WO2019240151A1 - スリットランプ顕微鏡及び眼科システム - Google Patents

スリットランプ顕微鏡及び眼科システム Download PDF

Info

Publication number
WO2019240151A1
WO2019240151A1 PCT/JP2019/023204 JP2019023204W WO2019240151A1 WO 2019240151 A1 WO2019240151 A1 WO 2019240151A1 JP 2019023204 W JP2019023204 W JP 2019023204W WO 2019240151 A1 WO2019240151 A1 WO 2019240151A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
unit
slit
images
Prior art date
Application number
PCT/JP2019/023204
Other languages
English (en)
French (fr)
Inventor
和宏 大森
清水 仁
福間 康文
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2019240151A1 publication Critical patent/WO2019240151A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • A61B3/135Slit-lamp microscopes

Definitions

  • the present invention relates to a slit lamp microscope and an ophthalmic system.
  • Diagnostic imaging occupies an important position in the ophthalmology field.
  • various ophthalmologic photographing apparatuses are used.
  • the ophthalmologic photographing apparatus include a slit lamp microscope, a fundus camera, a scanning laser ophthalmoscope (SLO), and an optical coherence tomography (OCT).
  • SLO scanning laser ophthalmoscope
  • OCT optical coherence tomography
  • Various inspection apparatuses and measurement apparatuses such as a refractometer, a keratometer, a tonometer, a specular microscope, a wavefront analyzer, and a microperimeter are also equipped with a function of photographing the anterior segment and the fundus.
  • the slit lamp microscope is an ophthalmologic apparatus for illuminating a subject's eye with slit light and observing and photographing the illuminated cross section with a microscope from the side (see, for example, Patent Documents 1 and 2).
  • a slit lamp microscope is generally used for observation and diagnosis of the anterior segment of the eye such as the cornea and the crystalline lens.
  • the doctor determines the presence or absence of an abnormality by observing the entire diagnostic region while moving the illumination field or the focus position by the slit light.
  • a slit lamp microscope may be used in the prescription of the vision correction device such as confirmation of the fitting state of the contact lens.
  • a person who has a qualification other than a doctor, such as an optometrist, or a store clerk in an eyeglass store may use a slit lamp microscope for screening eye diseases.
  • Telemedicine is an act of performing medical treatment on a patient in a remote place using information technology such as the Internet.
  • Patent Documents 3 and 4 disclose techniques for operating a slit lamp microscope from a remote location.
  • the slit lamp microscope is effective for inspections such as screening, but there is a shortage of specialists related to the apparatus, and high quality inspections cannot be provided to many people. There is.
  • An object of the present invention is to make it possible to widely provide high-quality slit lamp microscopy.
  • a first aspect of the exemplary embodiment includes an illumination system that irradiates slit light to an anterior eye portion of an eye to be examined, an optical system that guides light from the anterior eye portion that is irradiated with the slit light, and the optical An imaging system including an imaging device that receives the light guided by the system on an imaging surface, an illumination system and a moving mechanism that moves the imaging system, and an object surface along the optical axis of the illumination system, and The optical system and the imaging surface satisfy the Scheimpflug condition, and the imaging system performs multiple imaging in parallel with the movement of the illumination system and the imaging system by the moving mechanism, thereby allowing a plurality of anterior eye portions to be captured. It is a slit lamp microscope characterized by acquiring the following image.
  • a second aspect of the exemplary embodiment is the slit lamp microscope according to the first aspect, in which the imaging system is a first optical system that guides light from the anterior eye part irradiated with the slit light. And a first imaging element that receives the light guided by the first optical system on a first imaging surface, and obtains a first image group by performing repeated imaging in parallel with the movement.
  • the imaging system is a first optical system that guides light from the anterior eye part irradiated with the slit light.
  • a first imaging element that receives the light guided by the first optical system on a first imaging surface, and obtains a first image group by performing repeated imaging in parallel with the movement.
  • An imaging system a second optical system that guides light from the anterior segment irradiated with the slit light, and a second imaging element that receives the light guided by the second optical system on a second imaging surface
  • a second imaging system that acquires a second image group by repeatedly performing imaging in parallel with the movement, and the optical axis of the first optical system and the optical axis of the second optical system are Are arranged in different directions, and the object surface, the first optical system, and the first photographing Surface and satisfies the Scheimpflug condition, and the product surface and the second optical system and the second imaging surface, characterized by satisfying the Scheimpflug condition.
  • a third aspect of the exemplary embodiment is the slit lamp microscope according to the second aspect, wherein the optical axis of the first optical system and the optical axis of the second optical system are the optical axes of the illumination system. Are determined to be inclined in opposite directions to each other, and it is determined whether any of the two images acquired substantially simultaneously by the first imaging system and the second imaging system includes an artifact,
  • the image processing apparatus may further include an image selection unit that selects the other image when it is determined that one of the two images includes an artifact.
  • a fourth aspect of the exemplary embodiment is the slit lamp microscope according to the third aspect, in which the image selection unit includes an image group including images selected from the first image group and the second image group.
  • the image processing apparatus further includes a 3D image constructing unit that constructs a 3D image based on the 3D image.
  • a fifth aspect of the exemplary embodiment is the slit lamp microscope of the second aspect, comparing two images acquired substantially simultaneously by the first imaging system and the second imaging system. Further comprising: an artifact removing unit that determines whether one of the two images includes an artifact, and removes the artifact when it is determined that one of the two images includes the artifact. To do.
  • a sixth aspect of the exemplary embodiment is the slit lamp microscope according to the fifth aspect, in which a three-dimensional image is constructed based on an image group including images from which artifacts have been removed by the artifact removal unit. An image construction unit is further included.
  • a seventh aspect of the exemplary embodiment is the slit lamp microscope according to the first aspect, and includes a three-dimensional image construction unit that constructs a three-dimensional image based on the plurality of images acquired by the imaging system. It is further characterized by including.
  • An eighth aspect of the exemplary embodiment is the slit lamp microscope according to any of the fourth, sixth, and seventh aspects, wherein the moving mechanism has the illumination system and the optical axis of the illumination system as a rotation axis.
  • the imaging system includes a rotation mechanism that integrally rotates the imaging system, and when the illumination system and the imaging system are arranged at a first rotation position, the imaging system acquires the plurality of images, and the first system When the illumination system and the imaging system are arranged at a second rotational position different from the rotational position, the imaging system acquires an image of the anterior segment that is irradiated with slit light by the illumination system;
  • the three-dimensional image construction unit includes an image position determination unit that determines relative positions of the plurality of images based on the image acquired at the second rotation position.
  • a ninth aspect of the exemplary embodiment is the slit lamp microscope according to any of the fourth and sixth to eighth aspects, wherein the three-dimensional image constructing unit is configured to transmit the slit light from each of the plurality of images.
  • An image region extraction unit that extracts an image region corresponding to the irradiation region of the image, and an image composition unit that combines a plurality of image regions extracted from the plurality of images by the image region extraction unit to construct a three-dimensional image, It is characterized by including.
  • a tenth aspect of an exemplary embodiment is the slit lamp microscope according to the ninth aspect, in which the image area extraction unit includes an irradiation area of the slit light and the anterior eye part from each of the plurality of images. An image region corresponding to both of the predetermined parts is extracted.
  • the eleventh aspect of the exemplary embodiment is the slit lamp microscope according to the tenth aspect, wherein the predetermined portion is a portion defined by the front surface of the cornea and the rear surface of the lens.
  • a twelfth aspect of the exemplary embodiment is the slit lamp microscope according to any of the fourth and sixth to eleventh aspects, further including a rendering unit that renders the three-dimensional image to construct a rendered image. It is characterized by.
  • a thirteenth aspect of the exemplary embodiment is the slit lamp microscope according to the twelfth aspect, and when a cross section is designated for the three-dimensional image, the rendering unit converts the three-dimensional image into the cross section.
  • a three-dimensional partial image is constructed by cutting at a step.
  • a fourteenth aspect of an exemplary embodiment is the slit lamp microscope according to the twelfth aspect, and when a cross section is designated for the three-dimensional image, the rendering unit represents a two-dimensional cross section representing the cross section. It is characterized by constructing an image.
  • a fifteenth aspect of the exemplary embodiment is the slit lamp microscope according to the twelfth aspect, and when a slice is designated for the three-dimensional image, the rendering unit performs a three-dimensional operation corresponding to the slice. It is characterized by constructing a slice image.
  • a sixteenth aspect of the exemplary embodiment is the slit lamp microscope according to any one of the first to fifteenth aspects, wherein the optical axis is an angle formed by the optical axis of the illumination system and the optical axis of the imaging system.
  • the image processing apparatus further includes a distortion correction unit that applies processing for correcting distortion caused by an angle to at least one of the plurality of images.
  • a seventeenth aspect of the exemplary embodiment is the slit lamp microscope according to the sixteenth aspect, wherein the optical axis of the optical system included in the imaging system is the illumination axis with respect to the optical axis of the illumination system.
  • a first direction along the optical axis of the system and a third direction perpendicular to both the second direction along the longitudinal direction of the slit light, and the distortion correction unit is arranged in the first direction and the second direction. Processing for correcting distortion in a plane including both of the second directions is performed.
  • An eighteenth aspect of the exemplary embodiment is the slit lamp microscope according to the sixteenth or seventeenth aspect, wherein the distortion correction unit calculates a correction coefficient set based on a predetermined reference angle and the optical axis angle. It is stored in advance, and a process for correcting the distortion based on the correction coefficient is executed.
  • a nineteenth aspect of the exemplary embodiment is the slit lamp microscope according to any one of the first to eighteenth aspects, wherein at least one of the plurality of images acquired by the imaging system is analyzed.
  • the method further includes a first measurement unit for obtaining a predetermined measurement value.
  • a twentieth aspect of the exemplary embodiment is the slit lamp microscope according to any of the fourth and sixth to fifteenth aspects, by analyzing the three-dimensional image constructed by the three-dimensional image construction unit. It further includes a second measurement unit for obtaining a predetermined measurement value.
  • a twenty-first aspect of the exemplary embodiment is the slit lamp microscope according to any one of the first to twentieth aspects, wherein the illumination system and the imaging system are defined by at least a front surface of the cornea and a rear surface of the lens. Further, the photographing system is configured to be in focus.
  • a twenty-second aspect of the exemplary embodiment is the slit lamp microscope according to any one of the first to twenty-first aspects, wherein the illumination system emits slit light whose longitudinal direction is the body axis direction of the subject.
  • the anterior eye part is irradiated, and the moving mechanism moves the illumination system and the imaging system in a direction orthogonal to the body axis direction.
  • a twenty-third aspect of the exemplary embodiment is the slit lamp microscope according to the twenty-second aspect, wherein a length of the slit light is not less than a corneal diameter in the body axis direction, and the illumination system by the moving mechanism The moving distance of the imaging system is greater than or equal to the corneal diameter in a direction orthogonal to the body axis direction.
  • a twenty-fourth aspect of the exemplary embodiment is the slit lamp microscope according to any one of the first to twenty-third aspects, wherein the optical system included in the photographing system includes the front light irradiated with the slit light.
  • a reflector that reflects light that travels away from the optical axis of the illumination system and that travels in a direction away from the optical axis of the illumination system; and the light reflected by the reflector And one or more lenses that form an image on the imaging surface.
  • a twenty-fifth aspect of the exemplary embodiment is the slit lamp microscope according to any one of the first to twenty-fourth aspects, wherein the anterior eye part is moved from a fixed position in parallel with the acquisition of the plurality of images by an imaging system. It further includes a moving image shooting system for shooting a moving image.
  • a twenty-sixth aspect of the exemplary embodiment is the slit lamp microscope according to the twenty-fifth aspect, wherein a motion detection unit that detects a motion of the eye to be examined by analyzing a moving image acquired by the moving image capturing system. It is further characterized by including.
  • a twenty-seventh aspect of the exemplary embodiment is the slit lamp microscope according to the twenty-sixth aspect, further including a movement control unit that controls the movement mechanism based on an output from the movement detection unit. To do.
  • a twenty-eighth aspect of the exemplary embodiment is the slit lamp microscope according to any one of the first to twenty-seventh aspects, in which a communication unit that transmits an image acquired for the anterior eye part to an information processing device is provided. It is further characterized by including.
  • a twenty-ninth aspect of the exemplary embodiment is connected to the slit lamp microscope via a slit lamp microscope and a communication line, and processes an anterior eye image of the eye to be examined acquired by the slit lamp microscope.
  • An ophthalmologic system including an information processing apparatus.
  • the slit lamp microscope includes an illumination system that irradiates slit light to an anterior eye portion of an eye to be examined, an optical system that guides light from the anterior eye portion that is irradiated with the slit light, and the optical system that is guided by the optical system.
  • An imaging system including an imaging element that receives light on an imaging surface; and a moving mechanism that moves the illumination system and the imaging system.
  • the object surface along the optical axis of the illumination system, the optical system, and the imaging surface satisfy the Scheimpflug condition.
  • the imaging system acquires a plurality of images of the anterior segment by repeatedly performing imaging in parallel with the movement of the illumination system and the imaging system by the moving mechanism.
  • a thirtieth aspect of the exemplary embodiment is the ophthalmic system according to the twenty-ninth aspect, wherein the imaging system of the slit lamp microscope guides light from the anterior ocular segment irradiated with the slit light.
  • a first image pickup device including a first optical system and a first image pickup device that receives the light guided by the first optical system by a first image pickup surface;
  • a second imaging system that acquires a second image group by performing repeated imaging in parallel with the movement, the optical axis of the first optical system and the second optical system
  • the optical axes are arranged in different directions, and the object surface and the optical axis
  • One optical system and the first imaging surface satisfy a Scheimpflug condition, and the object surface, the second optical system, and the second imaging surface satisfy a Scheinproof
  • a thirty-first aspect of the exemplary embodiment is the ophthalmic system according to the thirty aspect, wherein the optical axis of the first optical system and the optical axis of the second optical system are the optical axes of the illumination system.
  • the information processing device includes an artifact in one of two images acquired substantially simultaneously by the first imaging system and the second imaging system. And an image selection unit that selects the other image when it is determined that one of the two images includes an artifact.
  • a thirty-second aspect of the exemplary embodiment is the ophthalmic system according to the thirty-first aspect, in which the information processing apparatus selects an image selected from the first image group and the second image group by the image selection unit.
  • a three-dimensional image constructing unit that constructs a three-dimensional image based on an image group including
  • a thirty-third aspect of the exemplary embodiment is the ophthalmic system according to the thirtieth aspect, in which the information processing apparatus includes two information acquired substantially simultaneously by the first imaging system and the second imaging system. It includes an artifact removal unit that determines whether any of the two images includes an artifact by comparing the images, and removes the artifact when it is determined that any of the two images includes the artifact. It is characterized by that.
  • a thirty-fourth aspect of the exemplary embodiment is the ophthalmic system according to the thirty-third aspect, in which the information processing apparatus is a three-dimensional image based on an image group including images from which artifacts have been removed by the artifact removal unit. Including a three-dimensional image construction unit for constructing
  • a thirty-fifth aspect of the exemplary embodiment is the ophthalmic system according to the twenty-ninth aspect, in which the information processing apparatus constructs a three-dimensional image based on the plurality of images acquired by the imaging system.
  • a dimensional image construction unit is included.
  • a thirty-sixth aspect of an exemplary embodiment is the ophthalmic system according to any of the thirty-second, thirty-fourth, and thirty-fifth aspects, wherein the moving mechanism has the illumination system and the optical axis of the illumination system as a rotation axis.
  • the imaging system acquires the plurality of images and includes the first rotation.
  • the imaging system acquires an image of the anterior eye part irradiated with slit light by the illumination system
  • the three-dimensional image construction unit includes an image position determination unit that determines relative positions of the plurality of images based on the image acquired at the second rotation position.
  • a thirty-seventh aspect of an exemplary embodiment is the ophthalmic system according to any of the thirty-second, thirty-fourth to thirty-sixth aspects, wherein the three-dimensional image constructing unit is configured to transmit the slit light from each of the plurality of images.
  • An image region extraction unit that extracts an image region corresponding to the irradiation region; and an image composition unit that combines a plurality of image regions extracted from the plurality of images by the image region extraction unit to construct a three-dimensional image. It is characterized by including.
  • a thirty-eighth aspect of the exemplary embodiment is the ophthalmic system according to the thirty-seventh aspect, in which the image area extraction unit includes an irradiation area of the slit light and an anterior eye part from each of the plurality of images. An image region corresponding to both of the predetermined parts is extracted.
  • a thirty-ninth aspect of the exemplary embodiment is the ophthalmic system according to the thirty-eighth aspect, characterized in that the predetermined portion is a portion defined by the anterior surface of the cornea and the posterior surface of the lens.
  • a 40th aspect of an exemplary embodiment is an ophthalmic system according to any of the 32nd, 34-39 aspects, wherein the information processing apparatus renders the three-dimensional image to construct a rendered image. It is characterized by including a part.
  • the forty-first aspect of the exemplary embodiment is the ophthalmic system according to the forty-fourth aspect, wherein when a cross section is designated for the three-dimensional image, the rendering unit displays the three-dimensional image in the cross section. It is characterized by constructing a three-dimensional partial image by cutting.
  • a forty-second aspect of the exemplary embodiment is the ophthalmic system according to the forty-fourth aspect, wherein when a cross section is designated for the three-dimensional image, the rendering unit displays a two-dimensional cross-sectional image representing the cross section. It is characterized by constructing.
  • the forty-third aspect of the exemplary embodiment is the ophthalmic system according to the forty-fourth aspect, wherein when a slice is designated for the three-dimensional image, the rendering unit corresponds to the three-dimensional slice corresponding to the slice. It is characterized by constructing an image.
  • a 44th aspect of the exemplary embodiment is an ophthalmic system according to any of the 29th to 43rd aspects, in which the information processing apparatus includes an optical axis of the illumination system and an optical axis of the imaging system.
  • the image processing apparatus includes a distortion correction unit that applies a process for correcting distortion caused by an optical axis angle, which is an angle, to at least one of the plurality of images.
  • a forty-fifth aspect of the exemplary embodiment is the ophthalmic system according to the forty-fourth aspect, in which the optical axis of the optical system included in the imaging system is relative to the optical axis of the illumination system. Are disposed in an inclined manner in a third direction perpendicular to both the first direction along the optical axis and the second direction along the longitudinal direction of the slit light, and the distortion correction unit includes the first direction and the first direction. A process for correcting distortion in a plane including both directions is performed.
  • a forty-sixth aspect of the exemplary embodiment is the ophthalmic system according to the forty-fourth or forty-fifth aspect, in which the distortion correction unit calculates a correction coefficient set in advance based on a predetermined reference angle and the optical axis angle. It is stored, and a process for correcting the distortion based on the correction coefficient is executed.
  • a 47th aspect of an exemplary embodiment is the ophthalmic system according to any of the 29th to 46th aspects, wherein the information processing apparatus is at least one of the plurality of images acquired by the imaging system. And a first measurement unit that obtains a predetermined measurement value by analyzing the two.
  • a forty-eighth aspect of the exemplary embodiment is the ophthalmic system according to any of the thirty-second and thirty-fourth to forty-third aspects, wherein the information processing apparatus is the three-dimensional image constructed by the three-dimensional image construction unit.
  • a second measurement unit that obtains a predetermined measurement value by analyzing
  • a 49th aspect of an exemplary embodiment is the ophthalmic system according to any of the 29th to 48th aspects, wherein the illumination system and the imaging system are located at a site defined by at least the anterior cornea and the posterior surface of the lens.
  • the photographing system is configured to be in focus.
  • a 50th aspect of an exemplary embodiment is the ophthalmic system according to any of the 29th to 49th aspects, wherein the illumination system emits slit light whose longitudinal direction is the body axis direction of the subject. Irradiating the eye, the moving mechanism moves the illumination system and the imaging system in a direction orthogonal to the body axis direction.
  • the 51st aspect of the exemplary embodiment is the ophthalmic system according to the 50th aspect, wherein the length of the slit light is equal to or greater than the corneal diameter in the body axis direction, and the illumination system by the moving mechanism and The moving distance of the imaging system is greater than or equal to the corneal diameter in a direction orthogonal to the body axis direction.
  • a 52nd aspect of the exemplary embodiment is the ophthalmic system according to any of the 29th to 51st aspects, wherein the optical system included in the imaging system includes the anterior eye irradiated with the slit light.
  • a reflector that reflects light traveling in a direction away from the optical axis of the illumination system in a direction approaching the optical axis of the illumination system; and the light reflected by the reflector And one or more lenses that form an image on the imaging surface.
  • a 53rd aspect of an exemplary embodiment is the ophthalmic system according to any of the 29th to 52nd aspects, wherein the slit lamp microscope includes the anterior eye in parallel with the acquisition of the plurality of images by an imaging system. It includes a moving image shooting system for shooting a moving image from a fixed position.
  • a 54th aspect of an exemplary embodiment is the ophthalmic system according to the 53rd aspect, in which the slit lamp microscope analyzes a moving image acquired by the moving image capturing system and detects a movement of the eye to be examined. And a motion detection unit.
  • a 55th aspect of the exemplary embodiment is the ophthalmic system according to the 54th aspect, wherein the slit lamp microscope includes a movement control unit that controls the movement mechanism based on an output from the motion detection unit. It is characterized by that.
  • the slit lamp microscope according to the embodiment may be installed, for example, in a spectacle store or a medical facility, or may be portable.
  • the slit lamp microscope according to the embodiment is typically used in a situation or environment where a technical skill holder related to the apparatus is not present.
  • the slit lamp microscope according to the embodiment may be used in a situation or environment where a technical skill holder is on the side, or a situation in which the technical skill holder can monitor, instruct, and operate from a remote place. May be used in the environment.
  • the ophthalmic system includes one or more slit lamp microscopes and one or more information processing apparatuses, and can be used for telemedicine, for example.
  • the information processing apparatus receives an image acquired by the slit lamp microscope and processes it.
  • the information processing apparatus may be capable of transmitting data to a slit lamp microscope or other information processing apparatus.
  • the use of the information processing apparatus may be, for example, image analysis, image processing, image interpretation, and the like.
  • an image acquired by a slit lamp microscope is read by a person in a remote place away from the facility where the slit lamp microscope is installed.
  • the image interpreter is typically a doctor and a specialist in the slit lamp microscope. It is also possible to employ computer-aided interpretation using information processing technology (eg, artificial intelligence, image analysis, image processing).
  • Examples of facilities where slit lamp microscopes are installed include spectacle stores, optometrists, medical institutions, health examination venues, examination venues, patient homes, welfare facilities, public facilities, and examination cars.
  • the slit lamp microscope according to the embodiment is an ophthalmologic photographing apparatus having at least a function as a slit lamp microscope, and may further include another photographing function (modality). Examples of other modalities include a fundus camera, SLO, and OCT.
  • the slit lamp microscope according to the embodiment may further include a function of measuring the characteristics of the eye to be examined. Examples of measurement functions include visual acuity measurement, refraction measurement, intraocular pressure measurement, corneal endothelial cell measurement, aberration measurement, and visual field measurement.
  • the slit lamp microscope according to the embodiment may further include an application for analyzing captured images and measurement data.
  • the slit lamp microscope according to the embodiment may further include a function for treatment or surgery. Examples include photocoagulation treatment and photodynamic therapy.
  • the “processor” is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, a SPLD (SimpleDrivable). , CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array) and the like.
  • the processor reads and executes a program or data stored in a storage circuit or a storage device, thereby realizing the function according to the embodiment.
  • FIG. 1 An example of a slit lamp microscope according to the first embodiment is shown in FIG. 1
  • the slit lamp microscope 1 is used for anterior segment imaging of the eye E, and includes an illumination system 2, an imaging system 3, a moving mechanism 6, a control unit 7, a data processing unit 8, and a communication unit 9. .
  • symbol C shows a cornea
  • symbol CL shows a crystalline lens.
  • the slit lamp microscope 1 may be a single device or a system including two or more devices.
  • the slit lamp microscope 1 includes a main unit including an illumination system 2, an imaging system 3, and a moving mechanism 6, a computer including a control unit 7, a data processing unit 8, and a communication unit 9, and a main unit.
  • the computer may be installed together with the main device, or may be installed on a network.
  • the illumination system 2 irradiates the anterior segment of the eye E with slit light.
  • Reference numeral 2 a indicates the optical axis (illumination optical axis) of the illumination system 2.
  • the illumination system 2 may have the same configuration as the illumination system of a conventional slit lamp microscope.
  • the illumination system 2 includes an illumination light source, a positive lens, a slit forming unit, and an objective lens in order from the side far from the eye E.
  • the illumination light source outputs illumination light.
  • the illumination system 2 may include a plurality of illumination light sources.
  • the illumination system 2 may include an illumination light source that outputs continuous light and an illumination light source that outputs flash light.
  • the illumination system 2 may include an anterior ocular segment illumination light source and a posterior ocular segment illumination light source.
  • the illumination system 2 may include two or more illumination light sources having different output wavelengths.
  • a typical illumination system 2 includes a visible light source as an illumination light source.
  • the illumination system 2 may include an infrared light source. The illumination light output from the illumination light source passes through the positive lens and is projected onto the slit forming unit.
  • the slit forming unit passes through part of the illumination light and generates slit light.
  • a typical slit forming part has a pair of slit blades. By changing the interval between these slit blades (slit width), the width of the region (slit) through which the illumination light passes is changed, thereby changing the width of the slit light.
  • the slit formation part may be comprised so that change of the length of slit light is possible.
  • the length of the slit light is the cross-sectional dimension of the slit light in the direction orthogonal to the cross-sectional width direction of the slit light corresponding to the slit width.
  • the width of the slit light and the length of the slit light are typically expressed as the dimensions of the projected image of the slit light onto the anterior segment.
  • the slit light generated by the slit forming unit is refracted by the objective lens and is applied to the anterior segment of the eye E.
  • the illumination system 2 may further include a focusing mechanism for changing the focus position of the slit light.
  • the focusing mechanism moves the objective lens along the illumination optical axis 2a.
  • the movement of the objective lens can be performed automatically and / or manually.
  • a focusing lens is disposed at a position on the illumination optical axis 2a between the objective lens and the slit forming portion, and the focusing position of the slit light is changed by moving the focusing lens along the illumination optical axis 2a. It may be possible.
  • FIG. 1 is a top view.
  • the direction along the axis of the eye E is the Z direction, and the right and left directions for the subject out of the directions orthogonal thereto are shown.
  • the direction is the X direction
  • the direction orthogonal to both the X direction and the Z direction is the Y direction.
  • the X direction is an arrangement direction of the left eye and the right eye
  • the Y direction is a direction along the body axis of the subject (body axis direction).
  • the slit lamp microscope 1 is arranged so that the illumination optical axis 2a is arranged in parallel with the axis of the eye E so that the illumination optical axis 2a coincides with the axis of the eye E.
  • the alignment is performed. The alignment will be described later.
  • the imaging system 3 captures the anterior eye segment irradiated with the slit light from the illumination system 2.
  • Reference numeral 3 a indicates an optical axis (imaging optical axis) of the imaging system 3.
  • the photographing system 3 of the present embodiment includes an optical system 4 and an image sensor 5.
  • the optical system 4 guides light from the anterior eye part of the eye E to which the slit light is irradiated to the image sensor 5.
  • the imaging element 5 receives light guided by the optical system 4 on the imaging surface.
  • the light guided by the optical system 4 includes the return light of the slit light applied to the anterior eye part, and may further include other light.
  • Examples of return light include reflected light, scattered light, and fluorescence.
  • Other examples of light include light (room light, sunlight, etc.) from the installation environment of the slit lamp microscope 1.
  • the return light of the anterior ocular segment illumination light may be included in the light guided by the optical system 4. Good.
  • the imaging device 5 is an area sensor having a two-dimensional imaging area, and may be, for example, a charge coupled device (CCD) image sensor or a complementary metal oxide semiconductor (CMOS) image sensor.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the optical system 4 may have, for example, a configuration similar to that of a conventional slit lamp microscope photographing system.
  • the optical system 4 includes an objective lens, a variable power optical system, and an imaging lens in order from the side close to the eye E.
  • the light from the anterior eye part of the eye E to which the slit light is irradiated passes through the objective lens and the variable magnification optical system, and is imaged on the imaging surface of the imaging device 5 by the imaging lens.
  • the imaging system 3 may include, for example, a first imaging system and a second imaging system. Typically, the first photographing system and the second photographing system have the same configuration. The case where the imaging system 3 includes the first imaging system and the second imaging system will be described in another embodiment.
  • the photographing system 3 may further include a focusing mechanism for changing the focus position.
  • the focusing mechanism moves the objective lens along the photographing optical axis 3a.
  • the movement of the objective lens can be performed automatically and / or manually. Note that it is possible to change the focus position by disposing a focusing lens at a position on the photographing optical axis 3a between the objective lens and the imaging lens and moving the focusing lens along the photographing optical axis 3a. Good.
  • the illumination system 2 and the imaging system 3 function as a shine proof camera. That is, the illumination system 2 and the imaging system 3 are configured such that the object surface along the illumination optical axis 2a, the optical system 4, and the imaging surface of the imaging element 5 satisfy the so-called Scheinproof condition. More specifically, the YZ plane (including the object plane) passing through the illumination optical axis 2a, the main surface of the optical system 4, and the imaging surface of the imaging element 5 intersect on the same straight line. Thereby, it is possible to perform photographing by focusing on all positions in the object plane (all positions in the direction along the illumination optical axis 2a).
  • the parameter indicating the relative position between the illumination system 2 and the imaging system 3 includes, for example, an angle ⁇ formed by the illumination optical axis 2a and the imaging optical axis 3a.
  • the angle ⁇ is set to 17.5 degrees, 30 degrees, or 45 degrees. Note that the angle ⁇ may be variable.
  • the moving mechanism 6 moves the illumination system 2 and the imaging system 3. In the present embodiment, the moving mechanism 6 moves the illumination system 2 and the imaging system 3 integrally in the X direction.
  • the moving mechanism 6 includes a movable stage on which the illumination system 2 and the photographing system 3 are mounted, an actuator that operates according to a control signal input from the control unit 7, and a movable stage based on the driving force generated by the actuator.
  • the moving mechanism 6 includes a movable stage on which the illumination system 2 and the photographing system 3 are mounted, and a mechanism that moves the movable stage based on a force applied to an operation device (not shown).
  • the operation device is, for example, a lever.
  • the movable stage is movable at least in the X direction, and may be movable in the Y direction and / or the Z direction.
  • Control unit 7 controls each unit of the slit lamp microscope 1.
  • the control unit 7 includes elements of the illumination system 2 (illumination light source, slit forming unit, focusing mechanism, etc.), elements of the imaging system 3 (focusing mechanism, imaging device, etc.), moving mechanism 6, data processing unit 8, The communication unit 9 and the like are controlled. Further, the control unit 7 may be able to execute control for changing the relative position between the illumination system 2 and the imaging system 3.
  • the control unit 7 includes a processor, a main storage device, an auxiliary storage device, and the like.
  • a control program or the like is stored in the auxiliary storage device.
  • the control program or the like may be stored in a computer or storage device accessible by the slit lamp microscope 1.
  • the function of the control unit 7 is realized by cooperation of software such as a control program and hardware such as a processor.
  • the control unit 7 can apply the following control to the illumination system 2, the imaging system 3, and the moving mechanism 6 in order to scan the three-dimensional region of the anterior segment of the eye E with the slit light. .
  • the control unit 7 controls the moving mechanism 6 so as to arrange the illumination system 2 and the imaging system 3 at a predetermined scan start position (alignment control).
  • the scan start position is, for example, a position corresponding to the end portion (first end portion) of the cornea C in the X direction, or a position further away from the axis of the eye E to be examined.
  • 2A indicates the scan start position corresponding to the first end portion of the cornea C in the X direction.
  • 2B indicates a scan start position that is farther from the axis EA of the eye E than the position corresponding to the first end portion of the cornea C in the X direction.
  • the control unit 7 controls the illumination system 2 to start the irradiation of the slit light to the anterior eye part of the eye E (slit light irradiation control). In addition, you may perform slit light irradiation control before execution of alignment control or during execution of alignment control.
  • the illumination system 2 typically irradiates continuous light as slit light, but may irradiate intermittent light (pulse light) as slit light.
  • the illumination system 2 typically irradiates visible light as slit light, but may irradiate infrared light as slit light.
  • the control unit 7 controls the imaging system 3 to start video recording of the anterior segment of the eye E (imaging control). Note that imaging control may be performed before execution of alignment control or during execution of alignment control. Typically, the imaging control is executed simultaneously with the slit light irradiation control or after the slit light irradiation control.
  • the control unit 7 controls the movement mechanism 6 to start movement of the illumination system 2 and the imaging system 3 (movement control).
  • movement control By the movement control, the illumination system 2 and the photographing system 3 are moved together. That is, the illumination system 2 and the imaging system 3 are moved while maintaining the relative position (angle ⁇ and the like) between the illumination system 2 and the imaging system 3.
  • the illumination system 2 and the imaging system 3 are moved from the scan start position described above to a predetermined scan end position.
  • the scan end position is, for example, the position corresponding to the end portion (second end portion) of the cornea C on the opposite side of the first end portion in the X direction, as in the scan start position, or the eye E more The position is away from the axis.
  • the range from the scan start position to the scan end position is the scan range.
  • the imaging system 3 is configured to irradiate the anterior eye part with slit light having the X direction as the width direction and the Y direction as the longitudinal direction, and moving the illumination system 2 and the imaging system 3 in the X direction.
  • the video shooting by is executed.
  • the length of the slit light (that is, the dimension of the slit light in the Y direction) is set to be equal to or larger than the diameter of the cornea C on the surface of the eye E, for example. That is, the length of the slit light is set to be equal to or larger than the corneal diameter in the Y direction.
  • the moving distance (that is, the scanning range) of the illumination system 2 and the imaging system 3 by the moving mechanism 6 is set to be equal to or larger than the corneal diameter in the X direction. Thereby, at least the entire cornea C can be scanned with the slit light.
  • a plurality of anterior segment images having different slit light irradiation positions are obtained.
  • a moving image in which the irradiation position of the slit light moves in the X direction is obtained.
  • An example of such a plurality of anterior segment images (that is, a frame group constituting a moving image) is shown in FIG.
  • FIG. 3 shows a plurality of anterior segment images (frame groups) F1, F2, F3,.
  • the anterior segment image Fn includes a slit light irradiation region An. As shown in FIG. 3, the slit light irradiation areas A1, A2, A3,..., AN move in the right direction along the time series. In the example shown in FIG. 3, the scan start position and the scan end position correspond to both ends of the cornea C in the X direction.
  • the scan start position and / or the scan end position are not limited to this example, and may be, for example, a position farther from the axis of the eye E than the end of the cornea. Further, the direction and the number of scans can be arbitrarily set.
  • the data processing unit 8 executes various data processing.
  • the data to be processed may be either data acquired by the slit lamp microscope 1 or data input from the outside.
  • the data processing unit 8 can process images acquired by the illumination system 2 and the imaging system 3.
  • the configuration and function of the data processing unit 8 will be described in another embodiment.
  • the data processing unit 8 includes a processor, a main storage device, an auxiliary storage device, and the like.
  • a data processing program or the like is stored in the auxiliary storage device.
  • the data processing program or the like may be stored in a computer or storage device accessible by the slit lamp microscope 1.
  • the function of the data processing unit 8 is realized by cooperation of software such as a data processing program and hardware such as a processor.
  • the communication unit 9 performs data communication between the slit lamp microscope 1 and another device. In other words, the communication unit 9 transmits data to other devices and receives data transmitted from other devices.
  • the data communication method executed by the communication unit 9 is arbitrary.
  • the communication unit 9 includes one or more of various communication interfaces such as a communication interface compliant with the Internet, a communication interface compliant with a dedicated line, a communication interface compliant with LAN, and a communication interface compliant with short-range communication.
  • Data communication may be wired communication or wireless communication.
  • Data transmitted / received by the communication unit 9 may be encrypted.
  • the control unit 7 and / or the data processing unit 8 includes an encryption processing unit that encrypts data transmitted by the communication unit 9, and a decryption that decrypts data received by the communication unit 9. At least one of the processing units is included.
  • the slit lamp microscope 1 may include a display device and an operation device.
  • the display device or the operation device may be a peripheral device of the slit lamp microscope 1.
  • the display device displays various information under the control of the control unit 7.
  • the display device may include a flat panel display such as a liquid crystal display (LCD).
  • LCD liquid crystal display
  • the operation device includes a device for operating the slit lamp microscope 1 and a device for inputting information.
  • the operation device includes, for example, a button, a switch, a lever, a dial, a handle, a knob, a mouse, a keyboard, a trackball, an operation panel, and the like.
  • a device in which a display device and an operation device are integrated, such as a touch screen, may be used.
  • a subject or an assistant can operate the slit lamp microscope 1 by using a display device and an operation device.
  • the alignment of the slit lamp microscope 1 with respect to the eye E will be described.
  • the alignment is an operation of placing the apparatus optical system at a position suitable for photographing and measuring the eye E.
  • the alignment of the present embodiment is an operation of arranging the illumination system 2 and the imaging system 3 at positions suitable for acquiring a moving image as shown in FIG.
  • Stereo alignment As an alignment method applicable to this embodiment. Stereo alignment can be applied to an ophthalmologic apparatus capable of photographing the anterior segment from two or more different directions, and a specific method thereof is disclosed in Japanese Patent Application Laid-Open No. 2013-248376 by the present applicant.
  • the stereo alignment includes, for example, the following steps: a step in which two or more anterior segment cameras capture an anterior segment from different directions to obtain two or more captured images; a processor analyzes these captured images and an eye to be examined A step of obtaining a three-dimensional position of the step; a step in which a processor controls movement of the optical system based on the obtained three-dimensional position
  • the optical system in this example, the illumination system 2 and the imaging system 3
  • the position of the pupil (the center or the center of gravity of the pupil) of the eye to be examined is used as a reference.
  • any known alignment method such as a method using a Purkinje image obtained by alignment light or a method using optical lever can be employed.
  • the position of the corneal apex of the eye to be examined is used as a reference.
  • the conventional typical alignment method including the above examples is performed for the purpose of matching the axis of the eye to be examined and the optical axis of the optical system.
  • the position corresponding to the scan start position is used. It is possible to perform the alignment so that the illumination system 2 and the imaging system 3 are arranged in the screen.
  • a standard value of a preset corneal radius The illumination system 2 and the imaging system 3 can be moved (in the X direction) by a distance corresponding to.
  • a measured value of the corneal radius of the eye E may be used.
  • the image of the anterior eye portion of the eye E is analyzed and the corneal radius is analyzed.
  • the illumination system 2 and the imaging system 3 can be moved (in the X direction) by a distance corresponding to the measured value.
  • the anterior ocular segment image analyzed in this example is, for example, an anterior ocular segment image obtained by the imaging system 3 or another image.
  • the other image may be an arbitrary image such as an image obtained by the anterior ocular segment camera or an image obtained by the anterior ocular segment OCT.
  • an image of the anterior segment obtained by the anterior segment camera for stereo alignment or the imaging system 3 is analyzed to obtain the first end of the cornea, and this first end is applied by applying stereo alignment.
  • the illumination system 2 and the imaging system 3 can be moved to a position corresponding to the part.
  • the scan sequence can be set so as to scan the entire cornea C. For example, the scan sequence is set so that scanning is performed to the left from the position determined by the alignment, and then scanning is performed to the right.
  • the slit lamp microscope 1 may include a fixation system that outputs light for fixing the eye E (fixation light).
  • the fixation system typically includes at least one visible light source (fixation light source) or a display device that displays an image such as a landscape chart or a fixation target.
  • the fixation system is arranged coaxially or non-coaxially with the illumination system 2 or the imaging system 3, for example.
  • the types of images that can be acquired by the slit lamp microscope 1 are not limited to the above-described moving images of the anterior segment (a plurality of anterior segment images).
  • the slit lamp microscope 1 includes a three-dimensional image based on the moving image, a rendered image based on the three-dimensional image, a transillumination image, a moving image representing the movement of the contact lens worn on the eye to be examined, and a contact by applying a fluorescent agent.
  • the rendered image will be described in another embodiment.
  • a transillumination image is an image obtained by a transillumination method in which the retinal reflection of illumination light is used to depict opacity and foreign matter in the eye. Note that fundus imaging, corneal endothelial cell imaging, meibomian gland imaging, and the like may be possible.
  • FIG. 4 shows an example of usage pattern.
  • the subject or the assistant inputs subject information to the slit lamp microscope 1 at an arbitrary stage.
  • the input subject information is stored in the control unit 7.
  • the subject information typically includes subject identification information (subject ID).
  • background information can be entered.
  • the background information is arbitrary information about the subject.
  • the interview information of the subject information entered by the subject on a predetermined sheet, information recorded in the electronic medical record of the subject, etc.
  • background information includes gender, age, height, weight, disease name, candidate disease name, test results (sight values, eye refractive power values, intraocular pressure values, etc.), refractive correction tools (glasses, contact lenses, etc.) )
  • step S2 Instruct to start shooting
  • the subject sits down on the chair, places the chin on the chin rest, and makes the forehead contact the forehead.
  • the subject or the assistant performs an instruction operation to start imaging of the eye to be examined. This operation is, for example, pressing a shooting start trigger button (not shown).
  • step S3 Alignment
  • the slit lamp microscope 1 performs alignment with the eye E in the manner described above. Focus adjustment may be performed after the alignment is completed.
  • the slit lamp microscope 1 combines the irradiation of the slit light by the illumination system 2 with the moving image shooting by the shooting system 3 and the movement of the illumination system 2 and the shooting system 3 by the moving mechanism 6, thereby Scan the anterior segment of E. Thereby, for example, a plurality of anterior segment images F1 to FN shown in FIG. 3 are obtained.
  • the data processing unit 8 can process at least one of the anterior segment images F1 to FN. For example, as described in other embodiments, the data processing unit 8 can construct a three-dimensional image based on the anterior segment image F1 to FN. It is also possible to perform predetermined image processing and predetermined image analysis.
  • the control unit 7 controls the communication unit 9 to obtain the anterior segment image (anterior segment image F1 to FN, a part of the anterior segment image F1 to FN, the anterior segment image) acquired by the slit lamp microscope 1. 3D images based on F1 to FN) are transmitted to another device.
  • the information processing apparatus is, for example, a server on a wide area line, a server on a LAN, or a computer terminal.
