WO2023182567A1 - 항당뇨 활성을 갖는 펩타이드, 펩타이드 복합체 및 이의 용도 - Google Patents

항당뇨 활성을 갖는 펩타이드, 펩타이드 복합체 및 이의 용도 Download PDF

Info

Publication number
WO2023182567A1
WO2023182567A1 PCT/KR2022/005466 KR2022005466W WO2023182567A1 WO 2023182567 A1 WO2023182567 A1 WO 2023182567A1 KR 2022005466 W KR2022005466 W KR 2022005466W WO 2023182567 A1 WO2023182567 A1 WO 2023182567A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
peptide complex
preventing
pharmaceutical composition
insulin
Prior art date
Application number
PCT/KR2022/005466
Other languages
English (en)
French (fr)
Inventor
정용지
김은미
김선수
Original Assignee
(주)케어젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)케어젠 filed Critical (주)케어젠
Publication of WO2023182567A1 publication Critical patent/WO2023182567A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes

Definitions

  • the present invention relates to peptide complexes with anti-diabetic activity and their uses. Additionally, the present invention relates to peptides having anti-obesity and anti-diabetic activities and their uses.
  • Diabetes is a type of metabolic disease in which insulin secretion is insufficient or normal function is not achieved. It is characterized by hyperglycemia, which increases the concentration of glucose in the blood. Hyperglycemia causes various symptoms and signs and excretes glucose in the urine. It is a disease. Recently, the incidence of diabetes has been explosively increasing due to the increase in obesity rates, especially abdominal obesity. Diabetes can be broadly divided into type 1 diabetes, which is insulin-dependent diabetes, and type 2 diabetes, which is non-insulin-dependent diabetes. Type 2 diabetes is characterized by hyperglycemia, insulin resistance, and relative impairment of insulin secretion.
  • Insulin lowers blood glucose concentration by suppressing the production of glucose in the liver and promoting glucose absorption into peripheral tissues, including muscles.
  • Insulin resistance refers to a condition in which the response of blood sugar to insulin is lower than normal at a given insulin concentration. Insulin regulates blood sugar by promoting the uptake of glucose into the muscles or suppressing the production of glucose in the liver. Insulin resistance refers to a state in which the action of insulin is reduced even when there is no shortage of insulin.
  • Insulin receptors on the cell membrane are involved in the process of absorbing glucose into cells of peripheral tissues, and insulin resistance occurs when the number of insulin receptors decreases or intracellular defects occur after receptor binding.
  • insulin receptor defects are found in type 2 diabetes, it is known that post-receptor intracellular defects, that is, phosphorylation/dephosphorylation disorders regulated by insulin, play a much larger role.
  • PI3K Phosphoinositide 3-kinase
  • Obesity refers to a condition in which excessive adipose tissue exists in the body when energy consumption from food is not balanced and excess energy is accumulated as body fat.
  • WHO World Health Organization
  • more than 1 billion adults worldwide are overweight, and at least 3 million of them are clinically obese, with a significant increase in the United States and Europe.
  • Overweight and obesity increase blood pressure and cholesterol levels, which can cause various diseases such as heart disease, diabetes, and arthritis, and are increasing the incidence of various adult diseases.
  • overweight and obesity are a factor that increases the incidence of various adult diseases such as arteriosclerosis, high blood pressure, hyperlipidemia, and heart disease not only in adults but also in children and adolescents.
  • the present inventors have improved the efficacy and safety for treating diabetes or obesity in terms of suppressing insulin resistance and promoting glucose absorption by increasing insulin sensitivity, protecting pancreatic beta cells from free fatty acids, and promoting lipolysis in adipocytes.
  • As a result of research efforts to find this secured active substance it was experimentally confirmed that a complex of two types of peptides and a peptide with a novel amino acid sequence satisfied the above requirements, thereby completing the present invention.
  • the purpose of the present invention is to provide a peptide complex with anti-diabetic activity.
  • Another object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of diabetes containing the peptide complex having the above-described activity as an active ingredient.
  • Another object of the present invention is to provide a functional food composition for regulating blood sugar levels containing the peptide complex having the above-described activity as an active ingredient.
  • Another object of the present invention is to provide a novel peptide with anti-diabetic and anti-obesity activity.
  • Another object of the present invention is to provide a pharmaceutical composition and a functional food composition for preventing, treating, or improving diabetes, which contain a novel peptide having the above-described activity as an active ingredient.
  • Another object of the present invention is to provide a pharmaceutical composition and functional food composition for preventing, treating, or improving obesity containing the peptide having the above-described activity as an active ingredient.
  • One aspect of the present invention is (i) a peptide comprising the amino acid sequence of SEQ ID NO: 1; and (ii) a peptide comprising the amino acid sequence of SEQ ID NO: 2; It provides a peptide complex containing.
  • another aspect of the present invention provides a pharmaceutical composition for preventing or treating diabetes comprising the peptide complex as an active ingredient.
  • another aspect of the present invention provides a functional food composition for preventing or improving diabetes comprising the peptide complex as an active ingredient.
  • Another aspect of the present invention provides a peptide containing the amino acid sequence of SEQ ID NO: 2.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating diabetes containing the peptide as an active ingredient.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating obesity comprising the peptide as an active ingredient.
  • another aspect of the present invention provides a functional food composition for regulating blood sugar levels containing the peptide as an active ingredient.
  • another aspect of the present invention provides a functional food composition for preventing or improving obesity comprising the peptide as an active ingredient.
  • a peptide comprising the amino acid sequence disclosed in SEQ ID NO: 1; and (ii) a peptide comprising the amino acid sequence set forth in SEQ ID NO: 2.
  • a peptide comprising the amino acid sequence disclosed in SEQ ID NO: 2 is provided.
  • peptide refers to a linear molecule formed by linking amino acid residues to each other through peptide bonds.
  • the peptide containing the amino acid sequence of SEQ ID NO: 1 or the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention may be used without modification, provided that it does not affect the original activity of the peptide, such as anti-diabetic activity.
  • variants or fragments of amino acids having different sequences can be used by deletion, insertion, substitution, or combination of amino acid residues.
  • the peptide of the present invention can be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, etc., to the extent that its activity is not changed. .
  • the peptide of the present invention includes a peptide containing an amino acid sequence of SEQ ID NO: 1 or a peptide containing an amino acid sequence of SEQ ID NO: 2, and a variant or active fragment thereof.
  • the substantially identical amino acid sequence refers to a sequence identity of at least 75%, for example, at least 80%, at least 85%, at least 90%, at least 95%, and at least 97% with the amino acid sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2, respectively.
  • Branch refers to the amino acid sequence.
  • the peptide may additionally include a targeting sequence, a tag, a labeled residue, and an amino acid sequence prepared for the specific purpose of increasing half-life or peptide stability.
  • the peptide of the present invention may have N-terminal and/or C-terminal modifications induced to select a portion of the amino acid sequence and increase its activity. Through these N-terminal and/or C-terminal modifications, the stability of the peptide of the present invention can be significantly improved, for example, the half-life of the peptide can be increased when administered in vivo.
  • the term "stability" is meant to include not only in vivo stability, which protects the peptide of the present invention from attack by protein-cleaving enzymes in vivo, but also storage stability (e.g., storage stability at room temperature).
  • the N-terminal modification includes an acetyl group, a fluoreonylmethoxycarbonyl group, a formyl group, a palmitoyl group, and a myristyl group at the N-terminus of the peptide. ), a stearyl group, and polyethylene glycol (PEG).
  • the C-terminal modification may be the binding of a hydroxyl group (-OH), amino group (-NH2), azide (-NHNH2), etc. to the C-terminus of the peptide, but is not limited thereto. .
  • Pheptide of the present invention can be produced by various methods widely known in the technical field to which the present invention pertains.
  • the peptides of the present invention can be synthesized using chemical synthesis methods known in the art, particularly solid-phase synthesis techniques (Merryfield, J. Amer. Chem. Soc. 85:2149-54 (1963); Stewart, et al. , Solid Phase Peptide Synthesis, 2nd. ed., Pierce Chem. Co.: Rockford, 111 (1984)) or liquid phase synthesis technology (US Patent No. 5,516,891).
  • the peptide complex of the present invention includes a peptide containing the amino acid sequence of SEQ ID NO: 1 and a peptide containing the amino acid sequence of SEQ ID NO: 2.
  • the peptide complex of the present invention may refer to a mixture of a peptide containing the amino acid sequence of SEQ ID NO: 1 and a peptide containing the amino acid sequence of SEQ ID NO: 2.
  • the ratio of the peptide containing the amino acid sequence of SEQ ID NO: 1 and the peptide containing the amino acid sequence of SEQ ID NO: 2 is not limited to a particular range, for example, the ratio is 1: 0.1-100 by weight. An appropriate range can be selected and used within the range of ratio.
  • the peptide complex of the present invention has anti-diabetic activity.
  • the peptide complex of the present invention has the activity of promoting the uptake of glucose into cells.
  • the cells may be adipocytes, myocytes, or hepatocytes.
  • the peptide complex of the present invention activates Leptin, Adiponectin, IRS-1 (Insulin receptor substrate 1), GLUT4 (Glucose transporter type 4), PGC-1 ⁇ (Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha), and ACOX-1 in cells. It has the activity of promoting the expression of one or more genes selected from the group consisting of (Acyl-CoA Oxidase 1), PPAR- ⁇ (Peroxisome proliferator-activated receptor-alpha), and CPT-1 ⁇ (Carnitine palmitoyltransferase 1 alpha).
  • the peptide complex of the present invention has the activity of suppressing insulin resistance signals.
  • the peptide complex of the present invention has the activity of inhibiting phosphorylation of Ser302 of IRS (Insulin receptor kinase) or phosphorylation of JNK (c-Jun N-terminal kinase).
  • the peptide complex of the present invention has the activity of suppressing the expression of the TNF- ⁇ gene, mTOR (mammalian Target of Rapamycin) gene, or p70S6K gene under an environment inducing insulin resistance.
  • the peptide complex of the present invention has the activity of promoting insulin sensitivity signaling.
  • the peptide complex of the present invention increases the phosphorylation of IRS (Insulin Receptor Substrate) Tyr632, or promotes the activation of PI3K (Phosphoinositide 3-kinase), ATK, or AMPK (AMP-activated protein kinase).
  • IRS Insulin Receptor Substrate
  • PI3K Phosphoinositide 3-kinase
  • ATK ATK
  • AMPK AMP-activated protein kinase
  • the peptide complex of the present invention has the activity of suppressing the production of reactive oxygen species (ROS) induced by free fatty acids, the expression of the TNF- ⁇ gene, the expression of the TNF- ⁇ protein, or the expression of the IL-1 ⁇ protein.
  • ROS reactive oxygen species
  • the peptide complex of the present invention has the activity of suppressing death of pancreatic beta cells induced by free fatty acids.
  • the peptide complex of the present invention described above has the above-mentioned activity, it can exhibit excellent efficacy in the treatment of diabetes.
  • the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention has anti-diabetic activity.
  • the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention has the activity of suppressing insulin resistance signals or promoting insulin sensitivity signals.
  • the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention promotes insulin sensitivity signals through the phosphorylation-promoting activity of Tyr632 of IRS (insulin receptor substrate), the activation-promoting activity of phospho-AKT, or the phosphorylation-promoting activity of AMPK.
  • the peptide of the present invention can suppress insulin resistance signals through the phosphorylation inhibitory activity of Sre302 of IRS in an insulin resistance-inducing environment.
  • the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention has anti-obesity activity.
  • the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention has the activity of promoting fat decomposition in adipocytes.
  • the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention is a lipolytic enzyme protein ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), or PLIN (Perilipin, lipid droplet-associated) in adipocytes. protein) can be increased.
  • ATGL Adipose triglyceride lipase
  • pHSL phosphorylated Hormone-Sensitive Lipase
  • PLIN Perilipin, lipid droplet-associated
  • the peptide containing the amino acid sequence of SEQ ID NO: 2 of the present invention described above has the above-mentioned activity and can therefore exhibit excellent efficacy in treating, preventing or improving diabetes and obesity.
  • a peptide comprising the amino acid sequence of SEQ ID NO: 1 (i) a peptide comprising the amino acid sequence of SEQ ID NO: 1; and (ii) a peptide comprising the amino acid sequence of SEQ ID NO: 2;
  • a pharmaceutical composition for preventing or treating diabetes comprising a peptide complex containing as an active ingredient.
  • the peptide complex of the present invention has glucose absorption promoting activity, insulin resistance suppressing activity, insulin sensitivity promoting activity, and pancreatic beta cell protecting activity, and thus has excellent diabetes treatment or prevention activity.
  • the diabetes may be type 1 diabetes or type 2 diabetes, and specifically may be type 2 diabetes.
  • the peptide complex can promote the absorption of glucose.
  • the peptide complex can suppress insulin resistance signals or promote insulin sensitivity signals.
  • the peptide complex can inhibit phosphorylation of Ser302 of IRS (insulin receptor kinase) or phosphorylation of JNK (c-Jun N-terminal kinase).
  • the peptide complex can inhibit the expression of the TNF- ⁇ gene, mTOR (mammalian Target Of Rapamycin) gene, or p70S6K gene under an environment inducing insulin resistance.
  • the peptide complex increases phosphorylation of IRS (Insulin Receptor Substrate) Tyr632, activates PI3K (Phosphoinositide 3-kinase), activates ATK, or AMP-activated AMPK (AMPK). It can promote the activation of protein kinase).
  • IRS Insulin Receptor Substrate
  • PI3K Phosphoinositide 3-kinase
  • AMPK AMP-activated AMPK
  • the peptide complex includes Leptin, Adiponectin, IRS-1 (Insulin receptor substrate 1), GLUT4 (Glucose transporter type 4), PGC-1 ⁇ , ACOX-1, PPAR- ⁇ , And it can promote the expression of one or more genes selected from the group consisting of CPT-1 ⁇ .
  • the peptide complex is responsible for the production of reactive oxygen species (ROS) induced by free fatty acids, expression of the gene for TNF- ⁇ , expression of TNF- ⁇ protein, or IL-1 ⁇ . It can inhibit protein expression or inhibit the death of pancreatic beta cells induced by free fatty acids.
  • ROS reactive oxygen species
  • a pharmaceutical composition for preventing or treating diabetes comprising a peptide containing the amino acid sequence of SEQ ID NO: 2 as an active ingredient.
  • the peptide of the present invention has an insulin resistance signal suppressing activity and an insulin sensitivity promoting activity, and thus has excellent diabetes treatment or prevention activity.
  • the diabetes may be type 1 diabetes or type 2 diabetes, and specifically may be type 2 diabetes.
  • the peptide in the pharmaceutical composition for preventing or treating diabetes, can suppress insulin resistance signals or promote insulin sensitivity signals.
  • the peptide may promote phosphorylation of Tyr632 of IRS (insulin receptor substrate), activation of phospho-AKT, or phosphorylation of AMPK.
