WO2017000634A1 - 一种串联式有机发光二极管、阵列基板及显示装置 - Google Patents

一种串联式有机发光二极管、阵列基板及显示装置 Download PDF

Info

Publication number
WO2017000634A1
WO2017000634A1 PCT/CN2016/079884 CN2016079884W WO2017000634A1 WO 2017000634 A1 WO2017000634 A1 WO 2017000634A1 CN 2016079884 W CN2016079884 W CN 2016079884W WO 2017000634 A1 WO2017000634 A1 WO 2017000634A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic material
layer
light emitting
organic
emitting diode
Prior art date
Application number
PCT/CN2016/079884
Other languages
English (en)
French (fr)
Inventor
毕文涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/322,590 priority Critical patent/US10283569B2/en
Publication of WO2017000634A1 publication Critical patent/WO2017000634A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a tandem organic light emitting diode, an array substrate, and a display device.
  • organic light-emitting diodes are widely used in display devices due to their low energy consumption, wide color gamut, wide viewing angle, fast response, etc. Among them, the current density of the series organic light-emitting diodes is low, which can effectively avoid excess
  • the tandem organic light emitting diode has become a core technology in display devices due to the thermal quenching effect caused by current.
  • the present disclosure provides a tandem organic light emitting diode comprising an anode stacked in sequence, a hole transport layer, a first light emitting layer, a first charge generating layer, a second charge generating layer, a third charge generating layer, and a first a second light emitting layer, an electron transport layer, and a cathode; wherein the first charge generating layer is an N type bulk heterojunction, the second charge generating layer is a PN junction bulk heterojunction, and the third charge generating layer It is a P-type heterojunction.
  • the present disclosure also provides an array substrate comprising a plurality of the above-described series organic light emitting diodes.
  • the present disclosure also provides a display device comprising the array substrate described above.
  • FIG. 1 is a schematic structural view of a tandem organic light emitting diode according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an exciton forming interface in a tandem organic light emitting diode according to an embodiment of the present disclosure.
  • a tandem organic light emitting diode includes an anode, a hole transport layer 1, a light emitting layer 1, an electron transport layer 1, a charge generating layer, a hole transport layer 2, a light emitting layer 2, an electron transport layer 2, and a cathode.
  • a part of carriers are supplied by a driving voltage, and another part of carriers are generated in a charge generating layer, but in order to ensure luminous efficiency of the tandem organic light emitting diode, it is necessary to increase carriers.
  • the injection efficiency therefore, needs to provide a higher driving voltage to ensure the normal illumination of the series OLED, resulting in high energy consumption of the series OLED.
  • the series organic light emitting diode has a driving voltage of about 6 V and a power efficiency of about 5.3 lm/W.
  • An object of the present disclosure is to provide a series-type organic light-emitting diode, an array substrate, and a display device, which are used for solving the high driving voltage required for normal illumination of a series-type organic light-emitting diode, and the energy consumption of the normal-type organic light-emitting diode is normally illuminated. High problem.
  • the present disclosure provides a tandem organic light emitting diode comprising an anode stacked in sequence, a hole transport layer, a first light emitting layer, a first charge generating layer, a second charge generating layer, a third charge generating layer, and a first a second light emitting layer, an electron transport layer, and a cathode; wherein the first charge generating layer is an N type bulk heterojunction, the second charge generating layer is a PN junction bulk heterojunction, and the third charge generating layer It is a P-type heterojunction.
  • the present disclosure also provides an array substrate comprising a plurality of the above-described series organic light emitting diodes.
  • the present disclosure also provides a display device comprising the array substrate described above.
  • the first charge generating layer in the tandem organic light emitting diode is an N type bulk heterojunction
  • the second charge generating layer is a PN junction type body different
  • the fifth charge generation layer is a P-type heterojunction, and thus is formed between the first charge generation layer and the second charge generation layer, and between the second charge generation layer and the third charge generation layer.
  • the exciton forming interface, the two exciton forming interfaces can generate excitons, and the number of excitons generated is increased compared with other tandem organic light emitting diodes having one charge generating layer, and carriers in the excitons They do not combine with each other, thereby increasing the number of carriers, so that providing a lower driving voltage can ensure carrier injection efficiency, causing the series organic light emitting diode to emit light normally, and reducing the normal illumination of the series organic light emitting diode. Power consumption.
  • a tandem organic light emitting diode provided by an embodiment of the present disclosure includes an anode 10 , a hole transport layer 11 , a first light emitting layer 12 , a first charge generating layer 13 , and a second charge generating layer 14 , which are sequentially stacked.
  • the third charge generating layer 15 is a P-type heterojunction. As shown in FIG.
