WO2023181779A1 - 検査システム - Google Patents

検査システム Download PDF

Info

Publication number
WO2023181779A1
WO2023181779A1 PCT/JP2023/006670 JP2023006670W WO2023181779A1 WO 2023181779 A1 WO2023181779 A1 WO 2023181779A1 JP 2023006670 W JP2023006670 W JP 2023006670W WO 2023181779 A1 WO2023181779 A1 WO 2023181779A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
eyeball
camera unit
camera
illumination
Prior art date
Application number
PCT/JP2023/006670
Other languages
English (en)
French (fr)
Inventor
素明 小林
知之 大月
祐伍 勝木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023181779A1 publication Critical patent/WO2023181779A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • A61B3/135Slit-lamp microscopes

Definitions

  • the present disclosure relates to an inspection system.
  • Patent Document 1 discloses a device that images an eyeball observed with an optometric microscope.
  • Patent Document 1 requires manual operation by a doctor. Furthermore, it is not possible to image the eyeball in a manner suitable for various examinations.
  • One aspect of the present disclosure makes it possible to image an eyeball in a manner suitable for examination.
  • An inspection system includes a measurement unit that is movable to change the angle with respect to the eyeball of a subject and that is rotatable about the axis of the eyeball as a rotation axis, and a measurement unit that is mounted on the measurement unit. , comprising a lighting unit that illuminates the eyeball, a first camera unit that is mounted on the measurement unit and captures an image of the eyeball, and a second camera unit that is mounted on the measurement unit and captures an image of the eyeball.
  • the unit and the second camera unit are each independently movable over the measurement unit to change the angle relative to the eyeball.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an inspection system according to an embodiment.
  • FIG. 3 is a diagram schematically showing an example of movement of each unit.
  • FIG. 3 is a diagram showing an example of corner area inspection. It is a figure which shows the example of a corneal examination. It is a figure showing an example of crystalline lens examination. It is a figure showing an example of crystalline lens examination. It is a figure showing an example of crystalline lens examination. It is a figure which shows the example of the examination of Chin's frenulum. It is a figure showing an example of a corneal endothelial cell examination.
  • FIG. 3 is a diagram schematically showing an example of imaging using a reflecting mirror unit.
  • FIG. 3 is a diagram showing an example of presentation of a fixation target.
  • FIG. 3 is a diagram showing an example of presentation of a fixation target.
  • FIG. 3 is a diagram showing an example of presentation of a fixation target.
  • 3 is a flowchart illustrating an example of image processing.
  • 16 is a flowchart showing a detailed example of step S2 in FIG. 15.
  • FIG. 16 is a flowchart showing a detailed example of step S3 in FIG. 15.
  • FIG. 16 is a flowchart showing a detailed example of step S4 in FIG. 15.
  • FIG. 16 is a flowchart showing a detailed example of step S5 in FIG. 15.
  • FIG. 16 is a flowchart showing a detailed example of step S6 in FIG. 15.
  • FIG. 2 is a diagram showing an example of a hardware configuration of a control processing device 20.
  • FIG. 1 is a diagram showing an example of a hardware configuration of a control processing device 20.
  • FIG. 1 is a
  • Ophthalmologists use slit lamps (also called slit lamps) to diagnose the condition of patients' eyes during medical examinations.
  • the slit lamp was invented more than 100 years ago, and is still a mainstream analog ophthalmic diagnostic device.
  • various other digitalized testing devices have been developed and are used for diagnosis, but each of them is a device that performs a single-function test.
  • diagnosis workflow before a doctor's examination, a preliminary test is performed using various test equipment in an examination room, and then the doctor performs a diagnosis using a slit lamp in the examination room. Thereafter, depending on the suspected disease, the necessary tests are performed again in the laboratory using different testing equipment. You return to the examination room one last time and the doctor makes a diagnosis. Many ophthalmologists make diagnoses using this series of steps.
  • an illumination unit that illuminates the eye to be examined under desired conditions and two imaging units are used.
  • the lighting method of the lighting unit, the positions of the lighting unit and the imaging unit, etc. are adjusted to optimal conditions, and images are taken.
  • analysis is performed, and information used for diagnosis is also presented.
  • FIG. 1 is a diagram showing an example of a schematic configuration of an inspection system according to an embodiment.
  • the inspection system 100 is used for eye inspection, diagnosis, and the like.
  • the eyeball portion of the eye to be examined is referred to as an eyeball 200 and illustrated.
  • Inspection system 100 includes an imaging device 10 and a control processing device 20.
  • FIG. 1 schematically shows the arrangement of an eyeball 200 and an imaging device 10 when viewed from above (planarly viewed).
  • the imaging device 10 images the eyeball 200.
  • the imaging device 10 includes a base unit 1, a measurement unit 2, an illumination unit 3, a camera unit 4L, a camera unit 4R, a goniometer unit 5, and a reflective optical system unit 6.
  • the measurement unit 2 and the goniometer unit 5 are mounted on the base unit 1.
  • the illumination unit 3, camera unit 4L, camera unit 4R, and reflective optical system unit 6 are mounted on the measurement unit 2.
  • the illumination unit 3 illuminates the eyeball 200 by irradiating the eyeball 200 with illumination light LL.
  • An example of the illumination light LL is slit lamp light, and in this case, the illumination light LL has a slit shape (rectangular shape) in a plane perpendicular to the optical path.
  • the illumination light LL may be light other than slit lamp light, and may have a shape other than the slit shape. Examples of other shapes are random dot pattern shapes, grid pattern shapes, etc. In the following description, it is assumed that the illumination light LL is slit lamp light having a slit shape.
  • the illumination unit 3 includes a light source 31, an optical system 33A, a slit 32, and an optical system 33B.
  • the light source 31 includes, for example, an LED (Light Emitting Diode), an LD (Laser Diode), and the like.
  • the light source 31 may be a plurality of light sources that can be switched and used. Examples of light sources include white light sources, infrared light sources, and the like.
  • the illumination light LL output by the light source 31 is collected by an optical system 33A, condensed into a slit shape by a slit 32, collimated into parallel light by an optical system 33B, and output.
  • the width of the slit 32 is controllable, and therefore the width of the illumination light LL (width of the slit lamp light) can be adjusted.
  • the camera unit 4L and the camera unit 4R image the eyeball 200, more specifically, a portion (for example, a cross section) of the eyeball 200 that is illuminated by the illumination light LL from the illumination unit 3.
  • the light directed from the eyeball 200 to the camera unit 4L and camera unit 4R is referred to as observation light OL and illustrated.
  • the camera unit 4L and the camera unit 4R image the eyeball 200 by receiving the observation light OL.
  • the camera unit 4L is a first camera unit (left camera unit) located on the left side of the camera unit 4R when the eyeball 200 is viewed from the measurement unit 2.
  • the camera unit 4R is a second camera unit (right camera unit) located on the right side of the camera unit 4L.
  • the camera unit 4L and the camera unit 4R may have the same configuration.
  • Each of the camera unit 4L and the camera unit 4R includes an objective zoom optical system 41 and an image sensor 42.
  • the illustrated objective zoom optical system 41 is an objective lens.
  • the objective zoom optical system may be understood to include a magnification-variable optical system.
  • the image sensor 42 images the eyeball 200 observed (for example, magnified observation) via the objective zoom optical system 41 .
  • the objective zoom optical system 41 and image sensor 42 of the camera unit 4L and the objective zoom optical system 41 and image sensor 42 of the camera unit 4R can be controlled independently.
  • the magnification of the camera unit 4L and the magnification of the camera unit 4R can also be set independently.
  • the camera unit 4L and camera unit 4R function as a Greenough-type stereo camera that images the eyeball 200 at mutually different positions, angles, magnifications, and the like.
  • Image data of images of the eyeball 200 captured by the camera unit 4L and the camera unit 4R are sent from the imaging device 10 to the control processing device 20.
  • image and imaging may be interpreted to include “video” and “shooting.” As long as there is no contradiction, images and imaging may be read as video and imaging as appropriate.
  • image data is also simply referred to as an image or the like.
  • the gonioscope unit 5 and the reflective optical system unit 6 are used when imaging the goniometric region of the eyeball 200.
  • the goniometer unit 5 is configured to include a goniometer.
  • the reflective optical system unit 6 includes an optical element that reflects the illumination light LL and observation light OL.
  • a patient table, etc. may be provided.
  • the patient table includes a chin rest for stabilizing the patient's chin, a forehead rest for stabilizing the patient's forehead, and a fixation target for keeping the patient looking in a certain direction to stabilize the position of the eyeballs 200. It may be composed of They may be incorporated (for example, integrated) into the imaging device 10 in a unitized state. By using the patient table, the position of the eyeball 200 relative to the imaging device 10 can be stabilized.
  • Each of the above-mentioned units included in the imaging device 10 is movable independently. Movement of each unit is independently controlled, for example, by an electric drive mechanism or device (not shown).
  • FIG. 2 is a diagram schematically showing an example of movement of each unit.
  • the eye axis of the eyeball 200 is referred to as an eye axis EA and is schematically illustrated with a dashed line.
  • Movement of the base unit 1 is schematically shown by arrow AR1A, arrow AR1B, and arrow AR1C.
  • the base unit 1 is movable in the front-back direction, left-right direction, and up-down direction with respect to the eyeball 200. It becomes easier to align each unit on the base unit 1, for example, the illumination unit 3, camera unit 4L, camera unit 4R, etc., to a position suitable for examining the eyeball 200.
  • Movement of the measurement unit 2 is schematically shown by arrow AR2A and arrow AR2B.
  • the measurement unit 2 is movable around, for example, the eyeball 200 or the vicinity of its front end as a rotation center so as to change the angle with respect to the eyeball 200 (the eye axis EA thereof).
  • the movement of the measurement unit 2 shown by the arrow AR2A can also be said to be a movement of swinging the relative position in the horizontal direction with respect to the eyeball 200.
  • measurement unit 2 is rotatably movable around eye axis EA of eyeball 200 as a rotation axis. Furthermore, by moving the measurement unit 2, it is possible to move the illumination unit 3, camera unit 4L, camera unit 4R, and reflective optical system unit 6 while keeping the arrangement (relative position) of these units fixed.
  • the lighting unit 3, camera unit 4L, and camera unit 4R are arranged by default as shown in FIG. 2, for example.
  • the illumination unit 3 is oriented such that a straight line from the eyeball 200 toward the illumination unit 3 (in this example, the eye axis EA) passes through the center of the illumination unit 3.
  • the camera unit 4L and the camera unit 4R are arranged on opposite sides of the lighting unit 3. As shown by the broken line in FIG. 2, the camera unit 4L is oriented such that a straight line from the eyeball 200 toward the camera unit 4L passes through the center of the camera unit 4L.
  • the camera unit 4R is oriented such that a straight line from the eyeball 200 toward the camera unit 4R passes through the center of the camera unit 4R.
  • Movement of the lighting unit 3 is schematically indicated by an arrow AR3. Movement of the camera unit 4L is schematically indicated by an arrow AR4L. Movement of the camera unit 4R is schematically indicated by an arrow AR4R. Similar to the movement of the measurement unit 2 indicated by the arrow AR2A described above, each of the illumination unit 3, camera unit 4L, and camera unit 4R can be independently moved on the measurement unit 2 so as to change the angle with respect to the eyeball 200. .
  • the angles of the illumination unit 3, camera unit 4L, and camera unit 4R with respect to the eyeball 200 can be independently controlled. For example, it is possible to change the inward angles of the camera unit 4L and the camera unit 4R, or to move the camera unit 4L and the camera unit 4R together while maintaining their positional relationship.
  • the movement of the gonioscope unit 5 is schematically indicated by an arrow AR5.
  • the gonioscope unit 5 is removably movable between a position between the eyeball 200 and the measurement unit 2 (inserted position) and a position other than that (retracted position). More specifically, the insertion position is a position between the eyeball 200 and the lighting unit 3 and at least one of the camera units 4L and 4R. In the example shown in FIG. 2, the insertion position is between the eyeball 200, the illumination unit 3, and the camera unit 4L.
  • the insertion position is a position on the optical path of the illumination light LL and the observation light OL of the camera unit 4L.
  • the retreat position is a position outside the optical path of the illumination light LL and the observation light OL of the camera unit 4L.
  • the retreat position may be any position that does not hinder movement of the lighting unit 3, camera unit 4L, and camera unit 4R.
  • the movement of the reflective optical system unit 6 is schematically indicated by an arrow AR6.
  • the reflective optical system unit 6 is removably movable between a position between the goniometer unit 5, the illumination unit 3 and the camera unit 4L, and a position other than the angle mirror unit 5. These positions of the reflective optical system unit 6 are the same as the insertion position and retracted position of the goniometer unit 5 described above, so the description will not be repeated.
  • the control processing device 20 includes a control section 21, a processing section 22, and a storage section 23.
  • the control unit 21 controls the imaging of the eyeball 200 by the imaging device 10 by controlling each unit of the imaging device 10.
  • the control section 21 controls movement of the base unit 1.
  • the control section 21 controls movement of the measurement unit 2.
  • the control unit 21 controls movement of the lighting unit 3 and also controls lighting by the lighting unit 3.
  • Lighting control includes parameter control. Examples of the parameters include internal parameters such as the shape (slit width, etc.), wavelength, and illumination of the illumination light LL, and external parameters such as the position, direction, and posture of the illumination unit 3.
  • the control unit 21 controls the movement of the camera unit 4L, and also controls imaging by the camera unit 4L.
  • Imaging control includes parameter control.
  • the parameters include internal parameters such as the focal length and focal position (including the magnification of the objective zoom optical system 41) of the camera unit 4L, and external parameters such as the position, direction, and posture of the camera unit 4L.
  • the control unit 21 controls the movement of the camera unit 4R, and also controls imaging by the camera unit 4R.
  • the processing unit 22 processes the image of the eyeball 200 captured by the imaging device 10.
  • An image related to the examination of the eyeball 200 for example, an image that can be used for diagnosis of the eyeball 200, is generated. Diagnosis of the eyeball 200 may be performed based on the image.
  • the storage unit 23 stores information used by the control processing device 20.
  • a program 231 is exemplified as the information stored in the storage unit 23.
  • the program 231 is a control processing program (software) for causing the computer to function as the control processing device 20.
  • the movement of each unit can be controlled independently, it is possible to image the eyeball 200 in various modes suitable for various inspections.
  • the examination system 100 If the examination system 100 is used, there is no need for a doctor to operate a slit lamp, and a person other than the doctor can act as the examiner. For example, by performing various tests using the testing system 100 before a diagnosis by a doctor, the diagnostic workflow can be significantly speeded up.
  • the movement of each unit of the imaging device 10 is controlled by the control unit 21 of the control processing device 20.
  • the magnification of the camera unit 4L and the camera unit 4R is set to a magnification suitable for imaging the imaging target. Furthermore, unless otherwise specified, the magnifications of the camera unit 4L and camera unit 4R are set to the same magnification.
  • Anterior Segment Examination For example, an anterior segment examination is performed first. Following the examiner's instructions, the subject (patient) places his or her chin on the chinrest, rests their forehead on the forehead holder, and then looks at the fixation target. In this state, the base unit 1 is moved so that the center of the subject's eyeball 200 and the center of the illumination unit 3 align (so that the eye axis EA of the eyeball 200 passes through the center of the illumination unit 3). As an example, the image generated when the projected light from the fixation target is reflected by the cornea of the subject's eyeball 200 matches the center position of the illumination light LL of the illumination unit 3, and the sharpness is the best. The position of the base unit 1 is adjusted. Note that the movement of the base unit 1 may be controlled manually by the inspector.
  • the illumination unit 3, camera unit 4R, and camera unit 4L on the measurement unit 2 are arranged so as to have the positional relationship shown in FIGS. 1 and 2 described above.
  • the camera unit 4L and the camera unit 4R are arranged on opposite sides of the lighting unit 3.
  • the measurement unit 2 moves to change its angle with respect to the eyeball 200, as shown by arrow AR2A in FIG.
  • each of the camera unit 4L and the camera unit 4R images the anterior segment of the eyeball 200. Imaging is performed using movement of the measurement unit 2 as a scanning operation. As a result, an image corresponding to the anterior segment of the eyeball 200 observed by a doctor using a slit lamp is obtained.
  • the obtained image is stored in the storage unit 23 of the control processing device 20 and processed by the processing unit 22.
  • an image that can be used for diagnosis of the anterior segment of the eyeball 200 is generated and displayed on a monitor (not shown) or the like. Images may be displayed in real time.
  • the processing unit 22 may perform diagnosis based on the images obtained in the above-mentioned anterior segment examination. Various known algorithms (including machine learning models) may be used. The processing unit 22 determines whether or not further examination of the part of the eyeball 200 is necessary, and presents information regarding necessary examination items and the like to the examiner. Further examination of the region of eyeball 200 using examination system 100 is performed. Examples of parts of the eyeball 200 that can be inspected include the angle region, the cornea, and the crystalline lens, and, for example, the inspection described later is performed.
  • FIG. 3 is a diagram illustrating an example of angle area inspection.
  • the eyeball 200 is imaged so that the state of the angle region of the eyeball 200 can be grasped over the entire circumference.
  • the goniometer unit 5 described above is used, and in this example, the reflective optical system unit 6 is also used.
  • the gonioscope unit 5 and the reflective optical system unit 6 are arranged at a position between the eyeball 200 and the illumination unit 3 and camera unit 4L.
  • the illumination unit 3 is arranged at a position to illuminate the angle region of the eyeball 200 via the reflective optical system unit 6 and the goniometer unit 5.
  • the camera unit 4L is arranged at a position to image the angle region of the eyeball 200 via the gonioscope unit 5 and the reflective optical system unit 6.
  • the optical elements (mirrors, etc.) in the reflective optical system unit 6 reflect the illumination light LL from the illumination unit 3 toward the goniometer unit 5.
  • reflecting mirrors are arranged at regular intervals in the circumferential direction, for example.
  • the reflecting mirror in the goniometer unit 5 reflects the illumination light LL from the reflective optical system unit 6 toward the angle region of the eyeball 200.
  • the angle region of the eyeball 200 is illuminated by the illumination light LL.
  • the reflector in the goniometer unit 5 reflects the observation light OL from the angle region of the eyeball 200 toward the reflective optical system unit 6.
  • the optical elements in the reflective optical system unit 6 reflect the observation light OL from the goniometer unit 5 toward the camera unit 4L.
  • the angle region of the eyeball 200 is observed by the camera unit 4L.
  • the measurement unit 2 rotates around the eye axis EA of the eyeball 200 as the rotation axis, as shown by the arrow AR2B in FIG.
  • the camera unit 4L images the angle region of the eyeball 200.
  • An angle region of the eyeball 200 is imaged along the rotation direction. For example, the measuring unit 2 is rotated until the corner area over the entire circumference is imaged.
  • the obtained image is stored in the storage unit 23 of the control processing device 20 and processed by the processing unit 22.
  • an image that can be used to diagnose the angle region of the eyeball 200 is generated or displayed on a monitor.
  • the display mode is not particularly limited, for example, images corresponding to each reflecting mirror in the goniometer unit 5 may be displayed side by side, or a single donut-shaped image connected in a ring may be displayed. .
  • FIG. 4 is a diagram showing an example of a corneal examination. Illustrations of the goniometer unit 5 and reflective optical system unit 6 are omitted.
  • the eyeball 200 is imaged so that the condition of the cornea of the eyeball 200 can be grasped.
  • the illumination unit 3 is placed in front of the eyeball 200.
  • the eye axis EA of the eyeball 200 passes through the center of the illumination unit 3. Illumination light LL from the illumination unit 3 is irradiated onto the cornea of the eyeball 200.
  • the camera unit 4L and the camera unit 4R are arranged on opposite sides of the illumination unit 3 so as to have an angle with respect to the eyeball 200. More specifically, the camera unit 4L and the camera unit 4R are arranged symmetrically with respect to the eye axis EA of the eyeball 200 so that the angles relative to the eyeball 200 are the same.
  • the measurement unit 2 rotates around the eye axis EA of the eyeball 200 as the rotation axis, as shown by arrow AR2B.
  • the camera unit 4L and the camera unit 4R image the cornea of the eyeball 200.
  • the cornea of the eyeball 200 is imaged along the rotation direction. For example, the measurement unit 2 rotates until one rotation of the cornea is imaged.
  • the obtained image is stored in the storage unit 23 of the control processing device 20 and processed by the processing unit 22.