  • the peptide in the pharmaceutical composition for preventing or treating diabetes, can inhibit phosphorylation of Sre302 of IRS under an environment inducing insulin resistance.
  • a pharmaceutical composition for preventing or treating obesity comprising a peptide containing the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
  • the peptide in the pharmaceutical composition for preventing or treating obesity, can promote the decomposition of fat in adipocytes.
  • the peptide is ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), or PLIN (Perilipin, lipid droplet-associated protein), which are lipolytic enzyme proteins in adipocytes. can increase the expression of
  • the pharmaceutical composition of the present invention may include a therapeutically effective amount of the peptide complex or peptide and a pharmaceutically acceptable carrier.
  • terapéuticaally effective amount refers to an amount sufficient for the peptide complex, which is an active ingredient of the pharmaceutical composition of the present invention, to achieve its activity or efficacy, for example, to achieve the efficacy of treating or preventing diabetes or obesity. It means sufficient amount.
  • the pharmaceutically acceptable carriers are commonly used in formulations and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, Includes, but is not limited to, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • the pharmaceutical composition of the present invention may further include, but is not limited to, lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, etc.
  • Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington: The Science and Practice of Pharmacy, (19th ed., 1995, Williams & Wilkins).
  • the pharmaceutical composition of the present invention can be administered by any route suitable for treating diabetes or obesity, for example, orally or parenterally, and in the case of parenteral administration, intravenous injection, subcutaneous injection, or intramuscular injection. It can be administered by intraperitoneal injection, intraperitoneal injection, topical administration, or transdermal administration.
  • the dosage of the pharmaceutical composition may be 0.0001 ⁇ g to 100 mg, 0.001 ⁇ g to 100 mg, 0.01 ⁇ g to 100 mg, 0.1 ⁇ g to 100 mg, or 1.0 ⁇ g to 1000 mg per day, but is not limited thereto. It can be prescribed in various ways depending on factors such as formulation method, administration method, patient's age, weight, sex, pathological condition, food, administration time, administration route, excretion rate, and reaction sensitivity.
  • the pharmaceutical composition of the present invention is prepared in unit dosage form by formulating it using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art. Alternatively, it can be manufactured by placing it in a multi-capacity container. At this time, the formulation may be in the form of a solution, suspension, or emulsion in an oil or aqueous medium, or may be in the form of an extract, powder, granule, tablet, or capsule, and may additionally contain a dispersant or stabilizer.
  • a peptide comprising the amino acid sequence of SEQ ID NO: 1 (i) a peptide comprising the amino acid sequence of SEQ ID NO: 1; and (ii) a peptide comprising the amino acid sequence of SEQ ID NO: 2;
  • a functional food composition for controlling blood sugar levels containing a peptide complex containing as an active ingredient.
  • control of the blood sugar level may be the control of the blood sugar level of diabetic patients or high-risk patients with pre-diabetes.
  • the diabetes may be type 1 diabetes or type 2 diabetes, and specifically may be type 2 diabetes.
  • control of blood sugar level may be lowering blood sugar.
  • the peptide complex may be included in an appropriate amount within the range of 0.0001% by weight to 10% by weight based on the total weight of the composition.
  • a functional food composition for regulating blood sugar levels containing a peptide containing the amino acid sequence of SEQ ID NO: 2 as an active ingredient.
  • control of the blood sugar level may be the control of the blood sugar level of diabetic patients or high-risk patients with pre-diabetes.
  • the diabetes may be type 1 diabetes or type 2 diabetes, and specifically may be type 2 diabetes.
  • control of the blood sugar level may be lowering the blood sugar level.
  • the peptide in the functional food composition for regulating blood sugar levels, can suppress insulin resistance signals or promote insulin sensitivity signals.
  • the peptide may promote phosphorylation of Tyr632 of IRS (insulin receptor substrate), activation of phospho-AKT, or phosphorylation of AMPK.
  • the peptide in the functional food composition for regulating blood sugar levels, can inhibit phosphorylation of Sre302 of IRS under an environment inducing insulin resistance.
  • a functional food composition for preventing or improving obesity comprising a peptide containing the amino acid sequence of SEQ ID NO: 2 as an active ingredient.
  • the peptide in the functional food composition for preventing or improving obesity, can promote the decomposition of fat in adipocytes.
  • the peptide is ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), or PLIN (Perilipin, lipid droplet-associated protein), which are lipolytic enzyme proteins in adipocytes. can increase the expression of
  • the peptide may be included in an appropriate amount within the range of 0.0001% by weight to 10% by weight based on the total weight of the composition.
  • the functional food composition of the present invention may include a foodologically effective amount of the peptide complex or peptide and a foodologically acceptable carrier.
  • the food composition of the present invention includes not only the peptide complex or peptide as the active ingredient, but also ingredients commonly added during food production, such as proteins, carbohydrates, fats, nutrients, seasonings, and flavoring agents. You can.
  • the above-mentioned carbohydrates include monosaccharides such as glucose, fructose, etc.; Disaccharides such as maltose, sucrose, oligosaccharides, etc.; and polysaccharides, such as common sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol.
  • flavoring agents natural flavoring agents, thaumatin, stevia extract (eg, rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be used.
  • the ratio of the carbohydrate may generally be about 1 to 20 g, preferably about 5 to 12 g, per 100 g of the food composition of the present invention, but is not limited thereto.
  • the functional food composition of the present invention contains various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic and natural flavors, colorants and thickening agents (cheese, chocolate, etc.), pectic acid, and salts thereof. , alginic acid and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, etc. In addition, it may contain pulp for the production of natural fruit juice, fruit juice drinks, and vegetable drinks.
  • the functional food composition of the present invention when manufactured as a drink, in addition to the peptide complex, which is the active ingredient of the present invention, citric acid, high fructose corn syrup, sugar, glucose, acetic acid, malic acid, fruit juice, Eucommia extract, jujube extract, licorice extract, etc. are added. may be included.
  • the present invention provides a peptide comprising the above-described (i) amino acid sequence of SEQ ID NO: 1; and (ii) a peptide containing the amino acid sequence of SEQ ID NO: 2. It provides a method of treating diabetes, comprising administering to a diabetic patient a therapeutically effective amount of a peptide complex comprising the following.
  • the present invention provides a peptide comprising the above-described (i) amino acid sequence of SEQ ID NO: 1; and (ii) a peptide comprising the amino acid sequence of SEQ ID NO: 2. It provides a method for controlling blood sugar levels, comprising administering to a subject in need of blood sugar control a therapeutically effective amount of a peptide complex comprising the following. .
  • a method for treating, preventing, or improving diabetes comprising administering to a diabetic patient a therapeutically effective amount of a peptide containing the amino acid sequence of SEQ ID NO: 2 described above.
  • a method for controlling blood sugar levels comprising administering a therapeutically effective amount of a peptide containing the amino acid sequence of SEQ ID NO: 2 to a subject in need of blood sugar control.
  • a method for treating, improving, or preventing obesity comprising administering a therapeutically effective amount of a peptide containing the amino acid sequence of SEQ ID NO: 2 to a subject in need of treatment for obesity. to provide.
  • the peptide complex or peptide of the present invention exhibits a blood sugar level lowering effect by promoting the absorption of glucose into cells, suppressing insulin resistance signals, promoting insulin sensitivity signals, and suppressing the death of pancreatic beta cells, which are insulin-producing cells. You can. Additionally, the peptide of the present invention exhibits the effect of promoting the decomposition of fat in fat cells. Therefore, the peptide complex or peptide of the present invention can be used in the treatment, prevention, and improvement of diabetes or obesity, and can be usefully used in lowering blood sugar in diabetic patients or patients at high risk of pre-diabetes, and in the treatment, prevention, and improvement of obesity. can be used
  • Figures 1A and 1B are experimental results showing that the peptide complex of the present invention promotes the absorption of glucose into adipocytes.
  • Figures 2a and 2b are experimental results showing that the peptide complex of the present invention promotes the absorption of glucose into myogenic cells.
  • Figures 3a and 3b are experimental results showing that the peptide complex of the present invention has the effect of promoting the activity of Phospho-AMPK and Phospho-ACC, which are insulin sensitivity promoting factors.
  • Figures 4a and 4b are experimental results showing that the peptide complex of the present invention has the effect of inhibiting phosphorylation of IRSdml Serin302, an insulin resistance signaling factor, and phosphorylation of JNK.
  • Figures 5a and 5b are experimental results showing that the peptide complex of the present invention again reduces the increase in expression of the insulin resistance-inducing cytokine TNF- ⁇ and the insulin resistance promoting signaling factors mTOR and p70S6K genes induced by rhTNF- ⁇ treatment. .
  • FIGS. 6a and 6b show that when adipocytes in which insulin resistance is induced by rhTNF- ⁇ treatment are treated with the peptide complex of the present invention, the phosphorylation of IRS Tyrosin632, an insulin sensitivity promoting factor, is increased, and the activation of PI3K, ATK, and AMPK is also increased. This is an experimental result showing the promoting effect.
  • FIGS. 7a and 7b are experimental results showing that the expression of glucose uptake-related genes Leptin, Adiponectin, IRS-1, and GLUT4, which were reduced by rhTNF- ⁇ treatment in adipocytes, increased by treatment with the peptide complex of the present invention.
  • FIGS 8a and 8b are experimental results showing that reactive oxygen species (ROS) induced by palmitate are reduced by the peptide complex of the present invention.
  • ROS reactive oxygen species
  • FIGS 9a and 9b are experimental results showing that gene expression of TNF- ⁇ , an inflammatory protein induced by palmitate, is significantly reduced by treatment with the peptide complex of the present invention.
  • Figures 10a and 10b show that in INS-1 (Rat pancreatic beta cell) cells, the protein expression levels of TNF- ⁇ and IL-1 ⁇ increased by palmitate treatment were significantly reduced by treatment with the peptide complex of the present invention. This is an experimental result showing a decrease.
  • Figure 11 shows experimental results showing that the increase in INS-1 cell death induced by palmitate treatment was again reduced by treatment with the peptide complex of the present invention, thereby increasing cell survival.
  • Figures 12a and 12b show that the expression of PGC-1 ⁇ , ACOX-1, PPAR- ⁇ , or CPT-1 ⁇ genes, which are genes related to FFA beta oxidation, is promoted by the peptide complex of the present invention in HepG2 cells. This is the experimental result shown.
  • Figures 13a and 13b show that the peptide of the present invention increases the expression of lipolytic enzyme proteins ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), and PLIN (Perilipin, lipid droplet-associated protein) in adipocytes. It shows activity.
  • ATGL Adipose triglyceride lipase
  • pHSL phosphorylated Hormone-Sensitive Lipase
  • PLIN Perilipin, lipid droplet-associated protein
  • Figure 14 shows that when adipocytes are treated with the peptide of the present invention, the release amount of glycerol, a lipolysis product, increases in a concentration-dependent manner of the treated peptide.
  • FIGS 15a and 15b show that when adipocytes are treated with the peptide of the present invention, phosphorylation of IRS (Insulin Receptor Substrate) Tyr632, an insulin sensitivity promoting factor, and activation of phosphorylation-AKT are promoted, and phosphorylation of AMPK, a signaling protein, is promoted. shows an increase. On the other hand, it shows that phosphorylation of IRS (Insulin Receptor Substrate) Ser302 is reduced under an environment inducing insulin resistance.
  • IRS Insulin Receptor Substrate
  • Peptides having the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2 shown in Table 1 below were synthesized using an automatic peptide synthesizer (Milligen 9050, Millipore, USA), and subjected to C18 reverse-phase high-performance liquid chromatography (HPLC) (Waters Associates, These synthesized peptides were purified using (USA).
  • the column used was ACQUITY UPLC BEH300 C18 (2.1 mm ⁇ 100 mm, 1.7 ⁇ m, Waters Co, USA).
  • a peptide complex was prepared by mixing equal amounts of the peptide of SEQ ID NO: 1 and the peptide of SEQ ID NO: 2, and its efficacy was evaluated. In addition, the efficacy of the peptide of SEQ ID NO: 2 prepared above was also evaluated.
  • Adipocytes were used to test whether the peptide complex prepared in Preparation Example 1 promoted glucose uptake into cells.
  • 3T3-L1 preadipocytes reached 80% confluence, 5 x 10 3 cells/well were seeded in a 96-well plate and used in the experiment. Two days after reaching confluence, differentiation into adipocytes was induced by replacing with differentiation induction medium. Two days after induction, cells were cultured for two days with medium containing 10% FBS and 10 ⁇ g/mL insulin. Then, the medium containing 10% FBS was replaced every 2 days until differentiation into adipocytes. When differentiation was completed, the medium was replaced with glucose-free medium and cultured for 16 hours, and starvation was induced by culturing with 100 ⁇ L KRPH buffer containing 2% BSA for 40 minutes.
  • rhTNF- ⁇ (2nM), insulin (10 ⁇ g/ml), and peptide complex (2, 20 ⁇ g/ml) were treated and incubated for 1 hour, then 80 ⁇ M 2-NBDG was treated and incubated for 1 hour to produce a sample.
  • Glucose uptake was measured using the "Glucose uptake assay kit” (Abcam, Cambridge, UK), and glucose absorbed into cells was photographed using a fluorescence microscope (ECLIPSE 80i, Nikon, Japan).
  • Myoblasts were used to test whether the peptide complex prepared in Preparation Example 1 promotes the uptake of glucose into cells.
  • C2C12 myogenic cells were seeded at 5 x 10 3 cells/well in a 96-well plate and cultured for 2 days in 10% FBS medium containing DMEM. After replacing the DMEM medium containing 2% horse serum, C2C12 myoblasts were cultured for 6 days to induce differentiation into myotubes. Cultured myotubes were treated with rhTNF- ⁇ (2nM), insulin (10 ⁇ g/ml) and peptide complex (2, 20 ⁇ g/ml) and incubated for 1 hour, then treated with 80 ⁇ M 2-NBDG and incubated for 1 hour to obtain samples. prepared.
  • Glucose uptake was measured using the “Glucose uptake assay kit” (Abcam, Cambridge, UK), and glucose absorbed into cells was photographed using a fluorescence microscope (ECLIPSE 80i, Nikon, Japan). As a result of the experiment, as shown in Figures 2a and 2b, it was confirmed that the uptake of glucose into myogenic cells, which was suppressed by rhTNF- ⁇ treatment, was increased by the peptide complex of the present invention.
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 3 cells/well in a 96-well plate and used in the experiment. Two days after reaching confluence, differentiation into adipocytes was induced by replacing with differentiation induction medium. Two days after induction, adipocytes were cultured for two days with medium containing 10% FBS and 10 ⁇ g/mL insulin. The medium containing 10% FBS was replaced every 2 days until differentiation. When differentiation was completed, the medium was replaced with serum-free medium and cultured for 4 hours to induce starvation.
