WO2023182600A1 - 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법 - Google Patents

응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법 Download PDF

Info

Publication number
WO2023182600A1
WO2023182600A1 PCT/KR2022/014613 KR2022014613W WO2023182600A1 WO 2023182600 A1 WO2023182600 A1 WO 2023182600A1 KR 2022014613 W KR2022014613 W KR 2022014613W WO 2023182600 A1 WO2023182600 A1 WO 2023182600A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfiber filter
coagulant
water
backwashing
suction
Prior art date
Application number
PCT/KR2022/014613
Other languages
English (en)
French (fr)
Inventor
최충현
Original Assignee
주식회사 로펜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 로펜 filed Critical 주식회사 로펜
Priority to JP2023507504A priority Critical patent/JP2024516047A/ja
Publication of WO2023182600A1 publication Critical patent/WO2023182600A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/36Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed fluidised during the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4631Counter-current flushing, e.g. by air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/03Processes of filtration using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2642Aggregation, sedimentation, flocculation, precipitation or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a physical and chemical water treatment method, and relates to a technology for replacing the existing flocculation tank, mixing tank, sedimentation tank, and sand filtration tank with a pressurized microfiber filter containing a microfiber filter medium coated with a flocculant.
  • Physical treatment processes such as sedimentation and filtration have been used as main or auxiliary treatment means in the treatment process of purified water, sewage, or wastewater, and particulates including dissolved colloidal particles that cannot be separated by sedimentation and filtration methods are treated through chemical treatment processes. After flocculation and coarsening by coagulants, it has been treated by physical treatments such as sedimentation and filtration.
  • the coagulant helps the coagulation of colloidal particles by reducing the thickness of the surface charge double layer of fine colloids.
  • the efficiency of coagulation is determined by the number of collisions between the coagulant and colloidal particles by stirring and mixing, pH, alkalinity, and oxidation number of the coagulant. It may vary depending on.
  • the present invention was devised to solve the problems of the prior art as described above,
  • Flocculation and sedimentation are implemented in real time in one filter, greatly reducing site requirements;
  • the purpose is to provide a physical and chemical water treatment method that is easy to maintain.
  • a physical and chemical water treatment method using a microfiber filter media coated with a coagulant including: provides.
  • the physical and chemical water treatment method using the microfiber filter media coated with the coagulant of the present invention is
  • coagulation and sedimentation can be implemented in real time in a single filter, thereby significantly reducing the space required;
  • FIG. 1 is a diagram schematically showing a pressurized microfiber filter module including a microfiber filter medium coated with a coagulant, as one embodiment of the present invention
  • Figure 2 is a cutaway perspective view of a pressurized microfiber filter module (microfiber filter media not shown), as one embodiment of the present invention
  • Figure 3 is a diagram showing a water treatment system that can be applied to a physical and chemical water treatment method using a microfiber filter medium coated with the coagulant of the present invention
  • Figure 4 is a cross-sectional view schematically showing a pressurized filtration process of a pressurized microfiber filter module including a microfiber filter medium coated with a coagulant, as an embodiment of the present invention
  • Figure 5 is a cross-sectional view schematically showing a backwashing process of a pressurized microfiber filter module including a microfiber filter medium coated with a coagulant, according to an embodiment of the present invention.
  • Figure 1 schematically shows a pressurized microfiber filter module including a microfiber filter medium coated with a coagulant
  • Figure 3 shows a water treatment system applicable to the physical and chemical water treatment method of the present invention.
  • the physical and chemical water treatment method of the present invention is characterized in that steps a) to c) are repeatedly performed.
  • the microfiber filter medium 204 coated with the coagulant in step a) may have been coated with the coagulant by performing the same steps as step c) in the previous step.
