原子,D官能团包括:萘、蒽、喹啉或者三嗪,E原子包括:氮原子、磷原子或者硫原子。
在一个或者多个实施例中,发光单元为红光发光单元,空穴传输型材料包括:三苯胺基团和硫芴官能团、或者三苯胺基团和氧芴官能团;电子传输型材料包括:第一基团和第一官能团,第一基团包括:三嗪基团、喹啉基团、萘基团或者蒽基团,第一官能团包括:咔唑官能团或者芴官能团。
在一个或者多个实施例中,发光单元为绿光发光单元,空穴传输型材料包括:三苯胺基团和咔唑官能团、或者三苯胺基团和螺芴官能团,电子传输型材料包括:三嗪基团和咔唑官能团、或者三嗪基团和氧芴官能团。
在一个或者多个实施例中,发光单元为蓝光发光单元,空穴传输型材料包括:三苯胺基团、第二官能团和第三官能团,第二官能团包括咔唑官能团或者螺芴官能团,第三官能团包括萘官能团或者蒽官能团;电子传输型材料包括第四官能团,第四官能团包括:三嗪官能团、萘官能团、蒽官能团或者芴官能团。
在一个或者多个实施例中,发光单元为红光发光单元,发光层的厚度范围为20-80nm。在一个或者多个实施例中,发光单元为绿光发光单元,发光层的厚度范围为20-60nm。在一个或者多个实施例中,发光单元为蓝光发光单元,发光层的厚度范围为10-50nm。参考图2和图4所示,发光层的厚度即为图2和图4所示的H。
在一个或者多个实施例中,发光层中,客体材料的掺杂比例范围包括:0.1%-20%;具体的掺杂比例可以根据具体的材料选择。
本申请的实施例还提供了一种显示装置,该显示装置包括上述的发光器件。
该显示装置可以是柔性显示装置(又称柔性屏),也可以是刚性显示装置(即不能折弯的显示装置),这里不做限定。该显示装置可以是OLED(Organic Light-Emitting Diode,有机发光二极管)显示装置,还可以是包括OLED的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置具有显示效果好、寿命长、稳定性高、对比度高等优点。
参考图7和图8所示,该显示装置可以同时包括红色发光单元100r、绿色发光单元100g、蓝色发光单元100b。为了便于区分红色发光单元、绿色 发光单元、蓝色发光单元各膜层,属于不同发光颜色的发光单元的相同膜层标记后分别标有r、g和b。示例的,以发光层1为例进行说明,标记为1r的发光层表示红色发光单元中的发光层,标记为1g的发光层表示绿色发光单元中的发光层,标记为1b的发光层表示蓝色发光单元中的发光层,其他膜层与此类似,这里不再一一说明。图7中,显示装置的发光单元的结构与图2所示结构相同,以红色发光单元为例说明,红色发光单元包括阳极4r、空穴注入层8r、空穴传输层6r、空穴功能层3r、发光层1r、电子功能层2r、电子传输层7r、电子注入层9r和阴极5r;图8中,显示装置的发光单元的结构与图4所示结构相同,以红色发光单元为例说明,红色发光单元包括阳极4r、空穴注入层8r、空穴功能层3r、发光层1r、电子功能层2r、电子注入层9r和阴极5r。
本申请的实施例还提供了一种上述发光器件的制备方法,包括:
S10、形成至少一个发光单元。
上述S10、形成至少一个发光单元包括:
S20、形成发光层、电子功能层和空穴功能层,其中,电子功能层和空穴功能层分别设置在发光层相对的两侧;发光层的材料包括:主体材料、以及掺杂在主体材料中的客体材料,主体材料包括:空穴传输型材料和电子传输型材料;电子功能层的材料与电子传输型材料相同,空穴功能层的材料与空穴传输型材料相同;空穴传输型材料的最高占据分子轨道的能量值HOMO A与电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV;空穴传输型材料的最低未占据分子轨道的能量值A LUMO与电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV。
这里对于S20中,发光层、电子功能层和空穴功能层的形成顺序不做限定。示例的,可以依次形成空穴功能层、发光层和电子功能层;或者,可以依次形成电子功能层、发光层和空穴功能层。
上述各膜层的相关说明可以参考前述实施例,这里不再赘述。
通过上述方法形成的发光器件中,电子功能层的材料与发光层的一种主体材料即空穴传输型材料相同,空穴功能层的材料与发光层的一种主体材料即电子传输型材料相同,可以简化制作工艺,降低成本。
为了降低成本,减少制作时间,提高良率,可选的,S20、形成发光层、电子功能层和空穴功能层包括:
S30、采用同一蒸镀腔室蒸镀形成发光层、电子功能层和空穴功能层。
可选的,S30、采用同一蒸镀腔室蒸镀形成发光层、电子功能层和空穴功能层包括:
S40、采用同一蒸镀腔室依次蒸镀形成空穴功能层、发光层和电子功能层。
或者,S50、采用同一蒸镀腔室依次蒸镀形成电子功能层、发光层和空穴功能层。