  • the peptide complex (0.2, 2, 20 ⁇ g/ml) of Preparation Example 1 was treated, incubated for 30 minutes, dissolved by adding a lysis buffer, and then centrifuged at 4°C and 12,000 rpm for 30 minutes to obtain the protein. was quantified using the BCA kit.
  • the protein was subjected to SDD-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and then electrotransferred to a membrane.
  • the membrane to which the protein was attached was treated with 5% skim milk for blocking, and then the primary antibody was reacted overnight at 4°C.
  • the secondary antibody was reacted at room temperature for 1 hour, washed again with PBS-T, and Western detection reagent (Elpis Biotech, Daejeon, Korea) was visualized.
  • the antibodies used in the experiment were as follows: anti-Phospho-AMPK antibody (Cell signaling technology (CST), USA), anti-Phospho-ACC antibody (Cell signaling technology (CST), USA), anti- ⁇ -tubulin antibody ( Santa Cruz Biotechnology).
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 5 cells/well in a 6-well plate and used in the experiment. Two days after reaching confluence, differentiation into adipocytes was induced by replacing with differentiation induction medium. Two days after induction, adipocytes were cultured for two days with medium containing 10% FBS and 10 ⁇ g/mL insulin. The medium containing 10% FBS was replaced every 2 days until differentiation. When differentiation was completed, the medium was replaced with serum-free medium and cultured for 4 hours to induce starvation.
  • rhTNF- ⁇ (2nM), insulin (1 ⁇ g/ml), and peptide complex (0.2, 2, 20 ⁇ g/ml) were treated and incubated for 30 minutes, and then lysis buffer was added to the cells of each treatment group and lysed for 4 days. Proteins obtained by centrifugation at 12,000 rpm for 30 minutes at °C were quantified using the BCA kit. The protein was subjected to SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and then electrotransferred to a membrane. The membrane to which the protein was attached was blocked by treatment with 5% skim milk, and then reacted with primary antibody overnight at 4°C.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the secondary antibody was reacted at room temperature for 1 hour, washed again with PBS-T, and Western detection reagent (Elpis Biotech) was used using Gel Doc (Bio-Rad, Hercules, CA, USA). , Daejeon, Korea).
  • the antibodies used in the experiment were as follows: anti-Phospho-IRS (Ser302) antibody (Cell signaling technology (CST), USA), anti-Phospho-JNK antibody (Santa Cruz Biotechnology, USA), anti- ⁇ -tubulin antibody ( Santa Cruz Biotechnology, USA).
  • the peptide complex of the present invention phosphorylates Serin302 of IRS (insulin receptor kinase), an insulin resistance signaling factor induced by TNF- ⁇ treatment, and inhibits JNK (c-Jun N).
  • IRS insulin receptor kinase
  • JNK c-Jun N
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 5 cells/well in a 6-well plate and used in experiments. 2 days after reaching confluence, differentiation into adipocytes was induced by replacing with differentiation induction medium, and 2 days after induction, cultured for 2 days with medium containing 10% FBS and 10 ⁇ g/mL insulin, then differentiated into adipocytes. The medium was replaced with 10% FBS every 2 days until it was done. When differentiation was completed, the medium was replaced with serum-free medium and cultured for 4 hours to induce starvation.
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 5 cells/well in a 6-well plate and used in the experiment. Two days after reaching confluence, the differentiation induction medium was replaced to induce differentiation into adipocytes. Two days after the induction, the adipocytes were cultured for 2 days with medium containing 10% FBS and 10 ⁇ g/mL insulin, and then adipocytes were incubated for 2 days. The medium containing 10% FBS was replaced every 2 days until differentiation into cells. When differentiation was completed, the medium was replaced with serum-free medium and cultured for 4 hours to induce starvation.
  • rhTNF- ⁇ (2nM), insulin (1 ⁇ g/ml), and peptide complex (0.2, 2, 20 ⁇ g/ml) were treated and incubated for 30 minutes, and then lysis buffer was added to the cells of each treatment group to lyse them. Proteins obtained by centrifugation at 4°C and 12,000 rpm for 30 minutes were quantified using the BCA kit. The protein was subjected to SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and then electrotransferred to the membrane. The membrane to which the protein was attached was blocked by treatment with 5% skim milk, and then reacted with primary antibody overnight at 4°C.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the antibodies used in the experiment were as follows: anti-Phospho-IRS (Tyr632) antibody (Cell signaling technology (CST), USA), anti-Phospho-PI3K antibody (Cell signaling technology (CST), USA), anti-Phospho- AKT antibody (Cell signaling technology (CST), USA), anti-Phospho-AMPK antibody (Cell signaling technology (CST), USA), anti- ⁇ -tubulin antibody (Santa Cruz Biotechnology, USA).
  • peptide complex prepared in Preparation Example 1 promotes the expression of genes related to glucose uptake was confirmed through expression analysis of Leptin, Adiponectin, IRS-1 (Insulin receptor substrate 1), and GLUT4 (Glucose transporter type 4) genes.
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 5 cells/well in a 6-well plate and used in the experiment. Two days after reaching confluence, differentiation into adipocytes was induced by replacing the differentiation induction medium. Two days after induction, the adipocytes were cultured for two days with medium containing 10% FBS and 10 ⁇ g/mL insulin, and then adipocytes were The medium containing 10% FBS was replaced every 2 days until differentiation into cells. When differentiation was completed, the medium was replaced with serum-free medium and cultured for 4 hours to induce starvation.
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 5 cells/well in a 6-well plate and used in the experiment. Two days after reaching confluence, differentiation into adipocytes was induced by replacing with differentiation induction medium. Two days after induction, cells were cultured for two days with medium containing 10% FBS and 10 ⁇ g/mL insulin. Afterwards, the medium containing 10% FBS was replaced every 2 days until differentiation into adipocytes. When differentiation was completed, the medium was replaced with serum-free medium and cultured for 4 hours to induce starvation.
  • the untreated control group was treated with rhTNF- ⁇ (2 nM), insulin (1 ⁇ g/ml), and peptide complex (2 ⁇ g/ml) and cultured for 24 hours.
  • FACS Becton The oxidation activity was measured by the degree of fluorescence using Dickinson & Company (BD), USA).
  • ROS reactive oxygen species
  • INS-1 cells induced to starvation with serum free media RPMI 1640 were pretreated with 25 ⁇ M palmitate for 2 hours, and then peptide complex (0.2 , 2, and 20 ⁇ g/ml) were treated.
  • RNA was extracted using the easy-BLUETTMTotal RNA extraction kit (Qiagen, Germany). The extracted RNA was converted into cDNA using RT-PCR premix (iNtRON Biotechnology, Seongnam, Korea). After preparing a reaction mixture with PCR premix (iNtRON Biotechnology, Seongnam, Korea) and primers for TNF- ⁇ and GAPDH genes, PCR was performed using a PCR machine (Eppendorf, Germany). The mRNA expression pattern was then determined by agarose gel electrophoresis. The base sequences of the primers used in the experiment are shown in Table 4 below.
  • INS-1 cells (Rat pancreatic beta cells) induced to starvation with serum free media RPMI 1640 (Gibco, New York, USA) were pretreated with 25 ⁇ M palmitate for 2 hours. Then, the peptide complex (0.2, 2, and 20 ⁇ g/ml) was treated. After 24 hours, wash once with PBS and add lysis buffer (Millipore, Darmstadt, Germany) containing 10mM Tris (pH7.5), 100mM NaCl, 1% NP-40, and protease inhibitor. After dissolving on ice for 30 minutes, the obtained protein was centrifuged at 4°C and 13,000 rpm for 10 minutes and quantified using a BCA kit (Thermo Fisher Scientific, Waltham, USA).
  • the same amount of protein was separated by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and then electrotransferred to a polyvinylidene difluoride membrane.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the membrane to which the protein was attached was treated with 5% skim milk (BD, New Jersey, USA) and blocked for 1 hour, and then reacted with the primary antibody overnight at 4°C.
  • the secondary antibody was reacted at room temperature for 1-2 hours, washed again with PBS-T, and detected on X-ray film using ECL (enhanced chemiluminescence) (Thermo Fisher Scientific, Waltham, USA). Proteins were visualized.
  • the antibodies used in the experiment were as follows: anti-TNF- ⁇ antibody (Cell signaling technology (CST), USA), anti-IL-1 ⁇ antibody (Cell signaling technology (CST), USA), anti-Actin antibody (Santa Cruz Biotechnology, USA).
  • CST Cell signaling technology
  • CST Cell signaling technology
  • CD34 Cell signaling technology
  • CD34 Cell signaling technology
  • CD34 Cell signaling technology
  • CD34 Cell signaling technology
  • Anti-Actin antibody Santa Cruz Biotechnology, USA.
  • INS-1 cells (Rat pancreatic beta cells) induced to starvation with serum free media RPMI 1640 (Gibco, New York, USA) were pretreated with 25 ⁇ M palmitate for 2 hours. Afterwards, the peptide complex (0.2, 2, 20 ⁇ g/ml) was treated. After 24 hours, CCK-8 solution (Dojindo, Kumamoto, Japan) was added to 1/10 of the volume of the culture medium and the absorbance was measured at intervals of 30 minutes or 1 hour. The average absorbance value of the control group was 1.0. When this happens, the experiment ended. The absorbance of the reaction product was measured at a wavelength of 450 nm using a microplate reader. As a result of the experiment, as shown in Figure 11, it was confirmed that the increase in INS-1 cell death induced by palmitate treatment was reduced again by treatment with the peptide complex, thereby increasing the cell survival rate.
  • RPMI 1640 Gibco, New York, USA
  • the peptide complex prepared in Preparation Example 1 contains genes related to glucose uptake, PGC-1 ⁇ (Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha), ACOX-1 (Acyl-CoA Oxidase 1), and PPAR- ⁇ (Peroxisome proliferator-activated receptor-alpha), or CPT-1 ⁇ (Carnitine palmitoyltransferase 1 alpha) gene expression was confirmed through gene expression analysis (RT-PCR).
  • HepG2 liver cancer cells When HepG2 liver cancer cells reached 80% confluence, they were seeded at 2 x 10 5 cells/well in a 12-well plate and used in the experiment. The next day, the medium was replaced with serum free media and starvation was induced for 4 hours. After 4 hours, an untreated control group was treated with peptide complexes (0.2, 2, and 20 ⁇ g/ml), and after 24 hours, RNA was extracted and RT-PCR was performed. RNA was extracted using the easy-BLUETMTotal RNA extraction kit (Qiagen, Germany). The extracted RNA was converted into cDNA using RT-PCR premix (iNtRON Biotechnology, Seongnam, Korea).
  • PCR was performed using a PCR machine (Eppendorf, Germany). did.
  • the mRNA expression pattern was then determined by agarose gel electrophoresis.
  • the base sequences of the primers used in the experiment are shown in Table 5 below.
  • 3T3-L1 preadipocytes reached 80% confluence, 5 x 10 5 cells/well were seeded in a 6-well plate and used in the experiment. Two days after reaching confluence, differentiation induction medium [10% FBS, 1 ⁇ g/ml insulin, 0.5mM isobutylmethylxanthine (IBMX) (Sigma, USA), and 1 ⁇ M dextamethasone (Sigma, USA) was added. Differentiation into adipocytes was induced by replacing with DMEM medium], and 2 days after induction, cultured for 2 days with medium containing 10% FBS and 10 ⁇ g/mL insulin, and then cultured for 10 days every 2 days until differentiation into adipocytes.
  • differentiation induction medium 10% FBS, 1 ⁇ g/ml insulin, 0.5mM isobutylmethylxanthine (IBMX) (Sigma, USA), and 1 ⁇ M dextamethasone (Sigma, USA
  • the protein was subjected to SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and then electrotransferred to a membrane.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the membrane to which the protein was attached was treated with 5% skim milk for blocking, and then the primary antibody was reacted overnight at 4°C. After washing with PBS-T, the secondary antibody was reacted at room temperature for 1 hour, washed again with PBS-T, and Western detection reagent (Elpis Biotech) was used using Gel Doc (Bio-Rad, Hercules, CA, USA). , Daejeon, Korea).
  • Antibodies used in the experiment were as follows: anti-ATGL antibody (Cell signaling technology (CST), USA), anti-pHSL antibody (Cell signaling technology (CST), USA), anti-PLIN antibody (Cell signaling technology (CST) , USA), anti- ⁇ -tubulin antibody (Santa Cruz Biotechnology, USA).
  • CST Cell signaling technology
  • CST cell signaling technology
  • CST cell signaling technology
  • PLIN protein
  • the release amount of glycerol, a lipolysis product, was analyzed to determine whether the peptide having the amino acid sequence of SEQ ID NO: 2 prepared in Preparation Example 1 promotes lipolysis in adipocytes.
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 5 cells/well in a 6-well plate and used in experiments. Two days after reaching confluence, differentiation induction medium [10% FBS, 1 ⁇ g/ml insulin, 0.5mM isobutylmethylxanthine (IBMX) (Sigma, USA) and 1 ⁇ M dextamethasone (Sigma, USA) was added. Differentiation into adipocytes was induced by replacing with DMEM medium], and 2 days after induction, cultured for 2 days with medium containing 10% FBS and 10 ⁇ g/mL insulin, and then cultured for 10 days every 2 days until differentiation into adipocytes.
  • differentiation induction medium 10% FBS, 1 ⁇ g/ml insulin, 0.5mM isobutylmethylxanthine (IBMX) (Sigma, USA) and 1 ⁇ M dextamethasone (Sigma, USA) was added. Differentiation into adipocytes
  • 3T3-L1 preadipocytes reached 80% confluence, they were seeded at 5 x 10 5 cells/well in a 6-well plate and used in experiments. Two days after reaching confluence, differentiation induction medium [10% FBS, 1 ⁇ g/ml insulin, 0.5mM isobutylmethylxanthine (IBMX) (Sigma, USA) and 1 ⁇ M dextamethasone (Sigma, USA) was added. Differentiation into adipocytes was induced by replacing with DMEM medium], and 2 days after induction, cultured for 2 days with medium containing 10% FBS and 10 ⁇ g/mL insulin, and then cultured for 10 days every 2 days until differentiation into adipocytes.
  • differentiation induction medium 10% FBS, 1 ⁇ g/ml insulin, 0.5mM isobutylmethylxanthine (IBMX) (Sigma, USA) and 1 ⁇ M dextamethasone (Sigma, USA) was added. Differentiation into adipocytes
  • the protein was subjected to SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and then electrotransferred to the membrane.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the membrane to which the protein was attached was blocked by treatment with 5% skim milk, and then reacted with primary antibody overnight at 4°C. After washing with PBS-T, the secondary antibody was reacted at room temperature for 1 hour, washed again with PBS-T, and Western detection reagent (Elpis Biotech) was used using Gel Doc (Bio-Rad, Hercules, CA, USA). , Daejeon, Korea).
  • the antibodies used in the experiment were as follows: anti-Phospho-IRS (Ser302) antibody (Cell signaling technology (CST), USA), anti-Phospho-IRS (Tyr632) antibody (Cell signaling technology (CST), USA), anti-Phospho-IRS (Ser302) antibody (Cell signaling technology (CST), USA) -Phospho-AKT antibody (Cell signaling technology (CST), USA), anti-Phospho-AMPK antibody (Cell signaling technology (CST), USA), anti- ⁇ -tubulin antibody (Santa Cruz Biotechnology, USA).
  • tablets were manufactured by tableting according to a conventional tablet manufacturing method.
  • a capsule was prepared by filling a gelatin capsule according to a typical capsule manufacturing method.
  • Vitamin A 70 mg
  • Vitamin E 1.0mg
  • Vitamin B6 0.5mg
  • Vitamin B12 0.2mg
  • composition ratio of the above vitamin and mineral mixture is a mixture of components relatively suitable for health food in a preferred embodiment, but the mixing ratio may be modified arbitrarily.
  • the above ingredients are mixed according to a typical health food manufacturing method, and then , granules can be manufactured and used to manufacture health food compositions according to conventional methods.
  • composition ratio is a preferred embodiment of mixing ingredients that are relatively suitable for beverages of preference, but the mixing ratio can be arbitrarily modified depending on regional and ethnic preferences such as demand class, country of demand, and intended use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Diabetes (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명은 항-당뇨 활성을 갖는 펩타이드 복합체 및 이의 용도에 관한 것이다. 본 발명의 펩타이드 복합체는 세포내로 글루코오스의 흡수를 촉진하고, 인슐린 저항성 신호를 억제하며, 인슐린 감수성 신호를 촉진하고, 인슐린 생성 세포인 췌장 베타 세포의 사멸을 억제함으로써 혈당 수준의 강하 효능을 나타낼 수 있다. 또한, 본 발명은 항당뇨 및 항비만 활성을 갖는 펩타이드 및 이의 용도에 관한 것이다. 본 발명의 펩타이드는 인슐린 저항성 신호를 억제하며, 인슐린 민감성 신호를 촉진하고, 지방세포에서 지방의 분해를 촉진하는 활성을 갖는다.