  • the storage device is a storage device provided on a wide area line, a storage device provided on a LAN, or the like.
  • [Background information can be transmitted together with the anterior eye image.
  • the identification information of the subject is transmitted together with the image of the anterior segment.
  • This identification information may be a subject ID (described above) input to the slit lamp microscope 1 or may be identification information generated based on the subject ID.
  • a subject ID internal identification information
  • a subject ID used for personal identification in a facility where the slit lamp microscope 1 is installed can be converted into external identification information used outside the facility. . Thereby, it is possible to improve information security regarding personal information such as an anterior eye image and background information.
  • the image of the anterior segment of the eye E (and subject identification information, background information, etc.) transmitted from the slit lamp microscope 1 in step S5 is directly or indirectly, for example, a doctor (or optometer list). ) Is sent to the information processing device used.
  • Physician can observe the image of the anterior segment of eye E to be examined. At this time, for example, a predetermined number of the anterior eye images F1 to FN are displayed, a list of the anterior eye images F1 to FN, a slide show of the anterior eye images F1 to FN, It is possible to construct a three-dimensional image from the anterior segment images F1 to FN and display a rendered image of the three-dimensional image.
  • Physician can perform image diagnosis (interpretation) by observing the image of the anterior segment of eye E to be examined.
  • a doctor or an optometer list
  • the report is transmitted to, for example, a facility where the slit lamp microscope 1 is installed.
  • the report may be transmitted to address information (e-mail address, address, etc.) registered by the subject. This is the end of the processing according to this example.
  • the slit lamp microscope 1 includes an illumination system 2, an imaging system 3, and a moving mechanism 6.
  • the illumination system 2 irradiates the anterior segment of the eye E with slit light.
  • the imaging system 3 includes an optical system 4 that guides light from the anterior segment irradiated with slit light, and an imaging element 5 that receives light guided by the optical system 4 on an imaging surface.
  • the moving mechanism 6 moves the illumination system 2 and the imaging system 3.
  • the illumination system 2 and the imaging system 3 are arranged so that the object surface along the optical axis (illumination optical axis) 2a of the illumination system 2, the optical system 4, and the imaging surface of the imaging element 5 satisfy the Scheimpflug condition. It is configured.
  • the imaging system 3 acquires a plurality of images of the anterior segment of the eye E by repeatedly performing imaging in parallel with the movement of the illumination system 2 and the imaging system 3 by the moving mechanism 6.
  • this repeated shooting is moving image shooting, whereby a moving image consisting of a plurality of anterior segment images is acquired.
  • the three-dimensional region of the anterior eye part of the eye E can be scanned with the slit light, and the three-dimensional region can be scanned.
  • An image to represent can be acquired. Therefore, a doctor or an optometricist can observe the image acquired by the slit lamp microscope 1 and grasp the state of a desired part of the anterior segment.
  • the images acquired by the slit lamp microscope 1 can be provided to doctors and optometricists at remote locations.
  • the slit lamp microscope 1 can transmit the image acquired about the anterior eye part of the eye E by the communication unit 9 toward an information processing apparatus used by a doctor or an optometric list.
  • providing the communication unit 9 is optional.
  • the method of providing an image acquired by the slit lamp microscope 1 is not limited to such data communication, and may be a method of providing a recording medium or a printing medium on which an image is recorded. Recording on the recording medium is performed by a recording device (data writer) conforming to the recording medium, and recording on the printing medium is performed by a printing apparatus.
  • the slit lamp microscope 1 is configured so that the object surface along the illumination optical axis 2a, the imaging surface of the optical system 4 and the imaging device 5 satisfy the Scheimpflug condition, and therefore the depth direction (Z direction). ) Can be focused over a wide range.
  • the illumination system 2 and the imaging system 3 are configured so that the imaging system 3 is focused on a portion defined by at least the front surface of the cornea and the rear surface of the crystalline lens. Thereby, it becomes possible to image the whole main part of the anterior ocular segment to be subjected to slit lamp microscopic examination with high definition.
  • the in-focus range is not limited to the area defined by the front surface of the cornea and the rear surface of the crystalline lens, and can be set arbitrarily.
  • the illumination system 2 may irradiate the anterior eye part with slit light whose longitudinal direction is the body axis direction (Y direction) of the subject.
  • the moving mechanism 6 may be configured to be able to move the illumination system 2 and the imaging system 3 in a direction (X direction) orthogonal to the body axis direction of the subject.
  • the direction and moving direction of the slit light are not limited to these and can be set arbitrarily, but typically the moving direction is set in the width direction of the slit light.
  • the length of the slit light (slit light in the body axis direction)
  • the illumination system 2 can be configured such that (dimension) is equal to or greater than the corneal diameter in the body axis direction.
  • the moving mechanism 6 can be configured such that the moving distance of the illumination system 2 and the imaging system 3 by the moving mechanism 6 is equal to or greater than the corneal diameter in the direction orthogonal to the body axis direction (X direction).
  • the corneal diameter may be the corneal diameter of the eye E or a standard corneal diameter. Note that the length and moving distance of the slit light are not limited to these and can be arbitrarily set.
  • an image can be acquired for the entire cornea. Furthermore, when combined with a configuration that satisfies the Scheinproof condition, it is possible to acquire an image that represents the entire cornea and a sufficient depth range.
  • a high-quality image representing a wide range (three-dimensional region) of the anterior segment of the anterior eye can be automatically acquired without requiring a specialist to perform fine and complicated operations. can do.
  • the image interpreter can perform observation and diagnosis by receiving an image acquired by the slit lamp microscope 1.
  • a slit lamp microscope 1 can be said to be effective in screening for an anterior segment disease or the like.
  • the illumination system 20 shown in FIG. 5 is an example of the illumination system 2 of the first embodiment, and the left imaging system 30L and the right imaging system 30R are examples of the imaging system 3.
  • Reference numeral 20a indicates an optical axis (illumination optical axis) of the illumination system 20
  • reference numeral 30La indicates an optical axis (left imaging optical axis) of the left imaging system 30L
  • reference numeral 30Ra indicates an optical axis (right imaging light) of the right imaging system 30R.
  • Axis The left photographing optical axis 30La and the right photographing optical axis 30Ra are arranged in different directions.
  • the angle formed by the illumination optical axis 20a and the left photographing optical axis 30La is denoted by ⁇ L
  • the angle formed by the illumination optical axis 20a and the right photographing optical axis 30Ra is denoted by ⁇ R.
  • the angle ⁇ L and the angle ⁇ R may be equal to or different from each other.
  • the illumination optical axis 20a, the left photographing optical axis 30La, and the right photographing optical axis 30Ra intersect at one point. As in FIG. 1, the Z coordinate of this intersection is denoted by Z0.
  • the moving mechanism 6 can move the illumination system 20, the left photographing system 30L, and the right photographing system 30R in the direction indicated by the arrow 49 (X direction).
  • the illumination system 20, the left imaging system 30L, and the right imaging system 30R are placed on a stage that can move at least in the X direction, and the moving mechanism 6 receives a control signal from the control unit 7.
  • the movable stage is moved according to
  • the illumination system 20 irradiates the anterior eye part of the eye E with slit light.
  • the illumination system 20 includes an illumination light source 21, a positive lens 22, a slit forming unit 23, and objective lens groups 24 and 25 in order from the side far from the eye E as in the illumination system of the conventional slit lamp microscope. Including.
  • the illumination light (typically visible light) output from the illumination light source 21 is refracted by the positive lens 22 and projected onto the slit forming unit 23. Part of the projected illumination light passes through a slit formed by the slit forming unit 23 and becomes slit light.
  • the generated slit light is refracted by the objective lens groups 24 and 25, then reflected by the beam splitter 47, and applied to the anterior eye portion of the eye E to be examined.
  • the left photographing system 30L includes a reflector 31L, an imaging lens 32L, and an image sensor 33L.
  • the reflector 31L and the imaging lens 32L guide the light from the anterior segment irradiated with the slit light from the illumination system 20 (light traveling in the direction of the left imaging system 30L) to the image sensor 33L.
  • the light traveling from the anterior segment toward the left imaging system 30L is light from the anterior segment irradiated with the slit light and traveling away from the illumination optical axis 20a.
  • the reflector 31L reflects the light in a direction approaching the illumination optical axis 20a.
  • the imaging lens 32L refracts the light reflected by the reflector 31L and forms an image on the imaging surface 34L of the imaging element 33L.
  • the imaging element 33L receives the light at the imaging surface 34L.
  • the left imaging system 30L repeatedly performs imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6. Thereby, a plurality of anterior segment images are obtained.
  • the object surface along the illumination optical axis 20a, the optical system including the reflector 31L and the imaging lens 32L, and the imaging surface 34L satisfy the Scheimpflug condition. More specifically, considering the deflection of the optical path of the imaging system 30L by the reflector 31L, the YZ plane (including the object plane) passing through the illumination optical axis 20a, the main surface of the imaging lens 32L, and the imaging plane 34L Intersect on the same straight line. Accordingly, the left imaging system 30L can perform imaging while focusing on all positions in the object plane (for example, a range from the front surface of the cornea to the rear surface of the crystalline lens).
  • the right imaging system 30R includes a reflector 31R, an imaging lens 32R, and an image sensor 33R. Similar to the left imaging system 30L, the right imaging system 30R receives light from the anterior segment irradiated with slit light from the illumination system 20 by the reflector 31R and the imaging lens 32R, and the imaging surface 34R of the imaging element 33R. Lead to. Further, similarly to the left imaging system 30L, the right imaging system 30R performs multiple imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6, and thereby a plurality of anterior eyes. Get a partial image. Similar to the left imaging system 30L, the object surface along the illumination optical axis 20a, the optical system including the reflector 31R and the imaging lens 32R, and the imaging surface 34R satisfy the Scheimpflug condition.
  • the control unit 7 can synchronize the repeated shooting by the left shooting system 30L and the repeated shooting by the right shooting system 30R. Thereby, the correspondence between the plurality of anterior eye images obtained by the left imaging system 30L and the plurality of anterior eye images obtained by the right imaging system 30R is obtained.
  • This correspondence relationship is a temporal correspondence relationship, and more specifically, images acquired at the same time are paired.
  • control unit 7 or the data processing unit 8 obtains a correspondence relationship between a plurality of anterior segment images obtained by the left imaging system 30L and a plurality of anterior segment images obtained by the right imaging system 30R. Processing can be executed. For example, the control unit 7 or the data processing unit 8 generates an anterior segment image sequentially input from the left imaging system 30L and an anterior segment image sequentially input from the right imaging system 30R according to their input timings. Pairing is possible.
  • This embodiment further includes a moving image shooting system 40.
  • the moving image capturing system 40 captures a moving image of the anterior eye portion of the eye E from a fixed position in parallel with the capturing by the left capturing system 30L and the right capturing system 30R.
  • the “moving image shooting from a fixed position” means that the moving image shooting system 40 is not moved by the moving mechanism 6 unlike the illumination system 20, the left shooting system 30L, and the right shooting system 30R.
  • the moving image shooting system 40 of the present embodiment is arranged coaxially with the illumination system 20, but the arrangement is not limited to this.
  • the moving image shooting system can be arranged non-coaxial with the illumination system 20.
  • An optical system that illuminates the anterior segment with illumination light in a band in which the moving image capturing system 40 has sensitivity may be provided.
  • the light transmitted through the beam splitter 47 is reflected by the reflector 48 and enters the moving image capturing system 40.
  • the light incident on the moving image capturing system 40 is refracted by the objective lens 41 and then imaged on the imaging surface of the image sensor 43 by the imaging lens 42.
  • the image sensor 43 is an area sensor.
  • Tracking is a process for causing the optical system to follow the movement of the eye E. Such processing will be described in another embodiment.
  • the beam splitter 47 is, for example, a dichroic mirror or a half mirror.
  • This embodiment is an example of the imaging system 3 of the first embodiment, and includes a left imaging system 30L and a right imaging system 30R.
  • the combination of the left photographing system 30L and the right photographing system 30R is an example of the combination of the first photographing system and the second photographing system.
  • the left imaging system 30L includes a reflector 31L and an imaging lens 32L (first optical system) that guide light from the anterior segment irradiated with slit light, and an imaging surface 34L (first imaging surface) that guides the guided light. )
  • the right imaging system 30R includes a reflector 31R and an imaging lens 32R (second optical system) that guide light from the anterior segment irradiated with slit light, and an imaging surface 34R (second optical system). 2 imaging surfaces) and an image sensor 33R (second image sensor) that receives light.
  • the optical axis of the left imaging system 30L (left imaging optical axis 30La) and the optical axis of the right imaging system 30R (right imaging optical axis 30Ra) are arranged in different directions. Furthermore, the object surface along the optical axis of the illumination system 20 (illumination optical axis 20a), the reflector 31L, the imaging lens 32L, and the imaging surface 34L satisfy the Scheinproof condition. Similarly, the object surface, the reflector 31L, the imaging lens 32L, and the imaging surface 34L satisfy the Scheimpflug condition.
  • the left imaging system 30L acquires the first image group by repeatedly performing imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6.
  • the right imaging system 30R acquires the second image group by repeatedly performing imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6.
  • an image acquired substantially simultaneously with the image by the other imaging system may not include the artifact.
  • a pair of images acquired substantially simultaneously by both photographing systems includes an artifact, and the artifact in one image overlaps a region of interest (for example, a slit light irradiation region)
  • the artifact in the other image may not overlap the attention area. Therefore, the possibility that a suitable image can be acquired increases. Processing for acquiring a suitable image from a pair of images acquired substantially simultaneously will be described later.
  • the imaging system 3 may include, in addition to the first imaging system and the second imaging system, a third imaging system having a similar configuration, ..., a Kth imaging system (K is an integer of 3 or more). .
  • the left photographing system 30L of the present embodiment includes a reflector 31L and an imaging lens 32L.
  • the reflector 31L reflects the light from the anterior segment irradiated with the slit light and traveling in the direction away from the illumination optical axis 20a in the direction approaching the illumination optical axis 20a.
  • the imaging lens 32L forms an image of the light reflected by the reflector 31L on the imaging surface 34L.
  • the imaging lens 32L includes one or more lenses.
  • the right imaging system 30R includes a reflector 31R and an imaging lens 32R.
  • the reflector 31R reflects light that travels in a direction away from the illumination optical axis 20a, which is light from the anterior segment irradiated with the slit light, in a direction approaching the illumination optical axis 20a.
  • the imaging lens 32R images the light reflected by the reflector 31R on the imaging surface 34R.
  • the imaging lens 32R includes one or more lenses.
  • the image acquired by the image sensor 33L (33R) is output through a cable extending from the surface opposite to the imaging surface 34L (34R), but according to this configuration, the image is relatively close to the illumination optical axis 20a.
  • the cable can be arranged from the back surface of the imaging element 33L (33R) positioned in the opposite direction to the eye E. Therefore, the cable can be suitably routed and the apparatus can be reduced in size.
  • the angle ⁇ L and the angle ⁇ R can be set to be large, and therefore, when an artifact is included in an image acquired by one imaging system, it is substantially the same as the image by the other imaging system. Therefore, the possibility that the artifacts are not included in the simultaneously acquired images can be increased.
  • a pair of images acquired substantially simultaneously by both photographing systems includes an artifact, and the artifact in one image overlaps a region of interest (for example, a slit light irradiation region) The possibility that the artifact in the other image overlaps the attention area can be reduced.
  • This embodiment includes a moving image shooting system 40.
  • the left photographing system 30L and the right photographing system 30R repeatedly photograph the anterior segment in parallel with the movement of the illumination system 20, the left photographing system 30L, and the right photographing system 30R by the moving mechanism 6.
  • the moving image shooting system 40 takes a moving image of the anterior segment from a fixed position.
  • the state of the eye E during the scan can be grasped by performing moving image shooting from a fixed position (for example, the front) in parallel with the scanning of the anterior eye part by the slit light, It is possible to perform control according to the state of E. Examples thereof will be described in other embodiments.
  • FIG. 6 shows an example of an optical system applicable instead of the configuration shown in FIG.
  • symbol for every element is abbreviate
  • the reflector illuminates light that travels in a direction away from the illumination optical axis 20a ′, which is light from the anterior segment irradiated with slit light. Reflected in a direction further away from the optical axis 20a. Further, the imaging lens forms an image of the light reflected by the reflector on the imaging surface of the imaging device.
  • a configuration of a processing system applicable to the slit lamp microscope 1 of the first embodiment will be described.
  • the photographing system 3 of the present embodiment for example, as shown in FIG. 5 described in the second embodiment, the left photographing optical axis 30La and the right photographing optical axis 30Ra are opposite to each other with respect to the illumination optical axis 20a. It is arranged to be inclined.
  • the processing system of the present embodiment executes processing related to the following artifacts.
  • a data processing unit 8A shown in FIG. 7 is an example of the data processing unit 8 of the first embodiment.
  • the data processing unit 8A includes an image selection unit 81.
  • the image selection unit 81 determines whether any of the two images acquired substantially simultaneously by the left photographing system 30L and the right photographing system 30R includes an artifact.
  • Artifact determination includes predetermined image analysis, and typically includes threshold processing regarding luminance information assigned to pixels.
  • the threshold process for example, a pixel to which a luminance value exceeding a preset threshold is assigned is specified.
  • the threshold value is set higher than the luminance value of the slit light irradiation area in the image.
  • the image selection unit 81 does not determine the irradiation area of the slit light as an artifact, and determines an image brighter than that (for example, a regular reflection image) as an artifact.
  • the image selection unit 81 may perform arbitrary image analysis other than threshold processing, such as pattern recognition, segmentation, and edge detection, for artifact determination.
  • image analysis other than threshold processing, such as pattern recognition, segmentation, and edge detection, for artifact determination.
  • edge detection for artifact determination.
  • any information processing technique such as image analysis, image processing, artificial intelligence, cognitive computing, and the like can be applied to artifact determination.
  • the image selection unit 81 selects the other image. select. In other words, the image selection unit 81 selects an image that is not an image determined to include the artifact among these two images.
  • the image selection unit 81 can evaluate, for example, the adverse effect of the artifact on the observation or diagnosis, and select an image on the side where the adverse effect is small. This evaluation is performed based on, for example, the size and / or position of the artifact. Typically, an image having a large artifact included is evaluated as having a large adverse effect, and an image in which an artifact is located in a region of interest such as a slit light irradiation region or the vicinity thereof is evaluated as having a large adverse effect.
  • the left imaging system 30L captures the first image group by repeatedly performing imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6. get.
  • the right imaging system 30R acquires the second image group by repeatedly performing imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6.
  • the repeated shooting is typically moving image shooting, and each of the first image group and the second image group is a frame group constituting a moving image. Further, as described above, images acquired substantially simultaneously from the first image group and the second image group are paired.
  • the image selection unit 81 selects one of two paired images (a combination of an image from the first image group and an image from the second image group). Thereby, for example, one image is selected from each of a plurality of image pairs, and a plurality of images substantially including no artifacts are selected.
  • the data processing unit 8A further includes a three-dimensional image construction unit 82.
  • the three-dimensional image construction unit 82 constructs a three-dimensional image based on the image group including the images selected from the first image group and the second image group by the image selection unit 81.
  • This image group may include only one of a plurality of images selected from the first image group and the second image group by the image selection unit 81, or may further include images other than these.
  • a three-dimensional image is an image (image data) in which pixel positions are defined by a three-dimensional coordinate system.
  • 3D images include stack data and volume data.
  • Stack data is constructed by embedding a plurality of two-dimensional images in a single three-dimensional coordinate system according to their positional relationship.
  • Volume data is also referred to as voxel data, and is constructed by applying voxelization to stack data, for example.
  • the three-dimensional image construction unit 82 analyzes the anterior segment image Fn and extracts the slit light irradiation region An.
  • the extraction of the slit light irradiation area An is performed with reference to luminance information assigned to the pixel, and typically includes threshold processing.
  • FIG. 8 shows an example of a plurality of slit light irradiation region images G1 to GN constructed from a plurality of anterior segment images F1 to FN.
  • the artifact When the artifact is included in the slit light irradiation area image Gn, the artifact can be removed from the slit light irradiation area image Gn by, for example, known image processing or image processing according to another embodiment.
  • distortion correction described in other embodiments can be applied to the anterior segment image Fn or the slit light irradiation region image Gn.
  • the 3D image construction unit 82 constructs a 3D image based on at least a part of the plurality of slit light irradiation region images G1 to GN. Details of the three-dimensional image and its construction will be described in other embodiments.
  • the left photographing optical axis 30La and the right photographing optical axis 30Ra are arranged so as to be inclined in directions opposite to each other with respect to the illumination optical axis 20a.
  • the data processing unit 8A of the present embodiment includes an image selection unit 81.
  • the image selection unit 81 determines whether any of the two images acquired substantially simultaneously by the left photographing system 30L and the right photographing system 30R includes an artifact. When it is determined that one of the two images includes an artifact, the image selection unit 81 selects the other of the two images, that is, an image that does not include the artifact.
  • the data processing unit 8A of the present embodiment includes a three-dimensional image construction unit 82.
  • the three-dimensional image construction unit 82 is based on an image group including an image selected by the image selection unit 81 from among a plurality of images acquired by the left imaging system 30L and a plurality of images acquired by the right imaging system 30R. Then, a three-dimensional image representing the anterior segment of the eye E is constructed.
  • the left photographing optical axis 30La and the right photographing optical axis 30Ra are inclined in directions opposite to each other with respect to the illumination optical axis 20a.
  • the two photographing optical axes may be arranged in the same direction with respect to the illumination optical axis. In the latter case, the angle formed by one of the two shooting optical axes and the illumination optical axis is different from the angle formed by the other shooting optical axis and the illumination optical axis. In any case, the position of one imaging optical axis with respect to the illumination optical axis is different from the position of the other imaging optical axis with respect to the illumination optical axis.
  • the processing system of the present embodiment executes processing related to the following artifacts.
  • a data processing unit 8B shown in FIG. 9 is an example of the data processing unit 8 of the first embodiment.
  • the data processing unit 8B includes an artifact removing unit 83.
  • the artifact removal unit 83 compares two images acquired substantially simultaneously by the left imaging system 30L and the right imaging system 30R to determine whether any of these two images includes an artifact.
  • the two images acquired substantially simultaneously by the left imaging system 30L and the right imaging system 30R are associated with each other by, for example, the above-described image pairing.
  • the position of one photographing optical axis with respect to the illumination optical axis is different from the position of the other photographing optical axis with respect to the illumination optical axis. Therefore, the position of the artifact in the image acquired by one imaging system (for example, the left imaging system 30L) is different from the position of the artifact in the image acquired by the other imaging system (for example, the right imaging system 30R). Alternatively, the artifact is included only in one of the two images to be compared.
  • the artifact removing unit 83 analyzes each of these two images and determines whether or not the artifact is included. The artifact determination is executed in the same manner as the image selection unit 81 of the third embodiment, for example.
  • the artifact removing unit 83 can remove the artifact or select an image that does not include the artifact as in the third embodiment. Note that determining that one of the two images includes an artifact and the other does not include an artifact corresponds to a comparison between the two images.
  • the artifact removing unit 83 processes one or both of the two images and removes the artifact.
  • the artifact removing unit 83 can paste a partial area of another image on the image area from which the artifact has been removed. As described above, the positions of the artifacts in the two images to be compared are different, or the artifact is included in only one of these two images, so if the artifact is removed from one image, the other image The corresponding area in is not an artifact.
  • the artifact removing unit 83 extracts the corresponding region from the other image and pastes it on the location where the alignment is removed.
  • a corresponding region in the image of the anterior eye segment obtained thereby is extracted, and this is a location where the alignment is removed It is possible to paste on.
  • the left imaging system 30L captures the first image group by repeatedly performing imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6. get.
  • the right imaging system 30R acquires the second image group by repeatedly performing imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6.
  • the repeated shooting is typically moving image shooting, and each of the first image group and the second image group is a frame group constituting a moving image. Further, as described above, images acquired substantially simultaneously from the first image group and the second image group are paired.
  • the artifact removal unit 83 applies the above alignment removal for each of the plurality of image pairs.
  • the data processing unit 8B further includes a three-dimensional image construction unit 84.
  • the three-dimensional image construction unit 84 constructs a three-dimensional image based on the image group including the image from which the artifact has been removed by the artifact removal unit 83.
  • This image group may include only one of a plurality of images processed by the artifact removing unit 83, or may further include images other than these. Details of the three-dimensional image and its construction will be described in other embodiments.
  • the data processing unit 8B of the present embodiment includes an artifact removing unit 83.
  • the artifact removal unit 83 compares two images acquired substantially simultaneously by the left photographing system 30L and the right photographing system 30R to determine whether any of these two images includes an artifact. When it is determined that any of the images includes an artifact, the artifact removing unit 83 executes the removal of the artifact.
  • the data processing unit 8B of the present embodiment includes a three-dimensional image construction unit 84.
  • the three-dimensional image constructing unit 84 constructs a three-dimensional image representing the anterior segment of the eye E based on the image group including the image from which the artifact has been removed by the artifact removing unit 83.
  • a configuration of a processing system applicable to the slit lamp microscope 1 of the first embodiment will be described.
  • the processing related to the artifact is applied to two images acquired substantially simultaneously by the first imaging system and the second imaging system, and the artifact is not included.
  • a three-dimensional image is constructed based on the image group.
  • a data processing unit 8C shown in FIG. 10 is an example of the data processing unit 8 of the first embodiment.
  • the data processing unit 8C includes a three-dimensional image construction unit 85.
  • the photographing system 3 performs photographing repeatedly in parallel with the movement of the illumination system 2 and the photographing system 3 by the moving mechanism 6, thereby A plurality of images of the anterior segment of the optometry E are acquired.
  • the 3D image construction unit 85 can construct a 3D image based on a plurality of images acquired by the imaging system 3.
  • the image group used for the three-dimensional image construction may include only one of a plurality of images acquired by the photographing system 3, or may further include images other than these. Details of the three-dimensional image and its construction will be described in other embodiments.
  • the left photographing system 30L is repeated in parallel with the movement of the illumination system 20, the left photographing system 30L, and the right photographing system 30R by the moving mechanism 6.
  • a first image group is acquired by performing imaging.
  • the right imaging system 30R acquires a second image group by repeatedly performing imaging in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R by the moving mechanism 6.
  • the images acquired substantially simultaneously from the first image group and the second image group are paired.
  • the 3D image construction unit 85 can construct a 3D image based on the first image group acquired by the left imaging system 30L.
  • the image group used for the construction of the three-dimensional image may include only one of the first image groups, or may further include images other than these.
  • the three-dimensional image construction unit 85 can construct a three-dimensional image based on the second image group acquired by the right imaging system 30R.
  • the image group used for constructing the three-dimensional image may include only one of the second image groups, or may further include images other than these. Details of the three-dimensional image and its construction will be described in other embodiments.
  • the data processing unit 8C of this embodiment includes a three-dimensional image construction unit 85.
  • the three-dimensional image construction unit 85 constructs a three-dimensional image based on a plurality of images acquired by the imaging system 3.
  • the imaging system 3 may include both the left imaging system 30L and the right imaging system 30R, or may include only a single imaging system corresponding to one of these.
  • a three-dimensional image is constructed from a plurality of images sequentially obtained by scanning with slit light.
  • it is necessary to arrange a plurality of images. Since the plurality of images are obtained at different timings, a plurality of images are arranged with high accuracy and high accuracy. It is difficult.
  • the present embodiment has been devised to solve such problems.
  • the control unit 7 shown in FIG. 11 is the same as that of the first embodiment.
  • the moving mechanism 6 ⁇ / b> A is an example of the moving mechanism 6 of the first embodiment, and includes a parallel moving mechanism 61 and a rotating mechanism 62.
  • the data processing unit 8D includes a three-dimensional image construction unit 86.
  • the 3D image construction unit 86 is an example of the 3D image construction unit 82 of the third embodiment, is an example of the 3D image construction unit 84 of the fourth embodiment, and is a 3D image of the fifth embodiment. It is an example of the construction unit 85.
  • the three-dimensional image construction unit 86 includes an image position determination unit 87.
  • the parallel movement mechanism 61 integrally moves the illumination system 2 and the imaging system 3 in the X direction in order to scan the anterior segment with slit light. .
  • the translation mechanism 61 integrates the illumination system 20, the left imaging system 30L, and the right imaging system 30R in order to scan the anterior segment with slit light. Move in the X direction.
  • the rotation mechanism 62 integrally rotates the illumination system 2 and the imaging system 3 with the illumination optical axis 2a as a rotation axis.
  • the rotation mechanism 62 integrally rotates the illumination system 20, the left imaging system 30L, and the right imaging system 30R with the illumination optical axis 20a as a rotation axis.
  • the direction of the slit light applied to the anterior segment of the eye E can be rotated, and the imaging direction is also rotated by the same angle as the rotation of the direction of the slit light.
  • an anterior eye scan by slit light is executed by the imaging system 3 when the illumination system 2 and the imaging system 3 are arranged at the first rotation position. Multiple images are acquired.
  • the anterior segment scan by the slit light is executed when the illumination system 20, the left imaging system 30L, and the right imaging system 30R are arranged at the first rotation position. Then, the first image group is acquired by the left imaging system 30L, and the second image group is acquired by the right imaging system 30R.
  • the first rotational position is, for example, a rotational position where the longitudinal direction of the slit light projected on the anterior segment coincides with the body axis direction (Y direction) of the subject.
  • the imaging system 3 is the illumination system 20.
  • the left photographing is performed when the illumination system 20, the left photographing system 30L, and the right photographing system 30R are arranged at the second rotational position different from the first rotational position.
  • Each of the system 30 ⁇ / b> L and the right imaging system 30 ⁇ / b> R acquires an image of the anterior segment that is irradiated with slit light by the illumination system 20.
  • the second rotational position is, for example, a rotational position where the longitudinal direction of the slit light projected on the anterior segment coincides with the left-right direction (X direction). Accordingly, one or more imaging operations are performed separately from the anterior segment scan performed at the first rotation position. In this additional photographing, the direction of the slit light is different from that at the time of anterior segment scanning. Typically, the direction of the slit light can be set so as to pass through all the slit light irradiation regions in the anterior segment scanning.
  • the image position determination unit 87 determines the relative positions of a plurality of images of the anterior segment acquired at the first rotation position based on the image of the anterior segment acquired at the second rotation position. In this image position determination, the arrangement of a plurality of images obtained at the first rotation position is adjusted with reference to the image obtained at the second rotation position.
  • the image position determination unit 87 analyzes each image obtained at the first rotation position and the image obtained at the second rotation position, and specifies the common area between them. Further, the image position determination unit 87 determines the relative position between each image obtained at the first rotation position and the image obtained at the second rotation position, with the specified common area as a reference.
  • the processing executed by the image position determination unit 87 may include arbitrary information processing such as image correlation processing, segmentation, pattern matching, processing using artificial intelligence, processing using cognitive computing, and the like.
  • the three-dimensional image construction unit 86 arranges a plurality of images obtained at the first rotation position in a single three-dimensional coordinate system based on the relative position determined by the image position determination unit 87, and displays the three-dimensional image. Form.
  • FIG. 12 shows an example of the irradiation position of the slit light in this embodiment.
  • FIG. 12 illustrates a state in which the anterior eye portion is viewed from the front.
  • the plurality of slit light irradiation areas in the anterior segment scan are a plurality of strip-shaped areas with the Y direction as the longitudinal direction and arranged in the X direction. It corresponds to.
  • slit light is sequentially irradiated to these strip-like regions in the order indicated by the arrows 11.
  • each strip-shaped region is irradiated with slit light, at least one photographing is performed.
  • reference numeral 12 indicates the position of the slit light applied to the anterior segment when the illumination system 2 and the imaging system 3 are arranged at the second rotation position.
  • the slit light irradiation area 12 corresponding to the second rotation position is a strip-shaped area having the X direction as a longitudinal direction. That is, in this example, the direction of the slit light applied to the anterior segment at the first rotational position and the direction of the slit light applied to the anterior segment at the second rotational position are orthogonal to each other. Note that the relationship between the direction of the slit light applied to the anterior segment at the first rotational position and the direction of the slit light applied to the anterior segment at the second rotational position is not limited to this. It is enough if the orientation of the is different.
  • the illumination system 2 and the imaging system 3 are applied has been described, but the same applies to the case where the illumination system 20, the left imaging system 30L, and the right imaging system 30R are applied.
  • both an anterior ocular segment scan at the first rotation position and imaging at the second rotation position are executed, but the timing for performing these may be arbitrary. For example, performing an anterior segment scan at the first rotational position after imaging at the second rotational position, or performing an imaging at the second rotational position after an anterior segment scan at the first rotational position. Alternatively, it is possible to perform imaging at the second rotational position in the middle of the anterior segment scanning at the first rotational position.
  • the moving mechanism 6A of the present embodiment includes a rotating mechanism 62 that integrally rotates the illumination system 2 (20) and the imaging system 3 (30L, 30R) with the illumination optical axis 2a (20a) as a rotation axis.
  • the imaging system 3 (30L, 30R) includes a plurality of anterior eye segments irradiated with slit light. Get the image.
  • the imaging system 3 (30L, 30R) is connected to the illumination system 2 ( 20) to acquire an image of the anterior segment irradiated with slit light.
  • the image position determination unit 87 determines the relative positions of the plurality of images acquired at the first rotation position based on the image acquired at the second rotation position.
  • the three-dimensional image constructing unit 86 constructs a three-dimensional image by aligning a plurality of images based on the determined relative position.
  • alignment between a plurality of images acquired at the first rotation position can be performed with reference to the image acquired at the second rotation position. It is possible to improve accuracy and accuracy.
  • determining the relative positions of a plurality of images acquired at the first rotational position not only determines the relative positions of the plurality of images themselves, but also a plurality of images extracted from the plurality of images, respectively. It also includes determining the relative position of the slit light irradiation area. Therefore, in the present embodiment, the slit light irradiation area is extracted after determining the relative positions of the plurality of images, and the relative position is determined after extracting the slit light irradiation areas from the plurality of images. Including both.
  • the present embodiment includes determining the relative position of the image group selected from the plurality of images acquired at the first rotation position, as in the case where the third embodiment is applied. Furthermore, this embodiment includes determining the relative position of an image group obtained by processing a plurality of images acquired at the first rotational position, as in the case where the fourth embodiment is applied. Therefore, in this embodiment, when selecting or processing an image after determining the relative positions of the plurality of images, and when determining a relative position of the selected image or processed image after selecting or processing an image. Including both.
  • the three-dimensional image construction unit 88 shown in FIG. 13 includes an image region extraction unit 89 and an image composition unit 90.
  • the image region extraction unit 89 is configured to detect each of the plurality of images acquired by the imaging system 3 in parallel with the movement of the illumination system 2 and the imaging system 3. An image region corresponding to the irradiation region of the slit light from the illumination system 2 is extracted.
  • the extracted image region is a two-dimensional image region or a three-dimensional image region.
  • the image region extraction unit 89 is acquired by the left imaging system 30L in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R.
  • An image region corresponding to the irradiation region of the slit light from the illumination system 20 can be extracted from each of the plurality of images.
  • the image area extraction unit 89 performs slit light from the illumination system 20 from each of a plurality of images acquired by the right imaging system 30R in parallel with the movement of the illumination system 20, the left imaging system 30L, and the right imaging system 30R.
  • An image region corresponding to the irradiation region can be extracted.
  • the extracted image region is a two-dimensional image region or a three-dimensional image region.
  • the processing executed by the image region extraction unit 89 is, for example, the slit light irradiation region image obtained by extracting the slit light irradiation region An from the anterior eye image Fn described with reference to FIGS. 3 and 8 in the third embodiment. It is executed in the same manner as the process of constructing Gn.
  • the image composition unit 90 composes a plurality of image regions (a plurality of slit light irradiation regions) respectively extracted from a plurality of images by the image region extraction unit 89 to construct a three-dimensional image.
  • the image synthesis unit 90 may include a process of embedding a plurality of slit light irradiation areas in a single three-dimensional coordinate system, and may further include a process of processing the plurality of embedded slit light irradiation areas.
  • processing of the plurality of slit light irradiation regions for example, noise removal, noise reduction, voxelization, and the like can be performed.
  • the processing according to the sixth embodiment may be applied to determine the relative positions of the plurality of slit light irradiation areas.
  • the image area extraction unit 89 may be configured to extract an image area corresponding to both the slit light irradiation area and the predetermined part of the anterior eye part from each of the plurality of images.
  • the predetermined region of the anterior segment may be, for example, a site defined by the front surface of the cornea and the rear surface of the lens.
  • the image region extraction unit 89 first identifies the slit light irradiation region by threshold processing of luminance information, and identifies the image region corresponding to the front surface of the cornea and the image region corresponding to the rear surface of the lens by segmentation.
  • the image region extraction unit 89 is based on the image region corresponding to the front surface of the cornea and the image region corresponding to the rear surface of the lens, and corresponds to the region defined by the front surface of the cornea and the rear surface of the lens (target image region). Is identified.
  • the image area extraction unit 89 specifies a common area between the slit light irradiation area and the target image area, that is, an image area included in both the slit light irradiation area and the target image area.
  • a two-dimensional image region (cross section) or a three-dimensional image region (slice) in the target image corresponding to the slit light irradiation region in the range from the front surface of the cornea to the rear surface of the crystalline lens is specified.
  • the image synthesis is performed after the extraction of the slit light irradiation area, but conversely, the slit light irradiation area may be extracted after the image synthesis.
  • the image area to be extracted is not limited to the slit light irradiation area, and the predetermined area is not limited to the portion from the front surface of the cornea to the rear surface of the crystalline lens.
  • a three-dimensional image of a desired part of the anterior segment can be acquired from a plurality of images obtained by an anterior segment scan using slit light.
  • a three-dimensional image representing a slit light irradiation region that is a main observation target in slit lamp microscopy, and a region from the front of the cornea that is a main observation target of the anterior segment to the posterior surface of the crystalline lens. Can be constructed.
  • the data processing unit 8E shown in FIG. 14 includes a three-dimensional image construction unit 91 and a rendering unit 92.
  • the 3D image construction unit 91 includes, for example, a 3D image construction unit 82 according to the third embodiment, a 3D image construction unit 84 according to the fourth embodiment, a 3D image construction unit 85 according to the fifth embodiment, and the sixth embodiment.
  • the three-dimensional image construction unit 86 and the three-dimensional image construction unit 88 of the seventh embodiment may be used.
  • the rendering unit 92 constructs a new image (rendered image) by rendering the three-dimensional image constructed by the three-dimensional image construction unit 91.
  • Rendering may be an arbitrary process, and includes, for example, three-dimensional computer graphics.
  • Three-dimensional computer graphics is a three-dimensional image obtained by converting a virtual three-dimensional object (three-dimensional image such as stack data and volume data) in a three-dimensional space defined by a three-dimensional coordinate system into two-dimensional information. Is an arithmetic technique for creating
  • rendering examples include volume rendering, maximum value projection (MIP), minimum value projection (MinIP), surface rendering, multi-section reconstruction (MPR), projection image construction, and shadowgram construction. Further examples of rendering include reproduction of cross-sectional images obtained with a slit lamp microscope, formation of Scheinproof images, and the like.
  • the rendering unit 92 may be able to execute any process applied together with such rendering.
  • the rendering unit 92 can specify a region corresponding to a predetermined part in the three-dimensional image of the anterior segment.
  • the rendering unit 92 can specify a region corresponding to the front surface of the cornea, a region corresponding to the rear surface of the cornea, a region corresponding to the front surface of the crystalline lens, a region corresponding to the rear surface of the crystalline lens, and the like.
  • image region identification for example, known image processing such as segmentation, edge detection, and threshold processing is applied.
  • the three-dimensional image is typically stack data or volume data.
  • the designation of the cross section for the three-dimensional image is performed manually or automatically.
  • the rendering unit 92 When manually specifying a cross section of a three-dimensional image, the rendering unit 92 renders the three-dimensional image and constructs a display image for manual cross-section specification.
  • the display image is typically an image that represents the entire region to be observed, and represents, for example, a region from the front of the cornea to the back of the lens.
  • Rendering to build a display image is typically volume rendering or surface rendering.
  • the control unit 7 displays the display image constructed by the rendering unit 92 on a display device (not shown).
  • the user designates a desired cross section for the display image using an operation device such as a pointing device.
  • Position information of the cross section designated in the display image is input to the rendering unit 92.
  • the rendering unit 92 specifies the position of the cross section in the three-dimensional image corresponding to the position of the cross section specified in the display image. That is, the rendering unit 92 specifies a cross section for the three-dimensional image.
  • the rendering unit 92 can construct a three-dimensional partial image by cutting the three-dimensional image along the cross section.
  • the rendering unit 92 can render an image for display by rendering the three-dimensional partial image.
  • An example of such rendering an example of a three-dimensional partial image, an example of a display image based on the three-dimensional partial image, and the like will be described later.
  • the data processing unit 8E (for example, the rendering unit 92) analyzes the three-dimensional image and specifies a position or region corresponding to a predetermined part of the anterior segment. Can do. For example, it is possible to specify the front surface of the cornea, specify the vertex position of the front surface of the cornea, specify the rear surface of the crystalline lens, and specify the vertex position of the rear surface of the crystalline lens.
  • the data processing unit 8E (for example, the rendering unit 92) can specify an image region corresponding to a predetermined part by applying segmentation to the three-dimensional image. For example, a two-dimensional region corresponding to the front surface of the cornea, a three-dimensional region corresponding to the cornea, a three-dimensional region corresponding to the crystalline lens, a three-dimensional region corresponding to the rear surface of the crystalline lens, a three-dimensional region corresponding to the anterior chamber, and the like may be specified. Is possible.