  • the microfiber filter medium 204 coated with the coagulant may be assembled in a form that is previously coated with the coagulant.
  • the microfiber filter medium 204 is not particularly limited if it is made of microfibers.
  • it may be woven with microfibers, or it may be a form in which multiple microfibers are tightly arranged.
  • the pressurized microfiber filter may have a structure known in the art.
  • the present invention is not characterized by the structure of the pressurized microfiber filter, but by using a pressurized microfiber filter including a microfiber filter medium 204 that is coated or not coated with a coagulant depending on the process, so the coagulant
  • the structure of the non-coated pressurized microfiber filter may be the same as that known in the field (e.g., Korean Patent Registration No. 10-1879845).
  • the pressurized microfiber filter includes a pressurized housing 203 with a raw water supply port 201 connected to the upper portion; A microfiber filter medium (204) installed inside the pressurizing housing (203) to filter raw water, the upper end of which is fixed to the flow holder (202); A porous permeable tube 205 disposed at the inner lower portion of the microfiber filter medium 204 and allowing filtered treated water 401, backwash water 411, and air 412 to pass through; a filtered water and backwash water distribution port 208 connected to the lower part of the porous permeable pipe 205 to discharge filtered water and supply backwash water 411; and an air supply pipe 207 connected to the lower part of the porous permeable pipe 205 to supply air 412.
  • the lower end of the microfiber filter medium 204 may be fixed to a fixing holder 206 located at the lower end of the internal space of the filter. Additionally, it may be fixed while being inserted into the porous permeable tube 205.
  • the microfiber filter medium 204 may be formed in a tubular shape.
  • the pressure-type filtration in step a) may be performed as exemplarily shown in FIG. 4. That is, when raw water 400 is supplied from the raw water supply port 201 and pressure is applied, the flow holder 202 is pressed downward, and the microfiber filter medium 204 filters the raw water 400 in a compressed state. The filtered treated water 401 passes through the porous permeation pipe 205 and is discharged through the filtrated water and backwash water distribution port 208.
  • the backwashing step of step b) may be performed as exemplarily shown in FIG. 5. That is, after the backwash water 411 supplied through the filtered water and backwash water distribution port 208 passes through the porous permeation pipe 205, it passes through the microfiber filter medium 204 and pressurizes the flow holder 202 into the housing ( 203), and at this time, the microfiber filter medium 204 is vertically aligned and stretched tightly to detach the trapped contaminant particles (simple contaminant particles and/or particles agglomerated with a coagulant), while The backwash air 412, which is subsequently injected, also causes the microfibers to vibrate up, down, left, and right to detach trapped contaminated particles (simple contaminated particles and/or particles aggregated with a coagulant).
  • the treated water 401 on which the pressure filtration process has been completed is transferred to the treated water storage tank 140, as shown in FIG. 3, and some of it is stored in the backwash water storage tank to be used as backwash water. Transferred to (115),
  • the backwash wastewater 410 obtained by backwashing the microfiber filter medium 204 is returned to the suction-type filtration tank 128 (some of it may also be transferred to the raw water storage tank 101), and the suction-type filtration tank ( The backwash wastewater 410 stored in 128 is supplied to and filtered by the suction type microfiber filter 121,
  • the suction-filtered treated water is returned to the raw water storage tank 101, and part of it may be transferred to the suction-type microfiber filter backwash water storage tank 127 (also, part of it may be returned to the suction-type filtration tank 128). has exist).
  • the backwash wastewater 410 supplied from the suction type filtration tank 128 to the suction type microfiber filter 121 is supplied through a suction hose fixed to the suction hose holder 130 attached to the buoy 129. Accordingly, the backwash wastewater located at the upper part of the backwash wastewater is supplied to the suction type filtration tank 128.
  • the buoy 129 is mounted on the upper part of the suction hose holder (including the inlet) 130 in the suction type filtration tank 128, and the inlet rises and falls depending on the water level of the suction type filtration tank 128, and the upper part of the suction type filtration tank 128
  • the backwash wastewater is supplied to the suction type microfiber filter (121).