Description

항당뇨 활성을 갖는 펩타이드, 펩타이드 복합체 및 이의 용도
본 발명은 항당뇨 활성을 갖는 펩타이드 복합체 및 이의 용도에 관한 것이다. 또한, 본 발명은 항비만 및 항당뇨 활성을 갖는 펩타이드 및 이의 용도에 관한 것이다.
당뇨병은 인슐린의 분비량이 부족하거나 정상적인 기능이 이루어지지 않는 등의 대사질환의 일종으로, 혈중 포도당의 농도가 높아지는 고혈당을 특징으로 하며, 고혈당으로 인하여 여러 증상 및 징후를 일으키고 소변에서 포도당을 배출하게 되는 질환이다. 최근 비만률, 특히 복부 비만의 증가로 인하여 당뇨의 발생률이 폭발적으로 증가하고 있는 추세이다. 당뇨병은 크게 인슐린 의존형 당뇨병인 제1형 당뇨병과 인슐린 비의존형 당뇨병인 제2형 당뇨병으로 나눌 수 있다. 제2형 당뇨병은 고혈당, 인슐린 저항성, 상대적인 인슐린 분비 장애를 특징으로 한다.
음식물을 섭취하면 소화관에서 음식물로부터 포도당이 흡수되어 췌장의 베타 세포에서 인슐린 분비를 자극하고, 분비된 인슐린은 근육으로 포도당의 흡수를 촉진한다. 또한, 인슐린은 간의 포도당 흡수에도 일부 관여하지만 주로 간의 포도당 생성을 억제한다. 인슐린은 간에서 포도당의 생성을 억제하고 근육을 포함한 말초조직으로 포도당 흡수를 촉진하여 혈중 포도당 농도를 낮춘다. 인슐린 저항성은 주어진 인슐린 농도 하에서 인슐린에 대한 혈당의 반응이 정상보다 낮은 상태를 말한다. 인슐린은 근육으로 포도당의 섭취를 촉진하거나 간에서 포도상의 생성을 억제함으로 혈당을 조절하는데, 인슐린 저항성은 인슐린이 부족하지 않은 상태에서도 이러한 인슐린 작용이 감소된 상태를 의미한다. 말초조직의 세포 내로 포도당을 흡수하는 과정에 세포막의 인슐린 수용체가 관여를 하게 되는데, 인슐린 수용체의 수가 감소하거나 수용체 결합 후에 세포 내 결함이 생기는 인슐린 저항성이 발생하게 된다. 제2형 당뇨병에서는 인슐린 수용체 결함이 발견되기는 하지만 주로 수용체 후 세포 내 결함 즉, 인슐린에 의해 조절되는 인산화 / 탈인산화 장애가 훨씬 크게 작용하는 것으로 알려져 있다. 이러한 기전 중에 PI3K(Phosphoinositide 3-kinase) 신호전달 장애에 의해 포도당 수송체인 GLUT-4(Glucose transporter type 4)가 세포막으로 이동하는 것을 감소시키는 것으로 알려져 있다.
현재 혈당을 조절하는 방법으로는 생활습관 고정(식이요법, 운동요법) 및 약물 요법 등이 사용되고 있다. 하지만, 식이 요법이나 운동 요법은 엄격한 관리 및 실시가 곤란하며, 그 효과에 있어서도 한계가 있다. 따라서 대부분의 당뇨 환자들은 생활 습관의 교정과 더불어 인슐린, 인슐린 분비 촉진제, 인슐린 감수성 개선제, 그리고 혈당 강하제 등의 약물에 혈당조절에 의존하고 있다.
비만은 음식물로 섭취한 에너지 소비와 균형을 이루지 못하는 경우, 잉여의 에너지가 체지방으로 축적됨으로써 체내에 지방 조직이 과다하게 존재하는 상태를 의미한다. 국제보건기구(World Health Organisation, WHO)에 따르면, 전세계적으로 10억 이상의 성인이 과체중이고, 그 중 적어도 300만 이상이 임상적으로 비만이며, 이는 미국과 유럽에서 두드러지게 증가하고 있다. 과체중 및 비만은 혈압과 콜레스테롤 수치를 높여 심장 질환, 당뇨, 관절염 등 각종 질환의 원인이 되기도 하고, 각종 성인병의 발병률을 증가시키고 있다. 뿐만 아니라, 과체중 및 비만은 성인 뿐만 아니라 어린이나 청소년들에서도 동맥경화, 고혈압, 고지혈증 또는 심장질환 등의 각종 성인병의 발병률을 증가시키는 한 요인이 되고 있다.
현재 미국 FDA가 승인하여 널리 처방되는 대표적인 비만치료 약물은 중추신경계에 작용하여 식욕억제제로 작용하는 약물군과 췌장에서 분비되는 소화효소 리파제(lipase)의 억제제인 오르리스타트(orlistat; Xenical)가 있다. 중추신경계 작용 약물은 심혈관계와 정신과적 부작용 등으로 시부트라민 등 다수의 약물이 승인 취소되었으며, 오르리스타트는 다양한 부작용과 함께 지방섭취량에 따라 약물의 효과가 가변적이라는 제한점이 있다. 한편, 내분비 펩타이드 표적 약물로서는 glucagon-like peptide-1(GLP-1) 수용체 촉진제인 리라글루티드(liraglutide)가 승인되어 사용되고 있으나, 갑상선암의 위험성이 대두되고 있다.
[선행기술문헌]
[특허문헌]
WO2016-175362
WO2018-074682
본 발명자들은 인슐린 저항성 억제 및 인슐린 민감성 증가로 인한 글루코오스 흡수 촉진, 유리 지방산으로부터 췌장 베타 세포의 보호 관점, 및 지방세포에서의 지방분해 촉진의 관점에서 당뇨 또는 비만 치료를 위한 효능상으로 보다 개선되고 안전성이 확보된 활성 물질을 찾기 위해 연구 노력한 결과, 2종의 펩타이드의 복합체와, 신규한 아미노산 서열을 갖는 펩타이드가 위와 같은 요구조건을 만족함을 실험적으로 확인하여 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 항당뇨 활성을 갖는 펩타이드 복합체를 제공하는 것에 있다.
본 발명의 다른 목적은 상술한 활성을 갖는 펩타이드 복합체를 유효성분으로 포함하는 당뇨병의 예방 또는 치료용 약학적 조성물을 제공하는 것에 있다.
본 발명의 또 다른 목적은 상술한 활성을 갖는 펩타이드 복합체를 유효성분으로 포함하는 혈당 수준의 조절용 기능성 식품 조성물을 제공하는 것에 있다.
본 발명의 또 다른 목적은 항당뇨 활성 및 항비만 활성을 갖는 신규한 펩타이드를 제공하는 것에 있다.
본 발명의 또 다른 목적은 상술한 활성을 갖는 신규 펩타이드를 유효성분으로 포함하는 당뇨병의 예방, 치료, 또는 개선용 약학적 조성물 및 기능성 식품 조성물을 제공하는 것에 있다.
본 발명의 또 다른 목적은 상술한 활성을 갖는 펩타이드를 유효성분으로 포함하는 비만의 예방, 치료, 또는 개선용 약학적 조성물 및 기능성 식품 조성물을 제공하는 것에 있다.
상기의 목적을 달성하기 위하여,
본 발명의 일 측면은 (i) 서열번호 1의 아미노산 서열을 포함하는 펩타이드; 및 (ii) 서열번호 2의 아미노산 서열을 포함하는 펩타이드; 를 포함하는 펩타이드 복합체(peptide complex)를 제공한다.
또한, 본 발명의 다른 측면은 상기 펩타이드 복합체를 유효성분으로 포함하는 당뇨병의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명의 또 다른 측면은 상기 펩타이드 복합체를 유효성분으로 포함하는 당뇨병의 예방 또는 개선용 기능성 식품 조성물을 제공한다.
또한, 본 발명의 다른 측면은 서열번호 2의 아미노산 서열을 포함하는 펩타이드를 제공한다.
또한, 본 발명의 다른 측면은 상기 펩타이드를 유효성분으로 포함하는 당뇨병의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명의 또 다른 측면은 상기 펩타이드를 유효성분으로 포함하는 비만의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명의 또 다른 측면은 상기 펩타이드를 유효성분으로 포함하는 혈당 수준의 조절용 기능성 식품 조성물을 제공한다.
또한, 본 발명의 또 다른 측면은 상기 펩타이드를 유효성분으로 포함하는 비만의 예방 또는 개선용 기능성 식품 조성물을 제공한다.
이하에서 본 발명을 상세하게 설명한다.
1. 펩타이드, 펩타이드 복합체 및 이의 활성
본 발명의 일 측면에 따르면, 서열번호 1에 개시된 아미노산 서열을 포함하는 펩타이드; 및 (ii) 서열번호 2에 개시된 아미노산 서열을 포함하는 펩타이드;를 포함하는 펩타이드 복합체(peptide complex)를 제공한다.
본 발명의 다른 측면에 따르면, 서열번호 2에 개시된 아미노산 서열을 포함하는 펩타이드를 제공한다.
본 명세서의 용어 "펩타이드"는 펩타이드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 선형의 분자를 의미한다.
본 발명의 서열번호 1의 아미노산 서열을 포함하는 펩타이드 또는 서열번호 2의 아미노산 서열을 포함하는 펩타이드는 변형 없이 사용될 수 있으나, 상기 펩타이드가 가지는 본래의 활성, 예컨대 항-당뇨 활성에 영향을 미치지 않는 범위 내에서, 아미노산 잔기의 결실, 삽입, 치환, 또는 이들의 조합에 의해서 상이한 서열을 가지는 아미노산의 변이체 또는 단편을 사용할 수 있다.
본 발명의 펩타이드는 그 활성을 변화시키지 않는 범위내에서 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 변형될 수 있다.
본 발명의 펩타이드는 서열번호 1의 아미노산 서열을 포함하는 펩타이드 또는 서열번호 2의 아미노산 서열을 포함하는 펩타이드와 실질적으로 동일한 아미노산 서열을 포함하는 펩타이드 및 이의 변이체 또는 이의 활성 단편을 포함한다. 상기 실질적으로 동일한 아미노산 서열이란 상기 서열번호 1의 아미노산 서열 또는 서열번호 2의 아미노산 서열과 각각 75% 이상, 예컨대 80% 이상, 85% 이상, 90% 이상, 95% 이상, 97% 이상의 서열 동일성을 가지는 아미노산 서열을 의미한다. 또한, 상기 펩타이드에는 표적화 서열, 태그(tag), 표지된 잔기, 반감기 또는 펩타이드 안정성을 증가시키기 위한 특정 목적으로 제조된 아미노산 서열이 추가적으로 포함할 수 있다.
본 발명의 펩타이드는 아미노산 서열의 일부 부위를 선정하고 그 활성을 증가시키기 위해 N-말단 및/또는 C-말단 변형이 유도된 것일 수 있다. 이러한 N-말단 및/또는 C-말단 변형을 통해 본 발명의 펩타이드의 안정성을 현저하게 향상시킬 수 있으며, 예를 들어, 펩타이드의 생체 내 투여 시 반감기를 증가시킬 수 있다. 상기 용어 "안정성"은 생체 내 단백질 절단 효소의 공격으로부터 본 발명의 펩타이드를 보호하는 인 비보에서의 안정성 뿐만 아니라, 저장안정성(예컨대, 상온 저장 안정성)도 포함하는 의미이다.
상기 N-말단 변형은 펩타이드의 N-말단에 아세틸기(acetyl group), 플루오레닐메톡시카르보닐기(fluoreonylmethoxycarbonyl group), 포르밀기(formyl group), 팔미토일기(palmitoyl group), 미리스틸기(myristyl group), 스테아릴기(stearyl group) 및 폴리에틸렌글리콜(polyethylene glycol; PEG)로 이루어진 군으로부터 선택된 보호기가 결합한 것일 수 있다. 상기 C-말단 변형은 펩타이드의 C-말단에 히드록시기(hydroxyl group, -OH), 아미노기(amino group, -NH2), 아자이드(azide, -NHNH2) 등이 결합한 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 폡타이드는 본 발명이 속하는 기술분야에서 널리 알려진 다양한 방법으로 제조할 수 있다. 예컨대, 본 발명의 펩타이드는 당업계에 공지된 화학적 합성 방법, 특히 고상 합성 기술(solid-phasesynthesis techniques; Merrifield, J. Amer. Chem. Soc. 85:2149-54(1963); Stewart, et al., Solid Phase Peptide Synthesis, 2nd. ed., Pierce Chem. Co.: Rockford, 111(1984)) 또는 액상 합성 기술(US 등록특허 제5,516,891호)에 따라 제조될 수 있다.
본 발명의 펩타이드 복합체는 서열번호 1의 아미노산 서열을 포함하는 펩타이드 및 서열번호 2의 아미노산 서열을 포함하는 펩타이드를 포함한다.
본 발명의 펩타이드 복합체는 상술한 서열번호 1의 아미노산 서열을 포함하는 펩타이드 및 서열번호 2의 아미노산 서열을 포함하는 펩타이드가 혼합된 혼합물을 의미할 수 있다.
본 발명의 펩타이드 복합체에서 서열번호 1의 아미노산 서열을 포함하는 펩타이드 및 서열번호 2의 아미노산 서열을 포함하는 펩타이드의 비율을 특별한 범위로 한정되지 않으며, 예를 들어 상기 비율은 중량비로 1: 0.1-100의 비율의 범위내에서 적절한 범위를 선택하여 사용할 수 있다.
본 발명의 펩타이드 복합체는 항당뇨 활성을 갖는다.
본 발명의 펩타이드 복합체는 세포내로 글루코오스의 흡수를 촉진하는 활성을 갖는다. 상기 세포는 지방세포(adipocyte), 근세포(myocyte) 또는 간세포(hepatocyte)일 수 있다.
본 발명의 펩타이드 복합체는 세포에서 Leptin, Adiponectin, IRS-1(Insulin receptor substrate 1), GLUT4(Glucose transporter type 4), PGC-1α (Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha), ACOX-1(Acyl-CoA Oxidase 1), PPAR-α(Peroxisome proliferator-activated receptor-alpha), 및 CPT-1α(Carnitine palmitoyltransferase 1 alpha)으로 이루어지는 군에서 선택되는 하나 이상의 유전자의 발현을 촉진하는 활성을 갖는다.
본 발명의 펩타이드 복합체는 인슐린 저항성 신호를 억제하는 활성을 갖는다.
본 발명의 펩타이드 복합체는 IRS(Insulin receptor kinase)의 Ser302의 인산화 또는 JNK(c-Jun N-terminal kinase)의 인산화를 억제하는 활성을 갖는다.
본 발명의 펩타이드 복합체는 인슐린 저항성 유도 환경하에서, TNF-α 유전자, mTOR (mammalian Target of Rapamycin) 유전자, 또는 p70S6K 유전자의 발현을 억제하는 활성을 갖는다.
본 발명의 펩타이드 복합체는 인슐린 감수성 신호를 촉진하는 활성을 갖는다.
본 발명의 펩타이드 복합체는 IRS (Insulin Receptor Substrate) Tyr632의 인산화의 증가시키거나, PI3K (Phosphoinositide 3-kinase)의 활성화, ATK의 활성화, 또는 AMPK(AMP-activated protein kinase)의 활성화를 촉진하는 활성을 갖는다.
본 발명의 펩타이드 복합체는 유리 지방산에 의해 유도되는 활성산소종(ROS)의 생성, TNF-α의 유전자의 발현, TNF-α 단백질의 발현, 또는 IL-1β 단백질의 발현을 억제하는 활성을 갖는다.
본 발명의 펩타이드 복합체는 유리지방산에 의해 유도되는 췌장 베타 세포의 사멸을 억제하는 활성을 갖는다.
상술한 본 발명의 펩타이드 복합체가 상기와 같은 활성을 가짐으로써 당뇨병의 치료에 매우 우수한 효능을 발휘할 수 있다.
본 발명의 서열번호 2의 아미노산 서열을 포함하는 펩타이드는 항당뇨 활성을 갖는다.
본 발명의 서열번호 2의 아미노산 서열을 포함하는 펩타이드는 인슐린 저항성 신호를 억제하거나, 인슐린 민감성 신호를 촉진하는 활성을 갖는다.
구체적으로, 본 발명의 서열번호 2의 아미노산 서열을 포함하는 펩타이드는 IRS(Insulin receptor substrate)의 Tyr632의 인산화 촉진 활성, phospho-AKT의 활성화 촉진 활성, 또는 AMPK의 인산화 촉진 활성을 통해 인슐린 민감성 신호를 촉진할 수 있고, 본 발명의 펩타이드는 인슐린 저항성 유도 환경하에서 IRS의 Sre302의 인산화 억제 활성을 통해, 인슐린 저항성 신호를 억제할 수 있다.
본 발명의 서열번호 2의 아미노산 서열을 포함하는 펩타이드는 항비만 활성을 갖는다.
본 발명의 서열번호 2의 아미노산 서열을 포함하는 펩타이드는 지방세포에서 지방의 분해를 촉진하는 활성을 갖는다.
구체적으로, 본 발명의 서열번호 2의 아미노산 서열을 포함하는 펩타이드는 지방세포에서 지방 분해 효소 단백질인 ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), 또는 PLIN (Perilipin, lipid droplet-associated protein)의 발현을 증가시킬 수 있다.
상술한 본 발명의 서열번호 2의 아미노산 서열을 포함하는 펩타이드가 상기와 같은 활성을 가짐으로써 당뇨병과 비만의 치료, 예방 또는 개선에 매우 우수한 효능을 발휘할 수 있다.
2. 당뇨병 및 비만의 예방, 치료 또는 개선용 조성물
약학적 조성물
본 발명의 다른 측면에 따르면, (i) 서열번호 1의 아미노산 서열을 포함하는 펩타이드; 및 (ii) 서열번호 2의 아미노산 서열을 포함하는 펩타이드; 를 포함하는 펩타이드 복합체(peptide complex)를 유효성분으로 포함하는 당뇨병의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 펩타이드 복합체는 상술한 바와 같이 글루코오스 흡수 촉진 활성, 인슐린 저항성 억제 활성, 인슐린 감수성 촉진 활성, 췌장 베타 세포 보호 활성을 가지므로, 우수한 당뇨병 치료 또는 예방 활성을 갖는다.
본 발명에서 상기 당뇨병은 제1형 당뇨병 또는 제2형 당뇨병일 수 있으며, 구체적으로는 제2형 당뇨병일 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드 복합체는 글루코오스의 흡수를 촉진할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드 복합체는 인슐린 저항성 신호를 억제하거나, 인슐린 감수성 신호를 촉진할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드 복합체는 IRS(Insulin receptor kinase)의 Ser302의 인산화 또는 JNK(c-Jun N-terminal kinase)의 인산화를 억제할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드 복합체는 인슐린 저항성 유도 환경하에서, TNF-α 유전자, mTOR (mammalian Target Of Rapamycin) 유전자, 또는 p70S6K 유전자의 발현을 억제할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드 복합체는 IRS (Insulin Receptor Substrate) Tyr632의 인산화의 증가시키거나, PI3K (Phosphoinositide 3-kinase)의 활성화, ATK의 활성화, 또는 AMPK(AMP-activated protein kinase)의 활성화를 촉진할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드 복합체는 Leptin, Adiponectin, IRS-1(Insulin receptor substrate 1), GLUT4(Glucose transporter type 4), PGC-1α, ACOX-1, PPAR-α, 및 CPT-1α 으로 이루어지는 군에서 선택되는 하나 이상의 유전자의 발현을 촉진할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드 복합체는 유리 지방산에 의해 유도되는 활성산소종(ROS)의 생성, TNF-α의 유전자의 발현, TNF-α 단백질의 발현, 또는 IL-1β 단백질의 발현을 억제하거나, 또는 유리지방산에 의해 유도되는 췌장 베타 세포의 사멸을 억제할 수 있다.