  • an image that can be used for diagnosing the cornea of the eyeball 200 is generated or displayed on a monitor.
  • the shape of the cornea of the eyeball 200 is calculated based on the image. For example, data on the shape of the cornea is constructed and the shape is restored.
  • the shape of the part of the eyeball 200 calculated by the processing unit 22 may be a three-dimensional shape. As long as there is no contradiction, the shape may be read as a three-dimensional shape as appropriate.
  • FIGS. 5 to 7 are diagrams showing examples of crystalline lens examination.
  • the eyeball 200 is imaged so that the shape of the lens of the eyeball 200 and the opacity distribution within the lens can be grasped.
  • FIG. 5 shows an example of imaging for grasping the shape of the crystalline lens including the equatorial region.
  • the illumination unit 3 is arranged at a position having an angle with respect to the eyeball 200.
  • Illumination light LL is irradiated from the illumination unit 3 onto the crystalline lens of the eyeball 200.
  • the camera unit 4L and the camera unit 4R are arranged to have an inward angle, and image the eyeball 200.
  • the equatorial portion of the crystalline lens which is hidden behind the iris and cannot be seen, is also imaged. Imaging the crystalline lens including the equatorial region is useful, for example, in cataract surgery.
  • cataract surgery it is necessary to predict the final settling depth of the intraocular lens, and when the intraocular lens is used to correct astigmatism, to estimate the likelihood of rotation of the intraocular lens within the lens capsule, which can reduce the corrective effect.
  • Intraocular lens identification, selection of an appropriate size if the intraocular lens is an accommodative intraocular lens, etc. are performed in advance. It is important to understand the shape of the lens equator of the eyeball 200.
  • the measurement unit 2 rotates around the eye axis EA of the eyeball 200 as the rotation axis, as shown by the arrow AR2B.
  • the camera unit 4L and the camera unit 4R image the crystalline lens of the eyeball 200, more specifically, the equatorial portion of the crystalline lens.
  • the measurement unit 2 rotates until one rotation of the crystalline lens is imaged.
  • FIG. 6 shows an example of imaging for understanding the opacity distribution of the crystalline lens. Similar to FIG. 5 described above, the illumination unit 3 is arranged at a position having an angle with respect to the eyeball 200. Illumination light LL is irradiated from the illumination unit 3 onto the crystalline lens of the eyeball 200.
  • the illumination unit 3, camera unit 4L, and camera unit 4R move together to change the angle with respect to the eyeball 200 while maintaining their positional relationship (angle) (arrow AR3, arrow AR4L, and arrow AR4R).
  • the camera unit 4L and the camera unit 4R image the crystalline lens of the eyeball 200.
  • the crystalline lens of the eyeball 200 is imaged from different angles along the movement direction.
  • the crystalline lens of the eyeball 200 is imaged along the moving direction of the illumination unit 3, camera unit 4L, and camera unit 4R.
  • the rotation of the measuring unit 2 may be further combined.
  • the measurement unit 2 rotates the ocular axis EA of the eyeball 200, as shown by arrow AR2B. Rotate and move as an axis.
  • the camera unit 4L and the camera unit 4R image the crystalline lens of the eyeball 200.
  • the crystalline lens of the eyeball 200 is imaged along the rotation direction of the measurement unit 2 and the movement direction of the camera unit 4L and camera unit 4R. For example, the measurement unit 2 rotates until one rotation of the crystalline lens is imaged.
  • the positional relationship between the lighting unit 3, camera unit 4L, and camera unit 4R is not limited to the examples shown in FIGS. 5 to 7 described above.
  • the lighting unit 3 may be located between the camera unit 4L and the camera unit 4R.
  • the obtained image is stored in the storage unit 23 of the control processing device 20 and processed by the processing unit 22.
  • an image that can be used to diagnose the crystalline lens of the eyeball 200 is generated or displayed on a monitor.
  • the shape of the crystalline lens of the eyeball 200 and the opacity distribution within the crystalline lens are calculated.
  • FIG. 8 is a diagram showing an example of a Chin's frenulum test.
  • the eyeball 200 is imaged so that the state of the Chin's zonule of the eyeball 200 can be grasped all around the circumference.
  • the illumination unit 3 is arranged at an angle with respect to the eyeball 200 so as to illuminate the Chin's zonule of the eyeball 200. Illumination light LL from the illumination unit 3 is irradiated onto the Chin's frenulum of the eyeball 200.
  • At least one of the camera units 4L and 4R is arranged at a position at an angle with respect to the eyeball 200 so that the Chin's zonule of the eyeball 200 can be observed.
  • the camera unit 4L is arranged at a position having an angle with respect to the eyeball 200, and images the Chin's frenulum of the eyeball 200.
  • the measurement unit 2 rotates around the eye axis EA of the eyeball 200 as the rotation axis, as shown by arrow AR2B.
  • the camera unit 4L images the Chin's frenulum of the eyeball 200.
  • the Chin's zonule of the eyeball 200 is imaged along the moving direction. For example, the measurement unit 2 rotates until one rotation of Chin's frenulum is imaged.
  • the obtained image is stored in the storage unit 23 of the control processing device 20 and processed by the processing unit 22.
  • an image that can be used for diagnosing Chin's frenulum of the eyeball 200 (fragility diagnosis, etc.) is generated or displayed on a monitor.
  • FIG. 9 is a diagram showing an example of a corneal endothelial cell test.
  • the eyeball 200 is imaged so that the state of the corneal endothelial cells of the eyeball 200 can be grasped.
  • the illumination unit 3 is arranged at a position having an angle with respect to the normal line of the corneal endothelium to be imaged in the eyeball 200. Illumination light LL from the illumination unit 3 is irradiated onto the corneal endothelial cells of the eyeball 200.
  • the camera unit 4L is arranged in front of the corneal endothelium of the eyeball 200 to be imaged.
  • the camera unit 4L is placed in front of the eyeball 200, as shown in FIG.
  • the eye axis EA of the eyeball 200 passes through the center of the camera unit 4L.
  • the magnification of the objective zoom optical system 41 of the camera unit 4L is set to a magnification (relatively low magnification) that allows observation of the entire cornea.
  • the camera unit 4R is disposed on the opposite side of the illumination unit 3 across the normal line of the corneal endothelium to be imaged, and is axially symmetrical with respect to the normal line to the corneal endothelium to be imaged.
  • the illumination unit 3 and camera unit 4R are arranged symmetrically with respect to the ocular axis EA of the eyeball 200, as shown in FIG.
  • the magnification of the objective zoom optical system 41 of the camera unit 4R is set to a magnification (relatively high magnification) that allows corneal endothelial cells to be observed.
  • the camera unit 4L images the entire cornea of the eyeball 200.
  • the illumination light LL (slit lamp light) of the illumination unit 3 is controlled to have a wide enough width to illuminate the cornea of the eyeball 200. Then, the position of the base unit 1 is adjusted so that the center of the image captured by the camera unit 4L matches the center of the cornea of the eyeball 200.
  • the camera unit 4R images the corneal endothelial cells of the eyeball 200.
  • the illumination light LL of the illumination unit 3 is controlled to have a narrow width corresponding only to the range of the corneal endothelial cells of the eyeball 200.
  • measurement unit 2 moves to change its angle with respect to eyeball 200.
  • the camera unit 4R images the corneal endothelial cells of the eyeball 200 along a line passing through the center of the cornea of the eyeball 200 in the horizontal direction.
  • the measurement unit 2 rotates around the eye axis EA of the eyeball 200 as the rotation axis. The line mentioned above passing through the center of the cornea is tilted.
  • the camera unit 4R images the corneal endothelial cells of the eyeball 200.
  • the obtained image is stored in the storage unit 23 of the control processing device 20 and processed by the processing unit 22.
  • an image that can be used for diagnosing corneal endothelial cells is generated or displayed on a monitor.
  • the number and size of corneal endothelial cells may be analyzed, and the results may be displayed on a monitor.
  • various tests corresponding to each part of the eyeball 200 as described above are performed by the test system 100.
  • images and the like corresponding to various tests can be obtained in advance.
  • a doctor can make a diagnosis based on previously acquired images, etc., without having to use a slit lamp to observe the diagnosis on the spot. Therefore, the diagnostic workflow as described at the beginning can be greatly speeded up.
  • Reflector unit For example, in the above-mentioned crystalline lens examination (FIGS. 5 to 7) and Chin's frenulum examination (FIG. 8), the reflector unit is located not in front of the eyeball 200 but at a position that has a somewhat large angle with respect to (the ocular axis EA of) the eyeball 200. It is necessary to arrange the illumination unit 3 and camera unit 4. If the angle is large, problems may arise in which illumination and imaging may be obstructed by facial features of the subject, or the subject's eyelashes may be included in the captured image. To address such issues, reflector units may be used. This will be explained with reference to FIGS. 10 and 11.
  • FIG. 10 is a diagram schematically showing an example of imaging using a reflecting mirror unit.
  • the illustrated reflecting mirror unit 7 has the same shape as the goniometer unit 5 described above. This reflecting mirror unit 7 may also be a component of the imaging device 10 like other units. Similar to the goniometer unit 5, the reflecting mirror unit 7 is removably movable between an insertion position and a retracted position. The reflecting mirror unit 7 may be installed at the same location as the goniometric mirror unit 5 in exchange for the goniometric mirror unit 5, or may be placed at a different location from the goniometric mirror unit 5.
  • the reflecting mirror unit 7 includes a frame 71, a main body 72 supported by the frame 71, and a reflecting mirror 73 provided on the main body 72.
  • the main body 72 is made of a material that transmits the illumination light LL and observation light OL.
  • the main body 72 of the reflector unit 7 includes a base 721 supported by the frame 71 and an extension 722 extending from the base 721 toward the eyeball 200.
  • the cross-sectional area of the extension portion 722 (for example, the area of the plane perpendicular to the eye axis EA of the eyeball 200) becomes smaller as it moves away from the base portion 721.
  • the reflecting mirror 73 is provided on at least a portion of the side surface of the extension portion 722 .
  • the reflector unit 7 is used to image the equatorial portion of the crystalline lens of the eyeball 200, and is arranged between the eyeball 200, the illumination unit 3, the camera unit 4L, and the camera unit 4R.
  • the reflector 73 of the reflector unit 7 reflects the illumination light LL from the illumination unit 3 toward the equator of the crystalline lens of the eyeball 200.
  • the reflecting mirror 73 reflects the observation light OL from the equatorial portion of the crystalline lens of the eyeball 200 toward the camera unit 4L and the camera unit 4R.
  • the illumination unit 3, camera unit 4L, and camera unit 4R are more sensitive to the eyeball than when the reflector unit 7 is not disposed (for example, FIGS. 5 to 7).
  • 200 is placed at a position where the angle with respect to 200 is small.
  • the reflector 73 of the reflector unit 7 reflects the illumination light LL and observation light OL so that the angles of the illumination unit 3, camera unit 4L, and camera unit 4R with respect to the eyeball 200 can be made small.
  • the crystalline lens of the eyeball 200 including the equatorial region can be clearly imaged.
  • parts of the eyeball 200 other than the crystalline lens such as Chin's frenulum.
  • the camera unit 4L and camera unit 4R may be used. Specifically, when grasping the three-dimensional shape of the part of the eyeball 200 to be imaged, both the camera unit 4L and the camera unit 4R are used. . Otherwise, it is sufficient to use only one of the camera units 4L and 4R.
  • FIG. 11 is a diagram showing an example of the shape of the reflecting mirror unit. Several examples of the shapes of the extending portion 722 and the reflecting mirror 73 when the extending portion 722 is viewed from the base 721 of the main body 72 are shown.
  • the extending portion 722 of the reflecting mirror unit 7 illustrated in FIG. 11(A) has a conical shape with the tip removed.
  • the reflecting mirror 73 is provided over the entire side surface of the extending portion 722 so as to fit on the side surface of the extending portion 722 .
  • the eyeball 200 can be imaged while the reflector unit 7 remains fixed and the illumination unit 3, camera unit 4L, and camera unit 4R are rotated. There is a possibility that the image is distorted, but in that case, the processing section 22 of the control processing device 20 may perform correction processing.
  • the extending portion 722 of the reflecting mirror unit 7 illustrated in FIG. 11(B) has the shape of a polygonal pyramid with the tip removed.
  • the reflecting mirror 73 is provided over the entire side surface of the extending portion 722 so as to fit on the side surface of the extending portion 722 .
  • the processing unit 22 of the eyeball 200 may perform processing to absorb the discontinuity.
  • the extending portion 722 of the reflecting mirror unit 7 illustrated in FIG. 11(C) has a conical shape with the tip thereof cut off.
  • the reflecting mirror 73 has a planar shape and is provided on a part of the side surface of the extending portion 722 .
  • one reflecting mirror 73 is provided, but two or more reflecting mirrors 73 may be provided.
  • the eyeball 200 can be imaged by rotating the reflecting mirror unit 7 together with the illumination unit 3, camera unit 4L, and camera unit 4R. A wide range of clear, undistorted images can be obtained at each angle.
  • the reflector unit 7 may be used while in contact with the eyeball 200, or may be used away from the eyeball 200 (non-contact state). When used in a contact state, it is not affected by aberrations on the corneal surface or by the critical angle at the interface between the cornea and air, making it possible to observe at a wider angle. Although there is invasiveness to the eyeball 200, it can be dealt with by anesthesia during the examination. When used without contact, there is no problem of invasiveness.
  • Fixation Target Depending on the shape of the subject's face, etc., it may still be difficult to image the equator of the lens of the eyeball 200 or the Chin's frenulum. This problem can be solved by changing the direction of the eyeball 200, that is, the subject's line of sight.
  • the eyeball 200 may be imaged while the subject is presented with a fixation target for guiding the orientation of the eyeball 200. This will be explained with reference to FIGS. 12 to 14.
  • FIGS. 12 to 14 are diagrams showing examples of presentation of fixation targets.
  • the subject's line of sight which corresponds to the direction of the eyeball 200, is referred to as line of sight E and is illustrated by an arrow.
  • the fixation target is referred to as a fixation target F and is illustrated.
  • FIG. 12 illustrates a fixation target F that guides the line of sight E downward.
  • FIG. 12A when the line of sight E is straight, the illumination light LL is blocked by the upper eyelid, forehead, etc., and the eyeball 200 cannot be imaged.
  • FIG. 12(B) a fixation target F is displayed below the eyeball 200.
  • the line of sight E moves downward, and the illumination light LL is irradiated from different positions and angles accordingly.
  • the illumination light LL reaches the eyeball 200 without being blocked, and the eyeball 200 is imaged.
  • FIG. 13 illustrates a fixation target F that guides the line of sight E upward.
  • FIG. 13(A) when the line of sight E is straight, the illumination light LL is blocked by the lower eyelid, etc., and the eyeball 200 cannot be imaged.
  • FIG. 13(B) a fixation target F is displayed above the eyeball 200.
  • the line of sight E moves upward, and the illumination light LL is irradiated from different positions and angles accordingly.
  • the illumination light LL reaches the eyeball 200 without being blocked, and the eyeball 200 is imaged.
  • FIG. 14 illustrates a fixation target F that guides the line of sight E in the lateral direction.
  • the illumination light LL is blocked by the nose and the like, making it impossible to image the eyeball 200.
  • FIG. 14(B) a fixation target F is displayed on the side of the eyeball 200.
  • the line of sight E moves laterally, and the illumination light LL is irradiated from different positions and angles accordingly.
  • the illumination light LL reaches the eyeball 200 without being blocked, and the eyeball 200 is imaged.
  • a device (fixation target device) for presenting the fixation target F to the subject may also be a component of the imaging device 10.
  • the illumination unit 3 illuminates the eyeball 200, and at least one of the camera unit 4L and the camera unit 4R images the eyeball 200.
  • a comprehensive examination can be performed regardless of the shape of the subject's face.
  • the part of the eyeball 200 is imaged with the eyeball 200 facing in a direction different from normal.
  • the processing unit 22 of the control processing device 20 integrates an image obtained by imaging in such a state and another image captured in a normal state. For example, the positions shown in the images are aligned based on feature amounts obtained from the images. Examples of feature amounts include texture feature amounts, shape feature amounts, etc. of the iris, blood vessels, tissues, and the like.
  • Image Processing Image processing (signal processing) by the processing unit 22 of the control processing device 20 will be further described.
  • the processing unit 22 of the control processing device 20 calculates the shape of each part of the eyeball 200 and the opacity distribution based on the image from the imaging device 10. For example, the anterior corneal shape, the posterior corneal shape, the crystalline lens shape (including the equatorial region), etc. are calculated, and the opacity distribution within the crystalline lens is calculated.
  • the captured image of each part of the eyeball 200 may include the effects of refraction of light rays.
  • Ray tracing that takes refraction into account is performed based on, for example, (a) the shape of the part where the light ray is incident, (b) the incident position and direction of the light ray, and (c) the refractive index of the parts before and after the light ray is incident. be exposed. If (a) can be understood, (b) can also be understood, and representative values or actual measured values can be used for (c). For this reason, understanding (a) is particularly important.
  • the processing unit 22 of the control processing device 20 When calculating the shape of a part of the eyeball 200, the processing unit 22 of the control processing device 20 first calculates the shape of a part located in front of it (on the imaging device 10 side). Then, the processing unit 22 performs ray tracing in consideration of the shape of the front part, the incident position and direction of the ray, and the refraction of the ray, as shown in (a) to (c) above. Calculate the shape of the part located in the back. This allows for more accurate calculations than when refraction of light rays is not considered. A specific example will be explained with reference to FIGS. 15 to 20.
  • FIG. 15 is a flowchart showing an example of image processing.
  • the three-dimensional shape of the lens of the eyeball 200 and the three-dimensional opacity distribution within the lens are finally calculated. Unless otherwise specified, each process is executed by the processing unit 22 of the control processing device 20.
  • step S1 the eyeball 200 is imaged by the imaging device 10.
  • imaging related to a corneal examination and a crystalline lens examination is performed. The details are as explained above, so the explanation will not be repeated.
  • steps S2 to S5 the anterior corneal shape, the posterior corneal shape, the anterior lens capsule shape including the equator, and the posterior lens capsule shape including the equator are restored (calculated) in this order. These sites are located in the order in which the light rays pass through to the posterior lens capsule. Furthermore, in step S6, the three-dimensional opacity of the crystalline lens is reconstructed (the opacity distribution is calculated). Details of each step from step S2 to step S6 will be explained with reference to FIGS. 16 to 20.
  • FIG. 16 is a flowchart showing a detailed example of step S2 in FIG. 15.
  • step S21 the position of the corneal surface on the image is detected based on the image of the eyeball 200 captured by the camera unit 4L.
  • Examples of specific processing include grayscale/binarization in step S21a, contour extraction in step S21b, and selection of the anterior surface of the cornea in step S21c. Since the technique itself for detecting the position of an object on an image through such processing is well known, further detailed explanation will be omitted.
  • step S22 the position of the corneal surface on the image is detected based on the image of the eyeball 200 captured by the camera unit 4R.
  • the specific process is the same as step S21 described above.
  • the image of the eyeball 200 imaged by the camera unit 4L is also simply called the image of the camera unit 4L.
  • the image of the eyeball 200 captured by the camera unit 4R is also simply referred to as the image of the camera unit 4R.
  • step S23 corresponding points are detected based on the detection results of the corneal surface position in the previous steps S21 and S22 and the pre-calibration information.
  • the pre-calibration information are the internal parameters, external parameters, etc. of the lighting unit 3, camera unit 4L, and camera unit 4R described above. Based on the preliminary calibration information, each position (each point) in the image of the camera unit 4L and each position (each point) in the image of the camera unit 4R that correspond to each other is detected.
  • step S24 triangulation is performed. Each corresponding point detected in the previous step S24 is measured. Since triangulation itself is well known, detailed explanation will be omitted. The corneal anterior surface shape is calculated based on the triangulation results.
  • step S25 eye movement is calculated based on the image of the camera unit 4L and the image of the camera unit 4R. Changes in the orientation of the eyeball 200 while imaging is being performed are calculated.
  • step S26 eye movement correction is performed.
  • the shape of the anterior surface of the cornea calculated based on the triangulation result in step S24 is corrected based on the eye movement calculated in step S25.
  • the influence of changes in the orientation of the eyeball 200 while imaging is being performed is removed.
  • a momentum-corrected anterior corneal shape is calculated.
  • FIG. 17 is a flowchart showing a detailed example of step S3 in FIG. 15.
  • the difference is particularly in that the refraction of the light ray passing through the portion located in the front whose shape has been calculated so far is taken into consideration.
  • FIGS. 18 to 20 which will be described later. Duplicate explanations will be omitted as appropriate.