  • excitons are generated in the first charge generation layer 13, the second charge generation layer 14, and the third charge generation layer 15, and between the first charge generation layer 13 and the second charge generation layer 14, and Exciton forming interfaces 19 are formed between the second charge generating layer 14 and the third charge generating layer 15, respectively, and excitons are also generated in the above two exciton forming interfaces 19.
  • the first charge generation layer 13, the second charge generation layer 14, the third charge generation layer 15, and the excitons generated in the above two exciton formation interfaces 19 are composed of electrons and holes, but in the excitons The electrons and holes are not combined, that is, the excitons in the first charge generating layer 13, the second charge generating layer 14, the third charge generating layer 15, and the above two exciton forming interfaces 19 are provided for the light emitting layer. Carrier.
  • tandem organic light emitting diode in the embodiment of the present disclosure also eliminates the electron transport layer of the light emitting layer 1 and the hole transport layer of the light emitting layer 2 compared with other tandem organic light emitting diodes, thereby reducing the tandem organic layer.
  • the first charge generating layer 13 in the tandem organic light emitting diode is an N type bulk heterojunction
  • the second charge generating layer 14 is a PN junction.
  • the bulk heterojunction, the third charge generation layer 15 is a P-type body heterojunction, and therefore, between the first charge generation layer 13 and the second charge generation layer 14, and in the second charge generation layer 14 and the third Exciton forming interfaces 19 are formed between the charge generating layers 15, respectively, and the above two exciton forming interfaces 19 are capable of generating excitons, and the number of excitons generated is compared with other tandem organic light emitting diodes having one charge generating layer.
  • tandem organic light emitting diodes can normally emit light.
  • the power consumption of the tandem organic light emitting diode during normal illumination is reduced.
  • the first charge generating layer 13 includes a mixture of the first organic material and the second organic material (for example, the first charge generating layer 13 is composed of the first organic a mixture of the material and the second organic material, wherein the proportion of the first organic material in the first charge generation layer 13 is greater than the proportion of the second organic material in the first charge generation layer 13, the first organic material
  • the type and the type of the second organic material are not limited herein; and the first organic material in the first charge generating layer 13 has an electron mobility of more than 1 ⁇ 10 -7 cm 2 /V ⁇ s, and the highest occupied orbital energy level is smaller than -5.5eV, the lowest unoccupied orbital level is greater than -3.5eV.
  • the second charge generation layer 14 includes a mixture of the second organic material and the third organic material (for example, the second charge generation layer 14 is formed of a mixture of the second organic material and the third organic material), and the second organic material is an N type organic material.
  • the third organic material is a P-type organic material, and the proportion of the second organic material and the third organic material in the second charge-generating layer 14 is not limited herein; wherein the second organic material has an electron mobility greater than 1 ⁇ 10 -7 cm 2 /V ⁇ s, the third organic material has a hole mobility of more than 1 ⁇ 10 -7 cm 2 /V ⁇ s.
  • the third charge generation layer 15 includes a mixture of a third organic material and a fourth organic material (eg, the third charge generation layer 15 is formed of a mixture of the third organic material and the fourth organic material), and the third organic material is generated at the third charge
  • the proportion of the layer 15 is smaller than the proportion of the fourth organic material in the third charge generating layer 15, and the type of the third organic material in the third charge generating layer 15 and the type of the fourth organic material are not limited herein.
  • the hole mobility of the fourth organic material is greater than 1 ⁇ 10 -7 cm 2 /V ⁇ s, the highest occupied orbital energy level is less than -5.0 eV, and the lowest unoccupied orbital energy level is greater than -3.0 eV.
  • the first luminescent layer 12 and the second luminescent layer 16 each independently comprise a mixture of at least one host organic material and at least one guest organic material (for example a mixture of at least one host organic material and at least one guest organic material) form).
  • the specific organic material composition constituting the first charge generation layer 13, the second charge generation layer 14, and the third charge generation layer 15 will be specifically exemplified below.
  • the first charge generating layer 13 is formed by mixing a first organic material and a second organic material, and the first organic material may be TmPyPb (ie, 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene.
  • the second organic material may be C 60 ;
  • the second charge generating layer 14 is a mixture of the second organic material and the third organic material, and the third organic material may be rubrene, pentacene, tetrafluorotetracyano Dimethane, CuPc (ie copper phthalocyanine) or other anthracene derivative;
  • third charge generation layer 15 is a mixture of a third organic material and a fourth organic material, and the fourth organic material is TCTA (ie 4, 4) ',4"-tris(carbazol-9-yl)triphenylamine).
  • the first organic material in the first charge generating layer 13 may be Bphen (ie, 4,7-diphenyl-1,10-phenanthroline), and the second organic material may be C 60 ; the second charge generating layer
  • the third organic material in 14 may be rubrene, pentacene, tetrafluorotetracyanoquinodimethane, CuPc or other anthracene derivative;