  • the data processing unit 8E (for example, the rendering unit 92) can specify a cross section for the three-dimensional image based on the position and area specified in this way.
  • a plane passing through the vertex position of the front surface of the cornea and the vertex position of the rear surface of the crystalline lens can be designated as a cross section
  • a curved surface corresponding to the front surface of the crystalline lens can be designated as a cross section.
  • the image that can be constructed by the rendering unit 92 when a cross section is designated for a three-dimensional image is not limited to a three-dimensional partial image.
  • the rendering unit 92 can construct a two-dimensional cross-sectional image representing the cross section.
  • An example of such rendering an example of a two-dimensional cross-sectional image, an example of a display image based on a two-dimensional cross-sectional image, and the like will be described later.
  • the position information that can be specified for a three-dimensional image is not limited to a cross-section that is a planar or curved two-dimensional region.
  • Another example of position information that can be specified for a three-dimensional area is a slice.
  • a slice is a three-dimensional region having a predetermined thickness, and is typically a flake having a uniform thickness.
  • the rendering unit 92 can construct a three-dimensional slice image corresponding to the slice.
  • the rendering unit 92 can render an image for display by rendering the three-dimensional slice image.
  • An example of such rendering an example of a three-dimensional slice image, an example of a display image based on a three-dimensional slice image, and the like will be described later.
  • the present embodiment includes a rendering unit 92 that renders a three-dimensional image constructed by the three-dimensional image construction unit 91 to construct a rendering image. Accordingly, a rendering image based on the three-dimensional image constructed by the three-dimensional image construction unit 91 can be displayed, and a desired part of the anterior segment can be observed.
  • the rendering method is arbitrary.
  • the rendering unit 92 can construct a three-dimensional partial image by cutting the three-dimensional image along the cross section. Thereby, while being able to observe the desired cross section of an anterior eye part, it is also possible to grasp
  • the rendering unit 92 can construct a two-dimensional cross-sectional image representing the cross section. Thereby, it is possible to observe a desired cross section of the anterior segment.
  • the rendering unit 92 can construct a three-dimensional slice image corresponding to the slice. Thereby, it is possible to observe a desired slice of the anterior segment.
  • the illumination optical axis and the photographing optical axis form a predetermined angle, and the illumination system and the photographing system function as a Scheimpflug camera.
  • An image obtained by such a slit lamp microscope is distorted. This distortion is typically a trapezoidal distortion.
  • distortion correction will be described.
  • This distortion correction is typically trapezoidal correction (keystone correction).
  • Keystone correction is a well-known technique, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2017-163465 (US Patent Application Publication No. 2017/0262163).
  • the slit light irradiation region has a spread in the Z direction, and is typically defined in the YZ plane when the slit width is ignored.
  • the optical axis of the photographing system is inclined in the X direction with respect to the optical axis of the illumination system that irradiates the slit light. Therefore, the imaging target region of the anterior eye portion is drawn larger as it approaches the surface of the eye to be examined, and smaller as it approaches the fundus. Therefore, (at least) trapezoidal distortion in the Z direction occurs.
  • the 15 includes a distortion correction unit 93.
  • the distortion correction unit 93 can be combined with any of the first to eighth embodiments.
  • the distortion correction unit 93 applies distortion correction to the anterior segment image acquired by the imaging system 3 (the left imaging system 30L and the right imaging system 30R).
  • the distortion correction unit 93 corrects distortion caused by the optical axis angle ⁇ ( ⁇ L, ⁇ R) that is an angle formed by the illumination optical axis 2a (20a) and the imaging optical axis 3a (30La, 30Ra). Processing (trapezoid correction) for performing at least a plurality of images acquired by the imaging system 3 (30L, 30R) in parallel with the movement of the illumination system 2 (20) and the imaging system 3 (30L, 30R) Applies to one.
  • the image to which distortion correction is applied is not limited to the anterior segment image itself acquired by the imaging system 3 (30L, 30R), but is extracted from the anterior segment image acquired by the imaging system 3 (30L, 30R). It may be a slit light irradiation region. Therefore, the slit light irradiation area may be extracted after correcting the distortion of the anterior eye image, and conversely, after extracting the slit light irradiation area from the anterior eye image, the distortion of the slit light irradiation area is corrected. May be.
  • the distortion of the anterior segment image selected from the anterior segment images acquired by the imaging system 3 (30L, 30R) is corrected.
  • the slit lamp microscope includes the optical system shown in FIG. 1 or 5, and distortion in the YZ plane is corrected by the distortion correction unit 93.
  • the photographic optical axis 3a is in the first direction (Z direction) along the illumination optical axis 2a and the second direction (Y direction) along the longitudinal direction of the slit light with respect to the illumination optical axis 2a. They are arranged to be inclined in a third direction (X direction) orthogonal to both.
  • the optical axis angle formed by the illumination optical axis 2a and the photographing optical axis 3a is an angle ⁇ shown in FIG.
  • the distortion correction unit 93 performs processing for correcting distortion in a plane (YZ plane) including both the first direction (Z direction) and the second direction (Y direction). Can be applied to images.
  • the left photographing optical axis 30La has a first direction (Z direction) along the illumination optical axis 20a and a second direction (Y direction) along the longitudinal direction of the slit light with respect to the illumination optical axis 20a. Are inclined in a third direction (X direction) orthogonal to both of the two.
  • the optical axis angle formed by the illumination optical axis 20a and the left photographing optical axis 30La is an angle ⁇ L shown in FIG.
  • the distortion correction unit 93 performs processing for correcting distortion in a plane (YZ plane) including both the first direction (Z direction) and the second direction (Y direction) before being acquired by the left photographing optical axis 30La. It can be applied to the eye image.
  • the right imaging optical axis 30Ra is orthogonal to both the first direction (Z direction) along the illumination optical axis 20a and the second direction (Y direction) along the longitudinal direction of the slit light with respect to the illumination optical axis 20a. Are inclined in the third direction (X direction).
  • the optical axis angle formed by the illumination optical axis 20a and the right photographing optical axis 30Ra is an angle ⁇ R shown in FIG.
  • the distortion correction unit 93 performs processing for correcting distortion in a plane (YZ plane) including both the first direction (Z direction) and the second direction (Y direction) before being acquired by the right imaging optical axis 30Ra. It can be applied to the eye image.
  • General trapezoidal correction is performed so that the rectangle is distorted and the trapezoidal shape is restored to the original rectangle.
  • it is possible to apply such standard trapezoidal correction, but it may be effective to apply other keystone correction as described below.
  • the optical axis of the observation system (observation optical axis) with respect to the optical axis of the illumination system (illumination optical axis) ) Is tilted. Therefore, the user observes the light section extending in the Z direction from an oblique direction.
  • the angle formed by the illumination optical axis and the observation optical axis is typically a predetermined value (for example, 17.5 degrees, 30 degrees, or 45 degrees). This default value is called a reference angle ( ⁇ ).
  • a correction coefficient for distortion correction can be set based on the reference angle ⁇ and the optical axis angle ⁇ ( ⁇ , ⁇ L, ⁇ R).
  • Correction coefficients are set for at least one reference angle ⁇ and at least one optical axis angle ⁇ ( ⁇ , ⁇ L, ⁇ R). Setting a correction coefficient for each combination of two or more reference angles and one optical axis angle, or setting a correction coefficient for each combination of one reference angle and two or more optical axis angles It is also possible to set a correction coefficient for each of combinations of two or more reference angles and two or more optical axis angles.
  • the one or more correction coefficients C ( ⁇ , ⁇ ) set in this way are stored in the distortion correction unit 93.
  • the distortion correction unit 93 can execute processing for correcting distortion based on the correction coefficient C ( ⁇ , ⁇ ).
  • the distortion correction unit 93 or the user designates one or both of the reference angle ⁇ and the optical axis angle ⁇ .
  • the distortion correction unit 93 applies a correction coefficient according to the designation result.
  • Such a configuration is applied, for example, when a slit lamp microscope with a variable optical axis angle ⁇ is applied, and a table or a graph showing a plurality of correction coefficients in a variable range of the optical axis angle beta is prepared.
  • the distortion correction unit of this example stores in advance a predetermined arithmetic expression for calculating the correction coefficient. Furthermore, the distortion correction unit of the present example receives the input of the reference angle ⁇ and / or the optical axis angle ⁇ , and calculates the correction coefficient by substituting this input value into an arithmetic expression. The distortion correction unit of this example performs distortion correction using the calculated correction coefficient.
  • This embodiment includes a distortion correction unit 93.
  • the distortion correction unit 93 is at least one of a plurality of images acquired by the imaging system 3 repeatedly capturing images in parallel with the movement of the illumination system 2 and the imaging system 3 by the moving mechanism 6.
  • processing for correcting distortion caused by the optical axis angle ⁇ which is an angle formed by the optical axis 2a of the illumination system 2 and the optical axis 3a of the photographing system 3. The same applies to the case where the configuration shown in FIG. 5 or another configuration is adopted.
  • the optical axis 3 a of the optical system 4 included in the photographing system 3 has a first direction (Z direction) along the optical axis 2 a of the illumination system 2 and the optical axis 2 a of the illumination system 2. It is inclined and arranged in a third direction (X direction) orthogonal to both the second direction (Y direction) along the longitudinal direction of the slit light.
  • the distortion correction unit 93 can execute processing for correcting distortion in a plane (YZ plane) including both the first direction and the second direction. The same applies when the configuration shown in FIG. 5 or another configuration is adopted.
  • trapezoidal distortion occurs in a plane including both the first direction and the second direction, and this can be corrected.
  • the distortion correction unit 93 stores a correction coefficient C set in advance based on a predetermined reference angle ⁇ and an optical axis angle ⁇ . Based on the correction coefficient C, the distortion correction unit 93 can apply a process for correcting distortion caused by the optical axis angle ⁇ to the image. The same applies when the configuration shown in FIG. 5 or another configuration is adopted.
  • ⁇ Tenth embodiment> In the slit lamp microscopic examination, the size and shape of the tissue, the positional relationship between the tissues, and the like may be referred to. In this embodiment, the measurement for that is demonstrated.
  • the measuring unit 94 can be combined with any of the first to ninth embodiments.
  • the measurement unit 94 analyzes the anterior segment image acquired by the anterior segment scan using the slit light, thereby obtaining a predetermined value. Can be obtained.
  • the measurement unit 94 analyzes the three-dimensional image constructed by the three-dimensional image construction unit 82 (84, 85, 86, 88, 91). By doing so, a predetermined measurement value can be obtained.
  • Measurement is performed, for example, with respect to parameters (thickness, diameter, area, volume, angle, shape, etc.) indicating the form of the tissue, and parameters (distance, direction, etc.) indicating the relationship between the tissues.
  • the analysis for measurement includes, for example, segmentation for specifying the tissue or its outline.
  • the measurement unit 94 By combining the measurement unit 94 with the ninth embodiment capable of executing distortion correction, measurement can be performed based on an image to which distortion correction is applied. As a result, it is possible to improve measurement accuracy and measurement accuracy.
  • the control unit 7A of the present embodiment includes a movement control unit 71, and the data processing unit 8H includes a motion detection unit 95.
  • the present embodiment includes a moving image shooting system 40.
  • the moving image capturing system 40 captures a moving image of the anterior segment from a fixed position in parallel with the anterior segment scan using slit light.
  • the motion detector 95 detects the motion of the eye E by analyzing the moving image acquired by the moving image capturing system 40. This motion detection is executed in parallel with the moving image photographing system 40.
  • the motion detection unit 95 first analyzes the frames sequentially input from the moving image capturing system 40 and specifies an image region corresponding to a predetermined part.
  • the predetermined part may typically be the center, the center of gravity, the contour, or the like of the pupil.
  • the image area is specified based on the luminance information assigned to the pixel.
  • the motion detection unit 95 can specify a low-luminance image region in the anterior eye image as a pupil region, and can specify the center of gravity or contour of the pupil region.
  • the motion detection unit 95 can obtain an approximate circle or approximate ellipse of the pupil region and specify the center or outline thereof.
  • the motion detection unit 95 sequentially obtains feature points in the frame input from the moving image capturing system 40. Furthermore, the motion detection unit 95 obtains a temporal change in the position of the feature points that are sequentially identified. Since the moving image capturing system 40 is fixedly arranged, the motion detector 95 can detect the motion of the eye E (in real time) by such processing.
  • the movement control unit 71 can control the movement mechanism 6 based on the output from the motion detection unit 95. More specifically, the motion detection unit 95 sequentially inputs information indicating the temporal change in the position of the feature point in the frame sequentially input from the moving image capturing system 40 to the movement control unit 71. The movement control unit 71 controls the movement mechanism 6 according to information sequentially input from the motion detection unit 95. This movement control is executed so as to cancel the change in the alignment state caused by the movement of the eye E. Such an operation is called tracking.
  • the alignment state is automatically corrected according to the movement. Therefore, it is possible to perform the anterior ocular segment scan using the slit light without being affected by the movement of the eye to be examined.
  • ⁇ Usage pattern> An exemplary usage pattern of the slit lamp microscope according to the embodiment will be described.
  • the optical system shown in FIG. 5 is applied. Adjustment of the table, chair, chin rest, instruction to start shooting, alignment, etc. are performed as described above.
  • control unit 7 controls the rotation mechanism 62 so that the longitudinal direction of the slit light applied to the anterior segment coincides with the left-right direction (X direction).
  • the left imaging system 30L or the right imaging system 30R captures the anterior eye part irradiated with the slit light in the direction.
  • the anterior segment image H0 shown in FIG. 18 is acquired.
  • the anterior segment image H0 includes a slit light irradiation region J0, which is a region irradiated with slit light whose longitudinal direction is the left-right direction (X direction).
  • both the left photographing system 30L and the right photographing system 30R may photograph the anterior segment.
  • an image obtained by photographing the slit light irradiation region from obliquely above and an image obtained from obliquely below are obtained.
  • control unit 7 controls the rotation mechanism 62 so that the longitudinal direction of the slit light applied to the anterior segment coincides with the vertical direction (Y direction).
  • the control unit 7 controls the illumination system 20, the left imaging system 30L, the right imaging system 30R, and the moving mechanism 6 so as to execute an anterior segment scan using slit light. That is, each of the left photographing system 30L and the right photographing system 30R repeatedly photographs the anterior eye portion of the eye E in parallel with the movement of the illumination system 20, the left photographing system 30L, and the right photographing system 30R by the moving mechanism 6. .
  • the left imaging system 30L acquires the first image group including the N anterior eye images HL1 to HLN shown in FIG. 19A
  • the right imaging system 30R acquires the N anterior eye images shown in FIG. 19B.
  • a second image group including HR1 to HRN is acquired.
  • the number N of the left and right anterior segment images is set to 200 or more in consideration of the resolution of a three-dimensional image to be constructed later.
  • the number N is arbitrary.
  • FIG. 20 shows an anterior segment image acquired by an anterior segment scan actually performed.
  • Each of these anterior segment images includes a slit light irradiation region presented with high brightness.
  • FIG. 21A shows a plurality of slit light irradiation region images KL1 to KLN respectively constructed from a plurality of anterior segment images HL1 to HLN.
  • FIG. 21B shows a plurality of slit light irradiation region images KR1 to KRN constructed from a plurality of anterior segment images HR1 to HRN, respectively.
  • a plurality of slit light irradiation region images that do not include an artifact are obtained.
  • the plurality of slit light irradiation region images K1 to KN illustrated in FIG. 22 do not include any artifact.
  • the slit light irradiation area images K1 to KN include slit light irradiation areas J1 to JN, respectively.
  • the distortion correction (trapezoid correction) described in the ninth embodiment is applied to each of the slit light irradiation region images K1 to KN.
  • a plurality of slit light irradiation region images which do not include artifacts and whose distortion is corrected are obtained.
  • the plurality of slit light irradiation region images P1 to PN illustrated in FIG. 23 do not include any artifact.
  • the slit light irradiation region images P1 to PN include slit light irradiation regions Q1 to QN, respectively.
  • the image position determination unit 87 of the sixth embodiment determines the relative positions of the plurality of slit light irradiation region images P1 to PN based on the anterior segment image H0 shown in FIG.
  • the image position determination unit 87 uses the slit light irradiation region image P1 based on the image region corresponding to the front surface of the cornea depicted in the anterior eye image H0 (the curve with the smaller curvature radius in the slit light irradiation region J0).
  • the slit light irradiation region images P1 to PN are arranged in accordance with the curve of the front surface of the cornea.
  • the three-dimensional image constructing unit 86 of the sixth embodiment constructs a three-dimensional image based on the plurality of slit light irradiation region images P1 to PN arranged according to the curve of the cornea front surface. This three-dimensional image does not include artifacts, and the distortion is corrected.
  • the data processing unit 8 determines the length of the slit light (dimension in the Y direction) projected on the anterior segment during the anterior segment scan, and the movement distance (dimension in the X direction) of the slit beam by the moving mechanism 6. Based on the above, the aspect ratio of the three-dimensional image is corrected. As a result, the ratio between the dimension in the X direction and the dimension in the Y direction of the three-dimensional image is corrected.
  • the measurement unit 94 analyzes the three-dimensional image to obtain a predetermined measurement value.
  • measurement parameters include corneal anterior curvature, corneal anterior curvature radius, corneal posterior curvature, posterior corneal curvature radius, corneal diameter, corneal thickness, corneal topography, anterior chamber depth, corner angle, anterior lens curvature, anterior lens curvature radius, lens There are a back surface curvature, a lens back surface radius of curvature, a lens thickness, and the like.
  • FIG. 24 shows a display image R0 obtained by volume rendering of the actually acquired three-dimensional image. Rendering is executed by the rendering unit 92 of the eighth embodiment.
  • the control unit 7 displays the display image R0 on a display device (not shown).
  • the display image R0 depicts a portion defined by the front surface of the cornea and the rear surface of the crystalline lens.
  • the user can observe the display image R0 displayed on the display device and specify a desired cross section using an operation device (not shown).
  • the dotted line shown in FIG. 25 indicates the position of the cross section designated by the user for the display image R0.
  • the rendering unit 92 can construct a three-dimensional partial image by cutting the three-dimensional image at a cross section designated by the user.
  • An image R1 shown in FIG. 26 is a display image obtained by rendering a three-dimensional partial image obtained by cutting the three-dimensional image at the cross section shown in FIG. This display image is also referred to as a three-dimensional partial image R1.
  • the three-dimensional partial image R1 is an image that represents a three-dimensional region of the anterior eye segment with the cross section shown in FIG. 25 as a part of the outer surface.
  • the rendering unit 92 can construct a two-dimensional cross-sectional image that represents a cross-section designated by the user.
  • An image R2 illustrated in FIG. 27 is a two-dimensional cross-sectional image obtained by cutting the three-dimensional image along the cross-section illustrated in FIG.
  • the user can observe the display image R0 displayed on the display device and specify a desired slice using an operation device (not shown).
  • the two dotted lines shown in FIG. 28 indicate the positions of the two cross sections that define the slice designated by the user for the display image R0. That is, a region sandwiched between these two cross sections is a slice designated by the user for the display image R0.
  • the rendering unit 92 can construct a three-dimensional slice image corresponding to the slice designated by the user.
  • An image R3 shown in FIG. 29 is a display image obtained by rendering a three-dimensional slice image obtained by cutting the three-dimensional image at the cross section shown in FIG. This display image is also referred to as a three-dimensional slice image R3.
  • the three-dimensional slice image R3 is an image that represents a three-dimensional region of the anterior eye segment with two cross sections shown in FIG. 28 as a part of the outer surface.
  • the user can grasp the state of the anterior segment by rendering the three-dimensional image, observing the outer surface of the anterior segment and a desired cross section, and performing the measurement of the tenth embodiment. Then, an interpretation report can be created.
  • ⁇ Twelfth embodiment> an ophthalmologic system including an ophthalmologic photographing apparatus and an information processing apparatus will be described.
  • the ophthalmologic photographing apparatus has at least a function as a slit lamp microscope.
  • the slit lamp microscope included in the ophthalmologic photographing apparatus may be any one of the slit lamp microscopes of the first to eleventh embodiments.
  • the elements, configurations, and symbols described in the first to eleventh embodiments are applied as appropriate.
  • An ophthalmic system 1000 illustrated in FIG. 30 includes a communication path (communication line) 1100 that connects each of T facilities (first facility to T facility) where ophthalmic imaging is performed, a server 4000, and a remote terminal 5000m. It is built using.
  • the ophthalmologic photographing includes at least an anterior ocular photographing using a slit lamp microscope.
  • This anterior segment imaging includes at least the anterior segment scan using slit light described in the first to eleventh embodiments.
  • Ophthalmic imaging apparatus 2000-i t constitutes a part of an ophthalmic system 1000.
  • the ophthalmologic system 1000 may include an inspection apparatus capable of performing an inspection other than ophthalmology.
  • Ophthalmic imaging apparatus 2000-i t of this embodiment is provided with both the function as a "computer” as a function of a "photographing apparatus” for implementing the imaging of the eye, to communicate with various data processing and an external apparatus Yes.
  • the imaging device and the computer can be provided separately.
  • the imaging device and the computer may be configured to be able to communicate with each other.
  • the number of photographing devices and the number of computers are arbitrary, and for example, a single computer and a plurality of photographing devices can be provided.
  • Imaging device in the ophthalmologic photographing apparatus 2000-i t comprises at least a slit lamp microscope.
  • This slit lamp microscope may be the slit lamp microscope of any of the first to eleventh embodiments, and includes at least the configuration of the first embodiment (FIG. 1) or the configuration of the second embodiment (FIG. 5).
  • an information processing device that can be used by an assistant or a subject is installed in each facility (the t-th facility).
  • the terminal 3000-t is a computer used in the facility, and may be, for example, a mobile terminal such as a tablet terminal or a smartphone, a server installed in the facility, or the like. Further, the terminal 3000-t may include a wearable device such as a wireless earphone. Note that the terminal 3000-t may be a computer that can use the function in the facility, and may be a computer (a cloud server or the like) installed outside the facility, for example.
  • the network Institutional LAN, etc.
  • Internet wide area network
  • Ophthalmic imaging apparatus 2000-i t may have a function as a communication device such as a server. In this case, it is possible and ophthalmologic photographing apparatus 2000-i t and the terminal 3000-t is configured to communicate directly. Thus, it is possible to perform via an ophthalmologic imaging apparatus 2000-i t a communication between the server 4000 and the terminal 3000-t, necessary to provide a function for communicating with the terminals 3000-t and the server 4000 Disappears.
  • the server 4000 is typically installed in a facility different from any of the first to T-th facilities, for example, in a management center.
  • Server 4000 for example, the function of relaying communication between the ophthalmologic photographing apparatus 2000-i t and the remote terminal 5000 m, the function of recording the contents of the communication, which is acquired by the ophthalmic photographing apparatus 2000-i t data And a function for storing information and a function for storing data and information acquired by the remote terminal 5000m.
  • the server 4000 may have a data processing function.
  • Remote terminal 5000m is ophthalmologic photographing apparatus 2000-i subject's eye images obtained by the t (more anterior segment image or the rendered image of the three-dimensional image based on these) and interpretation of available and reporting Including computers.
  • the remote terminal 5000m may have a data processing function.
  • the server 4000 will be described.
  • the server 4000 illustrated in FIG. 31 includes a control unit 4010, a communication establishment unit 4100, and a communication unit 4200.
  • the control unit 4010 executes control of each unit of the server 4000.
  • the control unit 4010 may be able to execute other arithmetic processes.
  • the control unit 4010 includes a processor.
  • the control unit 4010 may further include a RAM, a ROM, a hard disk drive, a solid state drive, and the like.
  • the control unit 4010 includes a communication control unit 4011 and a transfer control unit 4012.
  • the communication control unit 4011 executes control related to establishment of communication between a plurality of devices including a plurality of ophthalmologic imaging apparatus 2000-i t and a plurality of terminals 3000-t and a plurality of remote terminals 5000 m. For example, the communication control unit 4011 sends a control signal for establishing communication to each of two or more devices selected by the selection unit 4120 described later from among a plurality of devices included in the ophthalmic system 1000.
  • the transfer control unit 4012 performs control related to the exchange of information between two or more devices with which communication has been established by the communication establishment unit 4100 (and the communication control unit 4011). For example, the transfer control unit 4012 functions to transfer information transmitted from one of at least two devices whose communication has been established by the communication establishment unit 4100 (and the communication control unit 4011) to another device. To do.
  • transfer control unit 4012 information transmitted from the ophthalmologic photographing apparatus 2000-i t (e.g., a slit light A plurality of anterior segment images obtained by the used anterior segment scan, or a three-dimensional image constructed based on these anterior segment images) can be transferred to the remote terminal 5000m.
  • the transfer control unit 4012, information transmitted from the remote terminal 5000 m e.g., instructions to the ophthalmologic photographing apparatus 2000-i t, etc. interpretation report
  • the transfer control unit 4012 may have a function of processing information received from the transmission source device. In this case, the transfer control unit 4012 can transmit at least one of the received information and the information obtained by the processing process to the transfer destination device.
  • the transfer control unit 4012 can be transmitted to the remote terminal 5000m etc. by extracting a part of the information transmitted from the ophthalmologic photographing apparatus 2000-i t like.
  • the remote terminal information transmitted from the ophthalmologic photographing apparatus 2000-i t like e.g., the anterior segment image or three-dimensional images
  • the transfer control unit 4012 can be configured to transmit the constructed three-dimensional image to the remote terminal 5000m.
  • the transfer control unit 4012 a volume data built in the remote terminal 5000m It can be configured to transmit.
  • the data processing that can be executed by the server 4000 or another device is not limited to the above example, and may include arbitrary data processing.
  • the server 4000 or another device may be able to execute any process described in the first to eleventh embodiments, such as rendering of a three-dimensional image, artifact removal, distortion correction, and measurement.
  • Communication establishing unit 4100 establishes communication between at least two devices selected from among a plurality of devices including a plurality of ophthalmologic imaging apparatus 2000-i t and a plurality of terminals 3000-t and a plurality of remote terminals 5000m To execute the process.
  • “establishing communication” means, for example, (1) establishing one-way communication from a disconnected state, (2) establishing two-way communication from a disconnected state, This is a concept including at least one of (3) switching from a state where only reception is possible to a state where transmission is possible, and (4) switching from a state where only transmission is possible to a state where reception is possible.
  • connection of communication means, for example, (1) disconnecting communication from a state where unidirectional communication is established, (2) disconnecting communication from a state where bidirectional communication is established, (3) Switching from a state where bidirectional communication is established to one-way communication, (4) Switching from a state where transmission and reception are possible to a state where only reception is possible, and (5) a state where transmission and reception are possible.
  • At least one of the communication request (interrupt request) for interruption can be transmitted to the server 4000.
  • the call request and the interrupt request are transmitted manually or automatically.
  • Server 4000 (communication unit 4200) receives ophthalmologic imaging apparatus 2000-i t, the terminal 3000-t, or the communication request transmitted from the remote terminal 5000 m.
  • the communication establishment unit 4100 may include a selection unit 4120.
  • Selecting unit 4120 for example, the ophthalmologic imaging apparatus 2000-i t, based on the terminal 3000-t, or communication request transmitted from the remote terminal 5000 m, ophthalmologic photographing apparatus 2000-i t, the terminal 3000-t, and the remote terminal
  • One or more devices other than the device that transmitted the communication request are selected from 5000 m.
  • Ophthalmologic photographing apparatus communication request from 2000-i t or terminals 3000-t (e.g., a request for interpretation of images acquired by the ophthalmic photographing apparatus 2000-i t) when subjected to the selection unit 4120, for example, a plurality of One of the remote terminals 5000m is selected.
  • Communication establishing unit 4100 establishes a remote terminal 5000m selected, the communication between at least one of the ophthalmologic photographing apparatus 2000-i t and the terminal 3000-t.
  • the selection of the device according to the communication request is executed based on, for example, a preset attribute.
  • this attribute include the type of examination (for example, the type of imaging modality, the type of image, the type of disease, the type of candidate disease, etc.), the required degree of expertise / skill level, and the type of language.
  • the communication establishment unit 4100 may include a storage unit 4110 in which attribute information created in advance is stored. In the attribute information, attributes of the remote terminal 5000m and / or its user (doctor, optometry list, etc.) are recorded.
  • the remote terminal 5000m is identified by, for example, a device ID or network address assigned in advance.
  • the attribute information includes, as attributes of each user, specialized fields (for example, medical departments, specialized diseases, etc.), expertise / skilledness, usable language types, and the like.
  • the ophthalmologic imaging apparatus 2000-i t, the terminal 3000-t, or the communication request transmitted from the remote terminal 5000m may include information about the attributes.
  • interpretation is transmitted from the ophthalmologic photographing apparatus 2000-i t request (i.e., diagnosis request) may include any information the following: (1) information indicating the type of imaging modality; (2) Image information indicating the type; (3) information indicating the disease name and candidate disease name; (4) information indicating the difficulty of interpretation; (5) the user of the ophthalmic photographing apparatus 2000-i t and / or the terminal 3000-t Information indicating the language used.
  • the selection unit 4120 can select one of the remote terminals 5000m based on the interpretation request and the attribute information stored in the storage unit 4110. At this time, the selection unit 4120 collates the information regarding the attribute included in the interpretation request with the information recorded in the attribute information stored in the storage unit 4110. Thereby, the selection unit 4120 selects, for example, the remote terminal 5000m corresponding to the doctor (or optometer list) corresponding to any of the following attributes: (1) A doctor who specializes in the imaging modality; (2 A doctor who specializes in the image type; a doctor who specializes in the disease (candidate disease); a doctor who can interpret the difficulty; and a doctor who can use the language.
  • the association between the doctor and the optometric list and the remote terminal 5000m is performed by, for example, the user ID input when logging in to the remote terminal 5000m (or the ophthalmologic system 1000).
  • the communication unit 4200 performs data communication with other devices (e.g., ophthalmic imaging apparatus 2000-i t, the terminal 3000-t, and one of the remote terminal 5000 m) performs data communication with.
  • ophthalmic imaging apparatus 2000-i t the terminal 3000-t
  • one of the remote terminal 5000 m performs data communication with.
  • scheme and encryption of the data communication may be similar to the communication unit provided in the ophthalmologic photographing apparatus 2000-i t (communication unit 9 of the first embodiment).
  • the server 4000 includes a data processing unit 4300.
  • the data processing unit 4300 executes various types of data processing.
  • the data processing unit 4300 is capable of processing a plurality of anterior segment image or a three-dimensional image obtained by the ophthalmic photographing apparatus 2000-i t (in particular, slit lamp microscope).
  • the data processing unit 4300 includes a processor, a main storage device, an auxiliary storage device, and the like.
  • a data processing program or the like is stored in the auxiliary storage device.
  • the function of the data processing unit 4300 is realized by cooperation of software such as a data processing program and hardware such as a processor.
  • the data processing unit 4300 includes a data processing unit 8, a data processing unit 8A (image selection unit 81, three-dimensional image construction unit 82), a data processing unit 8B (artifact removal unit 83, three-dimensional image construction unit 84), a data processing unit. 8C (3D image construction unit 85), data processing unit 8D (3D image construction unit 86, image position determination unit 87), 3D image construction unit 88 (image region extraction unit 89, image composition unit 90), data processing One or more of a unit 8E (3D image construction unit 91, rendering unit 92), a data processing unit 8F (distortion correction unit 93), and a data processing unit 8G (measurement unit 94) may be included. .
  • the server 4000 can provide the data obtained by the data processing unit 4300 to other devices. For example, if the data processing unit 4300 to construct a 3-dimensional image from the acquired plurality of anterior segment image by the ophthalmologic photographing apparatus 2000-i t, server 4000, the communication unit 4200, a remote terminal the three-dimensional image It can be sent to 5000m. Data processing unit 4300, when rendering a three-dimensional image constructed by the ophthalmologic photographing apparatus 2000-i t or the data processing unit 4300, the server 4000, transmitted by the communication unit 4200, a rendering image built remote terminal 5000m can do.
  • the server 4000 can transmit the obtained measurement data to the remote terminal 5000m by the communication unit 4200.
  • the server 4000 can transmit the corrected image to the remote terminal 5000m through the communication unit 4200.
  • the remote terminal 5000m illustrated in FIG. 32 includes a control unit 5010, a data processing unit 5100, a communication unit 5200, and an operation unit 5300.
  • the control unit 5010 executes control of each unit of the remote terminal 5000m.
  • the control unit 5010 may be able to execute other arithmetic processes.
  • the control unit 5010 includes a processor, RAM, ROM, hard disk drive, solid state drive, and the like.
  • the control unit 5010 includes a display control unit 5011.
  • the display control unit 5011 controls the display device 6000m.
  • Display device 6000m may be included in remote terminal 5000m or may be a peripheral device connected to remote terminal 5000m.
  • the display control unit 5011 displays an image of the anterior segment of the eye E on the display device 6000m.
  • anterior eye images include slit images, Scheinproof images, 3D rendering images, front images, images of other modalities (OCT images, etc.), images representing measurement results, and images representing analysis results. and so on.
  • the control unit 5010 includes a report creation control unit 5012.
  • the report creation control unit 5012 executes various controls for creating a report related to information displayed by the display control unit 5011. For example, the report creation control unit 5012 displays a screen for creating a report and a graphical user interface (GUI) on the display device 6000m.
  • GUI graphical user interface
  • the report creation control unit 5012 inputs information input by the user, an anterior ocular segment image, measurement data, analysis data, and the like into a predetermined report template.
  • the data processing unit 5100 executes various data processing.
  • the data processing unit 5100 is capable of processing a plurality of anterior segment image or a three-dimensional image obtained by the ophthalmic photographing apparatus 2000-i t (in particular, slit lamp microscope). Further, the data processing unit 5100 can process a three-dimensional image or a rendered image constructed by another information processing apparatus such as the server 4000.
  • the data processing unit 5100 includes a processor, a main storage device, an auxiliary storage device, and the like. A data processing program or the like is stored in the auxiliary storage device.
  • the function of the data processing unit 5100 is realized by cooperation of software such as a data processing program and hardware such as a processor.
  • the data processing unit 5100 includes a data processing unit 8, a data processing unit 8A (image selection unit 81, three-dimensional image construction unit 82), a data processing unit 8B (artifact removal unit 83, three-dimensional image construction unit 84), a data processing unit. 8C (3D image construction unit 85), data processing unit 8D (3D image construction unit 86, image position determination unit 87), 3D image construction unit 88 (image region extraction unit 89, image composition unit 90), data processing One or more of a unit 8E (3D image construction unit 91, rendering unit 92), a data processing unit 8F (distortion correction unit 93), and a data processing unit 8G (measurement unit 94) may be included. .
  • the communication unit 5200 other devices (e.g., ophthalmic imaging apparatus 2000-i t, the terminal 3000-t, and one of the servers 4000) performs data communication with.
  • ophthalmic imaging apparatus 2000-i t the terminal 3000-t
  • the servers 4000 performs data communication with.
  • For scheme and encryption of the data communication may be similar to the communication unit of the ophthalmologic photographing apparatus 2000-i t.
  • the operation unit 5300 is used to operate the remote terminal 5000m, input information to the remote terminal 5000m, and the like. In the present embodiment, the operation unit 5300 is used to create a report.
  • the operation unit 5300 includes an operation device and an input device.
  • the operation unit 5300 includes, for example, a mouse, a keyboard, a trackball, an operation panel, a switch, a button, a dial, and the like.
  • the operation unit 5300 may include a touch screen.
  • Ophthalmic system 1000 includes a one or more slit lamp microscope (ophthalmic imaging apparatus 2000-i t) and one or more information processing apparatus (server 4000 and / or remote terminal 5000 m).
  • the information processing apparatus is connected to the slit lamp microscope via a communication line, and processes an anterior eye image of the eye to be inspected acquired by the slit lamp microscope.
  • Slit lamp microscope (ophthalmic imaging apparatus 2000-i t) includes an illumination system, an imaging system, and a moving mechanism.
  • the illumination system irradiates slit light to the anterior segment of the eye to be examined.
  • the imaging system includes an optical system that guides light from the anterior segment irradiated with slit light, and an imaging element that receives light guided by the optical system on an imaging surface.
  • the moving mechanism includes a moving mechanism that moves the illumination system and the photographing system.
  • the object surface along the optical axis of the illumination system, the optical system, and the imaging surface satisfy the Scheimpflug condition.
  • the imaging system acquires a plurality of images of the anterior segment by repeatedly performing imaging in parallel with the movement of the illumination system and the imaging system by the moving mechanism.
  • Slit lamp illumination system and imaging system of the microscope may be configured to focus at least the anterior corneal surface and the imaging system at a site defined by the lens rear surface fit.
  • the illumination system may be configured to irradiate the anterior segment with slit light whose longitudinal direction is the body axis direction of the subject.
  • the moving mechanism may be configured to move the illumination system and the imaging system in a direction orthogonal to the body axis direction.
  • the length of the slit light may be set to be greater than the corneal diameter in the body axis direction.
  • the moving distance of the illumination system and the imaging system by the moving mechanism may be set to be greater than or equal to the corneal diameter in the direction orthogonal to the body axis direction.
  • the imaging system of the slit lamp microscope may include a first imaging system and the second imaging system.
  • the first imaging system includes a first optical system that guides light from the anterior segment irradiated with slit light, and a first imaging element that receives light guided by the first optical system on a first imaging surface.
  • the first imaging system acquires the first image group by repeatedly performing imaging in parallel with the movement of the illumination system and the imaging system.
  • the second imaging system includes: a second optical system that guides light from the anterior segment irradiated with slit light; and a second imaging element that receives light guided by the second optical system on the second imaging surface. Including.
  • the second imaging system acquires the second image group by repeatedly performing imaging in parallel with the movement of the illumination system and the imaging system.
  • the optical axis of the first optical system and the optical axis of the second optical system are arranged in different directions.
  • the object surface, the first optical system, and the first imaging surface satisfy the Scheimpflug condition, and the object surface, the second optical system, and the second imaging surface satisfy the Scheinproof condition.
  • the optical system included in the photographing system may include a reflector and one or more lenses.
  • the reflector is configured to reflect light from the anterior segment irradiated with slit light and traveling in a direction away from the optical axis of the illumination system in a direction approaching the optical axis of the illumination system. Be placed.
  • the one or more lenses are configured and arranged to image light reflected by the reflector on the imaging surface.
  • the optical axis of the first optical system and the optical axis of the second optical system may be arranged to be inclined in directions opposite to each other with respect to the optical axis of the illumination system.
  • the information processing apparatus determines whether any of the two images acquired substantially simultaneously by the first imaging system and the second imaging system includes an artifact, An image selection unit that selects the other image when it is determined that the artifact is included in one of the two images may be included.
  • the information processing apparatus constructs a three-dimensional image based on an image group including images selected from the first image group and the second image group by the image selection unit.
  • An image construction unit may be included.
  • the information processing apparatus compares the two images acquired substantially simultaneously by the first imaging system and the second imaging system, thereby comparing these two images.
  • An artifact removal unit may be included that determines whether any of these two images includes an artifact and removes the artifact when it is determined that any of these two images includes the artifact.
  • the information processing apparatus may include a three-dimensional image construction unit that constructs a three-dimensional image based on an image group including images from which artifacts have been removed by the artifact removal unit. .
  • the information processing apparatus (server 4000 and / or remote terminal 5000 m), the three-dimensional building a three-dimensional image based on a plurality of images obtained by a slit lamp microscope (ophthalmic imaging apparatus 2000-i t)
  • An image construction unit may be included.
  • the moving mechanism may include a rotation mechanism that integrally rotates the illumination system and the imaging system with the optical axis of the illumination system as the rotation axis. Further, when the illumination system and the imaging system are arranged at the first rotation position, the imaging system acquires a plurality of images, and the illumination system and the imaging system are arranged at a second rotation position different from the first rotation position. In this case, the photographing system can acquire an image of the anterior segment that is irradiated with the slit light by the illumination system.
  • the three-dimensional image construction unit may include an image position determination unit that determines the relative positions of the plurality of images based on the image acquired at the second rotation position.
  • the three-dimensional image constructing unit from each of the plurality of images acquired by the slit lamp microscope (ophthalmic imaging apparatus 2000-i t), the image area to extract an image area corresponding to the irradiation area of the slit light
  • An extracting unit and an image synthesizing unit that constructs a three-dimensional image by synthesizing a plurality of image regions respectively extracted from a plurality of images by the image region extracting unit may be included.
  • Image region extracting unit extracts from each of the plurality of images acquired by the slit lamp microscope (ophthalmic imaging apparatus 2000-i t), the image area corresponding to both the predetermined portion of the irradiated region and the anterior segment of the slit light It may be configured to.
  • the predetermined part may be a part defined by the front surface of the cornea and the rear surface of the lens.
  • the information processing apparatus may include a rendering unit that renders a three-dimensional image and constructs a rendered image.
  • the rendering unit can construct a three-dimensional partial image by cutting the three-dimensional image along the cross section.
  • the rendering unit can construct a two-dimensional cross-sectional image representing the cross section.
  • the rendering unit can construct a 3D slice image corresponding to the slice.
  • the information processing apparatus (server 4000 and / or remote terminal 5000m) corrects distortion caused by the optical axis angle, which is an angle formed by the optical axis of the illumination system and the optical axis of the imaging system. and it may include a distortion correction unit to apply to at least one of the acquired plurality of images by slit lamp microscope (ophthalmic imaging apparatus 2000-i t).
  • the optical axis of the optical system included in the imaging system is a third direction orthogonal to both the first direction along the optical axis of the illumination system and the second direction along the longitudinal direction of the slit light with respect to the optical axis of the illumination system. It may be arranged to be inclined.
  • the distortion correction unit can execute processing for correcting distortion in a plane including both the first direction and the second direction.
  • the distortion correction unit stores in advance a correction coefficient set based on a predetermined reference angle and an optical axis angle, and is configured to execute a process for correcting distortion based on the correction coefficient. Good.
  • the information processing apparatus (server 4000 and / or remote terminal 5000 m), by analyzing at least one of a plurality of images obtained by a slit lamp microscope (ophthalmic imaging apparatus 2000-i t)
  • requires a predetermined measured value may be included.
  • the information processing apparatus (server 4000 and / or remote terminal 5000m) includes a second measurement unit that obtains a predetermined measurement value by analyzing the three-dimensional image constructed by the three-dimensional image construction unit. May contain.
  • a slit lamp microscope may comprise a video recording system for video shooting from a fixed position anterior segment in parallel with the acquisition of the plurality of images by imaging system.
  • a slit lamp microscope analyzes the moving image acquired by the moving image capturing system may comprise a motion detector for detecting a movement of the eye.
  • a slit lamp microscope may include a movement control unit for controlling the moving mechanism based on the output from the movement detecting unit.
  • a program for causing a computer to execute processing realized by applying any modification within the scope of the present invention to any one or a combination of any two or more of the first to twelfth embodiments. Can be configured.
  • This non-temporary recording medium may be in any form, and examples thereof include a magnetic disk, an optical disk, a magneto-optical disk, and a semiconductor memory.
  • the present invention includes a method realized by any one of the first to twelfth embodiments or a combination of any two or more thereof.
  • the present invention also includes a method realized by applying any modification within the scope of the present invention to any one of the first to twelfth embodiments or a combination of any two or more thereof. It is.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

