WO2013111924A1 - 넓패 유래 신규 화합물 및 이의 용도 - Google Patents

넓패 유래 신규 화합물 및 이의 용도 Download PDF

Info

Publication number
WO2013111924A1
WO2013111924A1 PCT/KR2012/001529 KR2012001529W WO2013111924A1 WO 2013111924 A1 WO2013111924 A1 WO 2013111924A1 KR 2012001529 W KR2012001529 W KR 2012001529W WO 2013111924 A1 WO2013111924 A1 WO 2013111924A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
methanol
present
diabetes
octafluoresle
Prior art date
Application number
PCT/KR2012/001529
Other languages
English (en)
French (fr)
Inventor
전유진
강성명
이승홍
이대호
강민철
Original Assignee
제주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120007275A external-priority patent/KR101273071B1/ko
Priority claimed from KR1020120007807A external-priority patent/KR101392478B1/ko
Priority claimed from KR1020120013648A external-priority patent/KR101647682B1/ko
Application filed by 제주대학교산학협력단 filed Critical 제주대학교산학협력단
Publication of WO2013111924A1 publication Critical patent/WO2013111924A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/295Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings containing hydroxy or O-metal groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the present invention is a novel compound octaphlorethol A (octaphlorethol A), which is isolated and identified from Ishige foliacea belonging to the brown algae in seaweed, a method for preparing the same, and the use thereof, specifically for the prevention or treatment of metabolic diseases including diabetes It relates to the use as a composition.
  • octaphlorethol A octaphlorethol A
  • Algae are nutrient-rich foods that contain large amounts of various inorganic salts that are essential for good health, and at the same time, they also contain large amounts of nutrients such as proteins. In addition, it contains a lot of vegetable fiber alginic acid, calcium ion and iodine to help the colon's peristalsis, prevent osteoporosis, and inhibit thyroid edema, as well as antibacterial, anti-cancer, antioxidant, etc. It is known to have activity. Therefore, recently, studies to discover bioactive substances useful for various human bodies from these algae have been continued. For example, seaweeds have been successful in separating phospholipids that exhibit antioxidant activity (Kaneda T, Ando H. 1971.
  • 2003-0015536 discloses that the extract of the broadleaf has a whitening activity, in addition to the Republic of Korea Patent No. 0386417 has a strong antifouling activity against marine attachment organisms It is disclosed that it can be used for antifouling agent development.
  • the present inventors have identified a novel compound having a physiological activity useful in the human body from the broadening, and confirmed their hypoglycemic and metabolic disease inhibitory activity.
  • diabetes mellitus is defined as a series of metabolic diseases characterized by hyperglycemia, and is known to be caused by glucose levels in abnormally high plasma in humans and mammals. In addition, these abnormal glucose levels raise the level of hemoglobiin in plasma, chronic hyperglycemia, atherosclerosis, micro angiopathy, kidney disease, heart disease, diabetic retinopathy. It causes a series of complications such as diabetic retinopathy and cataracts.
  • type 1 diabetes diabetes is classified into two types, namely type 1 diabetes and type 2 diabetes.
  • Insulin dependent type I diabetes mellitus insulin dependent diabetes, IDDM
  • IDDM insulin dependent diabetes mellitus
  • Type II non-insulin dependent diabetes, NIDDM
  • Type I insulin dependent diabetes mellitus
  • NIDDM non-insulin dependent diabetes, NIDDM
  • Type II diabetes occurs mainly after the age of 40, and occupies most of the diabetic patients in Korea.
  • type I it is called adult-type diabetes and the cause of the disease is not known yet, but it is known that it is caused by genetic factors and environmental factors.
  • the etiology of type II diabetes is observed in both pancreatic beta-cells with impaired insulin secretion and insulin-targeted defects (insulin resistance) in target cells, although it is not yet clear which changes are of primary importance.
  • Agents currently used for complications such as type II diabetes and insulin resistance include five groups of compounds: biguanides, thiazolidinediones, sulfonylureas, and benzoic acid.
  • Derivative compounds and ⁇ -glucosidase inhibitors are used.
  • biguanide compounds such as metformin are known to interfere with excessive blood gluconeogenesis.
  • Thiazolidinedione compounds are thought to act to increase glucose consumption in peripheral nerves, benzoic acids such as sulfonylureas, repaglinide compounds such as tolbutamide and glyburide
  • A-glucosidase inhibitors such as derivatives and acarbose, act to stimulate insulin secretion and lower plasma glucose.
  • sulfonylurea compounds cannot be administered to insulin-dependent type I diabetic patients, and non-insulin-dependent type II diabetic patients have reduced insulin secretion, female fetuses abnormal fetal birth, abortion and stillbirth. May cause side effects such as stillbirth.
  • most sulfonylurea compounds should be administered carefully to patients with impaired liver and kidney function due to the metabolism of sulfonylureas.
  • biguanide-containing preparations such as metformin
  • biguanide compounds are unable to increase pancreatic insulin secretion, they lower blood sugar more effectively than sulfonylureas and the frequency of hypoglycemia induction. low.
  • it can cause nausea, vomiting, diarrhea and rash at the beginning of administration, and can cause side effects such as fatal lactic acidosis, so it can be used only as a clinical reagent in the United States.
  • Another representative metabolic disease is obesity, which is a biological phenomenon caused by the interaction of genetic, metabolic, environmental, and behavioral complex factors. have a body mass index of 30 or more (30% of standard weight) or BMI of 27 or more and other circulatory diseases such as diabetes, hypertension, or hyperlipidemia Is classified as obesity.
  • Obesity is an important cause of various adult diseases associated with insulin resistance, diabetes, hypertension, cancer, gallbladder disease, hyperlipidemia, arteriosclerosis, and the immune system in obese patients or animals.
  • the cause of obesity known to date is genetic predisposition of more than 70%, and other environmental factors such as high-fat diet and lack of exercise, etc. are known, but in recent years, attention is drawn to the imbalance between the amount of energy consumed and the amount of energy consumed. ought. This is due to the rapid increase in the incidence rate even though the genetic predisposition has not changed much in the past decades. Therefore, the genetic and environmental complex factors that destroy the energy balance are important factors for weight determination. Is recognized.
  • Acomplia suppresses appetite by acting as an antagonist of CB1 receptors that regulate appetite in the brain, while Exorix has a heat-generating effect, thereby increasing the body's basic metabolism and inhibiting gastrointestinal lipase, thereby lowering fat absorption.
  • these anti-obesity agents have low side effects such as decreased fat-soluble vitamin absorption, high blood pressure, depression, anxiety, suicidal thoughts, and the like, and thus, the development of improved anti-obesity drugs is needed. Since there is no satisfactory therapeutic effect, the development of new obesity treatments is required.
  • lipid-related metabolic disease refers to blood lipids among diseases caused by metabolic disorders in vivo, and specifically includes fatty liver, type 2 diabetes, hyperlipidemia, cardiovascular disease, arteriosclerosis, and lipid-related metabolic syndrome. do.
  • Metabolic syndrome refers to a disease in which various metabolic diseases such as diabetes and obesity occur in one person at the same time, and such lipid-related metabolic diseases need to be developed as effective as obesity.
  • another object of the present invention to provide a composition for the prevention or treatment of metabolic diseases, including diabetes mellitus containing the novel compounds.
  • the present invention provides a novel compound represented by the following formula (1).
  • the IUPAC name of the compound is "2- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy)-" 3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) -2,6-dihydrate Roxyphenoxy) benzene-1,3,5-triol "(2- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) benzene-1,3,5-triol)
  • the compound was named "Octaphlorethol A".
  • the compound may be derived from Ishige foliacea.
  • the present invention provides a method for preparing the 'octafloresol A' compound.
  • the method comprises the steps of pulverizing a broad leaf; Adding ethanol or methanol to the broadleaf powder to obtain a broadleaf extract; Hexane, chloroform and ethyl acetate are sequentially added to the obtained extract to fractionate the hexane, chloroform and ethyl acetate fractions, respectively; And performing silica gel chromatography on the fractionated ethyl acetate fractions using chloroform and methanol solvent.
  • the method may further comprise performing column chromatography using a methanol solvent on the fraction obtained by performing the silica gel chromatography.
  • the column chromatography may be Sephadex LH-20 (Sephadex LH-20) column chromatography.
  • methanol which is an elution solvent used when the Sephadex LH-20 column chromatography is performed, may be 100% methanol.
  • the method high-performance liquid chromatography (HPLC) using methanol and acetonitrile solvent to the fraction obtained by performing the silica gel chromatography or the fraction obtained by performing the column chromatography. It may further comprise the step.
  • methanol which is an elution solvent used when performing the high performance liquid chromatography (HLPC) may be 30 to 40% methanol.
  • the broad leaf extract may be obtained by adding ethanol or methanol to the broad leaf powder and extracted for 20 to 28 hours at a temperature of 20 ⁇ 40 °C.
  • the silica gel chromatography may be performed by mixing the chloroform: methanol in a ratio of 50: 1 to 0: 1.
  • the present invention provides a composition for the prevention or treatment of metabolic diseases containing the 'octafloresol A' compound as an active ingredient.
  • the compound may be derived from a broad leaf.
  • the compound may be prepared by the method for producing 'octafluoresle A' of the present invention.
  • the 'octafluoresol A' may include: obtaining methanol extracts by adding methanol to the broadleaf powder; Adding ethyl acetate with water to the obtained extract to obtain an ethyl acetate fraction; Performing silica gel chromatography on the ethyl acetate fraction using chloroform and methanol solvent; Performing column chromatography on a fraction obtained through the silica gel chromatography using a methanol solvent; And it may be obtained by a method comprising the step of performing a high performance liquid chromatography (HLPC) again for the fraction obtained through the column chromatography.
  • the column chromatography may be Sephadex LH-20 column chromatography.
  • the metabolic disease may be selected from the group consisting of blood sugar-related diseases including diabetes, hypertension, obesity, hyperlipidemia, fatty liver, cardiovascular disease, and arteriosclerosis.
  • the 'octafluoresle A' compound contained in the composition of the present invention is not limited thereto, lowering blood sugar, inhibiting the activity of angiotensin converting enzyme (ACE), fat tax It may have any one or more activities selected from the group consisting of inhibition of differentiation of captive cells and inhibition of fat accumulation in cells.
  • ACE angiotensin converting enzyme
  • the hypoglycemic activity is not limited thereto, but the action of inhibiting carbohydrate digestive enzymes, promoting glucose uptake in muscle, and / or improving insulin resistance of the 'octaflolesol A' compound It may be represented by.
  • the composition is not limited thereto, but the composition may include an 'octaflolesol A' compound at a concentration of 10 ⁇ m to 200 ⁇ M.
  • the present invention also provides a food composition for the prevention or improvement of metabolic diseases containing the 'octafloresol A' compound as an active ingredient.
  • the metabolic disease may be selected from the group consisting of blood sugar-related diseases including diabetes, hypertension, obesity, hyperlipidemia, fatty liver, cardiovascular disease, and arteriosclerosis.
  • the present invention provides a method for preventing or treating metabolic diseases including diabetes using the 'octafloresol A' compound.
  • Octalolesol A compound of the present invention reduces blood sugar in animal models, has excellent inhibitory activity of carbohydrate digestive enzymes, and promotes glucose uptake into muscles, resulting in diabetes or diabetes complications caused by hyperglycemia. Can be prevented and treated. In addition, it has the activity of inhibiting the activity of angiotensin converting enzyme (ACE), inhibiting the differentiation into adipocytes, and inhibiting the accumulation of fat in cells, which can be used for the prevention and treatment of various metabolic diseases caused by other metabolic disorders. Can be.
  • ACE angiotensin converting enzyme
  • Figure 1 shows a schematic diagram of a method for extracting and purifying novel compounds from the broad leaf according to the present invention.
  • Figure 2 shows a schematic diagram of a process for separating the octafluoresle A compound having a hypoglycemic and metabolic disorder inhibitory activity from the broadening in one embodiment of the present invention.
  • Figure 3 shows the chromatogram analyzed by ESI-mass analysis of the new compounds extracted and separated from the broad leaf.
  • Figure 4 shows the results of performing the NMR analysis for the structural analysis of the new compound extracted and separated from the broad leaf.
  • 5 is a graph measuring the inhibitory activity of alpha-glucosidase of the octafluoresle A compound.
  • Figure 6 is a graph measuring the inhibitory activity of alpha-amylase of the octafluoresle A compound.
  • Figure 7 is a graph measuring the hypoglycemic effect of octafluoresle A compound in streptozotocin (STZ) -induced diabetic rats.
  • 9 is a graph measuring the degree of glucose uptake into muscle cells of the octafluoresle A compound.
  • Figure 10 shows the results of confirming the glucose uptake mechanism of the octafluoresle A compound into muscle cells through Western blot.
  • Figure 11 shows a graph measuring the blood glucose lowering effect of the octafluoresle A compound in type 2 diabetes model mice.
  • 12 is a graph measuring the effect of the octafluoresle A compound on the concentration of insulin in the blood of type 2 diabetic rats.
  • FIG. 13 is a graph showing the results of analyzing the degree of inhibition of ACE after treating the octafluores A compound of the present invention by concentration in one embodiment of the present invention.
  • Figure 14 shows the results of measuring the effect of the octafluores A compound of the present invention on the cell survival rate of adipocytes for each treatment concentration.
  • Figure 15 is a graph showing the degree of fat accumulation and the photograph observed using Oil Red O staining to analyze the degree of fat accumulation inhibition of octafluoresle A compound.
  • the present invention is characterized in that it provides a novel compound isolated from the shell, a method for preparing the same, and a use thereof as a composition for preventing or treating a metabolic disease.
  • the novel compound isolated from the broad leaf according to the present invention is a compound represented by Chemical Formula 1, which is 2- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (3,5-dihydroxyphenoxy)) -3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) benzene-1,3,5- It has the chemical name of triol (IUPAC name).
  • the compound according to the present invention may also be used in the form of a salt, preferably a pharmaceutically acceptable salt, wherein the salt is preferably an acid addition salt formed by a pharmaceutically acceptable free acid.
  • the free acid may be an organic acid or an inorganic acid.
  • the organic acid is not limited thereto, citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, metasulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, Glutamic acid and aspartic acid.
  • the inorganic acid may include, but is not limited to, hydrochloric acid, bromic acid, sulfuric acid, and phosphoric acid.
  • novel compounds isolated from the broadening according to the invention can be isolated from nature or can also be prepared by chemical synthesis methods known in the art.
  • novel compounds of the present invention can be obtained from broad strips using methods of extracting and separating conventional materials, wherein said compounds according to the present invention are known to those skilled in the art to which the present invention belongs. It can be extracted and separated from the strip using.
  • the novel compound according to the present invention comprises the steps of powdering a wide plate; Adding ethanol or methanol to the broadleaf powder to obtain a broadleaf extract; Hexane, chloroform and ethyl acetate are sequentially added to the obtained extract to fractionate the hexane, chloroform and ethyl acetate fractions, respectively; And the fractionated ethyl acetate fraction may comprise performing silica gel chromatography using chloroform and methanol solvent.
  • the method for separating and purifying the compound of the present invention from the widespread first, the widespread can be used if all the widespread sold on the market, in one embodiment of the present invention directly collected from the coast of Jeju with water A wide wash was used several times.
  • the obtained slabs may be first powderized, wherein the slabs may be lyophilized and then pulverized using a grinder, and powdered to a size of 50 mesh or less.
  • an organic solvent may be obtained by adding an organic solvent to the broad leaf powder to obtain an organic solvent extract of the broad leaf.
  • the organic solvent may be used as ethanol or methanol.
  • the amount of ethanol or methanol added may be added 10 to 15 times the weight of the powder.
  • the solvent extraction process of extracting by adding ethanol or methanol may be performed under the conditions of temperature and time generally used in the art, but preferably, ethanol or methanol is added to the broadened powder and 20 at a temperature of 20 to 40 ° C. Extraction can be obtained for ⁇ 28 hours.
  • the centrifugation process may be performed for 10 to 20 minutes to remove the unextracted residues, and further, the residues collected through centrifugation in order to obtain as much compound as possible from the broad leaf. Extraction of the method using the organic solvent for the same can be repeated two to three times the extraction.
  • hexane, chloroform and ethyl acetate may be sequentially added to the obtained extract to fractionate the hexane, chloroform and ethyl acetate fractions.
  • Such a process can obtain each fraction using various organic solvents, since the active compound contained in the wide plate can be obtained in the highest yield in a specific solvent fraction having the highest solubility.
  • Hexane, chloroform and ethyl acetate were used for this purpose.
  • the extract obtained by using ethanol or methanol to obtain each fraction of the organic solvent is first removed by using a vacuum condenser to remove the ethanol or methanol components, and further suspended by adding distilled water to the suspension.
  • Each solvent may be added to to sequentially obtain a solvent fraction.
  • the yield of the active ingredient (compound) of the broad leaf contained in the solvent fraction obtained by using each solvent was found to be able to obtain a fraction of 7.5g when using hexane, 4.5 g of chloroform and 15.5 g of ethyl acetate were used to obtain the highest amount of active ingredient.
  • the subsequent process was performed on the ethyl acetate fraction showing the highest yield of each solvent fraction, that is, the purification process may be performed by performing silica gel chromatography with fractionated ethyl acetate fraction.
  • chloroform and methanol solvent may be used as the separation solvent (elution solvent).
  • ethyl acetate fraction is injected into silica gel chromatography, and the chloroform: methanol solvent is mixed at a ratio of 10: 1 to 0: 1. It can be done by mixing.
  • the material obtained by performing the purification process can identify what kind of material through the structure and chemical formula of the material, in the present invention through mass spectrometry (for example, using ESI-Mass analysis) and nuclear magnetic resonance analysis (NMR) The structure was confirmed.
