WO2023179661A1 - 激光光源系统和投影设备 - Google Patents

激光光源系统和投影设备 Download PDF

Info

Publication number
WO2023179661A1
WO2023179661A1 PCT/CN2023/083066 CN2023083066W WO2023179661A1 WO 2023179661 A1 WO2023179661 A1 WO 2023179661A1 CN 2023083066 W CN2023083066 W CN 2023083066W WO 2023179661 A1 WO2023179661 A1 WO 2023179661A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
lens
source system
fluorescence
Prior art date
Application number
PCT/CN2023/083066
Other languages
English (en)
French (fr)
Other versions
WO2023179661A9 (zh
Inventor
李巍
田有良
顾晓强
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220643953.XU external-priority patent/CN217034495U/zh
Priority claimed from CN202210289237.0A external-priority patent/CN114911123A/zh
Priority claimed from CN202210772848.0A external-priority patent/CN117369201A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202380018434.1A priority Critical patent/CN118556209A/zh
Publication of WO2023179661A1 publication Critical patent/WO2023179661A1/zh
Publication of WO2023179661A9 publication Critical patent/WO2023179661A9/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present application relates to the field of projection technology, and in particular to a light source system and projection equipment.
  • Embodiments of the present application provide a laser light source system and projection equipment.
  • the technical solutions are as follows:
  • a laser light source system includes a light-emitting component, a fluorescent wheel, a spectrum selection component, a combined light path component, and a shaping and uniform light component;
  • the light-emitting component can emit a laser beam, and the light-emitting direction of the light-emitting component is toward the fluorescent wheel;
  • the light combining optical path component is located between the light emitting component and the fluorescent wheel, and the spectrum selection component is located between the light combining optical path component and the fluorescent wheel;
  • the fluorescent wheel includes at least one fluorescence excitation zone, and the at least one fluorescence excitation zone includes a first fluorescence excitation zone.
  • the laser beam emitted by the light-emitting component can pass through the light combining optical path component and the spectrum selection component before being incident.
  • the first fluorescence excitation region can emit first fluorescence under the excitation of the laser beam and reflect the first fluorescence toward the spectrum selection component, and the spectrum selection component can After transmitting the first fluorescence in the first wavelength range and guiding the first fluorescence in the first wavelength range to the combined light path component, the light from the laser light source system is guided through the combined light path component port, the relative position of the spectrum selection component and the first fluorescence excitation region is fixed;
  • the shaping and evening component is located at least between the light-emitting component and the combining light path component, or at least between the phosphor wheel and the combining light path component.
  • the shaping and evening component is used for transmitting light.
  • the light beam passing through the shaping and homogenizing component is shaped and homogenized.
  • the spectrum selection component By arranging a spectrum selection component with a fixed relative position to the first fluorescence excitation area on the side of the first fluorescence excitation area of the fluorescent wheel facing the light-emitting component, and the spectrum selection component can transmit the first light emitted by the first fluorescence excitation area.
  • the first fluorescence in the wavelength range and the laser beam emitted by at least part of the light-emitting component, and then the laser beam emitted by the light-emitting component can be irradiated to the first fluorescence excitation zone through the spectrum selective component, and excite the first fluorescence, the first wavelength range
  • the first fluorescence in the filter can pass through the first color filter, and is filtered by the first color filter and then emitted to the combined light path component.
  • the combined light path component guides the first fluorescence in the first wavelength range to emit light. In this way, the effect of filtering the fluorescence excited by the fluorescent wheel is achieved, and since there is no need to set up a separate spectrum selection component, it will not affect the volume of the light source system, solving the problem of the large volume of the light source system in related technologies. problem, achieving the effect of reducing the size of the light source system.
  • Figure 1 is a schematic structural diagram of a light source system in the related art
  • Figure 2 is a schematic structural diagram of a light source system provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another light source system provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another light source system provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of another light source system provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a fluorescent wheel in the light source system involved in the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a spectrum selection component in the light source system involved in the embodiment of the present application.
  • Figure 8 is a schematic three-dimensional structural diagram of a spectrum selection component and a fluorescent wheel in the light source system involved in the embodiment of the present application;
  • Figure 9 is a schematic three-dimensional structural diagram of a spectrum selection component and a fluorescent wheel in the light source system involved in the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another light source system provided by an embodiment of the present application.
  • FIG 11 is a schematic structural diagram of another laser light source system in the related art.
  • Figure 12 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of the light combining lens group in the laser light source system shown in Figure 14;
  • Figure 16 is a schematic diagram of the laser light spot provided by the embodiment of the present application irradiating the compound eye lens
  • Figure 17 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a portion 20A of the laser light source system shown in Figure 17 viewed along the first direction;
  • Figure 19 is a schematic structural diagram of the laser in the laser light source system shown in Figure 17;
  • Figure 20 is a schematic diagram of the light spot of the laser provided by the laser shown in Figure 18 before and after passing through the first reflector group;
  • Figure 21 is a schematic structural diagram of a laser and a second reflector group provided by an embodiment of the present application.
  • Figure 22 is a schematic structural diagram of the laser light source system shown in Figure 21 looking at the laser along the second direction;
  • Figure 23 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • Figure 24 is a schematic structural diagram of the multicolor laser in the laser light source system shown in Figure 23;
  • Figure 25 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • Figure 26 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • Figure 27 is a top view of the color wheel in the laser light source system shown in Figure 26;
  • Figure 28 is a schematic structural diagram of a laser light source system according to an embodiment of the present application.
  • Figure 29 is a schematic cross-sectional structural diagram of a fluorescent wheel provided by an embodiment of the present application.
  • Figure 30 is a schematic structural diagram of another light combining lens provided by an embodiment of the present application.
  • Figure 31 is a schematic structural diagram of another light combining lens provided by an embodiment of the present application.
  • Figure 32 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • Figure 33 is a schematic structural diagram of the light combining lens in the laser light source system shown in Figure 32;
  • Figure 34 is a schematic diagram of the laser light spot provided by the embodiment of the present application irradiating the compound eye lens
  • Figure 35 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • Figure 36 is a schematic structural diagram of the light combining lens in the laser light source system shown in Figure 35;
  • Figure 37 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • Figure 38 is a schematic structural diagram of the light combining lens in the laser light source system shown in Figure 37;
  • Figure 39 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • Figure 40 is a schematic structural diagram of a projector provided by an embodiment of the present application.
  • Figure 41 is a schematic structural diagram of another projection device provided by an embodiment of the present application.
  • the projection equipment may include a laser light source system, a light valve, a projection lens and other structures.
  • the laser light source system may include a laser light source system and a traditional light bulb laser light source system.
  • the laser light source system can use laser to excite fluorescence conversion materials to produce different colors of fluorescence as a light source.
  • the laser light source system that generates fluorescence through laser excitation has high brightness, bright colors, low energy consumption and long life. Long, the projection equipment has the characteristics of high picture contrast and clear imaging.
  • Fluorescence is the light emitted by a substance after absorbing light or other electromagnetic radiation. That is, when a certain substance is irradiated by incident light of a certain wavelength, it absorbs light energy and enters an excited state, and immediately de-excites and emits outgoing light (usually with a wavelength in the visible light band) that is longer than the wavelength of the incident light. The emitted light is called fluorescence.
  • FIG. 1 is a schematic structural diagram of a laser light source system in the related art.
  • the laser light source system 10 includes a laser 101, an optical path component 102, a phosphor wheel 103, a filter component 104 and a light outlet 105.
  • the fluorescent component 103 includes a fluorescent area used to excite fluorescence and a reflective area used for the light beam emitted by the laser 101 .
  • the light beam emitted by the laser 101 can pass through the optical path assembly 102 and illuminate the fluorescent wheel 103, and the fluorescence is excited on the fluorescent wheel 103.
  • the fluorescence will be reflected by the fluorescent wheel 103 toward the optical path assembly 102, and then reflected by the optical path assembly 102 toward the filter.
  • the optical component 104 is filtered by the filter component 104.
  • the light beam filtered by the filter component 104 will pass through the filter component and be emitted to the light outlet 105. After the light outlet 105 homogenizes the light beam, it can Shoot the beam out of the laser light source system.
  • the size of the filter component 104 may be large, especially when the uniform light device at the light outlet is a fly-eye lens. Since the fly-eye lens requires a larger spot size, the size of the filter component 104 will also be smaller. will be larger, seriously affecting the overall volume of the laser light source system, which is not conducive to the miniaturization of the projection equipment.
  • FIG. 2 is a schematic structural diagram of a laser light source system provided by an embodiment of the present application.
  • the laser light source system 20 includes a light emitting component 21, a phosphor wheel 22, a spectrum selection component 23, a combined light path component 24 and a shaping and uniform light component 31.
  • the light-emitting component 21 can emit a laser beam, and the light-emitting direction of the light-emitting component 21 faces the fluorescent wheel 22 .
  • the light combining optical path component 24 is located between the light emitting component 21 and the fluorescent wheel 22
  • the spectrum selecting component 23 is located between the combining light path component 24 and the fluorescent wheel 22 .
  • the spectrum selecting component 23 may include a filter component.
  • the fluorescent wheel 22 includes at least one fluorescence excitation area, and the at least one fluorescence excitation area includes the first fluorescence excitation area q1.
  • the laser beam emitted by the light-emitting component 21 can pass through the light combining optical path component 24 and the spectrum selection component 23 and then enter the first fluorescence excitation area.
  • the first fluorescence excitation region q1 can emit the first fluorescence under the excitation of the laser beam, and reflect the first fluorescence to the spectrum selection component 23.
  • the spectrum selection component 23 can transmit the first fluorescence in the first wavelength range, After guiding the first fluorescence in the first wavelength range to the combined light path component 24, it is guided to the light outlet 25 of the laser light source system through the combined light path component 24.
  • the relative position of the spectrum selection component 23 and the first fluorescence excitation region q1 is fixed.
  • the light beam provided by the laser light source system can enter other optical components through the light outlet 25 of the laser light source system.
  • the laser beam emitted by the light-emitting component 21 can enter the spectrum selection component 23 after passing through the light combining optical component.
  • the spectrum selection component 23 can transmit the laser beam in any wavelength range and guide the laser beam in any wavelength range to the first fluorescent light. Excitation zone q1. That is, the spectrum selection component 23 may not select the wavelength range of the laser beam.
  • the shaping and evening component 31 is located at least between the light-emitting component 21 and the combined light path component 24 , or at least between the fluorescent wheel 22 and the combined light path component 24 .
  • the shaping and evening component 31 is used to adjust the light passing through the shaping and evening component 31 .
  • the beam is shaped and homogenized.
  • the combined light path assembly 24 is located in the light emitting direction of the fluorescent wheel 22 and can guide the light beam emitted by the fluorescent wheel 22 to the light exit 25 .
  • the spectrum selection component can pass through the first fluorescence excitation area
  • the first fluorescence in the first wavelength range is excited and at least part of the laser beam emitted by the light-emitting component, and then the laser beam emitted by the light-emitting component can be irradiated to the first fluorescence excitation zone through the spectrum selective component, and excite the first fluorescence
  • the first fluorescence in the first wavelength range can pass through the first color filter, and is filtered by the first color filter and then emitted to the light combining optical path component, and the combining light path component converts the light in the first wavelength range
  • the first fluorescence is guided to the light outlet, thus achieving the effect of filtering the fluorescence excited by the fluorescent wheel, and since there is no need to independently set up a spectrum selection component, it will not affect
  • the spectrum selection component 23 includes at least one color filter, and the at least one color filter includes a first color filter 231 located on a side of the first fluorescence excitation region q1 facing the light-emitting component 21, and The relative position of the first color filter 231 and the first fluorescence excitation region q1 is fixed, the first fluorescence in the first wavelength range includes the second color light, the laser beam includes the first color light, the relative position of the first color filter 231 and the first fluorescence excitation region q1 fixed.
  • the first color filter 231 is configured to transmit the second color light and at least part of the first color light.
  • the above-mentioned transmission can be achieved by coating the color filter or selecting a color filter of a specific material so that the color filter can transmit the light beam of a specified wavelength range and reflect the light beam of a specific wavelength range. Functions of dichromatic light and at least part of primary color light.
  • FIG. 3 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • FIG. 3 makes some adjustments based on the laser light source system shown in FIG. 2 .
  • the light combining optical path component 24 includes a light combining lens 24A, and the light combining lens 24A is located between the light emitting component 21 and the fluorescent wheel 22 .
  • the light-combining lens 24A includes a light-transmitting area q2 and a reflecting area q3 located outside the light-transmitting area q2.
  • the light emitting direction of the light-emitting component 21 is toward the light-transmitting area q2, and the reflecting area q3 is directed toward the fluorescent wheel 22 and the light outlet 25, so that the fluorescent wheel 22 can be The emitted light is guided to the light outlet 25 .
  • the reflective area q3 of the light-combining lens 24A can surround the light-transmitting area q2.
  • the light-transmitting area q2 can be provided with light-transmitting materials, such as transparent glass or transparent resin materials, etc.