  • step S31 the position of the posterior surface of the cornea on the image is detected based on the image of the camera unit 4L and the image of the camera unit 4R.
  • step S32 eye movements are calculated.
  • step S33 the shapes of each region are aligned based on the shape and position of the anterior surface of the cornea calculated in step S2 and the eye movement calculated in step S32.
  • step S34 refraction is considered based on the position of the posterior corneal surface detected in the previous step S31, the pre-calibration information, the shape of each part aligned in the previous step S33, and the refractive index of the cornea.
  • ray tracing (ray tracing with refraction) is performed, and corresponding points are detected.
  • step S35 triangulation is performed. The respective corresponding points detected in the previous step S34 are measured, and the shape of the posterior corneal surface is calculated.
  • FIG. 18 is a flowchart showing a detailed example of step S4 in FIG. 15.
  • step S41 the position of the anterior lens capsule on the image is detected based on the image of the camera unit 4L and the image of the camera unit 4R.
  • step S42 eye movements are calculated.
  • step S43 the shape and position of the anterior surface of the cornea calculated in step S2, the shape and position of the posterior cornea calculated in step S3, and the eye movement calculated in step S42 are determined. Based on this, the shapes of each part are aligned.
  • step S44 based on the position of the anterior lens capsule detected in the previous step S41, the pre-calibration information, the shape of each part aligned in the previous step S43, and the refractive index of the cornea and aqueous humor. Then, ray tracing is performed taking refraction into account, and corresponding points are detected. In step S45, triangular lightening is performed. The respective corresponding points detected in the previous step S44 are measured, and the shape of the anterior lens capsule is calculated.
  • FIG. 19 is a flowchart showing a detailed example of step S5 in FIG. 15.
  • step S51 the position of the posterior lens capsule on the image is detected based on the image of the camera unit 4L and the image of the camera unit 4R.
  • step S52 eye movements are calculated.
  • step S53 the shape and position of the anterior surface of the cornea calculated in step S2, the shape and position of the posterior cornea calculated in step S3, and the shape and position of the anterior lens capsule calculated in step S4 are determined. The shapes of each part are aligned based on the shapes, their positions, and the eye movements calculated in step S52.
  • step S54 the position of the posterior lens capsule detected in the previous step S51, the pre-calibration information, the shape of each part aligned in the previous step S53, and the refractive index of the cornea, aqueous humor, and crystalline lens are determined. Based on this, ray tracing is performed taking refraction into account, and corresponding points are detected. In step S55, triangular lightening is performed. The respective corresponding points detected in the previous step S44 are measured, and the shape of the posterior capsule of the crystalline lens is calculated.
  • FIG. 20 is a flowchart showing a detailed example of step S6 in FIG. 15.
  • step S61 the incident position of the illumination light LL on the lens surface on the image is detected based on the image of the camera unit 4L and the image of the camera unit 4R.
  • step S62 eye movements are calculated.
  • step S63 the shape and position of the anterior surface of the cornea calculated in step S2, the shape and position of the posterior cornea calculated in step S3, and the shape and position of the anterior lens capsule calculated in step S4 are determined. The shapes of each part are aligned based on the shapes, their positions, and the eye movements calculated in the previous step S62.
  • step S64 the incident position of the illumination light LL on the lens surface detected in the previous step S61, the pre-calibration information, the shape of each part aligned in the previous step S63, and the cornea, aqueous humor, and crystalline lens are determined.
  • the traveling direction of the illumination light LL within the crystalline lens is calculated based on the refractive index of .
  • step S65 the opacity appearing in the camera image (camera image opacity information) is projected onto the plane in the traveling direction of the illumination light LL, and the three-dimensional opacity distribution of the crystalline lens is calculated. Three-dimensional opacity information can be obtained.
  • the three-dimensional shape and opacity distribution of a desired part of the eyeball 200 can be calculated.
  • the shape and opacity distribution of the region of the eyeball 200 can be calculated more accurately than when the refraction of rays is not considered.
  • the disclosed technology is not limited to the above embodiments.
  • the case where the imaging device 10 includes two camera units, the camera unit 4L and the camera unit 4R, has been described as an example.
  • the number of camera units may be one.
  • the anterior segment of the eye more specifically, the gonioscope region, the cornea, the crystalline lens, the Chin's zonules, and the corneal endothelial cells are exemplified as the parts of the eyeball 200 to be inspected by the inspection system 100. did. Naturally, parts of the eyeball 200 other than these may also be included in the inspection target by the inspection system 100.
  • the illumination unit 3, camera unit 4L, and camera unit 4R move together as shown by arrow AR3, arrow AR4L, and arrow AR4R. You may. Within a consistent range, moving the measurement unit 2 to change the angle with respect to the eyeball 200 means that the illumination unit 3, camera unit 4L, and camera unit 4R move together to change the angle with respect to the eyeball 200. It can be read differently.
  • FIG. 21 is a diagram showing an example of the hardware configuration of the control processing device 20. As shown in FIG. The control processing device 20 described so far is realized by including a computer 1000 as shown in FIG. 21, for example.
  • the computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input/output interface 1600. Each part of computer 1000 is connected by bus 1050.
  • the CPU 1100 operates based on a program stored in the ROM 1300 or the HDD 1400 and controls each part. For example, the CPU 1100 loads programs (such as the program 231 in FIG. 1) stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processes corresponding to various programs.
  • programs such as the program 231 in FIG. 1
  • the ROM 1300 stores boot programs such as BIOS (Basic Input Output System) that are executed by the CPU 1100 when the computer 1000 is started, programs that depend on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by the CPU 1100 and data used by the programs.
  • the HDD 1400 corresponds to the storage unit 23 (FIG. 1) of the control processing device 20, and is a recording medium that records the program 231.
  • the communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
  • CPU 1100 receives data from other devices or transmits data generated by CPU 1100 to other devices via communication interface 1500.
  • the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input/output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, speaker, or printer via an input/output interface 1600.
  • the input/output interface 1600 may function as a media interface that reads programs and the like recorded on a predetermined recording medium.
  • Media includes, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memory, etc. It is.
  • the CPU 1100 of the computer 1000 realizes the functions of the control processing device 20 by executing a program loaded onto the RAM 1200.
  • the HDD 1400 stores a program 231 and data in the storage unit 23. Note that although the CPU 1100 reads and executes the program data 1450 from the HDD 1400, as another example, these programs may be obtained from another device via the external network 1550.
  • the inspection system 100 includes the measurement unit 2, the illumination unit 3, the camera unit 4L, and the camera unit 4R.
  • the measurement unit 2 is movable so as to change the angle with respect to the subject's eyeball 200 (arrow AR2A), and is rotatable about the eye axis of the eyeball as a rotation axis (arrow AR2B).
  • the illumination unit 3 is mounted on the measurement unit 2 and illuminates the eyeball 200.
  • the camera unit 4L is a first camera unit that is mounted on the measurement unit 2 and captures an image of the eyeball 200.
  • the camera unit 4R is a second camera unit that is mounted on the measurement unit 2 and captures an image of the eyeball 200.
  • Each of the camera unit 4L and the camera unit 4R can independently move on the measurement unit 2 so as to change the angle with respect to the eyeball 200 (arrow AR4L, arrow AR4R).
  • the measurement unit 2, the illumination unit 3, the camera unit 4L, and the camera unit 4R are each movable independently. By combining these movements, it is possible to image the eyeball 200 in various ways suitable for various examinations.
  • the measurement unit 2 changes its angle with respect to the eyeball 200 while the camera unit 4L and camera unit 4R are disposed on opposite sides of the illumination unit 3. (arrow AR2A), the camera unit 4L and camera unit 4R may image the anterior segment of the eyeball 200. Thereby, the anterior segment of the eyeball 200 can be inspected.
  • the inspection system 100 is arranged between the eyeball 200 and at least one of the illumination unit 3 and the camera unit 4L and the camera unit 4R (for example, the camera unit 4L).
  • the gonioscope unit 5 is movable (arrow AR5) between a position (inserted position) and a position other than that (retracted position), and the gonioscope unit 5 connects the eyeball 200, the illumination unit 3, and at least one of the
  • the measurement unit 2 rotates about the eye axis EA of the eyeball 200 as the rotation axis (arrow AR2B) while being placed in a position between the measurement unit 2 and the camera unit (for example, the camera unit 4L), and at least one of the camera units (for example, the camera unit 4L).
  • a camera unit 4L may image the angle region of the eyeball 200.
  • the inspection system 100 includes a reflective optical system unit that is movable between a position between the goniometer unit 5 and the illumination unit 3 and at least one camera unit (for example, camera unit 4L) and a position that is not. 6, and the measurement unit measures the eye of the eyeball 200 with the reflective optical system unit 6 disposed between the goniometer unit 5, the illumination unit 3, and at least one camera unit (for example, the camera unit 4L).
  • At least one camera unit may image the angle region of the eyeball 200 while rotating and moving about the axis EA (arrow AR2B). Thereby, the angle region of the eyeball 200 can be inspected.
  • the illumination unit 3 is arranged in front of the eyeball 200, and the camera unit 4L and camera unit 4R are arranged so that the angles with respect to the eyeball 200 are the same.
  • the measurement unit 2 rotates around the ocular axis EA of the eyeball 200 as the rotation axis (arrow AR2B), and the camera unit 4L and the camera unit 4R measure the cornea of the eyeball 200. You may take an image. Thereby, the cornea of the eyeball 200 can be inspected.
  • the lens of the eyeball 200 can also be inspected.
  • the measurement unit 2 rotates around the eye axis EA of the eyeball 200 as the rotation axis.
  • the camera unit 4L and the camera unit 4R may image the crystalline lens of the eyeball 200.
  • the shape of the crystalline lens of the eyeball 200 including the equator can be grasped.
  • the illumination unit 3 is also movable independently on the measurement unit 2 so as to change the angle with respect to the eyeball 200, similarly to the camera unit 4L and the camera unit 4R.
  • the lighting unit 3 disposed at a position having an angle with respect to the eyeball 200
  • the lighting unit 3, camera unit 4L, and camera unit 4R are moved together so as to change the angle with respect to the eyeball 200 while maintaining their positional relationship.
  • the camera unit 4L and camera unit 4R may image the crystalline lens of the eyeball 200.
  • the measurement unit 3 further rotates around the eye axis EA of the eyeball 200, and the camera unit 4L and the camera unit 4R rotate the crystalline lens of the eyeball 200. You may take an image. Thereby, the opacity distribution of the crystalline lens of the eyeball 200 can be grasped.
  • the illumination unit 3 and at least one of the camera units 4L and 4R are arranged at a position having an angle with respect to the eyeball 200. Then, while the measurement unit 2 rotates around the ocular axis EA of the eyeball 200 as the rotation axis (arrow AR2B), at least one camera unit (for example, the camera unit 4L) may image the Chin's zonule of the eyeball 200. Thereby, the Chin's frenulum of the eyeball 200 can be inspected.
  • the camera unit 4L includes the objective zoom optical system 41
  • the camera unit 4R includes the objective zoom optical system 41
  • the illumination unit 3 is the object to be imaged in the eyeball 200.
  • the camera unit 4L is placed in front of the corneal endothelium to be imaged, and the camera unit 4R is positioned at an angle to the normal to the corneal endothelium to be imaged.
  • the camera unit 4L images the entire cornea of the eyeball 200 while the measurement unit 2 moves to change the angle with respect to the eyeball 200 while being arranged axially symmetrically with respect to the normal to the corneal endothelium to be imaged on the opposite side.
  • the camera unit 4R may image the corneal endothelial cells of the eyeball 200. Thereby, the corneal endothelial cells of the eyeball 200 can be examined.
  • the inspection system 100 includes an eyeball 200, an illumination unit 3, and at least one of the camera units 4L and 4R (for example, the camera unit 4L and the camera unit 4R). ) and a position where the reflector unit 7 is movable between the eyeball 200, the illumination unit 3, and at least one camera unit (for example, the camera unit 4L and the camera unit 4R), the illumination unit 3 and at least one of the camera units (for example, the camera unit 4L and the camera unit 4R) are positioned closer to the eyeball 200 than when the reflector unit 7 is not arranged. It may be placed at a position where the angle with respect to This solves the problem that imaging becomes difficult due to facial features of the subject.
  • the illumination unit 3 illuminates the eyeball 200 while the fixation target F for guiding the direction (line of sight E) of the eyeball 200 is presented to the subject; At least one of the camera unit 4R and the camera unit 4L may image the eyeball 200. This makes it possible to perform a comprehensive examination regardless of the shape of the subject's face.
  • the inspection system 100 includes a base that is movable in the front-back direction (arrow AR1A), the left-right direction (arrow AR1B), and the up-down direction (arrow AR1C) with respect to the eyeball 200.
  • the measuring unit 2 may be mounted on the base unit 1 . This makes it easier to align each unit on the base unit 1 to a position suitable for testing the eyeball 200.
  • the illumination unit 3 irradiates the eyeball 200 with the illumination light LL, and the illumination light LL may include slit lamp light. This allows inspection using slit lamp light.
  • the inspection system 100 detects the eyeball 200 based on the image of the eyeball 200 captured by at least one of the camera unit 4L and the camera unit 4R.
  • the processing unit 22 calculates the shape of the part of the eyeball 200 that is located in the front, and calculates the shape of the part of the eyeball 200 based on ray tracing that takes into account the refraction of light rays passing through the shape. Then, the shape of a part located further back than that may be calculated.
  • the processing unit 22 sequentially calculates the shape of the anterior surface of the cornea of the eyeball 200, the shape of the posterior corneal surface of the eyeball 200, the shape of the anterior lens capsule of the eyeball 200, and the shape of the posterior lens capsule of the eyeball 200.
  • the shape of the crystalline lens may be calculated.
  • the processing unit 22 may calculate the opacity distribution within the crystalline lens of the eyeball 200. Thereby, the shape and opacity distribution of the part of the eyeball 200 can be calculated with higher precision than when refraction of light rays is not considered.
  • the present technology can also have the following configuration.
  • a measurement unit that is movable so as to change the angle with respect to the subject's eyeball, and that is rotatable about the eye axis of the eyeball as a rotation axis; an illumination unit that is mounted on the measurement unit and illuminates the eyeball; a first camera unit that is mounted on the measurement unit and captures an image of the eyeball; a second camera unit that is mounted on the measurement unit and captures an image of the eyeball; Equipped with Each of the first camera unit and the second camera unit is independently movable on the measurement unit so as to change the angle with respect to the eyeball. Inspection system.
  • a goniometer unit is provided that is movable between a position between the eyeball, the illumination unit, and at least one of the first camera unit and the second camera unit, and a position not located between the eyeball and the illumination unit.
  • the inspection system according to (1) or (2).
  • (4) comprising a reflective optical system unit movable between a position between the goniometer unit, the illumination unit and the at least one camera unit, and a position other than the angle mirror unit; With the reflective optical system unit disposed at a position between the goniometer unit, the illumination unit, and the at least one camera unit, The measurement unit rotates around the eye axis of the eyeball as a rotation axis, and the at least one camera unit images an angle region of the eyeball; The inspection system described in (3).
  • the lighting unit is placed in front of the eyeball,
  • the first camera unit and the second camera unit are arranged on opposite sides with the illumination unit in between so that the respective angles with respect to the eyeball are the same,
  • the measurement unit rotates around the eye axis of the eyeball as a rotation axis, and the first camera unit and the second camera unit image the cornea of the eyeball;
  • the inspection system according to any one of (1) to (4).
  • the first camera unit and the second camera unit move together to change the angle with respect to the eyeball while maintaining the inward angle, the first camera unit and the second camera unit image the crystalline lens of the eyeball;
  • the measurement unit rotates around the eye axis of the eyeball as a rotation axis, and the first camera unit and the second camera unit image the crystalline lens of the eyeball;
  • the inspection system according to any one of (1) to (5).
  • the illumination unit is also movable independently on the measurement unit so as to change the angle with respect to the eyeball, with the lighting unit disposed at a position having an angle with respect to the eyeball,
  • the illumination unit, the first camera unit, and the second camera unit move together to change the angle with respect to the eyeball while maintaining their positional relationship, the first camera unit and the second camera unit image the crystalline lens of the eyeball;
  • the inspection system according to any one of (1) to (6).
  • the measurement unit rotates around the eye axis of the eyeball as a rotation axis
  • the first camera unit and the second camera unit image the crystalline lens of the eyeball;
  • the lighting unit and at least one of the first camera unit and the second camera unit are arranged at a position having an angle with respect to the eyeball,
  • the measurement unit rotates around the eye axis of the eyeball as a rotation axis, and the at least one camera unit images the Chin's zonule of the eye;
  • the inspection system according to any one of (1) to (8).
  • the first camera unit includes an objective zoom optical system
  • the second camera unit includes an objective zoom optical system
  • the illumination unit is arranged at a position having an angle with respect to the normal to the corneal endothelium to be imaged in the eyeball
  • the first camera unit is arranged in front of the corneal endothelium to be imaged
  • the second camera The unit is disposed on the opposite side of the illumination unit across the normal line of the corneal endothelium to be imaged, axially symmetrical with respect to the normal line to the corneal endothelium to be imaged
  • the first camera unit images the entire cornea of the eyeball
  • the measurement unit moves to change the angle with respect to the eyeball, and the measurement unit rotates about the eye axis of the eyeball as a rotation axis
  • the second camera unit images corneal endothelial cells of the eyeball;
  • the inspection system according to any one of (1) to (9).
  • (11) comprising a reflector unit movable between a position between the eyeball, the illumination unit, and at least one of the first camera unit and the second camera unit, and a position not located therebetween; with the reflector unit disposed at a position between the eyeball, the illumination unit, and the at least one camera unit, The lighting unit and the at least one camera unit are arranged at a position where the angle with respect to the eyeball is smaller than when the reflecting mirror unit is not arranged.
  • the inspection system according to any one of (1) to (10).
  • the inspection system according to any one of (1) to (11).
  • the inspection unit comprising a base unit movable in the front-rear direction, left-right direction, and up-down direction with respect to the eyeball,
  • the measurement unit is mounted on the base unit,
  • the inspection system according to any one of (1) to (12).
  • the illumination unit irradiates the eyeball with illumination light,
  • the illumination light includes slit lamp light.
  • the inspection system according to any one of (1) to (13).
  • (15) comprising a processing unit that calculates a shape of a part of the eyeball based on an image of the eyeball captured by at least one of the first camera unit and the second camera unit,
  • the processing unit calculates the shape of a region located in the front among the regions of the eyeball, and calculates the shape of a region located further back based on ray tracing that takes into account the refraction of light rays passing through the shape. calculate,
  • the inspection system according to any one of (1) to (14).
  • the processing unit calculates, in order, the shape of the anterior corneal surface of the eyeball, the shape of the posterior corneal surface of the eyeball, the shape of the anterior lens capsule of the eyeball, and the shape of the posterior lens capsule of the eyeball, thereby determining the shape of the crystalline lens of the eyeball. calculate the shape, The inspection system according to (15). (17) The processing unit calculates an opacity distribution within the crystalline lens of the eyeball. The inspection system according to (16).
  • Inspection system 10 Imaging device 1 Base unit 2 Measurement unit 3 Illumination unit 31 Light source 32 Slit 33A Optical system 33B Optical system 4L Camera unit (first camera unit) 4R camera unit (second camera unit) 41 Objective zoom optical system 42 Image sensor 5 Goniometer unit 6 Reflection optical system unit 7 Reflection mirror unit 71 Frame 72 Main body 73 Reflection mirror 20 Control processing device 21 Control section 22 Processing section 23 Storage section 231 Program 200 Eyeball EA Eye axis F Fixation target LL Illumination light OL Observation light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