以在基底上依次形成空穴功能层、发光层和电子功能层为例具体说明。参考图9所示,将形成有空穴传输层6的基底200放入一蒸镀腔室内,挡板(shutter)20包括开口区202和非开口区201,蒸镀源包括空穴传输型材料源41、客体材料源42和电子传输型材料源43;参考图9中a图所示,将挡板20的开口区202与蒸镀源的空穴传输型材料源41对准,从而蒸镀形成空穴功能层3;接着,参考图9中b图所示,移动挡板20,使得挡板20的开口区202与蒸镀源的空穴传输型材料源41、客体材料源42和电子传输型材料源43对准,从而蒸镀形成发光层1;然后,参考图9中c图所示,移动挡板20,使得挡板20的开口区202与蒸镀源的电子传输型材料源43对准,从而蒸镀形成电子功能层2。采用该方法,只需要一张掩膜板,对位一次,大幅减少了蒸镀时间和成本,同时提高了良率。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种发光器件,其中,包括:至少一个发光单元,所述发光单元包括:发光层、电子功能层和空穴功能层,所述电子功能层和所述空穴功能层分别设置在所述发光层相对的两侧;
    所述发光层的材料包括:主体材料、以及掺杂在所述主体材料中的客体材料,所述主体材料包括:空穴传输型材料和电子传输型材料;
    所述电子功能层的材料与所述电子传输型材料相同,所述空穴功能层的材料与所述空穴传输型材料相同;
    其中,所述空穴传输型材料的最高占据分子轨道的能量值HOMO A与所述电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV;所述空穴传输型材料的最低未占据分子轨道的能量值LUMO A与所述电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV。
  2. 根据权利要求1所述的发光器件,其中,所述空穴传输型材料的最高占据分子轨道的能量值HOMO A满足:-5.7eV≤HOMO A≤-5.1eV;所述空穴传输型材料的最低未占据分子轨道的能量值LUMO A满足:-2.7eV≤LUMO A≤-2.0eV;
    所述电子传输型材料的最高占据分子轨道的能量值HOMO B满足:-6.2eV≤HOMO B≤-5.4eV;所述电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:-3.1eV≤LUMO B≤-2.3eV。
  3. 根据权利要求1所述的发光器件,其中,所述发光单元还包括:阳极和阴极,所述阳极设置在所述空穴功能层远离所述发光层的一侧,所述阴极设置在所述电子功能层远离所述发光层的一侧。
  4. 根据权利要求3所述的发光器件,其中,所述发光单元还包括:空穴传输层和电子传输层;所述空穴传输层设置在所述空穴功能层靠近所述阳极的一侧且与所述空穴功能层相接触;所述电子传输层设置在所述电子功能层靠近所述阴极的一侧且与所述电子功能层相接触。
  5. 根据权利要求4所述的发光器件,其中,所述发光单元还包括:空穴注入层和电子注入层;所述空穴注入层设置在所述空穴传输层靠近所述阳极的一侧且与所述阳极相接触;所述电子注入层设置在所述电子传输层靠近所述阴极的一侧且与所述阴极相接触。
  6. 根据权利要求4或者5所述的发光器件,其中,所述空穴功能层的 厚度范围为5-200nm,所述电子功能层的厚度范围为5-20nm。
  7. 根据权利要求6所述的发光器件,其中,所述发光单元为红光发光单元,所述空穴功能层的厚度范围为5-150nm,所述电子功能层的厚度范围为5-20nm。
  8. 根据权利要求6所述的发光器件,其中,所述发光单元为绿光发光单元,所述空穴功能层的厚度范围为5-100nm,所述电子功能层的厚度范围为5-20nm。
  9. 根据权利要求6所述的发光器件,其中,所述发光单元为蓝光发光单元,所述空穴功能层的厚度范围为5-40nm,所述电子功能层的厚度范围为5-20nm。
  10. 根据权利要求3所述的发光器件,其中,所述发光单元还包括:空穴注入层和电子注入层;所述空穴注入层设置在所述空穴功能层靠近所述阳极的一侧且与所述空穴功能层相接触;所述电子注入层设置在所述电子功能层靠近所述阴极的一侧且与所述电子功能层相接触。
  11. 根据权利要求3所述的发光器件,其中,所述空穴功能层与所述阳极相接触,所述电子功能层与所述阴极相接触。
  12. 根据权利要求10或者11所述的发光器件,其中,所述空穴功能层的厚度范围为5-300nm,所述电子功能层的厚度范围为5-100nm。
  13. 根据权利要求12所述的发光器件,其中,所述发光单元为红光发光单元,所述空穴功能层的厚度范围为5-300nm,所述电子功能层的厚度范围为5-100nm。
  14. 根据权利要求12所述的发光器件,其中,所述发光单元为绿光发光单元,所述空穴功能层的厚度范围为5-250nm,所述电子功能层的厚度范围为5-100nm。
  15. 根据权利要求12所述的发光器件,其中,所述发光单元为蓝光发光单元,所述空穴功能层的厚度范围为5-200nm,所述电子功能层的厚度范围为5-100nm。