例示的な実施形態のスリットランプ顕微鏡は、照明系と、撮影系と、移動機構と、動画撮影系とを含む。照明系は、被検眼の前眼部にスリット光を照射する。撮影系は、スリット光が照射されている前眼部からの光を導く光学系と、この光学系により導かれた光を撮像面で受光する撮像素子とを含む。移動機構は、照明系及び撮影系を移動する。照明系の光軸に沿う物面と光学系と撮像面とは、シャインプルーフの条件を満足する。撮影系は、移動機構による照明系及び撮影系の移動と並行して繰り返し撮影を行うことにより前眼部の複数の画像を取得する。動画撮影系は、撮影系による複数の画像の取得と並行して前眼部を固定位置から動画撮影する。

Description

スリットランプ顕微鏡及び眼科システム
 本発明は、スリットランプ顕微鏡及び眼科システムに関する。
 眼科分野において画像診断は重要な位置を占める。画像診断では、各種の眼科撮影装置が用いられる。眼科撮影装置には、スリットランプ顕微鏡、眼底カメラ、走査型レーザー検眼鏡(SLO)、光干渉断層計(OCT)などがある。また、レフラクトメータ、ケラトメータ、眼圧計、スペキュラーマイクロスコープ、ウェーブフロントアナライザ、マイクロペリメータなどの各種の検査装置や測定装置にも、前眼部や眼底を撮影する機能が搭載されている。
 これら様々な眼科装置のうち最も広く且つ頻繁に使用される装置の一つがスリットランプ顕微鏡である。スリットランプ顕微鏡は、スリット光で被検眼を照明し、照明された断面を側方から顕微鏡で観察したり撮影したりするための眼科装置である(例えば、特許文献1、2を参照)。
 角膜や水晶体など前眼部の観察や診断には、一般的にスリットランプ顕微鏡が用いられる。例えば、医師は、スリット光による照明野やフォーカス位置を移動させつつ診断部位全体を観察して異常の有無を判断する。また、コンタクトレンズのフィッティング状態の確認など、視力補正器具の処方において、スリットランプ顕微鏡が用いられることもある。更に、オプトメトリストのように医師以外の資格を持つ者や、眼鏡店の店員などが、眼疾患のスクリーニング等の目的でスリットランプ顕微鏡を用いることもある。
 ところで、近年の情報通信技術の進歩を受けて、遠隔医療技術に関する研究開発が発展を見せている。遠隔医療とは、インターネット等の情報技術を利用して、遠隔地に居る患者に対して診療を行う行為である。特許文献3、4にはスリットランプ顕微鏡を遠隔地から操作するための技術が開示されている。
 しかしながら、スリットランプを用いて良好な画像を得るには、照明角度や撮影角度の調整など、微細で煩雑な操作が必要とされる。特許文献3、4に開示された技術では、目の前に居る被検者の眼を観察する場合でも難しい操作を、遠隔地に居る検者が実施しなければならないため、検査時間が長くなったり、良好な画像が得られなかったりといった問題が生じる。
 また、上記のようにスリットランプ顕微鏡はスクリーニング等の検査に有効であるが、同装置に関する専門技術の保持者が不足しており、高品質な検査を多くの人に提供することができないという現状がある。
特開2016-159073号公報 特開2016-179004号公報 特開2000-116732号公報 特開2008-284273号公報
 本発明の目的は、高品質なスリットランプ顕微鏡検査を広く提供することを可能にすることにある。
 例示的な実施形態の第1の態様は、被検眼の前眼部にスリット光を照射する照明系と、前記スリット光が照射されている前記前眼部からの光を導く光学系と前記光学系により導かれた前記光を撮像面で受光する撮像素子とを含む撮影系と、前記照明系及び前記撮影系を移動する移動機構とを含み、前記照明系の光軸に沿う物面と前記光学系と前記撮像面とがシャインプルーフの条件を満足し、前記撮影系は、前記移動機構による前記照明系及び前記撮影系の移動と並行して繰り返し撮影を行うことにより前記前眼部の複数の画像を取得することを特徴とするスリットランプ顕微鏡である。
 例示的な実施形態の第2の態様は、第1の態様のスリットランプ顕微鏡であって、前記撮影系は、前記スリット光が照射されている前記前眼部からの光を導く第1光学系と、前記第1光学系により導かれた前記光を第1撮像面で受光する第1撮像素子とを含み、前記移動と並行して繰り返し撮影を行うことにより第1画像群を取得する第1撮影系と、前記スリット光が照射されている前記前眼部からの光を導く第2光学系と、前記第2光学系により導かれた前記光を第2撮像面で受光する第2撮像素子とを含み、前記移動と並行して繰り返し撮影を行うことにより第2画像群を取得する第2撮影系とを含み、前記第1光学系の光軸と前記第2光学系の光軸とは、互いに異なる向きに配置されており、前記物面と前記第1光学系と前記第1撮像面とがシャインプルーフの条件を満足し、且つ、前記物面と前記第2光学系と前記第2撮像面とがシャインプルーフの条件を満足することを特徴とする。
 例示的な実施形態の第3の態様は、第2の態様のスリットランプ顕微鏡であって、前記第1光学系の光軸と前記第2光学系の光軸とは、前記照明系の光軸に対して互いに反対の方向に傾斜して配置されており、前記第1撮影系及び前記第2撮影系により実質的に同時に取得された2つの画像のいずれかにアーティファクトが含まれるか判定し、前記2つの画像のうちの一方の画像にアーティファクトが含まれると判定されたときに他方の画像を選択する画像選択部を更に含むことを特徴とする。
 例示的な実施形態の第4の態様は、第3の態様のスリットランプ顕微鏡であって、前記画像選択部により前記第1画像群及び前記第2画像群から選択された画像を含む画像群に基づいて3次元画像を構築する3次元画像構築部を更に含むことを特徴とする。
 例示的な実施形態の第5の態様は、第2の態様のスリットランプ顕微鏡であって、前記第1撮影系及び前記第2撮影系により実質的に同時に取得された2つの画像を比較することにより前記2つの画像のいずれかにアーティファクトが含まれるか判定し、前記2つの画像のいずれかにアーティファクトが含まれると判定されたときに当該アーティファクトを除去するアーティファクト除去部を更に含むことを特徴とする。
 例示的な実施形態の第6の態様は、第5の態様のスリットランプ顕微鏡であって、前記アーティファクト除去部によりアーティファクトが除去された画像を含む画像群に基づいて3次元画像を構築する3次元画像構築部を更に含むことを特徴とする。
 例示的な実施形態の第7の態様は、第1の態様のスリットランプ顕微鏡であって、前記撮影系により取得された前記複数の画像に基づいて3次元画像を構築する3次元画像構築部を更に含むことを特徴とする。
 例示的な実施形態の第8の態様は、第4、6及び7の態様のいずれかのスリットランプ顕微鏡であって、前記移動機構は、前記照明系の光軸を回転軸として前記照明系及び前記撮影系を一体的に回転する回転機構を含み、前記照明系及び前記撮影系が第1回転位置に配置されているときに、前記撮影系は、前記複数の画像を取得し、前記第1回転位置と異なる第2回転位置に前記照明系及び前記撮影系が配置されているときに、前記撮影系は、前記照明系によりスリット光が照射されている前記前眼部の画像を取得し、前記3次元画像構築部は、前記第2回転位置において取得された前記画像に基づいて前記複数の画像の相対位置を決定する画像位置決定部を含むことを特徴とする。
 例示的な実施形態の第9の態様は、第4、6~8の態様のいずれかのスリットランプ顕微鏡であって、前記3次元画像構築部は、前記複数の画像のそれぞれから、前記スリット光の照射領域に対応する画像領域を抽出する画像領域抽出部と、前記画像領域抽出部により前記複数の画像からそれぞれ抽出された複数の画像領域を合成して3次元画像を構築する画像合成部とを含むことを特徴とする。
 例示的な実施形態の第10の態様は、第9の態様のスリットランプ顕微鏡であって、前記画像領域抽出部は、前記複数の画像のそれぞれから、前記スリット光の照射領域及び前記前眼部の所定部位の双方に対応する画像領域を抽出することを特徴とする。
 例示的な実施形態の第11の態様は、第10の態様のスリットランプ顕微鏡であって、前記所定部位は、角膜前面及び水晶体後面により画成される部位であることを特徴とする。
 例示的な実施形態の第12の態様は、第4、6~11の態様のいずれかのスリットランプ顕微鏡であって、前記3次元画像をレンダリングしてレンダリング画像を構築するレンダリング部を更に含むことを特徴とする。
 例示的な実施形態の第13の態様は、第12の態様のスリットランプ顕微鏡であって、前記3次元画像に対して断面が指定されたとき、前記レンダリング部は、前記3次元画像を当該断面で切断して3次元部分画像を構築することを特徴とする。
 例示的な実施形態の第14の態様は、第12の態様のスリットランプ顕微鏡であって、前記3次元画像に対して断面が指定されたとき、前記レンダリング部は、当該断面を表す2次元断面画像を構築することを特徴とする。
 例示的な実施形態の第15の態様は、第12の態様のスリットランプ顕微鏡であって、前記3次元画像に対してスライスが指定されたとき、前記レンダリング部は、当該スライスに対応する3次元スライス画像を構築することを特徴とする。
 例示的な実施形態の第16の態様は、第1~15の態様のいずれかのスリットランプ顕微鏡であって、前記照明系の光軸と前記撮影系の光軸とがなす角度である光軸角度に起因する歪みを補正するための処理を、前記複数の画像のうちの少なくとも1つに適用する歪み補正部を更に含むことを特徴とする。
 例示的な実施形態の第17の態様は、第16の態様のスリットランプ顕微鏡であって、前記撮影系に含まれる前記光学系の光軸は、前記照明系の光軸に対して、前記照明系の光軸に沿う第1方向及び前記スリット光の長手方向に沿う第2方向の双方に直交する第3方向に傾斜して配置されており、前記歪み補正部は、前記第1方向及び前記第2方向の双方を含む平面における歪みを補正するための処理を実行することを特徴とする。
 例示的な実施形態の第18の態様は、第16又は17の態様のスリットランプ顕微鏡であって、前記歪み補正部は、所定の基準角度と前記光軸角度とに基づき設定された補正係数を予め記憶しており、当該補正係数に基づいて前記歪みを補正するための処理を実行することを特徴とする。
 例示的な実施形態の第19の態様は、第1~18の態様のいずれかのスリットランプ顕微鏡であって、前記撮影系により取得された前記複数の画像のうちの少なくとも1つを解析することにより所定の計測値を求める第1計測部を更に含むことを特徴とする。
 例示的な実施形態の第20の態様は、第4、6~15の態様のいずれかのスリットランプ顕微鏡であって、前記3次元画像構築部により構築された前記3次元画像を解析することにより所定の計測値を求める第2計測部を更に含むことを特徴とする。
 例示的な実施形態の第21の態様は、第1~20の態様のいずれかのスリットランプ顕微鏡であって、前記照明系及び前記撮影系は、少なくとも角膜前面及び水晶体後面により画成される部位に前記撮影系のピントが合うように構成されていることを特徴とする。
 例示的な実施形態の第22の態様は、第1~21の態様のいずれかのスリットランプ顕微鏡であって、前記照明系は、被検者の体軸方向を長手方向とするスリット光を前記前眼部に照射し、前記移動機構は、前記体軸方向に直交する方向に前記照明系及び前記撮影系を移動することを特徴とする。
 例示的な実施形態の第23の態様は、第22の態様のスリットランプ顕微鏡であって、前記スリット光の長さは、前記体軸方向における角膜径以上であり、前記移動機構による前記照明系及び前記撮影系の移動距離は、前記体軸方向に直交する方向における角膜径以上であることを特徴とする。
 例示的な実施形態の第24の態様は、第1~23の態様のいずれかのスリットランプ顕微鏡であって、前記撮影系に含まれる前記光学系は、前記スリット光が照射されている前記前眼部からの光であって、前記照明系の光軸から離れる方向に進行する光を、前記照明系の光軸に近づく方向に反射する反射器と、前記反射器により反射された前記光を前記撮像面に結像させる1以上のレンズとを含むことを特徴とする。
 例示的な実施形態の第25の態様は、第1~24の態様のいずれかのスリットランプ顕微鏡であって、撮影系による前記複数の画像の取得と並行して前記前眼部を固定位置から動画撮影する動画撮影系を更に含むことを特徴とする。
 例示的な実施形態の第26の態様は、第25の態様のスリットランプ顕微鏡であって、前記動画撮影系により取得される動画像を解析して前記被検眼の運動を検出する運動検出部を更に含むことを特徴とする。
 例示的な実施形態の第27の態様は、第26の態様のスリットランプ顕微鏡であって、前記運動検出部からの出力に基づいて前記移動機構を制御する移動制御部を更に含むことを特徴とする。
 例示的な実施形態の第28の態様は、第1~27の態様のいずれかのスリットランプ顕微鏡であって、前記前眼部について取得された画像を情報処理装置に向けて送信する通信部を更に含むことを特徴とする。
 例示的な実施形態の第29の態様は、スリットランプ顕微鏡と、通信回線を介して前記スリットランプ顕微鏡に接続されており、前記スリットランプ顕微鏡により取得された被検眼の前眼部の画像を処理する情報処理装置とを含む眼科システムである。前記スリットランプ顕微鏡は、被検眼の前眼部にスリット光を照射する照明系と、前記スリット光が照射されている前記前眼部からの光を導く光学系と前記光学系により導かれた前記光を撮像面で受光する撮像素子とを含む撮影系と、前記照明系及び前記撮影系を移動する移動機構とを含む。前記照明系の光軸に沿う物面と前記光学系と前記撮像面とは、シャインプルーフの条件を満足する。前記撮影系は、前記移動機構による前記照明系及び前記撮影系の移動と並行して繰り返し撮影を行うことにより前記前眼部の複数の画像を取得する。
 例示的な実施形態の第30の態様は、第29の態様の眼科システムであって、前記スリットランプ顕微鏡の前記撮影系は、前記スリット光が照射されている前記前眼部からの光を導く第1光学系と、前記第1光学系により導かれた前記光を第1撮像面で受光する第1撮像素子とを含み、前記移動と並行して繰り返し撮影を行うことにより第1画像群を取得する第1撮影系と、前記スリット光が照射されている前記前眼部からの光を導く第2光学系と、前記第2光学系により導かれた前記光を第2撮像面で受光する第2撮像素子とを含み、前記移動と並行して繰り返し撮影を行うことにより第2画像群を取得する第2撮影系とを含み、前記第1光学系の光軸と前記第2光学系の光軸とは、互いに異なる向きに配置されており、前記物面と前記第1光学系と前記第1撮像面とがシャインプルーフの条件を満足し、且つ、前記物面と前記第2光学系と前記第2撮像面とがシャインプルーフの条件を満足することを特徴とする。
 例示的な実施形態の第31の態様は、第30の態様の眼科システムであって、前記第1光学系の光軸と前記第2光学系の光軸とは、前記照明系の光軸に対して互いに反対の方向に傾斜して配置されており、前記情報処理装置は、前記第1撮影系及び前記第2撮影系により実質的に同時に取得された2つの画像のいずれかにアーティファクトが含まれるか判定し、前記2つの画像のうちの一方の画像にアーティファクトが含まれると判定されたときに他方の画像を選択する画像選択部を含むことを特徴とする。
 例示的な実施形態の第32の態様は、第31の態様の眼科システムであって、前記情報処理装置は、前記画像選択部により前記第1画像群及び前記第2画像群から選択された画像を含む画像群に基づいて3次元画像を構築する3次元画像構築部を含むことを特徴とする。
 例示的な実施形態の第33の態様は、第30の態様の眼科システムであって、前記情報処理装置は、前記第1撮影系及び前記第2撮影系により実質的に同時に取得された2つの画像を比較することにより前記2つの画像のいずれかにアーティファクトが含まれるか判定し、前記2つの画像のいずれかにアーティファクトが含まれると判定されたときに当該アーティファクトを除去するアーティファクト除去部を含むことを特徴とする。
 例示的な実施形態の第34の態様は、第33の態様の眼科システムであって、前記情報処理装置は、前記アーティファクト除去部によりアーティファクトが除去された画像を含む画像群に基づいて3次元画像を構築する3次元画像構築部を含むことを特徴とする。
 例示的な実施形態の第35の態様は、第29の態様の眼科システムであって、前記情報処理装置は、前記撮影系により取得された前記複数の画像に基づいて3次元画像を構築する3次元画像構築部を含むことを特徴とする。
 例示的な実施形態の第36の態様は、第32、34及び35の態様のいずれかの眼科システムであって、前記移動機構は、前記照明系の光軸を回転軸として前記照明系及び前記撮影系を一体的に回転する回転機構を含み、前記照明系及び前記撮影系が第1回転位置に配置されているときに、前記撮影系は、前記複数の画像を取得し、前記第1回転位置と異なる第2回転位置に前記照明系及び前記撮影系が配置されているときに、前記撮影系は、前記照明系によりスリット光が照射されている前記前眼部の画像を取得し、前記3次元画像構築部は、前記第2回転位置において取得された前記画像に基づいて前記複数の画像の相対位置を決定する画像位置決定部を含むことを特徴とする。
 例示的な実施形態の第37の態様は、第32、34~36の態様のいずれかの眼科システムであって、前記3次元画像構築部は、前記複数の画像のそれぞれから、前記スリット光の照射領域に対応する画像領域を抽出する画像領域抽出部と、前記画像領域抽出部により前記複数の画像からそれぞれ抽出された複数の画像領域を合成して3次元画像を構築する画像合成部とを含むことを特徴とする。
 例示的な実施形態の第38の態様は、第37の態様の眼科システムであって、前記画像領域抽出部は、前記複数の画像のそれぞれから、前記スリット光の照射領域及び前記前眼部の所定部位の双方に対応する画像領域を抽出することを特徴とする。
 例示的な実施形態の第39の態様は、第38の態様の眼科システムであって、前記所定部位は、角膜前面及び水晶体後面により画成される部位であることを特徴とする。
 例示的な実施形態の第40の態様は、第32、34~39の態様のいずれかの眼科システムであって、前記情報処理装置は、前記3次元画像をレンダリングしてレンダリング画像を構築するレンダリング部を含むことを特徴とする。
 例示的な実施形態の第41の態様は、第40の態様の眼科システムであって、前記3次元画像に対して断面が指定されたとき、前記レンダリング部は、前記3次元画像を当該断面で切断して3次元部分画像を構築することを特徴とする。
 例示的な実施形態の第42の態様は、第40の態様の眼科システムであって、前記3次元画像に対して断面が指定されたとき、前記レンダリング部は、当該断面を表す2次元断面画像を構築することを特徴とする。
 例示的な実施形態の第43の態様は、第40の態様の眼科システムであって、前記3次元画像に対してスライスが指定されたとき、前記レンダリング部は、当該スライスに対応する3次元スライス画像を構築することを特徴とする。
 例示的な実施形態の第44の態様は、第29~43の態様のいずれかの眼科システムであって、前記情報処理装置は、前記照明系の光軸と前記撮影系の光軸とがなす角度である光軸角度に起因する歪みを補正するための処理を、前記複数の画像のうちの少なくとも1つに適用する歪み補正部を含むことを特徴とする。
 例示的な実施形態の第45の態様は、第44の態様の眼科システムであって、前記撮影系に含まれる前記光学系の光軸は、前記照明系の光軸に対して、前記照明系の光軸に沿う第1方向及び前記スリット光の長手方向に沿う第2方向の双方に直交する第3方向に傾斜して配置されており、前記歪み補正部は、前記第1方向及び前記第2方向の双方を含む平面における歪みを補正するための処理を実行することを特徴とする。
 例示的な実施形態の第46の態様は、第44又は45の態様の眼科システムであって、前記歪み補正部は、所定の基準角度と前記光軸角度とに基づき設定された補正係数を予め記憶しており、当該補正係数に基づいて前記歪みを補正するための処理を実行することを特徴とする。
 例示的な実施形態の第47の態様は、第29~46の態様のいずれかの眼科システムであって、前記情報処理装置は、前記撮影系により取得された前記複数の画像のうちの少なくとも1つを解析することにより所定の計測値を求める第1計測部を含むことを特徴とする。
 例示的な実施形態の第48の態様は、第32、34~43の態様のいずれかの眼科システムであって、前記情報処理装置は、前記3次元画像構築部により構築された前記3次元画像を解析することにより所定の計測値を求める第2計測部を含むことを特徴とする。
 例示的な実施形態の第49の態様は、第29~48の態様のいずれかの眼科システムであって、前記照明系及び前記撮影系は、少なくとも角膜前面及び水晶体後面により画成される部位に前記撮影系のピントが合うように構成されていることを特徴とする。
 例示的な実施形態の第50の態様は、第29~49の態様のいずれかの眼科システムであって、前記照明系は、被検者の体軸方向を長手方向とするスリット光を前記前眼部に照射し、前記移動機構は、前記体軸方向に直交する方向に前記照明系及び前記撮影系を移動することを特徴とする。
 例示的な実施形態の第51の態様は、第50の態様の眼科システムであって、前記スリット光の長さは、前記体軸方向における角膜径以上であり、前記移動機構による前記照明系及び前記撮影系の移動距離は、前記体軸方向に直交する方向における角膜径以上であることを特徴とする。
 例示的な実施形態の第52の態様は、第29~51の態様のいずれかの眼科システムであって、前記撮影系に含まれる前記光学系は、前記スリット光が照射されている前記前眼部からの光であって、前記照明系の光軸から離れる方向に進行する光を、前記照明系の光軸に近づく方向に反射する反射器と、前記反射器により反射された前記光を前記撮像面に結像させる1以上のレンズとを含むことを特徴とする。
 例示的な実施形態の第53の態様は、第29~52の態様のいずれかの眼科システムであって、前記スリットランプ顕微鏡は、撮影系による前記複数の画像の取得と並行して前記前眼部を固定位置から動画撮影する動画撮影系を含むことを特徴とする。
 例示的な実施形態の第54の態様は、第53の態様の眼科システムであって、前記スリットランプ顕微鏡は、前記動画撮影系により取得される動画像を解析して前記被検眼の運動を検出する運動検出部を含むことを特徴とする。
 例示的な実施形態の第55の態様は、第54の態様の眼科システムであって、前記スリットランプ顕微鏡は、前記運動検出部からの出力に基づいて前記移動機構を制御する移動制御部を含むことを特徴とする。
 例示的な実施形態によれば、高品質なスリットランプ顕微鏡検査を広く提供することが可能になる。
例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を表すフローチャートである。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成の変形例を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係るスリットランプ顕微鏡の使用形態を説明するための概略図である。 例示的な実施形態に係る眼科システムの構成を表す概略図である。 例示的な実施形態に係る眼科システムの構成を表す概略図である。 例示的な実施形態に係る眼科システムの構成を表す概略図である。
 例示的な実施形態について、図面を参照しながら詳細に説明する。なお、本明細書にて引用した文献に開示された事項などの任意の公知技術を実施形態に組み合わせることができる。
 実施形態に係るスリットランプ顕微鏡は、例えば、眼鏡店や医療施設に設置されてもよいし、可搬型であってもよい。実施形態に係るスリットランプ顕微鏡は、典型的には、同装置に関する専門技術保持者が側にいない状況や環境で使用される。なお、実施形態に係るスリットランプ顕微鏡は、専門技術保持者が側にいる状況や環境で使用されてもよいし、専門技術保持者が遠隔地から監視、指示、操作することが可能な状況や環境で使用されてもよい。
 実施形態に係る眼科システムは、1以上のスリットランプ顕微鏡と、1以上の情報処理装置とを含み、例えば遠隔医療に使用可能である。情報処理装置は、スリットランプ顕微鏡により取得された画像を受けてこれを処理する。情報処理装置は、スリットランプ顕微鏡や他の情報処理装置にデータを送信可能であってよい。情報処理装置の用途は、例えば、画像解析、画像処理、読影などであってよい。
 実施形態の眼科システムが遠隔医療に用いられる場合、スリットランプ顕微鏡により取得された画像の読影を、このスリットランプ顕微鏡が設置された施設から離れた遠隔地にいる者が行う。読影者は、典型的には医師であり、スリットランプ顕微鏡に関する専門技術の保持者である。また、情報処理技術(例えば、人工知能、画像解析、画像処理)を利用したコンピュータによる読影支援を採用することも可能である。
 スリットランプ顕微鏡が設置される施設の例として、眼鏡店、オプトメトリスト、医療機関、健康診断会場、検診会場、患者の自宅、福祉施設、公共施設、検診車などがある。
 実施形態に係るスリットランプ顕微鏡は、少なくともスリットランプ顕微鏡としての機能を有する眼科撮影装置であり、他の撮影機能(モダリティ)を更に備えていてもよい。他のモダリティの例として、眼底カメラ、SLO、OCTなどがある。実施形態に係るスリットランプ顕微鏡は、被検眼の特性を測定する機能を更に備えていてもよい。測定機能の例として、視力測定、屈折測定、眼圧測定、角膜内皮細胞測定、収差測定、視野測定などがある。実施形態に係るスリットランプ顕微鏡は、撮影画像や測定データを解析するためのアプリケーションを更に備えていてもよい。実施形態に係るスリットランプ顕微鏡は、治療や手術のための機能を更に備えていてもよい。その例として光凝固治療や光線力学的療法がある。
 以下、様々な例示的な実施形態について説明する。これら実施形態のうちのいずれか2つ又はそれ以上を組み合わせることが可能である。また、これら実施形態のそれぞれ又は2以上の組み合わせに任意の公知技術に基づく変形(付加、置換等)を施すことが可能である。
 以下に例示する実施形態において、「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムやデータを読み出し実行することで、その実施形態に係る機能を実現する。
〈第1実施形態〉
 第1実施形態に係るスリットランプ顕微鏡の例を図1に示す。
 スリットランプ顕微鏡1は、被検眼Eの前眼部撮影に用いられ、照明系2と、撮影系3と、移動機構6と、制御部7と、データ処理部8と、通信部9とを含む。なお、符号Cは角膜を示し、符号CLは水晶体を示す。
 スリットランプ顕微鏡1は、単一の装置であってもよいし、2以上の装置を含むシステムであってもよい。後者の例として、スリットランプ顕微鏡1は、照明系2、撮影系3、及び移動機構6を含む本体装置と、制御部7、データ処理部8、及び通信部9を含むコンピュータと、本体装置とコンピュータとの間の通信を担う通信デバイスとを含む。コンピュータは、例えば、本体装置とともに設置されてもよいし、ネットワーク上に設置されていてもよい。
[照明系2]
 照明系2は、被検眼Eの前眼部にスリット光を照射する。符号2aは、照明系2の光軸(照明光軸)を示す。照明系2は、従来のスリットランプ顕微鏡の照明系と同様の構成を備えていてよい。例えば、図示は省略するが、照明系2は、被検眼Eから遠い側から順に、照明光源と、正レンズと、スリット形成部と、対物レンズとを含む。
 照明光源は照明光を出力する。照明系2は複数の照明光源を備えていてよい。例えば、照明系2は、連続光を出力する照明光源と、フラッシュ光を出力する照明光源とを含んでいてよい。また、照明系2は、前眼部用照明光源と後眼部用照明光源とを含んでいてよい。また、照明系2は、出力波長が異なる2以上の照明光源を含んでいてよい。典型的な照明系2は、照明光源として可視光源を含む。照明系2は、赤外光源を含んでいてもよい。照明光源から出力された照明光は、正レンズを通過してスリット形成部に投射される。
 スリット形成部は、照明光の一部を通過させてスリット光を生成する。典型的なスリット形成部は、一対のスリット刃を有する。これらスリット刃の間隔(スリット幅)を変更することで照明光が通過する領域(スリット)の幅を変更し、これによりスリット光の幅が変更される。また、スリット形成部は、スリット光の長さを変更可能に構成されてもよい。スリット光の長さとは、スリット幅に対応するスリット光の断面幅方向に直交する方向におけるスリット光の断面寸法である。スリット光の幅やスリット光の長さは、典型的には、スリット光の前眼部への投影像の寸法として表現される。
 スリット形成部により生成されたスリット光は、対物レンズにより屈折されて被検眼Eの前眼部に照射される。
 照明系2は、スリット光のフォーカス位置を変更するための合焦機構を更に含んでいてもよい。合焦機構は、例えば、対物レンズを照明光軸2aに沿って移動させる。対物レンズの移動は、自動及び/又は手動で実行可能である。なお、対物レンズとスリット形成部との間の照明光軸2a上の位置に合焦レンズを配置し、この合焦レンズを照明光軸2aに沿って移動させることによってスリット光のフォーカス位置を変更可能としてもよい。
 なお、図1は上面図であり、同図に示すように、本実施形態では、被検眼Eの軸に沿う方向をZ方向とし、これに直交する方向のうち被検者にとって左右の方向をX方向とし、X方向及びZ方向の双方に直交する方向をY方向とする。典型的には、X方向は左眼と右眼との配列方向であり、Y方向は被検者の体軸に沿う方向(体軸方向)である。また、本実施形態では、照明光軸2aが被検眼Eの軸に一致するように、より広義には、照明光軸2aが被検眼Eの軸に平行に配置されるようにスリットランプ顕微鏡1のアライメントが実行される。アライメントについては後述する。
[撮影系3]
 撮影系3は、照明系2からのスリット光が照射されている前眼部を撮影する。符号3aは、撮影系3の光軸(撮影光軸)を示す。本実施形態の撮影系3は、光学系4と、撮像素子5とを含む。
 光学系4は、スリット光が照射されている被検眼Eの前眼部からの光を撮像素子5に導く。撮像素子5は、光学系4により導かれた光を撮像面にて受光する。
 光学系4により導かれる光(つまり、被検眼Eの前眼部からの光)は、前眼部に照射されているスリット光の戻り光を含み、他の光を更に含んでいてよい。戻り光の例として、反射光、散乱光、蛍光がある。他の光の例として、スリットランプ顕微鏡1の設置環境からの光(室内光、太陽光など)がある。前眼部全体を照明するための前眼部照明系が照明系2とは別に設けられている場合、この前眼部照明光の戻り光が、光学系4により導かれる光に含まれてもよい。
 撮像素子5は、2次元の撮像エリアを有するエリアセンサであり、例えば、電荷結合素子(CCD)イメージセンサや相補型金属酸化膜半導体(CMOS)イメージセンサであってよい。
 光学系4は、例えば、従来のスリットランプ顕微鏡の撮影系と同様の構成を備えていてよい。例えば、光学系4は、被検眼Eに近い側から順に、対物レンズと、変倍光学系と、結像レンズとを含む。スリット光が照射されている被検眼Eの前眼部からの光は、対物レンズ及び変倍光学系を通過し、結像レンズにより撮像素子5の撮像面に結像される。
 撮影系3は、例えば、第1撮影系と第2撮影系とを含んでいてよい。典型的には、第1撮影系と第2撮影系とは同じ構成を有する。撮影系3が第1撮影系と第2撮影系とを含む場合については他の実施形態において説明する。
 撮影系3は、そのフォーカス位置を変更するための合焦機構を更に含んでいてもよい。合焦機構は、例えば、対物レンズを撮影光軸3aに沿って移動させる。対物レンズの移動は、自動及び/又は手動で実行可能である。なお、対物レンズと結像レンズとの間の撮影光軸3a上の位置に合焦レンズを配置し、この合焦レンズを撮影光軸3aに沿って移動させることによってフォーカス位置を変更可能としてもよい。
 照明系2及び撮影系3は、シャインプルーフカメラとして機能する。すなわち、照明光軸2aに沿う物面と、光学系4と、撮像素子5の撮像面とが、いわゆるシャインプルーフの条件を満足するように、照明系2及び撮影系3が構成される。より具体的には、照明光軸2aを通るYZ面(物面を含む)と、光学系4の主面と、撮像素子5の撮像面とが、同一の直線上にて交差する。これにより、物面内の全ての位置(照明光軸2aに沿う方向における全ての位置)にピントを合わせて撮影を行うことができる。
 本実施形態では、少なくとも角膜Cの前面及び水晶体CLの後面により画成される部位に撮影系3のピントが合うように、照明系2及び撮影系3が構成される。つまり、図1に示す角膜Cの前面の頂点(Z=Z1)から水晶体CLの後面の頂点(Z=Z2)までの範囲全体に撮影系3のピントが合っている状態で、撮影を行うことが可能である。なお、Z=Z0は、照明光軸2aと撮影光軸3aとの交点のZ座標を示す。
 このような条件は、典型的には、照明系2に含まれる要素の構成及び配置、撮影系3に含まれる要素の構成及び配置、並びに、照明系2と撮影系3との相対位置によって実現される。照明系2と撮影系3との相対位置を示すパラメータは、例えば、照明光軸2aと撮影光軸3aとがなす角度θを含む。角度θは、例えば、17.5度、30度、又は45度に設定される。なお、角度θは可変であってもよい。
[移動機構6]
 移動機構6は、照明系2及び撮影系3を移動する。本実施形態において、移動機構6は、照明系2及び撮影系3を一体的にX方向に移動する。
 例えば、移動機構6は、照明系2及び撮影系3が搭載された可動ステージと、制御部7から入力される制御信号にしたがって動作するアクチュエータと、このアクチュエータにより発生された駆動力に基づき可動ステージを移動する機構とを含む。他の例において、移動機構6は、照明系2及び撮影系3が搭載された可動ステージと、図示しない操作デバイスに印加された力に基づき可動ステージを移動する機構とを含む。操作デバイスは、例えばレバーである。可動ステージは、少なくともX方向に移動可能であり、更にY方向及び/又はZ方向に移動可能であってよい。
[制御部7]
 制御部7は、スリットランプ顕微鏡1の各部を制御する。例えば、制御部7は、照明系2の要素(照明光源、スリット形成部、合焦機構など)、撮影系3の要素(合焦機構、撮像素子など)、移動機構6、データ処理部8、通信部9などを制御する。また、制御部7は、照明系2と撮影系3との相対位置を変更するための制御を実行可能であってもよい。
 制御部7は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、制御プログラム等が記憶されている。制御プログラム等は、スリットランプ顕微鏡1がアクセス可能なコンピュータや記憶装置に記憶されていてもよい。制御部7の機能は、制御プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
 制御部7は、被検眼Eの前眼部の3次元領域をスリット光でスキャンするために、照明系2、撮影系3及び移動機構6に対して次のような制御を適用することができる。
 まず、制御部7は、照明系2及び撮影系3を所定のスキャン開始位置に配置するように移動機構6を制御する(アライメント制御)。スキャン開始位置は、例えば、X方向における角膜Cの端部(第1端部)に相当する位置、又は、それよりも被検眼Eの軸から離れた位置である。図2Aにおける符号X0は、X方向における角膜Cの第1端部に相当するスキャン開始位置を示している。また、図2Bの符号X0’は、X方向における角膜Cの第1端部に相当する位置よりも被検眼Eの軸EAから離れたスキャン開始位置を示している。
 制御部7は、照明系2を制御して、被検眼Eの前眼部に対するスリット光の照射を開始させる(スリット光照射制御)。なお、アライメント制御の実行前に、又は、アライメント制御の実行中に、スリット光照射制御を行ってもよい。照明系2は、典型的には連続光をスリット光として照射するが、断続光(パルス光)をスリット光として照射してもよい。また、照明系2は、典型的には可視光をスリット光として照射するが、赤外光をスリット光として照射してもよい。
 制御部7は、撮影系3を制御して、被検眼Eの前眼部の動画撮影を開始させる(撮影制御)。なお、アライメント制御の実行前に、又は、アライメント制御の実行中に、撮影制御を行ってもよい。典型的には、スリット光照射制御と同時に、又は、スリット光照射制御よりも後に、撮影制御が実行される。
 アライメント制御、スリット光照射制御、及び撮影制御の実行後、制御部7は、移動機構6を制御して、照明系2及び撮影系3の移動を開始する(移動制御)。移動制御により、照明系2及び撮影系3が一体的に移動される。つまり、照明系2と撮影系3との相対位置(角度θなど)を維持しつつ照明系2及び撮影系3が移動される。照明系2及び撮影系3の移動は、前述したスキャン開始位置から所定のスキャン終了位置まで行われる。スキャン終了位置は、例えば、スキャン開始位置と同様に、X方向において第1端部の反対側の角膜Cの端部(第2端部)に相当する位置、又は、それよりも被検眼Eの軸から離れた位置である。このような場合、スキャン開始位置からスキャン終了位置までの範囲がスキャン範囲となる。
 典型的には、X方向を幅方向とし且つY方向を長手方向とするスリット光を前眼部に照射しつつ、且つ、照明系2及び撮影系3をX方向に移動しつつ、撮影系3による動画撮影が実行される。
 ここで、スリット光の長さ(つまり、Y方向におけるスリット光の寸法)は、例えば、被検眼Eの表面において角膜Cの径以上に設定されている。すなわち、スリット光の長さは、Y方向における角膜径以上に設定されている。また、前述のように、移動機構6による照明系2及び撮影系3の移動距離(つまり、スキャン範囲)は、X方向における角膜径以上に設定されている。これにより、少なくとも角膜C全体をスリット光でスキャンすることができる。
 このようなスキャンにより、スリット光の照射位置が異なる複数の前眼部画像が得られる。換言すると、スリット光の照射位置がX方向に移動する様が描写された動画像が得られる。このような複数の前眼部画像(つまり、動画像を構成するフレーム群)の例を図3に示す。
 図3は、複数の前眼部画像(フレーム群)F1、F2、F3、・・・、FNを示す。これら前眼部画像Fn(n=1、2、・・・、N)の添字nは、時系列順序を表している。つまり、第n番目に取得された前眼部画像が符号Fnで表される。前眼部画像Fnには、スリット光照射領域Anが含まれている。図3に示すように、スリット光照射領域A1、A2、A3、・・・、ANは、時系列に沿って右方向に移動している。図3に示す例では、スキャン開始位置及びスキャン終了位置は、X方向における角膜Cの両端に対応する。なお、スキャン開始位置及び/又はスキャン終了位置は本例に限定されず、例えば、角膜端部よりも被検眼Eの軸から離れた位置であってよい。また、スキャンの向きや回数についても任意に設定することが可能である。