  • raw water is supplied to the pressurized microfiber filter 103 by the raw water storage tank 101. Additionally, air may be supplied to the pressurized microfiber filter 103 and the suction-type microfiber filter 121 by the air supply device 150.
  • the suction-type microfiber filter 121 has the same structure as the pressure-type microfiber filter 103, performs backwashing in the same way, and the backwashing wastewater used for backwashing is It can be returned to the suction type filtration tank 128.
  • pressure filtration is performed, as shown in FIG. 4. That is, as the filter media layer is compressed by the pressure of the incoming raw water 400, the colloids and fine particles in the raw water 400 pass through the pores between the coagulant-coated microfibers, and the zeta potential is reduced by the coagulant on the surface of the microfibers. Coagulation between colloidal particles, adsorption on the surface of the coated fiber, and filtration through pores are achieved.
  • the coagulated floc trapped in the microfibers is detached from the microfibers during the backwashing process and returned to the suction-type filtration tank 128, concentrated by the suction-type microfiber filter 121, and dehydrated by the dehydrator 161. It is transported to the waste storage tank in the form of a dehydrated cake.
  • the pressurized microfiber filter module has a microfiber filter medium 204 fixed to a flow holder 202 and a fixed holder 206 in a pressurized housing 203.
  • the porous permeable tube 205 is inserted into the lower end of the microfiber filter medium 204 and performs the function of fixing the lower end of the microfiber filter medium 204 together with the fixing holder 206. do.
  • backwashing water is injected into the pressurized microfiber filter module, the microfibers are vertically aligned due to the floating of the microfiber flow holder 202, and the microfibers are then vibrated up, down, left, and right by the injected backwash air, trapping contamination.
  • Backwashing is performed to remove particles.
  • the backwashing pump and the coagulant injection metering pump operate and the coagulant is injected into the microfiber module, the surface of the microfibers is coated with the coagulant.
  • the backwash pump and the metering pump are operated. It stops and the pressure pump starts to compress the coated microfibers to form a filtration layer, and the initial treated water until the filtration layer is formed is returned to the coagulant storage tank 114.
  • the treated water is stored in a treated water storage tank, and continuous repetitive operation is performed by repeating backwashing after filtration for a set period of time.
  • the coagulant is stored in the coagulant storage tank 114 and can be supplied to the backwash supply pipe by the coagulant metering pump 113.
  • the coagulant stored in the coagulant storage tank 114 is supplied to the backwash water supply pipe by the coagulant metering pump 113, and the backwash water transfer pump operates simultaneously to supply a mixture of backwash water and coagulant.
  • the surface of the microfiber filter medium 204 is coated with a coagulant.
  • the coagulant is a general-purpose coagulant used for the purpose of coagulation in the water treatment process and can be applied regardless of organic or inorganic.
  • the coagulant specifically includes Al 2 (SO 4 ) 3 ⁇ 16H 2 O, Al 2 (SO 4 ) 3 ⁇ 18H 2 O, polyaluminum chloride (PAC), polyaluminum sulfate (PAS), and polyaluminum sulfate silicate (PAS). , and polyaluminum chloride silicate (PACS).
  • PAC polyaluminum chloride
  • PAS polyaluminum sulfate
  • PAS polyaluminum sulfate silicate
  • PES polyaluminum chloride silicate
  • the coagulant is Al 2 (SO 4 ) 3 ⁇ 16H 2 O, Al 2 (SO 4 ) 3 ⁇ 18H 2 O, polyaluminum chloride (PAC), polyaluminium sulfate (PAS), polyaluminium sulfate silicate (PAS) , and 2 to 10 parts by weight of one or more types selected from the group consisting of polydopamine and dopamine methacrylamide (PDMA) based on 100 parts by weight of one or more types selected from the group consisting of polyaluminum chloride silicate (PACS) and 20 parts by weight of water. It may be preferable to supply it in the form of a mixed composition of from 40 to 40 parts by weight. The composition may be in solution form or slurry form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)
  • Physical Water Treatments (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 a) 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 상부로 원수를 공급하여 가압식 여과를 수행하는 단계; b) 상기 마이크로 파이버 여과기의 하부에서 역세척수 및 공기를 공급하여 마이크로 파이버 여재를 역세척하는 단계; 및 c) 상기 마이크로 파이버 여재의 역세척이 완료된 후, 응집제를 역세척수와 함께 공급하여 상기 마이크로 파이버 여재를 응집제로 코팅하는 단계;를 포함하며, 상기 가압식 응집제로 코팅된 파이버 여과기의 역세척 폐수를 흡인식 마이크로 파이버 여과기에 의해서 농축하여 탈수기로 이송하는, 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법을 제공한다.