  • the reflective area q3 may be coated with a reflective material, or the reflective area q3 may be made of a reflective material.
  • the reflection area q3 can be a diffuse reflection area, so that the first color light can be diffusely reflected after being irradiated into the reflection area q3, so that the first color light can be adjusted by subsequent optical structures together with the excited fluorescence.
  • the light-transmitting area q2 may be an opening area, and the reflective area q3 may be coated with a reflective material, or the reflective area q3 may be made of a reflective material.
  • the light beam emitted by the light-emitting component 21 can pass through the light-transmitting area q2 and be directed to the fluorescent wheel 22 .
  • the light beam can excite fluorescence on the fluorescent wheel 22.
  • the fluorescence can be reflected by the fluorescent wheel 22 to the reflection area q3 of the light combining lens 24A, and then the reflection area q3 can reflect the fluorescence to the light outlet 25.
  • the light outlet 25 can have light.
  • the light pipe or the compound eye lens at the light outlet 25 performs uniform light processing on the fluorescence.
  • the light emitting direction of the light-emitting component 21 described in the embodiment of the present application is toward the light-transmitting area q2, which may mean that the direction of the light beam emitted by the light-emitting component 21 is toward the light-transmitting area q2 and can pass through the light-transmitting area q2.
  • the light-emitting component 21 can include a light source (such as a laser light source or a light-emitting diode light source, etc.), or the light-emitting component 21 can include a light source and other structures. These other structures can process the light beam emitted by the light source. If the direction of the light beam is changed, or Shrinkage etc.
  • the light-emitting component 21 includes a structure that can change the direction of the light beam emitted by the light source, the direction of the changed light beam will be toward the light-transmitting area q2 of the light combining lens 24A.
  • the embodiment of the present application takes the light-emitting component 21 as a laser light-emitting component 21 as an example. That is, the light-emitting component 21 can be used to provide a laser beam, and the laser beam can be a monochromatic laser beam.
  • FIG. 4 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • the laser light source system 20 also includes a light source system located between the reflector and the light-emitting component.
  • the condenser lens group 26 can be used to reduce the beam emitted from the light-emitting component 21 to facilitate adjustment and control of the beam. For example, it can facilitate other structures in the laser light source system to avoid the beam (such as allowing the beam to pass through easily). through the light-transmitting area of the reflecting mirror).
  • the condenser lens group 26 can reduce the size of the light spot that the light beam irradiates on the fluorescent wheel, thereby reducing the size of the light spot.
  • the size of the small phosphor wheel is conducive to the miniaturization of the laser light source system and projection equipment.
  • the condenser lens group 26 may include a first convex lens 261 and a first concave lens 262 .
  • the first concave lens 261 is located on a side of the first convex lens 261 away from the light-emitting component 21 .
  • the first convex lens 261 can be used to receive the light beam emitted by the light-emitting unit 21, process the light beam, and then guide the light beam to the first concave lens 262.
  • the first concave lens 262 can process the light beam and then lead it out to the condenser lens group 26. Through the first convex lens 261 and the first concave lens 262, the parallel light beam can be reduced into a parallel light beam with a smaller light spot.
  • the beam reducing lens group 26 in the laser light source system provided by the embodiment of the present application can also have other structures, and the embodiment of the present application does not limit this.
  • FIG. 5 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • the laser light source system 20 also includes a light combining lens 24A and a fluorescent wheel. 22 between the convex lens group 33, the optical axis z of the convex lens group 33 can pass through the light transmission area q2 of the light combining lens 24A and the fluorescence excitation area q1 of the fluorescent wheel 22.
  • the convex lens group 33 can be used to adjust the light beam reflected by the fluorescent wheel, so that the light beam reflected by the fluorescent wheel approaches a parallel light beam and is directed to the reflection area q3 of the light combining lens 24A.
  • the convex lens group 33 may include two convex lenses, such as a first convex lens 331 and a second convex lens 332.
  • the first convex lens 331 is located on the side of the second convex lens 332 close to the light combining lens 24A, and the first convex lens 331 is connected to the second convex lens 332.
  • the optical axes of the convex lenses 332 are coincident (may be substantially coincident), and the main optical axis of the light beam emitted by the light-emitting component 21 may also be coincident with the optical axes of the first convex lens 331 and the second convex lens 332 .
  • the first convex lens 331 and the second convex lens 332 may be spherical convex lenses or aspherical convex lenses.
  • the first color filter 231 is configured to transmit the second color light and the first color light with an incident angle smaller than a specified angle, and reflect the first color light with an incident angle greater than or equal to the specified angle.
  • the first color light with an incident angle smaller than a specified angle may refer to the first color light emitted by the light-emitting component 21 that passes through the first color filter 231 for the first time. At this time, the first color light is emitted to the third color light at a smaller incident angle.
  • a color filter 231 passes through the first color filter 231 and is emitted to the first fluorescence excitation area q1.
  • the first color light excites the phosphor in the first fluorescence excitation area q1 to generate fluorescence, and the other part
  • the first color light will be directly reflected by the first fluorescence excitation region q1.
  • This part of the reflected light can be called the first color reflected light.
  • the first color reflected light will be emitted in a divergent manner and illuminate the first color filter 231.
  • the incident angle of the first color reflected light is relatively large, and the incident angle of most of them may be greater than the specified angle.
  • the first color filter 231 is configured to reflect the incident angle greater than or equal to the specified angle.
  • the first color light that is, most of the first color reflected light can be reflected onto the first fluorescence excitation region q1 to excite fluorescence again, and the first color filter 231 is configured to transmit the incident angle smaller than the specified angle. of the first color light to prevent the first color light from being reflected when it hits the first color filter 231 for the first time.
  • the excitation efficiency of fluorescence can be improved, the loss of the first color light emitted by the light-emitting component can be reduced, and the luminous efficiency of the laser light source system can be improved.
  • a film can be coated on the color filter so that the first color filter can transmit the first color light with an incident angle smaller than a specified angle and reflect the first color light with an incident angle greater than or equal to the specified angle.
  • Light function In this embodiment of the present application, the specified angle may be 10 degrees, the first color light may be blue light, and the second color light may be green light.
  • the light emitting component may include a blue laser.
  • the first color filter 231 can transmit green light and blue light with an incident angle of 0 degrees to 10 degrees, and reflect blue light with an incident angle greater than or equal to 10 degrees.
  • Figure 6 is a schematic structural diagram of a fluorescent wheel in the laser light source system according to the embodiment of the present application (for example, it can be a top view of the fluorescent wheel in the laser light source system shown in Figure 5), wherein the fluorescent wheel includes There are at least two fluorescence excitation regions.
  • the at least two fluorescence excitation regions include a first fluorescence excitation region q1 and a second fluorescence excitation region q4.
  • the second fluorescence excitation region q2 can emit a second fluorescence under the excitation of a laser beam and convert the second fluorescence excitation region into a second fluorescence excitation region.
  • the fluorescence is reflected to the spectrum selection component 23.
  • the spectrum selection component 23 can transmit the second fluorescence in the second wavelength range, and guide the second fluorescence in the second wavelength range to the combined light path component 24, and then passes through the combined light path component. 24 guides the light outlet 25 of the laser light source system.
  • the first fluorescence excitation region q1 can emit the first fluorescence under the excitation of the first color light
  • the second fluorescence excitation region q4 can emit the second fluorescence under the excitation of the first color light.
  • the first color light may be blue light
  • one of the second fluorescence and the third fluorescence may be red light
  • the other light may be green light.
  • a green phosphor may be provided in the first fluorescence excitation region
  • a green phosphor may be provided in the first fluorescence excitation region.
  • the phosphor can emit green light when excited by blue light.
  • the second fluorescence excitation zone can be provided with red phosphor.
  • the red phosphor can emit red light when excited by blue light.
  • the first fluorescence excitation region q1 and the second fluorescence excitation region q4 can be in the fluorescent wheel Arranged along the circumference.
  • Figure 7 is a schematic structural diagram of a spectrum selection component in the laser light source system according to the embodiment of the present application (for example, it can be a top view of the spectrum selection component in the laser light source system shown in Figure 5), wherein the spectrum selection component 23 includes at least Two color filters, at least two color filters include a first color filter 231 and a second color filter 232.
  • the second color filter 232 is located on the side of the second fluorescence excitation region facing the light-emitting component and is connected with the second color filter 231.
  • the relative position of the fluorescence excitation region is fixed, the second fluorescence in the second wavelength range includes the third color light, the laser beam includes the first color light, and the second color filter 232 is configured to transmit the third color light and at least part of the first color. Light.
  • the second color filter 232 is configured to transmit the third color light and the first color light with an incident angle smaller than a specified angle, and reflect the first color light with an incident angle greater than or equal to the specified angle.
  • the first color light with an incident angle smaller than a specified angle may refer to the first color light emitted by the light-emitting component that passes through the first color filter 231 for the first time. At this time, the first color light is emitted to the first color light at a smaller incident angle.
  • the color filter 231 passes through the first color filter 231 and is emitted to the first fluorescence excitation area.
  • a part of the first color light excites the phosphor in the first fluorescence excitation area to generate fluorescence, and the other part of the first color light excites the phosphor in the first fluorescence excitation area.
  • the light will be directly reflected by the first fluorescence excitation region. This part of the reflected light can be called the first color reflected light.
  • the first color reflected light will be emitted in a divergent manner and illuminate the first color on the first color filter 231.
  • the incident angle of the reflected light is relatively large, and most of the incident angles may be greater than the specified angle.
  • the first color filter 231 is configured to reflect the first color light whose incident angle is greater than or equal to the specified angle.
  • the first color filter 231 is configured to transmit the first color light with an incident angle smaller than the specified angle. to prevent the first color light from being reflected when it hits the first color filter 231 for the first time. In this way, the excitation efficiency of fluorescence can be improved, the loss of the first color light emitted by the light-emitting component can be reduced, and the luminous efficiency of the laser light source system can be improved.
  • a film can be coated on the color filter so that the second color filter can transmit the first color light with an incident angle smaller than a specified angle and reflect the first color light with an incident angle greater than or equal to the specified angle.
  • Light function In this embodiment of the present application, the specified angle may be 10 degrees, the first color light may be blue light, and the third color light may be red light.
  • the light emitting component may include a blue laser.
  • the second color filter can transmit red light and blue light with an incident angle of 0 degrees to 10 degrees, and reflect blue light with an incident angle greater than or equal to 10 degrees.
  • FIG. 8 is a schematic three-dimensional structural diagram of a spectrum selection component and a phosphor wheel in the laser light source system according to the embodiment of the present application.
  • the light-emitting component may be located on the upper side of the spectrum selection component 23 .
  • the first color filter 231 is located on the side of the first fluorescence excitation region q1 facing the light-emitting component 21, and its relative position to the first fluorescence excitation region q1 is fixed.
  • the first color filter 231 is configured as Transmits the second color light and at least part of the first color light.
  • the second color filter 232 is located on the side of the second fluorescence excitation region q4 facing the light-emitting component, and its relative position to the second fluorescence excitation region is fixed.
  • the second color filter 232 is configured to transmit the third color light and at least part of the third color light. One color of light.
  • the fluorescent wheel 22 also includes a rotating shaft 221 and a fluorescent rotating disk 222.
  • the fluorescent rotating disk 222 is installed on the rotating shaft 221 and can rotate about the rotating shaft 221.
  • At least two fluorescence excitation areas are arranged in the circumferential direction on the fluorescence rotating disk 222.
  • the spectrum selection component 23 includes a filter component w.
  • the filter component w is installed on the rotating shaft 221 and can rotate about the rotating shaft 221.
  • At least two color filters (including the first color filter 231 and the second color filter 232 ) are arranged circumferentially on the filter component.
  • the shape of at least one of the first color filter 231 and the second color filter 232 may be a disk shape, an annular shape, a rectangular shape, or a sector shape.
  • the multiple structures A (such as filters and fluorescence excitation areas) involved in this application are arranged circumferentially on another structure B, which may mean that the multiple structures A are arranged around the center of the structure B.
  • FIG. 9 is a schematic three-dimensional structural diagram of a spectrum selection component and a phosphor wheel in the laser light source system according to the embodiment of the present application.
  • the light-emitting component may be located on the upper side of the spectrum selection component 23 .
  • the fluorescent wheel 22 also includes a diffuse reflection area q5.
  • the diffuse reflection area q5 and at least two fluorescence excitation areas are arranged circumferentially on the fluorescence turntable 222.
  • the light-transmitting area 233 of the spectrum selection component 23 is located on the side of the diffuse reflection area q5 facing the light-emitting component, and is used to transmit the first color light reflected by the diffuse reflection area q5 on the phosphor wheel 22 .
  • the light-transmitting area can be an opening area
  • a domain can also be a region composed of light-transmitting materials.
  • the distance between the spectral selection component and the fluorescent wheel may not be as shown in FIG. 8 and FIG. 9 , and the embodiment of the present application does not limit this.