[データ処理部8]
 データ処理部8は、各種のデータ処理を実行する。処理されるデータは、スリットランプ顕微鏡1により取得されたデータ、及び、外部から入力されたデータのいずれでもよい。例えば、データ処理部8は、照明系2及び撮影系3によって取得された画像を処理することができる。なお、データ処理部8の構成や機能については他の実施形態において説明する。
 データ処理部8は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理プログラム等は、スリットランプ顕微鏡1がアクセス可能なコンピュータや記憶装置に記憶されていてもよい。データ処理部8の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
[通信部9]
 通信部9は、スリットランプ顕微鏡1と他の装置との間におけるデータ通信を行う。すなわち、通信部9は、他の装置へのデータの送信と、他の装置から送信されたデータの受信とを行う。
 通信部9が実行するデータ通信の方式は任意である。例えば、通信部9は、インターネットに準拠した通信インターフェイス、専用線に準拠した通信インターフェイス、LANに準拠した通信インターフェイス、近距離通信に準拠した通信インターフェイスなど、各種の通信インターフェイスのうちの1以上を含む。データ通信は有線通信でも無線通信でもよい。
 通信部9により送受信されるデータは暗号化されていてよい。その場合、例えば、制御部7及び/又はデータ処理部8は、通信部9により送信されるデータを暗号化する暗号化処理部、及び、通信部9により受信されたデータを復号化する復号化処理部の少なくとも一方を含む。
[他の要素]
 図1に示す要素に加え、スリットランプ顕微鏡1は、表示デバイスや操作デバイスを備えていてよい。或いは、表示デバイスや操作デバイスは、スリットランプ顕微鏡1の周辺機器であってもよい。
 表示デバイスは、制御部7の制御を受けて各種の情報を表示する。表示デバイスは、液晶ディスプレイ(LCD)などのフラットパネルディスプレイを含んでいてよい。
 操作デバイスは、スリットランプ顕微鏡1を操作するためのデバイスや、情報を入力するためのデバイスを含む。操作デバイスは、例えば、ボタン、スイッチ、レバー、ダイアル、ハンドル、ノブ、マウス、キーボード、トラックボール、操作パネルなどを含む。
 タッチスクリーンのように、表示デバイスと操作デバイスとが一体化したデバイスを用いてもよい。
 被検者や補助者は、表示デバイス及び操作デバイスを用いることで、スリットランプ顕微鏡1の操作を行うことができる。
[アライメント]
 被検眼Eに対するスリットランプ顕微鏡1のアライメントについて説明する。一般に、アライメントは、被検眼Eの撮影や測定のために好適な位置に装置光学系を配置させる動作である。本実施形態のアライメントは、図3に示すような動画像を取得するために好適な位置に照明系2及び撮影系3を配置させる動作である。
 眼科装置のアライメントには様々な手法がある。以下、幾つかのアライメント手法を例示するが、本実施形態に適用可能な手法はこれらに限定されない。
 本実施形態に適用可能なアライメント手法としてステレオアライメントがある。ステレオアライメントは、2以上の異なる方向から前眼部を撮影可能な眼科装置において適用可能であり、その具体的な手法は、本出願人による特開2013-248376号公報などに開示されている。ステレオアライメントは、例えば次の工程を含む:2以上の前眼部カメラが前眼部を異なる方向から撮影して2以上の撮影画像を取得する工程;プロセッサがこれら撮影画像を解析して被検眼の3次元位置を求める工程;求められた3次元位置に基づいてプロセッサが光学系の移動制御を行う工程。これにより、光学系(本例では照明系2及び撮影系3)が、被検眼に対して好適な位置に配置される。典型的なステレオアライメントでは、被検眼の瞳孔(瞳孔の中心又は重心)の位置が基準とされる。
 このようなステレオアライメントの他にも、アライメント光により得られるプルキンエ像を利用した手法や、光テコを利用した手法など、任意の公知のアライメント手法を採用することが可能である。プルキンエ像を利用した手法や光テコを利用した手法では、被検眼の角膜頂点の位置が基準とされる。
 なお、以上の例示を含む従来の典型的なアライメント手法は、被検眼の軸と光学系の光軸とを一致させることを目的として行われるが、本実施形態では、スキャン開始位置に対応する位置に照明系2及び撮影系3を配置させるようにアライメントを実行することが可能である。
 本実施形態におけるアライメントの第1の例として、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを行った後、予め設定された角膜半径の標準値に相当する距離だけ照明系2及び撮影系3を(X方向に)移動することができる。なお、標準値を用いる代わりに、被検眼Eの角膜半径の測定値を用いてもよい。
 第2の例として、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを行った後、被検眼Eの前眼部の画像を解析して角膜半径を測定し、この測定値に相当する距離だけ照明系2及び撮影系3を(X方向に)移動することができる。本例で解析される前眼部の画像は、例えば、撮影系3により得られた前眼部画像、又は、他の画像である。他の画像は、前眼部カメラにより得られた画像、前眼部OCTにより得られた画像など、任意の画像であってよい。
 第3の例として、ステレオアライメント用の前眼部カメラ又は撮影系3により得られた前眼部の画像を解析して角膜の第1端部を求め、ステレオアライメントを適用してこの第1端部に対応する位置に照明系2及び撮影系3を移動することができる。
 なお、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを実行し、これにより決定された位置からスリット光による前眼部スキャンを開始するようにしてもよい。この場合においても、角膜Cの全体をスキャンするようにスキャンシーケンスを設定することができる。例えば、当該アライメントにより決定された位置から左方にスキャンを行った後、右方にスキャンを行うように、スキャンシーケンスが設定される。
[その他の事項]
 スリットランプ顕微鏡1は、被検眼Eを固視させるための光(固視光)を出力する固視系を備えていてよい。固視系は、典型的には、少なくとも1つの可視光源(固視光源)、又は、風景チャートや固視標等の画像を表示する表示デバイスを含む。固視系は、例えば、照明系2又は撮影系3と同軸又は非同軸に配置される。
 スリットランプ顕微鏡1により取得可能な画像の種別は、前述した前眼部の動画像(複数の前眼部画像)に限定されない。例えば、スリットランプ顕微鏡1は、この動画像に基づく3次元画像、この3次元画像に基づくレンダリング画像、徹照像、被検眼に装用されたコンタクトレンズの動きを表す動画像、蛍光剤適用によるコンタクトレンズと角膜表面との隙間を表す画像などがある。レンダリング画像については他の実施形態において説明する。徹照像は、照明光の網膜反射を利用して眼内の混濁や異物を描出する徹照法により得られる画像である。なお、眼底撮影、角膜内皮細胞撮影、マイボーム腺撮影などが可能であってもよい。
[使用形態]
 スリットランプ顕微鏡1(これを含むシステム)の使用形態を説明する。図4は使用形態の例を示す。
 図示は省略するが、任意の段階で、被検者又は補助者は、スリットランプ顕微鏡1に被検者情報を入力する。入力された被検者情報は、制御部7に保存される。被検者情報は、典型的には、被検者の識別情報(被検者ID)を含む。
 更に、背景情報の入力を行うことができる。背景情報は、被検者に関する任意の情報であって、その例として、被検者の問診情報、所定のシートに被検者が記入した情報、被検者の電子カルテに記録された情報などがある。典型的には、背景情報は、性別、年齢、身長、体重、疾患名、候補疾患名、検査結果(視力値、眼屈折力値、眼圧値など)、屈折矯正具(眼鏡、コンタクトレンズなど)の装用歴や度数、検査歴、治療歴などがある。これらは例示であって、背景情報はこれらに限定されない。
(S1:テーブル、イス、顎受け台を調整)
 まず、スリットランプ顕微鏡1が設置されているテーブル、被検者が座るイス、スリットランプ顕微鏡1の顎受け台の調整が行われる(いずれも図示を省略する)。例えば、テーブル、イス、顎受け台の高さ調整が行われる。これらの調整は、例えば、被検者自身によって行われる。或いは、補助者がこれら調整のいずれかを行ってもよい。なお、顎受け台には、被検者の顔を安定配置させるための顎受け部及び額当てが設けられている。
(S2:撮影開始を指示)
 ステップS1の調整が完了したら、被検者は、イスに腰掛け、顎受けに顎を載せ、額当てに額を当接させる。これらの動作の前又は後に、被検者又は補助者は、被検眼の撮影開始の指示操作を行う。この操作は、例えば、図示しない撮影開始トリガーボタンの押下である。
(S3:アライメント)
 ステップS2の指示を受けて、スリットランプ顕微鏡1は、前述した要領で、被検眼Eに対するアライメントを行う。アライメントの完了後にフォーカス調整を行うようにしてもよい。
(S4:前眼部をスキャン)
 スリットランプ顕微鏡1は、前述した要領で、照明系2によるスリット光の照射と、撮影系3による動画撮影と、移動機構6による照明系2及び撮影系3の移動とを組み合わせることで、被検眼Eの前眼部をスキャンする。これにより、例えば、図3に示す複数の前眼部画像F1~FNが得られる。
 データ処理部8は、前眼部画像F1~FNの少なくともいずれかを処理することができる。例えば、他の実施形態で説明するように、データ処理部8は、前眼部画像F1~FNに基づいて3次元画像を構築することができる。また、所定の画像処理や所定の画像解析を行うことも可能である。
(S5:画像を送信)
 制御部7は、通信部9を制御して、スリットランプ顕微鏡1により取得された前眼部の画像(前眼部画像F1~FN、前眼部画像F1~FNの一部、前眼部画像F1~FNに基づく3次元画像など)を他の装置に送信する。
 他の装置の例として情報処理装置や記憶装置がある。情報処理装置は、例えば、広域回線上のサーバ、LAN上のサーバ、コンピュータ端末などである。記憶装置は、広域回線上に設けられた記憶装置、LAN上に設けられた記憶装置などである。
 前眼部の画像とともに背景情報を送信することができる。また、前眼部の画像とともに被検者の識別情報が送信される。この識別情報は、スリットランプ顕微鏡1に入力された被検者ID(前述)でもよいし、被検者IDに基づき生成された識別情報でもよい。後者の例として、スリットランプ顕微鏡1が設置されている施設内での個人識別に用いられる被検者ID(内部識別情報)を、当該施設外にて用いられる外部識別情報に変換することができる。これにより、前眼部の画像や背景情報などの個人情報に関する情報セキュリティの向上を図ることが可能である。
(S6:観察及び診断)
 ステップS5でスリットランプ顕微鏡1から送信された被検眼Eの前眼部の画像(及び、被検者の識別情報、背景情報など)は、直接的又は間接的に、例えば医師(又はオプトメトリスト)が使用する情報処理装置に送られる。
 医師(又はオプトメトリスト)は、被検眼Eの前眼部の画像を観察することができる。このとき、例えば、前眼部画像F1~FNを所定数枚ずつ表示させることや、前眼部画像F1~FNを一覧表示することや、前眼部画像F1~FNをスライドショー表示することや、前眼部画像F1~FNから3次元画像を構築することや、3次元画像のレンダリング画像を表示することが可能である。
 医師(又はオプトメトリスト)は、被検眼Eの前眼部の画像を観察することで画像診断(読影)を行うことができる。医師(又はオプトメトリスト)は、読影で得た情報が記録されたレポートを作成することができる。レポートは、例えば、スリットランプ顕微鏡1が設置されている施設に送信される。或いは、被検者が登録したアドレス情報(電子メールアドレス、住所など)にレポートを送信してもよい。以上で、本例に係る処理は終了となる。
[効果]
 本実施形態により奏される効果を説明する。
 スリットランプ顕微鏡1は、照明系2と、撮影系3と、移動機構6とを含む。照明系2は、被検眼Eの前眼部にスリット光を照射する。撮影系3は、スリット光が照射されている前眼部からの光を導く光学系4と、光学系4により導かれた光を撮像面で受光する撮像素子5とを含む。移動機構6は、照明系2及び撮影系3を移動する。
 照明系2の光軸(照明光軸)2aに沿う物面と、光学系4と、撮像素子5の撮像面とが、シャインプルーフの条件を満足するように、照明系2及び撮影系3が構成されている。
 撮影系3は、移動機構6による照明系2及び撮影系3の移動と並行して繰り返し撮影を行うことにより、被検眼Eの前眼部の複数の画像を取得する。典型的には、この繰り返し撮影は動画撮影であり、それにより、複数の前眼部画像からなる動画像が取得される。
 このようなスリットランプ顕微鏡1によれば、照明系2及び撮影系3を移動することにより、被検眼Eの前眼部の3次元領域をスリット光でスキャンすることができ、当該3次元領域を表す画像を取得することができる。したがって、医師やオプトメトリストは、スリットランプ顕微鏡1によって取得された画像を観察して前眼部の所望の部位の状態を把握することが可能である。
 また、スリットランプ顕微鏡1により取得された画像を、遠隔地にいる医師やオプトメトリストに提供することができる。典型的には、スリットランプ顕微鏡1は、通信部9により、被検眼Eの前眼部について取得された画像を、医師やオプトメトリストが使用する情報処理装置に向けて送信することができる。なお、通信部9を設けることは任意的である。スリットランプ顕微鏡1により取得された画像の提供方法は、このようなデータ通信に限定されず、画像が記録された記録媒体や印刷媒体を提供するなどの方法であってもよい。記録媒体への記録は当該記録媒体に準拠した記録デバイス(データライタ)により行われ、印刷媒体への記録は印刷装置により行われる。
 また、スリットランプ顕微鏡1は、照明光軸2aに沿う物面と光学系4と撮像素子5の撮像面とがシャインプルーフの条件を満足するように構成されているので、深さ方向(Z方向)の広い範囲にピントを合わせることが可能である。例えば、照明系2及び撮影系3は、少なくとも角膜前面及び水晶体後面により画成される部位に撮影系3のピントが合うように構成される。これにより、スリットランプ顕微鏡検査の対象となる前眼部の主要な部位の全体を高精細に画像化することが可能になる。なお、ピントが合う範囲は、角膜前面及び水晶体後面により画成される領域に限定されず、任意に設定可能である。
 シャインプルーフの条件を満足しない構成が適用される場合において、深さ方向の広い範囲にピントを合わせて3次元領域を撮影するには、前眼部の各箇所にピントを合わせつつ、角膜前面の形状に応じた曲線状の経路に沿って照明系及び撮影系を移動させる必要があるが、このような操作や制御は煩雑であり、実用的とは言えない。
 また、照明系2は、被検者の体軸方向(Y方向)を長手方向とするスリット光を前眼部に照射されていてよい。更に、移動機構6は、被検者の体軸方向に直交する方向(X方向)に照明系2及び撮影系3を移動可能に構成されていてよい。なお、スリット光の向きや移動方向はこれらに限定されず、任意に設定可能であるが、典型的には移動方向はスリット光の幅方向に設定される。
 体軸方向を長手方向とするスリット光が照射され、且つ、体軸方向に直交する方向に照明系2及び撮影系3が移動される場合において、スリット光の長さ(体軸方向におけるスリット光の寸法)が体軸方向における角膜径以上になるように、照明系2を構成することができる。加えて、移動機構6による照明系2及び撮影系3の移動距離が、体軸方向に直交する方向(X方向)における角膜径以上であるように、移動機構6を構成することができる。この角膜径は、被検眼Eの角膜径でもよいし、標準的な角膜径でもよい。なお、スリット光の長さや移動距離はこれらに限定されず、任意に設定可能である。
 このような構成によれば、角膜全体について画像を取得することができる。更に、シャインプルーフの条件を満足する構成と組み合わせることで、角膜全体を表すとともに十分な深さ範囲を表す画像を取得することが可能になる。
 以上のように、スリットランプ顕微鏡1によれば、専門技術の保持者が微細で煩雑な操作を行わなくとも、前眼部の広い範囲(3次元領域)を表す高品質の画像を自動で取得することができる。読影者は、スリットランプ顕微鏡1により取得された画像の提供を受けて観察や診断を行うことが可能である。
 したがって、専門技術保持者が不足しているという問題の解消を図ることができ、高品質なスリットランプ顕微鏡検査を広く提供することが可能となる。例えば、このようなスリットランプ顕微鏡1は、前眼部疾患などのスクリーニングにおいて有効と言える。
 以下、スリットランプ顕微鏡1に組み合わせることが可能な例示的機能及び例示的構成について説明する。以下の実施形態において、第1実施形態と同様の要素を同じ符号で示すことがある。また、以下の実施形態において示す図において、第1実施形態と同様の要素を省略することがある。
〈第2実施形態〉
 本実施形態では、第1実施形態のスリットランプ顕微鏡1に適用可能な光学系の構成について説明する。その一例を図5に示す。なお、図5に示す要素群に加えて、他の実施形態に示す要素が設けられていてよい。例えば、第1の実施形態の制御部7、データ処理部8、通信部9などが設けられていてよい。
 図5に示す照明系20は第1実施形態の照明系2の例であり、左撮影系30L及び右撮影系30Rは撮影系3の例である。符号20aは照明系20の光軸(照明光軸)を示し、符号30Laは左撮影系30Lの光軸(左撮影光軸)を示し、符号30Raは右撮影系30Rの光軸(右撮影光軸)を示す。左撮影光軸30Laと右撮影光軸30Raとは、互いに異なる向きに配置されている。照明光軸20aと左撮影光軸30Laとがなす角度をθLで示し、照明光軸20aと右撮影光軸30Raとがなす角度をθRで示す。角度θLと角度θRとは、互いに等しくてもよいし異なってもよい。照明光軸20aと左撮影光軸30Laと右撮影光軸30Raとは、一点で交差する。図1と同様に、この交点のZ座標をZ0で示す。
 移動機構6は、照明系20、左撮影系30L及び右撮影系30Rを、矢印49で示す方向(X方向)に移動可能である。典型的には、照明系20、左撮影系30L及び右撮影系30Rは、少なくともX方向に移動可能なステージ上に載置されており、且つ、移動機構6は、制御部7からの制御信号にしたがって、この可動ステージを移動させる。
 照明系20は、被検眼Eの前眼部にスリット光を照射する。照明系20は、従来のスリットランプ顕微鏡の照明系と同様に、被検眼Eから遠い側から順に、照明光源21と、正レンズ22と、スリット形成部23と、対物レンズ群24及び25とを含む。
 照明光源21から出力された照明光(典型的には可視光)は、正レンズ22により屈折されてスリット形成部23に投射される。投射された照明光の一部は、スリット形成部23が形成するスリットを通過してスリット光となる。生成されたスリット光は、対物レンズ群24及び25により屈折された後、ビームスプリッタ47により反射され、被検眼Eの前眼部に照射される。
 左撮影系30Lは、反射器31Lと、結像レンズ32Lと、撮像素子33Lとを含む。反射器31L及び結像レンズ32Lは、照明系20によりスリット光が照射されている前眼部からの光(左撮影系30Lの方向に進行する光)を撮像素子33Lに導く。
 前眼部から左撮影系30Lの方向に進行する光は、スリット光が照射されている前眼部からの光であって、照明光軸20aから離れる方向に進行する光である。反射器31Lは、当該光を照明光軸20aに近づく方向に反射する。結像レンズ32Lは、反射器31Lにより反射された光を屈折して撮像素子33Lの撮像面34Lに結像する。撮像素子33Lは、当該光を撮像面34Lにて受光する。
 第1実施形態と同様に、左撮影系30Lは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行う。これにより複数の前眼部画像が得られる。
 第1実施形態と同様に、照明光軸20aに沿う物面と、反射器31L及び結像レンズ32Lを含む光学系と、撮像面34Lとは、シャインプルーフの条件を満足する。より具体的には、反射器31Lによる撮影系30Lの光路の偏向を考慮すると、照明光軸20aを通るYZ面(物面を含む)と、結像レンズ32Lの主面と、撮像面34Lとが、同一の直線上にて交差する。これにより、左撮影系30Lは、物面内の全ての位置(例えば、角膜前面から水晶体後面までの範囲)にピントを合わせて撮影を行うことができる。
 右撮影系30Rは、反射器31Rと、結像レンズ32Rと、撮像素子33Rとを含む。左撮影系30Lと同様に、右撮影系30Rは、照明系20によりスリット光が照射されている前眼部からの光を、反射器31R及び結像レンズ32Rによって、撮像素子33Rの撮像面34Rに導く。更に、左撮影系30Lと同様に、右撮影系30Rは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことで、複数の前眼部画像を取得する。左撮影系30Lと同様に、照明光軸20aに沿う物面と、反射器31R及び結像レンズ32Rを含む光学系と、撮像面34Rとは、シャインプルーフの条件を満足する。
 制御部7は、左撮影系30Lによる繰り返し撮影と、右撮影系30Rによる繰り返し撮影とを同期させることができる。これにより、左撮影系30Lにより得られた複数の前眼部画像と、右撮影系30Rにより得られた複数の前眼部画像との間の対応関係が得られる。この対応関係は、時間的な対応関係であり、より具体的には、実質的に同時に取得された画像同士をペアリングするものである。
 或いは、制御部7又はデータ処理部8は、左撮影系30Lにより得られた複数の前眼部画像と、右撮影系30Rにより得られた複数の前眼部画像との間の対応関係を求める処理を実行することができる。例えば、制御部7又はデータ処理部8は、左撮影系30Lから逐次に入力される前眼部画像と、右撮影系30Rから逐次に入力される前眼部画像とを、それらの入力タイミングによってペアリングすることができる。
 本実施形態は、動画撮影系40を更に含む。動画撮影系40は、左撮影系30L及び右撮影系30Rによる撮影と並行して、被検眼Eの前眼部を固定位置から動画撮影する。「固定位置から動画撮影」とは、照明系20、左撮影系30L及び右撮影系30Rと異なり、動画撮影系40が移動機構6により移動されないことを表す。
 本実施形態の動画撮影系40は、照明系20と同軸に配置されているが、その配置はこれに限定されない。例えば、照明系20と非同軸に動画撮影系を配置することができる。また、動画撮影系40が感度を有する帯域の照明光で前眼部を照明する光学系が設けられていてもよい。
 ビームスプリッタ47を透過した光は、反射器48により反射されて動画撮影系40に入射する。動画撮影系40に入射した光は、対物レンズ41により屈折された後、結像レンズ42によって撮像素子43の撮像面に結像される。撮像素子43はエリアセンサである。
 動画撮影系40が設けられている場合、被検眼Eの動きをモニタすることや、トラッキングを行うことができる。トラッキングは、被検眼Eの動きに光学系を追従させるための処理である。このような処理については他の実施形態で説明する。
 照明系20の出力波長及び動画撮影系40の検出波長に応じ、ビームスプリッタ47は、例えばダイクロイックミラー又はハーフミラーである。
 本実施形態により奏される効果を説明する。
 本実施形態は、第1実施形態の撮影系3の例であり、左撮影系30Lと右撮影系30Rとを含む。左撮影系30Lと右撮影系30Rとの組み合わせは、第1撮影系と第2撮影系との組み合わせの例である。
 左撮影系30Lは、スリット光が照射されている前眼部からの光を導く反射器31L及び結像レンズ32L(第1光学系)と、導かれた光を撮像面34L(第1撮像面)で受光する撮像素子33L(第1撮像素子)とを含む。同様に、右撮影系30Rは、スリット光が照射されている前眼部からの光を導く反射器31R及び結像レンズ32R(第2光学系)と、導かれた光を撮像面34R(第2撮像面)で受光する撮像素子33R(第2撮像素子)とを含む。
 左撮影系30Lの光軸(左撮影光軸30La)と右撮影系30Rの光軸(右撮影光軸30Ra)とは、互いに異なる向きに配置されている。更に、照明系20の光軸(照明光軸20a)に沿う物面と、反射器31L及び結像レンズ32Lと、撮像面34Lとは、シャインプルーフの条件を満足する。同様に、当該物面と、反射器31L及び結像レンズ32Lと、撮像面34Lとは、シャインプルーフの条件を満足する。
 左撮影系30Lは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第1画像群を取得する。同様に、右撮影系30Rは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第2画像群を取得する。
 このような構成によれば、スリット光が照射されている前眼部を、互いに異なる方向からそれぞれ動画撮影することができる。一方の撮影系により取得された画像にアーティファクトが含まれる場合であっても、他方の撮影系により当該画像と実質的に同時に取得された画像にはアーティファクトが含まれない場合がある。また、双方の撮影系により実質的に同時に取得された一対の画像の双方にアーティファクトが含まれる場合であって、一方の画像中のアーティファクトが注目領域(例えばスリット光照射領域)に重なっている場合でも、他方の画像中のアーティファクトが注目領域に重なっていない場合がある。したがって、好適な画像を取得できる可能性が高まる。実質的に同時に取得された一対の画像から好適な画像を取得する処理については後述する。
 なお、撮影系3は、第1撮影系及び第2撮影系に加え、同様の構成の第3撮影系、・・・、第K撮影系(Kは3以上の整数)を含んでいてもよい。
 本実施形態の左撮影系30Lは、反射器31Lと結像レンズ32Lとを含む。反射器31Lは、スリット光が照射されている前眼部からの光であって、照明光軸20aから離れる方向に進行する光を、照明光軸20aに近づく方向に反射する。更に、結像レンズ32Lは、反射器31Lにより反射された光を撮像面34Lに結像させる。ここで、結像レンズ32Lは、1以上のレンズを含む。
 同様に、右撮影系30Rは、反射器31Rと結像レンズ32Rとを含む。反射器31Rは、スリット光が照射されている前眼部からの光であって、照明光軸20aから離れる方向に進行する光を、照明光軸20aに近づく方向に反射する。更に、結像レンズ32Rは、反射器31Rにより反射された光を撮像面34Rに結像させる。ここで、結像レンズ32Rは、1以上のレンズを含む。
 このような構成によれば、装置の小型化を図ることが可能である。すなわち、撮像素子33L(33R)により取得された画像は、撮像面34L(34R)の反対側の面から延びるケーブルを通じて出力されるが、本構成によれば、照明光軸20aに比較的近接して位置する撮像素子33L(33R)の背面から被検眼Eとは反対方向に向かって、ケーブルを配置することができる。したがって、ケーブルの引き回しを好適に行うことができ、装置の小型化を図ることが可能になる。
 また、本構成によれば、角度θL及び角度θRを大きく設定することが可能となるため、一方の撮影系により取得された画像にアーティファクトが含まれる場合において、他方の撮影系により当該画像と実質的に同時に取得された画像にアーティファクトが含まれない可能性を高めることができる。また、双方の撮影系により実質的に同時に取得された一対の画像の双方にアーティファクトが含まれる場合であって、一方の画像中のアーティファクトが注目領域(例えばスリット光照射領域)に重なっている場合において、他方の画像中のアーティファクトが注目領域に重なっている可能性を低減することができる。
 本実施形態は、動画撮影系40を含む。左撮影系30L及び右撮影系30Rは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して、前眼部を繰り返し撮影する。この繰り返し撮影と並行して、動画撮影系40は、前眼部を固定位置から動画撮影する。
 このような構成によれば、スリット光による前眼部のスキャンと並行して固定位置(例えば正面)から動画撮影を行うことで、スキャン中における被検眼Eの状態を把握することや、被検眼Eの状態に応じた制御を行うことが可能である。その例については他の実施形態にて説明する。
 図5に示す構成の代わりに適用可能な光学系の例を図6に示す。なお、要素毎の符号は省略する。本例に係る光学系の左撮影系30L’において、反射器は、スリット光が照射されている前眼部からの光であって、照明光軸20a’から離れる方向に進行する光を、照明光軸20aから更に離れる方向に反射する。更に、結像レンズは、反射器により反射された光を撮像素子の撮像面に結像させる。
 このような構成を採用することも可能であるが、照明光軸20a’から比較的遠くに位置する撮像素子の背面から側方(又は被検眼Eに向かう方向)にケーブルが配置されるため、ケーブルの引き回しを好適に行えないという問題が伴う。
〈第3実施形態〉
 本実施形態では、第1実施形態のスリットランプ顕微鏡1に適用可能な処理系の構成について説明する。なお、本実施形態の撮影系3においては、例えば第2実施形態で説明した図5のように、左撮影光軸30Laと右撮影光軸30Raとが照明光軸20aに対して互いに反対の方向に傾斜して配置されている。本実施形態の処理系は、次のようなアーティファクトに係る処理を実行する。
 図7に示すデータ処理部8Aは、第1実施形態のデータ処理部8の例である。データ処理部8Aは画像選択部81を含む。
 画像選択部81は、左撮影系30L及び右撮影系30Rにより実質的に同時に取得された2つの画像のいずれかにアーティファクトが含まれるか判定する。アーティファクト判定は、所定の画像解析を含み、典型的には、画素に割り当てられた輝度情報に関する閾値処理を含む。
 この閾値処理では、例えば、予め設定された閾値を超える輝度値が割り当てられた画素が特定される。典型的には、閾値は、画像中のスリット光照射領域の輝度値よりも高く設定される。この場合、画像選択部81は、スリット光の照射領域をアーティファクトとして判定せず、且つ、それよりも明るい像(例えば正反射像)をアーティファクトとして判定する。
 画像選択部81は、アーティファクト判定のために、例えば、パターン認識、セグメンテーション、エッジ検出など、閾値処理以外の任意の画像解析を実行してもよい。一般に、画像解析、画像処理、人工知能、コグニティブ・コンピューティングなど、任意の情報処理技術を、アーティファクト判定に適用することが可能である。
 アーティファクト判定の結果、左撮影系30L及び右撮影系30Rにより実質的に同時に取得された2つの画像の一方の画像にアーティファクトが含まれると判定されたとき、画像選択部81は、他方の画像を選択する。つまり、画像選択部81は、これら2つの画像のうち、アーティファクトが含まれると判定された画像ではない方の画像を選択する。
 双方の画像にアーティファクトが含まれる場合、画像選択部81は、例えば、アーティファクトが観察や診断に与える悪影響を評価し、悪影響が小さい側の画像を選択することができる。この評価は、例えば、アーティファクトの大きさ及び/又は位置に基づき行われる。典型的には、含まれるアーティファクトが大きい画像は悪影響が大きいと評価され、スリット光照射領域などの注目領域やその近傍にアーティファクトが位置している画像は悪影響が大きいと評価される。
 なお、双方の画像にアーティファクトが含まれる場合、第4実施形態で説明するアーティファクト除去を適用してもよい。
 第2実施形態で説明したように、左撮影系30Lは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第1画像群を取得する。同様に、右撮影系30Rは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第2画像群を取得する。繰り返し撮影は典型的には動画撮影であり、第1画像群及び第2画像群のそれぞれは、動画像を構成するフレーム群である。また、前述したように、第1画像群及び第2画像群のうち実質的に同時に取得された画像同士がペアリングされている。
 画像選択部81は、ペアリングされた2つの画像(第1画像群からの画像と第2画像群からの画像との組み合わせ)のうちの1つを選択する。これにより、例えば、複数の画像ペアのそれぞれから1つの画像が選択され、実質的にアーティファクトを含まない複数の画像が選択される。
 データ処理部8Aは、3次元画像構築部82を更に含む。3次元画像構築部82は、画像選択部81により第1画像群及び第2画像群から選択された画像を含む画像群に基づいて3次元画像を構築する。この画像群は、画像選択部81により第1画像群及び第2画像群から選択された複数の画像のいずれかのみを含んでいてもよいし、これら以外の画像を更に含んでいてもよい。
 なお、3次元画像は、3次元座標系によって画素の位置が定義された画像(画像データ)である。3次元画像の例として、スタックデータやボリュームデータがある。スタックデータは、複数の2次元画像をそれらの位置関係に応じて単一の3次元座標系に埋め込むことで構築される。ボリュームデータは、ボクセルデータとも呼ばれ、例えば、スタックデータにボクセル化を適用することで構築される。
 3次元画像を構築する処理の例を説明する。3次元画像構築が適用される画像群は、図3に示す複数の前眼部画像(フレーム群)F1、F2、F3、・・・、FNであるとする。前眼部画像Fnにはスリット光照射領域Anが含まれている(n=1、2、・・・、N)。
 3次元画像構築部82は、前眼部画像Fnを解析してスリット光照射領域Anを抽出する。スリット光照射領域Anの抽出は、画素に割り当てられた輝度情報を参照して行われ、典型的には閾値処理を含む。これにより、スリット光照射領域An(のみ)が描出されたスリット光照射領域画像Gnが得られる(n=1、2、・・・、N)。図8は、複数の前眼部画像F1~FNから構築された複数のスリット光照射領域画像G1~GNの例を示す。
 スリット光照射領域画像Gnにアーティファクトが含まれている場合、例えば公知の画像処理又は他の実施形態に係る画像処理によって、スリット光照射領域画像Gnからアーティファクトを除去することができる。また、他の実施形態で説明する歪み補正を前眼部画像Fn又はスリット光照射領域画像Gnに適用することができる。
 3次元画像構築部82は、複数のスリット光照射領域画像G1~GNの少なくとも一部に基づいて3次元画像を構築する。3次元画像やその構築の詳細については、他の実施形態で説明する。
 本実施形態により奏される効果を説明する。
 本実施形態では、例えば図5に示すように、左撮影光軸30Laと右撮影光軸30Raとが、照明光軸20aに対して互いに反対の方向に傾斜して配置されている。本実施形態のデータ処理部8Aは画像選択部81を含む。画像選択部81は、左撮影系30L及び右撮影系30Rにより実質的に同時に取得された2つの画像のいずれかにアーティファクトが含まれるか判定する。2つの画像のうちの一方の画像にアーティファクトが含まれると判定された場合、画像選択部81は、2つの画像のうちの他方の画像、つまりアーティファクトが含まれていない画像、を選択する。
 このような構成によれば、観察や診断の妨げになるアーティファクト(正反射像など)を含まない画像を選択することが可能である。
 更に、本実施形態のデータ処理部8Aは3次元画像構築部82を含む。3次元画像構築部82は、左撮影系30Lにより取得された複数の画像及び右撮影系30Rにより取得された複数の画像のうちから画像選択部81によって選択された画像を含む画像群に基づいて、被検眼Eの前眼部を表す3次元画像を構築する。
 このような構成によれば、観察や診断の妨げになるアーティファクトを含まない画像群に基づいて、前眼部の3次元画像を構築することが可能である。
〈第4実施形態〉
 本実施形態では、第1実施形態のスリットランプ顕微鏡1に適用可能な処理系の構成について説明する。
 本実施形態の撮影系3においては、第2実施形態で説明した図5のように、左撮影光軸30Laと右撮影光軸30Raとが照明光軸20aに対して互いに反対の方向に傾斜して配置されていてもよいし、或いは、2つの撮影光軸が照明光軸に対して同じ方向に配置されていてもよい。後者の場合、2つの撮影光軸のうちの一方の撮影光軸と照明光軸とがなす角度と、他方の撮影光軸と照明光軸とがなす角度とは、互いに異なる。また、いずれの場合においても、照明光軸に対する一方の撮影光軸の位置と、照明光軸に対する他方の撮影光軸の位置とは、互いに異なる。本実施形態の処理系は、次のようなアーティファクトに係る処理を実行する。
 図9に示すデータ処理部8Bは、第1実施形態のデータ処理部8の例である。データ処理部8Bはアーティファクト除去部83を含む。
 アーティファクト除去部83は、左撮影系30L及び右撮影系30Rにより実質的に同時に取得された2つの画像を比較することにより、これら2つの画像のいずれかにアーティファクトが含まれるか判定する。ここで、左撮影系30L及び右撮影系30Rにより実質的に同時に取得された2つの画像は、例えば、前述した画像のペアリングによって互いに対応付けられたものである。
 前述したように、本実施形態では、照明光軸に対する一方の撮影光軸の位置と、照明光軸に対する他方の撮影光軸の位置とが、互いに異なっている。したがって、一方の撮影系(例えば左撮影系30L)により取得された画像におけるアーティファクトの位置と、他方の撮影系(例えば右撮影系30R)により取得された画像におけるアーティファクトの位置とが、互いに異なる。或いは、比較される2つの画像のうち一方の画像にのみアーティファクトが含まれる。
 アーティファクト除去部83は、これら2つの画像のそれぞれを解析してアーティファクトを含むか判定する。アーティファクト判定は、例えば第3実施形態の画像選択部81と同じ要領で実行される。