Description

응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법
본 발명은 물리·화학적 수처리 공법에 관한 것으로서 기존의 응집조와 혼화조, 침전조, 모래 여과조를 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 하나로 대체하는 기술에 관한 것이다.
침전 및 여과와 같은 물리적 처리공정은 정수, 하수 또는 폐수의 처리 공정에서 주 처리수단 또는 보조적 처리수단으로 사용 되어 왔으며, 침전 및 여과 방법으로 분리되지 않는 용존성 콜로이드 입자를 포함한 미립자들은 화학처리 공정인 응집제에 의한 응집 및 조대화 후, 침전 및 여과와 같은 물리적 처리에 의해 처리되어 왔다.
응집 공정은 응집제가 미세 콜로이드의 표면전하 이중층의 두께를 감소시켜서 콜로이드 입자의 응집을 돕는 역할을 하는 바 응집의 효율은 교반 및 혼화에 의한 응집제와 콜로이드 입자간의 충돌 횟수, pH, 알카리도, 응집제의 산화수에 따라 달라질 수 있다.
그러므로, 최적의 응집을 위해서는 응집제와 원수의 혼화 및 강력한 교반에 의해서 콜로이드 입자와 응집제의 충돌 횟수를 증가시켜야 하는데, 저농도(탁도) 원수 유입시 콜로이드 입자의 절대 숫자가 부족하므로 응집제의 투여량이 과다하게 주입하고, 혼화 교반 시간을 길게 해도 응집이 잘되지 않는 문제점이 있었다.
또한, 응집후 응집물의 분리를 위하여 사용되는 침전 공정은 넓은 부지가 필요하며 가압부상 방법은 과다한 에너지와 약품이 소요되는 문제점이 있었다.
또한, 종래의 물리·화학적 처리 공정을 적용하는 정수, 하수, 및 폐수 처리장은 넓은 면적이 요구되고, 슬러지 발생량이 많으며, 유지관리가 어렵다는 문제점이 있었다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서,
기존 응집 공정보다 훨씬 적은 량의 응집제에 의한 화학처리가 가능하며;
응집 및 침전(또는 부상)이 하나의 여과기에서 실시간으로 구현되어, 소요부지를 대폭 감소시키며;
기존 화학 공정에서 필수적으로 요구되는 응집 , 침전(부상)처리후 추가적인 여과처리를 생략할 수 있으며;
가압부상에 의한 과다한 에너지와 약품 소모가 불필요하며,
저농도(저탁도) 원수 유입시 응집 불량, 침전불량 등의 문제가 방지되어 효율적인 수처리가 가능하며;
유지관리가 용이한 물리·화학적 수처리 공법을 제공하는 것을 목적으로 한다.
상기 과제를 달성하기 위하여, 본 발명은,
a) 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 상부로 원수를 공급하여 가압식 여과를 수행하는 단계;
b) 상기 마이크로 파이버 여과기의 하부에서 역세척수 및 공기를 공급하여 마이크로 파이버 여재를 역세척하는 단계; 및
c) 상기 마이크로 파이버 여재의 역세척이 완료된 후, 응집제를 역세척수와 함께 공급하여 상기 마이크로 파이버 여재를 응집제로 코팅하는 단계;를 포함하는 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법을 제공한다.
본 발명의 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법은
첫째, 응집제가 역세척 주기마다 파이버의 코팅에만 소량씩 사용되므로 기존 응집 공정보다 훨씬 적은 량의 응집제에 의한 화학처리가 가능하고;
둘째, 응집 , 침전(또는 부상)이 하나의 여과기에서 실시간으로 구현됨으로서 소요부지를 대폭 감소 시킬 수 있으며;
셋째, 기존 화학 공정에서는 응집 , 침전(부상)처리후 추가적인 여과처리가 요구되나, 이러한 처리의 생략이 가능하며;
넷째, 가압부상에 의한 과다한 에너지와 약품 소모가 불필요하며,
다섯째, 저농도(저탁도) 원수 유입시 응집 불량, 침전불량 등의 문제가 방지되어 효율적인 수처리가 가능하며;
여섯째, 유리관리가 용이한 효과를 제공한다.
도 1은 본 발명의 일 실시형태로서, 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 모듈을 모식적으로 도시한 도면이며,
도 2는 본 발명의 일 실시형태로서, 가압식 마이크로 파이버 여과기 모듈(마이크로 파이버 여재 미도시)의 절단 사시도이며,
도 3은 본 발명의 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법에 적용될 수 있는 수처리 시스템을 나타낸 도면이며,
도 4은 본 발명의 일 실시형태로서, 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 모듈의 가압식 여과 프로세스를 모식적으로 도시한 단면도이며,
도 5은 본 발명의 일 실시형태로서, 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 모듈의 역세척 프로세스를 모식적으로 도시한 단면도이다.
이하에서, 본 발명에 대하여 도면을 참조하여 자세히 설명한다.
먼저, 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 모듈을 모식적으로 도시한 도 1 및 본 발명의 물리·화학적 수처리 공법에 적용될 수 있는 수처리 시스템에 관한 도 3을 참조하여 본 발명을 설명한다.