  • the filter in the spectrum selection component can also be attached to the fluorescence excitation area of the fluorescent wheel.
  • a transparent adhesive layer can be coated on the fluorescence excitation area, and then the transparent A light filter is arranged on the glue layer so that the light filter is attached to the fluorescence excitation area.
  • FIG. 10 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • the laser light source system may also include a compound eye lens located at the light outlet 25 .
  • a fly-eye lens is a lens composed of a series of microlenses. When a double-row fly-eye lens array is used in a laser light source system, it can achieve high light energy utilization and uniform illumination of a large area. However, compared with other types of uniform light devices, compound-eye lenses have larger requirements for light spot size. If filter components in related technologies are used to filter light, the size of the filter components will be larger, which will greatly affect the laser beam. The overall volume of the light source system seriously affects the miniaturization of the projection equipment.
  • a color filter is provided on the side of the fluorescent wheel facing the light-emitting component to perform light filtering, so that there is no need to separately set up a larger filter component, and the ability to reduce the size of the The effect of the volume of the laser light source system is beneficial to the miniaturization of the projection equipment.
  • the laser light source system provided by the embodiment of the present application may also include a focusing lens group 32.
  • the focusing lens group 32 is located in the light emitting direction of the light outlet 25 and is used to reduce the spot size of the image beam.
  • the spectrum selection component By arranging a spectrum selection component with a fixed relative position to the first fluorescence excitation area on the side of the first fluorescence excitation area of the fluorescent wheel facing the light-emitting component, and the spectrum selection component can transmit the first light emitted by the first fluorescence excitation area.
  • the first fluorescence in the wavelength range and the laser beam emitted by at least part of the light-emitting component, and then the laser beam emitted by the light-emitting component can be irradiated to the first fluorescence excitation zone through the spectrum selective component, and excite the first fluorescence, the first wavelength range
  • the first fluorescence in the filter can pass through the first color filter, and is filtered by the first color filter and then emitted to the combined light path component.
  • the combined light path component guides the first fluorescence in the first wavelength range to emit light. In this way, the effect of filtering the fluorescence excited by the fluorescent wheel is achieved, and since there is no need to set up independent filter components, it will not affect the volume of the light source system, solving the problem of the large volume of the light source system in related technologies. problem, achieving the effect of reducing the size of the light source system.
  • FIG. 11 is a schematic structural diagram of a laser light source system in another related art.
  • the laser light source system 10 includes a laser 101 , an optical path component 102 , a fluorescent component 103 and a light outlet 104 .
  • the optical path component 102 includes a dichroic plate 1021 and a reflector 1022.
  • the fluorescent component 103 includes a fluorescent area and a laser reflection area. The fluorescent area is used to excite fluorescence, and the laser reflection area is used to reflect the laser beam s1 transmitted through the dichroic plate 1021.
  • the dichroic piece 1021 receives the laser beam s1 emitted by the laser 101, and guides the laser beam s1 to the fluorescent component 103.
  • the fluorescent component 103 emits fluorescence and reflects the laser to the dichroic sheet 1021, and the dichroic sheet 1021 reflects the fluorescence to emit light.
  • port 104 and again transmits the laser beam s2 to the reflector, the reflector reflects the laser beam s1 to the dichroic plate 1021, and the dichroic plate 1021 transmits the laser beam s1 to the light exit port 104.
  • the central area of the spot of the laser beam s1 irradiated to the fluorescent component 103 has higher energy and the energy of the edge area is lower, that is, the energy density of each area of the spot is uneven, resulting in the following two problems in the laser light source system 10: Questions about:
  • the fluorescent conversion material on the fluorescent component 103 has a light saturation phenomenon, that is, when the energy received by the fluorescent conversion material reaches a certain level, the intensity of the generated fluorescence begins to tend to a constant value and no longer changes with the received energy. As the received energy increases, the area with higher energy density on the fluorescent component 103 may not be able to fully play the role of light conversion, and part of the laser beam s1 cannot be effectively converted into fluorescence, which reduces the power provided by the laser light source system 10 The overall brightness of the beam.
  • FIG. 12 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another laser light source system according to an embodiment of the present application. Please refer to FIGS. 12 and 13 .
  • the laser light source system 20 may also include a light shaping component 31, the light emitting component 21 may include a laser 21A, and the light combining optical path component 24 may include a combining lens 24A. That is, the laser light source system 20 may include: a laser 21A, a shaping and uniform light component 31, and a light combining lens. 24A, fluorescent wheel 22, spectrum selection component 23 and light outlet 25.
  • the shaping and uniform light component 31 can be located between the laser 21A and the light combining lens 24A, and the shaping and uniform light component 31 can include a diffusion unit 311 and a first lens 312.
  • the diffusion unit 311 can be located on the side of the first lens 312 close to the laser 21A.
  • the unit 311 can receive the laser beam s1 provided by the laser 21A, and guide the homogenized laser beam s1 to the first lens 312 so as to pass through the first lens 312 and then be emitted to the light combining lens 24A.
  • the light combining lens 24A is located between the fluorescent wheel 22 and the shaping and uniform light component 31.
  • the light outlet 25 is located on the side of the light combining lens 24A facing the fluorescent wheel 22.
  • the light combining lens 24A can guide the laser beam s1 provided by the shaping and uniform light component 31.
  • the fluorescent wheel 22 guides the light beam provided by the fluorescent wheel 22 to the light outlet 25 .
  • the fluorescent wheel 22 may include at least one fluorescence conversion material, which can be excited to generate fluorescence s2 under the irradiation of the laser beam s1 and emit the fluorescence s2 out of the fluorescent wheel 22 .
  • the fluorescent wheel 22 can also reflect the laser beam s1 provided by the laser 21A, and reflect the reflected laser s3 toward the light combining component 23 .
  • the diffusion unit 311 can homogenize the energy of the laser beam s1 provided by the laser 21A.
  • the energy density distribution of the light spot illuminated by the homogenized laser beam s1 on the fluorescent wheel 22 is relatively uniform, which can improve the brightness of the light beam emitted by the fluorescent wheel 22.
  • the uniformity can also avoid light saturation caused by energy concentration on the fluorescent wheel 22, and can improve the overall brightness of the laser light source system 20.
  • Embodiments of the present application provide a laser light source system, including a laser, a shaping and uniform light component, a light combining lens group, a phosphor wheel, and a light outlet.
  • the light shaping and homogenizing component includes a diffusion unit and a first lens.
  • the laser provided by the laser is homogenized through the shaping and homogenizing component, so that the energy density of each area of the spot of the laser irradiated to the fluorescent wheel is relatively uniform, and the combined light is
  • the lens group can guide the light beam with good brightness uniformity provided by the fluorescent wheel to the light outlet.
  • the light beam provided by the laser light source system can have good brightness uniformity, which solves the problem of uniform brightness of the light beam provided by the laser light source system in related technologies. It solves the problem of poor performance and achieves the effect of improving the brightness uniformity of the beam provided by the laser light source system.
  • the diffusion unit 311 may include a first fly-eye lens 313 , the first fly-eye lens 313 may have a plurality of microlenses 2232 arranged in an array, and the first lens 312 may include a convex lens.
  • the diffusion unit 311 can be located on the side of the first lens 312 close to the laser 21A, which can increase the spot area of the laser beam s1 received on the diffusion unit 311 and improve the homogenization effect of the diffusion unit 311 on the laser beam s1.
  • the first fly-eye lens 313 may include a glass substrate 3131 and a plurality of microlenses 3132 arranged in an array on the light incident surface of the glass substrate 3131 .
  • the microlens 3132 may include a plano-convex lens, and the plano-convex lens may include a plane facing the glass substrate 3131 and a curved surface facing away from the glass substrate 3131.
  • the orthographic projection of the curved surface on the glass substrate 3131 can be a rectangle.
  • the multiple microlenses 3132 on the light incident surface of the first fly-eye lens 313 can divide the light spot of the input laser beam s1 into multiple rectangular light spots, thereby The homogenization of the laser beam s1 beam can be achieved.
  • the microlens in the first fly-eye lens 313 may be a spherical convex lens or an aspherical convex lens.
  • the first lens 312 can converge the divided multiple rectangular light spots, and converge the homogenized laser beam s1 to the phosphor wheel 22 .
  • the diffusion unit 311 may also include a diffusion sheet, which may include a transparent substrate and a diffuser disposed on the transparent substrate, and the first lens 312 may include a convex lens.
  • the diffuser may include frosted glass, which can destroy the directionality of the laser beam s1 irradiated to the diffuser, so as to homogenize the laser beam s1 that passes through the diffuser.
  • the first lens 312 can receive the laser beam s1 that passes through the diffuser, and converge the homogenized laser beam s1 to the phosphor wheel 22 .
  • FIG. 14 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of the light combining lens group in the laser light source system shown in FIG. 14 .
  • the light combining lens 24A may have a light transmission area q2 and a reflection area q3 provided around the light transmission area q2.
  • the light-transmitting area q2 can transmit the laser beam s1 provided by the shaping and uniforming component 31
  • the reflective area q3 can reflect the received light beam provided by the phosphor wheel 22 .
  • the light combining lens 24A may include a transparent substrate, a dichroic film and a reflective film located on the transparent substrate.
  • the dichroic film can be located in the light-transmitting area q2, and the reflective film can be located in the reflective area q3.
  • the combined light lens 24A can be a lens with an integrated structure.
  • the light-transmitting area q2 and the reflective area q3 can be divided into the transparent substrate first, and then a dichroic film is coated on the light-transmitting area q2, and a reflective film is coated on the reflective area q3, so that
  • the combined light lens 24A may have both transmission and reflection functions. In this way, the number of optical elements in the laser light source system 20 can be reduced.
  • the laser light source system 20 may also include a focusing lens 251 and a light pipe 252.
  • the focusing lens 251 and the light pipe 252 The focusing lens 251 may be located at the light outlet 25 and may receive the light beam provided by the light combining lens 24A and converge the light beam to the light guide 252 .
  • Light pipe 252 may be a hollow light pipe or a solid light pipe.
  • the hollow light pipe is a tubular device made of four planar reflective sheets. The light is reflected multiple times inside the hollow light pipe to achieve a uniform light effect.
  • the solid light pipe can be made of quartz, and the light beam is guided by total reflection of the light beam inside the solid light pipe. The light beam enters from the light entrance of the light pipe, and then exits the laser light source system 20 from the light outlet of the light pipe. During the process of passing through the light pipe, the beam is homogenized and the light spot is optimized.
  • the fluorescent wheel 22 may include a fluorescent area and a diffuse reflection area q5.
  • the fluorescent wheel 22 may include at least one fluorescent conversion material located in the fluorescent area.
  • the fluorescent conversion material may be excited to generate fluorescence s2 under the irradiation of the laser beam s1 and emit the fluorescence s2 out of the fluorescent wheel 22 .
  • the fluorescent area generates fluorescence s2 under the excitation of the laser beam s1 and emits the fluorescence s2 to the light combining lens 24A.
  • the diffuse reflection area q5 of the fluorescent wheel 22 can be used to process the received laser beam s1 into diffuse light s3 and reflect it.
  • the diffuse reflection area q5 guides the diffuse light s3 to the light combining lens 24A, and the reflection area q3 of the light combining lens 24A reflects the fluorescence s2 and the diffuse light s3 provided by the fluorescent wheel 22 to the light outlet 25 .
  • the number of times the laser beam s1 emitted by the laser 21A passes through the light-transmitting area q2 of the light combining lens 24A during the travel of the laser light source system 20 can be reduced, and large light loss of the laser beam s1 provided by the laser 21A can be avoided.
  • the fluorescent area can include a first fluorescence excitation area q1 and a second fluorescence excitation area q2, and a first fluorescence excitation area q1 and a second fluorescence excitation area.
  • Fluorescence conversion materials for emitting different colors can be respectively provided in the excitation region q2.
  • the fluorescence conversion material can be at least one of a green fluorescence conversion material, a yellow fluorescence conversion material or a red fluorescence conversion material, wherein the green fluorescence conversion material is used to produce green fluorescence s2 when stimulated, and the yellow fluorescence conversion material is used to be stimulated Yellow fluorescence s2 is produced, and the red fluorescence conversion material is used to be stimulated to produce red fluorescence s2.
  • the laser 21A can emit a blue laser beam s1.
  • the focus c of the first lens 312 may be located at the center of the light-transmitting area q2 , so that the size of the light-transmitting area q2 can be made smaller. In this way, the size of the light-transmitting area q2 for receiving the laser beam s1 emitted from the shaping and uniform light component 31 can be smaller, and thus the size of the laser light source system 20 can be smaller.
  • the laser light source system 20 may also include a convex lens group 33 located between the fluorescent wheel 22 and the light combining lens 24A.
  • the convex lens group 33 may include at least one convex lens, and the convex lens group 33 may be used to converge the homogenized laser light that passes through the light transmission area q2 Beam s1, and guide the laser beam s1 to the fluorescent area or diffuse reflection area q5.