  • the fourth organic material in the third charge generating layer 15 may be NPB (i.e., N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine).
  • the specific organic materials of the first charge generating layer 13, the second charge generating layer 14, and the third charge generating layer 15 will be combined below, and The specific organic materials constituting the other layers of the tandem organic light emitting diode are exemplified.
  • the anode 10 of the tandem organic light-emitting diode is a bottom-emitting glass substrate with indium tin oxide, the anode 10 has a thickness of 100 nm; and the hole transport layer 11 is a TCTA layer, which is empty.
  • the thickness of the hole transport layer 11 is 90 nm; the main organic material in the first light-emitting layer 12 is TCTA and TmPyPb, and the hole mobility of TCTA is 1 ⁇ 10 -3 cm 2 /V ⁇ s, and the highest occupied orbital energy level is - 5.7 eV, the lowest unoccupied orbital energy level is -2.6eV, the triplet energy level is 2.76eV, the electron mobility of TmPyPb is 2.4 ⁇ 10 -4 cm 2 /V ⁇ S, and the highest occupied orbital energy level is -6.7eV.
  • the lowest unoccupied orbital energy level is -2.6eV
  • the triplet energy level is 2.78eV
  • the guest organic material is FIrpic (ie, bis(4,6-difluorophenylpyridine-N,C2) pyridinecarboxamide), FIrpic
  • the triplet energy level is 2.62 eV
  • the triplet energy levels of the two host organic materials are higher than the guest organic materials, which can better achieve energy transfer between the host and guest organic materials of the light-emitting layer, and the thickness of the first light-emitting layer 12 is 20 nm
  • the first charge generation layer 13 is formed by mixing TmPyPb and C 60
  • the thickness of the first charge generation layer 13 is 5
  • the electron mobility of 0 nm, C 60 is 0.1 cm 2 /V ⁇ S
  • the highest occupied orbital energy level is -6.2 eV
  • the lowest unoccupied orbital energy level is -4.6 eV
  • the second charge generating layer 14 is mixed by C 60 and Cu
  • the second charge generating layer 14 has a thickness of 20 nm, the hole mobility of CuPc is 1.96 ⁇ 10 -2 cm 2 /V ⁇ S, and the highest occupied orbital level is -5.3 eV, and the lowest unoccupied orbital level is - 3.6 eV; the third charge generating layer 15 is formed by mixing TCTA and CuPc, the thickness of the third charge generating layer 15 is 50 nm; the specific constituent material of the second luminescent layer 16 is the same as that of the first luminescent layer 12, and the second luminescent layer The thickness of 16 is 20 nm; the electron transport layer 17 is a TmPyPb layer, the electron transport layer 17 has a thickness of 30 nm; the cathode 18 is a magnesium-silver alloy layer, and the cathode 18 has a thickness of 120 nm.
  • the anode 10 is the same as the anode 10 of the blue light emitting tandem organic light emitting diode of Embodiment 1; the hole transport layer 11 is an NPB layer; and the body in the first light emitting layer 12
  • the organic materials are NPB and Bphen.
  • the hole mobility of NPB is 5.1 ⁇ 10 -4 cm 2 /V ⁇ S, the highest occupied orbital energy level is -5.4eV, and the lowest unoccupied orbital energy level is -2.4eV.
  • the mobility is 4.2 ⁇ 10 -4 cm 2 /V ⁇ S, the highest occupied orbital energy level is -6.1eV, the lowest unoccupied orbital energy level is -2.8eV, the guest organic material is FIrpic, and the first charge generating layer 13 is composed of Bphen.
  • the blue-emitting tandem organic light-emitting diodes of Examples 1 and 2 had a main peak of luminescence at 472 nm and a shoulder at 496 nm.
  • the driving voltages of the organic light-emitting diodes of the embodiments 1 and 2 were 5.8 V and 5.6 V, respectively, and the power efficiencies were 5.8 lm/W and 6.2 lm/W, respectively.
  • the bottom-emitting glass substrate with indium tin oxide (ie, anode 10) is sequentially placed in an ultrasonic environment of deionized water, acetone, and absolute ethanol. After cleaning, after cleaning, the bottom-emitting glass substrate with indium tin oxide is blown dry with N 2 , and plasma cleaning is performed to remove oxides and plasma-washed bottom emission with indium tin oxide.
  • the glass substrate is placed in an evaporation chamber having a degree of vacuum of less than 5 ⁇ 10 -4 Pa, and a bottom emission glass substrate with indium tin oxide is vacuum-evaporated at a bottom emission glass substrate with indium tin oxide.
  • the hole transport layer 11, the first light-emitting layer 12, the first charge generation layer 13, the second charge generation layer 14, the third charge generation layer 15, the second light-emitting layer 16, the electron transport layer 17, and the cathode 18 are sequentially deposited thereon.
  • the evaporation process of the cathode 18 uses a metal cathode mask, and the evaporation rate is 0.3 nm/s; the evaporation process of the remaining layers adopts an open mask, and the evaporation rate is 0.1 nm/s.
  • the embodiment of the present disclosure further provides an array substrate including a plurality of tandem organic light emitting diodes in the above embodiments, the tandem organic light emitting diodes in the array substrate, and the tandem organic light emitting diodes in the above embodiments.
  • the advantages are the same and will not be described here.
  • the embodiment of the present disclosure further provides a display device, which includes the array substrate in the above embodiment, and the array substrate in the display device has the same advantages as the array substrate in the above embodiment, and details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种串联式有机发光二极管、阵列基板及显示装置。该串联式有机发光二极管包括依次层叠的阳极(10)、空穴传输层(11)、第一发光层(12)、第一电荷产生层(13)、第二电荷产生层(14)、第三电荷产生层(15)、第二发光层(16)、电子传输层(17)和阴极(18);其中,第一电荷产生层(13)为N型体异质结,第二电荷产生层(14)为PN结型体异质结,第三电荷产生层(15)为P型体异质结。该阵列基板包括多个该串联式有机发光二极管,显示装置包括该阵列基板。该串联式有机发光二极管应用于显示装置能够降低功耗。