 2つの画像の一方にのみアーティファクトが含まれている場合、アーティファクト除去部83がこのアーティファクトを除去するか、或いは第3実施形態のようにアーティファクトが含まれない画像を選択することができる。なお、2つの画像の一方にアーティファクトが含まれ、且つ、他方にアーティファクトが含まれないと判定することは、2つの画像の比較に相当する。
 2つの画像の双方にアーティファクトが含まれている場合、アーティファクト除去部83は、2つの画像の一方又は双方を処理してアーティファクトを除去する。
 アーティファクト除去部83は、アーティファクトが除去された画像領域に、他の画像の部分領域を貼り付けることができる。前述したように、比較される2つの画像におけるアーティファクトの位置が異なるか、或いは、これら2つの画像の一方にしかアーティファクトは含まれないので、一方の画像からアーティファクトが除去された場合、他方の画像における対応領域はアーティファクトではない。アーティファクト除去部83は、この対応領域を他方の画像から抽出し、これをアライメントが除去された箇所に貼り付ける。
 或いは、第2実施形態の動画撮影系40のように他の撮影系が設けられている場合、それにより取得された前眼部の画像における対応領域を抽出し、これをアライメントが除去された箇所に貼り付けることが可能である。
 第2実施形態で説明したように、左撮影系30Lは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第1画像群を取得する。同様に、右撮影系30Rは、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第2画像群を取得する。繰り返し撮影は典型的には動画撮影であり、第1画像群及び第2画像群のそれぞれは、動画像を構成するフレーム群である。また、前述したように、第1画像群及び第2画像群のうち実質的に同時に取得された画像同士がペアリングされている。アーティファクト除去部83は、複数の画像ペアのそれぞれについて、上記のようなアライメント除去を適用する。
 データ処理部8Bは、3次元画像構築部84を更に含む。3次元画像構築部84は、アーティファクト除去部83によりアーティファクトが除去された画像を含む画像群に基づいて3次元画像を構築する。この画像群は、アーティファクト除去部83により処理された複数の画像のいずれかのみを含んでいてもよいし、これら以外の画像を更に含んでいてもよい。3次元画像やその構築の詳細については、他の実施形態で説明する。
 本実施形態により奏される効果を説明する。
 本実施形態のデータ処理部8Bはアーティファクト除去部83を含む。アーティファクト除去部83は、左撮影系30L及び右撮影系30Rにより実質的に同時に取得された2つの画像を比較することにより、これら2つの画像のいずれかにアーティファクトが含まれるか判定する。いずれかの画像にアーティファクトが含まれると判定された場合、アーティファクト除去部83は、このアーティファクトの除去を実行する。
 このような構成によれば、観察や診断の妨げになるアーティファクト(正反射像など)を含まない画像を構築することが可能である。
 更に、本実施形態のデータ処理部8Bは3次元画像構築部84を含む。3次元画像構築部84は、アーティファクト除去部83によりアーティファクトが除去された画像を含む画像群に基づいて、被検眼Eの前眼部を表す3次元画像を構築する。
 このような構成によれば、観察や診断の妨げになるアーティファクトを含まない画像群に基づいて、前眼部の3次元画像を構築することが可能である。
〈第5実施形態〉
 本実施形態では、第1実施形態のスリットランプ顕微鏡1に適用可能な処理系の構成について説明する。第3実施形態及び第4実施形態では、典型的には、第1撮影系及び第2撮影系により実質的に同時に取得された2つの画像に対してアーティファクトに関する処理を適用し、アーティファクトを含まない画像群に基づいて3次元画像を構築している。一方、アーティファクトに関する処理を経ることなく3次元画像を構築することも可能である。本実施形態は、このような場合に適用可能である。
 図10に示すデータ処理部8Cは、第1実施形態のデータ処理部8の例である。データ処理部8Cは3次元画像構築部85を含む。
 本実施形態の第1の例では、第1実施形態で説明したように、撮影系3が、移動機構6による照明系2及び撮影系3の移動と並行して繰り返し撮影を行うことにより、被検眼Eの前眼部の複数の画像を取得する。
 3次元画像構築部85は、撮影系3により取得された複数の画像に基づいて3次元画像を構築することができる。3次元画像構築に用いられる画像群は、撮影系3により取得された複数の画像のいずれかのみを含んでいてもよいし、これら以外の画像を更に含んでいてもよい。3次元画像やその構築の詳細については、他の実施形態で説明する。
 本実施形態の第2の例では、第2実施形態で説明したように、左撮影系30Lが、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第1画像群を取得する。同様に、右撮影系30Rが、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して繰り返し撮影を行うことにより第2画像群を取得する。第1画像群及び第2画像群のうち実質的に同時に取得された画像同士はペアリングされている。
 3次元画像構築部85は、左撮影系30Lにより取得された第1画像群に基づいて3次元画像を構築することができる。この3次元画像の構築に用いられる画像群は、第1画像群のいずれかのみを含んでいてもよいし、これら以外の画像を更に含んでいてもよい。同様に、3次元画像構築部85は、右撮影系30Rにより取得された第2画像群に基づいて3次元画像を構築することができる。この3次元画像の構築に用いられる画像群は、第2画像群のいずれかのみを含んでいてもよいし、これら以外の画像を更に含んでいてもよい。3次元画像やその構築の詳細については、他の実施形態で説明する。
 本実施形態により奏される効果を説明する。
 本実施形態のデータ処理部8Cは3次元画像構築部85を含む。3次元画像構築部85は、撮影系3により取得された複数の画像に基づいて3次元画像を構築する。撮影系3は、左撮影系30L及び右撮影系30Rの双方を含んでいてもよいし、これらの一方に対応する単一の撮影系のみを含んでいてもよい。
 このような構成によれば、被検眼Eの前眼部における3次元領域を表す3次元画像を構築することが可能である。3次元画像は観察や診断に有用である。
〈第6実施形態〉
 本実施形態は、第3~第5実施形態のように前眼部の3次元画像を構築可能である場合に適用可能である。
 前述したように、3次元画像は、スリット光のスキャンによって逐次に得られた複数の画像から構築される。複数の画像から3次元画像を構築するには複数の画像を配列する必要があるが、複数の画像は異なるタイミングで得られたものであるため、高い確度、高い精度で複数の画像を配列することは困難である。本実施形態は、このような問題を解決すべく考案されたものである。
 図11に示す制御部7は第1実施形態のそれと同様である。移動機構6Aは、第1実施形態の移動機構6の例であり、平行移動機構61と回転機構62とを含む。データ処理部8Dは3次元画像構築部86を含む。3次元画像構築部86は、第3実施形態の3次元画像構築部82の例であり、第4実施形態の3次元画像構築部84の例であり、且つ、第5実施形態の3次元画像構築部85の例である。3次元画像構築部86は画像位置決定部87を含む。
 第1実施形態の図1に示す構成が適用される場合、平行移動機構61は、スリット光で前眼部をスキャンするために、照明系2及び撮影系3を一体的にX方向に移動する。
 第2実施形態の図5に示す構成が適用される場合、平行移動機構61は、スリット光で前眼部をスキャンするために、照明系20、左撮影系30L及び右撮影系30Rを一体的にX方向に移動する。
 第1実施形態の図1に示す構成が適用される場合、回転機構62は、照明光軸2aを回転軸として照明系2及び撮影系3を一体的に回転する。
 第2実施形態の図5に示す構成が適用される場合、回転機構62は、照明光軸20aを回転軸として照明系20、左撮影系30L及び右撮影系30Rを一体的に回転する。
 これにより、被検眼Eの前眼部に照射されるスリット光の向きを回転することができ、且つ、スリット光の向きの回転と同じ角度だけ撮影方向も回転する。
 第1実施形態の図1に示す構成が適用される場合、照明系2及び撮影系3が第1回転位置に配置されているときにスリット光による前眼部スキャンが実行されて撮影系3により複数の画像が取得される。
 第2実施形態の図5に示す構成が適用される場合、照明系20、左撮影系30L及び右撮影系30Rが第1回転位置に配置されているときにスリット光による前眼部スキャンが実行され、左撮影系30Lにより第1画像群が取得され、且つ、右撮影系30Rにより第2画像群が取得される。
 第1回転位置は、例えば、前眼部に投射されるスリット光の長手方向が被検者の体軸方向(Y方向)に一致するような回転位置である。
 第1実施形態の図1に示す構成が適用される場合、第1回転位置と異なる第2回転位置に照明系2及び撮影系3が配置されているときに、撮影系3は、照明系20によりスリット光が照射されている前眼部の画像を取得する。
 第2実施形態の図5に示す構成が適用される場合、第1回転位置と異なる第2回転位置に照明系20、左撮影系30L及び右撮影系30Rが配置されているときに、左撮影系30L及び右撮影系30Rのそれぞれは、照明系20によりスリット光が照射されている前眼部の画像を取得する。
 第2回転位置は、例えば、前眼部に投射されるスリット光の長手方向が左右方向(X方向)に一致するような回転位置である。これにより、第1回転位置にて行われる前眼部スキャンとは別に、1回以上の撮影が行われる。この付加的な撮影において、スリット光の向きは、前眼部スキャン時のそれと異なる。典型的には、前眼部スキャンにおける全てのスリット光照射領域を通過するように、スリット光の向きを設定することができる。
 画像位置決定部87は、第2回転位置において取得された前眼部の画像に基づいて、第1回転位置において取得された前眼部の複数の画像の相対位置を決定する。この画像位置決定は、第2回転位置にて得られた画像を参照して、第1回転位置にて得られた複数の画像の配列を調整するものである。
 画像位置決定部87は、例えば、第1回転位置にて得られた各画像と、第2回転位置にて得られた画像とを解析して両者の共通領域を特定する。更に、画像位置決定部87は、特定された共通領域を基準として、第1回転位置にて得られた各画像と、第2回転位置にて得られた画像との相対位置を決定する。
 第1回転位置にて得られた全ての画像に対してこのような処理を適用することにより、第2回転位置にて得られた画像を基準として、第1回転位置にて得られた全ての画像が配列される。すなわち、第2回転位置にて得られた画像を媒介して、第1回転位置にて得られた全ての画像の相対位置が決定される。
 画像位置決定部87が実行する処理は、例えば、画像相関処理、セグメンテーション、パターンマッチング、人工知能を利用した処理、コグニティブ・コンピューティングを利用した処理など、任意の情報処理を含んでいてよい。
 3次元画像構築部86は、画像位置決定部87により決定された相対位置に基づいて、第1回転位置にて得られた複数の画像を単一の3次元座標系に配列し、3次元画像を形成する。
 図12は、本実施形態におけるスリット光の照射位置の例を示す。図12は、前眼部を正面から見た状態を表している。照明系2及び撮影系3が第1回転位置に配置されているとき、前眼部スキャンにおける複数のスリット光照射領域は、Y方向を長手方向とし且つX方向に配列された複数のストリップ状領域に相当する。本例の前眼部スキャンでは、これらストリップ状領域に対し、矢印11により示された順序で、順次にスリット光が照射される。各ストリップ状領域にスリット光が照射されているときに、少なくとも1回の撮影が行われる。
 一方、符号12は、照明系2及び撮影系3が第2回転位置に配置されているときに前眼部に照射されるスリット光の位置を示す。第2回転位置に対応するスリット光照射領域12は、X方向を長手方向とするストリップ状領域である。つまり、本例では、第1回転位置にて前眼部に照射されるスリット光の向きと、第2回転位置にて前眼部に照射されるスリット光の向きとが互いに直交している。なお、第1回転位置にて前眼部に照射されるスリット光の向きと、第2回転位置にて前眼部に照射されるスリット光の向きとの関係は、これに限定されず、双方の向きが異なっていれば十分である。
 ここでは、照明系2及び撮影系3が適用される場合について説明したが、照明系20、左撮影系30L及び右撮影系30Rが適用される場合などにおいても同様である。
 本例では、第1回転位置での前眼部スキャンと、第2回転位置での撮影との双方が実行されるが、これらを実施するタイミングは任意であってよい。例えば、第2回転位置での撮影を行った後に第1回転位置での前眼部スキャンを行うことや、第1回転位置での前眼部スキャンの後に第2回転位置での撮影を行うことや、第1回転位置での前眼部スキャンの途中段階で第2回転位置での撮影を行うことが可能である。
 本実施形態により奏される効果を説明する。
 本実施形態の移動機構6Aは、照明光軸2a(20a)を回転軸として照明系2(20)及び撮影系3(30L、30R)を一体的に回転する回転機構62を含む。照明系2(20)及び撮影系3(30L、30R)が第1回転位置に配置されているときに、撮影系3(30L、30R)は、スリット光が照射されている前眼部の複数の画像を取得する。更に、第1回転位置と異なる第2回転位置に照明系2(20)及び撮影系3(30L、30R)が配置されているときに、撮影系3(30L、30R)は、照明系2(20)によりスリット光が照射されている前眼部の画像を取得する。画像位置決定部87は、第2回転位置において取得された画像に基づいて、第1回転位置において取得された複数の画像の相対位置を決定する。3次元画像構築部86は、決定された相対位置に基づき複数の画像の間の位置合わせを行って3次元画像を構築する。
 このような構成によれば、第1回転位置において取得された複数の画像の間の位置合わせを、第2回転位置において取得された画像を参照して行うことができるので、3次元画像構築の確度や精度の向上を図ることが可能である。
 なお、「第1回転位置において取得された複数の画像の相対位置を決定する」は、当該複数の画像自体の相対位置を決定することだけでなく、当該複数の画像からそれぞれ抽出された複数のスリット光照射領域の相対位置を決定することも含む。よって、本実施形態は、当該複数の画像の相対位置を決定した後にスリット光照射領域を抽出する場合と、当該複数の画像からスリット光照射領域を抽出した後にそれらの相対位置を決定する場合との双方を含む。
 また、本実施形態は、第3実施形態が適用される場合のように、第1回転位置において取得された複数の画像から選択された画像群の相対位置を決定することを含む。更に、本実施形態は、第4実施形態が適用される場合のように、第1回転位置において取得された複数の画像を加工して得られた画像群の相対位置を決定することを含む。よって、本実施形態は、当該複数の画像の相対位置を決定した後に画像の選択又は加工を行う場合と、画像の選択又は加工を行った後に選択画像又は加工画像の相対位置を決定する場合との双方を含む。
〈第7実施形態〉
 本実施形態では、第3~第6実施形態などにおいて説明した3次元画像構築について説明する。
 図13に示す3次元画像構築部88は、画像領域抽出部89と、画像合成部90とを含む。
 第1実施形態の図1に示す構成が適用される場合、画像領域抽出部89は、照明系2及び撮影系3の移動と並行して撮影系3により取得された複数の画像のそれぞれから、照明系2からのスリット光の照射領域に対応する画像領域を抽出する。抽出される画像領域は、2次元画像領域又は3次元画像領域である。
 第2実施形態の図5に示す構成が適用される場合、画像領域抽出部89は、照明系20、左撮影系30L及び右撮影系30Rの移動と並行して左撮影系30Lにより取得された複数の画像のそれぞれから、照明系20からのスリット光の照射領域に対応する画像領域を抽出することができる。また、画像領域抽出部89は、照明系20、左撮影系30L及び右撮影系30Rの移動と並行して右撮影系30Rにより取得された複数の画像のそれぞれから、照明系20からのスリット光の照射領域に対応する画像領域を抽出することができる。本例においても、抽出される画像領域は、2次元画像領域又は3次元画像領域である。
 画像領域抽出部89が実行する処理は、例えば、第3実施形態において図3及び図8を参照しつつ説明した、前眼部画像Fnからスリット光照射領域Anを抽出してスリット光照射領域画像Gnを構築する処理と同じ要領で実行される。
 画像合成部90は、画像領域抽出部89により複数の画像からそれぞれ抽出された複数の画像領域(複数のスリット光照射領域)を合成して3次元画像を構築する。画像合成部90は、例えば、複数のスリット光照射領域を単一の3次元座標系に埋め込む処理を含み、埋め込まれた複数のスリット光照射領域を加工する処理を更に含んでもよい。複数のスリット光照射領域の加工としては、例えば、ノイズ除去、ノイズ低減、ボクセル化などを実行することが可能である。
 複数のスリット光照射領域を合成する前に、第6実施形態に係る処理を適用して複数のスリット光照射領域の相対位置を決定してもよい。
 画像領域抽出部89は、複数の画像のそれぞれから、スリット光照射領域及び前眼部の所定部位の双方に対応する画像領域を抽出するように構成されていてよい。前眼部の所定領域は、例えば、角膜前面及び水晶体後面により画成される部位であってよい。
 例えば、画像領域抽出部89は、まず、輝度情報の閾値処理によってスリット光照射領域を特定し、且つ、セグメンテーションによって角膜前面に相当する画像領域と水晶体後面に相当する画像領域とを特定する。
 次に、画像領域抽出部89は、角膜前面に相当する画像領域と水晶体後面に相当する画像領域とに基づき、角膜前面及び水晶体後面により画成される部位に対応する画像領域(対象画像領域)を特定する。
 続いて、画像領域抽出部89は、スリット光照射領域と対象画像領域との間の共通領域、つまりスリット光照射領域及び対象画像領域の双方に含まれる画像領域、を特定する。これにより、例えば、角膜前面から水晶体後面までの範囲においてスリット光照射領域に相当する、対象画像中の2次元画像領域(断面)又は3次元画像領域(スライス)が特定される。
 本例では、スリット光照射領域の抽出の後に画像合成を行っているが、この逆に、画像合成の後にスリット光照射領域の抽出を行ってもよい。また、抽出される画像領域はスリット光照射領域に限定されず、所定領域は角膜前面から水晶体後面までの部位に限定されない。
 このような構成によれば、スリット光を用いた前眼部スキャンで得られた複数の画像から、前眼部の所望の部位の3次元画像を取得することができる。特に、スリットランプ顕微鏡検査での主要な観察対象であるスリット光照射領域を表す3次元画像を構築することができ、更に、前眼部の主要な観察対象である角膜前面から水晶体後面までの部位を表す3次元画像を構築することができる。
〈第8実施形態〉
 本実施形態では、第3~第7実施形態などにおいて構築された3次元画像のレンダリングについて説明する。
 図14に示すデータ処理部8Eは、3次元画像構築部91と、レンダリング部92とを含む。3次元画像構築部91は、例えば、第3実施形態の3次元画像構築部82、第4実施形態の3次元画像構築部84、第5実施形態の3次元画像構築部85、第6実施形態の3次元画像構築部86、及び、第7実施形態の3次元画像構築部88のいずれかであってよい。
 レンダリング部92は、3次元画像構築部91により構築された3次元画像をレンダリングすることで新たな画像(レンダリング画像)を構築する。
 レンダリングは任意の処理であってよく、例えば3次元コンピュータグラフィクスを含む。3次元コンピュータグラフィクスは、3次元座標系により定義された3次元空間内の仮想的な立体物(スタックデータ、ボリュームデータなどの3次元画像)を2次元情報に変換することにより立体感のある画像を作成する演算手法である。
 レンダリングの例として、ボリュームレンダリング、最大値投影(MIP)、最小値投影(MinIP)、サーフェスレンダリング、多断面再構成(MPR)、プロジェクション画像構築、シャドウグラム構築などがある。レンダリングの更なる例として、スリットランプ顕微鏡で得られた断面画像の再現、シャインプルーフ画像の形成などがある。また、レンダリング部92は、このようなレンダリングとともに適用される任意の処理を実行可能であってよい。
 レンダリング部92は、前眼部の3次元画像において所定の部位に相当する領域を特定することができる。例えば、レンダリング部92は、角膜前面に相当する領域、角膜後面に相当する領域、水晶体前面に相当する領域、水晶体後面に相当する領域などを特定することができる。このような画像領域特定には、例えば、セグメンテーション、エッジ検出、閾値処理など、公知の画像処理が適用される。
 なお、3次元画像は、典型的にはスタックデータ又はボリュームデータである。3次元画像に対する断面の指定は、手動又は自動で行われる。
 3次元画像の断面を手動で指定する場合、レンダリング部92は、3次元画像をレンダリングして、手動断面指定のための表示画像を構築する。表示画像は、典型的には観察対象となる部位の全体を表す画像であり、例えば、角膜前面から水晶体後面までの部位を表す。表示画像を構築するためのレンダリングは、典型的には、ボリュームレンダリング又はサーフェスレンダリングである。
 制御部7は、レンダリング部92により構築された表示画像を、図示しない表示デバイスに表示させる。ユーザーは、ポインティングデバイスなどの操作デバイスを用いて、表示画像に対して所望の断面を指定する。表示画像に指定された断面の位置情報がレンダリング部92に入力される。
 表示画像は3次元画像のレンダリング画像であるから、表示画像と3次元画像との間には自明な位置の対応関係がある。この対応関係に基づき、レンダリング部92は、表示画像に指定された断面の位置に対応する、3次元画像における断面の位置を特定する。つまり、レンダリング部92は、3次元画像に対して断面を指定する。
 更に、レンダリング部92は、3次元画像を当該断面で切断して3次元部分画像を構築することができる。レンダリング部92は、この3次元部分画像をレンダリングして表示用の画像を構築することができる。このようなレンダリングの例、3次元部分画像の例、3次元部分画像に基づく表示用画像の例などについては、後述する。
 3次元画像の断面を自動で指定する場合、例えば、データ処理部8E(例えばレンダリング部92)は、3次元画像を解析して、前眼部の所定部位に相当する位置又は領域を特定することができる。例えば、角膜前面を特定することや、角膜前面の頂点位置を特定することや、水晶体後面を特定することや、水晶体後面の頂点位置を特定することが可能である。
 また、データ処理部8E(例えばレンダリング部92)は、3次元画像にセグメンテーションを適用して、所定部位に相当する画像領域を特定することができる。例えば、角膜前面に相当する2次元領域、角膜に相当する3次元領域、水晶体に相当する3次元領域、水晶体後面に相当する3次元領域、前房に相当する3次元領域などを特定することが可能である。
 データ処理部8E(例えばレンダリング部92)は、このようにして特定された位置や領域に基づいて、3次元画像に対して断面を指定することができる。例えば、角膜前面の頂点位置と水晶体後面の頂点位置とを通過する平面を断面として指定することや、水晶体前面に相当する曲面を断面として指定することが可能である。
 3次元画像に対して断面が指定されたときにレンダリング部92が構築できる画像は3次元部分画像に限定されない。例えば、3次元画像に対して断面が指定されたとき、レンダリング部92は、当該断面を表す2次元断面画像を構築することができる。このようなレンダリングの例、2次元断面画像の例、2次元断面画像に基づく表示用画像の例などについては、後述する。
 3次元画像に対して指定可能な位置情報は、平面状又は曲面状の2次元領域である断面に限定されない。3次元領域に指定可能な位置情報の他の例として、スライスがある。スライスは、所定の厚みを有する3次元領域であり、典型的には、一様な厚みを有する薄片である。
 3次元画像に対してスライスが指定されたとき、レンダリング部92は、当該スライスに対応する3次元スライス画像を構築することができる。レンダリング部92は、この3次元スライス画像をレンダリングして表示用の画像を構築することができる。このようなレンダリングの例、3次元スライス画像の例、3次元スライス画像に基づく表示用画像の例などについては、後述する。
 本実施形態により奏される効果を説明する。
 本実施形態は、3次元画像構築部91により構築された3次元画像をレンダリングしてレンダリング画像を構築するレンダリング部92を含む。これにより、3次元画像構築部91により構築された3次元画像に基づくレンダリング画像を表示することができ、前眼部の所望の部位を観察することが可能になる。
 レンダリングの手法は任意である。例えば、3次元画像に対して断面が指定されたとき、レンダリング部92は、この断面で3次元画像を切断して3次元部分画像を構築することができる。これにより、前眼部の所望の断面を観察できるとともに、前眼部の3次元形態を把握することも可能である。
 他の例において、3次元画像に対して断面が指定されたとき、レンダリング部92は、当該断面を表す2次元断面画像を構築することができる。これにより、前眼部の所望の断面を観察することが可能である。
 更に他の例において、3次元画像に対してスライスが指定されたとき、レンダリング部92は、当該スライスに対応する3次元スライス画像を構築することができる。これにより、前眼部の所望のスライスを観察することが可能である。
〈第9実施形態〉
 第1~第8実施形態に係るスリットランプ顕微鏡では、照明光軸と撮影光軸とが所定の角度をなしており、照明系及び撮影系はシャインプルーフカメラとして機能する。このようなスリットランプ顕微鏡により得られる画像は歪みを伴う。この歪みは、典型的には台形歪みである。
 本実施形態では歪み補正について説明する。この歪み補正は、典型的には台形補正(キーストーン補正)である。台形補正は周知技術であり、例えば特開2017-163465号公報(米国特許出願公開第2017/0262163号明細書)に開示されている。
 前述したように、前眼部において(つまり実空間において)、スリット光照射領域はZ方向に広がりを有し、スリット幅を無視すると、典型的にはYZ平面において定義される。一方、撮影系の光軸は、スリット光を照射する照明系の光軸に対してX方向に傾斜している。したがって、前眼部の撮影対象領域は、被検眼の表面に近づくほど大きく描出され、眼底に近づくほど小さく描出される。したがって、(少なくとも)Z方向における台形歪みが生じる。
 図15に示すデータ処理部8Fは歪み補正部93を含む。歪み補正部93は、第1~第8実施形態のいずれにも組み合わせ可能である。歪み補正部93は、撮影系3(左撮影系30L、右撮影系30R)により取得された前眼部画像に対して歪み補正を適用する。
 より具体的には、歪み補正部93は、照明光軸2a(20a)と撮影光軸3a(30La、30Ra)とがなす角度である光軸角度θ(θL、θR)に起因する歪みを補正するための処理(台形補正)を、照明系2(20)及び撮影系3(30L、30R)の移動と並行して撮影系3(30L、30R)により取得された複数の画像のうちの少なくとも1つに適用する。
 歪み補正が適用される画像は、撮影系3(30L、30R)により取得された前眼部画像自体には限定されず、撮影系3(30L、30R)により取得された前眼部画像から抽出されたスリット光照射領域などであってもよい。よって、前眼部画像の歪みを補正した後にスリット光照射領域を抽出してもよいし、逆に、前眼部画像からスリット光照射領域を抽出した後に、このスリット光照射領域の歪みを補正してもよい。
 また、第3実施形態や第4実施形態における「画像群」のように、撮影系3(30L、30R)により取得された前眼部画像のうちから選択された前眼部画像の歪みを補正することや、撮影系3(30L、30R)により取得された前眼部画像を加工して得られた画像の歪みを補正することも含む。よって、前眼部画像の歪みを補正した後に前眼部画像の選択・加工を行ってもよいし、前眼部画像の選択又は加工を行った後に選択画像又は加工画像の歪みを補正してもよい。
 典型的な実施形態において、スリットランプ顕微鏡は、図1又は図5に示す光学系を備え、歪み補正部93によってYZ平面における歪みが補正される。
 図1に示す例において、撮影光軸3aは、照明光軸2aに対して、照明光軸2aに沿う第1方向(Z方向)及びスリット光の長手方向に沿う第2方向(Y方向)の双方に直交する第3方向(X方向)に傾斜して配置されている。ここで、照明光軸2aと撮影光軸3aとがなす光軸角度は、図1に示す角度θである。歪み補正部93は、第1方向(Z方向)及び第2方向(Y方向)の双方を含む平面(YZ平面)における歪みを補正するための処理を、撮影系3により取得された前眼部画像に適用することができる。
 図5に示す例において、左撮影光軸30Laは、照明光軸20aに対して、照明光軸20aに沿う第1方向(Z方向)及びスリット光の長手方向に沿う第2方向(Y方向)の双方に直交する第3方向(X方向)に傾斜して配置されている。ここで、照明光軸20aと左撮影光軸30Laとがなす光軸角度は、図5に示す角度θLである。歪み補正部93は、第1方向(Z方向)及び第2方向(Y方向)の双方を含む平面(YZ平面)における歪みを補正するための処理を、左撮影光軸30Laにより取得された前眼部画像に適用することができる。
 同様に、右撮影光軸30Raは、照明光軸20aに対して、照明光軸20aに沿う第1方向(Z方向)及びスリット光の長手方向に沿う第2方向(Y方向)の双方に直交する第3方向(X方向)に傾斜して配置されている。ここで、照明光軸20aと右撮影光軸30Raとがなす光軸角度は、図5に示す角度θRである。歪み補正部93は、第1方向(Z方向)及び第2方向(Y方向)の双方を含む平面(YZ平面)における歪みを補正するための処理を、右撮影光軸30Raにより取得された前眼部画像に適用することができる。
 一般的な台形補正は、矩形を歪ませて台形化した形状を元の矩形に戻すように行われる。本実施形態では、このような標準的な台形補正を適用することも可能であるが、以下に説明するように、他の台形補正を適用することが有効な場合もある。
 一般に、スリットランプ顕微鏡を用いて前眼部の光切片(つまりスリット光照射領域)を観察する際には、照明系の光軸(照明光軸)に対して観察系の光軸(観察光軸)が傾斜される。よって、ユーザーは、Z方向に延びる光切片を斜めから観察する。このとき、照明光軸と観察光軸とがなす角度(観察角度)は、典型的には既定の値である(例えば、17.5度、30度、又は45度)。この既定値を基準角度(α)と呼ぶ。
 基準角度αと光軸角度β(θ、θL、θR)とに基づいて、歪み補正(台形補正)の補正係数を設定することができる。少なくとも1つの基準角度αと、少なくとも1つの光軸角度β(θ、θL、θR)とについて、補正係数が設定される。2つ以上の基準角度と1つの光軸角度との組み合わせのそれぞれについて補正係数を設定することや、1つの基準角度と2つ以上の光軸角度との組み合わせのそれぞれについて補正係数を設定することや、2つ以上の基準角度と2つ以上の光軸角度との組み合わせのそれぞれについて補正係数を設定することも可能である。一般に、基準角度α及び光軸角度βの一方又は双方を変数とする離散的又は連続的な補正係数C(α、β)を設定することが可能である。
 このようにして設定された1以上の補正係数C(α、β)は歪み補正部93に格納される。歪み補正部93は、補正係数C(α、β)に基づいて歪みを補正するための処理を実行することができる。
 補正係数C(α、β)が複数の値を提供する場合、歪み補正部93又はユーザーは、基準角度α及び光軸角度βの一方又は双方を指定する。歪み補正部93は、この指定の結果に応じた補正係数を適用する。このような構成は、例えば、光軸角度βが可変なスリットランプ顕微鏡が適用される場合に適用され、光軸角度ベータの可変範囲における複数の補正係数を示すテーブルやグラフが準備される。
 補正係数を示す情報を準備する代わりに、次の構成を適用することが可能である。すなわち、本例の歪み補正部は、補正係数を算出するための所定の演算式を予め記憶する。更に、本例の歪み補正部は、基準角度α及び/又は光軸角度βの入力を受け、この入力値を演算式に代入して補正係数を算出する。本例の歪み補正部は、算出された補正係数を用いて歪み補正を実行する。
 本実施形態により奏される効果を説明する。
 本実施形態は、歪み補正部93を含む。図1に示す構成において、歪み補正部93は、移動機構6による照明系2及び撮影系3の移動と並行して撮影系3が繰り返し撮影を行うことにより取得した複数の画像のうちの少なくとも1つに対し、照明系2の光軸2aと撮影系3の光軸3aとがなす角度である光軸角度θに起因する歪みを補正するための処理を適用することができる。なお、図5に示す構成や他の構成が採用される場合においても同様である。
 このような構成によれば、光軸角度θに起因する歪みが補正された好適な画像を提供することが可能になる。
 図1に示す構成において、撮影系3に含まれる光学系4の光軸3aは、照明系2の光軸2aに対して、照明系2の光軸2aに沿う第1方向(Z方向)及びスリット光の長手方向に沿う第2方向(Y方向)の双方に直交する第3方向(X方向)に傾斜して配置されている。歪み補正部93は、第1方向及び第2方向の双方を含む平面(YZ平面)における歪みを補正するための処理を実行することができる。図5に示す構成や他の構成が採用される場合においても同様である。
 このような構成によれば、第1方向及び第2方向の双方を含む平面に台形歪みが発生すが、これを補正することが可能である。
 図1に示す構成において、歪み補正部93は、所定の基準角度αと光軸角度θとに基づき設定された補正係数Cを予め記憶している。歪み補正部93は、この補正係数Cに基づいて、光軸角度θに起因する歪みを補正するための処理を画像に適用することができる。図5に示す構成や他の構成が採用される場合においても同様である。
〈第10実施形態〉
 スリットランプ顕微鏡検査において、組織のサイズや形状、組織間の位置関係などを参照することがある。本実施形態では、そのための計測について説明する。
 図16に示すデータ処理部8Gは計測部94を含む。計測部94は、第1~第9実施形態のいずれかに組み合わせ可能である。
 第1~第9実施形態に係るスリットランプ顕微鏡に計測部94を組み合わせた場合、計測部94は、スリット光を用いた前眼部スキャンにより取得された前眼部画像を解析することで、所定の計測値を求めることができる。
 3次元画像を構築可能なスリットランプ顕微鏡に計測部94を組み合わせた場合、計測部94は、3次元画像構築部82(84、85、86、88、91)により構築された3次元画像を解析することにより、所定の計測値を求めることができる。
 計測は、例えば、組織の形態を示すパラメータ(厚み、径、面積、体積、角度、形状など)、組織間の関係を示すパラメータ(距離、方向など)に関して実行される。計測のための解析は、例えば、組織又はその輪郭を特定するためのセグメンテーションを含む。
 このような本実施形態によれば、前眼部の観察や診断に有効なパラメータについて計測を行うことが可能である。
 歪み補正を実行可能な第9実施形態に計測部94を組み合わせることで、歪み補正が適用された画像に基づき計測を行うことができる。これにより、計測確度の向上や計測精度の向上を図ることが可能となる。
〈第11実施形態〉
 第2実施形態の動画撮影系40のように、スリット光を用いた前眼部スキャンと並行して前眼部を固定位置から動画撮影する機能をスリットランプ顕微鏡が備える場合、本実施形態に係る機能を更に付加することができる。
 本実施形態の制御部7Aは移動制御部71を含み、データ処理部8Hは運動検出部95を含む。また、本実施形態は、動画撮影系40を含む。動画撮影系40は、スリット光を用いた前眼部スキャンと並行して前眼部を固定位置から動画撮影する。
 運動検出部95は、動画撮影系40により取得される動画像を解析して被検眼Eの運動を検出する。この運動検出は、動画撮影系40と並行して実行される。
 例えば、運動検出部95は、まず、動画撮影系40から逐次に入力されるフレームを解析して所定部位に相当する画像領域を特定する。所定部位は、典型的には、瞳孔の中心、重心、輪郭などであってよい。画像領域特定は、画素に割り当てられた輝度情報に基づき行われる。運動検出部95は、前眼部の画像における低輝度の画像領域を瞳孔領域として特定し、この瞳孔領域の重心又は輪郭を特定することができる。或いは、運動検出部95は、瞳孔領域の近似円又は近似楕円を求め、その中心又は輪郭を特定することが可能である。
 このように、運動検出部95は、動画撮影系40から入力されるフレーム中の特徴点を逐次に求める。更に、運動検出部95は、逐次に特定される特徴点の位置の時間変化を求める。動画撮影系40は固定配置されているので、このような処理により運動検出部95は被検眼Eの運動を(リアルタイムで)検出することが可能である。
 移動制御部71は、運動検出部95からの出力に基づいて移動機構6を制御することができる。より具体的に説明すると、運動検出部95は、動画撮影系40から逐次に入力されるフレーム中の特徴点の位置の時間変化を示す情報を、移動制御部71に逐次に入力する。移動制御部71は、運動検出部95から逐次に入力される情報にしたがって移動機構6を制御する。この移動制御は、被検眼Eの運動に起因するアライメント状態の変化を打ち消すように実行される。このような動作はトラッキングを呼ばれる。
 このような本実施形態によれば、スリット光を用いた前眼部スキャン中に被検眼Eが動いたとき、この動きに応じてアライメント状態が自動で補正される。これにより、被検眼の運動の影響を受けることなく、スリット光を用いた前眼部スキャンを行うことが可能である。
〈使用形態〉