본 발명의 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법은 다음 단계를 포함하는 것을 특징으로 한다:
a) 응집제로 코팅된 마이크로 파이버 여재(204)를 포함하는 가압식 마이크로 파이버 여과기 상부(201, 원수 공급구)로 원수를 공급하여 가압식 여과를 수행하는 단계;
b) 상기 마이크로 파이버 여과기(103)의 하부에서 역세척수(411) 및 공기(412)를 공급하여 마이크로 파이버 여재를 역세척하는 단계; 및
c) 상기 마이크로 파이버 여재(204)의 역세척이 완료된 후, 응집제를 역세척수와 함께 공급하여 상기 마이크로 파이버 여재(204)를 응집제로 코팅하는 단계.
본 발명의 물리·화학적 수처리 공법은 상기 a) 단계 내지 c) 단계는 반복적으로 수행하는 것을 특징으로 한다.
상기 a) 단계에서 응집제로 코팅된 마이크로 파이버 여재(204)는 그 전단계에서 상기 c) 단계와 동일한 단계의 수행에 의해 마이크로 파이버 여재(204)에 응집제 코팅이 완료된 것일 수 있다. 물론, 상기 응집제로 코팅된 마이크로 파이버 여재(204)는 가압식 마이크로 파이버 여과기를 구성할 때, 미리 응집제로 코팅된 형태로 조립된 것일 수도 있다.
상기 마이크로 파이버 여재(204)는 마이크로 파이버로 이루어진 여재인 경우 특별히 제한되지 않는다. 예를 들어, 마이크로 파이버로 직조된 형태일 수 있으며, 다수개이 마이크로 파이버가 촘촘하게 배열된 형태일 수도 있다.
상기 가압식 마이크로 파이버 여과기는 이 분야에 공지된 구조를 갖는 것일 수 있다. 즉, 본 발명은 가압식 마이크로 파이버 여과기의 구조에 특징이 있는 것이 아니라, 프로세스에 따라 응집제로 코팅되거나 코팅되지 않은 마이크로 파이버 여재(204)를 포함하는 가압식 마이크로 파이버 여과기를 사용하는 것에 특징이 있으므로, 응집제로 코팅되지 않은 가압식 마이크로 파이버 여과기의 구조는 이 분야에 공지된 것(예: 한국 특허 등록 제10-1879845호)과 동일한 형태일 수 있다.
본 발명이 일 실시형태로서, 상기 가압식 마이크로 파이버 여과기는 상부에 원수 공급구(201)가 연결된 가압 하우징(203)과; 상기 가압 하우징(203) 내측에 설치되어 원수를 여과하는, 상단부가 유동홀더(202)에 고정된 마이크로 파이버 여재(204); 상기 마이크로 파이버 여재(204)의 내측 하부에 배치되어 여과된 처리수(401), 역세척수(411) 및 공기(412)를 통과시키는 다공성 투과관(205); 상기 다공성 투과관(205)의 하부와 연결되어 여과수를 배출하고, 역세척수(411)를 공급하는 여과수 및 역세척수 유통구(208); 및 상기 다공성 투과관(205)의 하부와 연결되어 공기(412)를 공급하는 공기 공급관(207);을 포함할 수 있다.
상기 마이크로 파이버 여재(204)의 하단부는 여과기의 내부 공간 하단부에 위치된 고정홀더(206)에 고정될 수 있다. 또한, 다공성 투과관(205)에 끼워진 상태로 고정될 수도 있다.
상기에서 마이크로 파이버 여재(204)는 관형상으로 형성된 것일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 a) 단계의 가압식 여과는, 도 4에 예시적으로 도시된 바와 같이, 수행될 수 있다. 즉, 원수 공급구(201)에서 원수(400)가 공급되면서 압력이 가해지면, 유동홀더(202)가 아래 방향으로 가압되면서, 마이크로 파이버 여재(204)가 압축된 상태로 원수(400)를 여과시키며, 상기 여과된 처리수(401)는 다공성 투과관(205)을 통과하여, 여과수 및 역세척수 유통구(208)를 통하여 배출된다.
상기 b) 단계의 역세척 단계는, 도 5에 예시적으로 도시된 바와 같이, 수행될 수 있다. 즉, 여과수 및 역세척수 유통구(208)를 통하여 공급된 역세척수(411)가 다공성 투과관(205)을 통과한 후, 마이크로 파이버 여재(204)를 통과하면서 유동홀더(202)를 가압 하우징(203)까지 밀어 올리고, 이 때, 상기 마이크로 파이버 여재(204)는 수직으로 정렬되어 팽팽하게 펴진 형태가 되면서 포촉된 오염 입자(단순 오염입자 및/또는 응집제로 응집된 입자)를 탈리시키며, 한편, 이어서 주입되는 역세척 공기(412)도 마이크로 파이버를 상하좌우로 진동시키면 포촉된 오염 입자(단순 오염입자 및/또는 응집제로 응집된 입자)를 탈리시킨다.
본 발명의 일 실시형태에 있어서, 가압식 여과 처리가 완료된 처리수(401)는 도 3에 도시된 바와 같이, 처리수 저장탱크(140)로 이송되며, 일부는 역세척수로 사용하기 위하여 역세척수 저장조(115)로 이송되며,
마이크로 파이버 여재(204)를 역세척한 역세척 폐수(410)는 흡인식 여과 탱크(128)로 반송되며(또한, 일부는 원수 저장조(101)로 이송될 수도 있음), 상기 흡인식 여과 탱크(128)에 저장되는 역세척 폐수(410)는 흡인식 마이크로 파이버 여과기(121)로 공급되어 여과되며,