  • the broad compound derived from the compound identified through one embodiment of the present invention was shown to have a structure of the formula (1), the inventors named it 'octafloresol A'.
  • the fraction obtained through the silica gel chromatography may be further performed by high performance liquid chromatography further using a variety of organic solvents.
  • the process of separating the octafluoresol A compound having a blood sugar lowering and metabolic disorder inhibitory activity from the broad leaf adding methanol to the broad leaf powder to obtain a broad leaf methanol extract; Adding ethyl acetate with water to the obtained extract to obtain an ethyl acetate fraction; Ethyl acetate fractions are subjected to silica gel chromatography using chloroform and methanol solvent; Fractions obtained through silica gel chromatography were subjected to Sephatex LH-20 column chromatography using methanol solvent; And fractions obtained through Sephatex LH-20 column chromatography may be obtained by performing high performance liquid chromatography (HLPC).
  • HLPC high performance liquid chromatography
  • the obtained extract is then concentrated, the concentrate can be dissolved in water, and ethyl acetate can be added thereto to obtain an ethyl acetate fraction.
  • the obtained ethyl acetate fraction may then be subjected to various column chromatography to obtain a fraction containing the octafluoresol A compound, preferably, silica gel chromatography may be carried out for purification.
  • the silica gel chromatography may use chloroform and a methanol solvent as a separation solvent (elution solvent).
  • elution solvent elution solvent
  • ethyl acetate fraction is injected into silica gel chromatography, and the chloroform: methanol solvent is mixed at a ratio of 50: 1 to 1: 1. It can be done by mixing.
  • the fraction obtained through silica gel chromatography may be subjected to Sephadex LH-20 column chromatography again, using 100% methanol as a separation solvent.
  • the fraction obtained by performing Sephadex LH-20 column chromatography can be again subjected to the purification process by high-sol liquid chromatography, it can be carried out using 30 to 40% methanol as a separation solvent.
  • the novel compound 2- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (3,5-dihydroxyphenoxy) -3,5), which is the main component of the broadening according to the method described above -dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) -2,6-dihydroxyphenoxy) benzene-1,3,5-triol And may provide a method for preparing such novel compounds.
  • the octafluoresle A compound purified by the method of the present invention has an activity of lowering blood sugar, which is characterized by preventing and treating diabetes.
  • the results of analyzing the effects on the activity of the carbohydrate digestive enzymes alpha-glucosidase and alpha-amylase to determine whether the octafluoresle A compound inhibits the activity of carbohydrate digestive enzymes In addition, the inhibitory activity of alpha-glucosidase and alpha-amylase was increased in proportion to the concentration of the treated octafluoresle A compound, and this inhibitory activity was associated with the conventional alpha-glucosidase and alpha-amylase inhibitory activity. It was shown to be similar or better than acarbose known to have (see FIGS. 5 and 6).
  • carbohydrate digestive enzymes are enzymes that break down carbohydrates in a diet from polysaccharides to disaccharides and to monosaccharides.
  • Inhibitors that inhibit carbohydrate digestive enzymes can slow the digestion and absorption of carbohydrates by retarding the increase in postprandial blood sugar.
  • the octafluores A compound of the present invention is used for the prevention and treatment of diabetes mellitus by reducing blood sugar levels. You can see that it can be used.
  • the present inventors were able to confirm this fact through an experiment in an animal model, that is, according to another embodiment of the present invention, as a result of treating the octafluoresle A compound in a mouse inducing diabetes, It was found that the action to reduce the blood sugar of (see FIGS. 7 and 8).
  • diabetes Diabetes mellitus
  • IDDM Insulin-dependent diabetes
  • NIDDM type-II diabetes
  • the disease is called adult-type diabetes and is known to be caused by a disorder of insulin secretion in pancreatic beta cells and a deficiency of insulin action (insulin resistance) in target cells.
  • type 2 diabetes is associated with decreased insulin activity in peripheral tissues such as liver, muscle, and fat cells, resulting in decreased glucose utilization.
  • peripheral tissues such as liver, muscle, and fat cells
  • glucose utilization increases glucose levels in the pancreatic beta cells.
  • type 2 diabetes occurs because insulin secretion does not follow insulin resistance with reduced insulin action.
  • insulin is secreted, but in the peripheral tissues such as liver, muscle, and fat cells where insulin acts, insulin activity decreases and glucose utilization decreases, thereby increasing blood sugar and correspondingly in the beta cells of the pancreas. It is accompanied by hyperinsulinemia, in which insulin is secreted continuously.
  • the present inventors confirmed that the octafluoresol compound acts to absorb glucose into muscle cells.
  • the octafloressol compound increases the expression of Akt, AMPK and GLUT4 proteins, which are essential proteins for glucose absorption into muscle. It was found that octafluoresce A absorbs glucose into muscle through the mechanism by which glucose transporter GLUT4 moves to the cell membrane and absorbs glucose into cells due to the activity of Akt and AMPK. See FIG. 10).
  • octafluoresle A has an activity of inhibiting blood glucose increase and a decrease in blood insulin content in a type 2 diabetic animal model (see FIGS. 11 and 12). ).
  • the present inventors can prevent and treat impaired glucose tolerance and hyperinsulinemia due to insulin resistance observed in the early stages of diabetes mellitus, and thus diseases such as lipid metabolism disorder, hypertension and coronary artery caused by diabetes and hyperinsulinemia. It was found that it can be used as a treatment for.
  • the octafluoresle A compound purified by the method of the present invention has an inhibitory activity against angiotensin converting enzyme (ACE), inhibits the differentiation of fat cells from fat cells and fat accumulation in cells. It is characterized by having activity.
  • ACE angiotensin converting enzyme
  • Angiotensin converting enzyme is a dicarboxy peptide found in the proximal tubules of the blood vessels and kidneys, endothelial, heart, lungs, activated macrophages, and brain tissues. It is used in the renin-angiotensin system, a mammalian blood pressure and water balance regulator. Angiotensin I, activated from angiotensinogen, is converted to angiotensin II. Angiotensin II acts on four types of AT receptors present in the adrenal glands, vascular smooth muscle cells, kidneys, and heart.
  • angiotensin I converting enzyme [EC 3.4.15.1, ACE: peptidyldipeptide hydrolase] is known to be involved.
  • the inactive angiotensin I present in the living body is converted into angiotensin II having a vasoconstrictive effect by dipeptide by ACE, and the blood pressure rises by inactivating bradykinin, a blood pressure lowering factor in vivo.
  • angiotensin converting enzyme inhibitors or angiotensin converting enzyme inhibitors are reported to be able to treat or prevent cardiovascular diseases such as hypertension, heart disease, arteriosclerosis, or cerebral hemorrhage or kidney disease, and many studies have been conducted. It is becoming.
  • the octafluoresle A compound of the present invention has an activity of inhibiting angiotensin converting enzyme, and thus metabolic diseases such as hypertension, hyperlipidemia, fatty liver, cardiovascular disease or atherosclerosis Can be prevented or treated.
  • the cells treated with different concentrations of the octafluoresol A compound to the concentration of fat in the cells As a result, the degree of fat accumulation was reduced in proportion to the concentration of the octafluoresle A compound (see FIG. 15).
  • the present inventors use the octafluoresle A compound to treat metabolic diseases by inhibiting the activity of angiotensin converting enzyme (ACE), inhibiting differentiation into adipocytes, and inhibiting fat accumulation in cells.
  • ACE angiotensin converting enzyme
  • the present invention provides a pharmaceutical composition for lowering blood sugar and a composition for preventing or treating metabolic diseases, which contain an octafluoresle A compound as an active ingredient.
  • composition according to the present invention may contain a pharmaceutically effective amount of the octafluoresle A compound, wherein the pharmaceutically effective amount is to prevent, improve the symptoms of diseases, such as diabetes mellitus or diabetes complications that require hypoglycemic And an amount sufficient to treat.
  • diseases such as diabetes mellitus or diabetes complications that require hypoglycemic And an amount sufficient to treat.
  • the pharmaceutically effective amount of octafluoresol A according to the present invention is 0.5 to 100 mg / day / kg body weight, preferably 0.5 to 5 mg / day / kg body weight.
  • the pharmaceutically effective amount may be appropriately changed according to the degree of diabetes or diabetic complication symptoms, the age, weight, health condition, sex, route of administration and duration of treatment of the patient.
  • pharmaceutically acceptable refers to a composition that is physiologically acceptable and does not normally cause an allergic reaction, such as gastrointestinal disorders, dizziness, or the like when administered to a human.
  • carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, Polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
  • compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the formulations may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders.
  • composition according to the invention can be administered via several routes including oral, transdermal, subcutaneous, intravenous or intramuscular, the dosage of the active ingredient being determined by several factors such as the route of administration, the age, sex, weight and severity of the patient. It may be appropriately selected depending on.
  • composition according to the present invention can be administered in parallel with known compounds having the effect of preventing, ameliorating or treating the symptoms of diabetes or diabetic complications.
  • the present invention can provide a medicament capable of preventing and treating the symptoms of diabetes mellitus or diabetic complications comprising a composition containing octafluoresle A or a pharmaceutically acceptable salt thereof as an active ingredient.
  • composition of the present invention can be used as a pharmaceutical composition for the purpose of preventing and improving the symptoms of diabetes or diabetic complications as described above or for the purpose of preventing and treating the symptoms of metabolic diseases, as well as the above diseases. It can be used as a composition for food for the manufacture of health functional food showing the prevention and improvement effect of.
  • composition for food of the present invention can be easily utilized as a food, such as a main raw material, an auxiliary material, a food additive, a functional food or a beverage that is effective in preventing and improving the disease.
  • the term “food” refers to a natural product or processed product containing one or more nutrients, and preferably means a state in which it can be directly eaten through a certain processing step, It includes all foods, food additives, functional foods and drinks.
  • Foods to which the composition for preventing and improving diabetes, diabetic complications or metabolic disease symptoms according to the present invention can be added include, for example, various foods, beverages, gums, teas, vitamin complexes, and functional foods.
  • food includes special nutritional products (e.g., formulated milk, young, infant food, etc.), processed meat products, fish products, tofu, jelly, noodles (e.g. ramen, noodles, etc.), bread, health supplements, seasonings.
  • Foods e.g. soy sauce, miso, red pepper paste, mixed soy sauce
  • sauces confectionery (e.g. snacks), candy, chocolates, gums, ice creams, dairy products (e.g.
  • fermented milk, cheese, etc. other processed foods
  • kimchi, Pickled foods various kimchi, pickles, etc.
  • beverages e.g., fruit drinks, vegetable drinks, soy milk, fermented beverages, etc.
  • natural seasonings e.g. ramen soup, etc.
  • the food, beverage or food additives may be prepared by a conventional manufacturing method.
  • the term "functional food” refers to the control of biological defense rhythms and disease prevention of food groups or food compositions that have added value to the food by using physical, biochemical, or biotechnological techniques to act and express the function of the food for a specific purpose. It means a food that is designed and processed to fully express the body's regulatory function regarding recovery and the like, and specifically, it may be a health functional food.
  • the functional food may include food acceptable food additives, and may further include appropriate carriers, excipients and diluents commonly used in the manufacture of functional foods.
  • the "beverage” refers to a generic term for drinking to quench thirst or to enjoy a taste and includes a functional drink.
  • the beverage is not essential in addition to the composition for the prevention and amelioration of the disease as an essential ingredient in the indicated ratio, there is no particular limitation and may contain various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks have.
  • the food containing the composition for the prevention and improvement of the symptoms of diabetes mellitus, diabetic complications or metabolic diseases of the present invention in addition to the above-described flavors such as various nutrients, vitamins, minerals (electrolytes), synthetic flavors and natural flavors Agents, colorants and fillers (cheese, chocolate, etc.), pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners, pH adjusting agents, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated drinks, and the like. It may contain, the components can be used independently or in combination.
  • the present invention can provide a dietary supplement comprising octafluores A and food acceptable food additives that exhibit the prevention and improvement effect of diabetes mellitus, diabetic complications or metabolic diseases.
  • the amount of the composition according to the present invention may comprise from 0.001% to 90% by weight of the total food weight, preferably Preferably it may be included in an amount of 0.1% to 40% by weight, and in the case of a beverage, it may be included in a ratio of 0.001g to 2g, preferably 0.01g to 0.1g based on 100ml, but for health and hygiene purposes
  • the range may be below the above range, and the active ingredient is not limited to the above range because the active ingredient may be used in an amount above the above range because there is no problem in terms of safety.
  • Seaweed algae were collected directly from the coast of Jeju, washed several times with water to remove foreign substances, stored in a deep-temperature freezer (-70 °C), and the frozen samples were lyophilized and then powdered to a size of 50 mesh or less. And prepared.
  • the broad organic solvent extract obtained in ⁇ 1-1> was removed by using a vacuum condenser to remove ethanol or methanol components, and then suspended by adding distilled water thereto, followed by hexane, chloroform and ethyl. Ethyl acetate was added sequentially to obtain each solvent fraction. The fractions were then weighed by removing the solvent through a reduced pressure rotary concentrator. As a result, the hexane fraction was 7.5g, the chloroform fraction was 4.5g, the ethyl acetate fraction was 15.5g, and the highest yield was obtained. The procedure was followed with ethyl acetate fraction.
  • the compound identified through the method of the present invention was a compound having the structure of Chemical Formula 1, and ESI-mass analysis showed that the molecular weight was 994 MW.
  • the molecular formula was found to be C 48 H 34 O 24 and the inventors of the present invention identified the compound of the formula (I) identified in the present invention "2- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4
  • the compound identified in the present invention was found to have 24 double bonds and 17 hydroxyl groups (molecular groups) through the molecular formula, it can be seen that consists of a structure of eight rings.
  • the present inventors determined the structure of the compound separated and identified by 1 H and 13 C NMR analysis using a DMSO solvent. The results are shown in FIG. 4, and the NMR analysis results are as described below. .
  • ⁇ 13 C is ⁇ 153.0 (s, C-1), 153.0 (s, C-3), 156.1 (s, C-5), 152.9 (s, C-8), 151.1 (s, C-10), 152.9 (s, C-12), 151.1 (s, C-14), 154.5 (s, C-16), 151.1 (s, C-18), 151.1 (s, C-20), 151.1 (s, C -24), 154.1 (s, C-25), 154.1 (s, C-22), 151.1 (s, C-27), 151.1 (s, C-29), 154.0 (s, C-31), 150.8 (s, C-33), 150.8 (s, C-35), 156.2 (s, C-37), 152.7 (s, C-39), 152.7 (s, C-41), 161.0 (s, C- 43), 158.6 (s, C-45), 161.0 (s, C-47), 122.0 (s, C-2), 122.0 (s, C-7), 122.0 (s, C-9), 122.0 ( s, C-13), 123.4 (s
  • High-quality broad-leaf plaques were selected from the seaweeds collected directly from the coast of Jeju, washed several times, lyophilized, and then powdered using a grinder with a kiki of 50 mesh or less. Subsequently, 5L of 80% methanol was added to 50 g of the powdered broad leaf, soaked the broad leaf powder, solvent extraction at 20 ° C. for 24 hours, followed by centrifugation at low temperature to remove the residue, and the supernatant was washed with Whatman No. Filtered using 4). The filtered methanol extract was concentrated using a vacuum condenser to obtain a methanol extract of the broad leaf.
  • the inhibitory activity of alpha-glucosidase was measured as follows. First, dissolve 2 g / L BSA (bovineserum albumin) and 0.2 g / L sodium azide (NaN3) in 100 ml of 100 mM PBS, and then dissolve 0.7 U yeast ⁇ -glucosidase (Sigma) 0.008 g to prepare an enzyme solution. P-nitrophenyl- ⁇ -D-glucopyranoside was dissolved in PBS at a concentration of 5 mM to prepare a substrate solution.
  • BSA bovineserum albumin
  • NaN3 sodium azide
  • P-nitrophenyl- ⁇ -D-glucopyranoside was dissolved in PBS at a concentration of 5 mM to prepare a substrate solution.
  • the octafluoresle A compound isolated in the present invention inhibited the activity of the alpha-glucosidase, a carbohydrate digestive enzyme, in a concentration-dependent manner.
  • the commercially available alpha-glucosidase inhibitor acarbose showed better inhibitory activity.
  • Table 1 below shows the concentrations of octafluoresce A and acarbose that inhibit 50% of alpha-glucosidase, indicating that octafluoresce A inhibits 50% of alpha glucosidase at a much lower concentration than acarbose. Can be.
  • the present inventors confirmed that the octafluoresle A identified in the present invention has better alphaglucosidase inhibitory activity than the conventional alpha glucosidase inhibitor acarbose. It was found that it can be used for.
  • the inhibitory activity of alpha-amylase, a carbohydrate digestive enzyme of octafluoresle A was measured by the following method.
  • an enzyme solution was prepared by dissolving 0.1 g / L BSA, 0.01 g / L sodium azide (NaN3), and 0.2857 g of porcine pancreas ⁇ -amylase (Sigma) in 50 ml of PBS.
  • P-nitrophenyl- ⁇ -D-maltopentoglycoside (Sigma) was dissolved in PBS at a concentration of 5 mM to prepare a substrate solution.
  • octafluoresle A was shown to inhibit the activity of the carbohydrate digestive enzyme alpha-amylase in a concentration-dependent manner, and the group treated with octafluoresle A at a concentration of 0.25 mg / ml was acarbose known as an alpha amylase inhibitor. It can be seen that it shows a similar inhibitory activity.