 実施形態に係るスリットランプ顕微鏡の例示的な使用形態を説明する。ここでは、図5に示す光学系が適用される。テーブル、イス、顎受け台の調整、撮影開始の指示、アライメントなどは、前述した要領で行われる。
 まず、第6実施形態で説明したように、前眼部に照射されるスリット光の長手方向が左右方向(X方向)に一致するように、制御部7が回転機構62を制御する。左撮影系30L又は右撮影系30Rは、当該向きのスリット光が照射されている前眼部を撮影する。
 これにより、図18に示す前眼部画像H0が取得される。前眼部画像H0には、左右方向(X方向)を長手方向とするスリット光が照射されている領域であるスリット光照射領域J0が含まれている。
 なお、左撮影系30L及び右撮影系30Rの双方が前眼部を撮影してもよい。この場合、スリット光照射領域を斜め上方から撮影した画像と、斜め下方から撮影した画像とが得られる。
 次に、前眼部に照射されるスリット光の長手方向が上下方向(Y方向)に一致するように、制御部7が回転機構62を制御する。制御部7は、スリット光を用いた前眼部スキャンを実行するように、照明系20、左撮影系30L、右撮影系30R、及び移動機構6を制御する。すなわち、左撮影系30L及び右撮影系30Rのそれぞれが、移動機構6による照明系20、左撮影系30L及び右撮影系30Rの移動と並行して、被検眼Eの前眼部を繰り返し撮影する。
 これにより、左撮影系30Lは、図19Aに示すN枚の前眼部画像HL1~HLNを含む第1画像群を取得し、右撮影系30Rは、図19Bに示すN枚の前眼部画像HR1~HRNを含む第2画像群を取得する。左撮影系30Lにより取得された前眼部画像HLnには、斜め左方から撮影されたスリット光照射領域JLnが描出されている(n=1、2、・・・、N)。右撮影系30Rにより取得された前眼部画像HRnには、斜め右方から撮影されたスリット光照射領域JRnが描出されている(n=1、2、・・・、N)。
 ここで、前述した画像ペアリングにより、前眼部画像HLnと前眼部画像HRnとが互いに対応付けられているものとする(n=1、2、・・・、N)。実際の前眼部スキャンでは、後に構築される3次元画像の解像度を考慮し、左右それぞれの前眼部画像の枚数Nは200以上に設定される。なお、枚数Nは任意である。
 図20は、実際に行われた前眼部スキャンで取得された前眼部画像を示す。これら前眼部画像のそれぞれには、高輝度で提示されたスリット光照射領域が含まれている。
 続いて、第7実施形態(図13)の画像領域抽出部89が、前眼部画像HLnからスリット光照射領域JLnを抽出し、且つ、前眼部画像HRnからスリット光照射領域JRnを抽出する。図21Aは、複数の前眼部画像HL1~HLNからそれぞれ構築された複数のスリット光照射領域画像KL1~KLNを示す。図21Bは、複数の前眼部画像HR1~HRNからそれぞれ構築された複数のスリット光照射領域画像KR1~KRNを示す。
 次に、第3実施形態又は第4実施形態に係る処理を、スリット光照射領域画像KLn及びスリット光照射領域画像KRnに適用することで、アーティファクトを含まない複数のスリット光照射領域画像が得られる。図22に例示する複数のスリット光照射領域画像K1~KNは、いずれもアーティファクトを含まない。スリット光照射領域画像K1~KNは、それぞれ、スリット光照射領域J1~JNを含む。
 続いて、スリット光照射領域画像K1~KNのそれぞれに対し、第9実施形態で説明した歪み補正(台形補正)を適用する。これにより、アーティファクトを含まず、且つ、歪みが補正された、複数のスリット光照射領域画像が得られる。図23に例示する複数のスリット光照射領域画像P1~PNは、いずれもアーティファクトを含まない。更に、スリット光照射領域画像P1~PNは、それぞれ、スリット光照射領域Q1~QNを含む。
 次に、第6実施形態の画像位置決定部87が、図18に示す前眼部画像H0に基づいて、複数のスリット光照射領域画像P1~PNの相対位置を決定する。例えば、画像位置決定部87は、前眼部画像H0に描出された角膜前面に相当する画像領域(スリット光照射領域J0における曲率半径が小さい方のカーブ)に基づいて、スリット光照射領域画像P1~PNを配列する。これにより、角膜前面のカーブに合わせてスリット光照射領域画像P1~PNが配列される。
 第6実施形態の3次元画像構築部86は、角膜前面のカーブに合わせて配列された複数のスリット光照射領域画像P1~PNに基づいて3次元画像を構築する。この3次元画像は、アーティファクトを含まず、且つ、その歪みが補正されている。
 続いて、データ処理部8は、前眼部スキャン時に前眼部に投影されたスリット光の長さ(Y方向の寸法)と、移動機構6によるスリット光の移動距離(X方向の寸法)とに基づいて、3次元画像の縦横比を補正する。これにより、3次元画像のX方向の寸法とY方向の寸法との比率が補正される。
 次に、第10実施形態の計測部94が、3次元画像を解析して所定の計測値を求める。計測パラメータの例として、角膜前面曲率、角膜前面曲率半径、角膜後面曲率、角膜後面曲率半径、角膜径、角膜厚、角膜トポグラフィ、前房深度、隅角、水晶体前面曲率、水晶体前面曲率半径、水晶体後面曲率、水晶体後面曲率半径、水晶体厚などがある。
 図24は、実際に取得された3次元画像をボリュームレンダリングして得られた表示画像R0を示す。レンダリングは、第8実施形態のレンダリング部92により実行される。制御部7は、表示画像R0を図示しない表示デバイスに表示させる。表示画像R0は、角膜前面及び水晶体後面により画成された部位を描出している。
 ユーザーは、表示デバイスに表示された表示画像R0を観察し、図示しない操作デバイスを用いて所望の断面を指定することができる。図25に示す点線は、ユーザーが表示画像R0に対して指定した断面の位置を示す。
 レンダリング部92は、ユーザーにより指定された断面で3次元画像を切断することにより3次元部分画像を構築することができる。図26に示す画像R1は、図25に示す断面で3次元画像を切断して得られた3次元部分画像をレンダリングして得られた表示画像である。この表示画像のことも3次元部分画像R1と呼ぶ。3次元部分画像R1は、図25に示す断面を外面の一部とする、前眼部の3次元領域を表す画像である。
 また、レンダリング部92は、ユーザーにより指定された断面を表す2次元断面画像を構築することができる。図27に示す画像R2は、図25に示す断面で3次元画像を切断して得られた2次元断面画像である。
 ユーザーは、表示デバイスに表示された表示画像R0を観察し、図示しない操作デバイスを用いて所望のスライスを指定することができる。図28に示す2つの点線は、ユーザーが表示画像R0に対して指定したスライスを画成する2つの断面の位置を示す。つまり、これら2つの断面で挟まれた領域が、ユーザーが表示画像R0に対して指定したスライスである。
 レンダリング部92は、ユーザーにより指定されたスライスに対応する3次元スライス画像を構築することができる。図29に示す画像R3は、図28に示す断面で3次元画像を切断して得られた3次元スライス画像をレンダリングして得られた表示画像である。この表示画像のことも3次元スライス画像R3と呼ぶ。3次元スライス画像R3は、図28に示す2つの断面を外面の一部とする、前眼部の3次元領域を表す画像である。
 ユーザーは、3次元画像をレンダリングして前眼部の外面や所望の断面を観察したり、第10実施形態の計測を行ったりすることにより、前眼部の状態を把握することができる。そして、読影レポートを作成することができる。
〈第12実施形態〉
 本実施形態では、眼科撮影装置と情報処理装置とを含む眼科システムについて説明する。眼科撮影装置は、少なくともスリットランプ顕微鏡としての機能を有する。眼科撮影装置に含まれるスリットランプ顕微鏡は、第1~第11実施形態のいずれかのスリットランプ顕微鏡であってよい。以下、第1~第11実施形態で説明した要素や構成や符号を適宜に準用する。
 図30に例示された眼科システム1000は、眼科撮影が行われるT個の施設(第1施設~第T施設)のそれぞれと、サーバ4000と、遠隔端末5000mとを結ぶ通信路(通信回線)1100を利用して構築されている。
 ここで、眼科撮影は、スリットランプ顕微鏡を用いた前眼部撮影を少なくとも含む。この前眼部撮影は、少なくとも、第1~第11実施形態で説明した、スリット光を用いた前眼部スキャンを含む。
 各施設(第t施設:t=1~T、Tは1以上の整数)には、眼科撮影装置2000-i(i=1~K、Kは1以上の整数)が設置されている。つまり、各施設(第t施設)には、1以上の眼科撮影装置2000-iが設置されている。眼科撮影装置2000-iは、眼科システム1000の一部を構成する。なお、眼科以外の検査を実施可能な検査装置が眼科システム1000に含まれていてもよい。
 本例の眼科撮影装置2000-iは、被検眼の撮影を実施する「撮影装置」としての機能と、各種データ処理や外部装置との通信を行う「コンピュータ」としての機能の双方を備えている。他の例において、撮影装置とコンピュータとを別々に設けることが可能である。この場合、撮影装置とコンピュータとは互いに通信可能に構成されてよい。更に、撮影装置の数とコンピュータの数とはそれぞれ任意であり、例えば単一のコンピュータと複数の撮影装置とを設けることができる。
 眼科撮影装置2000-iにおける「撮影装置」は、少なくともスリットランプ顕微鏡を含む。このスリットランプ顕微鏡は、第1~第11実施形態のいずれかのスリットランプ顕微鏡であってよく、第1実施形態の構成(図1)又は第2実施形態の構成(図5)を少なくとも含む。
 更に、各施設(第t施設)には、補助者や被検者により使用可能な情報処理装置(端末3000-t)が設置されている。端末3000-tは、当該施設において使用されるコンピュータであり、例えば、タブレット端末やスマートフォン等のモバイル端末、当該施設に設置されたサーバなどであってよい。更に、端末3000-tは、無線型イヤフォン等のウェアラブルデバイスを含んでいてもよい。なお、端末3000-tは、当該施設においてその機能を使用可能なコンピュータであれば十分であり、例えば、当該施設の外に設置されたコンピュータ(クラウドサーバ等)であってもよい。
 眼科撮影装置2000-iと端末3000-tとは、第t施設内に構築されたネットワーク(施設内LAN等)や、広域ネットワーク(インターネット等)や、近距離通信技術を利用して通信を行えるように構成されてよい。
 眼科撮影装置2000-iは、サーバ等の通信機器としての機能を備えていてよい。この場合、眼科撮影装置2000-iと端末3000-tとが直接に通信を行うように構成することができる。これにより、サーバ4000と端末3000-tとの間の通信を眼科撮影装置2000-iを介して行うことができるので、端末3000-tとサーバ4000との間で通信を行う機能を設ける必要がなくなる。
 サーバ4000は、典型的には、第1~第T施設のいずれとも異なる施設に設置され、例えば管理センタに設置されている。サーバ4000は、ネットワーク(LAN、広域ネットワーク等)を介して、遠隔端末5000m(m=1~M、Mは1以上の整数)と通信が可能である。更に、サーバ4000は、第1~第T施設に設置された眼科撮影装置2000-iの少なくとも一部との間で、広域ネットワークを介して通信が可能である。
 サーバ4000は、例えば、眼科撮影装置2000-iと遠隔端末5000mとの間の通信を中継する機能と、この通信の内容を記録する機能と、眼科撮影装置2000-iにより取得されたデータや情報を記憶する機能と、遠隔端末5000mにより取得されたデータや情報を記憶する機能とを備える。サーバ4000は、データ処理機能を備えてもよい。
 遠隔端末5000mは、眼科撮影装置2000-iによって取得された被検眼の画像(複数の前眼部画像、又は、これらに基づく3次元画像のレンダリング画像)の読影と、レポート作成とに使用可能なコンピュータを含む。遠隔端末5000mは、データ処理機能を備えてもよい。
 サーバ4000について説明する。図31に例示されたサーバ4000は、制御部4010と、通信確立部4100と、通信部4200とを備える。
 制御部4010は、サーバ4000の各部の制御を実行する。制御部4010は、その他の演算処理を実行可能であってよい。制御部4010はプロセッサを含む。制御部4010は、更に、RAM、ROM、ハードディスクドライブ、ソリッドステートドライブなどを含んでいてよい。
 制御部4010は、通信制御部4011と転送制御部4012とを含む。
 通信制御部4011は、複数の眼科撮影装置2000-iと複数の端末3000-tと複数の遠隔端末5000mとを含む複数の装置の間における通信の確立に関する制御を実行する。例えば、通信制御部4011は、眼科システム1000に含まれる複数の装置のうちから後述の選択部4120によって選択された2以上の装置のそれぞれに向けて、通信を確立するための制御信号を送る。
 転送制御部4012は、通信確立部4100(及び通信制御部4011)により通信が確立された2以上の装置の間における情報のやりとりに関する制御を行う。例えば、転送制御部4012は、通信確立部4100(及び通信制御部4011)により通信が確立された少なくとも2つの装置のうちの一方の装置から送信された情報を他の装置に転送するように機能する。
 具体例として、眼科撮影装置2000-iと遠隔端末5000mとの間の通信が確立された場合、転送制御部4012は、眼科撮影装置2000-iから送信された情報(例えば、スリット光を用いた前眼部スキャンで得られた複数の前眼部画像、又は、これら前眼部画像に基づき構築された3次元画像)を遠隔端末5000mに転送することができる。逆に、転送制御部4012は、遠隔端末5000mから送信された情報(例えば、眼科撮影装置2000-iへの指示、読影レポートなど)を眼科撮影装置2000-iに転送することができる。
 転送制御部4012は、送信元の装置から受信した情報を加工する機能を有していてもよい。この場合、転送制御部4012は、受信した情報と、加工処理により得られた情報との少なくとも一方を転送先の装置に送信することができる。
 例えば、転送制御部4012は、眼科撮影装置2000-i等から送信された情報の一部を抽出して遠隔端末5000m等に送信することができる。また、眼科撮影装置2000-i等から送信された情報(例えば、前眼部画像又は3次元画像)をサーバ4000又は他の装置によって解析し、その解析結果(及び元の情報)を遠隔端末5000m等に送信するようにしてもよい。
 眼科撮影装置2000-iから複数の前眼部画像が送信された場合、サーバ4000又は他の装置が、これら前眼部画像から3次元画像(例えば、スタックデータ又はボリュームデータ)を構築し、転送制御部4012が、構築された3次元画像を遠隔端末5000mに送信するように構成することが可能である。
 眼科撮影装置2000-iからスタックデータが送信された場合、サーバ4000又は他の装置が、このスタックデータからボリュームデータを構築し、転送制御部4012が、構築されたボリュームデータを遠隔端末5000mに送信するように構成することが可能である。
 サーバ4000又は他の装置により実行可能なデータ加工処理は、上記した例には限定されず、任意のデータ処理を含んでいてよい。例えば、サーバ4000又は他の装置は、3次元画像のレンダリング、アーティファクト除去、歪み補正、計測など、第1~第11実施形態で説明した任意の処理を実行可能であってよい。
 通信確立部4100は、複数の眼科撮影装置2000-iと複数の端末3000-tと複数の遠隔端末5000mとを含む複数の装置のうちから選択された少なくとも2つの装置の間における通信を確立するための処理を実行する。本実施形態において「通信の確立」とは、例えば、(1)通信が切断された状態から一方向通信を確立すること、(2)通信が切断された状態から双方向通信を確立すること、(3)受信のみが可能な状態から送信も可能な状態に切り替えること、(4)送信のみが可能な状態から受信も可能な状態に切り替えること、のうちの少なくとも1つを含む概念である。
 更に、通信確立部4100は、確立されている通信を切断する処理を実行可能である。本実施形態において「通信の切断」とは、例えば、(1)一方向通信が確立された状態から通信を切断すること、(2)双方向通信が確立された状態から通信を切断すること、(3)双方向通信が確立された状態から一方向通信に切り替えること、(4)送信及び受信が可能な状態から受信のみが可能な状態に切り替えること、(5)送信及び受信が可能な状態から送信のみが可能な状態に切り替えること、のうちの少なくとも1つを含む概念である。
 眼科撮影装置2000-i、端末3000-t、及び遠隔端末5000mのそれぞれは、他の装置(そのユーザー)を呼び出すための通信要求(呼び出し要求)と、他の2つの装置の間の通信に割り込むための通信要求(割り込み要求)とのうちの少なくとも一方をサーバ4000に送信することができる。呼び出し要求及び割り込み要求は、手動又は自動で発信される。サーバ4000(通信部4200)は、眼科撮影装置2000-i、端末3000-t、又は遠隔端末5000mから送信された通信要求を受信する。
 本実施形態において、通信確立部4100は選択部4120を含んでいてよい。選択部4120は、例えば、眼科撮影装置2000-i、端末3000-t、又は遠隔端末5000mから送信された通信要求に基づいて、眼科撮影装置2000-i、端末3000-t、及び遠隔端末5000mのうちから、当該通信要求を送信した装置以外の1以上の装置を選択する。
 選択部4120が実行する処理の具体例を説明する。眼科撮影装置2000-i又は端末3000-tからの通信要求(例えば、眼科撮影装置2000-iにより取得された画像の読影の要求)を受けた場合、選択部4120は、例えば、複数の遠隔端末5000mのうちのいずれかを選択する。通信確立部4100は、選択された遠隔端末5000mと、眼科撮影装置2000-i及び端末3000-tの少なくとも一方との間の通信を確立する。
 通信要求に応じた装置の選択は、例えば、予め設定された属性に基づいて実行される。この属性の例として、検査の種別(例えば、撮影モダリティの種別、画像の種別、疾患の種別、候補疾患の種別など)や、要求される専門度・熟練度や、言語の種別などがある。本例に係る処理を実現するために、通信確立部4100は、予め作成された属性情報が記憶された記憶部4110を含んでいてよい。属性情報には、遠隔端末5000m及び/又はそのユーザー(医師、オプトメトリスト等)の属性が記録されている。
 ユーザーの識別は、事前に割り当てられたユーザーIDによって行われる。また、遠隔端末5000mの識別は、例えば、事前に割り当てられた装置IDやネットワークアドレスによって行われる。典型的な例において、属性情報は、各ユーザーの属性として、専門分野(例えば、診療科、専門とする疾患など)、専門度・熟練度、使用可能な言語の種別などを含む。
 選択部4120が属性情報を参照する場合、眼科撮影装置2000-i、端末3000-t、又は遠隔端末5000mから送信される通信要求は、属性に関する情報を含んでいてよい。例えば、眼科撮影装置2000-iから送信される読影要求(つまり、診断要求)は、次のいずれかの情報を含んでいてよい:(1)撮影モダリティの種別を示す情報;(2)画像の種別を示す情報;(3)疾患名や候補疾患名を示す情報;(4)読影の難易度を示す情報;(5)眼科撮影装置2000-i及び/又は端末3000-tのユーザーの使用言語を示す情報。
 このような読影要求を受信した場合、選択部4120は、この読影要求と記憶部4110に記憶された属性情報とに基づいて、いずれかの遠隔端末5000mを選択することができる。このとき、選択部4120は、読影要求に含まれる属性に関する情報と、記憶部4110に記憶された属性情報に記録された情報とを照合する。それにより、選択部4120は、例えば、次のいずれかの属性に該当する医師(又はオプトメトリスト)に対応する遠隔端末5000mを選択する:(1)当該撮影モダリティを専門とする医師;(2)当該画像種別を専門とする医師;(3)当該疾患(当該候補疾患)を専門とする医師;(4)当該難易度の読影が可能な医師;(5)当該言語を使用可能な医師。
 なお、医師やオプトメトリストと、遠隔端末5000mとの間の対応付けは、例えば、遠隔端末5000m(又は眼科システム1000)へのログイン時に入力されたユーザーIDによってなされる。
 通信部4200は、他の装置(例えば、眼科撮影装置2000-i、端末3000-t、及び遠隔端末5000mのいずれか)との間でデータ通信を行う。データ通信の方式や暗号化については、眼科撮影装置2000-iに設けられた通信部(第1実施形態の通信部9)と同様であってよい。
 サーバ4000は、データ処理部4300を含む。データ処理部4300は、各種のデータ処理を実行する。データ処理部4300は、眼科撮影装置2000-i(特に、スリットランプ顕微鏡)により取得された複数の前眼部画像又は3次元画像を処理することができる。データ処理部4300は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理部4300の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
 データ処理部4300は、データ処理部8、データ処理部8A(画像選択部81、3次元画像構築部82)、データ処理部8B(アーティファクト除去部83、3次元画像構築部84)、データ処理部8C(3次元画像構築部85)、データ処理部8D(3次元画像構築部86、画像位置決定部87)、3次元画像構築部88(画像領域抽出部89、画像合成部90)、データ処理部8E(3次元画像構築部91、レンダリング部92)、データ処理部8F(歪み補正部93)、及び、データ処理部8G(計測部94)のうちのいずれか1つ以上を含んでいてよい。
 サーバ4000は、データ処理部4300により得られたデータを他の装置に提供することができる。例えば、データ処理部4300が、眼科撮影装置2000-iにより取得された複数の前眼部画像から3次元画像を構築した場合、サーバ4000は、通信部4200により、この3次元画像を遠隔端末5000mに送信することができる。データ処理部4300が、眼科撮影装置2000-i又はデータ処理部4300により構築された3次元画像をレンダリングした場合、サーバ4000は、通信部4200により、構築されたレンダリング画像を遠隔端末5000mに送信することができる。データ処理部4300が、1以上の前眼部画像又は3次元画像に計測処理を適用した場合、サーバ4000は、通信部4200により、得られた計測データを遠隔端末5000mに送信することができる。データ処理部4300が、1以上の前眼部画像又は3次元画像に歪み補正を適用した場合、サーバ4000は、通信部4200により、補正された画像を遠隔端末5000mに送信することができる。
 続いて、遠隔端末5000mについて説明する。図32に例示された遠隔端末5000mは、制御部5010と、データ処理部5100と、通信部5200と、操作部5300とを備える。
 制御部5010は、遠隔端末5000mの各部の制御を実行する。制御部5010は、その他の演算処理を実行可能であってよい。制御部5010は、プロセッサ、RAM、ROM、ハードディスクドライブ、ソリッドステートドライブなどを含む。
 制御部5010は表示制御部5011を含む。表示制御部5011は、表示装置6000mを制御する。表示装置6000mは、遠隔端末5000mに含まれてもよいし、遠隔端末5000mに接続された周辺機器であってもよい。表示制御部5011は、被検眼Eの前眼部の画像を表示装置6000mに表示させる。前眼部の画像の例として、スリット撮影画像、シャインプルーフ撮影画像、3次元画像のレンダリング画像、正面画像、他のモダリティの画像(OCT画像等)、計測結果を表す画像、解析結果を表す画像などがある。
 制御部5010はレポート作成制御部5012を含む。レポート作成制御部5012は、表示制御部5011により表示された情報に関するレポートを作成するための各種の制御を実行する。例えば、レポート作成制御部5012は、レポートを作成するための画面やグラフィカルユーザーインターフェイス(GUI)を表示装置6000mに表示させる。また、レポート作成制御部5012は、ユーザーが入力した情報や、前眼部の画像や、計測データや、解析データなどを、所定のレポートテンプレートに入力する。
〈データ処理部5100〉
 データ処理部5100は、各種のデータ処理を実行する。データ処理部5100は、眼科撮影装置2000-i(特に、スリットランプ顕微鏡)により取得された複数の前眼部画像又は3次元画像を処理することができる。また、データ処理部5100は、サーバ4000等の他の情報処理装置により構築された3次元画像又はレンダリング画像を処理することができる。データ処理部5100は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理部5100の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
 データ処理部5100は、データ処理部8、データ処理部8A(画像選択部81、3次元画像構築部82)、データ処理部8B(アーティファクト除去部83、3次元画像構築部84)、データ処理部8C(3次元画像構築部85)、データ処理部8D(3次元画像構築部86、画像位置決定部87)、3次元画像構築部88(画像領域抽出部89、画像合成部90)、データ処理部8E(3次元画像構築部91、レンダリング部92)、データ処理部8F(歪み補正部93)、及び、データ処理部8G(計測部94)のうちのいずれか1つ以上を含んでいてよい。
 通信部5200は、他の装置(例えば、眼科撮影装置2000-i、端末3000-t、及びサーバ4000のいずれか)との間でデータ通信を行う。データ通信の方式や暗号化については、眼科撮影装置2000-iの通信部と同様であってよい。
 操作部5300は、遠隔端末5000mの操作、遠隔端末5000mへの情報入力などに使用される。本実施形態では、操作部5300はレポートの作成に使用される。操作部5300は、操作デバイスや入力デバイスを含む。操作部5300は、例えば、マウス、キーボード、トラックボール、操作パネル、スイッチ、ボタン、ダイアルなどを含む。操作部5300は、タッチスクリーンを含んでもよい。
 本実施形態により奏される効果を説明する。
 眼科システム1000は、1以上のスリットランプ顕微鏡(眼科撮影装置2000-i)と1以上の情報処理装置(サーバ4000及び/又は遠隔端末5000m)とを含む。情報処理装置は、通信回線を介してスリットランプ顕微鏡に接続されており、スリットランプ顕微鏡により取得された被検眼の前眼部の画像を処理する。
 スリットランプ顕微鏡(眼科撮影装置2000-i)は、照明系と、撮影系と、移動機構とを含む。照明系は、被検眼の前眼部にスリット光を照射する。撮影系は、スリット光が照射されている前眼部からの光を導く光学系と、光学系により導かれた光を撮像面で受光する撮像素子とを含む。移動機構は、照明系及び撮影系を移動する移動機構とを含む。照明系の光軸に沿う物面と光学系と撮像面とは、シャインプルーフの条件を満足する。撮影系は、移動機構による照明系及び撮影系の移動と並行して繰り返し撮影を行うことにより前眼部の複数の画像を取得する。
 スリットランプ顕微鏡(眼科撮影装置2000-i)の照明系及び撮影系は、少なくとも角膜前面及び水晶体後面により画成される部位に撮影系のピントが合うように構成されていてもよい。
 照明系は、被検者の体軸方向を長手方向とするスリット光を前眼部に照射するように構成されていてよい。この場合、移動機構は、体軸方向に直交する方向に照明系及び撮影系を移動するように構成されていてよい。
 スリット光の長さは、体軸方向における角膜径以上に設定されていてよい。加えて、移動機構による照明系及び撮影系の移動距離は、体軸方向に直交する方向における角膜径以上に設定されていてよい。
 このような構成を有する本実施形態によれば、少なくとも、第1実施形態と同様の効果が奏される。また、第1実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、スリットランプ顕微鏡(眼科撮影装置2000-i)の撮影系は、第1撮影系と第2撮影系とを含んでいてよい。第1撮影系は、スリット光が照射されている前眼部からの光を導く第1光学系と、第1光学系により導かれた光を第1撮像面で受光する第1撮像素子とを含む。更に、第1撮影系は、照明系及び撮影系の移動と並行して繰り返し撮影を行うことにより第1画像群を取得する。第2撮影系は、スリット光が照射されている前眼部からの光を導く第2光学系と、第2光学系により導かれた光を第2撮像面で受光する第2撮像素子とを含む。更に、第2撮影系は、照明系及び撮影系の移動と並行して繰り返し撮影を行うことにより第2画像群を取得する。また、第1光学系の光軸と第2光学系の光軸とは、互いに異なる向きに配置されている。加えて、物面と第1光学系と第1撮像面とがシャインプルーフの条件を満足し、且つ、物面と第2光学系と第2撮像面とがシャインプルーフの条件を満足する。
 撮影系に含まれる光学系は、反射器と、1以上のレンズとを含んでいてよい。反射器は、スリット光が照射されている前眼部からの光であって、照明系の光軸から離れる方向に進行する光を、照明系の光軸に近づく方向に反射するように構成及び配置される。1以上のレンズは、反射器により反射された光を撮像面に結像させるように構成及び配置される。
 このような構成を有する本実施形態によれば、少なくとも、第2実施形態と同様の効果が奏される。また、第2実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、第1光学系の光軸と第2光学系の光軸とは、照明系の光軸に対して互いに反対の方向に傾斜して配置されていてよい。更に、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、第1撮影系及び第2撮影系により実質的に同時に取得された2つの画像のいずれかにアーティファクトが含まれるか判定し、これら2つの画像のうちの一方の画像にアーティファクトが含まれると判定されたときに他方の画像を選択する画像選択部を含んでいてよい。
 また、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、画像選択部により第1画像群及び第2画像群から選択された画像を含む画像群に基づいて3次元画像を構築する3次元画像構築部を含んでいてよい。
 このような構成を有する本実施形態によれば、少なくとも、第3実施形態と同様の効果が奏される。また、第3実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、第1撮影系及び第2撮影系により実質的に同時に取得された2つの画像を比較することによりこれら2つの画像のいずれかにアーティファクトが含まれるか判定し、これら2つの画像のいずれかにアーティファクトが含まれると判定されたときに当該アーティファクトを除去するアーティファクト除去部を含んでいてよい。
 また、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、アーティファクト除去部によりアーティファクトが除去された画像を含む画像群に基づいて3次元画像を構築する3次元画像構築部を含んでいてよい。
 このような構成を有する本実施形態によれば、少なくとも、第4実施形態と同様の効果が奏される。また、第4実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、スリットランプ顕微鏡(眼科撮影装置2000-i)により取得された複数の画像に基づいて3次元画像を構築する3次元画像構築部を含んでいてよい。
 このような構成を有する本実施形態によれば、少なくとも、第5実施形態と同様の効果が奏される。また、第5実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、移動機構は、照明系の光軸を回転軸として照明系及び撮影系を一体的に回転する回転機構を含んでいてよい。更に、照明系及び撮影系が第1回転位置に配置されているときに撮影系は複数の画像を取得し、且つ、第1回転位置と異なる第2回転位置に照明系及び撮影系が配置されているときに撮影系は照明系によりスリット光が照射されている前眼部の画像を取得することができる。加えて、3次元画像構築部は、第2回転位置において取得された画像に基づいて複数の画像の相対位置を決定する画像位置決定部を含んでいてよい。
 このような構成を有する本実施形態によれば、少なくとも、第6実施形態と同様の効果が奏される。また、第6実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、3次元画像構築部は、スリットランプ顕微鏡(眼科撮影装置2000-i)により取得された複数の画像のそれぞれから、スリット光の照射領域に対応する画像領域を抽出する画像領域抽出部と、画像領域抽出部により複数の画像からそれぞれ抽出された複数の画像領域を合成して3次元画像を構築する画像合成部とを含んでいてよい。
 画像領域抽出部は、スリットランプ顕微鏡(眼科撮影装置2000-i)により取得された複数の画像のそれぞれから、スリット光の照射領域及び前眼部の所定部位の双方に対応する画像領域を抽出するように構成されていてよい。
 所定部位は、角膜前面及び水晶体後面により画成される部位であってよい。
 このような構成を有する本実施形態によれば、少なくとも、第7実施形態と同様の効果が奏される。また、第7実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、3次元画像をレンダリングしてレンダリング画像を構築するレンダリング部を含んでいてよい。
 3次元画像に対して断面が指定されたとき、レンダリング部は、3次元画像を当該断面で切断して3次元部分画像を構築することができる。
 3次元画像に対して断面が指定されたとき、レンダリング部は、当該断面を表す2次元断面画像を構築することができる。
 3次元画像に対してスライスが指定されたとき、レンダリング部は、当該スライスに対応する3次元スライス画像を構築することができる。
 このような構成を有する本実施形態によれば、少なくとも、第8実施形態と同様の効果が奏される。また、第8実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、照明系の光軸と撮影系の光軸とがなす角度である光軸角度に起因する歪みを補正するための処理を、スリットランプ顕微鏡(眼科撮影装置2000-i)により取得された複数の画像のうちの少なくとも1つに適用する歪み補正部を含んでいてよい。
 撮影系に含まれる光学系の光軸は、照明系の光軸に対して、照明系の光軸に沿う第1方向及びスリット光の長手方向に沿う第2方向の双方に直交する第3方向に傾斜して配置されていてよい。この場合、歪み補正部は、第1方向及び第2方向の双方を含む平面における歪みを補正するための処理を実行することができる。
 歪み補正部は、所定の基準角度と光軸角度とに基づき設定された補正係数を予め記憶しており、当該補正係数に基づいて歪みを補正するための処理を実行するように構成されていてよい。
 このような構成を有する本実施形態によれば、少なくとも、第9実施形態と同様の効果が奏される。また、第9実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、スリットランプ顕微鏡(眼科撮影装置2000-i)により取得された複数の画像のうちの少なくとも1つを解析することにより所定の計測値を求める第1計測部を含んでいてよい。
 また、本実施形態において、情報処理装置(サーバ4000及び/又は遠隔端末5000m)は、3次元画像構築部により構築された3次元画像を解析することにより所定の計測値を求める第2計測部を含んでいてよい。
 このような構成を有する本実施形態によれば、少なくとも、第10実施形態と同様の効果が奏される。また、第10実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
 本実施形態において、スリットランプ顕微鏡(眼科撮影装置2000-i)は、撮影系による複数の画像の取得と並行して前眼部を固定位置から動画撮影する動画撮影系を含んでいてよい。
 更に、スリットランプ顕微鏡(眼科撮影装置2000-i)は、動画撮影系により取得される動画像を解析して被検眼の運動を検出する運動検出部を含んでいてよい。
 加えて、スリットランプ顕微鏡(眼科撮影装置2000-i)は、運動検出部からの出力に基づいて移動機構を制御する移動制御部を含んでいてよい。
 このような構成を有する本実施形態によれば、少なくとも、第11実施形態と同様の効果が奏される。また、第11実施形態で説明した構成、要素、機能、作用、効果などの任意の事項を、本実施形態に適用することが可能である。
〈その他の事項〉
 以上に説明した実施形態は本発明の典型的な例示に過ぎない。よって、本発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。
 第1~第12実施形態のいずれか1つ又はいずれか2以上の組み合わせに係る処理をコンピュータに実行させるプログラムを構成することが可能である。また、第1~第12実施形態のいずれか1つ又はいずれか2以上の組み合わせに対して本発明の要旨の範囲内における任意の変形を適用することによって実現される処理をコンピュータに実行させるプログラムを構成することが可能である。
 更に、このようなプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。この非一時的記録媒体は任意の形態であってよく、その例として、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどがある。
 本発明は、第1~第12実施形態のいずれか1つ又はいずれか2以上の組み合わせにより実現される方法を含む。また、第1~第12実施形態のいずれか1つ又はいずれか2以上の組み合わせに対して本発明の要旨の範囲内における任意の変形を適用することによって実現される方法も、本発明に含まれる。
1 スリットランプ顕微鏡
2 照明系
3 撮影系
4 光学系
5 撮像素子
6 移動機構
7 制御系
8 データ処理部
9 通信部