상기 흡인 여과된 처리수는 원수 저장조(101)로 반송되며, 일부는 흡인식 마이크로 파이버 여과기 역세척수 저장조(127)로 이송될 수 있다(또한, 일부는 흡인식 여과 탱크(128)로 반송될 수 있음).
상기 흡인식 여과 탱크(128)에서 흡인식 마이크로 파이버 여과기(121)로 공급되는 역세척 폐수(410)는 부표(129)에 부착된 흡인 호스 홀더(130)에 고정된 흡인 호스로를 통하여 공급된다. 따라서, 흡인식 여과 탱크(128)이 역세척 폐수 중 상부에 위치하는 역세척 폐수가 공급된다.
즉, 흡인식 여과 탱크(128)에서 흡인 호스 홀더(흡입구 포함)(130)의 상부에 부표(129)가 장착되어 흡인식 여과 탱크(128)의 수위에 따라 흡입구가 상승, 하강하면서, 상부의 역세척 폐수를 흡인식 마이크로 파이버 여과기(121)로 공급한다.
본 발명의 일 실시형태에서, 도 3에 도시된 바와 같이, 가압식 마이크로 파이버 여과기(103)에 대한 원수의 공급은 원수 저장조(101)에 의하여 이루어진다. 또한, 가압식 마이크로 파이버 여과기(103) 및 흡인식 마이크로 파이버 여과기(121)에 대한 공기의 공급은 공기 공급장치(150)에 의하여 이루어질 수 있다.
본 발명의 일 실시형태에서, 상기 흡인식 마이크로 파이버 여과기(121)는 상기 가압식 마이크로 파이버 여과기(103)와 동일한 구조를 가지며, 동일한 방식으로 역세척을 수행하며, 역세척에 사용된 역세척 폐수는 상기 흡인식 여과 탱크(128)로 반송될 수 있다.
본 발명의 일 실시형태에 있어서, 액체상태의 응집제를 역세척이 완료된 후, 마이크로 파이버의 표면에 코팅한 후, 도 4에 도시된 바와 같이, 가압식 여과가 수행된다. 즉, 유입되는 원수(400)의 압력으로 여재층이 압착되면서 원수(400)에 있는 콜로이드 및 미립자는 응집제가 코팅된 마이크로 파이버 사이의 공극을 통과하면서 마이크로 파이버 표면의 응집제에 의하여 제타포텐셜이 감소되어 콜로이드 입자간의 응집, 코팅파이버 표면 흡착 및 공극에 의한 여과가 이뤄지게 된다. 마이크로 파이버에 포촉된 응집 플록은 역세척 공정시에 마이크로 파이버에서 탈리되어 흡인식 여과 탱크(128)로 반송되고, 흡인식 마이크로 파이버 여과기(121)에 의해서 농축되고, 탈수기(161)에 의한 탈수후 탈수케익 형태로 폐기물 저장조로 이송된다.
본 발명의 일 실시형태에 있어서, 상기 가압식 마이크로 파이버 여과기 모듈은 도 1에 도시된 바와 같이, 가압 하우징(203)내에 유동홀더(202)와 고정홀더(206)에 마이크로 파이버 여재(204)가 고정되고, 이 때, 다공성 투과관(205)관은 상기 마이크로 파이버 여재(204)의 하단부에 삽입된 상태로 상기 고정홀더(206)와 함께 상기 마이크로 파이버 여재(204)의 하단부를 고정하는 기능을 수행한다. 상기 가압식 마이크로 파이버 여과기 모듈에 역세척수가 주입되면, 마이크로 파이버의 유동홀더(202)의 부상으로 마이크로 파이버가 수직으로 정렬되며 이어서 주입되는 역세척 공기에 의해서 마이크로 파이버는 상하좌우로 진동하면서 포촉된 오염 입자를 탈리시키는 역세척이 수행된다. 상기 역세척이 끝난 마이크로 파이버는 역세척 펌프 및 응집제 주입 정량 펌프가 가동하면서 응집제를 마이크로 파이버 모듈 내부에 주입함에 따라 마이크로 파이버의 표면이 응집제로 코팅되며, 이 후 역세척 펌프와 정량 펌프는 가동을 멈추고 가압펌프가 가동하여 코팅된 마이크로 파이버를 압착하여 여과층을 형성하며, 여과층이 형성될 때까지의 초기 처리수는 응집제 저장탱크(114)로 반송된다. 이 후 처리수는 처리수 저장탱크에 저장되며 정해진 일정시간 여과후 역세척을 반복함으로서 연속적인 반복운전이 수행된다.
본 발명의 일 실시형태에서, 상기 응집제는 응집제 저장탱크(114)에 저장되며, 응집제 정량펌프(113)에 의해 역세척 공급관으로 공급될 수 있다.
구체적으로, 역세척이 완료된 후, 응집제 저장탱크(114)에 저장된 응집제가 응집제 정량펌프(113)에 의해 역세척수 공급관으로 공급되며, 역세척수 이송 펌프가 동시에 작동되어 역세척수와 응집제의 혼합물이 공급되어, 마이크로 파이버 여재(204) 표면을 응집제로 코팅하게 된다.
상기 응집제로는 수처리공정에서 응집을 목적으로 사용하는 범용 응집제로서 유기,무기 구분없이 적용될 수 있다.
상기 응집제는 구체적으로 Al2(SO4)3·16H2O, Al2(SO4)3·18H2O, 폴리염화알루미늄(PAC), 폴리황산알루미늄(PAS), 폴리황산알루미늄실리케이트(PAS), 및 폴리염화알루미늄실리케이트(PACS)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 응집제는 Al2(SO4)3·16H2O, Al2(SO4)3·18H2O, 폴리염화알루미늄(PAC), 폴리황산알루미늄(PAS), 폴리황산알루미늄실리케이트(PAS), 및 폴리염화알루미늄실리케이트(PACS)로 이루어진 군으로부터 선택되는 1종 이상 100 중량부를 기준으로 폴리도파민 및 도파민메타크릴아마이드(PDMA)로 이루어진 군으로부터 선택되는 1종 이상 2 내지 10 중량부 및 물 20 내지 40 중량부를 혼합한 조성물 형태로 공급되는 것이 바람직할 수 있다. 상기 조성물은 용액 형태이거나 슬러리 형태일 수 있다.