  • Table 2 shows the concentrations of octafluoresle A and acarbose that inhibit 50% of alpha-amylase, and it was found that octafluoresce A inhibits 50% of alpha amylase at a lower concentration than acarbose. Therefore, the present inventors have found that the octafluoresle A compound has better alpha-amylase inhibitory activity than acarbose, which is used to inhibit the activity of the conventional alpha-amylase.
  • ICR mice Four-week-old male ICR mice were purchased from a central laboratory animal and used for experiments after adapting to a diet for two weeks. The experimental group was randomly assigned to the normal group and the STZ-administered diabetic group. The temperature and humidity of the feeding room were maintained at 20 ⁇ 2 °C, 50 ⁇ 10%, the contrast was adjusted every 12 hours, diet and drinking water was to be ingested freely. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 150mg / kg of body weight) dissolved in 0.1M citrate buffer (pH4.5) in 12-hour fasting ICR mice assigned to STZ-administered diabetic group.
  • STZ streptozotocin
  • STZ-administered fasting blood samples were collected from ICR mice tail vein and the blood glucose measured by liver glucose level was considered to be diabetes.
  • the STZ-induced diabetic and normal groups were divided into control, octafluorescelain, and acarbose-administered groups by the ingot method. ICR mice were fasted for 12 hours, and blood samples were collected from the tail vein.
  • the control group was a group administered with soluble starch (2 g / kg of body weight) to the ICR mice, the experimental group was administered octafluoresol eruul and the acarbose group as a positive control group, the experimental group and the positive control group Oral administration of chlorinated starch (2 g / kg of body weight) to ICR mice incubated for 12 hours by dissolving octafluoresle A (100 mg / kg of body weight) and acarbose (100 mg / kg of body weight) in distilled water. It was. Blood glucose was measured by collecting blood from the tail vein at a defined time (0, 30, 60, 120 minutes) after administration.
  • the group treated with the octafluoresle A compound of the present invention was shown to reduce blood sugar in the animal model of diabetes-induced, in particular, the starch dose 60 After minutes, the blood sugar level was lower than that of the control group.
  • the starch was administered to the STZ-induced diabetic rats, the blood glucose level was increased in the control group, whereas the octafluoresle A group maintained the blood sugar level lower than the control group. It was similar to acarbose, a hypoglycemic agent, after eating.
  • Figure 8 is a graph measuring the hypoglycemic effect of octafluoresle A in normal rats, it was shown that the octafluoresle A administration group maintains a lower blood sugar level than the control group, like acarbose in normal mice.
  • the blood glucose change after starch administration to the fasting control group was significantly increased at 30, 60, 90 and 120 minutes, whereas the group administered with starch and octafluoresle A were significantly lower than postprandial blood sugar compared to the control group. It has been shown to decrease the increase.
  • octafluoresle A improves postprandial blood sugar increase similarly to acarbose, which is used as a hypoglycemic agent after meals.
  • mice Five-week-old male ICRC57BL / 6 db / db mice were purchased from a central laboratory animal and used for experiments after adapting to a general diet for 4 weeks.
  • the experimental group was randomly assigned to the control group, 2.5 mg / kg B.W administration group of octafluoresle A, and 5 mg / kg B.W administration group of octafluoresle A.
  • the experiment was conducted for a total of two weeks, and the octafluoresle A group was administered intraperitoneally once a day at the above doses.
  • the temperature and humidity of the feeding room were maintained at 20 ⁇ 2 °C, 50 ⁇ 10%, the contrast was adjusted every 12 hours, diet and drinking water was to be ingested freely.
  • Body weight and fasting blood glucose were measured at a constant time during the experiment. Fasting blood glucose was measured by fasting the db / db mice for 12 hours every night and then collecting blood from the tail vein. After two weeks of experiments, blood was collected from db / db mice and centrifuged to separate plasma. Insulin concentrations were measured using the separated plasma using a Rat / Mouse Insulin ELISA kit following the ELISA method.
  • the present inventors measured the concentration of insulin in the blood two weeks after the start of the experiment, and as a result, as shown in FIG. 12, the administration group of octafluoresle A showed a lower insulin content in blood compared to the control group, in particular, octa Floresol A 5 mg / kg BW administration group was about 2 times lower than the control group.
  • hyperinsulinemia is known as an important cause of lipid metabolism disorder, hypertension and coronary atherosclerosis.
  • the present inventors have found that the octafluoresle A compound of the present invention has an effect of improving insulin resistance through the above-described results of the present invention.
  • Muscle cells (L6) used in the experiment were purchased from Korea Cell Line Bank and cultured in 37 ° C., 5% carbon dioxide (CO 2 ) incubator in DMEM medium containing 10% FBS and 1% antibiotics. When the undifferentiated muscle cells (L6) grew 70-80%, the cells were replaced with DMEM medium containing 2% horse serum and induced differentiation for 7 days, and the medium was changed every two days.
  • Differentiated muscle cells were starvated in serum-free DMEM medium for 4 hours and washed with PBS. Subsequently, it was replaced with new serum-free DMEM and treated with octafluoresle A. At this time, the control group was treated with insulin, a blood glucose reducing hormone. Glucose uptake was measured by measuring the amount of glucose contained in the medium to calculate the amount of glucose moved into the cell, the calculated degree of glucose uptake into the muscle cells of the calculated octafluoresle A is shown in FIG.
  • the present inventors confirmed that the octafluoresle A of the present invention has an effect of promoting glucose uptake into muscle cells.
  • the cells used in the experiment of ⁇ 4-2> were collected and the cells were eluted with lysis buffer. Afterwards, the cell eluate was separated into cell membrane and cytoplasm, and the protein content was measured, respectively, and the expression of GLUT4 contained in the same amount of cell membrane protein.
  • Anti-GLUT4 antibody was used for the expression of phospho-Akt and phospho-AMPK in the same cytoplasmic protein.
  • Anti-phospho-Akt (Ser 473) and anti-phospho-AMPK (Thr 172) were used, respectively. Western blot method was performed.
  • octafluoresle A was shown to increase the amount of protein expression of Akt (insulin-dependent), AMPK (insulin-independent) and GLUT4, which is essential for glucose uptake into muscle. It was also confirmed that pretreatment with Akt and AMPK inhibitors decreased protein expression. These results indicate that glucose uptake into myocytes by octafluoresle A is achieved by glucose transporter GLUT4, which is activated by Akt and AMPK, to the cell membrane and glucose uptake into cells. In conclusion, octafluoresle A activates both Akt and AMPK. Thus, GLUT4 is transported to the cell membrane, indicating that glucose is absorbed into muscle.
  • ACE angiotensin converting enzyme
  • IC 50 value means the concentration required to inhibit ACE activity by 50%, ACE inhibitory activity was calculated by the following equation.
  • Inhibition% (Ac-As) / (Ac-Ab)
  • the octafluoresol A of the present invention was shown to act to inhibit the ACE activity, the degree of ACE inhibition was further increased in proportion to the concentration of octafloresol A.
  • 3T3-L1 cell lines were obtained from the American Type Culture Collection (Rockville, MD, USA), 37 ° C., using DMEM medium (Gibco BRL) containing 1% PS and 10% fetal bovine serum. Incubated under 5% carbon dioxide for the differentiation of cell-to-fat cells, cell-cells were treated with MDI differentiation medium (1% PS, 10% FBS, 0.5 mM IBMX, 0.25 ⁇ M dexamethasone and 5 ⁇ g / ml insulin).
  • MDI differentiation medium 1% PS, 10% FBS, 0.5 mM IBMX, 0.25 ⁇ M dexamethasone and 5 ⁇ g / ml insulin.
  • DMEM medium Gibco BRL
  • fetal bovine serum fetal bovine serum
  • the present inventors analyzed the effect of octafluoresle A compound on the cell viability and the degree of cytotoxicity, which was measured by MTT analysis. That is, the cells were dispensed into 96-well plates in an amount of 1 ⁇ 10 4 cells / well, and after 24 hours, the cells were treated with a peptide having antihypertensive activity and then cultured for 72 hours. MTT stock solution (100 ⁇ l; 2 mg / ml in PBS) was then added to each well and incubated at 37 ° C. for 4 hours. After removing the fat on the plate, dimethyl sulfoxide (dimethyl sulfoxide) was added to dissolve the MTT- Formazan complex. Optical concentration was measured at 540 nm.
  • the octafluoresle A compound of the present invention showed a cell viability of about 80% or more when treated to a concentration of 100uM, and showed a cell survival rate of 60% at a concentration of 200uM On the other hand, at 400 uM, the cell survival rate was less than 20%.
  • Oil Red O staining was performed to analyze the effect of octafluoresle A compound on fat accumulation.
  • the cells were transferred to 6-well plates to induce localization of 3T3-L1 cell cells, and then cultured for 2 days to allow the cells to grow to the plate. Subsequently, the medium was replaced with a differentiation medium (DMEM containing 10% FBS, 0.5 mM IBMX, 0.25 ⁇ MDex and 10 ⁇ g / ml insulin), and the octafluoresle A compound was added at each concentration (0, 12.5, 25, 50 uM).
  • DMEM differentiation medium
  • the cells were incubated for 2 days, and then the culture medium was replaced with adipocyte growth medium (DMEM medium added with 10% FBS and 5 ⁇ g / ml insulin) every 2 days.
  • adipocyte growth medium DMEM medium added with 10% FBS and 5 ⁇ g / ml insulin
  • the cells were then stained with Oil Red O, a marker of fat content in the cells, ie, the cells were washed with phosphate-buffered saline, fixed with 10% formalin solution, and then Oil Red O solution (0.5 g in 100 ml isopropanol) for 10 minutes. After removing the staining solution, the cells were decolorized using isopropanol, and the optical density was measured at 520 nm.
  • the present inventors have found that the octafluoresle A compound of the present invention has antihypertensive activity and fat accumulation inhibitory activity, and thus can be used as a therapeutic agent for preventing or treating metabolic diseases such as hypertension and obesity. .
  • the present invention reveals a novel compound belonging to the brown algae and is known as the main component of the broad leaf known for its antimicrobial activity and whitening activity, and by providing a method for producing the same, effectively obtain a useful physiologically active substance from marine resources as a natural material, and various industrial fields I suggested a method that can be used for The octafluoresle
  • a compound of the present invention exhibits activities such as lowering blood sugar, inhibiting angiotensin converting enzyme activity, inhibiting adipocyte differentiation, inhibiting fat accumulation in cells, and the like for preventing and treating metabolic diseases including diabetes mellitus, and Functional food industry and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 해조류 중 갈조류에 속하는 넓패(Ishige foliacea)로부터 분리 및 동정한 신규 화합물인 옥타플로레솔 에이(octaphlorethol A), 이의 제조방법, 및 이의 당뇨병을 포함한 대사성 질환의 예방 또는 치료 용도에 관한 것이다. 본 발명의 '옥타플로레솔 에이' 화합물은 동물모델에서 혈당을 감소시켰으며, 탄수화물 소화효소의 저해 활성이 우수하고, 근육내로의 포도당 흡수 촉진 효과가 있어, 고혈당에 의해 유발되는 당뇨병 또는 당뇨 합병증을 예방 및 치료할 수 있다. 또한, 안지오텐신 전환효소(angiotensin converting enzyme, ACE)의 활성 억제, 지방세포로의 분화억제, 세포 내 지방 축적 억제 활성을 가지고 있어 그 외의 대사조절 이상으로 유발되는 각종 대사성 질환의 예방 및 치료 용도로 활용될 수 있다.

Description

넓패 유래 신규 화합물 및 이의 용도
본 발명은 해조류 중 갈조류에 속하는 넓패(Ishige foliacea)로부터 분리 및 동정한 신규 화합물인 옥타플로레솔 에이(octaphlorethol A), 이의 제조방법, 및 이의 용도, 구체적으로 당뇨병을 포함한 대사성 질환의 예방 또는 치료용 조성물로서의 용도에 관한 것이다.
해조류는 양적으로 매우 풍부하게 먹을 수 있는 식품으로써 건강에 필수적인 여러 가지 무기염류들을 다량 함유하고 있고, 동시에 단백질 같은 인체 구성 영양소도 다량 함유하고 있다. 또한, 식물성 섬유인 알긴산과 칼슘이온 및 요오드 성분을 많이 포함하고 있어서 대장의 연동운동을 도와주고 골다공증을 예방해주며, 갑상선 부종을 억제시키는 역할을 하는 것으로 알려져 있을 뿐만 아니라 항균, 항암, 항산화 등 많은 생리활성을 갖고 있다고 알려져 있다. 따라서 최근에는 이러한 해조류로부터 각종 인체에 유용한 생리활성 물질을 발굴하려는 연구가 지속되고 있다. 일예로 해조류 중 김에서는 항산화 활성을 나타내는 인지질(phospholipids)을 분리하는데 성공한 바가 있고(Kaneda T, Ando H. 1971. Component lipids of purple laver and their antioxigenic activity. Proc Int Seaweed Symp 7: 553-557), Yan 등은 갈조류인 Sargassum kjellmanianum로부터 분리한 플로로탄닌(phlorotannins) 성분이 우수한 지질과산화 억제효과를 보인다고 밝힌 바 있다(Yan XJ, Li XC, Zhou CX, Fan X. 1996. Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. J Appl Phycol 8: 201-203).
해조류 중 갈조류에 속하는 넓패는 엽상체가 작은 반상의 기부에서 짧은 원주상의 줄기를 내며, 상부가 넓은 사상 또는 대상을 하고, 차상 분기한다. 정단부는 둥글고 때로 가지 끝 부분의 조직 속에 공기가 있기 때문에 기포처럼 팽대하는 수도 있다. 이러한 넓패는 봄부터 여름까지 생육하며 남해안과 서해안, 제주도 해안에 서식하고 중국, 일본, 멕시코에 분포하는 것으로 알려져 있다. 또한, 넓패가 갖는 다양한 생리활성에 대한 연구도 지속되고 있는데, 종래 연구결과를 살펴보면, 대한민국등록특허 제0745021호에는 넓패 추출물이 여드름 원인균에 대한 항균활성을 가지고 있어 여드름 피부용 화장료 조성물로 사용할 수 있다는 내용이 개시되어 있고, 대한민국공개특허 제2003-0015536호에는 넓패 추출물이 미백활성을 가지고 있다는 내용이 개시되어 있으며, 이외에도 대한민국등록특허 제0386417호에는 넓패가 해양 부착 생물에 대하여 강한 방오 활성을 가지고 있어 이를 방오제 개발에 사용할 수 있다는 내용이 개시되어 있다.
그러나 아직까지 넓패가 가지는 다양한 생리활성 작용이 구체적으로 어떤 성분에 의한 것인지는 알려져 있지 않고 있다. 이에 본 발명자들은 넓패로부터 인체에 유용한 생리활성을 갖는 신규 화합물을 동정하고, 이들의 혈당강하 및 대사질환 억제 활성을 확인하였다.
우리 국민의 당뇨병으로 인한 사망률은 1990년에 인구 십만명 당 11.8명에서 2000년에는 22.6명으로 최근 10년 사이에 91.5%가 증가하였으며, 시간이 경과할수록 그 수는 더욱 증가하여 현재 한국인의 사망요인 중 당뇨병이 제 4위를 차지하고 있다(Korea National Statistical Office. Annual Report on the Cause of Death Statistics 19. 1999; Korea National Statistical Office. Annual Report on the Cause of Death Statistics 21. 2002).
일반적으로 당뇨병(Diabetes mellitus)이란, 고혈당을 특징으로 하는 일련의 대사 질환군으로 정의되고 있으며, 인간 및 포유류에서 나타나는 비정상적으로 높은 혈장내의 포도당(glucose) 수치에 의해 발생하는 질환으로 알려져 있다. 또한, 이러한 비정상적인 당 수치는 혈장내의 헤모글로빈(hemoglobiin)의 수치를 높이게 되며, 만성적인 고혈당증 (hyperglycemia), 아테롬성 동맥경화증(atherosclerosis), 미세혈관병증(micro angiopathy), 신장 질환, 심장 질환, 당뇨병성 망막증(diabetic retinopathy) 및 백내장과 같은 일련의 합병증을 야기하게 된다.
한편, 당뇨병은 크게 2가지 유형, 즉 제1형 당뇨병과 제2형 당뇨병으로 분류되고 있는데, 인슐린 의존형인 I형 당뇨병(insulin dependent diabetes, IDDM)은 혈액 내의 글루코스 조절 호르몬인 인슐린(Insulin)의 분비 결핍으로 야기되며, 주로 10 내지 20대의 젊은 연령층에서 발병되기 때문에 소아당뇨병(juvenile diabetes)이라 불리기도 한다. Ⅱ형 당뇨병(non-insulin dependent diabetes, NIDDM)은 주로 40대 이후에 발병되며, 우리나라 당뇨병 환자의 대부분을 차지한다. 제 Ⅰ형과는 달리 성인형 당뇨병이라 불리며 발병 원인은 아직 정확히 밝혀져 있지 않으나, 유전적인 요인과 환경적 요소가 함께 관여되어 발생하는 것으로 알려졌다. 제 Ⅱ형 당뇨병의 병인으로 췌장 베타세포에서 인슐린 분비의 장애와 표적세포에서 인슐린 작용의 결함(인슐린 저항성)이 모두 관찰되는데, 이중 어떠한 변화가 일차적 중요성을 갖는지는 아직 확실하지 않다.