検査システム(100)は、被検者の眼球(200)に対する角度を変えるように移動可能であり、且つ、眼球(200)の眼軸を回転軸として回転移動可能な測定ユニット(2)と、測定ユニット(2)に搭載され、眼球(200)を照射する照明ユニット(3)と、測定ユニット(2)に搭載され、眼球(200)を撮像する第1のカメラユニット(4L)と、測定ユニット(2)に搭載され、眼球(200)を撮像する第2のカメラユニット(4R)と、を備え、第1のカメラユニット(4L)及び第2のカメラユニット(4R)それぞれは、眼球(200)に対する角度を変えるように測定ユニット(2)上を独立に移動可能である。

Description

検査システム
 本開示は、検査システムに関する。
 例えば特許文献1は、検眼用の顕微鏡によって観察される眼球を撮像する装置を開示する。
特開2016-159073号公報
 特許文献1の装置は、医師の手動操作を必要とする。また、各種の検査に適した態様で眼球を撮像できるようにはなっていない。
 本開示の一側面は、検査に適した態様で眼球を撮像することを可能にする。
 本開示の一側面に係る検査システムは、被検者の眼球に対する角度を変えるように移動可能であり、且つ、眼球の眼軸を回転軸として回転移動可能な測定ユニットと、測定ユニットに搭載され、眼球を照射する照明ユニットと、測定ユニットに搭載され、眼球を撮像する第1のカメラユニットと、測定ユニットに搭載され、眼球を撮像する第2のカメラユニットと、を備え、第1のカメラユニット及び第2のカメラユニットそれぞれは、眼球に対する角度を変えるように測定ユニット上を独立に移動可能である。
実施形態に係る検査システムの概略構成の例を示す図である。 各ユニットの移動の例を模式的に示す図である。 隅角領域検査の例を示す図である。 角膜検査の例を示す図である。 水晶体検査の例を示す図である。 水晶体検査の例を示す図である。 水晶体検査の例を示す図である。 チン小帯の検査の例を示す図である。 角膜内皮細胞検査の例を示す図である。 反射鏡ユニットを用いた撮像の例を模式的に示す図である。 反射鏡ユニットの形状の例を示す図である。 固視標の提示の例を示す図である。 固視標の提示の例を示す図である。 固視標の提示の例を示す図である。 画像処理の例を示すフローチャートである。 図15のステップS2の詳細の例を示すフローチャートである。 図15のステップS3の詳細の例を示すフローチャートである。 図15のステップS4の詳細の例を示すフローチャートである。 図15のステップS5の詳細の例を示すフローチャートである。 図15のステップS6の詳細の例を示すフローチャートである。 制御処理装置20のハードウェア構成の例を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の要素には同一の符号を付することにより重複する説明を省略する。
 以下に示す項目順序に従って本開示を説明する。
  0.序
  1.実施形態
   1.1.前眼部検査
   1.2.隅角領域検査
   1.3.角膜検査
   1.4.水晶体検査
   1.5.チン小帯検査
   1.6.角膜内皮細胞検査
   1.7.反射鏡ユニット
   1.8.固視標
   1.9.画像処理
  2.変形例
  3.ハードウェア構成の例
  4.効果の例
0.序
 眼科医は、診察の際にスリットランプ(細隙灯等とも呼ばれる)を使って患者の眼の状態を診断している。スリットランプは、100年以上前に発明され、現在も主流なアナログな眼科診断装置である。現在は、この他にも種々のデジタル化された検査機器が開発され、診断に使われているが、それぞれ単機能の検査を行う装置となっている。診断のワークフローは、医師の診察前に、検査室で各種の検査機器で事前検査を行った後に、診察室で医師によるスリットランプを用いた診断を行う。その後、疑われる疾患に応じて、再び、検査室で必要な検査を、別の検査機器で行う。最後にもう一度、診察室に戻って、医師が診断を行う。この様な一連の流れで、多くの眼科医の診断が行なわれている。
 上述のような事前検査、診察、再検査、再診察というワークフローのため、診断までの時間が多くかかっている現状がある。また、検査機器が複数あって、それぞれで行なっているため、検査室のスペースを要し、それぞれの機器を準備するコストもかかっている。事前検査の時に、単体で一度に必要な検査を予め一通り終えたり、さらには、検査結果を提示したりすることができれば、一度の診察で診断が行えるので、ワークフローを大幅に迅速化できる。
 現状のスリットランプは画像データの撮像機能が無い物が一般的で、撮像機能を付加した物でも、低解像度な単眼撮像装置しかない。このため、事前に検査室で、医師の診断に用いる事ができるレベルの画質、かつ3次元のデータ(3Dデータ)を取得できる装置がない。特許文献1の技術も、スリットランプの構造そのものは、従来と変わらないため、医師が手動で操作して使う装置となっている。事前に検査室でデータ取得を行う使い方には適さない、という課題がある。また、角膜細胞、チン小帯、角膜の立体形状、水晶体の立体形状等のデータも取得して、診断に役立てたい場合があるが、それらのデータを取得する事は出来ないので、必要に応じて、診断ごとに別々の検査装置を使って行う必要もある。
 例えば上述の課題の少なくとも一部が、開示される技術によって対処される。例えば、所望の条件で被検眼を照らす照明ユニット、及び、2つの撮像ユニットが用いられる。検査の内容に応じて、照明ユニットの照明方法、照明ユニット及び撮像ユニットの位置等が最適条件に調整され撮像される。それとともに解析が行われ、診断に用いるための情報の提示等も行われる。
1.実施形態
 図1は、実施形態に係る検査システムの概略構成の例を示す図である。検査システム100は、眼の検査、診断等に用いられる。検査対象の眼の眼球部分を、眼球200と称し図示する。検査システム100は、撮像装置10と、制御処理装置20とを含む。図1には、上方からみた(平面視した)眼球200及び撮像装置10の配置が模式的に示される。
 撮像装置10は、眼球200を撮像する。撮像装置10は、ベースユニット1と、測定ユニット2と、照明ユニット3と、カメラユニット4Lと、カメラユニット4Rと、隅角鏡ユニット5と、反射光学系ユニット6とを含む。この例では、測定ユニット2及び隅角鏡ユニット5は、ベースユニット1に搭載される。照明ユニット3、カメラユニット4L、カメラユニット4R及び反射光学系ユニット6は、測定ユニット2に搭載される。
 照明ユニット3は、眼球200に照明光LLを照射することにより、眼球200を照明する。照明光LLの例は、スリットランプ光であり、この場合、照明光LLは、光路と直交する面において、スリット形状(長方形形状)を有する。照明光LLはスリットランプ光以外の光であってよく、スリット形状以外の形状を有してよい。他の形状の例は、ランダムドットパターン形状、グリッドパターン形状等である。以下では、照明光LLがスリット形状を有するスリットランプ光であるものとして説明する。
 照明ユニット3は、光源31と、光学系33Aと、スリット32と、光学系33Bとを含む。光源31は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)等を含んで構成される。光源31は、切り替えて用いることが可能な複数の光源であってよい。光源の例は、白色光光源、赤外光光源等である。
 光源31によって出力された照明光LLは、光学系33Aによって集光されてからスリット32によってスリット状に絞られ、光学系33Bによって平行光にコリメートされて出力される。スリット32の幅は制御可能であり、従って、照明光LLの幅(スリットランプ光の幅)を調整可能である。
 カメラユニット4L及びカメラユニット4Rは、眼球200、より具体的には、眼球200のうち、照明ユニット3からの照明光LLによって照明されている部分(例えば断面)を撮像する。眼球200からカメラユニット4L及びカメラユニット4Rに向かう光を、観察光OLと称し図示する。カメラユニット4L及びカメラユニット4Rは、観察光OLを受光することによって、眼球200を撮像する。
 カメラユニット4Lは、測定ユニット2から眼球200をみたときに、カメラユニット4Rよりも左側に位置する第1のカメラユニット(左カメラユニット)である。カメラユニット4Rは、カメラユニット4Lよりも右側に位置する第2のカメラユニット(右カメラユニット)である。カメラユニット4L及びカメラユニット4Rは、同一の構成を有してよい。
 カメラユニット4L及びカメラユニット4Rそれぞれは、対物ズーム光学系41と、イメージセンサ42とを含む。例示される対物ズーム光学系41は、対物レンズである。対物ズーム光学系は、変倍式の光学系を含む意味に解されてよい。イメージセンサ42は、対物ズーム光学系41を介して観察(例えば拡大観察)された眼球200を撮像する。
 カメラユニット4Lの対物ズーム光学系41及びイメージセンサ42と、カメラユニット4Rの対物ズーム光学系41及びイメージセンサ42とは、それぞれ独立に制御可能である。カメラユニット4Lの倍率及びカメラユニット4Rの倍率も独立に設定できる。このようなカメラユニット4L及びカメラユニット4Rは、互いに異なる位置、角度、倍率等で眼球200を撮像するグリノー式のステレオカメラとして機能する。
 カメラユニット4L及びカメラユニット4Rによって撮像された眼球200の画像のデータは、撮像装置10から制御処理装置20に送られる。なお、「画像」及び「撮像」は、「映像」及び「撮影」を含む意味に解されてよい。矛盾の無い範囲において、画像及び撮像は、映像及び撮影に適宜読み替えられてよい。また、以下では、画像のデータを、単に画像等ともいう。
 隅角鏡ユニット5及び反射光学系ユニット6は、眼球200の隅角領域を撮像する際に用いられる。隅角鏡ユニット5は、隅角鏡を含んで構成される。反射光学系ユニット6は、照明光LLや観察光OLを反射させる光学素子を含んで構成される。
 図示しない患者台等が設けられてよい。患者台は、患者の顎を載せて安定させる顎乗せ台、額を当て付けて安定させる額受け、及び、眼球200の位置を安定させるために一定方向を見続けるための固視標等を含んで構成されてよい。それらはユニット化された状態で撮像装置10に組み入れられて(例えば一体化されて)よい。患者台を利用することで、撮像装置10に対する眼球200の位置を安定化することができる。
 撮像装置10に含まれる上述の各ユニットは、それぞれが独立に移動可能である。各ユニットの移動は、例えば図示しない電動駆動機構又は装置によって独立に制御される。
 図2は、各ユニットの移動の例を模式的に示す図である。眼球200の眼軸を、眼軸EAと称し、一点鎖線で模式的に図示する。
 ベースユニット1の移動が、矢印AR1A、矢印AR1B及び矢印AR1Cで模式的に示される。ベースユニット1は、眼球200に対して前後方向、左右方向及び上下方向に移動可能である。ベースユニット1上の各ユニット、例えば照明ユニット3、カメラユニット4L及びカメラユニット4R等を、眼球200の検査に適した位置にアライメントし易くなる。
 測定ユニット2の移動が、矢印AR2A及び矢印AR2Bで模式的に示される。矢印AR2Aで示されるように、測定ユニット2は、眼球200(の眼軸EA)に対する角度を変えるように、例えば眼球200又はその前端部近傍を回転中心として移動可能である。矢印AR2Aに示される測定ユニット2の移動は、眼球200に対して水平方向に相対位置をスイングする移動ともいえる。矢印AR2Bで示されるように、測定ユニット2は、眼球200の眼軸EAを回転軸として回転移動可能である。また、測定ユニット2を移動させることで、照明ユニット3、カメラユニット4L、カメラユニット4R及び反射光学系ユニット6の配置(相対位置)を固定したまま、それらのユニットを移動させることができる。
 照明ユニット3、カメラユニット4L及びカメラユニット4Rは、例えば図2に示されるようにデフォルト配置される。照明ユニット3は、眼球200から照明ユニット3に向かう直線(この例では眼軸EA)が照明ユニット3の中心を通るように方向付けられる。カメラユニット4L及びカメラユニット4Rは、照明ユニット3を挟んで互いに反対側に配置される。図2において破線で示されるように、カメラユニット4Lは、眼球200からカメラユニット4Lに向かう直線がカメラユニット4Lの中心を通るように方向付けられる。カメラユニット4Rは、眼球200からカメラユニット4Rに向かう直線がカメラユニット4Rの中心を通るように方向付けられる。
 照明ユニット3の移動が、矢印AR3で模式的に示される。カメラユニット4Lの移動が、矢印AR4Lで模式的に示される。カメラユニット4Rの移動が、矢印AR4Rで模式的に示される。上述の矢印AR2Aで示される測定ユニット2の移動と同様に、照明ユニット3、カメラユニット4L及びカメラユニット4Rそれぞれは、眼球200に対する角度を変えるように、測定ユニット2上を独立に移動可能である。
 測定ユニット2上において、照明ユニット3、カメラユニット4L及びカメラユニット4Rそれぞれの眼球200に対する角度を独立に制御することができる。例えば、カメラユニット4L及びカメラユニット4Rの内向角度を変更したり、カメラユニット4L及びカメラユニット4Rの位置関係を維持したまま一緒に移動させたりすることができる。
 隅角鏡ユニット5の移動が、矢印AR5で模式的に示される。隅角鏡ユニット5は、眼球200と測定ユニット2との間の位置(挿入位置)と、そうでない位置(退避位置)との間で、挿脱可能に移動可能である。より具体的に、挿入位置は、眼球200と、照明ユニット3並びにカメラユニット4L及びカメラユニット4Rの少なくとも一方のカメラユニットとの間の位置である。図2に示される例では、挿入位置は、眼球200と、照明ユニット3及びカメラユニット4Lとの間の位置である。挿入位置は、照明光LL及びカメラユニット4Lの観察光OLの光路上の位置である。退避位置は、照明光LL及びカメラユニット4Lの観察光OLの光路外の位置である。退避位置は、照明ユニット3、カメラユニット4L及びカメラユニット4Rの移動を妨げない任意の位置であってよい。
 反射光学系ユニット6の移動が、矢印AR6で模式的に示される。反射光学系ユニット6は、隅角鏡ユニット5と、照明ユニット3及びカメラユニット4Lとの間の位置とそうでない位置との間で、挿脱可能に移動可能である。反射光学系ユニット6のこれらの位置は、上述の隅角鏡ユニット5の挿入位置及び退避位置と同様であるので、説明は繰り返さない。
 図1に戻り、制御処理装置20について説明する。制御処理装置20は、制御部21と、処理部22と、記憶部23とを含む。
 制御部21は、撮像装置10の各ユニットを制御することにより、撮像装置10による眼球200の撮像を制御する。例えば、制御部21は、ベースユニット1の移動を制御する。制御部21は、測定ユニット2の移動を制御する。制御部21は、照明ユニット3の移動を制御し、また、照明ユニット3による照明を制御する。照明制御は、パラメータ制御を含む。パラメータの例は、照明光LLの形状(スリット幅等)、波長、照度等の内部パラメータ、照明ユニット3の位置、向き、姿勢等の外部パラメータ等である。
 制御部21は、カメラユニット4Lの移動を制御し、また、カメラユニット4Lによる撮像を制御する。撮像制御は、パラメータ制御を含む。パラメータの例は、カメラユニット4Lの焦点距離、焦点位置(対物ズーム光学系41の倍率を含む)等の内部パラメータ、カメラユニット4Lの位置、向き、姿勢等の外部パラメータ等である。同様に、制御部21は、カメラユニット4Rの移動を制御し、また、カメラユニット4Rによる撮像を制御する。
 処理部22は、撮像装置10によって撮像された眼球200の画像を処理する。眼球200の検査に関する画像、例えば、眼球200の診断に供することのできる画像等が生成される。画像に基づく眼球200の診断が行われてもよい。
 記憶部23は、制御処理装置20で用いられる情報を記憶する。記憶部23に記憶される情報として、プログラム231が例示される。プログラム231は、コンピュータを制御処理装置20として機能させるための制御処理プログラム(ソフトウェア)である。
 上述の検査システム100によれば、各ユニットの移動を独立に制御できるので、各種の検査に適したさまざまな態様で眼球200を撮像することができる。検査システム100を用いれば、医師によるスリットランプの操作等は不要であり、医師以外の者が検査者となり得る。例えば医師による診断の前に検査システム100を用いて各種の検査を行っておくことで、診断のワークフローを大幅に迅速化できる。
 検査のいくつかの例について述べる。とくに説明がある場合を除き、撮像装置10の各ユニットの移動等は、制御処理装置20の制御部21によって制御される。カメラユニット4L及びカメラユニット4Rの倍率は、撮像対象の撮像に適した倍率に設定される。また、とくに説明がある場合を除き、カメラユニット4L及びカメラユニット4Rの倍率は、同じ倍率に設定されるものとする。
1.1.前眼部検査