Claims (5)

  1. a) 응집제로 코팅된 마이크로 파이버 여재를 포함하는 가압식 마이크로 파이버 여과기 상부로 원수를 공급하여 가압식 여과를 수행하는 단계;
    b) 상기 마이크로 파이버 여과기의 하부에서 역세척수 및 공기를 공급하여 마이크로 파이버 여재를 역세척하는 단계; 및
    c) 상기 마이크로 파이버 여재의 역세척이 완료된 후, 응집제를 역세척수와 함께 공급하여 상기 마이크로 파이버 여재를 응집제로 코팅하는 단계;를 포함하고,
    상기 가압식 마이크로 파이버 여과기는
    상부에 원수 공급구가 연결된 가압 하우징과;
    상기 가압 하우징 내측에 설치되어 원수를 여과하는, 상단부가 유동홀더에 고정된 마이크로 파이버 여재;
    상기 마이크로 파이버 여재의 내측 하부에 배치되어 여과된 처리수, 역세척수 및 공기를 통과시키는 다공성 투과관;
    상기 다공성 투과관의 하부와 연결되어 여과수를 배출하고, 역세척수를 공급하는 여과수 및 역세척수 유통구; 및
    상기 다공성 투과관의 하부와 연결되어 공기를 공급하는 공기 공급관;을 포함하고,
    가압식 여과 처리가 완료된 처리수는 처리수 저장탱크로 이송되며, 일부는 역세척수로 사용하기 위하여 역세척수 저장조로 이송되며,
    마이크로 파이버 여재를 역세척한 역세척 폐수는 흡인식 여과 탱크로 이송되며, 상기 흡인식 여과 탱크에 저장되는 역세척 폐수는 흡인식 마이크로 파이버 여과기로 공급되어 여과되며,
    상기 흡인 여과된 처리수는 원수 저장조로 반송되며, 일부는 흡인식 마이크로 파이버 여과기 역세척수 저장조로 이송되는 것을 특징으로 하는 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법.
  2. 제1항에 있어서,
    흡인식 마이크로 파이버 여과기는 상기 가압식 마이크로 파이버 여과기와 동일한 구조를 가지며, 동일한 방식으로 역세척을 수행하며, 역세척 폐수는 상기 흡인식 여과 탱크로 이송되는 것을 특징으로 하는 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법.
  3. 제2항에 있어서,
    흡인식 여과 탱크에서 흡입구의 상부에 부표가 장착되어 흡인식 탱크의 수위에 따라 흡입구가 상승, 하강하는 것을 특징으로 하는 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법.
  4. 제1항에 있어서,
    역세척시 유동홀더의 부상으로 마이크로 파이버가 수직으로 정렬되며, 이어서 주입되는 역세척 공기에 의해서 마이크로 파이버가 상하좌우로 진동하면서 포촉된 오염 입자가 탈리되는 것을 특징으로 하는 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법.
  5. 제1항에 있어서,
    역세척이 완료된 후, 응집제 저장탱크에 저장된 응집제가 응집제 정량펌프에 의해 역세척수 공급관으로 공급되며, 역세척수 이송 펌프가 동시에 작동되어 역세척수와 응집제의 혼합물이 공급되어, 마이크로 파이버 여재 표면을 응집제로 코팅하는 것을 특징으로 하는 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법.
PCT/KR2022/014613 2022-03-23 2022-09-29 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법 WO2023182600A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023507504A JP2024516047A (ja) 2022-03-23 2022-09-29 凝集剤でコーティングされたマイクロファイバー濾材を使用する物理・化学的水処理工法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0036236 2022-03-23
KR1020220036236A KR102453863B1 (ko) 2022-03-23 2022-03-23 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법

Publications (1)

Publication Number Publication Date
WO2023182600A1 true WO2023182600A1 (ko) 2023-09-28

Family

ID=83598222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014613 WO2023182600A1 (ko) 2022-03-23 2022-09-29 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법

Country Status (5)