현재 제 Ⅱ형 당뇨병 및 인슐린 저항성 같은 합병증에 사용되는 제제로는 5 종류의 화합물군, 즉 비구아니드(biguanides), 티아졸리딘디온(thiazolidinediones), 설포닐우레아(sulfonylureas), 벤조산(benzoic acid) 유도체 화합물 및 α-글루코시다제 저해제(α-glucosidase inhibitor) 등이 사용되고 있으며, 이중 메트포민(metformin)과 같은 비구아니드 화합물은 과도한 혈액 내 글루코네오제네시스(gluconeogenesis)를 방해하는 것으로 알려져 있다. 티아졸리딘디온 화합물은 말초 신경의 글루코스 소비율을 증가시키는 작용을 하는 것으로 생각되며, 콜부타미드(tolbutamide) 및 글리부리드(glyburide)와 같은 설포닐우레아, 레파글리니드(repaglinide) 화합물과 같은 벤조산 유도체 및 아카보스(acarbose)와 같은 α-글루코시다제 저해제는 인슐린 분비를 자극하여 혈장 글루코스를 낮추는 작용을 한다.
그러나 설포닐우레아 화합물은 인슐린 의존형인 제 Ⅰ형 당뇨병 환자에게는 투여할 수 없으며, 비인슐린 의존형인 제 Ⅱ형 당뇨병 환자의 경우는 인슐린 분비의 감소, 여성 환자에게서는 비정상적인 태아 출생, 유산(abortion) 및 사산(stillbirth)과 같은 부작용을 야기할 수 있다. 추가적으로 대부분의 설포닐우레아 화합물은 설포닐우레아의 대사 작용으로 인해 간 및 신장 기능에 장애가 있는 환자에게는 조심스럽게 투여해야 한다.
메트포민과 같은 비구아니드 함유 제제의 메카니즘은 확실하게 규명되지는 않았으나, 비구아니드 화합물은 췌장의 인슐린 분비를 증가시킬 수 없음에도 불구하고 설포닐우레아보다 더 효과적으로 혈당을 강하하고 저혈당 유발의 빈도도 낮다. 그러나 투여 초기에 구역질, 구토, 설사 및 발진 등을 야기할 수 있으며, 치명적인 락트산증(lactic acidosis)과 같은 부작용을 야기할 수 있으므로, 미국 내에서는 임상실험용 시약으로만 사용가능하다.
따라서 설포닐우레아 및 비구아니드 함유 제제들은 이러한 결점 및 부작용을 가지고 있으므로, 낮은 부작용 및 높은 안전성을 갖는 탁월한 혈당강하제가 필요한 실정이다. 또한 현재까지 당뇨병의 완치법은 확립되어 있지 않고, 약물치료의 부작용 때문에 약물사용에 제한점이 많아 천연물로부터 당뇨병치료제를 탐색하려는 연구가 활발히 진행되고 있으며, WHO(1990)에서도 당뇨병에 효과가 있으며 부작용이 적은 천연물의 이용을 적극 추천하였다(Grover J.K., Vats. V., Rathi. S.S., Journal of Ethnopharmacology, 73, pp461-470, 2000). 따라서 혈당을 강하시킬 수 있는 물질로서 천연물 유래의 새로운 약리학적 물질의 발굴이 시급한 실정이다.
또다른 대표적인 대사질환으로 비만을 들 수 있는데, 비만은 유전적, 대사적, 환경적 및 행동학적인 복잡한 요인의 상호작용에 의해 발생하는 생물학적 현상으로 일반적으로 체중과다로 인식되고 있으나 의학적으로는 BMI(body mass index)가 30이상(≒표준체중의 30% 이상)인 경우이거나 BMI가 27이상이며, 기타 순환기계 질환인 당뇨병(diabetes), 고혈압(hypertension), 고지혈증(hyperlipidemia) 등이 연관되어 있는 경우를 비만으로 분류하고 있다.
특히 비만은 인슐린 저항성(insulin resistance), 당뇨병, 고혈압, 암, 담낭질환(gallbladder disease), 고지혈증, 동맥경화 등과 연관되어 각종 성인병을 일으키는 중요한 원인이 되고 있을 뿐 아니라 비만에 걸린 환자나 동물의 경우 면역계에 악화를 초래하는 것이 최근에 알려져 있어 사회적으로 중요한 관심의 대상이 되고 있다. 현재까지 알려진 비만의 원인은 유전적인 소인이 70% 이상으로 알려져 있고 그외 환경요인으로 고 지방식의 섭취나 운동부족 등이 알려져 있지만 최근 들어서는 섭취한 에너지량과 소비하는 에너지량의 불균형에 관심이 모아지고 있다. 이는 지난 수십년간 유전적 소인이 많이 변화하지 않았음에도 발생율은 급속히 증가한 것으로 미루어 유전적 원인으로만 보기는 어렵고 따라서 에너지 균형을 파괴하는 유전적, 환경적 복합 요인이 체중결정(비만발생)의 중요 인자로 인식되고 있다.
따라서 비만의 정확한 원인에 대한 규명이 절실히 요구되고 있다. 현재까지 알려진 비만치료제로는 제니칼(Xenical, 로슈제약회사, 스위스), 리덕틸(Reductil, 에보트사, 미국), 아콤플리아(Acomplia, 사노피아벤티스, 프랑스), 엑소리제(Exolise, 아토파마, 프랑스) 등으로 크게 지방흡수억제제, 식욕억제제, 에너지소비 촉진제로 분류된다. 제니칼의 경우 리파아제 억제제로 소장 및 췌장의 리파아제를 억제하여 지방의 흡수를 방지하는 작용을 하며, 리덕틸의 경우 뇌에서 식욕을 조절하는 호르몬인 노르아드레날린 및 세로토닌의 재흡수를 억제하여 식욕을 억제한다. 또한, 아콤플리아의 경우 뇌에서 식욕을 조절하는 CB1 수용체의 길항제로 작용하여 식욕을 억제하며, 엑소리제의 경우 열생성효과가 있어 신체의 기초대사량을 높여주고, 위장관 리파아제를 억제시켜 지방 흡수를 낮춘다.
그러나 종래 이러한 비만 치료제들은 지용성 비타민 흡수 감소, 고혈압, 우울증, 불안, 자살충동 등의 부작용과 함께 그 효능의 지속성도 낮아, 더욱 개선된 비만치료제의 개발이 필요하고, 현재 개발되고 있는 제품도 부작용 없이 만족할 만한 치료효과를 가지지 못하기 때문에 새로운 비만치료제의 개발이 요구되고 있다.
또한, 지질 관련 대사성 질환은 생체내 물질대사 장애에 의해 발생하는 질환 중 혈중 지질과 관련된 것을 의미하며, 구체적으로 지방간, 제2형 당뇨, 고지혈증, 심혈관 질환, 동맥경화증 및 지질 관련 대사증후군 등을 포함한다. 대사증후군은 당뇨, 비만 등 여러 가지 대사성 질환이 한 사람에게 동시에 나타나는 질환을 의미하며 이러한 지질 관련 대사성 질환 역시 비만과 동일하게 효과적인 치료제의 개발이 필요하다.
본 발명의 목적은 넓패(Ishige foliacea)로부터 분리한 신규 화합물 및 이의 제조방법을 제공하는 것이다. 또한, 본 발명의 다른 목적은 상기 신규 화합물을 함유하는 당뇨병을 포함한 대사성 질환의 예방 또는 치료용 조성물을 제공하는 것이다.
상기한 목적을 달성하기 위해서, 본 발명은 하기 화학식 1로 표시되는 신규 화합물을 제공한다.
<화학식 1>
Figure PCTKR2012001529-appb-I000001
.
상기 화합물의 IUPAC 명칭은 "2-(4-(4-(4-(4-(4-(4-(3,5-디히드록시페녹시)-3,5-디히드록시페녹시)-3,5-디히드록시페녹시)-3,5-디히드록시페녹시)-2,6-디히드록시페녹시)-2,6-디히드록시페녹시)-2,6-디히드록시페녹시)벤젠-1,3,5-트리올" (2-(4-(4-(4-(4-(4-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)benzene-1,3,5-triol)이며, 본 발명자는 위 화합물을 "옥타플로레솔 에이(Octaphlorethol A)"라고 명명하였다.
본 발명의 일실시예에 있어서, 상기 화합물은 넓패(Ishige foliacea)로부터 유래된 것일 수 있다.
또한, 본 발명은 상기 '옥타플로레솔 에이' 화합물을 제조하는 방법을 제공한다. 상기 방법은, 넓패를 분말화하는 단계; 넓패 분말에 에탄올 또는 메탄올을 첨가하여 넓패 추출물을 수득하는 단계; 상기 수득한 추출물에 헥산, 클로로포름 및 에틸아세테이트를 순차적으로 첨가하여 헥산, 클로로포름 및 에틸아세테이트 분획물을 각각 분획화하는 단계; 및 상기 분획화된 에틸아세테이트 분획물에 대하여 클로로포름과 메탄올 용매를 사용하여 실리카겔 크로마토그래피를 수행하는 단계를 포함한다.
본 발명의 일실시예에 있어서, 상기 방법은, 상기 실리카겔 크로마토그래피를 수행하여 얻은 분획물에 대하여 메탄올 용매를 사용하여 컬럼 크로마토그래피를 수행하는 단계를 추가로 포함할 수 있다. 이에 제한되는 것은 아니나, 본 발명의 일실시예에 있어서, 상기 컬럼 크로마토그래피는 세파덱스 LH-20 (Sephadex LH-20) 컬럼 크로마토그래피일 수 있다. 이에 제한되는 것은 아니나, 본 발명의 일실시예에 있어서, 상기 세파덱스 LH-20 컬럼 크로마토그래피를 수행할 때 사용하는 용리 용매인 메탄올은 100% 메탄올일 수 있다.
본 발명의 일실시예에 있어서, 상기 방법은, 상기 실리카겔 크로마토그래피를 수행하여 얻은 분획물 또는 상기 컬럼 크로마토그래피를 수행하여 얻은 분획물에 대하여 메탄올과 아세토니트릴 용매를 사용한 고속액체크로마토그래피(HPLC)를 수행하는 단계를 추가로 포함할 수 있다. 이에 제한되는 것은 아니나, 본 발명의 일실시예에 있어서, 상기 고속액체크로마토그래피(HLPC)를 수행할 때 사용하는 용리 용매인 메탄올은 30~40% 메탄올일 수 있다.
본 발명의 일실시예에 있어서, 이에 제한되는 것은 아니나, 상기 넓패 추출물은 넓패 분말에 에탄올 또는 메탄올을 첨가하고 20~40℃의 온도에서 20~28시간 동안 추출하여 수득한 것일 수 있다.
본 발명의 일실시예에 있어서, 이에 제한되는 것은 아니나, 상기 실리카겔 크로마토그래피는 클로로포름:메탄올의 비가 50:1에서 0:1의 비가 되도록 혼합하여 수행하는 것일 수 있다.
또한, 본 발명은 '옥타플로레솔 에이' 화합물을 유효성분으로 함유하는 대사성 질환의 예방 또는 치료용 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 화합물은 넓패로부터 유래된 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 화합물은, 상기 본 발명의 '옥타플로레솔 에이' 제조방법에 의하여 제조된 것일 수 있다. 이에 제한되는 것은 아니나, 본 발명의 일실시예에 있어서, 상기 '옥타플로레솔 에이'는, 넓패 분말에 메탄올을 첨가하여 넓패 메탄올 추출물을 수득하는 단계; 상기 수득한 추출물에 물과 에틸아세테이트를 첨가하여 에틸아세테이트 분획물을 수득하는 단계; 상기 에틸아세테이트 분획물에 대하여 클로로포름과 메탄올 용매를 사용하여 실리카겔 크로마토그래피를 수행하는 단계; 상기 실리카겔 크로마토그래피를 통해 수득한 분획물에 대하여 메탄올 용매를 사용하여 컬럼 크로마토그래피를 수행하는 단계; 및 상기 컬럼 크로마토그래피를 통해 수득한 분획물에 대하여 다시 고속액체크로마토그래피(HLPC)를 수행하는 단계를 포함하는 방법에 의하여 수득된 것일 수 있다. 이에 제한되는 것은 아니나, 상기 컬럼 크로마토그래피는 세파덱스 LH-20 컬럼 크로마토그래피일 수 있다.
본 발명의 일실시예에 있어서, 이에 제한되는 것은 아니나, 상기 대사성 질환은 당뇨병을 포함한 혈당 관련 질환, 고혈압, 비만, 고지혈증, 지방간, 심혈관 질환 및 동맥경화증으로 이루어진 군 중에서 선택될 수 있다.
본 발명의 일실시예에 있어서, 상기 본 발명의 조성물에 함유된 '옥타플로레솔 에이' 화합물은, 이에 제한되는 것은 아니나, 혈당 강하, 안지오텐신 전환효소(angiotensin converting enzyme, ACE)의 활성 억제, 지방세포로의 분화억제 및 세포 내에서의 지방축적 억제로 이루어진 군 중에서 선택되는 어느 하나 이상의 활성을 가질 수 있다.
본 발명의 일실시예에 있어서, 상기 혈당 강하 활성은, 이에 제한되는 것은 아니나, '옥타플로레솔 에이' 화합물의 탄수화물 소화효소 억제작용, 근육내 포도당 흡수 촉진작용, 및/또는 인슐린 저항성 개선작용에 의해 나타나는 것일 수 있다.
본 발명의 일실시예에 있어서, 이에 제한되는 것은 아니나, 상기 조성물은 '옥타플로레솔 에이' 화합물을 10~200uM의 농도로 포함할 수 있다.
또한, 본 발명은 '옥타플로레솔 에이' 화합물을 유효성분으로 함유하는 대사성 질환의 예방 또는 개선용 식품 조성물을 제공한다.
본 발명의 일실시예에 있어서, 이에 제한되는 것은 아니나, 상기 대사성 질환은 당뇨병을 포함한 혈당 관련 질환, 고혈압, 비만, 고지혈증, 지방간, 심혈관 질환 및 동맥경화증으로 이루어진 군 중에서 선택될 수 있다.
또한, 본 발명은 '옥타플로레솔 에이' 화합물을 이용하여 당뇨병을 포함한 대사성 질환을 예방 또는 치료하는 방법을 제공한다.
본 발명의 '옥타플로레솔 에이' 화합물은 동물모델에서 혈당을 감소시켰으며, 탄수화물 소화효소의 저해 활성이 우수하고, 근육내로의 포도당 흡수 촉진 효과가 있어, 고혈당에 의해 유발되는 당뇨병 또는 당뇨 합병증을 예방 및 치료할 수 있다. 또한, 안지오텐신 전환효소(angiotensin converting enzyme, ACE)의 활성 억제, 지방세포로의 분화억제, 세포 내 지방 축적 억제 활성을 가지고 있어 그 외의 대사조절 이상으로 유발되는 각종 대사성 질환의 예방 및 치료 용도로 활용될 수 있다.
도 1은 본 발명에 따른 넓패로부터 신규 화합물을 추출 및 정제하는 방법을 모식도로 나타낸 것이다.
도 2는 본 발명의 일실시예에서 넓패로부터 혈당 강하 및 대사 장애 억제 활성을 갖는 옥타플로레솔 에이 화합물을 분리하는 과정을 모식도로 나타낸 것이다.
도 3은 넓패로부터 추출 및 분리한 신규 화합물을 ESI-mass 분석으로 분석한 크로마토그램을 나타낸 것이다.
도 4는 넓패로부터 추출 및 분리한 신규 화합물의 구조 분석을 위해 NMR 분석을 수행한 결과를 나타낸 것이다.
도 5는 옥타플로레솔 에이 화합물의 알파-글루코시데이즈의 저해활성을 측정한 그래프이다.
도 6은 옥타플로레솔 에이 화합물의 알파-아밀라제의 저해활성을 측정한 그래프이다.
도 7은 스트렙토조토신(streptozotocin:STZ) 유발 당뇨쥐를 대상으로 옥타플로레솔 에이 화합물의 혈당 강하효과를 측정한 그래프이다.
도 8은 정상쥐에 대한 옥타플로레솔 에이 화합물의 혈당 강하능을 측정한 그래프이다.
도 9는 옥타플로레솔 에이 화합물의 근육세포내로의 포도당 흡수정도를 측정한 그래프이다.
도 10은 옥타플로레솔 에이 화합물의 근육세포내로의 포도당 흡수 작용기작을 웨스턴블롯을 통해 확인한 결과를 나타낸 것이다.
도 11은 제2형 당뇨 모델쥐를 대상으로 옥타플로레솔 에이 화합물의 혈당 강하효과를 측정한 그래프를 나타낸 것이다.
도 12는 제2형 당뇨 모델쥐를 대상으로 옥타플로레솔 에이 화합물이 혈액 내 인슐린의 농도에 미치는 효과를 측정한 그래프이다.
도 13은 본 발명의 일실시예에서 본 발명의 옥타플로레솔 에이 화합물을 농도별로 처리한 뒤, ACE 억제 정도를 분석한 결과를 그래프로 나타낸 것이다.
도 14는 본 발명의 옥타플로레솔 에이 화합물이 지방세포의 세포생존율에 미치는 영향을 처리 농도별로 측정한 결과를 나타낸 것이다.
도 15는 옥타플로레솔 에이 화합물의 지방축적 억제정도를 분석하기 위해 Oil Red O 염색법을 사용하여 관찰한 사진과 지방축적 정도를 그래프로 나타낸 것이다.
본 발명은 넓패로부터 분리한 신규 화합물, 이의 제조방법 및 이의 대사성 질환의 예방 또는 치료용 조성물로서의 용도를 제공함에 그 특징이 있다.
구체적으로 본 발명에 따른 넓패로부터 분리한 신규 화합물은 상기 화학식 1로 표시되는 화합물로서, 2-(4-(4-(4-(4-(4-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)benzene-1,3,5-triol의 화학식명(IUPAC 명명)을 갖는다.