 例えば前眼部検査が最初に行われる。検査者の指示に従い、被験者(患者)は、顎載せ台に顎を載せ、額受けに額を当ててから、固視標を見る。その状態で、被験者の眼球200の中心と照明ユニット3の中心とが合うように(眼球200の眼軸EAが照明ユニット3の中心を通るように)、ベースユニット1が移動する。一例として、固視標からの投光光が被験者の眼球200の角膜で反射して生じる像と、照明ユニット3の照明光LLの中心位置とが一致し、先鋭度が最も良くなる位置に、ベースユニット1の位置が調整される。なお、ベースユニット1の移動は、検査者が手動で制御してもよい。
 測定ユニット2上の照明ユニット3、カメラユニット4R及びカメラユニット4Lは、先に説明した図1や図2に示される位置関係を有するように配置される。カメラユニット4L及びカメラユニット4Rは、照明ユニット3を挟んで互いに反対側に配置される。
 上記の状態で、図2の矢印AR2Aに示されるように、測定ユニット2が眼球200に対する角度を変えるように移動する。この移動とともに、カメラユニット4L及びカメラユニット4Rそれぞれが、眼球200の前眼部を撮像する。測定ユニット2の移動をスキャン動作とする撮像が行われる。これにより、医師がスリットランプを用いて観察する眼球200の前眼部に対応する画像が得られる。
 得られた画像は、制御処理装置20の記憶部23に記憶され、また、処理部22によって処理される。例えば、眼球200の前眼部の診断に供することのできる画像が生成され、また、図示しないモニタ等によって表示される。画像はリアルタイム表示されてもよい。
 処理部22は、上述の前眼部検査で得られた画像に基づく診断を行ってよい。種々の公知のアルゴリズム(機械学習モデルを含む)が用いられてよい。処理部22によって眼球200の部位のさらなる検査の要否が判断され、必要な検査の項目等に関する情報が検査者に提示される。検査システム100を用いた眼球200の部位のさらなる検査が行われる。検査対象となり得る眼球200の部位の例は、隅角領域、角膜、水晶体等であり、例えばこの後で述べるような検査が行われる。
1.2.隅角領域検査
 図3は、隅角領域検査の例を示す図である。眼球200の隅角領域の状態を全周にわたって把握できるように、眼球200が撮像される。先に説明した隅角鏡ユニット5が用いられ、この例では反射光学系ユニット6も用いられる。隅角鏡ユニット5及び反射光学系ユニット6は、眼球200と、照明ユニット3及びカメラユニット4Lとの間の位置に配置される。照明ユニット3は、反射光学系ユニット6及び隅角鏡ユニット5を介して眼球200の隅角領域を照射する位置に配置される。カメラユニット4Lは、隅角鏡ユニット5及び反射光学系ユニット6を介して眼球200の隅角領域を撮像する位置に配置される。
 図3に示される例では、反射光学系ユニット6内の光学素子(ミラー等)が、照明ユニット3からの照明光LLを、隅角鏡ユニット5に向けて反射する。隅角鏡ユニット5内には、例えば一定間隔で反射鏡が円周方向に等ピッチで配置されている。隅角鏡ユニット5内の反射鏡は、反射光学系ユニット6からの照明光LLを、眼球200の隅角領域に向けて反射する。眼球200の隅角領域が照明光LLによって照明される。
 また、隅角鏡ユニット5内の反射鏡が、眼球200の隅角領域からの観察光OLを、反射光学系ユニット6に向けて反射する。反射光学系ユニット6内の光学素子は、隅角鏡ユニット5からの観察光OLを、カメラユニット4Lに向けて反射する。眼球200の隅角領域が、カメラユニット4Lによって観察される。
 上記の状態で、図3の矢印AR2Bに示されるように、測定ユニット2が眼球200の眼軸EAを回転軸として回転移動する。この移動とともに、カメラユニット4Lが、眼球200の隅角領域を撮像する。回転方向に沿って、眼球200の隅角領域が撮像される。例えば全周にわたる隅角領域が撮像されるまで、測定ユニット2が回転移動する。
 得られた画像は、制御処理装置20の記憶部23に記憶され、また、処理部22によって処理される。例えば、眼球200の隅角領域の診断に供することのできる画像が生成されたり、モニタ表示されたりする。表示の態様はとくに限定されないが、例えば、隅角鏡ユニット5内の各反射鏡に対応する画像が並べて表示されたり、円環状に繋がった一枚のドーナツ形状の画像が表示されたりしてよい。
1.3.角膜検査
 図4は、角膜検査の例を示す図である。隅角鏡ユニット5及び反射光学系ユニット6の図示は省略する。眼球200の角膜の状態を把握できるように、眼球200が撮像される。照明ユニット3は、眼球200の正面に配置される。眼球200の眼軸EAは、照明ユニット3の中心を通る。照明ユニット3からの照明光LLが、眼球200の角膜に照射される。
 カメラユニット4L及びカメラユニット4Rは、眼球200に対して角度を有するように、照明ユニット3を挟んで互いに反対側に配置される。より具体的に、カメラユニット4L及びカメラユニット4Rは、それぞれの眼球200に対する角度の大きさが同じになるように、眼球200の眼軸EAを軸対称として配置される。
 この状態で、矢印AR2Bに示されるように、測定ユニット2が、眼球200の眼軸EAを回転軸として回転移動する。この移動とともに、カメラユニット4L及びカメラユニット4Rが、眼球200の角膜を撮像する。回転方向に沿って、眼球200の角膜が撮像される。例えば1周分の角膜が撮像されるまで、測定ユニット2が回転移動する。
 得られた画像は、制御処理装置20の記憶部23に記憶され、また、処理部22によって処理される。例えば、眼球200の角膜の診断に供することのできる画像が生成されたり、モニタ表示されたりする。また、画像に基づいて、眼球200の角膜の形状が算出される。例えば、角膜の形状のデータが構築され、形状が復元される。
 なお、処理部22によって算出される眼球200の部位の形状は、3次元形状であってよい。矛盾の無い範囲において、形状は3次元形状に適宜読み替えられてよい。
1.4.水晶体検査
 図5~図7は、水晶体検査の例を示す図である。眼球200の水晶体の形状や水晶体内の混濁分布を把握できるように、眼球200が撮像される。
 図5には、赤道部を含む水晶体の形状を把握するための撮像の例が示される。照明ユニット3は、眼球200に対して角度を有する位置に配置される。照明ユニット3から照明光LLが、眼球200の水晶体に照射される。
 カメラユニット4L及びカメラユニット4Rは、内向角度を有するように配置され、眼球200を撮像する。眼球200を正面から見たときには虹彩の後ろに隠れて見えない水晶体の赤道部も撮像される。赤道部を含む水晶体の撮像は、例えば白内障手術に有用である。白内障手術では、最終的な眼内レンズの落ち着く深さの予測、眼内レンズが乱視矯正用である場合に矯正効果を減弱する原因となる眼内レンズの水晶体嚢内での回転の起きやすさの把握、眼内レンズが調節眼内レンズである場合の適切なサイズの選定等が事前に行われる。眼球200の水晶体赤道部の形状を把握しておくことは重要である。
 上述のようにカメラユニット4L及びカメラユニット4Rが配置された状態で、矢印AR2Bに示されるように、測定ユニット2が、眼球200の眼軸EAを回転軸として回転移動する。それとともに、カメラユニット4L及びカメラユニット4Rが、眼球200の水晶体、より具体的には水晶体の赤道部を撮像する。例えば1周分の水晶体が撮像されるまで、測定ユニット2が回転移動する。
 図6には、水晶体の混濁分布を把握するための撮像の例が示される。上述の図5と同様に、照明ユニット3は、眼球200に対して角度を有する位置に配置される。照明ユニット3から照明光LLが、眼球200の水晶体に照射される。
 この状態で、照明ユニット3、カメラユニット4L及びカメラユニット4Rがそれらの位置関係(角度)を維持したまま、眼球200に対する角度を変えるように一緒に移動する(矢印AR3、矢印AR4L及び矢印AR4R)。この移動とともに、カメラユニット4L及びカメラユニット4Rが、眼球200の水晶体を撮像する。移動方向に沿って、異なる角度から眼球200の水晶体が撮像される。照明ユニット3、カメラユニット4L及びカメラユニット4Rの移動方向に沿って、眼球200の水晶体が撮像される。
 図7に示されるように、測定ユニット2の回転がさらに組み合わされてよい。照明ユニット3、カメラユニット4L及びカメラユニット4Rの移動、並びに、カメラユニット4L及びカメラユニット4Rによる撮像が終わると、矢印AR2Bに示されるように、測定ユニット2が、眼球200の眼軸EAを回転軸として回転移動する。それとともに、カメラユニット4L及びカメラユニット4Rが、眼球200の水晶体を撮像する。測定ユニット2の回転方向、並びに、カメラユニット4L及びカメラユニット4Rの移動方向に沿って、眼球200の水晶体が撮像される。例えば1周分の水晶体が撮像されるまで、測定ユニット2が回転移動する。
 なお、照明ユニット3、カメラユニット4L及びカメラユニット4Rの位置関係は、上述の図5~図7に示される例に限定されない。例えば、照明ユニット3は、カメラユニット4Lとカメラユニット4Rとの間に位置していてもよい。
 得られた画像は、制御処理装置20の記憶部23に記憶され、また、処理部22によって処理される。例えば、眼球200の水晶体の診断に供することのできる画像が生成されたり、モニタ表示されたりする。また、画像に基づいて、眼球200の水晶体の形状が算出されたり、水晶体内の混濁分布が算出されたりする。
1.5.チン小帯検査
 図8は、チン小帯の検査の例を示す図である。眼球200のチン小帯の状態を全周にわたって把握できるように、眼球200が撮像される。照明ユニット3は、眼球200のチン小帯を照明できるように、眼球200に対して角度を有する位置に配置される。照明ユニット3からの照明光LLが、眼球200のチン小帯に照射される。
 カメラユニット4L及びカメラユニット4Rの少なくとも一方のカメラユニットが、眼球200のチン小帯を観察できるように、眼球200に対して角度を有する位置に配置される。この例では、カメラユニット4Lが、眼球200に対して角度を有する位置に配置され、眼球200のチン小帯を撮像する。
 この状態で、矢印AR2Bに示されるように、測定ユニット2が、眼球200の眼軸EAを回転軸として回転移動する。この移動とともに、カメラユニット4Lが、眼球200のチン小帯を撮像する。移動方向に沿って、眼球200のチン小帯が撮像される。例えば1周分のチン小帯が撮像されるまで、測定ユニット2が回転移動する。
 得られた画像は、制御処理装置20の記憶部23に記憶され、また、処理部22によって処理される。例えば、眼球200のチン小帯の診断(脆弱性診断等)に供することのできる画像が生成されたり、モニタ表示されたりする。
1.6.角膜内皮細胞検査
 図9は、角膜内皮細胞検査の例を示す図である。眼球200の角膜内皮細胞の状態を把握できるように、眼球200が撮像される。照明ユニット3は、眼球200における撮像対象の角膜内皮の法線に対して角度を有する位置に配置される。照明ユニット3からの照明光LLが、眼球200の角膜内皮細胞に照射される。
 カメラユニット4Lは、眼球200における撮像対象の角膜内皮の正面に配置される。角膜の中心の角膜内皮が撮像対象の場合には、図9に示されるように、カメラユニット4Lは、眼球200の正面に配置される。眼球200の眼軸EAは、カメラユニット4Lの中心を通る。カメラユニット4Lの対物ズーム光学系41の倍率は、角膜全体を観察できる倍率(比較的低い倍率)に設定される。
 カメラユニット4Rは、撮像対象の角膜内皮の法線を挟んで照明ユニット3とは反対側に、撮像対象の角膜内皮の法線を軸対称として配置される。角膜の中心の角膜内皮が撮像対象の場合には、図9に示されるように、照明ユニット3及びカメラユニット4Rは、眼球200の眼軸EAを軸対称として配置される。カメラユニット4Rの対物ズーム光学系41の倍率は、角膜内皮細胞を観察できる倍率(比較的高い倍率)に設定される。
 上記の状態で、カメラユニット4Lが、眼球200の角膜全体を撮像する。照明ユニット3の照明光LL(スリットランプ光)は、眼球200の角膜が照らせる程度の広い幅を有するように制御される。そして、カメラユニット4Lによって撮像された画像の中心が眼球200の角膜の中心と一致するように、ベースユニット1の位置が調整される。
 次に、カメラユニット4Rが、眼球200の角膜内皮細胞を撮像する。照明ユニット3の照明光LLは、眼球200の角膜内皮細胞の範囲だけに対応する狭い幅を有するように制御される。
 具体的に、矢印AR2Aに示されるように、測定ユニット2が眼球200に対する角度を変えるように移動する。この移動とともに、カメラユニット4Rが、水平方向において眼球200の角膜中心を通る線に沿って、眼球200の角膜内皮細胞を撮像する。また、矢印AR2Bに示されるように、測定ユニット2が、眼球200の眼軸EAを回転軸として回転移動する。角膜中心を通る上述の線が傾けられる。この移動とともに、カメラユニット4Rが、眼球200の角膜内皮細胞を撮像する。
 得られた画像は、制御処理装置20の記憶部23に記憶され、また、処理部22によって処理される。例えば、角膜内皮細胞の診断に供することのできる画像が生成されたり、モニタ表示されたりする。角膜内皮細胞の数や大きさの分析が行われたり、その結果がモニタ表示されたりしてもよい。
 例えば以上で説明したような眼球200の各部位に対応する各種の検査が、検査システム100によって行われる。医師による診断に先だって、各種の検査に対応する画像等を事前に取得することができる。医師は、診断時にその場でスリットランプを使って観察しなくとも、事前に取得された画像等に基づいて診断を行うことができる。従って、冒頭で述べたような診断のワークフローを大幅に迅速化することができる。
1.7.反射鏡ユニット
 例えば上述の水晶体検査(図5~図7)やチン小帯検査(図8)では、眼球200の正面ではなく、眼球200(の眼軸EA)に対してある程度大きな角度を有する位置に、照明ユニット3やカメラユニット4を配置する必要がある。その角度が大きいと、照明や撮像が被検者の顔の造作によって妨げられたり、被検者のまつ毛が撮像画像に含まれてしまったりする問題が生じ得る。このような問題に対処するために、反射鏡ユニットが用いられてよい。図10及び図11を参照して説明する。
 図10は、反射鏡ユニットを用いた撮像の例を模式的に示す図である。例示される反射鏡ユニット7は、先に説明した隅角鏡ユニット5と同様の形状を有する。この反射鏡ユニット7も、他のユニットと同様に、撮像装置10の構成要素であってよい。反射鏡ユニット7は、隅角鏡ユニット5と同様に、挿入位置と退避位置との間で挿脱可能に移動可能である。反射鏡ユニット7は、隅角鏡ユニット5と同じ場所に隅角鏡ユニット5と交換して取り付けられてもよいし、隅角鏡ユニット5とは異なる場所に配置されてもよい。
 反射鏡ユニット7は、枠体71と、枠体71によって支持される本体72と、本体72に設けられた反射鏡73とを含む。本体72は、照明光LL及び観察光OLを透過させる材料で構成される。
 反射鏡ユニット7の本体72は、枠体71によって支持される基部721と、基部721から眼球200に向かって延在する延在部722とを含む。延在部722の断面積(例えば眼球200の眼軸EAと直交する面の面積)は、基部721から離れるにつれて小さくなる。反射鏡73は、延在部722の側面の少なくとも一部に設けられる。
 図10に示される例では、反射鏡ユニット7は、眼球200の水晶体の赤道部の撮像に用いられ、眼球200と、照明ユニット3、カメラユニット4L及びカメラユニット4Rとの間に配置される。反射鏡ユニット7の反射鏡73は、照明ユニット3からの照明光LLを、眼球200の水晶体の赤道部に向けて反射する。また、反射鏡73は、眼球200の水晶体の赤道部からの観察光OLを、カメラユニット4L及びカメラユニット4Rに向けて反射する。
 上記のように反射鏡ユニット7が配置された状態で、照明ユニット3、カメラユニット4L及びカメラユニット4Rは、反射鏡ユニット7が配置されていない場合(例えば図5~図7)よりも、眼球200に対する角度が小さくなる位置に配置される。換言すれば、反射鏡ユニット7の反射鏡73は、照明ユニット3、カメラユニット4L及びカメラユニット4Rの眼球200に対する角度を小さくできるように、照明光LL及び観察光OLを反射する。これにより、上述のような被検者の顔の造作に起因して撮像が困難になるという問題が解消される。被検者によらず、赤道部を含む眼球200の水晶体を明瞭に撮像することができる。水晶体以外の眼球200の部位、例えばチン小帯についても同様である。
 なお、カメラユニット4L及びカメラユニット4Rの一方のカメラユニットだけが用いられてもよい。具体的には、撮像対象の眼球200の部位の3次元形状を把握する場合には、カメラユニット4L及びカメラユニット4Rの両方のカメラユニットが用いられる。。そうでない場合には、カメラユニット4L及びカメラユニット4Rの一方のカメラユニットだけを用いれば足りる。
 図11は、反射鏡ユニットの形状の例を示す図である。本体72の基部721から延在部722をみたときの延在部722及び反射鏡73の形状のいくつかの例が示される。
 図11の(A)に例示される反射鏡ユニット7の延在部722は、円錐形状の先端部を取り除いた形状を有する。反射鏡73は、延在部722の側面にフィットするように、延在部722の側面全体にわたって設けられる。この場合、反射鏡ユニット7を固定したままで、照明ユニット3、カメラユニット4L及びカメラユニット4Rを回転移動させながら眼球200を撮像することができる。画像が歪曲する可能性があるが、その場合は、制御処理装置20の処理部22で補正処理を行えばよい。