  • the fluorescent area is used to generate fluorescence s2 under the excitation of the received laser beam s1, and emit the fluorescence s2 to the convex lens group 33.
  • the diffuse reflection area q5 is used The received laser beam s1 is reflected to the convex lens group 33 .
  • FIG. 16 is a schematic diagram of the laser light spot irradiating the fly-eye lens provided by the embodiment of the present application.
  • the orthographic projection of the microlens 3132 of the first fly-eye lens 313 on the first plane perpendicular to the optical axis L1 of the first lens 312 may be rectangular.
  • the laser 21A may include a plurality of light-emitting chips 211 arranged in an array.
  • the light spot R illuminated by the laser beam s1 emitted from the light-emitting chip 211 on the first fly-eye lens 313 may be elliptical, and the long axis of the light spot R is aligned with the microlens 3132 at the first angle.
  • the long sides of an orthographic projection on a plane are parallel.
  • the first fly-eye lens 313 can receive and transmit the laser beam s1 emitted by the laser 21A, and homogenize the received laser beam s1.
  • the major axis of the elliptical light spot R refers to the longest line segment that can be obtained by connecting two points on the edge of the elliptical light spot R.
  • the shape of the spot R of the laser beam s1 emitted by the light-emitting chip 211 can be highly similar to the shape of the microlens 3132, so that the laser beam s1 emitted by the light-emitting chip 211 can be imaged on the surface of the first fly-eye lens 313, and thus More laser beams s1 can be allowed to pass through the first fly-eye lens 313 to improve the utilization of the laser beams s1.
  • FIG. 17 is a schematic structural diagram of another laser light source system provided by an embodiment of the present application
  • FIG. 18 is a schematic structural diagram of the laser light source system shown in FIG. 17 looking toward the part 20A of the laser light source system in the first direction
  • FIG. 19 is a schematic structural diagram of the laser in the laser light source system shown in FIG. 17 .
  • the first direction may be parallel to the column direction f2 of multiple light-emitting chips.
  • the laser 21A may include multiple light-emitting chips 211 arranged in rows and columns.
  • the laser beam s1 light source system 20 may also include a first reflector group 27. Group 27 can be located in the shaping and homogenizing component 31 and the laser 21A, and the light exit surface of the laser 21A can face the shaping and uniform light component 31 .
  • the first reflector group 27 may include a first reflector unit 271 and a second reflector unit 272.
  • the second reflector unit 272 may be located on a side of the first reflector unit 271 away from the laser 21A, and a plurality of light-emitting chips 211 are arranged in a row.
  • the light-emitting chips 211 are divided into two groups equally in the direction f2 and in the row direction f1.
  • multiple light-emitting chips 211 can be arranged in 2 rows and 8 columns, that is, the multiple light-emitting chips 211 can include 2 rows of light-emitting chips 211, and the 2 rows of light-emitting chips 211 can be arranged in 8 columns. Column of light-emitting chips.
  • the plurality of light-emitting chips 211 are divided into a first light-emitting chip group 211a and a second light-emitting chip group 211b in the row direction f1.
  • the first light-emitting chip group 211a may include 4 columns of light-emitting chips 211 among the 8 columns of light-emitting chips 211.
  • the second light-emitting chips 211 may include another 4 columns of light-emitting chips 211 among the 8 columns of light-emitting chips 211.
  • the plurality of light-emitting chips 211 are divided into a third light-emitting chip group 211c and a fourth light-emitting chip group 211d in the column direction f2.
  • the first light-emitting chip group 211a may include one row of light-emitting chips 211 among the two rows of light-emitting chips 211.
  • the chipset 211b may include another row of light-emitting chips 211 among the two rows of light-emitting chips 211.
  • the first reflector unit 271 may include a first reflector 2711 and a second reflector 2712 .
  • the first reflector 2711 and the second reflector 2712 are arranged along the column direction f2 , and the second reflector is located at The first reflective mirror is close to the side of the optical axis L1 of the first lens 312.
  • the first reflective mirror 2711 is used to receive the laser beam s1 emitted by a group of light-emitting chips 211 in the column direction f2, and guide the received laser beam s1
  • the second reflecting mirror 2712 is used to guide the received laser beam s1 out of the first reflecting mirror unit 271 .
  • the first reflecting mirror 2711 and the second reflecting mirror 2712 may be two parallel reflecting mirrors with opposite reflecting surfaces.
  • the row direction f1 in FIG. 17 may be a direction perpendicular to the paper surface.
  • the first mirror unit 271 is used to translate the received laser beam s1 emitted by the third light-emitting chipset 211c in a direction close to the optical axis L1 of the first lens 312, and the laser beam emitted by the fourth light-emitting chipset 211d
  • the beam s1 may be closer to the optical axis L1 of the first lens 312. Therefore, the laser beam s1 emitted by the third light-emitting chipset 211c and the fourth light-emitting chipset 211d can be narrowed by arranging the first mirror unit 271. , so that the beam of the laser beam s1 can be thinner, so that the size of the shaping and homogenizing component 31 that receives the laser beam s1 can be smaller.
  • a mirror unit with a similar structure to the first mirror unit 271 can also be provided in the light emitting direction of the fourth light-emitting chipset 211d to divert the laser beam emitted from the fourth light-emitting chipset 211d.
  • s1 translates in a direction close to the optical axis L1 of the first lens 312 .
  • the second mirror unit 272 may include a third mirror 2721 and a fourth mirror 2722 .
  • the third mirror 2721 and the fourth mirror 2722 may be arranged along the row direction f1
  • the fourth mirror 2721 may be arranged along the row direction f1 .
  • 2722 is located on the side of the third reflector 2721 close to the optical axis L1 of the first lens 312.
  • the third reflector 2721 is used to receive the laser beam s1 provided by a group of light-emitting chips 211 in the row direction f1, and convert the received laser beam
  • the beam s1 is guided to the fourth reflecting mirror 2722
  • the fourth reflecting mirror 2722 is used to guide the received laser beam s1 to the shaping and uniform light component 31 .
  • the column direction f2 in FIG. 18 may be a direction perpendicular to the paper surface.
  • the second mirror unit 272 is used to receive the laser beam s1 emitted by the first light-emitting chipset 211a and translate it in a direction close to the optical axis L1 of the first lens 312, and the second light-emitting chipset 211b emits the laser beam s1. It can be closer to the optical axis L1 of the first lens 312. Therefore, the laser beam s1 emitted by the first light-emitting chipset 211a and the second light-emitting chipset 211b can be narrowed by disposing the second mirror unit 272, so that The size of the shaping and homogenizing component 31 that receives the laser beam s1 can be smaller.
  • Figure 20 is a schematic diagram of the light spot of the laser provided by the laser shown in Figure 18 before and after passing through the first reflector group.
  • the spot diagram 201 in FIG. 20 shows the spot R1 formed on the first plane m1 perpendicular to the optical axis L1 of the first lens 312 before the laser beam s1 emitted by the laser 21A is irradiated to the first mirror group 27 Schematic diagram.
  • the spot diagram 202 shows a diagram of the spot R2 formed on the first plane m1 perpendicular to the optical axis L1 of the first lens 312 after the laser beam s1 emitted by the laser 21A is narrowed by the first mirror group 27 . It can be seen from the two light spot diagrams in FIG. 20 that the first reflector group 27 can make the light spot provided by the multiple light-emitting chips 211 more compact, and can make the spot size of the laser beam s1 provided by the laser 21A smaller.
  • Fig. 21 is a schematic structural diagram of a laser and a second reflector group provided by an embodiment of the present application.
  • Fig. 22 is a schematic structural diagram of the laser light source system shown in Fig. 21 looking toward the laser light source system in the second direction. Please refer to Figure 21 and Figure 22.
  • the second direction f3 may be a direction perpendicular to the light exit surface of the laser 21A, and the laser 21A may include multiple rows.
  • the laser light source system 20 may also include a second reflective mirror group 28.
  • the second reflective mirror group 28 is located between the shaping and uniform light component 31 and the laser 21A, and the light emission direction of the laser 21A is in line with the first lens.
  • the optical axis L1 of 312 has an included angle.
  • the second reflector group 28 may include a third reflector unit 281 and a fourth reflector unit 282.
  • the third reflector unit 281 is located in the light emitting direction of the multi-column light-emitting chips 211.
  • the fourth reflector unit 282 is located in the third reflector unit.
  • the plurality of light-emitting chips 211 include two groups of light-emitting chips arranged along the row direction f1.
  • the third reflector unit 281 may include a fifth reflector 2811.
  • the fifth reflector 2811 may be used to receive the laser beam s1 provided by the two groups of light-emitting chips arranged along the row direction f1, and reflect the laser beam s1 to the fourth reflector.
  • the mirror unit 282 and the fifth reflecting mirror 2811 can be used to change the transmission direction of the laser beam s1 emitted by the laser 21A.
  • the fifth mirror 2811 may include two mirrors arranged in parallel. The two mirrors may not overlap in the direction of the optical axis L1 of the first lens 312 and may be used to receive two sets of mirrors respectively.
  • the light-emitting chips (lasers emitted by the third light-emitting chip group 211c and the fourth light-emitting chip group 211d) can improve the flexibility of the placement position of the fifth reflector 2811.
  • the fourth reflector unit 282 may include a sixth reflector 2821 and a seventh reflector 2822.
  • the sixth reflector 2821 and the seventh reflector 2822 are arranged along the row direction f1, and the seventh reflector 2822 is located at the sixth reflector 2821.
  • the sixth reflector 2821 is used to receive the laser beam s1 provided by a group of light-emitting chips 211 in the row direction f1, and guide the received laser beam s1 to the seventh reflector. 2822.
  • the seventh reflecting mirror 2822 is used to guide the received laser beam s1 to the shaping and uniform light component 31 .
  • the sixth reflecting mirror 2821 and the seventh reflecting mirror 2822 may be two parallel reflecting mirrors with opposite reflecting surfaces.
  • the plurality of light-emitting chips 211 are divided into a first light-emitting chip group 211a and a second light-emitting chip group 211b in the row direction f1.
  • the fourth mirror unit 282 is used to translate the received laser beam s1 provided by the first light-emitting chipset 211a in a direction close to the optical axis L1 of the first lens 312.
  • the laser beam s1 emitted by the second light-emitting chipset 211b can be at a distance from the second light-emitting chipset 211b.
  • the optical axis L1 of a lens 312 is relatively close.
  • the laser beam s1 emitted by the first light-emitting chipset 211a and the second light-emitting chipset 211b can be narrowed by arranging the fourth mirror unit 282, thereby enabling the reception of the laser beam s1.
  • the size of the shaping and homogenizing component 31 of the laser beam s1 can be smaller.
  • a mirror unit with a similar structure to the fourth mirror unit 282 can also be provided on the optical path of the laser beam s1 provided by the second light-emitting chipset 211b to separate the second light-emitting chipset
  • the laser beam s1 provided by 211b translates in a direction close to the optical axis L1 of the first lens 312.
  • a plurality of microlenses 3132 arranged in an array are attached to the side of the first lens 312 facing the laser 21A.
  • the side of the microlens 3132 facing away from the laser 21A may be glued to the side of the first lens 312 facing away from the light combining assembly 23 , or the microlens 3132 may be integrated with the first lens 312 .
  • the numerical aperture (NA) of the first lens 312 may be less than 0.3.
  • Figure 23 is a schematic structural diagram of another laser light source system according to an embodiment of the present application
  • Figure 24 is a schematic structural diagram of a multi-color laser in the laser light source system shown in Figure 23.
  • the laser light source system 20 may also include a multi-color laser 291.
  • the multi-color laser 291 may include multiple types of light-emitting chips used to emit laser light of different colors, such as green light-emitting chips used to emit green laser light. Chip 291G, a blue light-emitting chip 291B for emitting blue light, and a red light-emitting chip 291R for emitting red light.
  • the multi-color laser 291 can emit multi-color laser s4, and the multi-color laser s4 can be irradiated to the light-transmitting area q2 of the light combining component 23, and can be irradiated to the light outlet 25 through the light-transmitting area q2.
  • the multicolor laser s4 can be mixed with the fluorescence s2 and diffuse light s3 provided by the fluorescent wheel 22 to form white light at the light outlet 25 , which can improve the light output quality of the laser light source system 20 .
  • the multicolor laser 291 may include 9 light-emitting chips, and the 9 light-emitting chips may be arranged in two columns, where one column of light-emitting chips includes four red light-emitting chips 291R, and the other column of light-emitting chips includes There are two blue light-emitting chips 291B and three green light-emitting chips 291G, and the two blue light-emitting chips 291B are located on both sides of the three green light-emitting chips 291G.
  • Figure 25 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • the laser light source system 20 may also include a third reflector group 292, and the light exit surface of the multicolor laser 291 may be in contact with the laser 21A.
  • the light-emitting surface is parallel, and the third reflector group 292 can receive the multi-color laser s4 emitted by the multi-color laser 291 and reflect the multi-color laser s4 to the light-transmitting area q2.