또한, 본 발명에 따른 상기 화합물은 염, 바람직하게는 약학적으로 허용 가능한 염의 형태로도 사용될 수 있는데, 상기 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염이 바람직하며, 상기 유리산으로는 유기산과 무기산을 사용할 수 있다. 상기 유기산은 이에 제한되는 것은 아니나, 구연산, 초산, 젖산, 주석산, 말레인산, 푸마르산, 포름산, 프로피온산, 옥살산, 트리플로오로아세트산, 벤조산, 글루콘산, 메타술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 글루탐산 및 아스파르트산을 포함한다. 또한 상기 무기산은 이에 제한되는 것은 아니나, 염산, 브롬산, 황산 및 인산을 포함할 수 있다.
한편, 본 발명에 따른 상기 넓패로부터 분리한 상기 신규 화합물은 천연으로부터 분리되거나 당업계에 공지된 화학적 합성법으로도 제조할 수 있다.
바람직하게, 본 발명의 신규 화합물은 종래의 물질을 추출 및 분리하는 방법을 사용하여 넓패로부터 수득될 수 있으며, 본 발명에 따른 상기 화합물은 본 발명이 속하는 기술분야의 당업자에게 알려진 추출 및 정제 방법을 이용하여 넓패로부터 추출 및 분리될 수 있다.
보다 바람직하게, 상기 본 발명에 따른 신규 화합물은, 넓패를 분말화하는 단계; 넓패 분말에 에탄올 또는 메탄올을 첨가하여 넓패 추출물을 수득하는 단계; 상기 수득한 추출물에 헥산, 클로로포름 및 에틸아세테이트를 순차적으로 첨가하여 헥산, 클로로포름 및 에틸아세테이트 분획물을 각각 분획화하는 단계; 및 분획화된 에틸아세테이트 분획물은 클로로포름과 메탄올 용매를 사용하여 실리카겔 크로마토그래피를 수행하는 단계를 포함할 수 있다.
보다 구체적으로 본 발명의 화합물을 넓패로부터 분리 및 정제하는 방법을 설명하면, 먼저 상기 넓패는 시중에서 판매하고 있는 넓패라면 모두 사용할 수 있으며, 본 발명의 일실시예에서는 제주연안에서 직접 채취하여 물로 여러 번 깨끗이 세척한 넓패를 사용하였다.
수득한 넓패는 먼저 분말화시키는 단계를 수행할 수 있는데, 이때 상기 넓패는 세척 후 동결건조된 넓패를 분쇄기를 사용하여 분말화할 수 있고, 바람직하게는 50 mesh 이하의 크기가 되도록 분말화 시킨다.
넓패의 분말화 단계가 완료되면, 넓패 분말에 유기용매를 첨가하여 용매 추출을 통해 넓패의 유기용매 추출물을 수득할 수 있는데, 이때 사용할 수 있는 상기 유기용매로는 에탄올 또는 메탄올을 사용할 수 있다. 또한, 첨가하는 에탄올 또는 메탄올의 양은 넓패 분말의 중량에 대해 10~15배로 첨가할 수 있다.
에탄올 또는 메탄올을 첨가하여 추출하는 용매추출 공정은 당업계에 일반적으로 사용되고 있는 온도 및 시간의 조건 하에서 수행할 수 있지만, 바람직하게는 넓패 분말에 에탄올 또는 메탄올을 첨가하고 20~40℃의 온도에서 20~28시간 동안 추출하여 추출물을 수득할 수 있다.
이때, 20℃ 미만의 온도에서 20시간 미만으로 추출을 수행하는 경우, 넓패에 함유된 본 발명의 화합물을 충분한 수율로 추출하지 못하는 문제점이 있으며, 반면 40℃를 넘는 온도(초과 온도)에서 28시간이 초과된 시간으로 추출을 수행하는 경우, 고열과 장시간의 추출반응에 의해 본 발명의 화합물이 가지는 활성이 감소되는 문제점이 발생할 수 있다. 따라서 상기 추출 조건 하에서 반응을 수행하는 것이 바람직하다.
또한, 상기 추출 공정이 완료되면 추출되지 않은 잔사의 제거를 위해 10~20분간 원심분리 과정을 수행할 수 있으며, 나아가 넓패로부터 가능한 많은 함량의 화합물을 수득하기 위해, 원심분리를 통해 수집한 잔사를 대상으로 유기용매를 이용한 상기 방법의 추출을 동일하게 2~3회 반복 추출할 수 있다.
유기용매인 에탄올 또는 메탄올을 이용하여 추출물을 수득하게 되면, 이후 상기 수득한 추출물에 헥산, 클로로포름 및 에틸아세테이트를 순차적으로 첨가하여 헥산, 클로로포름 및 에틸아세테이트 분획물을 각각 분획화할 수 있다.
이러한 공정은 넓패에 함유된 활성 화합물이 가장 용해도가 높은 특정 용매 분획에서 가장 많은 수율로 수득할 수 있기 때문에, 각종 유기용매를 이용한 각 분획물을 수득할 수 있는데, 본 발명에서는 유기용매 분획물의 제조를 위해 헥산, 클로로포름 및 에틸아세테이트를 사용하였다.
또한, 바람직하게 유기용매의 각 분획물을 수득하기 위해 먼저 에탄올 또는 메탄올을 이용하여 수득한 추출물은 감압 회전농축기를 이용하여 에탄올 또는 메탄올 성분을 제거하고, 여기에 다시 증류수를 첨가하여 현탁시킨 후, 현탁액에 각 용매를 첨가하여 순차적으로 용매 분획물을 수득할 수 있다.
여기서 본 발명의 일실시예에 의하면, 각각의 용매를 이용하여 수득한 용매분획물에 함유된 넓패의 유효성분(화합물)의 수율은 헥산을 이용한 경우 7.5g의 분획물을 수득할 수 있는 것으로 나타났고, 클로로포름을 사용한 경우에는 4.5g을, 에틸아세테이트를 사용한 경우에는 15.5g으로 가장 많은 양의 유효성분을 수득할 수 있는 것으로 나타났다.
따라서 이후 과정은 각 용매 분획물 중 가장 많은 함량의 수율을 보인 에틸아세테이트 분획물을 대상으로 수행하였는데, 즉 분획화된 에틸아세테이트 분획물을 가지고 실리카겔 크로마토그래피를 수행하여 정제 과정을 수행할 수 있다.
이때 상기 실리카겔 크로마토그래피는 분리용매(용출용매)로서 클로로포름과 메탄올 용매를 사용할 수 있으며, 바람직하게는 실리카겔 크로마토그래피에 에틸아세테이트 분획물을 주입하고 클로로포름: 메탄올 용매를 10:1~0:1의 혼합비로 혼합하여 수행할 수 있다.
이렇게 정제과정을 수행하여 수득한 물질은 상기 물질의 구조 및 화학식 규명을 통해 어떤 물질인지 확인할 수 있는데, 본 발명에서는 질량분석(예컨대, ESI-Mass 분석 사용) 및 핵자기 공명분석(NMR)을 통해 구조를 확인하였다.
본 발명의 일실시예를 통해 확인된 넓패 유래 신규 화합물은 상기 화학식 1의 구조를 갖는 것으로 나타났으며, 본 발명자들은 이를 '옥타플로레솔 에이'라 명명하였다.
나아가 본 발명의 경우, 상기 실리카겔 크로마토그래피를 통해 수득한 분획물은 추가로 다양한 유기용매를 추가로 더 사용하여 고속액체크로마토그래피를 수행할 수도 있다.
본 발명의 일실시예에 있어서, 넓패로부터 혈당 강하 및 대사 장애 억제 활성을 갖는 옥타플로레솔 에이 화합물을 분리하는 과정은, 넓패 분말에 메탄올을 첨가하여 넓패 메탄올 추출물을 수득하는 단계; 상기 수득한 추출물에 물과 에틸아세테이트를 첨가하여 에틸아세테이트 분획물을 수득하는 단계; 에틸아세테이트 분획물은 클로로포름과 메탄올 용매를 사용하여 실리카겔 크로마토그래피를 수행하는 단계; 실리카겔 크로마토그래피를 통해 수득한 분획물은 메탄올 용매를 사용하여 세파텍스 LH-20 컬럼 크로마토그래피를 수행하는 단계; 및 세파텍스 LH-20 컬럼 크로마토그래피를 통해 수득한 분획물은 다시 고속액체크로마토그래피(HLPC)를 수행하는 단계를 포함하여 수득할 수 있다.
메탄올을 이용하여 추출물을 수득하게 되면, 이후 상기 수득한 추출물은 농축하고, 농축물을 물로 용해시킨 다음, 여기에 에틸아세테이트를 첨가하여 에틸아세테이트 분획물을 수득할 수 있다.
수득한 에틸아세테이트 분획물은 이후 다양한 컬럼 크로마토그래피를 수행하여 옥타플로레솔 에이 화합물이 함유된 분획물을 수득할 수 있는데, 바람직하게는 실리카겔 크로마토그래피를 수행하여 정제 과정을 수행할 수 있다.
이때 상기 실리카겔 크로마토그래피는 분리용매(용출용매)로서 클로로포름과 메탄올 용매를 사용할 수 있으며, 바람직하게는 실리카겔 크로마토그래피에 에틸아세테이트 분획물을 주입하고 클로로포름: 메탄올 용매를 50:1~1:1의 혼합비로 혼합하여 수행할 수 있다.
이렇게 실리카겔 크로마토그래피를 통해 수득한 분획은 다시 세파덱스 LH-20 컬럼 크로마토그래피를 수행할 수 있는데, 이때 분리용매로서 100% 메탄올을 사용하여 수행할 수 있다.
세파덱스 LH-20 컬럼 크로마토그래피를 수행하여 얻은 분획물은 다시 고솔액체크로마토그래피를 통해 정제 과정을 다시 수행할 수 있는데, 이때 분리용매로서 30~40% 메탄올을 사용하여 수행할 수 있다.
따라서, 본 발명에서는 상기 기술된 방법에 따라 넓패의 주요성분인 신규 화합물, 2-(4-(4-(4-(4-(4-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)benzene-1,3,5-triol을 제공할 수 있으며, 이러한 신규 화합물을 제조하는 방법을 제공할 수 있다.
또한, 본 발명의 방법으로 정제한 옥타플로레솔 에이 화합물은 혈당을 강하시키는 활성을 가지고 있어 당뇨병을 예방 및 치료할 수 있는 특징이 있다.
즉, 본 발명의 일실시예에 따르면, 옥타플로레솔 에이 화합물이 탄수화물 소화효소의 활성을 제해하는지 확인하기 위해 탄수화물 소화효소인 알파-글로코시데이즈 및 알파-아밀라제의 활성에 미치는 영향을 분석한 결과, 처리한 옥타플로레솔 에이 화합물의 농도에 비례하여 알파-글로코시데이즈 및 알파-아밀라제의 저해 활성이 증가하는 것으로 나타났으며, 이러한 저해 활성은 종래 알파-글로코시데이즈 및 알파-아밀라제 저해 활성을 가지고 있는 것으로 알려진 acarbose와 유사 또는 더 우수한 것으로 나타났다(도 5 및 도 6참조).
일반적으로 탄수화물 소화효소는 식이 중에 함유된 탄수화물을 다당에서 이당으로 또한 단당으로 분해하는 효소로서, 탄수화물 소화효소를 저해하는 저해제는 탄수화물의 소화와 흡수를 지연시켜 식후 혈당 증가를 완화시킬 수 있다.
따라서 탄수화물 소화효소 저해제의 경우, 혈당 증가를 완화시킴을 통해 당뇨병과 같은 혈당 증가로 인해 유발되는 질환의 치료제로 사용하고 있어, 본 발명의 옥타플로레솔 에이 화합물은 당뇨병의 예방 및 치료를 위한 용도로 사용할 수 있다는 것을 알 수 있었다.
나아가 본 발명자들은 이러한 사실을 동물모델을 대상으로 한 실험을 통해 확인할 수 있었는데, 즉 본 발명의 다른 일실시예에 의하면, 당뇨가 유발된 마우스를 대상으로 옥타플로레솔 에이 화합물을 처리한 결과, 혈중의 혈당을 감소시키는 작용을 한다는 것을 알 수 있었다(도 7 및 도 8 참조).
한편, 앞서 종래기술에도 기재된 바와 같이, 일반적으로 당뇨병(Diabetes mellitus)이란, 고혈당을 특징으로 하는 일련의 대사 질환군으로 정의되고 있으며, 이러한 당뇨병은 즉 제1형 당뇨병과 제2형 당뇨병으로 분류되고 있는데, 인슐린 의존형인 I형 당뇨병(insulin dependent diabetes, IDDM)은 혈액 내의 글루코스 조절 호르몬인 인슐린(Insulin)의 분비 결핍으로 야기되며, Ⅱ형 당뇨병(non-insulin dependent diabetes, NIDDM)은 제 Ⅰ형과는 달리 성인형 당뇨병이라 불리며 병인으로 췌장 베타세포에서 인슐린 분비의 장애와 표적세포에서 인슐린 작용의 결함(인슐린 저항성)이 원인으로 알려져 있다.
특히, 제2형 당뇨병은 간, 근육, 지방세포 등의 말초조직에서 인슐린 작용이 저하하여 포도당의 이용이 감소하고 특히 간에서는 포도당의 생성이 증가하여 혈당이 상승할 때 췌장의 베타세포에서 혈당이 상승하는 것을 억제할 수 있을 정도로 인슐린 분비가 충분하지 못할 때 나타나는 질병이다. 즉 제2형 당뇨병은 인슐린 작용이 저하한 인슐린 저항성을 인슐린 분비가 따르지 못해서 발병한다. 또한, 제2형 당뇨병에서는 인슐린이 분비되지만 인슐린이 작용하는 간, 근육, 지방세포 등의 말초조직에서 인슐린의 작용력이 저하하여 포도당의 이용이 감소되므로 혈당이 점점 높아지고 이에 대응하여 췌장의 베타세포에서 지속적으로 인슐린이 분비되는 고인슐린혈증을 동반한다.
또한, 최근 발표된 자료들에 의하면 당뇨병 치료제 개발에 있어서, 우리 몸의 45%를 차지하는 근육에 관심을 갖기 시작했는데, 근육에서 인슐린에 대한 반응성을 증가시켜 혈당을 저하시키는 약제개발은 당뇨병 치료제로서 좋은 타겟이 되고 있으며, 인슐린 반응으로만 포도당 유입이 증가되는 지방이나 간세포와는 달리 근육은 인슐린 의존적과 비의존적인 경로에 의해 포도당이 유입될 수 있다. 따라서 근육에서 포도당의 흡수 촉진 작용을 하는 물질의 경우 당뇨병을 예방하는 치료제로 사용할 수 있다는 내용이 보고된 바 있다.
이에 본 발명자들은 옥타플로레솔 화합물이 근육세포내로 포도당을 흡수하는 작용을 하는지 확인한 결과, 옥타플로레솔 화합물은 근육내로 포도당 흡수에 있어 반드시 필요한 단백질인 Akt와 AMPK 및 GLUT4 단백질의 발현을 증가시키는 활성을 가지고 있다는 것을 알 수 있었고, 따라서 옥타플로레솔 에이는 Akt와 AMPK의 활성으로 인해 포도당수송운반체인 GLUT4가 세포막으로 이동하여 세포내로 포도당을 흡수시키는 기작을 통해 근육내로 포도당을 흡수함을 알 수 있었다(도 10 참조).
또한, 다른 일실시예에 의하면, 옥타플로레솔 에이는 제2형 당뇨병 동물모델에 있어서, 혈당증가를 저해하는 활성을 나타내며, 혈액 내 인슐린 함량을 감소시키는 활성을 나타내었다(도 11 및 도 12 참조).
이로써 본 발명자들은 옥타플로레솔 에이 화합물이 당뇨병 초기에 관찰되는 인슐린 저항성으로 인한 내당능 장애와 고인슐린 혈증을 예방 및 치료할 수 있어, 당뇨병 및 고인슐린 혈증으로 인한 지질대사 장애, 고혈압 및 관상동맥과 같은 질환의 치료제로 사용할 수 있음을 알 수 있었다.
또한, 본 발명의 방법으로 정제한 옥타플로레솔 에이 화합물은 안지오텐신 전환효소(angiotensin converting enzyme, ACE)에 대한 저해 활성을 가지며, 전지방세포에서 지방세포로의 분화를 억제하고 세포 내에서 지방 축적을 억제하는 활성을 갖는 특징이 있다.
안지오텐신 전환효소(ACE)는 혈관과 신장의 근위세뇨관, 내피, 심장, 폐, 활성화된 대식세포, 뇌조직 등에서 발견되는 dicarboxy peptides의 하나로, 포유류의 혈압 및 수분균형 조절기구인 레닌-안지오텐신 시스템에서 레닌에 의해 안지오텐시노겐(angiotensinogen)으로부터 활성화된 안지오텐신 I을 안지오텐신 Ⅱ로 전환시킨다. 안지오텐신 Ⅱ는 부신, 혈관평활근세포, 신장, 심장 등에 존재하는 4종의 AT 수용체(AT receptor)에 작용하며, 이들은 혈관수축, aldosterone과 vasopressin 방출, 세뇨관의 나트륨 흡수, 신장으로의 혈류량 감소 등을 유발함으로써 심혈관, 신장 및 중추신경 부위에 여러 가지 병변을 가져올 수 있는 것으로 보고되고 있다.
또한, 고혈압의 원인으로 레닌-안지오텐신계가 중요한 역할을 하고 있는 것으로 보고되어 있으며, 여기에는 안지오텐신 I 전환효소[EC 3.4.15.1, ACE: peptidyldipeptide hydrolase]라는 단백질이 관여하고 있는 것으로 알려져 있다. 생체 중에 존재하는 불활성형의 안지오텐신 I 은 ACE에 의해 dipeptide가 떨어져 나감으로써 혈관벽 수축 작용이 있는 안지오텐신 Ⅱ로 전환되며, 생체 내 혈압강하 인자인 bradykinin을 불활성화시킴으로써 혈압이 상승하게 된다.