Country Link
US (1) US11613476B1 (ko)
JP (1) JP2024516047A (ko)
KR (1) KR102453863B1 (ko)
CN (1) CN115837218B (ko)
WO (1) WO2023182600A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200283726Y1 (ko) * 2002-05-14 2002-07-27 한무영 빗물 저장탱크용 부표달린 흡입기
KR20020094097A (ko) * 2001-06-07 2002-12-18 최충현 간단한 구조로 사이드 스트림 여과와 클로스 플로우여과가 가능한 가변세공 정밀 여과장치
JP4800463B2 (ja) * 2000-03-16 2011-10-26 オルガノ株式会社 ろ過装置
KR20170128898A (ko) * 2016-05-16 2017-11-24 (주)글로벌엔필텍 다단의 장섬유 여과기를 이용하는 하수 처리 시스템 및 그의 처리 방법
KR20190025327A (ko) * 2017-09-01 2019-03-11 유승철 역세형 다층여과 필터 및 이를 이용한 여과방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241198B1 (ko) 1997-09-30 2000-02-01 최충현 가변 필터층을 갖는 여과장치
KR100538637B1 (ko) * 2003-05-07 2005-12-26 효림산업주식회사 밀도 조절형 섬유상 여과장치
CN101219846B (zh) * 2008-01-23 2010-12-01 哈尔滨工业大学 超滤膜混凝/吸附/生物反应器一体化水深度处理方法及其装置
KR101075885B1 (ko) * 2009-04-28 2011-10-25 (주)대우건설 응집-경사판 침전지를 전처리로 한 가압식 정밀여과기와 회수율 증대를 위한 공극제어형 섬유사여과기를 이용한 정수 처리 장치 및 방법
CN106457157B (zh) * 2014-05-30 2019-04-26 可隆工业株式会社 过滤系统及用于该系统的中空纤维膜组件
SG11201805603SA (en) * 2015-12-28 2018-07-30 Oji Holdings Corp Water treatment system, water treatment method, and water production method
CN106006877B (zh) * 2016-06-30 2019-01-25 重庆市亚特蓝电器有限责任公司 磁化净水器
CN107777796A (zh) * 2016-08-31 2018-03-09 福建省粤华环保科技有限公司 一种复合式多管膜超滤处理废水装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800463B2 (ja) * 2000-03-16 2011-10-26 オルガノ株式会社 ろ過装置
KR20020094097A (ko) * 2001-06-07 2002-12-18 최충현 간단한 구조로 사이드 스트림 여과와 클로스 플로우여과가 가능한 가변세공 정밀 여과장치
KR200283726Y1 (ko) * 2002-05-14 2002-07-27 한무영 빗물 저장탱크용 부표달린 흡입기
KR20170128898A (ko) * 2016-05-16 2017-11-24 (주)글로벌엔필텍 다단의 장섬유 여과기를 이용하는 하수 처리 시스템 및 그의 처리 방법
KR20190025327A (ko) * 2017-09-01 2019-03-11 유승철 역세형 다층여과 필터 및 이를 이용한 여과방법

Also Published As

Publication number Publication date
EP4249099A1 (en) 2023-09-27
CN115837218B (zh) 2023-07-28
JP2024516047A (ja) 2024-04-12
CN115837218A (zh) 2023-03-24
US11613476B1 (en) 2023-03-28
KR102453863B1 (ko) 2022-10-12

Similar Documents

Publication Publication Date Title
CN105060636B (zh) 一种分质处理印染废水中水回用系统及工艺
CN109912068A (zh) 基于反渗透脱盐处理的排污水净化系统和净化工艺
CN108147615A (zh) 一种针对化纤黏胶废水的中水回用及达标排放工艺
WO2023182600A1 (ko) 응집제로 코팅된 마이크로 파이버 여재를 사용하는 물리·화학적 수처리 공법
CN107721023A (zh) 一种水合肼废水处理装置及其工艺
CN1196336A (zh) 处理印染废水方法及所用的过滤设备
CN201400615Y (zh) 循环水排污水的处理系统
CN205892904U (zh) 用于自动处理污水的一体化设备
CN215559437U (zh) 一种废水处理系统
CN108706815A (zh) 一种印染厂废水处理回用系统及处理回用方法
CN209619070U (zh) 一种印刷显影废液处理系统
EP4249099B1 (en) Physicochemical water treatment process using microfiber filter coated with coagulant
CN208964680U (zh) 印染废水深度处理装置
JP4714367B2 (ja) 膜ろ過方法
JPH07232196A (ja) 高度水処理方法およびその装置
CN208532528U (zh) 一种印染厂废水处理回用系统
JP2002346347A (ja) ろ過装置及び方法
CN206970360U (zh) 造纸污水净化处理系统
CN207046985U (zh) 一种含镍废水处理回用系统
CN110697929A (zh) 一种羟基自由基活性氧处理黑臭水体的方法
CN213680165U (zh) 一种反冲洗废水单独处理的污水处理系统
CN211546188U (zh) 一种含氟废水深度处理的一体化装置
CN216584525U (zh) 一种循环冷却水废水回收系统
CN207933195U (zh) 印刷污水处理设备
CN205115168U (zh) 一种印花废水回用处理系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023507504

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933769

Country of ref document: EP

Kind code of ref document: A1