본 발명의 다른 측면에 따르면, 서열번호 2의 아미노산 서열을 포함하는 펩타이드를 유효성분으로 포함하는 당뇨병의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 펩타이드는 상술한 바와 같이 인슐린 저항성 신호 억제 활성 및 인슐린 민감성 촉진 활성을 가지므로, 우수한 당뇨병 치료 또는 예방 활성을 갖는다.
본 발명에서 상기 당뇨병은 제1형 당뇨병 또는 제2형 당뇨병일 수 있으며, 구체적으로는 제2형 당뇨병일 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드는 인슐린 저항성 신호를 억제하거나, 인슐린 감수성 신호를 촉진할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드는 IRS(Insulin receptor substrate)의 Tyr632의 인산화를 촉진하거나, phospho-AKT의 활성화를 촉진하거나, 또는 AMPK의 인산화를 촉진할 수 있다.
상기 당뇨병의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드는 인슐린 저항성 유도 환경하에서 IRS의 Sre302의 인산화를 억제할 수 있다.
본 발명의 다른 측면에 따르면, 서열번호 1의 아미노산 서열을 포함하는 펩타이드를 유효성분으로 포함하는 비만의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 비만의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드는 지방세포에서 지방의 분해를 촉진할 수 있다.
상기 비만의 예방 또는 치료용 약학적 조성물에서, 상기 펩타이드는 지방세포에서 지방 분해 효소 단백질인 ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), 또는 PLIN (Perilipin, lipid droplet-associated protein)의 발현을 증가시킬 수 있다.
본 발명의 상기 약학적 조성물은 상기 펩타이드 복합체 또는 펩타이드의 치료학적 유효량 및 약학적으로 허용되는 담체를 포함하는 것일 수 있다.
상기 용어 "치료학적 유효량"은 본 발명의 약학적 조성물의 유효성분인 펩타이드 복합체가 그 활성 또는 효능을 달성하는 데 충분한 양을 의미하고, 예컨대, 당뇨병 또는 비만의 치료 또는 예방의 효능을 달성하는 데 충분한 양을 의미한다.
상기 약학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다.
본 발명의 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있으나, 이에 한정되는 것은 아니다.
적합한 약학적으로 허용되는 담체 및 제제는 Remington: The Science and Practice of Pharmacy, (19th ed., 1995, Williams & Wilkins)에 상세히 기재되어 있다.
본 발명의 약학적 조성물은 당뇨병 또는 비만을 치료하기 위한 적합한 모든 경로로 투여될 수 있으며, 예를 들어, 경구 또는 비경구로 투여할 수 있고, 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육내 주입, 복강내 주입, 국소 투여, 경피 투여 등으로 투여할 수 있다.
상기 약학적 조성물의 투여량은 1일당 0.0001 μg 내지 100 mg, 0.001 μg 내지 100 mg, 0.01 μg 내지 100 mg, 0.1 μg 내지 100 mg, 또는 1.0 μg 내지 1000 mg 일 수 있으나, 이에 한정되는 것은 아니며, 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다.
본 발명의 약학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이 때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
식품조성물
본 발명의 또 다른 측면에 따르면, (i) 서열번호 1의 아미노산 서열을 포함하는 펩타이드; 및 (ii) 서열번호 2의 아미노산 서열을 포함하는 펩타이드; 를 포함하는 펩타이드 복합체(peptide complex)를 유효성분으로 포함하는 혈당 수준 조절용 기능성 식품 조성물을 제공한다.
본 발명의 기능성 식품 조성물에서 상기 혈당 수준의 조절은 당뇨병 환자 또는 당뇨병 전단계의 고위험군 환자의 혈당 수준의 조절일 수 있다.
본 발명의 기능성 식품 조성물에서 상기 당뇨병은 제1형 당뇨병 또는 제2형 당뇨병일 수 있으며, 구체적으로는 제2형 당뇨병일 수 있다.
본 발명의 기능성 식품 조성물에서 상기 혈당 수준의 조절은 혈당의 강하일 수 있다.
본 발명의 기능성 식품 조성물에서 펩타이드 복합체는 전체 조성물 중량에 대해 0.0001 중량% 내지 10 중량%의 범위내에서 적절한 양을 선택하여 포함될 수 있다.
본 발명의 다른 측면에 따르면, 서열번호 2의 아미노산 서열을 포함하는 펩타이드를 유효성분으로 포함하는 혈당 수준의 조절용 기능성 식품 조성물을 제공한다.
본 발명의 기능성 식품 조성물에서 상기 혈당 수준의 조절은 당뇨병 환자 또는 당뇨병 전단계의 고위험군 환자의 혈당 수준의 조절일 수 있다.
본 발명의 기능성 식품 조성물에서 상기 당뇨병은 제1형 당뇨병 또는 제2형 당뇨병일 수 있으며, 구체적으로는 제2형 당뇨병일 수 있다.
본 발명의 기능성 식품 조성물에서 상기 혈당 수준의 조절은 혈당 수준의 강하일 수 있다.
상기 혈당 수준의 조절용 기능성 식품 조성물에서, 상기 펩타이드는 인슐린 저항성 신호를 억제하거나, 인슐린 민감성 신호를 촉진할 수 있다.
상기 혈당 수준의 조절용 기능성 식품 조성물에서, 상기 펩타이드는 IRS(Insulin receptor substrate)의 Tyr632의 인산화를 촉진하거나, phospho-AKT의 활성화를 촉진하거나, 또는 AMPK의 인산화를 촉진할 수 있다.
상기 혈당 수준의 조절용 기능성 식품 조성물에서, 상기 펩타이드는 인슐린 저항성 유도 환경하에서 IRS의 Sre302의 인산화를 억제할 수 있다.
본 발명의 다른 측면에 따르면, 서열번호 2의 아미노산 서열을 포함하는 펩타이드를 유효성분으로 포함하는 비만의 예방 또는 개선용 기능성 식품 조성물을 제공한다.
상기 비만의 예방 또는 개선용 기능성 식품 조성물에서, 상기 펩타이드는 지방세포에서 지방의 분해를 촉진할 수 있다.
상기 비만의 예방 또는 개선용 기능성 식품 조성물에서, 상기 펩타이드는 지방세포에서 지방 분해 효소 단백질인 ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), 또는 PLIN (Perilipin, lipid droplet-associated protein)의 발현을 증가시킬 수 있다.
본 발명의 기능성 식품 조성물에서 펩타이드는 전체 조성물 중량에 대해 0.0001 중량% 내지 10 중량%의 범위내에서 적절한 양을 선택하여 포함될 수 있다.
일 구현예에서, 본 발명의 기능성 식품 조성물은 상기 펩타이드 복합체 또는 펩타이드의 식품학적 유효량 및 식품학적으로 허용되는 담체를 포함하는 것일 수 있다.
본 발명의 식품 조성물은 상기 유효성분으로서 펩타이드 복합체 또는 펩타이드 뿐만 아니라, 식품 제조 시에 통상적으로 첨가되는 성분을 포함하며, 예를 들어, 단백질, 탄수화물, 지방, 영양소, 조미제 및 향미제를 포함할 수 있다. 상술한 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 수크로오스, 올리고당 등; 및 폴리사카라이드, 예를 들어 덱스트린, 사이클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 향미제로서 천연 향미제, 타우마틴, 스테비아 추출물 (예를 들어, 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제(사카린, 아스파르탐 등)를 사용할 수 있다. 상기 탄수화물의 비율은 본 발명의 식품 조성물 100 g 당 일반적으로 약 1 내지 20 g, 바람직하게는 약 5 내지 12 g일 수 있으나, 이에 한정되지 않는다.
본 발명의 기능성 식품 조성물은 상술한 성분 이외에 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다.
예컨대, 본 발명의 기능성 식품 조성물이 드링크제로 제조되는 경우에는 본 발명의 유효성분인 펩타이드 복합체 이외에 구연산, 액상과당, 설탕, 포도당, 초산, 사과산, 과즙, 두충 추출액, 대추 추출액, 감초 추출액 등을 추가로 포함될수 있다.
본 발명의 다른 측면에서, 본 발명은 상술한 (i) 서열번호 1의 아미노산 서열을 포함하는 펩타이드; 및 (ii) 서열번호 2의 아미노산 서열을 포함하는 펩타이드;를 포함하는 펩타이드 복합체(peptide complex)의 치료적 유효량을 당뇨병 환자에게 투여하는 단계를 포함하는 당뇨병의 치료 방법을 제공한다.
본 발명의 또 다른 측면에서, 본 발명은 상술한 (i) 서열번호 1의 아미노산 서열을 포함하는 펩타이드; 및 (ii) 서열번호 2의 아미노산 서열을 포함하는 펩타이드;를 포함하는 펩타이드 복합체(peptide complex)의 치료적 유효량을 혈당 조절이 필요한 대상체(subject)에게 투여하는 단계를 포함하는 혈당 조절 방법을 제공한다.
본 발명의 다른 측면에서, 상술한 서열번호 2의 아미노산 서열을 포함하는 펩타이드의 치료적 유효량을 당뇨병 환자에게 투여하는 단계를 포함하는 당뇨병의 치료, 예방, 또는 개선 방법을 제공한다.
본 발명의 또 다른 측면에서, 상술한 서열번호 2의 아미노산 서열을 포함하는 펩타이드의 치료적 유효량을 혈당 조절이 필요한 대상체(subject)에게 투여하는 단계를 포함하는 혈당 조절 방법을 제공한다.
본 발명의 다른 측면에서, 상술한 서열번호 2의 아미노산 서열을 포함하는 펩타이드의 치료적 유효량을 비만의 치료가 필요한 대상체(subject)에게 투여하는 단계를 포함하는 비만의 치료, 개선, 또는 예방 방법을 제공한다.
본 발명의 펩타이드 복합체 또는 펩타이드는 세포내로 글루코오스의 흡수를 촉진하고, 인슐린 저항성 신호를 억제하며, 인슐린 감수성 신호를 촉진하고, 인슐린 생성 세포인 췌장 베타 세포의 사멸을 억제함으로써 혈당 수준의 강하 효능을 나타낼 수 있다. 또한, 본 발명의 펩타이드는 지방 세포에서 지방의 분해를 촉진하는 효능을 나타낸다. 따라서, 본 발명의 펩타이드 복합체 또는 펩타이드는 당뇨병 또는 비만의 치료, 예방, 개선에 사용될 수 있고, 당뇨병 환자 또는 당뇨 전단계의 고위험군 환자의 혈당 강하에 유용하게 사용될 수 있으며, 비만의 치료, 예방, 개선에 사용될 수 있다.
다만, 본 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1a 및 도 1b은 본 발명의 펩타이드 복합체가 지방세포로의 글루코오스의 흡수를 촉진하는 결과를 보여주는 실험결과이다.
도 2a 및 도 2b은 본 발명의 펩타이드 복합체가 근원세포로의 글루코오스의 흡수를 촉진하는 결과를 보여주는 실험결과이다.
도 3a 및 도 3b은 본 발명의 펩타이드 복합체가 인슐린 감수성 촉진 인자인 Phospho-AMPK, Phospho-ACC의 활성을 촉진하는 효능을 가짐을 보여주는 실험결과이다.
도 4a 및 도 4b는 본 발명의 펩타이드 복합체가 인슐린 저항성 신호 인자인 IRSdml Serin302 인산화 및 JNK의 인산화를 억제하는 효능을 가짐을 보여주는 실험결과이다.
도 5a 및 도 5b는 본 발명의 펩타이드 복합체가 rhTNF-α 처리에 의해 유도되는 인슐린 저항성 유도 사이토카인 TNF-α와 인슐린 저항성 촉진 신호 인자인 mTOR, p70S6K 유전자 발현 증가를 다시 감소시키는 것을 보여주는 실험결과이다.
도 6a 및 도 6b은 rhTNF-α 처리에 의한 인슐린 저항성이 유발된 지방세포에 본 발명의 펩타이드 복합체를 처리하면, 인슐린 감수성 촉진 인자인 IRS Tyrosin632의 인산화가 증가되고, PI3K, ATK, AMPK의 활성화도 촉진하는 효과를 보여주는 실험결과이다.
도 7a 및 도 7b은 지방세포에서 rhTNF-α 처리에 의해 감소된 글루코오스 흡수 관련 유전자 Leptin, Adiponectin, IRS-1, GLUT4의 발현이, 본 발명의 펩타이드 복합체 처리에 의해 증가함을 보여주는 실험결과이다.
도 8a 및 도 8b은 팔미테이트에 의해 유도된 활성산소종(ROS)이 본 발명의 펩타이드 복합체에 의해 감소되는 것을 보여주는 실험결과이다.
도 9a 및 도 9b는 팔미테이트에 의해 유도되는 염증성 단백질인 TNF-α의 유전자 발현이 본 발명의 펩타이드 복합체 처리에 의해 유의적으로 감소하는 것을 보여주는 실험결과이다.
도 10a 및 도 10b은 INS-1 (Rat pancreatic beta cell) 세포내에서, 팔미테이트 처리에 의해 증가한 TNF-α, IL-1β의 단백질의 발현 수준이 본 발명의 펩타이드 복합체 처리에 의해 유의적으로 다시 감소하는 것을 보여주는 실험결과이다.
도 11은 팔미테이트 처리에 의해 유도된 INS-1 세포 사멸의 증가가, 본발명의 펩타이드 복합체를 처리함으로써 다시 감소되어 세포의 생존율이 증가하는 것을 보여주는 실험결과이다.
도 12a 및 도 12b는 HepG2 세포에서 FFA 베타 산화(FFA beta oxidation) 관련 유전자인 PGC-1α, ACOX-1, PPAR-α, 또는 CPT-1α 유전자의 발현이 본 발명의 펩타이드 복합체에 의해 촉진되는 것을 보여주는 실험결과이다.
도 13a 및 도 13b은 본 발명의 펩타이드가 지방세포내에서 지방 분해 효소 단백질인 ATGL(Adipose triglyceride lipase), pHSL(phosphorylated Hormone-Sensitive Lipase), PLIN (Perilipin, lipid droplet-associated protein)의 발현을 증가시키는 활성을 보여준다.
도 14는 본 발명의 펩타이드를 지방세포에 처리한 처리한 경우 지방분해산물인 글리세롤의 방출량이 처리한 펩타이드의 농도의존적으로 증가되는 양상을 보여준다.
도 15a 및 도 15b은 본 발명의 펩타이드를 지방세포에 처리한 경우, 인슐린 감수성 촉진 인자인 IRS(Insulin Receptor Substrate) Tyr632의 인산화와 phosphorylation-AKT의 활성화가 촉진되고, 신호전달 단백질인 AMPK의 인산화가 증가됨을 보여준다. 반면, 인슐린 저항성 유도 환경하에서 IRS(Insulin Receptor Substrate) Ser302의 인산화를 감소시키는 것을 보여준다.
이하, 본 발명을 실시예에 의하여 상세히 설명한다. 단, 하기 실시예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 하기 실시예에 의해 한정되지 아니한다.
실시예
제조예 1: 펩타이드 및 펩타이드 복합체의 제조
자동 펩타이드 합성기(Milligen 9050, Millipore, 미국)를 이용하여 하기의 표 1에 기재된 서열번호 1 및 서열번호 2의 아미노산 서열을 갖는 펩타이드를 합성하고, C18 역상 고성능액체크로마토그래피(HPLC)(Waters Associates, 미국)를 이용하여 이들 합성된 펩타이드를 순수 분리하였다. 컬럼은 ACQUITY UPLC BEH300 C18 (2.1 ㎜ Х 100 ㎜, 1.7 ㎛, Waters Co, 미국)을 이용하였다.
서열번호 펩타이드의 아미노산 서열
1 LKTRN
2 KGSATGWMA
상기 제조한 서열번호 1의 펩타이드와 서열번호 2의 펩타이드를 동량 혼합하여 펩타이드 복합체(peptide complex)를 제조하고, 이에 대한 효능을 평가하였다. 또한, 상기 제조한 서열번호 2의 펩타이드에 대한 효능도 평가하였다.
실험예 1: 지방세포(adipocyte)로의 글루코오스의 흡수 촉진
지방세포(adipocyte)를 이용하여 제조예 1에서 제조한 펩타이드 복합체(peptide complex)가 글루코오스를 세포내로의 흡수(uptake)를 촉진시키는지에 대해서 실험하였다.
3T3-L1 지방전구세포(preadipocyte)가 80% 컨플루언스(confluence)에 도달하였을 때, 96-웰 플레이트에 5 x 103 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence) 도달 후 2일 뒤 분화유도배지로 교체하여 지방세포로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린(insulin)을 포함한 배지로 2일간 배양한 후 지방세포로 분화할 때까지 2일 마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 글루코오스 미첨가(glucose free) 배지로 교체하여 16시간 배양 후, 2% BSA가 포함된 100 μL KRPH 버퍼(buffer)로 40분간 배양하여 기아상태(starvation)를 유도하였다. rhTNF-α (2nM), 인슐린(10 μg/ml)과, 펩타이드 복합체(2, 20 μg/ml)를 처리하여 1시간 배양한 뒤, 80μM 2-NBDG를 처리하여 1시간 배양하여 샘플(sample)을 준비하였다. 글루코오스의 흡수는 Glucose uptake assay kit" (Abcam, Cambridge, UK)을 이용하여 측정하였으며, 형광현미경(ECLIPSE 80i, Nikon, Japan)을 통해 세포에 흡수된 글루코오스를 촬영하였다.
실험결과, 도 1a 및 도 1b에서 보여지는 바와 같이, TNF-α에 의해 억제된 글루코오스의 세포내로 흡수가 펩타이드 복합체 처리에 의해 증가되는 것을 확인하였다. 또한 이러한 작용은 후술하는 실험예 3에서 AMPK (AMP-activated protein kinase) 및 ACC (Acetyl-CoA carboxylase) 신호전달경로(signaling pathway)를 통해 발생하는 것을 확인하였다. 이 실험결과를 통해 펩타이드 복합체는 염증에 의해 유도된 세포내로의 글루코오스의 흡수 억제를 유의적으로 다시 증가시킨다는 것을 확인하였다.
실험예 2: 근세포(myocyte)로의 글루코오스의 흡수 촉진
근원세포(myoblast)를 이용하여 제조예 1에서 제조한 펩타이드 복합체가 글루코오스를 세포내로의 흡수를 촉진시키는지에 대해서 실험하였다.