따라서 안지오텐신 전환효소의 저해물질 또는 안지오텐신 전환효소 저해제(ACE inhibitor)는 고혈압, 심장병, 동맥경화 또는 뇌출혈 등의 심혈관계 질환이나 신장병 등을 치료 또는 예방할 수 있는 것으로 보고되고 있으며, 이에 대한 많은 연구가 진행되고 있다.
그러므로 본 발명의 일실시예에 의한 결과를 토대로 볼 때, 본 발명의 옥타플로레솔 에이 화합물은 안지오텐신 전환효소를 저해하는 활성을 가지고 있어 고혈압, 고지혈증, 지방간, 심혈관 질환 또는 동맥경화증과 같은 대사성 질환을 예방 또는 치료할 수 있다.
뿐만 아니라 본 발명의 다른 일실시예에 따르면, 본 발명의 옥타플로레솔 에이 화합물이 지방 축적에 미치는 영향을 확인하기 위해 농도별 옥타플로레솔 에이 화합물을 세포에 처리하고 세포 내에서의 지방 축적 정도를 분석한 결과, 옥타플로레솔 에이 화합물의 농도에 비례하여 지방 축적 정도가 감소되는 것으로 나타났다(도 15 참조).
이러한 결과를 통해 본 발명자들은 옥타플로레솔 에이 화합물이 지방축적으로 인한 대사성 질환을 예방 치료할 수 있다는 것을 알 수 있었다.
그러므로 본 발명자들은 옥타플로레솔 에이 화합물이 안지오텐신 전환효소(angiotensin converting enzyme, ACE)의 활성 억제, 지방세포로의 분화억제 및 세포 내에서의 지방축적 억제 활성을 가짐으로써 대사성 질환을 치료할 수 있는 용도로 사용할 수 있다는 것을 알 수 있었다.
그러므로 본 발명은 옥타플로레솔 에이 화합물을 유효성분으로 함유하는 혈당 강하용 약학적 조성물 및 대사성 질환의 예방 또는 치료용 조성물을 제공한다.
상기 본 발명에 따른 조성물은 옥타플로레솔 에이 화합물을 약학적으로 유효한 양으로 함유할 수 있는데, 여기서 약학적으로 유효한 양이란 혈당 강하가 필요한 질환의 증상, 예컨대 당뇨병 또는 당뇨 합병증의 증상을 예방, 개선 및 치료하기에 충분한 양을 말한다.
본 발명에 따른 옥타플로레솔 에이의 약학적으로 유효한 양은 0.5 ~ 100 mg/day/체중kg, 바람직하게는 0.5 ~ 5 mg/day/체중kg이다. 그러나 상기 약학적으로 유효한 양은 당뇨병 또는 당뇨 합병증 증상의 정도, 환자의 연령, 체중, 건강상태, 성별, 투여 경로 및 치료기간 등에 따라 적절히 변화될 수 있다.
또한, 상기에서 "약학적으로 허용되는"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.
또한, 본 발명의 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말의 형태일 수 있다.
본 발명에 따른 조성물은 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있으며, 활성 성분의 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등의 여러 인자에 따라 적절히 선택될 수 있다.
또한, 본 발명에 따른 조성물은 당뇨병 또는 당뇨 합병증의 증상을 예방, 개선 또는 치료하는 효과를 가지는 공지의 화합물과 병행하여 투여할 수 있다.
따라서 본 발명은 옥타플로레솔 에이 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 조성물을 포함하는 당뇨병 또는 당뇨 합병증의 증상을 예방 및 치료할 수 있는 약제를 제공할 수 있다.
나아가 본 발명의 조성물은 상기 기술한 바와 같이 당뇨병 또는 당뇨 합병증의 증상을 예방 및 개선하기 위한 목적 또는 대사성 질환의 증상을 예방 및 치료하기 위한 목적에 따른 약학적 조성물로 사용할 수 있을 뿐만 아니라, 상기 질환의 예방 및 개선 효과를 나타내는 건강기능식품의 제조를 위한 식품용 조성물로 사용할 수 있다.
그러므로 본 발명의 식품용 조성물은 상기 질환의 예방 및 개선에 효과가 있는 식품, 예컨대, 식품의 주원료, 부원료, 식품 첨가제, 기능성 식품 또는 음료로 용이하게 활용할 수 있다.
본원에서 상기 “식품”이란, 영양소를 한 가지 또는 그 이상 함유하고 있는 천연물 또는 가공품을 의미하며, 바람직하게는 어느 정도의 가공 공정을 거쳐 직접 먹을 수 있는 상태가 된 것을 의미하며, 통상적인 의미로서, 식품, 식품 첨가제, 기능성 식품 및 음료를 모두 포함하는 것을 말한다.
본원발명에 따른 당뇨병이나 당뇨 합병증 또는 대사성 질환 증상의 예방 및 개선용 조성물을 첨가할 수 있는 식품으로는 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제, 기능성 식품 등이 있다. 추가로, 본원발명에서 식품에는 특수영양식품(예, 조제유류, 영,유아식 등), 식육가공품, 어육제품, 두부류, 묵류, 면류(예, 라면류, 국수류 등), 빵류, 건강보조식품, 조미식품(예, 간장, 된장, 고추장, 혼합장 등), 소스류, 과자류(예, 스넥류), 캔디류, 쵸코렛류, 껌류, 아이스크림류, 유가공품(예, 발효유, 치즈 등), 기타 가공식품, 김치, 절임식품(각종 김치류, 장아찌 등), 음료(예, 과실 음료, 채소류 음료, 두유류, 발효음료류 등), 천연조미료(예, 라면 스프 등)을 포함하나 이에 한정되지 않는다. 상기 식품, 음료 또는 식품첨가제는 통상의 제조방법으로 제조될 수 있다.
또한, 상기 “기능성 식품”이란 식품에 물리적, 생화학적, 생물공학적 수법 등을 이용하여 해당 식품의 기능을 특정 목적에 작용, 발현하도록 부가가치를 부여한 식품군이나 식품 조성이 갖는 생체방어리듬조절, 질병방지와 회복 등에 관한 체내조절기능을 생체에 대하여 충분히 발현하도록 설계하여 가공한 식품을 의미하며, 구체적으로는 건강 기능성 식품일 수 있다. 상기 기능성 식품에는 식품학적으로 허용 가능한 식품 보조 첨가제를 포함할 수 있으며, 기능성 식품의 제조에 통상적으로 사용되는 적절한 담체, 부형제 및 희석제를 더욱 포함할 수 있다.
또한, 본원발명에서 상기“음료”란 갈증을 해소하거나 맛을 즐기기 위하여 마시는 것의 총칭을 의미하며 기능성 음료를 포함한다. 상기 음료는 지시된 비율로 필수 성분으로서 상기 질환의 예방 및 개선용 조성물을 포함하는 것 외에 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다.
또한, 상기 기술한 것 이외에 본원발명의 당뇨병, 당뇨 합병증 또는 대사성 질환 증상의 예방 및 개선용 조성물을 함유하는 식품은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 충진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있으며, 상기 성분은 독립적으로 또는 조합하여 사용할 수 있다.
나아가 본 발명은 당뇨병, 당뇨 합병증 또는 대사성 질환의 예방 및 개선 효과를 나타내는 옥타플로레솔 에이 및 식품학적으로 허용 가능한 식품보조 첨가제를 포함하는 건강기능식품을 제공할 수 있다.
본원발명의 당뇨병, 당뇨 합병증 또는 대사성 질환 증상의 예방 및 개선용 조성물을 함유하는 식품에 있어서, 상기 본 발명에 따른 조성물의 양은 전체 식품 중량의 0.001중량% 내지 90중량%로 포함할 수 있으며, 바람직하게는 0.1중량% 내지 40중량%로 포함할 수 있고, 음료의 경우, 100ml를 기준으로 0.001g 내지 2g, 바람직하게는 0.01g 내지 0.1g의 비율로 포함할 수 있으나, 건강 및 위생을 목적으로 하거나 건강 조절을 목적으로 하는 장기간 섭취의 경우에는 상기 범위 이하일 수 있으며, 유효성분은 안전성 면에서 아무런 문제가 없기 때문에 상기 범위 이상의 양으로 사용될 수 있으므로 상기 범위에 한정되는 것은 아니다.
이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예 1>
넓패 유래 신규 화합물의 분리 및 동정
<1-1> 넓패로부터 유기 용매 추출물의 제조
해조류인 넓패를 제주연안에서 직접 채취하여 물로 깨끗이 여러 번 씻어 이물질을 제거한 후, 심온동결기(-70℃)에 보관한 다음, 동결된 시료를 동결건조 후 50 메쉬 (Mesh) 이하의 크기로 분말화하여 준비하였다.
이후, 준비된 건조 넓패 분말 500g에 5L의 에탄올 및 메탄올을 각각 첨가한 후, 35℃에서 24시간 동안 유기용매를 이용한 추출을 수행하였다. 이후 유기용매 추출 공정을 통하여 추출 되지 않은 잔사를 제거하기 위해 15분간 원심분리한 후, 여과하여 넓패의 에탄올 및 메탄올 추출물을 각각 수득하였으며, 상기 잔사에는 다시 유기용매를 첨가한 추출공정을 3회 반복수행하여 넓패의 에탄올 및 메탄올 추출물을 각각 수득하였다.
<1-2> 넓패로부터 수득한 유기 용매 추출물의 분획화
상기 <1-1>에서 수득한 넓패 유기 용매 추출물을 감압 회전농축기를 이용하여 에탄올 또는 메탄올 성분을 제거하였고, 이후 여기에 증류수를 첨가하여 현탁한 다음, 헥산 (hexane), 클로로포름(chloroform), 에틸아세테이트(ethyl acetate)를 각각 순차적으로 첨가하여 각각의 용매 분획물을 수득하였다. 이후 각 분획물을 감압 회전농축기를 통하여 용매를 제거하여 분획물의 무게를 측정한 결과, 헥산 분획물은 7.5g, 클로로포름 분획물은 4.5g, 에틸아세테이트 분획물은 15.5g을 수득하였고, 이중 가장 많은 수득량을 얻은 에틸아세테이트 분획물을 가지고 이후 과정을 수행하였다.
<1-3> 크로마토그래피를 이용한 옥타플로레솔 에이 화합물의 분리 및 동정
<1-2>에서 수득한 에틸아세테이트 분획물을 가지고 실리카 컬럼 크로마토그래피를 사용하여 화합물을 분리하였는데, 즉, 180μm 직경의 실리카에 지름이 55mm이고 길이가 400mm인 유리관에 충진시킨 실리카 컬럼에 상기 수득한 에틸아세테이트 분획물을 주입하고 클로로포름:메탄올의 비가 10:1에서 0:1의 비가 되도록 용매를 사용하여 용리시키는 과정을 통해 에틸아세테이트 분획물에 함유된 주된 화합물을 수득하였다. 이후, 실리카 컬럼 크로마토그래피를 통해 수득한 화합물이 어떠한 화합물인지 확인하기 위해 ESI-mass (유속 = 0.2 ml/min, 2.1×100mm C-18 컬럼; Thermo (USA), Thermo HPLC-mass system)로 분석하였다. 또한 구조 분석을 위하여 1H-NMR (400MHZ, DMSO-d 6) 및 13C-NMR (100 MHz, DMSO-d 6)을 통하여 측정하였다.
그 결과, 본 발명의 방법을 통해 동정된 화합물은 상기 화학식 1의 구조를 갖는 화합물인 것을 확인할 수 있었고, ESI-mass 분석 결과 분자량은 994 MW인 것을 알 수 있었다. 또한 분자식은 C48H34O24 인 것으로 조사되었고 이에 본 발명자들은 본 발명에서 동정한 상기 화학식 1의 화합물 명을“2-(4-(4-(4-(4-(4-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)benzene-1,3,5-triol”로 명명하였다(도 3 참조).
또한, 본 발명에서 규명한 상기 화합물은 분자식을 통하여 24개의 이중결합과 17개의 하이드록실기(hydroxyl group)를 가지고 있다는 것을 알 수 있었고, 8개의 링의 구조로 이루어져 있음을 알 수 있었다.
나아가 본 발명자들은 분리 및 동정한 상기 화합물의 구조를 DMSO 용매를 이용하여 1H과 13C NMR 분석을 통해 구조를 결정하였는데, 그 결과를 도 4에 나타내었고, NMR 분석 결과는 다음에 기재된 바와 같다.
1H-NMR (400 MHz, DMSO-d 6)을 이용하여 분석한 결과;
δ1H (mult, J = Hz)는 5.57 (1H, d, J =2.8 Hz,H-4), 5.58 (1H, d, J =2.8 Hz,H-6), 5.59 (1H, d, J =2.8 Hz,H-9), 5.59 (1H, d, J =2.8 Hz, H-11), 5.68 (1H, d, J =1.8 Hz, H-15), 5.68 (1H, d, J =1.8 Hz, H-17), 5.71 (1H, d, J =1.8 Hz, H-21), 5.72 (1H, d, J =1.8 Hz, H-23), 5.85 (1H, d, J =1.6 Hz, H-26), 5.84 (1H, d, J =1.8 Hz, H-30), 5.94 (1H, d, J =1.8 Hz, H-32), 5.94 (1H, d, J =1.8 Hz, H-36), 6.15 (1H, d, J =1.8 Hz, H-38), 6.15 (1H, d, J =1.8 Hz, H-42), 6.16 (1H, d, J =1.6 Hz, H-44), 6.01 (1H, d, J =1.6 Hz, H-46), and 6.16 (1H, d, J =1.6 Hz, H-48), 9.02 (s, OH-1,3), 9.04 (s, OH-5, 27, 29, 33,35), 8.98 (s, OH-8,12), 8.93 (s, OH-14, 18), 8.92 (s, OH-20,24), 9.06 (s, OH-39,41) 및 9.07 (s, OH-45, 47) 으로 나타났다.
13C-NMR (100 MHz, DMSO-d 6)을 이용하여 분석한 결과;
δ13C는 δ 153.0 (s, C-1), 153.0 (s, C-3), 156.1 (s, C-5), 152.9 (s, C-8), 151.1 (s, C-10), 152.9 (s, C-12), 151.1 (s, C-14), 154.5 (s, C-16), 151.1 (s, C-18), 151.1 (s, C-20), 151.1 (s, C-24), 154.1 (s, C-25), 154.1 (s, C-22), 151.1 (s, C-27), 151.1 (s, C-29), 154.0(s, C-31), 150.8 (s, C-33), 150.8 (s, C-35), 156.2 (s, C-37), 152.7 (s, C-39), 152.7 (s, C-41), 161.0 (s, C-43), 158.6 (s, C-45), 161.0 (s, C-47), 122.0 (s, C-2), 122.0 (s, C-7), 122.0 (s, C-9), 122.0 (s, C-13), 123.4 (s, C-19), 123.4 (s, C-28), 123.5 (s, C-34), 123.5 (s, C-40), 94.9 (d, C-6),94.9 (d, C-4), 94.7 (d, C-11), 94.7 (d, C-15), 94.7 (d, C-17), 94.7 (d, C-21), 94.7 (d, C-23), 94.7 (d, C-26), 94.7 (d, C-30), 94.1 (d, C-32), 94.2 (d, C-36), 94.1 (d, C-38), 94.1 (d, C-42), 94.7 (d, C-44), 94.0 (d, C-46) 및 94.7 (d, C-47) 으로 나타났다.
<실시예 2>
넓패로부터 혈당강하 및 대사 장애 억제 활성을 갖는 옥타플로레솔 에이 화합물의 분리
<2-1> 넓패 메탄올 추출물의 제조
제주연안에서 직접 채취한 해조류를 대상으로 품질이 좋은 넓패를 선별하여 수회 반복하여 수세하였고, 동결 건조시킨 다음, 50 메쉬 이하의 키기로 분쇄기를 사용하여 분말화 하였다. 이후 분말화한 넓패 50g에 5L의 80% 메탄올을 첨가하여 넓패 분말을 침지시켜 20℃에서 24시간동안 용매 추출한 후, 저온에서 원심분리하여 잔사를 제거시켰고, 상층액을 와트만 필터(Whatman No.4)를 이용하여 여과시켰다. 여과된 메탄올 추출물은 감압농축기를 이용하여 농축시킴으로서 넓패의 메탄올 추출물을 수득하였다.
<2-2> 넓패 메탄올 추출물로부터 옥타플로레솔 에이의 분리 및 정제
앞서 수득한 넓패의 80% 메탄올 추출물(10g)을 물(1ℓ)에 녹인 후, 100μm 직경의 실리카겔을 55×400mm의 유리관에 충진시키고 여기에 에틸아세테이트 분획물을 흡착시킨 다음, 클로로포름:메탄올을 50:1에서 1:1 비율로 용리시켜 활성성분을 분리하였다. 분리된 활성성분을 25×300mm의 유리관에 100μm 직경의 세파덱스 LH-20 충진제를 충진한 컬럼에 로딩시킨 후, 100% 메탄올로 용리시켜 활성성분을 분리하였다. 이후, 활성성분을 고성능 액체크로마토그래피에 주입시켜 탄수화물 소화효소 저해활성과 근육에서의 포도당 흡수 촉진작용이 우수한 물질을 분리하였다.
또한, 분리된 물질의 규명을 위해 ESI-mass (유속 = 0.2 ml/min, 2.1×100mm C-18 컬럼; Thermo (USA), Thermo HPLC-mass system)로 활성성분의 질량을 분석하였고, 구조 분석은 1H-NMR (400MHZ, DMSO-d 6) 및 13C-NMR (100 MHz, DMSO-d 6)을 수행하여 측정하였다. 그 결과는 상기 실시예 <1-3>에서 측정한 것과 같았다.