  • the plurality of light-emitting chips of the multicolor laser 291 are arranged in two columns along the column direction f2, and the third mirror group 292 may include a fifth mirror unit 2921 and an eighth mirror 2922.
  • the fifth reflector unit 2921 may include a ninth reflector 29211 and a tenth reflector 29212.
  • the ninth reflector 29211 and the tenth reflector 29212 are arranged along the third direction f4, and the third direction f4 may be perpendicular to the column direction f4.
  • the ninth reflector 29211 and the tenth reflector 29212 correspond to the two rows of light-emitting chips, that is, the ninth reflector 29211 is used to receive the laser s5 provided by one row of light-emitting chips (such as the red light-emitting chip 291R), and will receive The laser s5 is directed to the tenth reflector 29212.
  • the tenth reflector 29212 can be a dichroic film. The tenth reflector 29212 is used to reflect the received laser s5 provided by the ninth reflector 29211 to the eighth reflector 2922.
  • the tenth reflector 29212 is also used to receive the laser s6 emitted by another row of light-emitting chips (such as the blue light-emitting chip 291B and the green light-emitting chip 291G).
  • the laser s6 can pass through the tenth reflector 29212 and illuminate the eighth reflector 2922.
  • the eighth reflector 2922 can receive the laser s5 and the laser s6 provided by the tenth reflector 29212, and reflect the mixed multi-color laser s4 to the light outlet 25.
  • FIG. 26 is a schematic structural diagram of another laser light source system according to an embodiment of the present application.
  • the laser light source system 20 may also include an eleventh reflector 295 and a filter unit 293.
  • the eleventh reflector 295 may be located in the light emission direction of the light combining lens 24A, and the filter unit 293 may be located between the focusing lens 251 and the light pipe 252. , and the focusing lens 251, the filter unit 293 and the light pipe 252 are sequentially arranged along the light emitting direction of the eleventh reflector 295.
  • the filter unit 293 can be used to filter the various colored lights reflected by the eleventh reflecting mirror 295 of the light guide prism 291, so that the purity of the various colored lights provided by the laser light source system 20 is higher.
  • the filter unit 293 may include filters for filtering various colored lights, for example, may include a blue filter, a green filter, and a red filter.
  • the laser light source system 20 includes a color wheel 294 that includes at least two annular areas; the fluorescent area and the diffuse reflection area of the fluorescent wheel 22 are located in the first annular area of the at least two annular areas. middle.
  • the filter unit 293 includes a color filter located in a second annular area of at least two annular areas.
  • Figure 27 is a top view of the color wheel in the laser light source system shown in Figure 26.
  • the filter unit 293 includes a third color filter 2931, a fourth color filter 2932 and a fifth color filter 2933.
  • the fluorescent wheel 22 includes a fluorescent area and a diffuse reflection area q5.
  • the fluorescent area may include a first fluorescent area 1 and a second fluorescent area 2. These two fluorescent areas are used to emit different colors of light under laser excitation.
  • the third filter The color filter 2931 can be used to filter the fluorescence emitted by the first fluorescent area 1
  • the fourth color filter 2932 can be used to filter the fluorescence emitted by the second fluorescent area 2
  • the fifth color filter 2933 can be used to correspondingly filter the diffuse light reflected by the diffuse reflection area q5.
  • the structure of the color wheel can be as shown in Figure 27, where the third color filter 2931, the fourth color filter 2932 and the fifth color filter 2933 are located in an annular shape.
  • the area is the second annular area, and the annular area where the fluorescent area and diffuse reflection area q5 are located is the first annular area.
  • the third color filter 2931 is located on the opposite side of the first fluorescent area 1
  • the fourth color filter 2932 is located on the opposite side of the corresponding second fluorescent area 2
  • the fifth color filter 2933 can be located on the corresponding side of the diffuse reflection area q5.
  • the color wheel has the functions of a fluorescent wheel and a filter component, and the laser light source system combines the fluorescent wheel and the filter component, simplifying the structure of the laser light source system and conducive to the compactness of the laser light source system. change.
  • FIG 11 is a schematic structural diagram of a laser light source system in the related art.
  • the laser light source system 10 in the related art includes a laser 101, an optical path component 102, a fluorescent component 103 and a light outlet 104.
  • the optical path component 102 includes a dichroic plate 1021 and a reflector 1022.
  • the fluorescent component 103 includes a fluorescent area and a laser reflection area. The fluorescent area is used to excite fluorescence, and the laser reflection area is used to reflect the laser beam s1 transmitted through the dichroic plate 1021.
  • the dichroic piece 1021 receives the laser beam s1 emitted by the laser 101, and guides the laser beam s1 to the fluorescent component 103.
  • the fluorescent component 103 emits fluorescence and reflects the laser to the dichroic sheet 1021, and the dichroic sheet 1021 reflects the fluorescence to emit light.
  • port 104 and transmits the laser beam s2 to the reflector again, the reflector reflects the laser beam s1 to the dichroic piece 1021, and the dichroic piece 1021 transmits the laser beam s1 to the light outlet 104 for the third time.
  • the laser beam s1 emitted by the laser 101 passes through three times in the optical path of the laser light source system.
  • the dichroic plate 1021 then shoots towards the light outlet 104.
  • the light transmittance of the dichroic plate 1021 is about 96% to 97%.
  • the optical loss of the laser beam s1 of the laser light source system is relatively high.
  • FIG. 28 is a schematic structural diagram of another laser light source system 20 according to an embodiment of the present application. Please refer to FIG. 2 .
  • the laser light source system 20 may include: a laser 21A, a light combining lens 24A, a fluorescent wheel 22 and a light outlet 25 .
  • the light-combining lens 24A may include at least one light-transmitting area 221 and a reflective area q3.
  • the light-transmitting area 221 can transmit the laser beam s1 emitted by the laser 21A, and the reflective area q3 can reflect the received light beam.
  • the angle a between the light emission direction f5 of the laser 21A and the mirror surface of the light combining lens 24A is an acute angle.
  • the fluorescent wheel 22 may be located on the side of the light combining lens 24A away from the laser 21A, and the fluorescent wheel 22 may include a fluorescent area and a diffuse reflection area q5.
  • the fluorescent wheel 22 may include at least one fluorescent conversion material located in the fluorescent area.
  • the fluorescent conversion material may be excited to generate fluorescence s2 under the irradiation of the laser beam s1 and emit the fluorescence s2 out of the fluorescent wheel 22 .
  • the diffuse reflection area q5 can reflect the received laser beam s1.
  • the light outlet 25 may be located on the side of the light combining lens 24A facing the fluorescent wheel 22 , that is, the light outlet 25 may be located on the same side of the light combining lens 24A as the fluorescent wheel 22 .
  • the laser beam s1 emitted by the laser 21A passes through the light-transmitting area 221 and is emitted to the fluorescent area or the diffuse reflection area q5.
  • the fluorescent area generates fluorescence s2 under the excitation of the laser beam s1 and emits the fluorescence s2 to the light combining lens 24A.
  • the diffuse reflection area q5 of the fluorescent wheel 22 can be used to process the received laser beam s1 into diffuse light s3 and reflect it.
  • the diffuse reflection area q5 guides the diffuse light s3 to the light combining lens 24A, and the reflection area q3 of the light combining lens 24A reflects the fluorescence s2 and the diffuse light s3 provided by the fluorescent wheel 22 to the light outlet 25 .
  • the laser beam s1 emitted by the laser 21A passes through the light transmission area 221 of the light combiner once during the travel of the laser light source system 20.
  • the laser beam s1 in the related art that passes through the dichroic plate that transmits the laser multiple times, it can This allows the laser beam s1 emitted by the laser 21A to pass through the light-transmitting area 221 of the combining lens 24A less frequently in the optical path of the laser light source system 20 , thereby avoiding greater light loss of the laser beam s1 emitted by the laser 21A.
  • the embodiment of the present application provides a laser light source system, including a laser, a light combining lens, a fluorescent wheel and a light outlet.
  • the combined light lens has a light-transmitting area and a reflective area.
  • the combined light lens can transmit the laser light emitted by the laser, and can also reflect the fluorescence and laser light emitted by the fluorescent wheel. In this way, the laser light emitted by the laser can be in the optical path of the laser light source system.
  • the number of passes through the light-transmitting area of the light combiner lens is less, which can avoid the large light loss of the laser emitted by the laser, solves the problem of high light loss of the laser in the laser light source system in the related technology, and achieves the improvement of the laser light source system.
  • the effect of laser utilization is less, which can avoid the large light loss of the laser emitted by the laser, solves the problem of high light loss of the laser in the laser light source system in the related technology, and achieves the improvement of the laser light source system
  • the laser light source system has fewer structural components, which can simplify the structure of the laser light source system.
  • the angle a between the light emission direction f5 of the laser 21A and the mirror surface of the light combining lens 24A is 45 degrees.
  • the fluorescent wheel 22 and the light outlet 25 can be respectively disposed around the light combining lens 24A.
  • the shape of the light-transmitting area 221 may be circular, rectangular, triangular, etc.
  • the shape of the light-transmitting area 221 of the light combining lens 24A can be the same as the shape of the light-emitting surface of the laser 21A, so that the size of the light-transmitting area 221 can be smaller.
  • Figure 29 is a schematic cross-sectional structural diagram of a fluorescent wheel 22 provided by an embodiment of the present application.
  • the fluorescent wheel 22 may include a fluorescent turntable 222, and a first reflective layer 234 and at least one fluorescent conversion material 235 disposed on the fluorescent turntable 222.
  • the fluorescent conversion material 235 may be located in the fluorescent area, and the first reflective layer 234 may be located in the diffuse reflection area. Area q5.
  • the first reflective layer 234 may include a white diffuse reflection layer, which may diffusely reflect the received laser beam s1 to the light combining lens 24A and play a role in uniformizing the reflected laser beam s1.
  • the fluorescent area may include a first fluorescent area and a second fluorescent area
  • the fluorescent wheel 22 may include two fluorescent conversion materials of green fluorescent conversion material, yellow fluorescent conversion material or red fluorescent conversion material. They can be respectively located in the first fluorescent area and the second fluorescent area.
  • the fluorescent wheel 22 can rotate in a preset direction so that the fluorescent area or diffuse reflection area q5 receives the laser beam s1.
  • the fluorescent wheel 22 may also include a second reflective layer 236 located in the fluorescent area, and the second reflective layer 236 is located on a side of the fluorescent conversion material close to the fluorescent turntable 222 .
  • the second reflective layer can enhance the reflective ability of the fluorescent wheel 22 for the fluorescent light s2.
  • the light combining lens 24A may include a dichroic piece 243 located in the light transmission area 221.
  • the sheet 243 is used to transmit the laser beam s1 emitted by the laser 21A and reflect the fluorescence s2 provided by the fluorescent wheel 22 . In this way, the light output amount of fluorescence s2 in the laser light source system 20 can be increased, so that more fluorescence s2 can be irradiated to the light outlet 25 .
  • the combined light lens 24A may also include a reflective lens 242 located in the reflection area.
  • the reflective lens 242 is used to reflect the fluorescence s2 and the laser beam s1 provided by the fluorescent wheel 22 .
  • the reflective lens 242 and the dichroic lens 243 may be fixed together by gluing or bonding.
  • the laser beam s1 emitted by the laser 21A can pass through the dichroic plate 243 and illuminate the fluorescent wheel 22.
  • the fluorescent wheel 22 can change the position of the laser beam s1 emitted by the laser 21A on the fluorescent wheel 22 by rotating, thereby making the laser beam s1 emitted by the laser 21A illuminate the fluorescent wheel 22.
  • the light outlet 25 of the laser light source system 20 outputs light of different colors.
  • the laser beam s1 emitted by the laser 21A irradiates the diffuse reflection area q5 on the fluorescent wheel 22, the laser beam s1 emitted by the laser 21A can pass through the diffuse reflection area q5, q5, and q5 in sequence.
  • the laser light source system 20 is output behind the reflective area q3 and the light outlet 25.
  • the laser beam s1 emitted by the laser 21A When the laser beam s1 emitted by the laser 21A irradiates the fluorescent area on the fluorescent wheel 22, the laser beam s1 emitted by the laser 21A excites the fluorescence conversion material in the fluorescent area to emit fluorescence s2.
  • the fluorescence s2 can pass through the fluorescent area, the reflection area q3 and the
  • the laser light source system 20 is output behind the light outlet 25 .
  • the laser 21A may include a laser 21A that emits a blue laser beam s1.
  • FIG. 30 is a schematic structural diagram of another light combining lens 24A provided by an embodiment of the present application.
  • the light combining lens 24A may include a transparent substrate 244 and a dichroic film 245 and a reflective film 246 located on the transparent substrate 244, where the dichroic film 245 may be located in the light-transmitting area 221 and the reflective film 246 may be located in the reflective area q3.
  • the combined light lens 24A can be a lens with an integrated structure.