C2C12 근원세포를 96-웰 플레이트에 5 x 103 세포/웰로 시딩(seeding)하여 DMEM이 포함된 10% FBS 배지에서 2일 동안 배양하였다. 2% 말혈청(horse serum)을 포함하는 DMEM 배지를 교체한 후, C2C12 근원세포를 6일 동안 배양하여 근관(myotube)으로의 분화를 유도하였다. 배양된 근관을 rhTNF-α (2nM), 인슐린(10 μg/ml)과 펩타이드 복합체(2, 20 μg/ml)를 처리하여 1시간 배양한 뒤, 80μM 2-NBDG를 처리하여 1시간 배양하여 샘플을 준비하였다. 글루코오스의 흡수는 "Glucose uptake assay kit" (Abcam, Cambridge, UK)을 이용하여 측정하였으며, 형광현미경(ECLIPSE 80i, Nikon, Japan)을 통해 세포에 흡수된 글루코오스를 촬영하였다. 실험결과, 도 2a 및 도 2b에서 보여지는 바와 같이, rhTNF-α 처리에 의해 억제된 글루코오스의 근원세포내로의 흡수가 본 발명의 펩타이드 복합체에 의해 증가되는 것을 확인하였다.
실험예 3: 글루코오스의 흡수 촉진 작용에서 펩타이드 복합체의 신호전달 경로
제조예 1의 펩타이드 복합체가 인슐린 감수성 촉진 인자의 활성을 촉진하는 효과를 갖는지에 대해 단백질 발현 분석(western blot analysis)을 통해 확인하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달되었을때 96-웰 플레이트에 5 x 103 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence) 도달 후 2일 뒤 분화유도배지로 교체하여 지방세포 로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후 지방세포로 분화할 때까지 2일마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청 배지로 교체하여 4시간 배양하여 기아상태(starvation)를 유도하였다. 여기에, 제조예 1의 펩타이드 복합체(0.2, 2, 20 μg/ml)를 처리하여 30분 배양한 뒤, 용해 버퍼를 첨가하여 용해시킨 후 4℃, 12,000 rpm에서 30분간 원심분리하여 획득한 단백질을 BCA 키트를 사용하여 정량하였다. 단백질은 SDD-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)를 수행한 다음, 멤브레인(membrane)에 전기 이동(electrotransfer)시켰다. 단백질이 부착된 멤브레인을 5% 탈지유(skim milk)로 처리하여 블로킹(blocking)한 후, 1차 항체를 4℃에서 하룻밤(overnight) 반응시켰다. PBS-T로 세척한 다음 2차 항체를 상온에서 1시간 반응시키고 다시 PBS-T로 세척한 후 Gel Doc(Bio-Rad, Hercules, CA, USA)를 사용하여 Western 검출 시약(Elpis Biotech, Daejeon, Korea)을 통해 시각화하였다. 실험에 사용한 항체는 다음과 같다: 항-Phospho-AMPK 항체(Cell signaling technology(CST), USA), 항-Phospho-ACC 항체(Cell signaling technology(CST), USA), 항-α-tubulin 항체(Santa Cruz Biotechnology). 실험결과, 도 3a 및 도 3b에서 보여지는 바와 같이, 본 발명의 펩타이드 복합체가 인슐린 감수성 촉진 인자인 Phospho-AMPK, Phospho-ACC의 활성을 촉진하는 효능을 가짐을 확인할 수 있었다.
실험예 4: 펩타이드 복합체의 인슐린 저항성 신호 억제
제조예 1에서 제조한 펩타이드 복합체가 인슐린 저항성 신호를 억제하는 효과를 갖는지에 대해 단백질 발현 분석(western blot analysis)를 통해 확인하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달하였을 때 6-웰 플레이트에 5 x 105 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence) 도달 후 2일 뒤 분화유도배지로 교체하여 지방세포 로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후 지방세포로 분화할 때까지 2일마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청 배지로 교체하여 4시간 배양하여 기아상태(starvation)를 유도하였다. rhTNF-α (2nM), 인슐린(1 μg/ml)과 펩타이드 복합체(0.2, 2, 20 μg/ml)를 처리하여 30분 배양한 뒤 각 처리군의 세포에 용해 버퍼를 첨가하여 용해시킨 후 4℃, 12,000 rpm에서 30분간 원심분리하여 획득한 단백질을 BCA 키트를 사용하여 정량하였다. 단백질은 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)를 수행한 다음 멤브레인(membrane)에 전기이동(electrotransfer)하였다. 단백질이 부착된 멤브레인을 5% 탈지유로 처리하여 블로킹한 후, 1차 항체를 4℃에서 하룻밤(overnight) 반응시켰다. PBS-T로 세척한 다음 2차 항체를 상온에서 1시간 반응시키고 다시 PBS-T로 세척한 후 Gel Doc(Bio-Rad, Hercules, CA, USA)를 사용하여 웨스턴(western) 검출 시약(Elpis Biotech, Daejeon, Korea)을 통해 시각화하였다. 실험에 사용한 항체는 다음과 같다: 항-Phospho-IRS (Ser302) 항체(Cell signaling technology(CST), USA), 항-Phospho-JNK 항체(Santa Cruz Biotechnology, USA), 항-α-tubulin 항체(Santa Cruz Biotechnology , USA). 실험결과, 도 4a 및 도 4b에서 보여지는 바와 같이, 본 발명의 펩타이드 복합체가 TNF-α 처리에 의해 유도된 인슐린 저항성 신호 인자인 IRS(Insulin receptor kinase)의 Serin302의 인산화와 JNK(c-Jun N-terminal kinase)의 인산화를 억제하는 효과를 확인하였다.
실험예 5: 펩타이드 복합체의 인슐린 저항성 유발 유전자 발현 억제
제조예 1에서 제조한 펩타이드 복합체가 인슐린 저항성 유발 유전자들의 발현을 억제하는지 실험하였다. 지방세포를 rhTNF-α 처리하여 인슐린 저항성을 유발한 뒤, 펩타이드 복합체를 처리한 후 mTOR, p70S6K 유전자 발현 수준을 측정하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달하였을때 6-웰 플레이트에 5 x 105 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스 도달 후 2일 뒤 분화 유도배지로 교체하여 지방세포로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후, 지방세포로 분화할 때까지 2일마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청 배지로 교체하여 4시간 배양하여 기아상태(starvation)를 유도하였다. 아무것도 처리하지 않은 대조군과 rhTNF-α (2nM), 인슐린 (1 μg/ml), 펩타이드 복합체(0.2, 2, 20 μg/ml)를 처리하고, 24 시간 후 RNA를 추출하여 RT-PCR을 수행하였다. RNA는 3T3-L1 세포에서 easy-BLUETMTotal RNA 추출 키트(Qiagen, Germany)를 이용하여 추출하였다. 추출된 RNA는 RT-PCR premix (iNtRON Biotechnology, Seongnam, Korea)로 cDNA로 변환시켰다. PCR premix(iNtRON Biotechnology, Seongnam, Korea)와 TNF-α, mTOR (mammalian Target Of Rapamycin), p70S6K, 또는 GAPDH 유전자에 대한 프라이머(primer)로 반응 혼합물을 준비한 후 PCR machine (Eppendorf, Germany)을 이용하여 PCR을 수행하였다. 이어서, 아가로스 겔 전기영동에 의해 mRNA 발현 패턴을 결정하였다. 실험에 사용한 프라이머의 염기서열은 다음의 표 2에 나타내었다.
유전자 프라이머 서열(5' -> 3') 서열번호
TNF-α F CGT CAG CCG ATT TGC TAT CT 3
R CGG ACT CCG CAA AGT CTA AG 4
mTOR F TTG AGG TCG CTA TGA CCA GAG AGA A 5
R TTA CCA GAA GGG ACA CCA GCC AAT G 6
p70S6K F GGA GCC TGG GAG CCC TGA TGT 7
R GAA GCC CTC TTT GAT GCT GTC C 8
GAPDH F GTG ATG GCA TGG ACT GTG GT 9
R GGA GCC AAA AGG GTC ATC AT 10
실험결과, 도 5a 및 도 5b에서 보여지는 바와 같이, rhTNF-α 처리시 인슐린 저항성 유도 염증성 사이토카인인 TNF-α 유전자와 인슐린 저항성 촉진 신호 인자인 mTOR, 및 p70S6K 유전자의 발현이 증가하였으나, 펩타이드 복합체를 처리한 경우 상기 유전자들의 발현이 다시 감소되는 것을 확인할 수 있었다.
실험예 6: 펩타이드 복합체의 인슐린 감수성 신호 촉진
제조예 1에서 제조한 펩타이드 복합체가 인슐린 감수성 신호를 촉진하는지에 대해 실험하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달되었을때 6-웰 플레이트에 5 x 105 세포/웰로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence)도달 후 2일 뒤 분화유도배지로 교체하여 지방세포로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후, 지방세포로 분화할 때까지 2일마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청 배지로 교체하여 4시간 배양하여 기아상태(starvation)를 유도하였다. rhTNF-α (2nM), 인슐린(1 μg/ml)과 펩타이드 복합체(0.2, 2, 20 μg/ml)를 처리하여 30분 배양한 뒤 각 처리군의 세포에 용해버퍼를 첨가하여 용해시킨 후, 4℃, 12,000 rpm에서 30분간 원심분리하여 획득한 단백질을 BCA 키트를 사용하여 정량하였다. 단백질은 SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis)를 수행한 다음, 멤브레인에 전기이동(electrotransfer)하였다. 단백질이 부착된 멤브레인을 5% 탈지유로 처리하여 블로킹한 후, 1차 항체를 4℃에서 하룻밤(overnight) 반응시켰다. PBS-T로 세척한 다음 2차 항체를 상온에서 1시간 반응시키고, 다시 PBS-T로 세척한 후, Gel Doc(Bio-Rad, Hercules, CA, USA)를 사용하여 웨스턴(western) 검출 시약(Elpis Biotech, Daejeon, Korea)을 통해 시각화하였다. 실험에 사용한 항체는 다음과 같다: 항-Phospho-IRS (Tyr632)항체 (Cell signaling technology(CST), USA), 항-Phospho-PI3K 항체 (Cell signaling technology(CST), USA), 항-Phospho-AKT 항체 (Cell signaling technology(CST), USA), 항-Phospho-AMPK 항체 (Cell signaling technology(CST), USA), 항-α-tubulin 항체 (Santa Cruz Biotechnology , USA). 실험결과, 도 6a 및 도 6b에서 보여지는 바와 같이, rhTNF-α 처리에 의한 인슐린 저항성이 유발된 지방세포에서, 펩타이드 복합체를 처리하면 인슐린 감수성 촉진 인자인 IRS (Insulin Receptor Substrate) Tyrosin632의 인산화를 증가시키고, 이에 의해 PI3K (Phosphoinositide 3-kinase), ATK, AMPK(AMP-activated protein kinase)의 활성화도 촉진하는 효과를 확인하였다.
실험예 7: 글루코오스 흡수 관련 유전자 발현 촉진
제조예 1에서 제조한 펩타이드 복합체가 글루코오스 흡수 관련 유전자의발현을 촉진하는지에 대해 Leptin, Adiponectin, IRS-1(Insulin receptor substrate 1), GLUT4(Glucose transporter type 4) 유전자들의 발현 분석을 통해 확인하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달되었을 때 6-웰 플레이트에 5 x 105 세포/웰로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence) 도달 후 2일 뒤 분화유도배지로 교체하여 지방세포로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후, 지방세포로 분화할 때까지 2일마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청 배지로 교체하여 4 시간 배양하여 기아상태(starvation)를 유도하였다. 아무것도 처리하지 않은 대조군과 rhTNF-α (2nM), 인슐린 (1 μg/ml), 펩타이드 복합체 (0.2, 2, 20 μg/ml)를 처리하고, 24 시간 후 RNA를 추출하여 RT-PCR을 수행하였다. RNA는 3T3-L1 세포에서 easy-BLUETMTotal RNA 추출 키트(Qiagen, Germany)를 이용하여 추출하였다. 추출된 RNA는 RT-PCR premix (iNtRON Biotechnology, Seongnam, Korea)로 cDNA로 변환시켰다. PCR premix(iNtRON Biotechnology, Seongnam, Korea)와 각 유전자에 대한 프라이머로 반응 혼합물을 준비한 후 PCR machine(Eppendorf, Germany)을 이용하여 PCR을 수행하였다. 이어서, 아가로스 겔 전기영동에 의해 mRNA 발현 패턴을 결정하였다. 실험에 사용한 프라이머의 염기서열은 다음의 표 3에 나타내었다.
유전자 프라이머 서열(5' -> 3') 서열번호
Leptin F GGA TCA GGT TTT GTG GTG CT 11
R TTG TGG CCC ATA AAG TCC TC 12
Adiponectin F TCC TGC TTT GGT CCC TCC AC 13
R TCT CCA GCC CCA CAC TGA AC 14
IRS-1 F GCC AAT CTT CAT CCA GTT GC 15
R CAT CGT GAA GAA GGC ATA GG 16
GAPDH F GTG ATG GCA TGG ACT GTG GT 9
R GGA GCC AAA AGG GTC ATC AT 10
GLUT4 F ACT AAG AGC ACC GAG ACC AA 27
R CTG CCC GAA AGA GTC TAA AG 28
실험결과, 도 7a 및 도 7b에서 보여지는 바와 같이, 지방세포에서 rhTNF-α 처리에 의해 감소된 글루코오스 흡수 관련 유전자 Leptin, Adiponectin, IRS-1, GLUT4의 발현이, 펩타이드 복합체 처리에 의해 증가함을 확인하였다.
실험예 8: 팔미테이트(palmitate)에 의해 유발되는 ROS 생성의 억제
제조예 1에서 제조한 펩타이드 복합체가 유리지방산의 일종인 팔미테이트(palmitate)에 의해 유발되는 ROS (Reactive oxygen species) 생성을 억제하는지에 대해 세포내 ROS 검출 분석(FACS)을 통해 확인하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달되었을때 6-웰 플레이트에 5 x 105 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence)도달 후 2일 뒤 분화유도배지로 교체하여 지방세포(adipocyte)로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린 을 포함한 배지로 2일간 배양한 후, 지방세포로 분화할 때까지 2일마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청 배지로 교체하여 4 시간 배양하여 기아상태(starvation)를 유도하였다. 아무것도 처리하지 않은 대조군과 rhTNF-α (2 nM), 인슐린 (1 μg/ml), 펩타이드 복합체 (2 μg/ml)를 처리하고, 24 시간 배양하였으며, DCF-DH를 처리 30분 후 FACS(Becton Dickinson & Company(BD), USA)를 이용하여 형광의 정도로 산화 활성을 측정하였다. 측정결과, 도 8a 및 도 8b의 그래프에서 보여지는 바와 같이, 팔미테이트에 의해 유도된 활성산소종(ROS)이 펩타이드 복합체에 의해 감소되는 것을 확인할 수 있었다.
실험예 9: 팔미테이트에 의해 유발되는 TNF-α 유전자 발현의 억제
제조예 1에서 제조한 펩타이드 복합체가 유리지방산의 일종인 팔미테이트(palmitate)에 의해 유발되는 염증을 억제하는지에 대해 유전자 발현 분석(RT-PCR)을 통해 확인하였다.
혈청 미첨가 배지(serum free media) RPMI 1640 (Gibco, New York, USA)로 기아 상태(starvation)을 유도시킨 INS-1 세포에 25 μM 의 팔미테이트를 2시간 동안 전처리한 후, 펩타이드 복합체 (0.2, 2, 20 μg/ml)을 처리하였다. 24 시간 후 easy-BLUETMTotal RNA 추출 키트(Qiagen, Germany)를 이용하여 RNA를추출하였다. 추출된 RNA는 RT-PCR premix (iNtRON Biotechnology, Seongnam, Korea)로 cDNA 로 변환시켰다. PCR premix(iNtRON Biotechnology, Seongnam, Korea)와 TNF-α, GAPDH 유전자에 대한 프라이머로 반응 혼합물을 준비한 후 PCR machine(Eppendorf, Germany)을 이용하여 PCR을 수행하였다. 이어서, 아가로스 겔 전기영동에 의해 mRNA 발현 패턴을 결정하였다. 실험에 사용된 프라이머의 염기서열은 다음의 표 4에 나타내었다.
유전자 프라이머 서열(5' -> 3') 서열번호
TNF-α F ATG AGC ACG GAA AGC ATG AT 17
R CTC TTG ATG GCA GAG AGG AG 18
GAPDH F GTG ATG GCA TGG ACT GTG GT 9
R GGA GCC AAA AGG GTC ATC AT 10
실험결과, 도 9a 및 도 9b에서 보여지는 바와 같이, 팔미테이트에 의해 유도되는 염증성 단백질인 TNF-α의 유전자 발현이 펩타이드 복합체 처리에 의해 유의적으로 감소하는 것을 확인하였다.
실험예 10: 팔미테이트에 의해 유발되는 염증성 사이토카인의 발현 억제