Description

一种串联式有机发光二极管、阵列基板及显示装置 技术领域
本公开涉及一种串联式有机发光二极管、阵列基板及显示装置。
背景技术
目前,有机发光二极管由于具有能耗低、色域广、视角宽、响应快等特点,被广泛应用于显示装置中,其中,串联式有机发光二极管中的电流密度较低,能够有效的避免过剩电流导致的热猝灭效应,故串联式有机发光二极管已经成为显示装置中的核心技术。
发明内容
第一方面,本公开提供一种串联式有机发光二极管,包括依次层叠的阳极、空穴传输层、第一发光层、第一电荷产生层、第二电荷产生层、第三电荷产生层、第二发光层、电子传输层和阴极;其中,所述第一电荷产生层为N型体异质结,所述第二电荷产生层为PN结型体异质结,所述第三电荷产生层为P型体异质结。
第二方面,本公开还提供一种阵列基板,包括多个以上所述的串联式有机发光二极管。
第三方面,本公开还提供了一种显示装置,包括以上所述的阵列基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例中串联式有机发光二极管的结构示意图;
图2为本公开实施例中串联式有机发光二极管中的激子形成界面的示意图。
附图标记:
10-阳极,                11-空穴传输层,
12-第一发光层,          13-第一电荷产生层,
14-第二电荷产生层,      15-第三电荷产生层,
16-第二发光层,          17-电子传输层,
18-阴极,                19-激子形成界面。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
一种串联式有机发光二极管包括依次层叠的阳极、空穴传输层一、发光层一、电子传输层一、电荷产生层、空穴传输层二、发光层二、电子传输层二和阴极。在这种串联式有机发光二极管中,一部分载流子由驱动电压提供,另一部分载流子在电荷产生层中生成,但是,为了保证串联式有机发光二极管的发光效率,需要提高载流子的注入效率,因此需要提供较高的驱动电压,才能保证串联式有机发光二极管正常发光,导致串联式有机发光二极管正常发光的能耗高。该串联式有机发光二极管的驱动电压为约6V,功率效率为约5.3lm/W。
本公开的目的在于提供一种串联式有机发光二极管、阵列基板及显示装置,用于解决串联式有机发光二极管正常发光所需的驱动电压高,所导致的串联式有机发光二极管正常发光的能耗高的问题。
第一方面,本公开提供一种串联式有机发光二极管,包括依次层叠的阳极、空穴传输层、第一发光层、第一电荷产生层、第二电荷产生层、第三电荷产生层、第二发光层、电子传输层和阴极;其中,所述第一电荷产生层为N型体异质结,所述第二电荷产生层为PN结型体异质结,所述第三电荷产生层为P型体异质结。
第二方面,本公开还提供一种阵列基板,包括多个以上所述的串联式有机发光二极管。
第三方面,本公开还提供了一种显示装置,包括以上所述的阵列基板。
在本公开提供的串联式有机发光二极管、阵列基板及显示装置中,由于串联式有机发光二极管中的第一电荷产生层为N型体异质结,第二电荷产生层为PN结型体异质结,第三电荷产生层为P型体异质结,因此,在第一电荷产生层与第二电荷产生层之间,以及在第二电荷产生层与第三电荷产生层之间分别形成了激子形成界面,上述两个激子形成界面能够产生激子,与其它的具有一个电荷产生层的串联式有机发光二极管相比,产生的激子数量增加,而且激子中的载流子并不相互结合,从而增加了载流子的数量,使得提供较低的驱动电压就可以保证载流子的注入效率,使串联式有机发光二极管正常发光,降低了串联式有机发光二极管正常发光时的功耗。
请参阅图1,本公开实施例提供的串联式有机发光二极管包括依次层叠的阳极10、空穴传输层11、第一发光层12、第一电荷产生层13、第二电荷产生层14、第三电荷产生层15、第二发光层16、电子传输层17和阴极18;其中,第一电荷产生层13为N型体异质结,第二电荷产生层14为PN结型体异质结,第三电荷产生层15为P型体异质结。如图2所示,第一电荷产生层13、第二电荷产生层14和第三电荷产生层15中会产生激子,而且第一电荷产生层13与第二电荷产生层14之间、以及第二电荷产生层14与第三电荷产生层15之间分别形成激子形成界面19,在上述两个激子形成界面19中也会产生激子。需要说明的是,第一电荷产生层13、第二电荷产生层14、第三电荷产生层15和上述两个激子形成界面19中产生的激子由电子和空穴组成,但激子中的电子和空穴并未结合,也就是说,第一电荷产生层13、第二电荷产生层14、第三电荷产生层15和上述两个激子形成界面19中的激子为发光层提供载流子。