  • the light-transmitting area 221 and the reflective area q3 can be divided into the transparent substrate 244 first, and then the dichroic film 245 is coated on the light-transmitting area 221, and the reflective film 246 is coated on the reflective area q3. , so that the light combining lens 24A can have both transmission and reflection functions.
  • FIG. 31 is a schematic structural diagram of another light combining lens 24A provided by an embodiment of the present application.
  • the light combining lens 24A may include a transparent substrate 244 and a reflective film 246.
  • the transparent substrate 244 has a through hole 247 located in the light transmitting area 221, and the reflective film 246 is located in the reflective area q3.
  • the combined light lens 24A can be a lens with an integrated structure having a through hole 247.
  • a reflective film 246 can be first coated on the transparent substrate 244 with the through hole 247.
  • the area where the through hole 247 is located on the transparent substrate 244 can be used to transmit the laser.
  • the area coated with the reflective film 246 can reflect the received fluorescence s2 and diffuse light s3.
  • the combined light lens 24A can have both transmission and reflection functions, and the manufacturing of the combined light lens can be saved. 24A materials and simplify the manufacturing process of the combined light lens 24A.
  • the laser light source system 20 may also include a convex lens group 33 , and the convex lens group 33 may be located between the light combining lens 24A and the fluorescent wheel 22 .
  • Figure 32 is a schematic structural diagram of another laser light source system 20 provided by an embodiment of the present application
  • Figure 33 is a light combining lens in the laser light source system 20 shown in Figure 32 Structural diagram of 24A.
  • the second fly-eye lens 248 may include a glass substrate 2281 and a plurality of microlenses 2282 located on the glass substrate 2281.
  • the microlenses 2282 may include a curved surface, and the range of the length ratio of two adjacent sides of the orthographic projection of the curved surface on the glass substrate is The radius of curvature of the curved surface ranges from 1.3 to 2.5, so that the plurality of microlenses can shape the spot of the laser beam s1 emitted by the laser 21A.
  • the lens group 25 can receive and focus the laser beam s1 transmitted through the second fly-eye lens 248, and guide the laser beam s1 to the fluorescent wheel 22.
  • the second fly-eye lens 248 can receive and transmit the laser beam s1 emitted by the laser 21A, and perform homogenization and shaping processing on the received laser beam s1.
  • FIG. 34 is a schematic diagram of the light spot R of the laser provided by the embodiment of the present application irradiating the fly-eye lens.
  • Figure 34 shows the situation where the laser beam s1 emitted by the two lasers 21A is irradiated onto the second compound eye lens 248.
  • the shape of the spot R of the laser beam s1 emitted by the laser 21A can be an ellipse.
  • the long axis of the elliptical light spot R refers to the direction connected by The longest line segment that can be obtained from two points on the edge of an elliptical light spot.
  • the second fly-eye lens 248 may include a glass substrate 2281 and a plurality of microlenses 2282 arranged in an array on the light incident surface of the glass substrate.
  • the microlens may include a plano-convex lens
  • the plano-convex lens may include a plane facing the glass substrate and a curved surface facing away from the glass substrate.
  • the orthographic projection of the curved surface on the glass substrate 2281 can be a rectangle.
  • the multiple microlenses on the light incident surface can divide the light spot R of the input laser beam s1 into multiple rectangular light spots R, and pair them through the lens group 25
  • the divided multiple rectangular light spots R are accumulated, and the multiple rectangular light spots R are converged into a rectangular light spot R and illuminated to the fluorescent wheel. 22, so that the laser beam s1 can be homogenized and shaped so that the spot R shape of the laser beam s1 received by the phosphor wheel 22 matches the shape of the subsequent optical element (such as the light entrance of the light pipe).
  • the microlenses in the second fly-eye lens 248 may be spherical convex lenses or aspherical convex lenses.
  • the combined light lens 24A may also include a reflective lens 242 located in the reflection area.
  • the reflective lens 242 is used to reflect the fluorescence s2 and diffuse light s3 provided by the fluorescent wheel 22 .
  • the reflective lens 242 and the second fly eye lens 248 may be fixed together by gluing or bonding.
  • the number of light-transmitting areas 221 may be one, the reflective area q3 may surround the light-transmitting area 221 , and the light-transmitting area 221 may be located in the central area of the light combining lens 24A. Therefore, the size of the reflection area q3 of the light combining lens 24A is larger than the size of the light transmission area 221, so that the reflection area q3 receives the diffuse light s3 and fluorescence s2 emitted by the fluorescent wheel 22.
  • the ratio of the area of the light-transmitting area 221 to the area of the reflective area q3 may range from 3% to 10%.
  • Figure 35 is a schematic structural diagram of another laser light source system 20 provided by an embodiment of the present application
  • Figure 3 is a light combining lens in the laser light source system 20 shown in Figure 35 Structural diagram of 24A.
  • the number of light-transmitting areas 221 may be at least two.
  • the at least two light-transmitting areas 221 may include a first light-transmitting area q21 and a second light-transmitting area 2212.
  • the first light-transmitting area q21 and the second light-transmitting area 2212 may be located at Both sides of the center of the combined light lens 24A.
  • the first light-transmitting area q21 and the second light-transmitting area 2212 may be located at the edge area of the light-combining lens 24A. Further, the first light-transmitting area q21 and the second light-transmitting area 2212 are in contact with the edge of the light-combining lens 24A, so that The reflection area q3 of the combined light lens 24A can receive more fluorescence and laser light emitted by the fluorescent wheel 22 .
  • the laser light source system 20 may also include a beam splitting mirror group 27A.
  • the beam splitting mirror group 27A is located between the light combining lens 24A and the laser 21A.
  • the beam splitting mirror group 27A includes a fourth reflecting mirror group 27A1 and a fifth reflecting mirror group 27A2.
  • the fourth reflecting mirror The group 27A1 and the fifth mirror group 27A2 respectively receive the laser beam s1 emitted by the laser 21A, and reflect the laser beam s1 to the first light-transmitting area q21 and the second light-transmitting area 2212 respectively.
  • the laser 21A may include a plurality of laser chips arranged in an array, and the laser chips may be used to emit the laser beam s1.
  • the fourth reflector group 27A1 may include a twelfth reflector 27A11 and a thirteenth reflector 27A12.
  • the twelfth reflector 27A11 may receive the laser beam s1 emitted by part of the laser chip in the laser 21A, and convert the received laser beam s1 Reflected to the thirteenth reflecting mirror 27A12, the thirteenth reflecting mirror 27A12 reflects the received laser beam s1 to the first light-transmitting area q21;
  • the fifth reflecting mirror group 27A2 may include a fourteenth reflecting mirror 27A21 and a fifteenth reflecting mirror Mirror 27A22 and the fourteenth mirror 27A21 can receive the laser beam s1 emitted by another part of the laser chip in the laser 21A, and reflect the received laser beam s1 to the fifteenth mirror 27A22, and the fifteenth mirror 27A22 will receive the laser beam s1.
  • the laser beam s1 is reflected toward the second light-transmitting area 2212. In this way, the laser beam s1 emitted by the laser 21A can be split.
  • the light-combining lens 24A may include two dichroic sheets 243, and the two dichroic sheets 243 may be located in the first light-transmitting area q21 and the second light-transmitting area 2212 respectively.
  • the light combining lens 24A may include a transparent substrate 244 and a dichroic film 245 and a reflective film 246 located on the transparent substrate 244, wherein the dichroic film 245 may be located in the first light-transmitting area q21 and the second light-transmitting area 2212 , the reflective film 246 may be located in the reflective area q3.
  • the light combining lens 24A may include a transparent substrate 244 and a reflective film 246.
  • the transparent substrate 244 has two through holes 247, and the two through holes 247 may be located in the first light transmitting area q21 and the second light transmitting area 2212 respectively.
  • the reflective film 246 is located in the reflective area q3.
  • Figure 37 is a schematic structural diagram of another laser light source system 20 provided by an embodiment of the present application
  • Figure 38 is a light combining lens in the laser light source system 20 shown in Figure 37 Structural diagram of 24A.
  • the light combining lens 24A may include two second compound eye lenses 248, and the two second compound eye lenses 248 may be located in the first light transmitting area q21 and the second light transmitting area 2212 respectively.
  • the combined light lens 24A may also include a reflective lens 242 located in the reflection area.
  • the reflective lens 242 is used to reflect the fluorescence s2 and diffuse light s3 provided by the fluorescent wheel 22 .
  • the reflective lens 242 and the two second compound eye lenses 248 can be fixed together by gluing or bonding.
  • the laser light source system 20 may also include a focusing lens group 32 and a light pipe 252 .
  • the focusing lens group 32 and the light pipe 252 are located at the light outlet 25 .
  • the focusing lens group 32 receives the light reflected by the light combining lens 24A. light beam, and converge the light beam to the light pipe 252.
  • Figure 39 is a schematic structural diagram of another laser light source system 20 provided by an embodiment of the present application.
  • the laser light source system 20 may also include a light pipe 252 , and the light pipe 252 may be located at the light outlet 25 .
  • the light combining lens 24A may include a curved mirror 249 located in the reflection area q3.
  • the reflective surface of the curved mirror 249 may face the fluorescent wheel 22 and the light pipe 252.
  • the curved mirror 249 may condense the fluorescence s2 provided by the fluorescent wheel 22 and the diffuse light s3. Reflected towards light pipe 252.
  • the curved reflector 249 may include a curved substrate and a reflective film 246 coated on a side of the curved substrate close to the light pipe 252 .
  • the reflective surface of the curved mirror 249 may include a free-form surface.
  • the reflecting surface may be a ruled surface (a curved surface that can be moved by a straight generatrix, such as a cylindrical surface), or a hyperbolic surface (a curved surface that can be moved by a curved generatrix, such as a spherical surface).
  • the light-combining lens 24A may also include a light-transmitting cylinder 2201 located in the light-transmitting area 221.
  • the light-transmitting cylinder 2201 may be fixedly connected to the curved reflector 249, or may be an integrated structure with the curved mirror.
  • the axis of the light-transmitting cylinder 2201 may be parallel to The propagation direction f1 of the laser light emitted by the laser 21A.
  • a dichroic film or a fly-eye lens can be provided on the side of the light-transmitting cylinder 2201 close to the laser 21A.
  • the laser beam s1 emitted by the laser 21A can be relatively vertically incident on the fluorescent wheel 22 .
  • the number of structural components in the laser light source system 20 can be reduced, and the structure of the laser light source system 20 can be simplified.
  • the light beam received by the phosphor wheel 22 shown in Figures 28 and 32 and the partial light beam emitted are such that the light beam shown in Figures 28 and 32
  • the light path emitted does not comply with the law of reflection.
  • the light beam received by the phosphor wheel 22 and the emitted light beam still comply with the law of reflection.
  • Figure 40 is a schematic structural diagram of a projector provided by an embodiment of the present application.
  • the projector includes a light valve assembly 50, a projection lens 40, and any light source system 20 provided by the above embodiments.
  • the light valve assembly 50 includes a first light valve 51, a second light valve 52 and a prism assembly 53.
  • the prism assembly 53 can be a polarization beam splitter (PBS).
  • the polarization beam splitter can divide the incident non-polarized light into Two vertical beams of linearly polarized light. Among them, P polarized light is directly transmitted, while S polarized light is reflected at an angle of 45 degrees, and the exit direction is at an angle of 90 degrees to the P light.
  • the polarizing beam splitting prism can be made of a pair of right-angled prisms glued together, and the hypotenuse of one of the right-angled prisms is coated with a polarizing beam splitting dielectric film.
  • the first light valve 51 and the second light valve 52 may be silicon-based liquid crystal light valves.
  • the light source system 20 can produce three colors of light.
  • the three colors of light are divided into S-polarized light and P-polarized light through the prism component 53 .
  • the S-polarized light is incident on the first light valve 51
  • the P-polarized light is incident on the first light valve 51 .
  • the two polarized lights undergo phase deflection through the phase plate 471 and the phase plate 472, and then are transmitted or reflected to the projection lens through the prism assembly 53. They are emitted from the projection lens into the projector and are reflected on the screen. Imaging.
  • Figure 41 is a schematic structural diagram of another projection device provided by an embodiment of the present application.
  • the projection device may include: a laser light source system 20 , at least one light valve assembly 50 and a projection lens 40 .
  • the laser light source system 20 emits a beam, and at least one light valve assembly 50 processes the beam and guides the processed beam to the projection assembly 40 to achieve the imaging function.
  • the laser light source system 20 may be the laser light source system in any of the above embodiments.