 図11の(B)に例示される反射鏡ユニット7の延在部722は、多角錐の先端部を取り除いた形状を有する。反射鏡73は、延在部722の側面にフィットするように、延在部722の側面全体にわたって設けられる。この場合も、反射鏡ユニット7を固定したままで、照明ユニット3、カメラユニット4L及びカメラユニット4Rを回転移動させながら眼球200を撮像することができる。反射鏡73の平面の接合部での画像の不連続性が生じる可能性があるが、眼球200の処理部22によって不連続性を吸収する処理を行えばよい。
 図11の(C)に例示される反射鏡ユニット7の延在部722は、円錐形状の先端部を切り取った形状を有する。反射鏡73は、平面形状を有し、延在部722の側面の一部に設けられる。この例では1枚の反射鏡73が設けられるが、2枚以上の反射鏡73が設けられてもよい。反射鏡ユニット7を、照明ユニット3、カメラユニット4L及びカメラユニット4Rと一緒に回転移動させることで、眼球200を撮像することができる。それぞれの角度で広範囲の歪のない明瞭な画像が得られる。
 反射鏡ユニット7は、眼球200に接触した状態で用いられてもよいし、眼球200から離れた状態(非接触状態)で用いられてもよい。接触状態で用いる場合には、角膜表面の収差の影響を受けず、また、角膜と空気の界面での臨界角度の影響を受けないため、より広い角度での観察が可能になる。眼球200に対する侵襲性は存在するが、検査時の麻酔等による対処が可能である。非接触状態で用いる場合は侵襲性の問題は無い。
1.8.固視標
 被検者の顔の形状等によっては、眼球200の水晶体の赤道部やチン小帯の撮像が依然として困難な場合もあり得る。この問題は、眼球200の向き、すなわち被検者の目線を変えることで解消し得る。一実施形態において、眼球200の向きを誘導するための固視標が被検者に提示された状態で、眼球200が撮像されてよい。図12~図14を参照して説明する。
 図12~図14は、固視標の提示の例を示す図である。眼球200の向きに相当する被検者の目線を、目線Eと称し矢印で図示する。固視標を、固視標Fと称し図示する。
 図12には、目線Eを下方向に誘導する固視標Fが例示される。図12の(A)に示されるように、目線Eがまっすぐな場合、照明光LLが上瞼、額等に遮られ、眼球200を撮像することができない。図12の(B)に示されるように、眼球200の下側に固視標Fが表示される。目線Eが下方向に移動し、これに応じて、異なる位置や角度から照明光LLが照射される。照明光LLは遮られずに眼球200に到達し、眼球200が撮像される。
 図13には、目線Eを上方向に誘導する固視標Fが例示される。図13の(A)に示されるように、目線Eがまっすぐな場合、照明光LLが下瞼等に遮られ、眼球200を撮像することができない。図13の(B)に示されるように、眼球200の上側に固視標Fが表示される。目線Eが上方向に移動し、これに応じて、異なる位置や角度から照明光LLが照射される。照明光LLは遮られずに眼球200に到達し、眼球200が撮像される。
 図14には、目線Eを横方向に誘導する固視標Fが例示される。図14の(A)に示されるように、目線Eがまっすぐな場合、照明光LLが鼻等に遮られ、眼球200を撮像することができない。図14の(B)に示されるように、眼球200の横側に固視標Fが表示される。目線Eが横方向に移動し、これに応じて、異なる位置や角度から照明光LLが照射される。照明光LLは遮られずに眼球200に到達し、眼球200が撮像される。
 なお、固視標Fを被検者に提示するための装置(固視標装置)も、撮像装置10の構成要素であってよい。固視標Fが被検者に提示された状態で、照明ユニット3が眼球200を照明し、カメラユニット4L及びカメラユニット4Rの少なくとも一方のカメラユニットが眼球200を撮像する。これにより、被検者の顔の形状等に起因して撮像対象の眼球200の部位の撮像が困難になることを回避することができる。被検者の顔の形状等によらず、網羅的に検査を行うことができる。
 上記のように固視標Fを用いると、眼球200が通常とは異なる方向を向いている状態で、眼球200の部位が撮像される。制御処理装置20の処理部22は、そのような状態での撮像によって得られた画像と、通常の状態で撮像された他の画像とを統合する。例えば、画像から得られる特徴量に基づいて、画像に示される部位どうしの位置合わせが行われる。特徴量の例は、虹彩、血管、組織等のテクスチャ特徴量、形状の特徴量等である。
1.9.画像処理
 制御処理装置20の処理部22による画像処理(信号処理)についてさらに説明する。制御処理装置20の処理部22は、撮像装置10からの画像に基づいて、眼球200の各部位の形状を算出したり、混濁分布を算出したりする。例えば、角膜前面形状、角膜後面形状、水晶体形状(赤道部含む)等が算出されたり、水晶体内の混濁分布が算出されたりする。
 眼球200の部位の多くは、空気とは異なる屈折率を有する。そのような部位を照明光LLや観察光OL(以下、単に「光線」とも称する。)が通過すると、光線が屈折する。撮像された眼球200の各部位の画像は、光線の屈折の影響を含み得る。光線の屈折を考慮した光線追跡を行うことで、各部位の形状をより正確に算出することができる。
 屈折を考慮した光線追跡は、例えば、(a)光線が入射する部位の形状、(b)光線の入射位置や方向、及び、(c)光線の入射前後の部位の屈折率、に基づいて行われる。(a)が把握できれば(b)も把握できるし、(c)には代表値や実測値を用いることができる。このため、(a)を把握することがとくに重要になる。
 制御処理装置20の処理部22は、眼球200の部位の形状を算出する際に、それよりも手前(撮像装置10側)に位置する部位の形状を先に算出する。そして、処理部22は、上述の(a)~(c)のように、手前の部位の形状、光線の入射位置や方向、及び、光線の屈折を考慮した光線追跡を行ったうえで、その奥に位置する部位の形状を算出する。光線の屈折を考慮しない場合よりも高精度な算出が可能になる。具体例について、図15~図20を参照して説明する。
 図15は、画像処理の例を示すフローチャートである。この例では、最終的に、眼球200の水晶体の3次元形状、及び、水晶体内の3次元の混濁分布が算出される。とくに説明がある場合を除き、各処理は、制御処理装置20の処理部22によって実行される。
 ステップS1において、撮像装置10で眼球200が撮像される。ここでは、角膜検査及び水晶体検査に関する撮像が行われるものとする。詳細は先に説明したとおりであるので、説明は繰り返さない。
 ステップS2~ステップS5において、角膜前面形状、角膜後面形状、赤道部を含む水晶体前嚢形状、及び、赤道部を含む水晶体後嚢形状が、この順に復元(算出)される。これらの部位は、水晶体後嚢に至るまでの光線が通る順に位置している。また、ステップS6において、水晶体の3次元混濁が再構築(混濁分布が算出)される。ステップS2~ステップS6の各ステップの詳細について、図16~図20を参照して説明する。
 図16は、図15のステップS2の詳細の例を示すフローチャートである。ステップS21において、カメラユニット4Lによって撮像された眼球200の画像に基づいて、画像上の角膜表面の位置が検出される。具体的な処理として、ステップS21aにおけるグレースケール化・2値化、ステップS21bにおける輪郭抽出、及び、ステップS21cにおける角膜前面部分の選択が例示される。このような処理による画像上の物体の位置を検出する技術自体は公知であるので、これ以上の詳細な説明は省略する。
 ステップS22において、カメラユニット4Rによって撮像された眼球200の画像に基づいて、画像上の角膜表面の位置が検出される。具体的な処理は、上述のステップS21と同様である。なお、以下では、カメラユニット4Lによって撮像された眼球200の画像を、単にカメラユニット4Lの画像ともいう。カメラユニット4Rによって撮像された眼球200の画像を、単にカメラユニット4Rの画像ともいう。
 ステップS23において、先のステップS21及びステップS22での角膜表面の位置の検出結果と、事前キャリブレーション情報とに基づいて、対応点が検出される。事前キャリブレーション情報の例は、先にも述べた照明ユニット3、カメラユニット4L及びカメラユニット4Rの内部パラメータ、外部パラメータ等である。事前キャリブレーション情報に基づいて、互いに対応するカメラユニット4Lの画像中の各位置(各点)及びカメラユニット4Rの画像中の各位置(各点)が検出される。
 ステップS24において、三角測量が行われる。先のステップS24で検出された各対応点が測距される。三角測量自体は公知であるので、詳細な説明は省略する。三角測量の結果に基づいて、角膜前面形状が算出される。
 ステップS25において、カメラユニット4Lの画像及びカメラユニット4Rの画像に基づいて、眼球運動が算出される。撮像が行われている間の眼球200の向きの変化等が算出される。
 ステップS26において、眼球運動補正が行われる。先のステップS24での三角測量の結果に基づいて算出された角膜前面の形状が、先のステップS25で算出された眼球運動に基づいて補正される。撮像が行われている間の眼球200の向きの変化等の影響が取り除かれる。運動量補正された角膜前面形状が算出される。
 図17は、図15のステップS3の詳細の例を示すフローチャートである。先に説明した図16と比較すると、とくに、これまでに形状が算出された手前に位置する部位を通る光線の屈折が考慮される点において相違する。この後で説明する図18~図20も同様である。重複する説明は適宜省略する。
 ステップS31において、カメラユニット4Lの画像及びカメラユニット4Rの画像に基づいて、画像上の角膜後面の位置が検出される。ステップS32において、眼球運動が算出される。ステップS33において、先のステップS2で算出された角膜前面の形状及びその位置と、先のステップS32で算出された眼球運動とに基づいて、各部位の形状の位置合わせが行われる。
 ステップS34において、先のステップS31で検出された角膜後面位置と、事前キャリブレーション情報と、先のステップS33で位置合わせされた各部位の形状と、角膜の屈折率とに基づいて、屈折を考慮した光線追跡(屈折あり光線追跡)が行われ、対応点が検出される。ステップS35において、三角測量が行われる。先のステップS34で検出された各対応点が測距され、角膜後面形状が算出される。
 図18は、図15のステップS4の詳細の例を示すフローチャートである。ステップS41において、カメラユニット4Lの画像及びカメラユニット4Rの画像に基づいて、画像上の水晶体前嚢の位置が検出される。ステップS42において、眼球運動が算出される。ステップS43において、先のステップS2で算出された角膜前面の形状及びその位置と、先のステップS3で算出された角膜後面の形状及びその位置と、先のステップS42で算出された眼球運動とに基づいて、各部位の形状の位置合わせが行われる。
 ステップS44において、先のステップS41で検出された水晶体前嚢の位置と、事前キャリブレーション情報と、先のステップS43で位置合わせされた各部位の形状と、角膜及び房水の屈折率とに基づいて、屈折を考慮した光線追跡が行われ、対応点が検出される。ステップS45において、三角軽量が行われる。先のステップS44で検出された各対応点が測距され、水晶体前嚢の形状が算出される。
 図19は、図15のステップS5の詳細の例を示すフローチャートである。ステップS51において、カメラユニット4Lの画像及びカメラユニット4Rの画像に基づいて、画像上の水晶体後嚢の位置が検出される。ステップS52において、眼球運動が算出される。ステップS53において、先のステップS2で算出された角膜前面の形状及びその位置と、先のステップS3で算出された角膜後面の形状及びその位置と、先のステップS4で算出された水晶体前嚢の形状及びその位置と、先のステップS52で算出された眼球運動とに基づいて、各部位の形状の位置合わせが行われる。
 ステップS54において、先のステップS51で検出された水晶体後嚢の位置と、事前キャリブレーション情報と、先のステップS53で位置合わせされた各部位の形状と、角膜、房水及び水晶体の屈折率とに基づいて、屈折を考慮した光線追跡が行われ、対応点が検出される。ステップS55において、三角軽量が行われる。先のステップS44で検出された各対応点が測距され、水晶体後嚢形状が算出される。
 図20は、図15のステップS6の詳細の例を示すフローチャートである。ステップS61において、カメラユニット4Lの画像及びカメラユニット4Rの画像に基づいて、画像上の水晶体表面の照明光LLの入射位置が検出される。ステップS62において、眼球運動が算出される。ステップS63において、先のステップS2で算出された角膜前面の形状及びその位置と、先のステップS3で算出された角膜後面の形状及びその位置と、先のステップS4で算出された水晶体前嚢の形状及びその位置と、先のステップS62で算出された眼球運動とに基づいて、各部位の形状の位置合わせが行われる。
 ステップS64において、先のステップS61で検出された水晶体表面の照明光LLの入射位置と、事前キャリブレーション情報と、先のステップS63で位置合わせされた各部位の形状と、角膜・房水・水晶体の屈折率とに基づいて、屈折を考慮した水晶体内の照明光LL進行方向が算出される。ステップS65において、照明光LLの進行方向面にカメラ画像に現れる混濁(カメラ画像混濁情報)が投影され、水晶体の3次元の混濁分布が算出される。3次元混濁情報が得られる。
 例えば以上のようにして、眼球200の所望の部位の3次元形状や混濁分布を算出することができる。手前に位置する部位を通過する光線の屈折を考慮した光線追跡を行うことで、光線の屈折を考慮しない場合よりも、眼球200の部位の形状や混濁分布を正確に算出することができる。
2.変形例
 開示される技術は、上記実施形態に限定されない。例えば、上記実施形態では、撮像装置10がカメラユニット4L及びカメラユニット4Rの2つのカメラユニットを備える場合を例に挙げて説明した。ただし、カメラユニットの数は1つでもよい。
 カメラユニット4L及びカメラユニット4Rの一方のみが用いられる場合には、上記実施形態で説明したカメラユニット4Lとカメラユニット4Rの役割が入れ替えられてよい。
 上記実施形態では、検査システム100による検査対象の眼球200の部位として、前眼部、より具体的には、隅角鏡領域、角膜、水晶体、チン小帯及び角膜内皮細胞を例に挙げて説明した。当然ながら、これら以外の眼球200の部位も、検査システム100による検査対象に含まれてよい。
 矢印AR2Aのように測定ユニット2が眼球200に対して角度を変えるように移動する代わりに、矢印AR3、矢印AR4L及び矢印AR4Rのように照明ユニット3、カメラユニット4L及びカメラユニット4Rが一緒に移動してもよい。矛盾の無い範囲において、測定ユニット2が眼球200に対する角度を変えるように移動することは、照明ユニット3、カメラユニット4L及びカメラユニット4Rが眼球200に対する角度を変えるように一緒に移動すること、に読み替えられてよい。
3.ハードウェア構成の例
 図21は、制御処理装置20のハードウェア構成の例を示す図である。これまで説明した制御処理装置20は、例えば図21に示されるようなコンピュータ1000を含んで実現される。
 コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラム(図1のプログラム231等)をRAM1200に展開し、各種プログラムに対応した処理を実行する。
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。例えば、HDD1400は、制御処理装置20の記憶部23(図1)に相当し、プログラム231を記録する記録媒体である。
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
 例えば、コンピュータ1000が実施形態に係る撮像装置10として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御処理装置20の機能を実現する。また、HDD1400には、プログラム231や、記憶部23内のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
4.効果の例
 以上で説明した技術は、例えば次のように特定される。開示される技術の1つは、検査システム100である。図1及び図2等を参照して説明したように、検査システム100は、測定ユニット2と、照明ユニット3と、カメラユニット4Lと、カメラユニット4Rと、を備える。測定ユニット2は、被検者の眼球200に対する角度を変えるように移動可能であり(矢印AR2A)、且つ、前記眼球の眼軸を回転軸として回転移動可能である(矢印AR2B)。照明ユニット3は、測定ユニット2に搭載され、眼球200を照射する。カメラユニット4Lは、測定ユニット2に搭載され、眼球200を撮像する第1のカメラユニットである。カメラユニット4Rは、測定ユニット2に搭載され、眼球200を撮像する第2のカメラユニットである。カメラユニット4L及びカメラユニット4Rそれぞれは、眼球200に対する角度を変えるように測定ユニット2上を独立に移動可能である(矢印AR4L、矢印AR4R)。