此外,本公开实施例中的串联式有机发光二极管与其它串联式有机发光二极管相比,还省去了发光层一的电子传输层和发光层二的空穴传输层,从而降低了串联式有机发光二极管中载流子的注入势垒。因此,在一些实施方式中,所述第一发光层和所述第二发光层之间不含有电子传输层和空穴传输层。
本公开实施例提供的串联式有机发光二极管中,由于串联式有机发光二极管中的第一电荷产生层13为N型体异质结,第二电荷产生层14为PN结 型体异质结,第三电荷产生层15为P型体异质结,因此,在第一电荷产生层13与第二电荷产生层14之间,以及在第二电荷产生层14与第三电荷产生层15之间分别形成了激子形成界面19,上述两个激子形成界面19能够产生激子,与其它的具有一个电荷产生层的串联式有机发光二极管相比,产生的激子数量增加,而且激子中的载流子并不相互结合,从而增加了载流子的数量,使得提供较低的驱动电压就可以保证载流子的注入效率,使串联式有机发光二极管正常发光,降低了串联式有机发光二极管正常发光时的功耗。
为了进一步保证上述实施例中的两个激子形成界面19能够产生激子,第一电荷产生层13包括第一有机材料和第二有机材料的混合物(例如第一电荷产生层13由第一有机材料和第二有机材料的混合物形成),其中,第一有机材料在第一电荷产生层13中所占比例大于第二有机材料在第一电荷产生层13中所占比例,第一有机材料的类型与第二有机材料的类型在此并不限定;且第一电荷产生层13中的第一有机材料的电子迁移率大于1×10-7cm2/V·s,最高占据轨道能级小于-5.5eV,最低未占据轨道能级大于-3.5eV。第二电荷产生层14包括第二有机材料与第三有机材料的混合物(例如第二电荷产生层14由第二有机材料与第三有机材料的混合物形成),第二有机材料为N型有机材料,第三有机材料为P型有机材料,第二有机材料与第三有机材料在第二电荷产生层14中所占比例在此并不限定;其中,第二有机材料的电子迁移率大于1×10-7cm2/V·s,第三有机材料的空穴迁移率大于1×10-7cm2/V·s。第三电荷产生层15包括第三有机材料和第四有机材料的混合物(例如第三电荷产生层15由第三有机材料和第四有机材料的混合物形成),第三有机材料在第三电荷产生层15中所占比例小于第四有机材料在第三电荷产生层15中所占比例,且第三电荷产生层15中第三有机材料的类型与第四有机材料的类型在此也并不限定;且第四有机材料的空穴迁移率大于1×10-7cm2/V·s,最高占据轨道能级小于-5.0eV,最低未占据轨道能级大于-3.0eV。此外,第一发光层12与第二发光层16各自独立地包括至少一种主体有机材料和至少一种客体有机材料的混合物(例如由至少一种主体有机材料和至少一种客体有机材料的混合物形成)。
下面将具体举例对组成第一电荷产生层13、第二电荷产生层14以及第三电荷产生层15的具体有机材料组成进行说明。第一电荷产生层13由第一 有机材料与第二有机材料混合而成,第一有机材料可以为TmPyPb(即1,3,5-三[(3-吡啶基)-3-苯基]苯),第二有机材料可以为C60;第二电荷产生层14由第二有机材料与第三有机材料混合而成,第三有机材料可以为红荧烯、并五苯、四氟四氰基醌二甲烷、CuPc(即酞菁铜)或其他酞箐类衍生物;第三电荷产生层15由第三有机材料与第四有机材料混合而成,第四有机材料为TCTA(即4,4',4”-三(咔唑-9-基)三苯胺)。
或者,第一电荷产生层13中的第一有机材料可以为Bphen(即4,7-二苯基-1,10-菲啰啉),第二有机材料可以为C60;第二电荷产生层14中的第三有机材料为可以为红荧烯、并五苯、四氟四氰基醌二甲烷、CuPc或其他酞箐类衍生物;第三电荷产生层15中的第四有机材料可以为NPB(即N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺)。
为了更加清楚详细的说明本公开实施例中的串联式有机发光二极管的具体组成,下面将结合第一电荷产生层13、第二电荷产生层14以及第三电荷产生层15的具体有机材料,以及串联式有机发光二极管的组成其他层的具体有机材料进行举例说明。
实施例
实施例1