 

Claims (8)

  1.  被検眼の前眼部にスリット光を照射する照明系と、
     前記スリット光が照射されている前記前眼部からの光を導く光学系と、前記光学系により導かれた前記光を撮像面で受光する撮像素子とを含む撮影系と、
     前記照明系及び前記撮影系を移動する移動機構と
     を含み、
     前記照明系の光軸に沿う物面と前記光学系と前記撮像面とがシャインプルーフの条件を満足し、
     前記撮影系は、前記移動機構による前記照明系及び前記撮影系の移動と並行して繰り返し撮影を行うことにより前記前眼部の複数の画像を取得し、
     前記撮影系による前記複数の画像の取得と並行して前記前眼部を固定位置から動画撮影する動画撮影系を含む
     ことを特徴とするスリットランプ顕微鏡。
  2.  前記動画撮影系により取得される動画像を解析して前記被検眼の運動を検出する運動検出部を更に含む
     ことを特徴とする請求項1に記載のスリットランプ顕微鏡。
  3.  前記運動検出部からの出力に基づいて前記移動機構を制御する移動制御部を更に含む
     ことを特徴とする請求項2に記載のスリットランプ顕微鏡。
  4.  前記前眼部について取得された画像を情報処理装置に向けて送信する通信部を更に含む
     ことを特徴とする請求項1~3のいずれかに記載のスリットランプ顕微鏡。
  5.  スリットランプ顕微鏡と、
     通信回線を介して前記スリットランプ顕微鏡に接続されており、前記スリットランプ顕微鏡により取得された被検眼の前眼部の画像を処理する情報処理装置と
     を含み、
     前記スリットランプ顕微鏡は、
     被検眼の前眼部にスリット光を照射する照明系と、
     前記スリット光が照射されている前記前眼部からの光を導く光学系と、前記光学系により導かれた前記光を撮像面で受光する撮像素子とを含む撮影系と、
     前記照明系及び前記撮影系を移動する移動機構と
     を含み、
     前記照明系の光軸に沿う物面と前記光学系と前記撮像面とがシャインプルーフの条件を満足し、
     前記撮影系は、前記移動機構による前記照明系及び前記撮影系の移動と並行して繰り返し撮影を行うことにより前記前眼部の複数の画像を取得し、
     前記スリットランプ顕微鏡は、前記撮影系による前記複数の画像の取得と並行して前記前眼部を固定位置から動画撮影する動画撮影系を含む
     ことを特徴とする眼科システム。
  6.  前記スリットランプ顕微鏡の前記撮影系は、
     前記スリット光が照射されている前記前眼部からの光を導く第1光学系と、前記第1光学系により導かれた前記光を第1撮像面で受光する第1撮像素子とを含み、前記移動と並行して繰り返し撮影を行うことにより第1画像群を取得する第1撮影系と、
     前記スリット光が照射されている前記前眼部からの光を導く第2光学系と、前記第2光学系により導かれた前記光を第2撮像面で受光する第2撮像素子とを含み、前記移動と並行して繰り返し撮影を行うことにより第2画像群を取得する第2撮影系と
     を含み、
     前記第1光学系の光軸と前記第2光学系の光軸とは、互いに異なる向きに配置されており、
     前記物面と前記第1光学系と前記第1撮像面とがシャインプルーフの条件を満足し、且つ、前記物面と前記第2光学系と前記第2撮像面とがシャインプルーフの条件を満足する
     ことを特徴とする請求項5に記載の眼科システム。
  7.  前記スリットランプ顕微鏡は、前記動画撮影系により取得される動画像を解析して前記被検眼の運動を検出する運動検出部を含む
     ことを特徴とする請求項5又は6に記載の眼科システム。
  8.  前記スリットランプ顕微鏡は、前記運動検出部からの出力に基づいて前記移動機構を制御する移動制御部を含む
     ことを特徴とする請求項7に記載の眼科システム。

     
PCT/JP2019/023204 2018-06-13 2019-06-12 スリットランプ顕微鏡及び眼科システム WO2019240151A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112936 2018-06-13
JP2018112936A JP7228342B2 (ja) 2018-06-13 2018-06-13 スリットランプ顕微鏡及び眼科システム

Publications (1)

Publication Number Publication Date
WO2019240151A1 true WO2019240151A1 (ja) 2019-12-19

Family

ID=68842005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023204 WO2019240151A1 (ja) 2018-06-13 2019-06-12 スリットランプ顕微鏡及び眼科システム

Country Status (2)

Country Link
JP (3) JP7228342B2 (ja)
WO (1) WO2019240151A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181779A1 (ja) * 2022-03-22 2023-09-28 ソニーグループ株式会社 検査システム
EP4194924A4 (en) * 2020-08-03 2024-07-31 Topcon Corp SLIT LAMP MICROSCOPE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481705B2 (ja) 2020-04-30 2024-05-13 国立研究開発法人理化学研究所 医療システム
JP2021176056A (ja) 2020-05-01 2021-11-04 国立研究開発法人理化学研究所 医療システム及び医療情報処理装置
JP7543002B2 (ja) * 2020-06-17 2024-09-02 株式会社トプコン スリットランプ顕微鏡
JP2022054784A (ja) 2020-09-28 2022-04-07 株式会社トプコン 医療システム及び医療情報処理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004329872A (ja) * 2003-04-16 2004-11-25 Kenji Kashiwagi 眼科用検査装置
JP2005512752A (ja) * 2002-01-10 2005-05-12 カール ツアイス メディテック アクチエンゲゼルシャフト 人間の眼の水晶体を照明するための装置および方法
JP2008284273A (ja) * 2007-05-21 2008-11-27 Univ Of Yamanashi 眼科遠隔診断システム
US20090096987A1 (en) * 2007-10-10 2009-04-16 Ming Lai Eye Measurement Apparatus and a Method of Using Same
JP2011507572A (ja) * 2007-12-21 2011-03-10 サイファイ ダイアグノスティック エセ.ペー.アー. 眼の3次元解析用デュアルシャインプルーフシステム
JP2017185367A (ja) * 2017-07-20 2017-10-12 株式会社トプコン 細隙灯顕微鏡

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578560B2 (ja) * 2010-09-03 2014-08-27 株式会社ニデック 前眼部測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512752A (ja) * 2002-01-10 2005-05-12 カール ツアイス メディテック アクチエンゲゼルシャフト 人間の眼の水晶体を照明するための装置および方法
JP2004329872A (ja) * 2003-04-16 2004-11-25 Kenji Kashiwagi 眼科用検査装置
JP2008284273A (ja) * 2007-05-21 2008-11-27 Univ Of Yamanashi 眼科遠隔診断システム
US20090096987A1 (en) * 2007-10-10 2009-04-16 Ming Lai Eye Measurement Apparatus and a Method of Using Same
JP2011507572A (ja) * 2007-12-21 2011-03-10 サイファイ ダイアグノスティック エセ.ペー.アー. 眼の3次元解析用デュアルシャインプルーフシステム
JP2017185367A (ja) * 2017-07-20 2017-10-12 株式会社トプコン 細隙灯顕微鏡

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194924A4 (en) * 2020-08-03 2024-07-31 Topcon Corp SLIT LAMP MICROSCOPE
WO2023181779A1 (ja) * 2022-03-22 2023-09-28 ソニーグループ株式会社 検査システム

Also Published As

Publication number Publication date
JP2019213734A (ja) 2019-12-19
JP2024028448A (ja) 2024-03-04
JP7228342B2 (ja) 2023-02-24
JP7466607B2 (ja) 2024-04-12
JP2022179731A (ja) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2019240149A1 (ja) スリットランプ顕微鏡及び眼科システム
WO2019240151A1 (ja) スリットランプ顕微鏡及び眼科システム
WO2019240148A1 (ja) スリットランプ顕微鏡及び眼科システム
JP7381671B2 (ja) スリットランプ顕微鏡
WO2021049341A1 (ja) スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体
WO2021256130A1 (ja) スリットランプ顕微鏡
WO2019176231A1 (ja) 眼科システム、眼科情報処理装置、プログラム、及び記録媒体
JP7345594B2 (ja) スリットランプ顕微鏡及び眼科システム
JP7345610B2 (ja) スリットランプ顕微鏡
WO2021049104A1 (ja) スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、及び記録媒体
JP7237219B2 (ja) 眼科システム、眼科情報処理装置、プログラム、及び記録媒体
JP2024152821A (ja) スリットランプ顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818803

Country of ref document: EP

Kind code of ref document: A1