 上記の検査システム100によれば、測定ユニット2、照明ユニット3、カメラユニット4L及びカメラユニット4Rそれぞれが独立に移動可能である。それぞれの移動を組み合わせることで、各種の検査に適したさまざまな態様で眼球200を撮像することができる。
 図1及び図2等を参照して説明したように、カメラユニット4L及びカメラユニット4Rが照明ユニット3を挟んで互いに反対側に配置された状態で、測定ユニット2が眼球200に対する角度を変えるように移動するとともに(矢印AR2A)、カメラユニット4L及びカメラユニット4Rが眼球200の前眼部を撮像してよい。これにより、眼球200の前眼部を検査することができる。
 図2及び図3等を参照して説明したように、検査システム100は、眼球200と、照明ユニット3並びにカメラユニット4L及びカメラユニット4Rの少なくとも一方のカメラユニット(例えばカメラユニット4L)との間の位置(挿入位置)と、そうでない位置(退避位置)との間で移動可能(矢印AR5)な隅角鏡ユニット5を備え、隅角鏡ユニット5が眼球200と照明ユニット3及び少なくとも一方のカメラユニット(例えばカメラユニット4L)との間の位置に配置された状態で、測定ユニット2が眼球200の眼軸EAを回転軸として回転移動するとともに(矢印AR2B)、少なくとも一方のカメラユニット(例えばカメラユニット4L)が眼球200の隅角領域を撮像してよい。この場合、検査システム100は、隅角鏡ユニット5と、照明ユニット3及び少なくとも一方のカメラユニット(例えばカメラユニット4L)との間の位置とそうでない位置との間で移動可能な反射光学系ユニット6を備え、反射光学系ユニット6が隅角鏡ユニット5と照明ユニット3及び少なくとも一方のカメラユニット(例えばカメラユニット4L)との間の位置に配置された状態で、測定ユニットが眼球200の眼軸EAを回転軸として回転移動するとともに(矢印AR2B)、少なくとも一方のカメラユニット(例えばカメラユニット4L)が眼球200の隅角領域を撮像してよい。これにより、眼球200の隅角領域を検査することができる。
 図4等を参照して説明したように、照明ユニット3が眼球200の正面に配置され、カメラユニット4L及びカメラユニット4Rが、それぞれの眼球200に対する角度の大きさが同じになるように照明ユニット3を挟んで互いに反対側に配置された状態で、測定ユニット2が眼球200の眼軸EAを回転軸として回転移動するとともに(矢印AR2B)、カメラユニット4L及びカメラユニット4Rが眼球200の角膜を撮像してよい。これにより、眼球200の角膜を検査することができる。
 図5~図7等を参照して説明したように、眼球200の水晶体を検査することもできる。例えば、図5を参照して説明したように、照明ユニット3が眼球200に対して角度を有する位置に配置された状態で、測定ユニット2が眼球200の眼軸EAを回転軸として回転移動するとともに(矢印AR2B)、カメラユニット4L及びカメラユニット4Rが眼球200の水晶体を撮像してよい。これにより、赤道部を含む眼球200の水晶体の形状を把握することができる。図2及び図6等を参照して説明したように、照明ユニット3も、カメラユニット4L及びカメラユニット4Rと同様に、眼球200に対する角度を変えるように測定ユニット2上を独立に移動可能であり、照明ユニット3が眼球200に対して角度を有する位置に配置された状態で、照明ユニット3、カメラユニット4L及びカメラユニット4Rがそれらの位置関係を維持したまま眼球200に対する角度を変えるように一緒に移動するとともに、カメラユニット4L及びカメラユニット4Rが眼球200の水晶体を撮像してよい。その場合には、図7を参照して説明したように、さらに、測定ユニット3が眼球200の眼軸EAを回転軸として回転移動するとともに、カメラユニット4L及びカメラユニット4Rが眼球200の水晶体を撮像してよい。これにより、眼球200の水晶体の混濁分布を把握することができる。
 図8等を参照して説明したように、照明ユニット3並びにカメラユニット4L及びカメラユニット4Rの少なくとも一方のカメラユニット(例えばカメラユニット4L)が眼球200に対して角度を有する位置に配置された状態で、測定ユニット2が眼球200の眼軸EAを回転軸として回転移動するとともに(矢印AR2B)、少なくとも一方のカメラユニット(例えばカメラユニット4L)が眼球200のチン小帯を撮像してよい。これにより、眼球200のチン小帯を検査することができる。
 図1及び図9等を参照して説明したように、カメラユニット4Lは、対物ズーム光学系41を含み、カメラユニット4Rは、対物ズーム光学系41を含み、照明ユニット3が眼球200における撮像対象の角膜内皮の法線に対して角度を有する位置に配置され、カメラユニット4Lが撮像対象の角膜内皮の正面に配置され、カメラユニット4Rが撮像対象の角膜内皮の法線を挟んで照明ユニット3とは反対側に撮像対象の角膜内皮の法線を軸対称として配置された状態で、カメラユニット4Lが眼球200の角膜全体を撮像し、測定ユニット2が眼球200に対する角度を変えるように移動し、及び、測定ユニット2が眼球200の眼軸EAを回転軸として回転移動するとともに(矢印AR2A及び矢印AR2B)、カメラユニット4Rが眼球200の角膜内皮細胞を撮像してよい。これにより、眼球200の角膜内皮細胞を検査することができる。
 図10及び図11等を参照して説明したように、検査システム100は、眼球200と、照明ユニット3並びにカメラユニット4L及びカメラユニット4Rの少なくとも一方のカメラユニット(例えばカメラユニット4L及びカメラユニット4R)との間の位置と、そうでない位置との間で移動可能な反射鏡ユニット7を備え、反射鏡ユニット7が眼球200と照明ユニット3及び少なくとも一方のカメラユニット(例えばカメラユニット4L及びカメラユニット4R)との間の位置に配置された状態で、照明ユニット3及び少なくとも一方のカメラユニット(例えばカメラユニット4L及びカメラユニット4R)は、反射鏡ユニット7が配置されていない場合よりも、眼球200に対する角度が小さくなる位置に配置されてよい。これにより、被検者の顔の造作に起因して撮像が困難になるという問題が解消される。
 図12等を参照して説明したように、眼球200の向き(目線E)を誘導するための固視標Fが被検者に提示された状態で、照明ユニット3が眼球200を照明し、カメラユニット4R及びカメラユニット4Lの少なくとも一方のカメラユニットが眼球200を撮像してよい。これにより、被検者の顔の形状等によらず、網羅的に検査を行うことができる。
 図1及び図2等を参照して説明したように、検査システム100は、眼球200に対して前後方向(矢印AR1A)、左右方向(矢印AR1B)及び上下方向(矢印AR1C)に移動可能なベースユニット1を備え、測定ユニット2は、ベースユニット1に搭載されてよい。これにより、ベースユニット1上の各ユニットを、眼球200の検査に適した位置にアライメントし易くなる。
 図1等を参照して説明したように、照明ユニット3は、眼球200に照明光LLを照射し、照明光LLは、スリットランプ光を含んでよい。これにより、スリットランプ光を用いた検査を行うことができる。
 図1及び図15~図20等を参照して説明したように、検査システム100は、カメラユニット4L及びカメラユニット4Rの少なくとも一方のカメラユニットによって撮像された眼球200の画像に基づいて、眼球200の部位の形状を算出する処理部22を備え、処理部22は、眼球200の部位のうち、手前に位置する部位の形状を算出し、その形状を通る光線の屈折を考慮した光線追跡に基づいて、それよりも奥に位置する部位の形状を算出してよい。例えば、処理部22は、眼球200の角膜前面の形状、眼球200の角膜後面の形状、眼球200の水晶体前嚢の形状及び眼球200の水晶体後嚢の形状を順に算出することにより、眼球200の水晶体の形状を算出してよい。処理部22は、眼球200の水晶体内の混濁分布を算出してもよい。これにより、光線の屈折を考慮しない場合よりも、眼球200の部位の形状や混濁分布を高精度に算出することができる。
 なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 被検者の眼球に対する角度を変えるように移動可能であり、且つ、前記眼球の眼軸を回転軸として回転移動可能な測定ユニットと、
 前記測定ユニットに搭載され、前記眼球を照射する照明ユニットと、
 前記測定ユニットに搭載され、前記眼球を撮像する第1のカメラユニットと、
 前記測定ユニットに搭載され、前記眼球を撮像する第2のカメラユニットと、
 を備え、
 前記第1のカメラユニット及び前記第2のカメラユニットそれぞれは、前記眼球に対する角度を変えるように前記測定ユニット上を独立に移動可能である、
 検査システム。
(2)
 前記第1のカメラユニット及び前記第2のカメラユニットが前記照明ユニットを挟んで互いに反対側に配置された状態で、
 前記測定ユニットが前記眼球に対する角度を変えるように移動するとともに、
 前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の前眼部を撮像する、
 (1)に記載の検査システム。
(3)
 前記眼球と、前記照明ユニット並びに前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットとの間の位置と、そうでない位置との間で移動可能な隅角鏡ユニットを備え、
 前記隅角鏡ユニットが前記眼球と前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置に配置された状態で、
 前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
 前記少なくとも一方のカメラユニットが前記眼球の隅角領域を撮像する、
 (1)又は(2)に記載の検査システム。
(4)
 前記隅角鏡ユニットと、前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置とそうでない位置との間で移動可能な反射光学系ユニットを備え、
 前記反射光学系ユニットが前記隅角鏡ユニットと前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置に配置された状態で、
 前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
 前記少なくとも一方のカメラユニットが前記眼球の隅角領域を撮像する、
 (3)に記載の検査システム。
(5)
 前記照明ユニットが前記眼球の正面に配置され、
 前記第1のカメラユニット及び前記第2のカメラユニットが、それぞれの前記眼球に対する角度の大きさが同じになるように前記照明ユニットを挟んで互いに反対側に配置された状態で、
 前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
 前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の角膜を撮像する、
 (1)~(4)のいずれかに記載の検査システム。
(6)
 前記照明ユニットが前記眼球に対して角度を有する位置に配置された状態で、
 前記第1のカメラユニット及び前記第2のカメラユニットが内向角度を維持したまま前記眼球に対する角度を変えるように一緒に移動するとともに、
 前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の水晶体を撮像し、
 前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
 前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の水晶体を撮像する、
 (1)~(5)のいずれかに記載の検査システム。
(7)
 前記照明ユニットも、前記第1のカメラユニット及び前記第2のカメラユニットと同様に、前記眼球に対する角度を変えるように前記測定ユニット上を独立に移動可能であり、
 前記照明ユニットが前記眼球に対して角度を有する位置に配置された状態で、
 前記照明ユニット、前記第1のカメラユニット及び前記第2のカメラユニットがそれらの位置関係を維持したまま前記眼球に対する角度を変えるように一緒に移動するとともに、
 前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の水晶体を撮像する、
 (1)~(6)のいずれかに記載の検査システム。
(8)
 さらに、前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
 前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の水晶体を撮像する、
 (7)に記載の検査システム。
(9)
 前記照明ユニット並びに前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットが前記眼球に対して角度を有する位置に配置された状態で、
 前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
 前記少なくとも一方のカメラユニットが前記眼球のチン小帯を撮像する、
 (1)~(8)のいずれかに記載の検査システム。
(10)
 前記第1のカメラユニットは、対物ズーム光学系を含み、
 前記第2のカメラユニットは、対物ズーム光学系を含み、
 前記照明ユニットが前記眼球における撮像対象の角膜内皮の法線に対して角度を有する位置に配置され、前記第1のカメラユニットが前記撮像対象の角膜内皮の正面に配置され、前記第2のカメラユニットが前記撮像対象の角膜内皮の法線を挟んで前記照明ユニットとは反対側に前記撮像対象の角膜内皮の法線を軸対称として配置された状態で、
 前記第1のカメラユニットが前記眼球の角膜全体を撮像し、
 前記測定ユニットが前記眼球に対する角度を変えるように移動し、及び、前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
 前記第2のカメラユニットが前記眼球の角膜内皮細胞を撮像する、
 (1)~(9)のいずれかに記載の検査システム。
(11)
 前記眼球と、前記照明ユニット並びに前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットとの間の位置と、そうでない位置との間で移動可能な反射鏡ユニットを備え、
 前記反射鏡ユニットが前記眼球と前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置に配置された状態で、
 前記照明ユニット及び前記少なくとも一方のカメラユニットは、前記反射鏡ユニットが配置されていない場合よりも、前記眼球に対する角度が小さくなる位置に配置される、
 (1)~(10)のいずれかに記載の検査システム。
(12)
 前記眼球の向きを誘導するための固視標が被検者に提示された状態で、
 前記照明ユニットが前記眼球を照明し、
 前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットが前記眼球を撮像する、
 (1)~(11)のいずれかに記載の検査システム。
(13)
 前記眼球に対して前後方向、左右方向及び上下方向に移動可能なベースユニットを備え、
 前記測定ユニットは、前記ベースユニットに搭載される、
 (1)~(12)のいずれかに記載の検査システム。
(14)
 前記照明ユニットは、前記眼球に照明光を照射し、
 前記照明光は、スリットランプ光を含む、
 (1)~(13)のいずれかに記載の検査システム。
(15)
 前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットによって撮像された前記眼球の画像に基づいて、前記眼球の部位の形状を算出する処理部を備え、
 前記処理部は、前記眼球の部位のうち、手前に位置する部位の形状を算出し、その形状を通る光線の屈折を考慮した光線追跡に基づいて、それよりも奥に位置する部位の形状を算出する、
 (1)~(14)のいずれかに記載の検査システム。
(16)
 前記処理部は、前記眼球の角膜前面の形状、前記眼球の角膜後面の形状、前記眼球の水晶体前嚢の形状及び前記眼球の水晶体後嚢の形状を順に算出することにより、前記眼球の水晶体の形状を算出する、
 (15)に記載の検査システム。
(17)
 前記処理部は、前記眼球の水晶体内の混濁分布を算出する、
 (16)に記載の検査システム。
 100 検査システム
  10 撮像装置
   1 ベースユニット
   2 測定ユニット
   3 照明ユニット
  31 光源
  32 スリット
 33A 光学系
 33B 光学系
  4L カメラユニット(第1のカメラユニット)
  4R カメラユニット(第2のカメラユニット)
  41 対物ズーム光学系
  42 イメージセンサ
   5 隅角鏡ユニット
   6 反射光学系ユニット
   7 反射鏡ユニット
  71 枠体
  72 本体
  73 反射鏡
  20 制御処理装置
  21 制御部
  22 処理部
  23 記憶部
 231 プログラム
 200 眼球
  EA 眼軸
   F 固視標
  LL 照明光
  OL 観察光