  • the light valve assembly 50 may be a digital micromirror device (English: digital micromirror device; abbreviation: DMD).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源系统,包括发光组件(21)、荧光轮(22)、光谱选择组件(23)、合光光路组件(24)和整形匀光组件(31);光谱选择组件(23)能够透过第一荧光激发区(q1)激发出的第一波长范围内的第一荧光以及至少部分发光组件(21)发出的激光光束,进而发光组件(21)发出的激光光束就能够透过光谱选择组件(23)照射到第一荧光激发区(q1),并激发出第一荧光,第一波长范围内的第一荧光能够透过第一滤色片(231),并由第一滤色片(231)进行滤光处理后射向合光光路组件(24),由合光光路组件(24)将第一波长范围内的第一荧光导向出光口(25)。还提供一种投影仪。

Description

激光光源系统和投影设备
本申请要求于2022年03月22日提交的申请号为202210289237.0、申请名称为“激光光源系统和投影设备”、2022年03月22日提交的申请号为202220643953.X、申请名称为“激光光源系统和投影设备”,以及2022年06月30日提交的申请号为202210772848.0、申请名称为“光源系统以及投影仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影技术领域,特别涉及一种光源系统以及投影设备。
背景技术
随着科技的不断发展,激光投影设备越来越多地应用于人们的工作和生活中,消费者对激光投影设备的要求也逐渐提高。为了实现激光投影设备的小型化以及提高激光投影设备的显示效果,在光源产品设计时不仅要实现基本的照明功能,还要兼顾体积,成本,以及光学效率等多个方面。
发明内容
本申请实施例提供了一种激光光源系统和投影设备。所述技术方案如下:
根据本申请的一方面,提供了一种激光光源系统,所述激光光源系统包括发光组件,荧光轮,光谱选择组件、合光光路组件以及整形匀光组件;
所述发光组件能够发出激光光束,且所述发光组件的出光方向朝向所述荧光轮;
所述合光光路组件位于所述发光组件和所述荧光轮之间,所述光谱选择组件位于所述合光光路组件和所述荧光轮之间;
所述荧光轮包括至少一个荧光激发区,所述至少一个荧光激发区包括第一荧光激发区,所述发光组件发出的激光光束能够透过所述合光光路组件和所述光谱选择组件后入射所述第一荧光激发区,所述第一荧光激发区能够在所述激光光束的激发下发出第一荧光,并将所述第一荧光反射向所述光谱选择组件,所述光谱选择组件能够透过在第一波长范围内的第一荧光,并将所述第一波长范围内的第一荧光导向所述合光光路组件后,经所述合光光路组件导向所述激光光源系统的出光口,所述光谱选择组件与所述第一荧光激发区的相对位置固定;
所述整形匀光组件至少位于所述发光组件和所述合光光路组件之间,或者,至少位于所述荧光轮与所述合光光路组件之间,所述整形匀光组件用于对透过所述整形匀光组件的光束进行整形匀化处理。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过在荧光轮的第一荧光激发区朝向发光组件的一侧设置与第一荧光激发区的相对位置固定的光谱选择组件,且该光谱选择组件能够透过第一荧光激发区激发出的第一波长范围内的第一荧光以及至少部分发光组件发出的激光光束,进而发光组件发出的激光光束就能够透过光谱选择组件照射到第一荧光激发区,并激发出第一荧光,第一波长范围内的第一荧光能够透过第一滤色片,并由第一滤色片进行滤光处理后射向合光光路组件,由合光光路组件将第一波长范围内的第一荧光导向出光口,如此便实现了对荧光轮激发出的荧光进行滤光的效果,且由于无需独立设置光谱选择组件,进而也不会影响光源系统的体积,解决了相关技术中光源系统的体积较大的问题,实现了缩小光源系统的体积的效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中的一种光源系统的结构示意图;
图2是本申请实施例提供的一种光源系统的结构示意图;
图3是本申请实施例提供的另一种光源系统的结构示意图;
图4是本申请实施例提供的另一种光源系统的结构示意图;
图5是本申请实施例提供的另一种光源系统的结构示意图;
图6是本申请实施例所涉及的光源系统中一种荧光轮的结构示意图;
图7是本申请实施例所涉及的光源系统中一种光谱选择组件的结构示意图;
图8是本申请实施例所涉及的光源系统中一种光谱选择组件以及荧光轮的立体结构示意图;
图9是本申请实施例所涉及的光源系统中一种光谱选择组件以及荧光轮的立体结构示意图;
图10是本申请实施例提供的另一种光源系统的结构示意图;
图11是相关技术中的另一种激光光源系统的结构示意图;
图12是本申请实施例示出的另一种激光光源系统的结构示意图;
图13是本申请实施例示出的另一种激光光源系统的结构示意图;
图14是本申请实施例提供的另一种激光光源系统的结构示意图;
图15是图14所示的激光光源系统中的合光镜组的结构示意图;
图16是本申请实施例提供的激光的光斑照射至复眼透镜的示意图;
图17是本申请实施例提供的另一种激光光源系统的结构示意图;
图18是图17所示的激光光源系统沿第一方向看向激光光源系统的局部20A的结构示意图;
图19是图17所示的激光光源系统中激光器的结构示意图;
图20是图18所示的激光器提供的激光在经过第一反射镜组前后的光斑示意图;
图21是本申请实施例提供的一种激光器和第二反射镜组的结构示意图;
图22是图21所示的激光光源系统沿第二方向看向激光器的结构示意图;
图23是本申请实施例示出的另一种激光光源系统的结构示意图;
图24是图23所示的激光光源系统中多色激光器的结构示意图;
图25是本申请实施例示出的另一种激光光源系统的结构示意图;
图26是本申请实施例示出的另一种激光光源系统的结构示意图;
图27是图26所示的激光光源系统中色轮的一种俯视图;
图28是本申请实施例示出的一种激光光源系统的结构示意图;
图29是本申请实施例提供的一种荧光轮的截面结构示意图;
图30是本申请实施例提供的另一种合光镜片的结构示意图;
图31是本申请实施例提供的另一种合光镜片的结构示意图;
图32是本申请实施例提供的另一种激光光源系统的结构示意图;
图33是图32所示的激光光源系统中的合光镜片的结构示意图;
图34是本申请实施例提供的激光的光斑照射至复眼透镜的示意图;
图35是本申请实施例提供的另一种激光光源系统的结构示意图;
图36是图35所示的激光光源系统中的合光镜片的结构示意图;
图37是本申请实施例提供的另一种激光光源系统的结构示意图;
图38是图37所示的激光光源系统中的合光镜片的结构示意图;
图39是本申请实施例提供的另一种激光光源系统的结构示意图;
图40是本申请实施例提供的一种投影仪的结构示意图;
图41是本申请实施例提供的另一种投影设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
投影设备可以包括激光光源系统、光阀以及投影镜头等结构,其中的激光光源系统可以包括激光光源系统以及传统的灯泡激光光源系统等。激光光源系统可以使用激光激发荧光转换材料,产生不同颜色的荧光作为光源,相较于传统的灯泡激光光源系统,通过激光激发产生荧光的激光光源系统具有亮度高,色彩鲜艳,能耗低且寿命长,使得投影设备具有画面对比度高,成像清晰的特点。
荧光是物质吸收光照或者其他电磁辐射后发出的光。即当某种物质经某种波长的入射光照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的波长长的出射光(通常波长在可见光波段)具有这种性质的出射光就被称之为荧光。
如图1所示,图1是相关技术中的一种激光光源系统的结构示意图,该激光光源系统10包括激光器101、光路组件102、荧光轮103、滤光部件104以及出光口105。荧光组件103包括荧光区和反射区,荧光区用于激发荧光,反射区用于激光器101发出的光束。
激光器101发出的光束能够透过光路组件102,并照射到荧光轮103上,在荧光轮103上激发出荧光,该荧光会被荧光轮103反射向光路组件102,并由光路组件102反射向滤光部件104,以由滤光部件104进行滤光处理,经滤光部件104滤光处理后的光束会透过滤光部件并射向出光口105,出光口105对光束进行匀化处理后,可以将光束射出激光光源系统。
但是,上述激光光源系统中,滤光部件104的尺寸可能较大,尤其在出光口处的匀光器件为复眼透镜时,由于复眼透镜要求光斑的尺寸较大,进而滤光部件104的尺寸也会较大,严重影响了激光光源系统的整体体积,不利于投影设备的小型化。
图2是本申请实施例提供的一种激光光源系统的结构示意图,激光光源系统20包括发光组件21,荧光轮22,光谱选择组件23、合光光路组件24以及整形匀光组件31。
发光组件21能够发出激光光束,且发光组件21的出光方向朝向荧光轮22。
合光光路组件24位于发光组件21和荧光轮22之间,光谱选择组件23位于合光光路组件24和荧光轮22之间,光谱选择组件23可以包括滤光部件。
荧光轮22包括至少一个荧光激发区,至少一个荧光激发区包括第一荧光激发区q1,发光组件21发出的激光光束能够透过合光光路组件24和光谱选择组件23后入射第一荧光激发区q1,第一荧光激发区q1能够在激光光束的激发下发出第一荧光,并将第一荧光反射向光谱选择组件23,光谱选择组件23能够透过在第一波长范围内的第一荧光,并将第一波长范围内的第一荧光导向合光光路组件24后,经合光光路组件24导向激光光源系统的出光口25,光谱选择组件23与第一荧光激发区q1的相对位置固定。激光光源系统提供的光束可以经过激光光源系统的出光口25入射其他光学组件。
其中,发光组件21发出的激光光束可以在透过合光光学组件后入射光谱选择组件23,光谱选择组件23能够透射通过任意波长范围的激光光束,并将任意波长范围的激光光束导向第一荧光激发区q1。即就是,光谱选择组件23可以不对激光光束的波长范围进行选择。
整形匀光组件31至少位于发光组件21和合光光路组件24之间,或者,至少位于荧光轮22与合光光路组件24之间,整形匀光组件31用于对透过整形匀光组件31的光束进行整形匀化处理。
合光光路组件24位于荧光轮22的出光方向,能够将荧光轮22射出的光束导向出光口25。
综上所述,通过在荧光轮的第一荧光激发区朝向发光组件的一侧设置与第一荧光激发区的相对位置固定的光谱选择组件,且该光谱选择组件能够透过第一荧光激发区激发出的第一波长范围内的第一荧光以及至少部分发光组件发出的激光光束,进而发光组件发出的激光光束就能够透过光谱选择组件照射到第一荧光激发区,并激发出第一荧光,第一波长范围内的第一荧光能够透过第一滤色片,并由第一滤色片进行滤光处理后射向合光光路组件,由合光光路组件将第一波长范围内的第一荧光导向出光口,如此便实现了对荧光轮激发出的荧光进行滤光的效果,且由于无需独立设置光谱选择组件,进而也不会影响光源系统的体积,解决了相关技术中光源系统的体积较大的问题,实现了缩小光源系统的体积的效果。
可选地,光谱选择组件23包括至少一个滤色片,至少一个滤色片包括第一滤色片231,第一滤色片231位于第一荧光激发区q1朝向发光组件21的一侧,且与第一荧光激发区q1的相对位置固定,第一波长范围内的第一荧光包括第二色光,激光光束包括第一色光,第一滤色片231与第一荧光激发区q1的相对位置固定。第一滤色片231被配置为透过第二色光以及至少部分第一色光。
其中,可以通过在滤色片上镀膜,或者是选用特定材料的滤色片,以使滤色片能够透过指定的波长范围的光束,并反射特定波长范围的光束,以实现上述的透过第二色光以及至少部分第一色光的功能。
图3是本申请实施例提供的另一种激光光源系统的结构示意图,图3在图2所示的激光光源系统的基础上进行了一些调整。其中,合光光路组件24包括合光镜片24A,合光镜片24A位于发光组件21以及荧光轮22之间。
合光镜片24A包括透光区q2以及位于透光区q2外的反射区q3,发光组件21的出光方向朝向透光区q2,反射区q3朝向荧光轮22以及出光口25,能够将荧光轮22射出的光导向出光口25。
该合光镜片24A的反射区q3可以围绕在透光区q2外,一种结构的合光镜片24A中,透光区q2可以设置有透光的材料,如透明玻璃或透明的树脂材料等,反射区q3可以涂覆有反光材料,或者,反射区q3可以由反光材料制成。反射区q3可以为漫反射区域,以使第一色光照射到反射区q3后可以漫反射,以便于第一色光可以与激发出的荧光一同由后续的光学结构进行调整。
另一种结构的合光镜片24A中,透光区q2可以是一个开口区域,反射区q3可以涂覆有反光材料,或者,反射区q3可以由反光材料制成。