<실시예 3>
옥타플로레솔 에이 화합물의 혈당강하 활성 측정
<3-1> 옥타플로레솔 에이 화합물의 알파-글루코시데이즈의 저해활성 측정
옥타플로레솔 에이의 탄수화물 소화 효소인 알파-글루코시데이즈의 저해활성 측정은 다음과 같이 수행하였다. 먼저, 100mM PBS 100㎖에 2g/L BSA(bovineserum albumin), 0.2g/L 아지트화나트륨(NaN3)을 용해시킨 다음, 0.7U의 yeast α-glucosidase(시그마) 0.008g을 용해시켜 효소용액을 제조하였고, p-nitrophenyl-α-D-glucopyranoside를 PBS에 5mM 농도로 용해하여 기질용액을 제조하였다. 효소용액 50㎕에 시료(옥타플로레솔 에이) 10㎕를 넣어 405nm에서 반응 전의 흡광도를 측정한 후 5분간 실온에 방치시켰다. 이후, 기질용액 50㎕를 넣고 5분간 반응시킨 후, 다시 흡광도를 측정하여 흡광도 변화로부터 효소 저해활성을 계산하였다. 계산된 옥타플로레솔 에이의 알파-글루코시데이즈의 저해율은 도 5에 나타내었다.
그 결과, 도 5에 나타낸 바와 같이 본 발명에서 분리한 옥타플로레솔 에이 화합물은 농도 의존적으로 탄수화물 소화 효소인 알파글루코시데이즈의 활성을 저해하는 것을 확인할 수 있었으며, 저해 정도는 처리 농도가 증가할수록 현재 시판되고 있는 알파글루코시데이즈 저해제인 acarbose 보다 더 우수한 저해 활성을 나타냄을 알 수 있었다. 또한, 하기 표 1은 알파-글루코시데이즈를 50% 저해하는 옥타플로레솔 에이와 acarbose의 농도를 나타낸 표로서 옥타플로레솔 에이가 acarbose 보다 훨씬 낮은 농도에서 알파글루코시데이즈를 50% 저해하는 것을 알 수 있다.
따라서 이러한 결과를 통해 본 발명자들은 본 발명에서 규명한 옥타플로레솔 에이가 종래 알파글루코시데이즈 저해제인 acarbose 보다 더 우수한 알파글루코시데이즈 저해 활성을 가진다는 사실을 확인함으로써 옥타플로레솔 에이를 혈당 강하 를 위한 용도로 사용할 수 있다는 것을 알 수 있었다.
표 1 알파글루코시데이즈를 50% 저해하는 옥타플로레솔 에이와 acarbose의 농도
처리시료 α-glucosidase를 50% 저해하는 농도(mg/mL)
Acarbose 0.19±0.03
옥타플로레솔에이 0.11±0.05*
<3-2> 옥타플로레솔 에이 화합물의 알파-아밀라제 저해활성 측정
옥타플로레솔 에이의 탄수화물 소화 효소인 알파-아밀라제의 저해활성 측정은 다음과 같은 방법을 통해 수행하였다. 먼저 PBS 50㎖에 0.1g/L BSA, 0.01g/L 아지트화나트륨(NaN3), porcine pancreas α-amylase(시그마) 0.2857g을 용해시켜 효소용액을 제조하였고, p-nitrophenyl-α-D-maltopentoglycoside (시그마)를 PBS에 5mM 농도로 용해하여 기질용액을 제조하였다. 이후 효소용액 50㎕에 시료(옥타플로레솔 에이를 농도별(0.0625, 0.125, 0.25, 0.5 mg/ml)로 10㎕씩 각각 넣어 405nm에서 반응 전의 흡광도를 측정한 후 5분간 실온에 방치시키고, 기질용액 50㎕를 넣고 5분간 반응시킨 후, 다시 흡광도를 측정하여 흡광도 변화로부터 효소 저해활성을 계산하였다. 계산된 옥타플로레솔 에이의 알파-아밀라제의 저해율은 도 6에 나타내었다.
그 결과, 옥타플로레솔 에이는 농도 의존적으로 탄수화물 소화 효소인 알파-아밀라제의 활성을 저해하는 것으로 나타났으며, 옥타플로레솔 에이를 0.25mg/ml의 농도로 처리한 군은 알파아밀라제 저해제로 알려진 acarbose와 비슷한 저해 활성을 나타냄을 알 수 있다.
또한, 하기 표 2는 알파-아밀라제를 50% 저해하는 옥타플로레솔 에이와 acarbose의 농도를 나타낸 표로서, 옥타플로레솔 에이가 acarbose 보다 낮은 농도에서 알파아밀라제를 50% 저해한다는 것을 알 수 있었다. 따라서 이러한 결과를 통해 본 발명자들은 옥타플로레솔 에이 화합물이 종래 알파-아밀라제의 활성을 저해하는 용도로 사용하고 있는 acarbose에 비해 더 우수한 알파-아밀라제 저해 활성을 갖는다는 사실을 알 수 있었다.
표 2 알파아밀라제를 50% 저해하는 옥타플로레솔 에이와 acarbose의 농도비교
처리시료 α-glucosidase를 50% 저해하는 농도(mg/mL)
Acarbose 0.47±0.07
옥타플로레솔에이 0.34±0.06*
<3-3> 옥타플로레솔 에이 화합물의 혈당 강하 효과 측정
4주령의 수컷 ICR mice를 (주)중앙실험동물에서 구입하여 2주일간 일반식이로 적응시킨 후 실험에 사용하였다. 실험군은 정상군과 STZ 투여 당뇨군으로 무작위 배정하였다. 사육실의 온도와 습도는 20±2℃, 50±10%로 유지하였고, 명암은 12시간 간격으로 조절하였으며, 식이와 식수는 자유롭게 섭취하도록 하였다. STZ투여 당뇨군으로 배정된 12시간 공복 상태의 ICR mice에게 0.1M citrate buffer(pH4.5)에 용해시킨 streptozotocin(STZ, 150mg/kg of body weight)을 복강에 주사하여 당뇨를 유발시켰다. STZ 투여 공복상태의 ICR mice 꼬리정맥으로부터 채혈하여 간이혈당계로 측정한 혈당이 300mg/dL 이상일 때 당뇨병이 유발된 것으로 간주하여 실험에 사용하였다. STZ로 유도된 당뇨군과 정상군을 난괴법으로 대조군, 옥타플로레쓸에이, acarbose 투여군으로 각각 나누고 ICR mice를 밤 동안 12시간 절식 시킨 후, 꼬리정맥에서 채혈하여 혈당을 간이 혈당계로 측정하였다. 대조군은 ICR mice에 가용성 전분(2g/kg of body weight)을 투여한 군을 사용하였고, 실험군은 옥타플로레솔 에이룰 투여한 군을, 양성대조군으로는 acarbose 투여군을 사용하였는데, 실험군과 양성대조군은 가용성 전분(2 g/kg of body weight)에 옥타플로레솔 에이(100mg/kg of body weight) 및 acarbose(100mg/kg of body weight)을 각각 증류수에 용해하여 12시간 절식시킨 ICR mice의 경구에 투여하였다. 투여 후 정해진 시간(0, 30, 60, 120분)에 꼬리 정맥에서 채혈하여 혈당을 측정하였다.
그 결과, 도 7에 나타낸 바와 같이, 본 발명의 옥타플로레솔 에이 화합물을 처리한 군은 당뇨가 유발된 동물모델에서 혈당을 감소시키는 것으로 나타났고, 특히 실험동물의 혈당이 최고치에 달하는 전분 투여 60분 후 대조군보다 낮은 수준의 혈당을 유지하는 것을 확인할 수 있었다. 즉, STZ-유발 당뇨쥐에 전분을 투여한 후 혈당의 증가를 살펴본 결과 대조군은 혈당이 크게 증가된 것으로 나타난 반면, 옥타플로레솔 에이 투여군은 대조군에 비해 낮은 수준으로 혈당을 유지하는 것으로 나타났고, 식후 혈당강하제인 acarbose와 유사한 혈당강하 효과를 나타내었다.
또한, 도 8은 정상쥐에 대한 옥타플로레솔 에이의 혈당 강하효과를 측정한 그래프로서, 정상쥐에 있어서도 옥타플로레솔 에이 투여군은 acarbose와 마찬가지로 대조군보다 낮은 수준의 혈당을 유지시키는 것으로 나타났다. 즉, 공복상태의 대조군에게 전분을 투여한 후의 혈당변화는 30, 60, 90, 120분에 혈당이 크게 증가된 것으로 나타난 반면, 전분과 옥타플로레솔 에이를 함께 투여한 군은 대조군에 비해 식후 혈당 증가를 감소시키는 것으로 나타났다. 또한, 이 결과에서도 옥타플로레솔 에이는 식후 혈당강하제로 사용되고 있는 acarbose와 유사하게 식후 혈당증가를 개선한다는 것을 확인할 수 있었다.
<3-4> 제 2형 당뇨 동물모델에 있어서 옥타플로레솔 에이의 혈당 강하 효과 측정
5주령의 수컷 ICRC57BL/6 db/db mice를 (주)중앙실험동물에서 구입하여 4주일간 일반식이로 적응시킨 후 실험에 사용하였다. 실험군은 대조군과 옥타플로레솔 에이 2.5 mg/kg B.W 투여군, 옥타플로레솔 에이 5 mg/kg B.W 투여군으로 무작위 배정하였다. 실험은 총 2주간 실시하였으며 옥타플로레솔 에이 투여군은 1일 1회 상기의 용량으로 각각 복강내 투여 하였다. 사육실의 온도와 습도는 20±2℃, 50±10%로 유지하였고, 명암은 12시간 간격으로 조절하였으며, 식이와 식수는 자유롭게 섭취하도록 하였다. 실험기간 중 체중 및 공복혈당은 일정한 시간에 측정하였다. 공복혈당 측정은 2일에 한번 db/db mice를 밤 동안 12시간 절식 시킨 후, 꼬리정맥에서 채혈하여 혈당을 간이 혈당계로 측정하였다. 2주간의 실험 종료 후 db/db mice에서 혈액을 수집한 뒤 원심분리 하여 혈장을 분리하였다. 분리된 혈장을 이용하여 인슐린농도를 ELISA법을 따라 Rat/Mouse Insulin ELISA kit를 이용하여 측정하였다.
그 결과, 도 11에 나타낸 바와 같이, 제 2형 당뇨 모델쥐에 있어서 옥타플로레솔 에이 투여군은 대조군에 비하여 지속적인 혈당 감소를 나타냄을 알 수 있었다. 이 결과로부터 옥타플로레솔 에이는 제 2형 당뇨 모델쥐에 있어서도 혈당증가를 저하하는 효과가 있음을 확인할 수 있었다.
나아가 본 발명자들은 실험 시작 2주일 경과 후 혈액 내 인슐린의 농도를 측정하였는데, 그 결과 도 12에 나타낸 바와 같이, 옥타플로레솔 에이의 투여군은 대조군에 비하여 혈액 내 인슐린 함량이 낮게 나타났으며, 특히 옥타플로레솔 에이 5 mg/kg B.W 투여군의 경우 대조군보다 약 2배 가량 낮은 함량을 나타내었다.
한편, 대부분의 초기 당뇨병 환자에서 관찰되는 인슐린 저항성은 내당능 장애와 고인슐린 혈증을 초래하며, 고인슐린혈증은 지질대사 장애, 고혈압 및 관상동맥경화 병인을 일으키는 중요한 원인으로 알려져 있다.
따라서 본 발명자들은 상기과 같은 본 발명의 결과들을 통해 본 발명의 옥타플로레솔 에이 화합물이 인슐린 저항성 개선 효과를 가진다는 사실을 알 수 있었다.
<실시예 4>
옥타플로레솔 에이가 근육세포내로의 포도당 흡수에 미치는 영향 측정
본 발명의 옥타플로레솔 에이가 근육세포내로의 포도당 흡수에 미치는 영향을 알아보기 위하여 하기와 같은 실험을 수행하였다.
<4-1> 세포배양 및 분화
실험에 사용한 근육세포(L6)는 한국세포주은행에서 구입하였고 10% FBS와 1% antibiotics를 첨가한 DMEM 배지에서 37℃, 5% 이산화탄소(CO2) 배양기에서 배양한다. 미분화 상태의 근육세포(L6)가 70~80% 자라면 2% 말혈청 (horse serum)을 첨가한 DMEM 배지로 교체한 후 7일 동안 분화를 유도하였으며 2일 마다 배지를 갈아주었다.
<4-2> 근육세포내로의 포도당 흡수 측정
분화된 근육세포를 무혈청 DMEM배지에서 4시간 starvation 시킨 후 PBS로 세척하였다. 이후 다시 새로운 무혈청 DMEM으로 교체하고 옥타플로레솔 에이를 처리하였으며, 이때 대조군으로는 혈당 감소 호르몬인 인슐린을 처리하였다. 포도당 흡수 측정은 배지내에 함유된 포도당 양을 측정하여 세포내로 이동한 포도당 양을 계산하였으며, 계산된 옥타플로레솔 에이의 근육세포내로의 포도당 흡수정도는 도 9에 나타내었다.
그 결과, 도 9에 나타낸 바와 같이, 근육세포에 옥타플로레솔 에이(농도별 처리: 6.25~50 μM)를 한 시간 동안 처리시킨 결과, 농도 의존적으로 포도당 이용률이 증가되는 것으로 나타났고, 옥타플로레솔 에이가 근육세포에서 포도당 흡수를 증가시키는 것으로 나타났다. 또한, 포도당 흡수를 가장 증가시킨 옥타플로레솔 에이 50 μM를 처리시간별로 포도당 이용률을 측정한 결과 처리 2시간째에서 포도당 흡수율을 가장 증가시켰으며, 인슐린과 유사한 포도당 흡수 효과를 보였다.
따라서 이러한 결과를 통해 본 발명자들은 본 발명의 옥타플로레솔 에이가 근육세포내로의 포도당 흡수촉진 작용 효과를 가진다는 것을 확인하였다.
<4-3> 근육세포내로의 포도당 흡수 작용기작 규명을 위한 웨스턴블랏 분석
상기 <4-2>의 실험에서 사용된 세포들을 수거하여 용해완충액으로 세포를 용출시켰다.이후 세포 용출액을 다시 세포막과 세포질로 분리하여 각각 단백질 함량을 측정한 후 동량의 세포막 단백질에 함유된 GLUT4 발현양상을 안티-GLUT4 항체를 사용하였고 동량의 세포질 단백질에 함유된 phospho-Akt와 phospho-AMPK의 발현양상은 각각 안티-phospho-Akt(Ser 473)과 안티-phospho-AMPK(Thr 172)를 사용하여 웨스턴블럿 방법을 수행하였다.
그 결과, 도 10에 나타낸 바와 같이, 옥타플로레솔 에이는 근육내로의 포도당 흡수에 있어 반드시 필요한 Akt(인슐린의존형)와 AMPK(인슐린비의존형) 및 GLUT4의 단백질 발현 양을 증가시키는 것으로 나타났다. 또한 Akt 와 AMPK 저해제를 각각 전 처리하였을 때 단백질 발현이 감소한다는 것을 확인하였다. 이러한 결과로부터 옥타플로레솔 에이의 근육세포내로의 포도당 흡수는 Akt와 AMPK의 활성화에 의해 포도당수송운반체인 GLUT4가 세포막으로 이동하여 세포 내로 포도당이 흡수시킴을 통해 이루어 진다는 것을 알 수 있었다. 결론적으로 옥타플로레솔 에이는 Akt와 AMPK을 모두 활성화 시키며, 따라서 GLUT4가 세포막으로 이동되어 근육내로의 포도당이 흡수 작용이 나타나는 것을 알 수 있었다.
<실시예 5>
옥타플로레솔 에이 화합물의 대사성 질환 억제 활성 측정
<5-1> 옥타플로레솔 에이 화합물의 항고혈압 활성측정
본 발명에서 동정한 옥타플로레솔 에이 화합물이 항고협압 활성을 갖고 있는지 확인하기 위해 안지오텐신 전환효소(angiotensin converting enzyme, ACE)에 대한 저해 활성을 측정하였는데, 보다 구체적으로 Cushman과 Cheung(1970년)에 의해 보고된 HHL로부터 유리된 마뇨산(hippuric acid)의 농도를 측정하는 방법을 통해 수행하였다. 즉, 각 농도별(125, 250, 375uM) 50ul의 옥타플로레 에이 화합물을 50ul의 ACE 용액(25 mU/ml)을 37℃에서 10분간 전배양시키고, 이후 100ul의 기질(125 mMHHL in 50 mM sodium borate buffer containing 500 mMNaCl at pH 8.3)을 37℃에서 60분간 반응시켰다. 이후 1N HCl을 250ul 첨가하여 반응을 정지시켰고, 500ul 에틸아세테이트를 사용하여 마뇨산을 추출한 다음, 200ul씩 분주된 추출물을 80℃의 건조 오븐에서 증발시켰다. 잔여물은 1ml의 증류수에 녹인 다음, 228nm에서 UV 스펙트라 흡광도를 측정하였다. IC50값은 ACE 활성을 50% 저해하는데 요구되는 농도를 의미하며, ACE 억제 활성정도는 다음의 식을 통해 계산하였다.
[ACE 억제 활성 계산식]
Inhibition %=(Ac-As)/(Ac-Ab)
여기서, Ac=대조군의 흡광도, As=샘플의 흡광도, Ab=블랭크 용액의 흡광도를 나타내는 것이다.