Claims (17)

  1.  被検者の眼球に対する角度を変えるように移動可能であり、且つ、前記眼球の眼軸を回転軸として回転移動可能な測定ユニットと、
     前記測定ユニットに搭載され、前記眼球を照射する照明ユニットと、
     前記測定ユニットに搭載され、前記眼球を撮像する第1のカメラユニットと、
     前記測定ユニットに搭載され、前記眼球を撮像する第2のカメラユニットと、
     を備え、
     前記第1のカメラユニット及び前記第2のカメラユニットそれぞれは、前記眼球に対する角度を変えるように前記測定ユニット上を独立に移動可能である、
     検査システム。
  2.  前記第1のカメラユニット及び前記第2のカメラユニットが前記照明ユニットを挟んで互いに反対側に配置された状態で、
     前記測定ユニットが前記眼球に対する角度を変えるように移動するとともに、
     前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の前眼部を撮像する、
     請求項1に記載の検査システム。
  3.  前記眼球と、前記照明ユニット並びに前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットとの間の位置と、そうでない位置との間で移動可能な隅角鏡ユニットを備え、
     前記隅角鏡ユニットが前記眼球と前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置に配置された状態で、
     前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
     前記少なくとも一方のカメラユニットが前記眼球の隅角領域を撮像する、
     請求項1に記載の検査システム。
  4.  前記隅角鏡ユニットと、前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置とそうでない位置との間で移動可能な反射光学系ユニットを備え、
     前記反射光学系ユニットが前記隅角鏡ユニットと前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置に配置された状態で、
     前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
     前記少なくとも一方のカメラユニットが前記眼球の隅角領域を撮像する、
     請求項3に記載の検査システム。
  5.  前記照明ユニットが前記眼球の正面に配置され、
     前記第1のカメラユニット及び前記第2のカメラユニットが、それぞれの前記眼球に対する角度の大きさが同じになるように前記照明ユニットを挟んで互いに反対側に配置された状態で、
     前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
     前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の角膜を撮像する、
     請求項1に記載の検査システム。
  6.  前記照明ユニットが前記眼球に対して角度を有する位置に配置された状態で、
     前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
     前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の水晶体を撮像する、
     請求項1に記載の検査システム。
  7.  前記照明ユニットも、前記第1のカメラユニット及び前記第2のカメラユニットと同様に、前記眼球に対する角度を変えるように前記測定ユニット上を独立に移動可能であり、
     前記照明ユニットが前記眼球に対して角度を有する位置に配置された状態で、
     前記照明ユニット、前記第1のカメラユニット及び前記第2のカメラユニットがそれらの位置関係を維持したまま前記眼球に対する角度を変えるように一緒に移動するとともに、
     前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の水晶体を撮像する、
     請求項1に記載の検査システム。
  8.  さらに、前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
     前記第1のカメラユニット及び前記第2のカメラユニットが前記眼球の水晶体を撮像する、
     請求項7に記載の検査システム。
  9.  前記照明ユニット並びに前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットが前記眼球に対して角度を有する位置に配置された状態で、
     前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
     前記少なくとも一方のカメラユニットが前記眼球のチン小帯を撮像する、
     請求項1に記載の検査システム。
  10.  前記第1のカメラユニットは、対物ズーム光学系を含み、
     前記第2のカメラユニットは、対物ズーム光学系を含み、
     前記照明ユニットが前記眼球における撮像対象の角膜内皮の法線に対して角度を有する位置に配置され、前記第1のカメラユニットが前記撮像対象の角膜内皮の正面に配置され、前記第2のカメラユニットが前記撮像対象の角膜内皮の法線を挟んで前記照明ユニットとは反対側に前記撮像対象の角膜内皮の法線を軸対称として配置された状態で、
     前記第1のカメラユニットが前記眼球の角膜全体を撮像し、
     前記測定ユニットが前記眼球に対する角度を変えるように移動し、及び、前記測定ユニットが前記眼球の眼軸を回転軸として回転移動するとともに、
     前記第2のカメラユニットが前記眼球の角膜内皮細胞を撮像する、
     請求項1に記載の検査システム。
  11.  前記眼球と、前記照明ユニット並びに前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットとの間の位置と、そうでない位置との間で移動可能な反射鏡ユニットを備え、
     前記反射鏡ユニットが前記眼球と前記照明ユニット及び前記少なくとも一方のカメラユニットとの間の位置に配置された状態で、
     前記照明ユニット及び前記少なくとも一方のカメラユニットは、前記反射鏡ユニットが配置されていない場合よりも、前記眼球に対する角度が小さくなる位置に配置される、
     請求項1に記載の検査システム。
  12.  前記眼球の向きを誘導するための固視標が被検者に提示された状態で、
     前記照明ユニットが前記眼球を照明し、
     前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットが前記眼球を撮像する、
     請求項1に記載の検査システム。
  13.  前記眼球に対して前後方向、左右方向及び上下方向に移動可能なベースユニットを備え、
     前記測定ユニットは、前記ベースユニットに搭載される、
     請求項1に記載の検査システム。
  14.  前記照明ユニットは、前記眼球に照明光を照射し、
     前記照明光は、スリットランプ光を含む、
     請求項1に記載の検査システム。
  15.  前記第1のカメラユニット及び前記第2のカメラユニットの少なくとも一方のカメラユニットによって撮像された前記眼球の画像に基づいて、前記眼球の部位の形状を算出する処理部を備え、
     前記処理部は、前記眼球の部位のうち、手前に位置する部位の形状を算出し、その形状を通る光線の屈折を考慮した光線追跡に基づいて、それよりも奥に位置する部位の形状を算出する、
     請求項1に記載の検査システム。
  16.  前記処理部は、前記眼球の角膜前面の形状、前記眼球の角膜後面の形状、前記眼球の水晶体前嚢の形状及び前記眼球の水晶体後嚢の形状を順に算出することにより、前記眼球の水晶体の形状を算出する、
     請求項15に記載の検査システム。
  17.  前記処理部は、前記眼球の水晶体内の混濁分布を算出する、
     請求項16に記載の検査システム。
PCT/JP2023/006670 2022-03-22 2023-02-24 検査システム WO2023181779A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045372 2022-03-22
JP2022-045372 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181779A1 true WO2023181779A1 (ja) 2023-09-28

Family

ID=88100521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006670 WO2023181779A1 (ja) 2022-03-22 2023-02-24 検査システム

Country Status (1)

Country Link
WO (1) WO2023181779A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055337A (ja) * 2010-09-03 2012-03-22 Nidek Co Ltd 前眼部測定装置
JP2014073248A (ja) * 2012-10-04 2014-04-24 Konan Medical Inc 眼科用検査装置
JP2019154829A (ja) * 2018-03-14 2019-09-19 株式会社トプコン スリットランプ顕微鏡及び眼科システム
WO2019240151A1 (ja) * 2018-06-13 2019-12-19 株式会社トプコン スリットランプ顕微鏡及び眼科システム
WO2020189299A1 (ja) * 2019-03-19 2020-09-24 株式会社トプコン スリットランプ顕微鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055337A (ja) * 2010-09-03 2012-03-22 Nidek Co Ltd 前眼部測定装置
JP2014073248A (ja) * 2012-10-04 2014-04-24 Konan Medical Inc 眼科用検査装置
JP2019154829A (ja) * 2018-03-14 2019-09-19 株式会社トプコン スリットランプ顕微鏡及び眼科システム
WO2019240151A1 (ja) * 2018-06-13 2019-12-19 株式会社トプコン スリットランプ顕微鏡及び眼科システム
WO2020189299A1 (ja) * 2019-03-19 2020-09-24 株式会社トプコン スリットランプ顕微鏡

Similar Documents

Publication Publication Date Title
JP5286446B2 (ja) 眼の検査装置
CN103767672B (zh) 眼科装置及眼科装置的控制方法
JP6716752B2 (ja) 眼科装置
JP6567947B2 (ja) 眼科装置
JP2016054854A (ja) 眼科撮影装置および眼科情報処理装置
JP2016077774A (ja) 眼科装置
JP6831171B2 (ja) 眼軸長測定装置、眼球形状情報取得方法、および眼球形状情報取得プログラム
JP2018149449A (ja) 眼科撮影装置および眼科情報処理装置
JP7343331B2 (ja) 眼科装置、その制御方法、プログラム、及び、記録媒体
JP7104516B2 (ja) 断層画像撮影装置
JP2022040372A (ja) 眼科装置
JP2024040336A (ja) スリットランプ顕微鏡
CN110755032A (zh) 眼科检测系统及方法
JP6772412B2 (ja) 眼科装置
WO2023181779A1 (ja) 検査システム
US20210298599A1 (en) Ophthalmic apparatus
JP6825042B2 (ja) 眼科装置
JP6795360B2 (ja) 眼科レンズ測定装置
JP2020151099A (ja) 眼科装置、その制御方法、眼科情報処理装置、その制御方法、プログラム、及び記録媒体
JP7412170B2 (ja) 眼科装置、その評価方法、プログラム、及び記録媒体
JP7437931B2 (ja) スリットランプ顕微鏡
WO2022085501A1 (ja) 眼科装置、その制御方法、プログラム、及び記録媒体
JP6662412B2 (ja) 眼科測定装置
JP6930841B2 (ja) 眼科装置
JP6930842B2 (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774378

Country of ref document: EP

Kind code of ref document: A1