  16. 根据权利要求3所述的发光器件,其中,所述阳极的材料包括:透光材料,所述阴极的材料包括:不透光材料;或者,所述阳极的材料包括:不透光材料,所述阴极的材料包括:透光材料。
  17. 根据权利要求1所述的发光器件,其中,所述空穴传输型材料包括:芳胺类材料或者枝聚物族类材料,所述电子传输型材料包括:芳香族 化合物材料。
  18. 根据权利要求1所述的发光器件,其中,所述空穴传输型材料包括:化合物C和/或化合物C的衍生物,所述化合物C包括:三苯胺、芴、螺芴或者吩噻嗪;
    所述电子传输型材料包括:杂环化合物,所述杂环化合物包括:D官能团和E原子,所述D官能团包括:萘、蒽、喹啉或者三嗪,所述E原子包括:氮原子、磷原子或者硫原子。
  19. 根据权利要求1所述的发光器件,其中,所述发光单元为红光发光单元,所述空穴传输型材料包括:三苯胺基团和硫芴官能团、或者三苯胺基团和氧芴官能团;所述电子传输型材料包括:第一基团和第一官能团,所述第一基团包括:三嗪基团、喹啉基团、萘基团或者蒽基团,所述第一官能团包括:咔唑官能团或者芴官能团。
  20. 根据权利要求1所述的发光器件,其中,所述发光单元为绿光发光单元,所述空穴传输型材料包括:三苯胺基团和咔唑官能团、或者三苯胺基团和螺芴官能团,所述电子传输型材料包括:三嗪基团和咔唑官能团、或者三嗪基团和氧芴官能团。
  21. 根据权利要求1所述的发光器件,其中,所述发光单元为蓝光发光单元,所述空穴传输型材料包括:三苯胺基团、第二官能团和第三官能团,所述第二官能团包括咔唑官能团或者螺芴官能团,所述第三官能团包括萘官能团或者蒽官能团;所述电子传输型材料包括第四官能团,所述第四官能团包括:三嗪官能团、萘官能团、蒽官能团或者芴官能团。
  22. 根据权利要求1所述的发光器件,其中,所述发光单元为红光发光单元,所述发光层的厚度范围为20-80nm。
  23. 根据权利要求1所述的发光器件,其中,所述发光单元为绿光发光单元,所述发光层的厚度范围为20-60nm。
  24. 根据权利要求1所述的发光器件,其中,所述发光单元为蓝光发光单元,所述发光层的厚度范围为10-50nm。
  25. 根据权利要求1所述的发光器件,其中,所述发光层中,所述客体材料的掺杂比例范围包括:0.1%-20%。
  26. 一种显示装置,其中,包括:权利要求1-25任一项所述的发光器件。
  27. 一种如权利要求1-25任一项所述的发光器件的制备方法,其中, 包括:
    形成至少一个发光单元;
    所述形成至少一个发光单元包括:
    形成发光层、电子功能层和空穴功能层,其中,所述电子功能层和所述空穴功能层分别设置在所述发光层相对的两侧;所述发光层的材料包括:主体材料、以及掺杂在所述主体材料中的客体材料,所述主体材料包括:空穴传输型材料和电子传输型材料;所述电子功能层的材料与所述电子传输型材料相同,所述空穴功能层的材料与所述空穴传输型材料相同;所述空穴传输型材料的最高占据分子轨道的能量值HOMO A与所述电子传输型材料的最高占据分子轨道的能量值HOMO B满足:HOMO A-HOMO B>0.2eV;所述空穴传输型材料的最低未占据分子轨道的能量值LUMO A与所述电子传输型材料的最低未占据分子轨道的能量值LUMO B满足:LUMO A-LUMO B>0.2eV。
  28. 根据权利要求27所述的方法,其中,所述形成发光层、电子功能层和空穴功能层包括:
    采用同一蒸镀腔室蒸镀形成所述发光层、所述电子功能层和所述空穴功能层。
PCT/CN2022/083462 2022-03-28 2022-03-28 发光器件及其制备方法、显示装置 WO2023184103A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280000576.0A CN117178653A (zh) 2022-03-28 2022-03-28 发光器件及其制备方法、显示装置
US18/020,714 US20240292649A1 (en) 2022-03-28 2022-03-28 Light-emitting device and preparation method thereof, and display apparatus
PCT/CN2022/083462 WO2023184103A1 (zh) 2022-03-28 2022-03-28 发光器件及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083462 WO2023184103A1 (zh) 2022-03-28 2022-03-28 发光器件及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023184103A1 true WO2023184103A1 (zh) 2023-10-05

Family