以发射蓝光的串联式有机发光二极管为例,串联式有机发光二极管的阳极10为带有铟锡氧化物的底发射玻璃基底,阳极10的厚度为100nm;空穴传输层11为TCTA层,空穴传输层11的厚度为90nm;第一发光层12中的主体有机材料为TCTA和TmPyPb,TCTA的空穴迁移率为1×10-3cm2/V·s,最高占据轨道能级为-5.7eV,最低未占据轨道能级为-2.6eV,三重态能级为2.76eV,TmPyPb的电子迁移率为2.4×10-4cm2/V·S,最高占据轨道能级为-6.7eV,最低未占据轨道能级为-2.6eV,三重态能级为2.78eV,客体有机材料为FIrpic(即双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱),FIrpic的三重态能级为2.62eV,两种主体有机材料的三重态能级均高于客体有机材料,能够使得发光层主客有机材料之间更好的实现能量转移,第一发光层12的厚度为20nm;第一电荷产生层13由TmPyPb和C60混合而成,第一电荷产生层13 的厚度为50nm,C60的电子迁移率为0.1cm2/V·S,最高占据轨道能级为-6.2eV,最低未占据轨道能级为-4.6eV;第二电荷产生层14由C60和CuPc混合而成,第二电荷产生层14的厚度为20nm,CuPc的空穴迁移率为1.96×10-2cm2/V·S,最高占据轨道能级为-5.3eV,最低未占据轨道能级为-3.6eV;第三电荷产生层15由TCTA和CuPc混合而成,第三电荷产生层15的厚度为50nm;第二发光层16的具体组成材料与第一发光层12相同,第二发光层16的厚度为20nm;电子传输层17为TmPyPb层,电子传输层17的厚度为30nm;阴极18为镁银合金层,阴极18的厚度为120nm。
实施例2
仍然以发射蓝光的串联式有机发光二极管为例,阳极10与实施例1的发射蓝光的串联式有机发光二极管的阳极10相同;空穴传输层11为NPB层;第一发光层12中的主体有机材料为NPB和Bphen,NPB的空穴迁移率为5.1×10-4cm2/V·S,最高占据轨道能级为-5.4eV,最低未占据轨道能级为-2.4eV,Bphen的电子迁移率为4.2×10-4cm2/V·S,最高占据轨道能级为-6.1eV,最低未占据轨道能级为-2.8eV,客体有机材料为FIrpic;第一电荷产生层13由Bphen和C60混合而成;第二电荷产生层14由C60和CuPc混合而成;第三电荷产生层15由NPB和CuPc混合而成;第二发光层16的具体组成材料与第一发光层相同;电子传输层17为Bphen层。
实施例1和2的发射蓝光的串联式有机发光二极管的发光主峰位于472nm,肩峰位于496nm。实施例1和2串联式有机发光二极管的驱动电压分别为5.8V和5.6V,功率效率分别为5.8lm/W和6.2lm/W。
下面将介绍上述发射蓝光的串联式有机发光二极管的制作流程,首先,将带有铟锡氧化物的底发射玻璃基底(即阳极10)依次在去离子水、丙酮和无水乙醇的超声环境中进行清洗,清洗完毕后,利用N2将带有铟锡氧化物的底发射玻璃基底吹干,并进行等离子体清洗,去除氧化物,将等离子体清洗后的带有铟锡氧化物的底发射玻璃基底置于真空度低于5×10-4Pa的蒸镀腔室中,对带有铟锡氧化物的底发射玻璃基底进行真空蒸镀,在带有铟锡氧化物的底发射玻璃基底上依次沉淀空穴传输层11、第一发光层12、第一电荷产生层13、第二电荷产生层14、第三电荷产生层15、第二发光层16、电子传 输层17和阴极18。其中,阴极18的蒸镀过程采用金属阴极掩膜板,蒸发速度为0.3nm/s;其余各个层的蒸镀过程采用开放掩膜板,蒸发速度为0.1nm/s。
需要说明的是,上述实施例中虽然只介绍了发射蓝光的串联式有机发光二极管的具体材料组成,但发射其他色光的串联式有机发光二极管的具体材料的替换或变化,均涵盖在本公开的保护范围之内。
本公开实施例还提供一种阵列基板,该阵列基板包括多个上述实施例中的串联式有机发光二极管,所述阵列基板中的串联式有机发光二极管与上述实施例中的串联式有机发光二极管具有的优势相同,此处不再赘述。
本公开实施例还提供一种显示装置,该显示装置包括上述实施例中的阵列基板,所述显示装置中的阵列基板与上述实施例中的阵列基板具有的优势相同,此处不再赘述。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2015年6月29日递交的中国专利申请第201510370289.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (10)