분석 결과, 도 13에 나타낸 바와 같이, 본 발명의 옥타플로레솔 에이는 ACE 활성을 억제하는 작용을 하는 것으로 나타났고, 옥타플로레솔 에이의 농도에 비례하여 ACE 저해 정도는 더 증가하는 것으로 나타났다.
<5-2> 옥타플로레솔 에이 화합물의 항비만 활성측정
옥타플로레솔 에이 화합물이 항비만 활성이 있는지 확인하기 위해 옥타플로레솔 에이 화합물이 전지방세포에서 지방세포로의 분화 및 세포 생존율에 미치는 영향을 조사하였다. 이를 위해 ATCC(American Type Culture Collection (Rockville, MD, USA)로부터 3T3-L1 전지방세포를 입수하였고, 1% PS 및 10% 소태아 혈청이 함유된 DMEM배지(Gibco BRL)를 사용하여 37℃, 5% 이산화탄소 하에서 배양하였다. 전지방세포에서 지방세포로의 분화를 위해 전지방세포를 MDI 분화배지( 1% PS, 10% FBS, 0.5 mM IBMX, 0.25μM dexamethasone 및 5 μg/ml insulin이 함유된 DMEM 배지)에서 2일간 전배양시켰고, 1% PS 및 10% 소태아 혈청이 함유된 DMEM배지(Gibco BRL)를 사용하여 다시 2일 동안 배양하였다. 이후 상기 배양세포에 옥타플로레솔 에이 화합물을 각 농도별(0, 12.5, 25, 50, 100, 200,400uM)로 처리한 다음, 8일이 지난 후 지방세포 분화 표지자의 발현 및 지방 방울 생성 여부를 조사하였다.
또한, 본 발명자들은 옥타플로레솔 에이 화합물이 세포생존율에 미치는 영향 및 세포독성 정도를 분석하였는데, 이는 MTT 분석을 통해 측정하였다. 즉, 세포를 1×104 cell/well의 양으로 96웰 플레이트에 분주하고 24시간이 경과한 후, 항고혈압 활성을 갖는 펩타이드를 처리한 다음 72시간 배양하였다. 이후 각 웰에 MTT 스탁 용액(100 μl; 2 mg/ml in PBS)을 첨가하고, 37℃에서 4시간 배양하였다. 이후 플레이트에 있는 지방을 제거하고, 디메틸 설포옥사이드(dimethyl sulfoxide)를 첨가하여 MTT-포르마잔 복합체를 용해하였다. 광학적 농도는 540 nm에서 측정하였다.
그 결과, 도 14에 나타낸 바와 같이, 본 발명의 옥타플로레솔 에이 화합물은 100uM의 농도까지 처리한 경우 약 80% 이상의 세포 생존율을 보이는 것으로 나타났으며, 200uM의 농도에서는 60%의 세포 생존율을 보였고, 반면, 400uM에서는 세포 생존율일 20%에 미치지 못하는 것으로 나타났다.
<5-3> 옥타플로레솔 에이 화합물이 지방축적에 미치는 영향 분석
옥타플로레솔 에이 화합물이 지방축적에 미치는 영향을 분석하기 위해 Oil Red O 염색방법을 수행하였다. 먼저 3T3-L1 전지방세포의 지방화를 유도하기 위해 상기 세포들을 6웰 플레이트에 옮긴 후, 2일 동안 배양하여 세포들이 플레이트에 가득 자라도록 하였다. 이후 배지를 분화배지(10% FBS, 0.5 mMIBMX, 0.25 μMDex and 10 μg/ml insulin이 함유된 DMEM)로 교체하고 여기에 옥타플로레솔 에이 화합물을 각 농도별(0, 12.5, 25, 50uM)로 처리한 후, 2일 동안 배양한 다음, 배지를 지방세포 성장 배지(10% FBS와 5μg/ml insulin이 추가된 DMEM 배지)로 2일마다 교체하면서 배양하였다. 그런 뒤, 세포에서 지방 성분을 나타내는 표지자인 Oil Red O 로 염색하였는데, 즉, 상기 세포들을 인산 용액(phosphate-buffered saline)으로 세척하고, 10% 포르말린 용액으로 고정시킨 다음, Oil Red O 용액(0.5g in 100ml 이소프로판올)으로 10분 동안 염색하였다. 염색용액을 제거한 다음, 상기 세포들은 이소프로판올을 이용하여 탈색시킨 다음, 520nm에서 광학밀도를 측정하였다.
그 결과, 도 15에 나타낸 바와 같이, 본 발명의 옥타플로레솔 에이 화합물을 처리한 경우, 세포 내에서 지방의 축적은 감소되는 것으로 나타났고, 이러한 지방 축적 감소는 화합물 처리 농도에 비례하는 것으로 나타났다.
따라서 상기 결과를 통해 본 발명자들은 본 발명의 옥타플로레솔 에이 화합물이 항고혈압 활성과 지방 축적 억제 활성을 가지고 있어서, 고혈압 및 비만과 같은 대사성 질환을 예방 또는 치료할 수 있는 치료제로 사용 가능함을 알 수 있었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명은 갈조류에 속하며 항균활성 및 미백활성 등이 알려진 넓패의 주성분에 해당하는 신규 화합물을 밝히고, 이의 제조방법을 제공함으로써 천연소재인 해양자원으로부터 유용한 생리활성 물질을 효과적으로 수득하여, 이를 다양한 산업분야에 활용할 수 있는 방법을 제시하였다. 본 발명의 '옥타플로레솔 에이' 화합물은 혈당 강하를 비롯하여, 안지오텐신 전환효소 활성 억제, 지방세포 분화 억제, 세포 내 지방 축적 억제 등의 활성을 나타내므로 당뇨병을 포함한 대사성 질환의 예방 및 치료용 의약품 및 기능성 식품 산업 등에서 이용될 수 있다.

Claims (15)

  1. 하기 화학식으로 표시되는 화합물;
    Figure PCTKR2012001529-appb-I000002
    .
  2. 제1항에 있어서,
    상기 화합물은 넓패(Ishige foliacea) 로부터 유래된 것을 특징으로 하는 화합물.
  3. 넓패를 분말화하는 단계;
    넓패 분말에 에탄올 또는 메탄올을 첨가하여 넓패 추출물을 수득하는 단계;
    상기 수득한 추출물에 헥산, 클로로포름 및 에틸아세테이트를 순차적으로 첨가하여 헥산, 클로로포름 및 에틸아세테이트 분획물을 각각 분획화하는 단계; 및
    상기 분획화된 에틸아세테이트 분획물에 대하여 클로로포름과 메탄올 용매를 사용하여 실리카겔 크로마토그래피를 수행하는 단계를 포함하는, 제1항의 화합물을 제조하는 방법.
  4. 제3항에 있어서,
    상기 실리카겔 크로마토그래피를 수행하여 얻은 분획물에 대하여 메탄올 용매를 사용하여 컬럼 크로마토그래피를 수행하는 단계를 추가로 포함하는 것을 특징으로 하는 제1항의 화합물을 제조하는 방법.
  5. 제4항에 있어서,
    상기 컬럼 크로마토그래피를 수행하여 얻은 분획물에 대하여 메탄올과 아세토니트릴 용매를 사용한 고속액체크로마토그래피(HPLC)를 수행하는 단계를 추가로 포함하는 것을 특징으로 하는 제1항의 화합물을 제조하는 방법.
  6. 제3항 내지 제5항 중의 어느 한 항에 있어서,
    상기 넓패 추출물은 넓패 분말에 에탄올 또는 메탄올을 첨가하고 20~40℃의 온도에서 20~28시간 동안 추출하여 수득한 것을 특징으로 하는 제1항의 화합물을 제조하는 방법.
  7. 제3항 내지 제5항 중의 어느 한 항에 있어서,
    상기 실리카겔 크로마토그래피는 클로로포름: 메탄올 용매를 10:1~0:1의 혼합비로 혼합하여 수행하는 것을 특징으로 하는 제1항의 화합물을 제조하는 방법.
  8. 제1항 또는 제2항의 화합물을 유효성분으로 함유하는 대사성 질환의 예방 또는 치료용 조성물.
  9. 제8항에 있어서,
    상기 제1항 또는 제2항의 화합물은,
    넓패 분말에 메탄올을 첨가하여 넓패 메탄올 추출물을 수득하는 단계;
    상기 수득한 추출물에 물과 에틸아세테이트를 첨가하여 에틸아세테이트 분획물을 수득하는 단계;
    상기 에틸아세테이트 분획물에 대하여 클로로포름과 메탄올 용매를 사용하여 실리카겔 크로마토그래피를 수행하는 단계;
    상기 실리카겔 크로마토그래피를 통해 수득한 분획물에 대하여 메탄올 용매를 사용하여 컬럼 크로마토그래피를 수행하는 단계; 및
    상기 컬럼 크로마토그래피를 통해 수득한 분획물에 대하여 다시 고속액체크로마토그래피(HLPC)를 수행하는 단계를 포함하는 방법에 의하여 수득한 것을 특징으로 하는 조성물.
  10. 제8항 또는 제9항에 있어서,
    상기 대사성 질환은 당뇨병을 포함한 혈당 관련 질환, 고혈압, 비만, 고지혈증, 지방간, 심혈관 질환 및 동맥경화증으로 이루어진 군 중에서 선택되는 어느 하나 이상의 질환인 것을 특징으로 하는 조성물.
  11. 제10항에 있어서,
    상기 조성물에 함유된 옥타플로레솔 에이 화합물은, 혈당 강하, 안지오텐신 전환효소(angiotensin converting enzyme, ACE)의 활성 억제, 지방세포로의 분화억제 및 세포 내에서의 지방축적 억제로 이루어진 군 중에서 선택되는 어느 하나 이상의 활성을 갖는 것을 특징으로 하는 조성물.
  12. 제11항에 있어서,
    상기 혈당 강하 활성은, 옥타플로레솔 에이 화합물의 탄수화물 소화효소 억제작용, 근육내 포도당 흡수 촉진작용, 및/또는 인슐린 저항성 개선작용에 의해 나타나는 것을 특징으로 하는 조성물.
  13. 제1항 또는 제2항의 화합물을 유효성분으로 함유하는 대사성 질환의 예방 또는 개선용 식품 조성물.
  14. 제14항에 있어서,
    상기 대사성 질환은 당뇨병을 포함한 혈당 관련 질환, 고혈압, 비만, 고지혈증, 지방간, 심혈관 질환 및 동맥경화증으로 이루어진 군 중에서 선택되는 어느 하나 이상의 질환인 것을 특징으로 하는 조성물.
  15. 제1항의 화합물을 이용하여 당뇨병 및 당뇨병의 합병증을 예방 또는 치료하는 방법.
PCT/KR2012/001529 2012-01-25 2012-02-29 넓패 유래 신규 화합물 및 이의 용도 WO2013111924A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2012-0007275 2012-01-25
KR1020120007275A KR101273071B1 (ko) 2012-01-25 2012-01-25 넓패 유래 신규 화합물 및 이의 제조방법
KR1020120007807A KR101392478B1 (ko) 2012-01-26 2012-01-26 옥타플로레솔 에이 화합물을 유효성분으로 함유하는 혈당강하용 조성물
KR10-2012-0007807 2012-01-26
KR1020120013648A KR101647682B1 (ko) 2012-02-10 2012-02-10 옥타플로레솔 에이 화합물을 유효성분으로 함유하는 대사성질환의 예방 또는 치료용 조성물
KR10-2012-0013648 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013111924A1 true WO2013111924A1 (ko) 2013-08-01

Family

ID=48873624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001529 WO2013111924A1 (ko) 2012-01-25 2012-02-29 넓패 유래 신규 화합물 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2013111924A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128562A (ja) * 2016-01-18 2017-07-27 御木本製薬株式会社 Vegf遺伝子発現促進剤及びfgf7遺伝子発現促進剤
EP3578587A1 (en) * 2018-06-04 2019-12-11 Jeju National University Industry-Academic Cooperation Foundation Novel compound hexadecaphlorethol isolated from ishige okamurae and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080109243A (ko) * 2007-06-12 2008-12-17 재단법인 제주하이테크산업진흥원 항당뇨 활성을 나타내는 패과식물의 추출물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080109243A (ko) * 2007-06-12 2008-12-17 재단법인 제주하이테크산업진흥원 항당뇨 활성을 나타내는 패과식물의 추출물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE, SEUNG-HONG ET AL.: "Anti-Diabetic Effects and Action Mechanism of Octaphlorethol A Isolated from Ishige sinicola", 2011 INT. SYMPOSIUM & ANNUAL MEETING, October 2011 (2011-10-01), pages 159 - 161 *
LEE, SEUNG-HONG ET AL.: "Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose taransporter 4-mediated glucose uptake in skeletal muscle cells", BIOCHEM. & BIOPHYS. RES. COMMM. 2012, vol. 420, 15 March 2012 (2012-03-15), pages 576 - 581 *
LEE, SEUNG-HONG: "Development of Functional Food and Medical Drug Materials Using Antidiabetic Compounds Isolated from Brown Seaweeds", PHD THESIS, 2011, JEJU NATIONAL UNIVERSITY *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128562A (ja) * 2016-01-18 2017-07-27 御木本製薬株式会社 Vegf遺伝子発現促進剤及びfgf7遺伝子発現促進剤
JP7037162B2 (ja) 2016-01-18 2022-03-16 御木本製薬株式会社 Vegf遺伝子発現促進剤及びfgf7遺伝子発現促進剤
EP3578587A1 (en) * 2018-06-04 2019-12-11 Jeju National University Industry-Academic Cooperation Foundation Novel compound hexadecaphlorethol isolated from ishige okamurae and use thereof

Similar Documents

Publication Publication Date Title
WO2012134126A2 (en) Use of compounds isolated from morus bark
WO2019135637A1 (ko) 저분자 유효 사포닌의 함량이 증대되고 벤조피렌은 저감된 돌외잎 추출물의 제조방법 및 이에 따른 돌외잎 추출물
WO2013089402A1 (ko) 돌외의 지페노사이드 추출물을 포함하는 제2형 당뇨병, 비만 또는 고지혈증의 치료 또는 예방용 조성물
WO2019098699A1 (ko) 다이터펜계 화합물을 포함하는 신경퇴행성 질환 예방 또는 치료용 조성물
WO2014200261A1 (ko) 혼합 생약 추출물을 유효성분으로 포함하는 항암용 조성물
WO2010087577A2 (ko) 스페니쉬 오레가노 추출물, 여름세이보리 추출물 또는 카바크롤의 대사성 질환 치료를 위한 용도
WO2020218720A1 (ko) 익모초 추출물 또는 레오누린을 함유하는 근육 질환 예방 또는 치료용 또는 근 기능 개선용 조성물
WO2012134172A2 (ko) 오미자 에틸아세테이트 분획물 또는 이로부터 분리한 우웨이지수 c를 유효성분으로 포함하는 비만 예방 또는 치료용 조성물
WO2021080297A1 (ko) 달맞이꽃 추출물을 유효성분으로 포함하는 비만 또는 비만으로부터 유도된 대사증후군의 예방 또는 치료용 조성물
WO2016010340A1 (ko) 오풍칠 추출물을 유효성분으로 함유하는 염증 또는 알러지 질환의 예방 및 치료용 조성물 및 이의 용도
WO2013111924A1 (ko) 넓패 유래 신규 화합물 및 이의 용도
WO2010041908A2 (ko) 판두라틴 유도체 또는 보에센베르기아 판두라타 추출물의 신규한 용도
WO2013012117A1 (en) Pharmaceutical compositions for preventing or treating inflammatory diseases, comprising phytosterol compound
WO2017030419A1 (ko) 애기땅빈대 추출물 또는 분획물을 유효성분으로 포함하는 비만의 예방 또는 치료용 조성물
WO2009151236A2 (en) The composition comprising extracts or fractions of magnolia obovata thunb for treating and preventing inflammation disease
WO2014065640A2 (ko) 외톨개모자반 추출물 또는 이의 분획물을 유효성분으로 함유하는 염증성 질환 치료 또는 예방용 조성물
WO2016204493A1 (en) A novel compound (ks 513) isolated from pseudolysimachion rotundum var. subintegrum, the composition comprising the same as an active ingredient for preventing or treating allergy disease, inflammatory disease, asthma or chronic obstructive pulmonary disease and the use thereof
WO2016190689A2 (ko) 근육 질환 예방, 개선 또는 치료용 또는 근 기능 개선용 조성물
WO2020242113A1 (ko) 인디안구스베리 추출물과 새싹보리 추출물의 복합물(ib복합물)을 유효성분으로 포함하는 비만 및/또는 당뇨를 동반하는 대사증후군의 예방, 개선 치료용 조성물
WO2015069086A1 (ko) 인삼 분획물 또는 이로부터 분리된 진세노사이드를 함유하는 시르투인 활성화로 치료되는 질환의 예방 또는 치료용 조성물
WO2019198982A1 (ko) 구꼬아민 a 및 구꼬아민 b를 유효성분으로 함유하는 골격근 위축 예방 또는 개선용 조성물
WO2015105373A1 (ko) 화살나무 추출물 또는 이의 분획물을 포함하는 천식의 예방 또는 치료용 조성물
WO2014014177A1 (ko) 황칠나무 추출물 또는 상기 추출물 유래의 화합물을 유효성분으로 포함하는 전립선 비대증의 예방 및 치료용 조성물
WO2022240206A1 (ko) 오갈피 추출물 및 가르시니아 캄보지아 추출물 또는 이들로부터 분리한 화합물을 유효성분으로 포함하는 간 질환 예방 또는 치료용 조성물
KR102694496B1 (ko) 마이코스포린-유사 아미노산을 유효성분으로 포함하는 비만 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866677

Country of ref document: EP

Kind code of ref document: A1