ID=88198541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083462 WO2023184103A1 (zh) 2022-03-28 2022-03-28 发光器件及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20240292649A1 (zh)
CN (1) CN117178653A (zh)
WO (1) WO2023184103A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180149595A1 (en) * 2016-11-30 2018-05-31 Kyushu University, National University Corporation Organic electro-luminescent element and bioinstrumentation device
CN111769199A (zh) * 2019-04-02 2020-10-13 固安鼎材科技有限公司 一种新型有机电致发光器件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180149595A1 (en) * 2016-11-30 2018-05-31 Kyushu University, National University Corporation Organic electro-luminescent element and bioinstrumentation device
CN111769199A (zh) * 2019-04-02 2020-10-13 固安鼎材科技有限公司 一种新型有机电致发光器件

Also Published As

Publication number Publication date
US20240292649A1 (en) 2024-08-29
CN117178653A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
Koden OLED displays and lighting
US20190386236A1 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
US11711933B2 (en) OLED device structures
CN106068267B (zh) 电子缓冲材料和包含其的有机电致发光装置
WO2022042037A1 (zh) 有机电致发光器件、显示面板及显示装置
US7868321B2 (en) Organic light emitting device and flat display including the same
US9088001B2 (en) Organic light emitting display and method for fabricating the same
US20110057171A1 (en) Long lifetime Phosphorescent Organic Light Emitting Device (OLED) Structures
US20090189509A1 (en) Organic light emitting devices
CN113555510B (zh) 有机电致发光器件、显示面板及显示装置
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
WO2016015395A1 (zh) 有机发光二极管阵列基板及显示装置
WO2021227719A1 (zh) 有机电致发光器件、显示面板及显示装置
US11145837B2 (en) Color stable organic light emitting diode stack
KR20100073417A (ko) 유기전계발광소자
WO2017000634A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
US20210036065A1 (en) Color stable multicolor OLED device structures
WO2023184103A1 (zh) 发光器件及其制备方法、显示装置
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
CN115275035A (zh) 发光器件、显示基板及显示装置
KR101589824B1 (ko) 하이브리드형 유기전계발광소자
KR101465623B1 (ko) 유기 발광 다이오드 및 그 제조방법
WO2024022170A1 (zh) 功能层材料、发光器件、发光基板及发光装置
KR101941443B1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18020714

Country of ref document: US