  1. 一种串联式有机发光二极管,包括依次层叠的阳极、空穴传输层、第一发光层、第一电荷产生层、第二电荷产生层、第三电荷产生层、第二发光层、电子传输层和阴极;其中,所述第一电荷产生层为N型体异质结,所述第二电荷产生层为PN结型体异质结,所述第三电荷产生层为P型体异质结。
  2. 根据权利要求1所述的串联式有机发光二极管,其中所述第一电荷产生层包括第一有机材料和第二有机材料的混合物,其中,所述第一有机材料在所述第一电荷产生层中所占比例大于所述第二有机材料在所述第一电荷产生层中所占比例,且所述第一有机材料的电子迁移率大于1×10-7cm2/V·s,最高占据轨道能级小于-5.5eV,最低未占据轨道能级大于-3.5eV。
  3. 根据权利要求1或2所述的串联式有机发光二极管,其中所述第二电荷产生层包括所述第二有机材料和第三有机材料的混合物,其中,所述第二有机材料为N型有机材料,所述第三有机材料为P型有机材料,且所述第二有机材料的电子迁移率大于1×10-7cm2/V·s,所述第三有机材料的空穴迁移率大于1×10-7cm2/V·s。
  4. 根据权利要求1至3中任一项所述的串联式有机发光二极管,其中所述第三电荷产生层包括所述第三有机材料和第四有机材料的混合物,其中,所述第三有机材料在所述第三电荷产生层中所占比例小于所述第四有机材料在所述第三电荷产生层中所占比例,且所述第四有机材料的空穴迁移率大于1×10-7cm2/V·s,最高占据轨道能级小于-5.0eV,最低未占据轨道能级大于-3.0eV。
  5. 根据权利要求2至4中任一项所述的串联式有机发光二极管,其中所述第一有机材料包括1,3,5-三[(3-吡啶基)-3-苯基]苯;所述第二有机材料包括C60;所述第三有机材料包括选自以下的至少一种:红荧烯、并五苯、四氟四氰基醌二甲烷、酞菁铜或其他酞箐类衍生物;所述第四有机材料包括4,4',4”-三(咔唑-9-基)三苯胺。
  6. 根据权利要求2至4中任意一项所述的串联式有机发光二极管,其中所述第一有机材料包括4,7-二苯基-1,10-菲啰啉;所述第二有机材料包括C60;所述第三有机材料包括选自以下的至少一种:红荧烯、并五苯、四氟四氰基 醌二甲烷、酞菁铜或其他酞箐类衍生物;所述第四有机材料包括N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺。
  7. 根据权利要求1至6中任一项所述的串联式有机发光二极管,其中所述第一发光层与所述第二发光层各自独立地为包括至少一种主体有机材料和至少一种客体有机材料的混合物。
  8. 根据权利要求7所述的串联式有机发光二极管,其中所述客体有机材料包括双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱,所述主体有机材料为4,4',4”-三(咔唑-9-基)三苯胺和1,3,5-三[(3-吡啶基)-3-苯基]苯,或者所述主体有机材料为N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺和4,7-二苯基-1,10-菲啰啉。
  9. 一种阵列基板,包括多个权利要求1-8中任一项所述的串联式有机发光二极管。
  10. 一种显示装置,包括权利要求9所述的阵列基板。
PCT/CN2016/079884 2015-06-29 2016-04-21 一种串联式有机发光二极管、阵列基板及显示装置 WO2017000634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,590 US10283569B2 (en) 2015-06-29 2016-04-21 Tandem organic light-emitting diode, array substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510370289.0 2015-06-29
CN201510370289.0A CN105161628B (zh) 2015-06-29 2015-06-29 一种串联式有机发光二极管、阵列基板及显示装置