제조예 1에서 제조한 펩타이드 복합체가 유리지방산의 일종인 팔미테이트에 의해 유발되는 염증성 사이토카인의 발현을 억제하는지에 대해 단백질 발현 분석(western blot analysis)를 통해 확인하였다.
혈청 미첨가 배지(serum free media) RPMI 1640 (Gibco, New York, USA)로 기아상태(starvation)을 유도시킨 INS-1 세포(Rat pancreatic beta cell)에 25 μM의 팔미테이트를 2 시간 동안 전처리한 후 펩타이드 복합체 (0.2, 2, 20 μg/ml)을 처리하였다. 24 시간 후 PBS로 1회 세척한 후 10 mM Tris (pH7.5), 100 mM NaCl, 1% NP-40, 프로테아제 억제제(protease inhibitor)가 포함되어 있는 용해버퍼(Millipore, Darmstadt, Germany)를 첨가하여 얼음에서 30분 간 용해시킨 후, 4℃, 13,000 rpm에서 10분간 원심분리하여 획득한 단백질을 BCA 키트 (Thermo Fisher Scientific, Waltham, USA)를 사용하여 정량하였다. 동일한 양의 단백질을 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)를 수행하여 분리시킨 후, 폴리비닐리덴 디플루오라이드(polyvinylidene difluoride) 멤브레인에 전기이동시켰다. 항체의 비특이적 결합을 차단하기 위하여 단백질이 부착된 멤브레인을 5% 탈지유 (BD, New Jersey, USA)로 처리하여 1시간 동안 블로킹한 후, 1차 항체를 4℃에서 하룻밤(overnight) 반응시켰다. PBS-T로 세척한 다음 2차 항체를 상온에서 1-2시간 반응시키고, 다시 PBS-T로 세척한 후 ECL (enhanced chemiluminescence) (Thermo Fisher Scientific, Waltham, USA) 을 이용하여 X-선 필름상에서 단백질을 시각화하였다. 실험에 사용한 항체는 다음과 같다: 항-TNF-α 항체 (Cell signaling technology(CST), USA), 항-IL-1β 항체 (Cell signaling technology(CST), USA), 항-Actin 항체 (Santa Cruz Biotechnology , USA). 실험결과, 도 10a 및 도 10b에서 보여지는 바와 같이, INS-1 (Rat pancreatic beta cell) 세포내에서, 팔미테이트 처리에 의해 증가한 TNF-α, IL-1β의 단백질의 발현 수준이 펩타이드 복합체 처리에 의해 유의적으로 다시 감소하는 것을 확인하였다.
실험예 11: 팔미테이트에 의해 유발되는 췌장 베타 세포 사멸의 억제
제조예 1에서 제조한 펩타이드 복합체가 유리지방산의 일종인 팔미테이트에 의해 유발되는 췌장 베타 세포(pancreatic beta cell)의 사멸을 억제하는지에 대해 세포독성분석(cell cytotoxicity assay)를 통해 확인하였다.
혈청 미첨가 배지(serum free media) RPMI 1640 (Gibco, New York, USA)로 기아상태(starvation)을 유도시킨 INS-1 세포(Rat pancreatic beta cell)에 25 μM의 팔미테이트를 2 시간 동안 전처리한 후, 펩타이드 복합체 (0.2, 2, 20 μg/ml)을 처리하였다. 24시간 후, CCK-8 solution (Dojindo, Kumamoto, Japan)을 배양액 부피의 1/10이 되도록 첨가하고 30분 혹은 1시간 간격으로 흡광도를 측정해주며, 대조군(control)의 흡광도 값이 평균 1.0이 되면 실험을 종료하였다. 반응생성물의 흡광도는 마이크로플레이트 리더(microplate reader)를 이용하여 450 nm 파장에서 측정하였다. 실험결과, 도 11에서 보여지는 바와 같이, 팔미테이트 처리에 의해 유도된 INS-1 세포 사멸의 증가가, 펩타이드 복합체를 처리함으로써 다시 감소되어 세포의 생존율이 증가함을 확인할 수 있었다.
실험예 12: 글루코오스 흡수 관련 유전자의 발현 촉진
제조예 1에서 제조한 펩타이드 복합체가 글루코오스 흡수 관련 유전자, PGC-1α(Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha), ACOX-1(Acyl-CoA Oxidase 1), PPAR-α(Peroxisome proliferator-activated receptor-alpha), 또는 CPT-1α (Carnitine palmitoyltransferase 1 alpha) 유전자의 발현을 촉진하는 지에 대해 유전자 발현 분석(RT-PCR)을 통해 확인하였다.
HepG2 간암세포가 80% 컨플루언스(confluence)에 도달되었을 때 12-웰플레이트에 2 x 105 세포/웰로 시딩(seeding)하여 실험에 사용하였다. 다음날 혈청 미첨가 배지(serum free media)로 교체하여 4시간 동안 기아상태(starvation)를 유도하였다. 4시간 뒤 아무것도 처리하지 않은 대조군과, 펩타이드 복합체 (0.2, 2, 20 μg/ml)를 처리하고, 24 시간 후 RNA를 추출하여 RT-PCR을 시행하였다. RNA는 easy-BLUETMTotal RNA 추출 키트(Qiagen, Germany)를 이용하여 추출하였다. 추출된 RNA는 RT-PCR premix (iNtRON Biotechnology, Seongnam, Korea)로 cDNA로 변환시켰다. PCR premix(iNtRON Biotechnology, Seongnam, Korea)와 PGC-1α, ACOX-1, PPAR-α, 또는 CPT-1α 유전자에 대한 프라이머로 반응 혼합물을 준비한 후 PCR machine(Eppendorf, Germany)을 이용하여 PCR을 수행하였다. 이어서, 아가로스 겔 전기영동에 의해 mRNA 발현 패턴을 결정하였다. 실험에 사용한 프라이머의 염기서열은 다음의 표 5에 나타내었다.
유전자 프라이머 서열(5' -> 3') 서열번호
PGC-1α F AGTCTGTATGGAGTGACATCGAG 19
R GGCAATCCGTCTTCATCCAC 20
ACOX-1 F CCGCCGAGAGATCGAGAAC 21
R CAGTTGCCTGGTGAAGCAAG 22
PPAR-α F AAGGGCTTCTTTCGGCGAAC 23
R TGACCTTGTTCATGTTGAAGTTCTTCA 24
CPT-1α F CCTCCAGTTGGCTTATCGTG 25
R TTCTTCGTCTGGCTGGACAT 26
GAPDH F GTG ATG GCA TGG ACT GTG GT 9
R GGA GCC AAA AGG GTC ATC AT 10
실험결과, 도 12a 및 도 12b에서 보여지는 바와 같이, HepG2 세포에서 FFA 베타 산화(FFA beta oxidation) 관련 유전자인 PGC-1α, ACOX-1, PPAR-α, 또는 CPT-1α 유전자의 발현이 펩타이드 복합체에 의해 촉진되는 것을 확인할 수 있었다.
실험예 13 : 지방세포에서 지방분해 효소 단백질 발현의 촉진
제조예 1에서 제조한 서열번호 2의 아미노산 서열의 펩타이드가 지방세포(adipocyte)내에서 지방분해 효소 단백질의 발현을 촉진시키는지에 대해서 단백질 발현 분석(western blot analysis)를 통해 실험하였다.
3T3-L1 지방전구세포(preadipocyte)가 80% 컨플루언스(confluence)에 도달하였을 때, 6-웰 플레이트에 5 x 105 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence) 도달 후 2일 뒤, 분화유도배지[10% FBS, 1μg/ml 인슐린, 0.5mM 이소부틸메틸산틴 (IBMX)(Sigma, USA) 및 1μM 덱타메타손(sigma, USA)이 포함된 DMEM 배지]로 교체하여 지방세포로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후 지방세포로 분화할 때까지 2일 마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청(srum free)배지로 교체하여 4시간 배양하여 기아상태(starvation)를 유도하였다. 아무것도 처리하지 않은 군(음성 대조군), 제조예 1의 펩타이드(2, 20 μg/ml) 처리군, TNFα (20 nM) 처리군(양성 대조군)으로 나누어, 세포에 상기 물질들을 정해진 농도로 처리하여 1시간 배양한 후에, 각 처리군의 세포에 용해버퍼를 첨가하여 용해시켰다. 용해 후 4℃, 12,000 rpm에서 30분간 원심분리하여 획득한 단백질을 BCA 키트를 사용하여 정량하였다. 단백질은 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)를 수행한 다음, 멤브레인(membrane)에 전기이동(electrotransfer)하였다. 단백질이 부착된 멤브레인을 5% 탈지유(skim milk)로 처리하여 블로킹(blocking)한 후, 1차 항체를 4℃에서 하룻밤(overnight) 반응시켰다. PBS-T로 세척한 다음 2차 항체를 상온에서 1시간 반응시키고 다시 PBS-T로 세척한 후 Gel Doc(Bio-Rad, Hercules, CA, USA)를 사용하여 웨스턴(western) 검출 시약(Elpis Biotech, Daejeon, Korea)을 통해 시각화하였다. 실험에 사용한 항체들은 다음과 같다: 항-ATGL 항체 (Cell signaling technology(CST), USA), 항-pHSL 항체 (Cell signaling technology(CST), USA), 항-PLIN 항체 (Cell signaling technology(CST), USA), 항-α-tubulin 항체 (Santa Cruz Biotechnology, USA). 실험결과, 도 13a 및 도 13b에서 보여지는 바와 같이, 본 발명의 펩타이드를 처리할 경우, 지방세포내에서 지방분해 효소 단백질인 ATGL(Adipose triglyceride lipase), pHSL(phosphorylated Hormone-Sensitive Lipase), PLIN (Perilipin, lipid droplet-associated protein)의 발현이 증가된 것을 확인할 수 있었다.
실험예 14: 지방세포에서 지방 분해의 촉진
제조예 1에서 제조한 서열번호 2의 아미노산 서열의 펩타이드가 지방세포내에서 지방 분해를 촉진하는지에 대해 지방분해 산물인 글리세롤의 방출량을 분석하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달하였을 때, 6-웰 플레이트에 5 x 105 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence) 도달 후 2일 뒤, 분화유도배지 [10% FBS, 1μg/ml 인슐린, 0.5mM 이소부틸메틸산틴 (IBMX)(Sigma, USA) 및 1μM 덱타메타손(sigma, USA)이 포함된 DMEM 배지]로 교체하여 지방세포로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후 지방세포로 분화할 때까지 2일 마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청(srum free)배지로 교체하여 4시간 배양하여 기아상태(starvation)를 유도하였다. 아무것도 처리하지 않은 군(음성 대조군), 제조예 1의 펩타이드(2, 20 μg/ml) 처리군, TNF-α (20 nM) 처리군 (양성 대조군)으로 나누어, 세포에 상기 물질들을 정해진 농도로 처리하여 48시간 배양하고, 상층액을 얻었다. 얻은 상층액에 대해 "Glycerol Colormetric assay kit" (Cayman chemical, USA)를 이용하여 글리세롤 방출 분석(glycerol release assay)을 수행하여, 방출된 글리세롤의 양을 비교하였다. 글리세롤 방출 분석을 행한 결과, 도 14에서 보여지는 바와 같이, 본 발명의 펩타이드를 처리한 경우 지방세포에서 지방 분해 산물인 글리세롤의 방출량이 처리한 펩타이드의 농도의존적으로 증가되는 양상을 확인할 수 있었다.
실험예 15: 인슐린 저항성 신호 억제 및 인슐린 민감성 신호 촉진
제조예 1에서 제조한 서열번호 2의 아미노산 서열의 펩타이드가 지방세포내에서 인슐린 저항성을 억제하고 인슐린 민감성 신호 전달을 촉진하는지에 대해 단백질 발현 분석을 통해 설험하였다.
3T3-L1 지방전구세포가 80% 컨플루언스(confluence)에 도달하였을 때, 6-웰 플레이트에 5 x 105 세포/웰(well)로 시딩(seeding)하여 실험에 사용하였다. 컨플루언스(confluence)도달 후 2일 뒤, 분화유도배지 [10% FBS, 1μg/ml 인슐린, 0.5mM 이소부틸메틸산틴 (IBMX)(Sigma, USA) 및 1μM 덱타메타손(sigma, USA)이 포함된 DMEM 배지]로 교체하여 지방세포로의 분화를 유도하였고, 유도 후 2일 뒤 10% FBS, 10 μg/mL 인슐린을 포함한 배지로 2일간 배양한 후 지방세포로 분화할 때까지 2일 마다 10% FBS가 포함된 배지로 교체해주었다. 분화가 완료되면 무혈청(srum free)배지로 교체하여 4시간 배양하여 기아상태(starvation)를 유도하였다. 여기에, rhTNF-α(2 nM), 인슐린(1 μg/ml)과 제조예 1의 펩타이드(2, 20 μg/ml)를 각각 처리하여 1 시간 배양하였다. 30분 배양후, 각 처리군의 세포에 용해 버퍼를 첨가하여 용해시킨 후 4℃, 12,000 rpm에서 30분간 원심분리하여 획득한 단백질을 BCA 키트를 사용하여 정량하였다. 단백질은 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)를 수행한 다음 멤브레인에 전기이동(electrotransfer)하였다. 단백질이 부착된 멤브레인을 5% 탈지유로 처리하여 블로킹한 후, 1차 항체를 4℃에서 하룻밤(overnight) 반응시켰다. PBS-T 로 세척한 다음 2차 항체를 상온에서 1시간 반응시키고 다시 PBS-T로 세척한 후 Gel Doc(Bio-Rad, Hercules, CA, USA)를 사용하여 웨스턴(western) 검출 시약(Elpis Biotech, Daejeon, Korea)을 통해 시각화하였다. 실험에 사용한 항체는 다음과 같다: 항-Phospho-IRS(Ser302)항체(Cell signaling technology(CST), USA), 항-Phospho-IRS (Tyr632)항체(Cell signaling technology(CST), USA), 항-Phospho-AKT 항체(Cell signaling technology(CST), USA), 항-Phospho-AMPK 항체(Cell signaling technology(CST), USA), 항-α-tubulin 항체(Santa Cruz Biotechnology , USA). 실험결과, 도 15a 및 도 15b에서 보여지는 바와 같이, 본 발명의 펩타이드를 처리하는 경우, 인슐린 민감성 촉진 인자인 IRS(Insulin Receptor Substrate) Tyr632의 인산화와 phosphorylation-AKT의 활성화가 촉진됨이 확인되었다. 또한, 인슐린 민감도 증가 신호전달 단백질인 AMPK의 인산화의 증가를 확인할 수 있었다. 반면, 인슐린 저항성 유도 환경하에서 IRS(Insulin Receptor Substrate) Ser302의 인산화를 감소시켜, 인슐린 저항성을 억제함을 확인하였다.
제조예 2: 약학적 조성물의 제조
2-1. 산제의 제조
본 발명의 펩타이드 복합체 또는 본 발명의 펩타이드 2 g
유당 1 g
상기의 성분을 혼합하고 기밀포에 충진하여 산제를 제조하였다.
2-2. 정제의 제조
본 발명의 펩타이드 복합체 또는 본 발명의 펩타이드 100 ㎎
옥수수전분 100 ㎎
유당 100 ㎎
스테아린산 마그네슘 2 ㎎
상기의 성분을 혼합한 후, 통상의 정제의 제조 방법에 따라서 타정하여 정제를 제조하였다.
2-3. 캡슐제의 제조
본 발명의 펩타이드 복합체 또는 본 발명의 펩타이드 100 ㎎
옥수수전분 100 ㎎
유당 100 ㎎
스테아린산 마그네슘 2 ㎎
상기의 성분을 혼합한 후, 통상의 캡슐제의 제조방법에 따라서 젤라틴 캡슐에 충전하여 캡슐제를 제조하였다.
2-4. 환의 제조
본 발명의 펩타이드 복합체 또는 본 발명의 펩타이드 1 g
유당 1.5 g
글리세린 1 g
자일리톨 0.5 g
상기의 성분을 혼합한 후, 통상의 방법에 따라 1환 당 4g이 되도록 제조하였다.
2-5. 과립의 제조
본 발명의 펩타이드 복합체 또는 본 발명의 펩타이드 150 mg
대두추출물 50 mg
포도당 200 mg
전분 600 mg
상기의 성분을 혼합한 후, 30% 에탄올 100 mg을 첨가하여 섭씨 60℃에서 건조하여 과립을 형성한 후 포에 충진하였다.
제조예 3: 기능성 식품 조성물의 제조
3-1. 건강식품의 제조
본 발명의 펩타이드 복합체 또는 본 발명의 펩타이드 500 μg
비타민 혼합물 적량
비타민 A 아세테이트 70 mg
비타민 E 1.0mg
비타민 D 0.13mg
비타민 B2 0.15mg
비타민 B6 0.5mg
비타민 B12 0.2mg
비타민 C 10mg
비오틴 10mg
니코틴산아미드 1.7mg
엽산 50mg
판토텐산 칼슘 0.5mg
무기질 혼합물 적량
황산제1철 1.75mg
산화아연 0.82mg
탄산마그네슘 25.3mg
제1인산칼륨 15mg
제2인산칼슘 55mg
구연산칼륨 90mg
탄산칼슘 100mg
염화마그네슘 24.8mg
상기의 비타민 및 미네랄 혼합물의 조성비는 비교적 건강식품에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만, 그 배합비를 임의로 변형 실시하여도 무방하며, 통상의 건강식품 제조방법에 따라 상기의 성분을 혼합한 다음, 과립을 제조하고, 통상의 방법에 따라 건강식품 조성물 제조에 사용할 수 있다.
3-2. 건강음료의 제조
본 발명의 펩타이드 복합체 또는 본 발명의 펩타이드 500 μg
구연산 1000mg
올리고당 100g
매실농축액 2g
타우린 1g
정제수를 가하여 전체 900ml
통상의 건강 음료 제조방법에 따라 상기의 성분을 혼합한 다음, 약 1시간 동안 85℃에서 교반 가열한 후, 만들어진 용액을 여과하여 멸균된 용기에 취득하여 밀봉 멸균한 뒤 냉장 보관한 다음 건강 음료 조성물 제조에 사용하였다. 상기 조성비는 비교적 기호 음료에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만 수요계층이나, 수요국가, 사용용도 등 지역적, 민족적 기호도에 따라서 그 배합비를 임의로 변형 실시할 수 있다.
상기에서는 본 출원의 대표적인 실시예를 예시적으로 설명하였으나, 본 출원의 범위는 상기와 같은 특정 실시예만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.

Claims (25)

  1. (i) 서열번호 1의 아미노산 서열을 포함하는 펩타이드; 및 (ii) 서열번호 2의 아미노산 서열을 포함하는 펩타이드;를 포함하는 펩타이드 복합체(peptide complex).
  2. 청구항 1에 있어서, 상기 펩타이드 복합체는 항당뇨 활성을 갖는 것인, 펩타이드 복합체.
  3. 청구항 1의 펩타이드 복합체를 유효성분으로 포함하는 당뇨병의 예방 또는 치료용 약학적 조성물.
  4. 청구항 3에 있어서,
    상기 펩타이드 복합체는 글루코오스의 흡수를 촉진하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  5. 청구항 3에 있어서,
    상기 펩타이드 복합체는 인슐린 저항성 신호를 억제하거나, 인슐린 감수성 신호를 촉진하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  6. 청구항 3에 있어서,
    상기 펩타이드 복합체는 IRS(Insulin receptor kinase)의 Ser302의 인산화 또는 JNK(c-Jun N-terminal kinase)의 인산화를 억제하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  7. 청구항 3에 있어서,
    상기 펩타이드 복합체는 인슐린 저항성 유도 환경하에서, TNF-α 유전자, mTOR (mammalian Target Of Rapamycin) 유전자, 또는 p70S6K 유전자의 발현을 억제하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  8. 청구항 3에 있어서,
    상기 펩타이드 복합체는 IRS (Insulin Receptor Substrate) Tyr632의 인산화의 증가시키거나, PI3K (Phosphoinositide 3-kinase)의 활성화, ATK의 활성화, 또는 AMPK(AMP-activated protein kinase)의 활성화를 촉진하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  9. 청구항 3에 있어서,
    상기 펩타이드 복합체는 Leptin, Adiponectin, IRS-1(Insulin receptor substrate 1), GLUT4(Glucose transporter type 4), PGC-1α, ACOX-1, PPAR-α, 및 CPT-1α 으로 이루어지는 군에서 선택되는 하나 이상의 유전자의 발현을 촉진하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  10. 청구항 3에 있어서,
    상기 펩타이드 복합체는 유리 지방산에 의해 유도되는 활성산소종(ROS)의 생성, TNF-α의 유전자의 발현, TNF-α 단백질의 발현, 또는 IL-1β 단백질의 발현을 억제하거나, 또는 유리지방산에 의해 유도되는 췌장 베타 세포의 사멸을 억제하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  11. 청구항 1의 펩타이드 복합체를 유효성분으로 포함하는 혈당 수준의 조절용 기능성 식품 조성물.
  12. 청구항 11에 있어서,
    상기 펩타이드 복합체는 글루코오스의 흡수를 촉진하는 것인, 혈당 수준의 조절용 기능성 식품 조성물.
  13. 청구항 11에 있어서,
    상기 펩타이드 복합체는 인슐린 저항성 신호를 억제하거나, 또는 인슐린 감수성 신호를 촉진하는 것인, 혈당 수준의 조절용 기능성 식품 조성물.
  14. 서열번호 2의 아미노산 서열을 포함하는 펩타이드.
  15. 청구항 14에 있어서, 상기 펩타이드는 항당뇨 활성 또는 항비만 활성을 갖는 것인, 펩타이드.
  16. 청구항 14의 펩타이드를 유효성분으로 포함하는 당뇨병의 예방 또는 치료용 약학적 조성물.
  17. 청구항 16에 있어서,
    상기 펩타이드는 인슐린 저항성 신호를 억제하거나, 인슐린 민감성 신호를 촉진하는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  18. 청구항 16에 있어서,
    상기 펩타이드는 IRS(Insulin receptor substrate)의 Ty632의 인산화 촉진, phospho-AKT의 활성화 촉진, 또는 AMPK의 인산화 촉진 활성을 갖거나;
    또는, 인슐린 저항성 유도 환경하에서 IRS의 Sre302의 인산화 억제 활성을 갖는 것인, 당뇨병의 예방 또는 치료용 약학적 조성물.
  19. 청구항 14의 펩타이드를 유효성분으로 포함하는 비만의 예방 또는 치료용 약학적 조성물.
  20. 청구항 19에 있어서,
    상기 펩타이드는 지방세포에서 지방의 분해를 촉진하는 것인 비만의 예방 또는 치료용 약학적 조성물.
  21. 청구항 19에 있어서,
    상기 펩타이드는 지방세포에서 지방 분해 효소 단백질인 ATGL (Adipose triglyceride lipase), pHSL (phosphorylated Hormone-Sensitive Lipase), 또는 PLIN (Perilipin, lipid droplet-associated protein)의 발현을 증가시키는 것인, 비만의 예방 또는 치료용 약학적 조성물.
  22. 청구항 14의 펩타이드를 유효성분으로 포함하는 혈당 수준의 조절용 기능성 식품 조성물.
  23. 청구항 22에 있어서,
    상기 펩타이드는 인슐린 저항성 신호를 억제하거나, 인슐린 민감성 신호를 촉진하는 것인, 혈당 수준의 조절용 기능성 식품 조성물.
  24. 청구항 14의 펩타이드를 유효성분으로 포함하는 비만의 예방 또는 개선용 기능성 식품 조성물.
  25. 청구항 24에 있어서,
    상기 펩타이드는 지방세포에서 지방의 분해를 촉진하는 것인 비만의 예방 또는 개선용 기능성 식품 조성물.
PCT/KR2022/005466 2022-03-24 2022-04-15 항당뇨 활성을 갖는 펩타이드, 펩타이드 복합체 및 이의 용도 WO2023182567A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0036947 2022-03-24
KR1020220036947A KR20230138832A (ko) 2022-03-24 2022-03-24 항당뇨 활성을 갖는 펩타이드 복합체 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2023182567A1 true WO2023182567A1 (ko) 2023-09-28

Family

ID=88101752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005466 WO2023182567A1 (ko) 2022-03-24 2022-04-15 항당뇨 활성을 갖는 펩타이드, 펩타이드 복합체 및 이의 용도

Country Status (3)

Country Link
KR (1) KR20230138832A (ko)
TW (1) TW202346313A (ko)
WO (1) WO2023182567A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669140B1 (ko) * 2015-04-28 2016-10-26 (주)케어젠 항비만 및 항당뇨 효능을 갖는 펩타이드 및 이의 용도
KR20180043428A (ko) * 2016-10-19 2018-04-30 (주)케어젠 항비만 및 항당뇨 효능을 갖는 펩타이드 및 이의 용도
US10501516B2 (en) * 2016-05-24 2019-12-10 Takeda Pharmaceutical Company Limited Peptide compound
KR20200003369A (ko) * 2017-05-04 2020-01-09 폴리쿰 에이비 당뇨병 치료용 펩타이드

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669140B1 (ko) * 2015-04-28 2016-10-26 (주)케어젠 항비만 및 항당뇨 효능을 갖는 펩타이드 및 이의 용도
US10501516B2 (en) * 2016-05-24 2019-12-10 Takeda Pharmaceutical Company Limited Peptide compound
KR20180043428A (ko) * 2016-10-19 2018-04-30 (주)케어젠 항비만 및 항당뇨 효능을 갖는 펩타이드 및 이의 용도
KR20200003369A (ko) * 2017-05-04 2020-01-09 폴리쿰 에이비 당뇨병 치료용 펩타이드

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN ANONYMOUS : "Expansin-A8 [Zea mays]", XP093095609, retrieved from NCBI *

Also Published As

Publication number Publication date
TW202346313A (zh) 2023-12-01
KR20230138832A (ko) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2012124888A2 (en) Composition comprising the extract of herbal combination for preventing or treating diabetic peripheral neuropathy
WO2018124508A1 (ko) 3,5-디카페오일퀴닉에시드 또는 국화 추출물을 함유하는 근육 질환 예방 및 치료용 또는 근 기능 개선용 조성물
WO2013147419A1 (en) A composition comprising the compound isolated from chrysanthemum indicum for treating or preventing cerebrovascular system involved anxiety and the use thereof
WO2019098699A1 (ko) 다이터펜계 화합물을 포함하는 신경퇴행성 질환 예방 또는 치료용 조성물
WO2020218720A1 (ko) 익모초 추출물 또는 레오누린을 함유하는 근육 질환 예방 또는 치료용 또는 근 기능 개선용 조성물
WO2016080796A2 (ko) 세스퀴테르펜 화합물을 포함하는, stat3 매개 질환의 예방 또는 치료용 약학적 조성물 및 이의 용도
WO2016048005A2 (ko) 신규한 펜타디에노일 피페리딘 유도체 및 그의 용도
WO2012134172A2 (ko) 오미자 에틸아세테이트 분획물 또는 이로부터 분리한 우웨이지수 c를 유효성분으로 포함하는 비만 예방 또는 치료용 조성물
WO2023182567A1 (ko) 항당뇨 활성을 갖는 펩타이드, 펩타이드 복합체 및 이의 용도
WO2020242113A1 (ko) 인디안구스베리 추출물과 새싹보리 추출물의 복합물(ib복합물)을 유효성분으로 포함하는 비만 및/또는 당뇨를 동반하는 대사증후군의 예방, 개선 치료용 조성물
WO2020166779A1 (ko) 하이드란제놀을 유효성분으로 하는 지방형성 억제 및 체지방 감소용 조성물
WO2016133352A1 (ko) 아모디아퀸을 유효성분으로 함유하는 대사성 질환의 예방, 개선, 또는 치료용 조성물
WO2018221922A1 (ko) 황련 추출물을 함유하는 근육관련 질환의 예방 및 치료용 조성물 및 이의 용도
WO2012081831A2 (en) Composition comprising the extract of loranthus yadoriki sieb having monoamine oxidase-inhibiting activity
WO2020189911A1 (ko) 노르안하이드로이카리틴을 포함하는 심혈관 대사 질환의 예방 또는 치료용 조성물
WO2016190689A2 (ko) 근육 질환 예방, 개선 또는 치료용 또는 근 기능 개선용 조성물
WO2013111924A1 (ko) 넓패 유래 신규 화합물 및 이의 용도
WO2010143825A2 (en) Anti-arthritic agent using cyathula officinalis
WO2020130696A1 (ko) Cyp4a 저해 화합물을 유효성분으로 포함하는 대사질환의 예방 또는 치료용 조성물
WO2020080641A1 (ko) 지노스테마 론기페스 vk1 추출물 또는 이로부터 분리한 화합물을 유효성분으로 포함하는 ampk 관련 질환 예방 또는 치료용 조성물
WO2014168458A1 (en) Use of compounds isolated from morus bark
WO2011081231A1 (ko) 호장근 부탄올 분획물 또는 에칠아세테이트 분획물을 이용한 비만 치료 및 예방용 조성물과 기능성 식품
WO2018066969A1 (ko) 아라자임을 유효성분으로 함유하는 대사성 질환의 예방 또는 치료용 약학적 조성물
WO2018105999A1 (ko) 이리도이드 유도체 화합물을 유효성분으로 함유하는 남성 불임증 예방 및 치료용 조성물 및 이의 용도
WO2023055200A1 (ko) 커피체리 추출물을 포함하는 대사증후군의 예방, 개선 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933740

Country of ref document: EP

Kind code of ref document: A1