Publications (1)

Publication Number Publication Date
WO2017000634A1 true WO2017000634A1 (zh) 2017-01-05

Family

ID=54802437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079884 WO2017000634A1 (zh) 2015-06-29 2016-04-21 一种串联式有机发光二极管、阵列基板及显示装置

Country Status (3)

Country Link
US (1) US10283569B2 (zh)
CN (1) CN105161628B (zh)
WO (1) WO2017000634A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161627B (zh) 2015-06-29 2016-08-17 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置
CN105161628B (zh) 2015-06-29 2017-02-15 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置
CN105528984A (zh) 2016-02-02 2016-04-27 京东方科技集团股份有限公司 发射电极扫描驱动单元、驱动电路以及驱动方法、阵列基板
CN106058062B (zh) * 2016-05-31 2018-12-11 京东方科技集团股份有限公司 一种混合发光器件、显示面板和显示装置
CN108538894B (zh) * 2018-04-24 2021-05-25 京东方科技集团股份有限公司 一种有机电致发光器件、发光装置
EP4376578A3 (en) * 2021-12-20 2024-08-14 Novaled GmbH Display device comprising a common charge generation layer and method for making the same
CN115295596B (zh) * 2022-08-19 2023-05-09 昆山国显光电有限公司 显示面板及显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183778A (zh) * 2013-05-24 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN105161628A (zh) * 2015-06-29 2015-12-16 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876143B2 (en) * 2002-11-19 2005-04-05 John James Daniels Organic light active devices and methods for fabricating the same
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
US7560862B2 (en) * 2004-10-22 2009-07-14 Eastman Kodak Company White OLEDs with a color-compensated electroluminescent unit
US7279705B2 (en) * 2005-01-14 2007-10-09 Au Optronics Corp. Organic light-emitting device
US7494722B2 (en) * 2005-02-23 2009-02-24 Eastman Kodak Company Tandem OLED having an organic intermediate connector
EP1804309B1 (en) * 2005-12-23 2008-07-23 Novaled AG Electronic device with a layer structure of organic layers
US7816859B2 (en) * 2007-04-30 2010-10-19 Global Oled Technology Llc White light tandem OLED
US20090001885A1 (en) * 2007-06-27 2009-01-01 Spindler Jeffrey P Tandem oled device
WO2010062643A1 (en) 2008-10-28 2010-06-03 The Regents Of The University Of Michigan Stacked white oled having separate red, green and blue sub-elements
CN101447555B (zh) 2008-12-29 2012-01-25 中国科学院长春应用化学研究所 基于有机半导体异质结电荷产生层作为连接层的叠层有机电致发光器件及制法
CN101515633B (zh) * 2009-03-27 2010-06-16 彩虹集团公司 一种有机电致发光显示器件的制备方法
CN102074658B (zh) 2010-11-01 2014-08-27 中国科学院长春应用化学研究所 电荷产生层、叠层有机发光二极管及其制备方法
KR101908385B1 (ko) * 2012-03-02 2018-10-17 삼성디스플레이 주식회사 유기 발광 소자
US8476624B1 (en) * 2012-06-01 2013-07-02 Au Optronics Corporation Organic light emitting diode (OLED) device
DE102012214021B4 (de) * 2012-08-08 2018-05-09 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
CN103022366A (zh) * 2013-01-05 2013-04-03 太原理工大学 一种有机电致发光器件
KR102081605B1 (ko) * 2013-07-31 2020-02-27 엘지디스플레이 주식회사 백색 유기전계발광소자
KR102543330B1 (ko) * 2015-02-25 2023-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 소자, 표시 장치, 전자 기기, 및 조명 장치
CN105161627B (zh) 2015-06-29 2016-08-17 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183778A (zh) * 2013-05-24 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN105161628A (zh) * 2015-06-29 2015-12-16 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置

Also Published As

Publication number Publication date
CN105161628B (zh) 2017-02-15
CN105161628A (zh) 2015-12-16
US10283569B2 (en) 2019-05-07
US20170213875A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
WO2017000634A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
JP4785386B2 (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
WO2017000635A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
KR100775734B1 (ko) 유기발광소자 및 이의 제조 방법
EP2372805B1 (en) Organic light emitting diode device
KR101666781B1 (ko) 유기 발광 소자
US9293736B2 (en) Organic light emitting element having emission layers and an electron injection layer including fullerene and lithium quinolate
KR100752383B1 (ko) 유기전계발광소자 및 그 제조방법
US20100187552A1 (en) Hybrid white organic light emitttng device and method of manufacturing the same
KR20120042081A (ko) 유기전계발광소자
CN102439746A (zh) 用于有机电子器件的内部连接器
WO2016155475A1 (zh) 有机发光二极管器件及显示面板、显示装置
JP2007179933A (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP5458554B2 (ja) 有機電界発光素子および表示装置
KR102373896B1 (ko) 유기 발광 소자
KR20100073417A (ko) 유기전계발광소자
WO2016070503A1 (zh) 单色oled及其制作方法和oled显示面板
KR20160039111A (ko) 유기발광표시장치 및 그 제조방법
TWI249368B (en) White organic light emitting device using three emissive layer
WO2022217600A1 (zh) 有机电致发光器件和显示装置
US20170194586A1 (en) Organic light emitting device
KR20180062220A (ko) 유기 발광 소자 및 그를 이용한 유기 발광 표시 장치
KR101589824B1 (ko) 하이브리드형 유기전계발광소자
CN102148233B (zh) 图像显示系统
CN112331783B (zh) 交流驱动的发光器件及其制备方法、发光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15322590

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16816998

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16816998

Country of ref document: EP

Kind code of ref document: A1