图3所示的激光光源系统中,发光组件21射出的光束能够穿过透光区q2以射向荧光轮22。该光束能够在荧光轮22上激发出荧光,该荧光可以由荧光轮22反射向合光镜片24A的反射区q3,再由反射区q3将荧光反射向出光口25,出光口25处可以具有光导管或者复眼透镜,由出光口25处的光导管或者复眼透镜对荧光进行匀光处理。
需要说明的是,本申请实施例中所述的发光组件21的出光方向朝向透光区q2,可以是指发光组件21射出的光束的方向朝向透光区q2,且能够穿过透光区q2。而发光组件21可以包括光源(如激光光源或发光二极管光源等),或者,发光组件21可以包括光源以及其他结构,这其他结构可以对光源发出的光束进行处理,若改变光束的方向,或者是缩束等。若发光组件21中包括能够改变光源发出的光束的方向的结构,则改变后的光束的方向朝向合光镜片24A的透光区q2。本申请实施例以发光组件21为激光发光组件21为例进行说明,也即是发光组件21可以用于提供激光光束,该激光光束可以为单色的激光光束。
在一种示例性的实施例中,请参考图4,图4是本申请实施例提供的另一种激光光源系统的结构示意图,其中,激光光源系统20还包括位于反射镜和发光组件之间的缩束镜组26。缩束镜组26可以用于对发光组件21射出的光束进行缩束处理,以便于对该光束进行调节以及控制,例如可以便于激光光源系统中的其他结构避让该光束(如使光束能够容易穿过反射镜的透光区),另外,缩束镜组26能够缩小光束照射到荧光轮上的光斑的尺寸,进而能够缩 小荧光轮的尺寸,有利于激光光源系统以及投影设备的小型化。
在一种示例性的实施例中,缩束镜组26可以包括第一凸透镜261以及第一凹透镜262,第一凹透镜261位于第一凸透镜261远离发光组件21的一侧。第一凸透镜261可以用于接收发光单元21射出的光束,并对光束进行处理后将光束导向第一凹透镜262,第一凹透镜262可以将光束处理后导出缩束镜组26。通过第一凸透镜261以及第一凹透镜262,可以将平行光束缩小为光斑更小的平行光束。
当然,本申请实施例提供的激光光源系统中的缩束镜组26还可以为其他结构,本申请实施例对此不进行限制。
在一种示例性的实施例中,请参考图5,图5是本申请实施例提供的另一种激光光源系统的结构示意图,其中,激光光源系统20还包括位于合光镜片24A和荧光轮22之间的凸透镜组33,凸透镜组33的光轴z可以穿过合光镜片24A的透光区q2以及荧光轮22的荧光激发区q1。该凸透镜组33可以用于对荧光轮反射出的光束进行调整,以使荧光轮反射出的光束趋近于平行光束并射向合光镜片24A的反射区q3。
示例性的,凸透镜组33可以包括两个凸透镜,如第一凸透镜331以及第二凸透镜332,第一凸透镜331位于第二凸透镜332靠近合光镜片24A的一侧,且第一凸透镜331与第二凸透镜332的光轴重合(可以是基本重合),发光组件21射出的光束的主光轴也可以与第一凸透镜331以及第二凸透镜332的光轴重合。第一凸透镜331以及第二凸透镜332可以为球面凸透镜或非球面凸透镜。
在一种示例性的实施例中,第一滤色片231被配置为透过第二色光以及入射角度小于指定角度的第一色光,并反射入射角度大于或等于指定角度的第一色光。其中,入射角度小于指定角度的第一色光可以是指发光组件21发出的首次透过第一滤色片231的第一色光,此时第一色光以较小的入射角射向第一滤色片231,并透过第一滤色片231,射向第一荧光激发区q1,第一色光中的一部分光激发第一荧光激发区q1中的荧光粉,产生荧光,另一部分第一色光会直接被第一荧光激发区q1反射,此部分被反射的光可以称为第一色反射光,第一色反射光会呈发散状射出,照射到第一滤色片231上的第一色反射光的入射角度较大,其中的大部分的入射角可能大于指定角度,进而在本申请实施例中,将第一滤色片231配置为反射入射角度大于或等于指定角度的第一色光,即可以将此部分第一色反射光中的大部分反射会第一荧光激发区q1上,以再次激发荧光,且配置第一滤色片231可以透过入射角度小于指定角度的第一色光,以避免第一色光在第一次射向第一滤色片231时被反射。如此便能够提升荧光的激发效率,减少了发光组件发出的第一色光的损耗,提升了激光光源系统的发光效率。
本申请实施例中,可以通过在滤色片上镀膜的方式,以使第一滤色片可以透过入射角度小于指定角度的第一色光,并反射入射角度大于或等于指定角度的第一色光的功能。在本申请实施例中,指定角度可以为10度,第一色光可以为蓝光,第二色光可以为绿光。发光组件可以包括蓝光激光器。在此基础上,第一滤色片231可以透过绿光以及入射角度为0度~10度的蓝光,并反射入射角度大于或等于10度的蓝光。
请参考图6,图6是本申请实施例所涉及的激光光源系统中一种荧光轮的结构示意图(例如可以是图5所示的激光光源系统中荧光轮的俯视图),其中,荧光轮包括至少两个荧光激发区,至少两个荧光激发区包括第一荧光激发区q1以及第二荧光激发区q4,第二荧光激发区q2能够在激光光束的激发下发出第二荧光,并将第二荧光反射向光谱选择组件23,光谱选择组件23能够透过在第二波长范围内的第二荧光,并将第二波长范围内的第二荧光导向合光光路组件24后,经合光光路组件24导向激光光源系统的出光口25。
第一荧光激发区q1能够在第一色光的激发下发出第一荧光,第二荧光激发区q4能够在第一色光的激发下发出第二荧光。第一色光可以为蓝光,第二荧光和第三荧光中的一个光可以为红光,另一个光可以为绿光,示例性的,第一荧光激发区中可以设置有绿色荧光粉,绿色荧光粉能够在蓝光的激发下发出绿光,第二荧光激发区中可以设置有红色荧光粉,红色荧光粉能够在蓝光的激发下发出红光。第一荧光激发区q1与第二荧光激发区q4可以在荧光轮 上沿周向排布。
请参考图7。图7是本申请实施例所涉及的激光光源系统中一种光谱选择组件的结构示意图(例如可以是图5所示的激光光源系统中光谱选择组件的俯视图),其中,光谱选择组件23包括至少两个滤色片,至少两个滤色片包括第一滤色片231以及第二滤色片232,第二滤色片232位于第二荧光激发区朝向发光组件的一侧,且与第二荧光激发区的相对位置固定,第二波长范围内的第二荧光包括第三色光,激光光束包括第一色光,第二滤色片232被配置为透过第三色光以及至少部分第一色光。
在一种示例性的实施例中,第二滤色片232被配置为透过第三色光以及入射角度小于指定角度的第一色光,并反射入射角度大于或等于指定角度的第一色光。其中,入射角度小于指定角度的第一色光可以是指发光组件发出的首次透过第一滤色片231的第一色光,此时第一色光以较小的入射角射向第一滤色片231,并透过第一滤色片231,射向第一荧光激发区,第一色光中的一部分光激发第一荧光激发区中的荧光粉,产生荧光,另一部分第一色光会直接被第一荧光激发区反射,此部分被反射的光可以称为第一色反射光,第一色反射光会呈发散状射出,照射到第一滤色片231上的第一色反射光的入射角度较大,其中的大部分的入射角可能大于指定角度,进而在本申请实施例中,将第一滤色片231配置为反射入射角度大于或等于指定角度的第一色光,即可以将此部分第一色反射光中的大部分反射会第一荧光激发区上,以再次激发荧光,且配置第一滤色片231可以透过入射角度小于指定角度的第一色光,以避免第一色光在第一次射向第一滤色片231时被反射。如此便能够提升荧光的激发效率,减少了发光组件发出的第一色光的损耗,提升了激光光源系统的发光效率。
本申请实施例中,可以通过在滤色片上镀膜的方式,以使第二滤色片可以透过入射角度小于指定角度的第一色光,并反射入射角度大于或等于指定角度的第一色光的功能。在本申请实施例中,指定角度可以为10度,第一色光可以为蓝光,第三色光可以为红光。发光组件可以包括蓝光激光器。在此基础上,第二滤色片可以透过红光以及入射角度为0度~10度的蓝光,并反射入射角度大于或等于10度的蓝光。
请参考图8,图8是本申请实施例所涉及的激光光源系统中一种光谱选择组件以及荧光轮的立体结构示意图。其中,发光组件可以位于光谱选择组件23的上侧。
由图8可以看出,第一滤色片231位于第一荧光激发区q1朝向发光组件21的一侧,且与第一荧光激发区q1的相对位置固定,第一滤色片231被配置为透过第二色光以及至少部分第一色光。
第二滤色片232位于第二荧光激发区q4朝向发光组件的一侧,且与第二荧光激发区的相对位置固定,第二滤色片232被配置为透过第三色光以及至少部分第一色光。
在一种示例性的实施例中,荧光轮22还包括转轴221以及荧光转盘222,荧光转盘222安装于转轴221上,且能够以转轴221为轴转动,至少两个荧光激发区(包括第一荧光激发区q1以及第二荧光激发区q4)在荧光转盘222上沿周向排布。
光谱选择组件23包括滤光部件w,滤光部件w安装于转轴221上,且能够以转轴221为轴转动,至少两个滤色片(包括第一滤色片231以及第二滤色片232)在滤光部件上沿周向排布。第一滤色片231和第二滤色片232中的至少一个的形状可以为盘面形、环形、矩形或者扇形。
本申请所涉及的多个结构A(如滤光片以及荧光激发区)在另一结构B上沿周向排布,可以是指多个结构A围绕结构B的中心排布。
请参考图9,图9是本申请实施例所涉及的激光光源系统中一种光谱选择组件以及荧光轮的立体结构示意图。其中,发光组件可以位于光谱选择组件23的上侧。
荧光轮22还包括漫反射区q5,漫反射区q5以及至少两个荧光激发区(包括第一荧光激发区q1以及第二荧光激发区q4)在荧光转盘222上沿周向排布。
对应的,光谱选择组件23透光区域233,透光区域233位于漫反射区q5朝向发光组件的一侧,用于透过在荧光轮22上的漫反射区q5反射的第一色光。该透光区域可以为开口区 域,也可以为透光材料构成的区域。
需要说明的是,本申请实施例中,光谱选择组件与荧光轮之间的间距可以并非如图8和图9所示,本申请实施例对此不进行限制。
当然,在本申请实施例提供的激光光源系统中,光谱选择组件中的滤光片还可以贴合在荧光轮的荧光激发区,例如可以在荧光激发区上涂覆透明胶层,之后在透明胶层上设置滤光片,以将滤光片贴合在荧光激发区上。
请参考图10,图10是本申请实施例提供的另一种激光光源系统的结构示意图,其中,激光光源系统还可以包括位于出光口25处的复眼透镜。复眼透镜是由一系列微透镜组合形成的透镜,双排复眼透镜阵列应用于激光光源系统可以获得较高的光能利用率和大面积的均匀照明。但相较于其他类型的匀光器件,复眼透镜对于光斑尺寸的要求较大,若是应用相关技术中的滤光部件来进行滤光,则会导致滤光部件的尺寸较大,大大影响了激光光源系统的整体体积,进而严重影响投影设备的小型化。而本申请实施例中所提供的激光光源系统中,在荧光轮朝向发光组件的一侧设置滤色片的方式来进行滤光,从而无需单独设置尺寸较大的滤光部件,实现了能够缩小激光光源系统的体积的效果,且有利于投影设备的小型化。
此外,本申请实施例提供的激光光源系统还可以包括聚焦镜组32,聚焦镜组32位于出光口25的出光方向上,用于缩小影像光束的光斑尺寸。
通过在荧光轮的第一荧光激发区朝向发光组件的一侧设置与第一荧光激发区的相对位置固定的光谱选择组件,且该光谱选择组件能够透过第一荧光激发区激发出的第一波长范围内的第一荧光以及至少部分发光组件发出的激光光束,进而发光组件发出的激光光束就能够透过光谱选择组件照射到第一荧光激发区,并激发出第一荧光,第一波长范围内的第一荧光能够透过第一滤色片,并由第一滤色片进行滤光处理后射向合光光路组件,由合光光路组件将第一波长范围内的第一荧光导向出光口,如此便实现了对荧光轮激发出的荧光进行滤光的效果,且由于无需独立设置滤光部件,进而也不会影响光源系统的体积,解决了相关技术中光源系统的体积较大的问题,实现了缩小光源系统的体积的效果。
如图11所示,图11是另一种相关技术中的激光光源系统的结构示意图,该激光光源系统10包括激光器101、光路组件102、荧光组件103以及出光口104。光路组件102包括二向色片1021以及反射镜1022,荧光组件103包括荧光区和激光反射区,荧光区用于激发荧光,激光反射区用于反射二向色片1021透过的激光光束s1。
其中,二向色片1021接收激光器101发出的激光光束s1,并将激光光束s1导向荧光组件103,荧光组件103发出荧光和反射激光至二向色片1021,二向色片1021反射荧光至出光口104,并再次透过激光s2至反射镜,反射镜反射激光光束s1至二向色片1021,二向色片1021透过激光光束s1至出光口104。
上述激光光源系统中,照射至荧光组件103的激光光束s1的光斑的中心区域能量较高,边缘区域能量较低,即光斑的各个区域的能量密度不均匀,导致该激光光源系统10存在以下两个方面的问题:
1)荧光组件103提供的光束的亮度的均匀性较差,导致激光光源系统10提供的光束的亮度均匀性较差。
2)由于荧光组件103上的荧光转换材料具有光饱和的现象,即就是在荧光转换材料接收到的能量达到一定程度时,产生的荧光的强度便开始趋向于一个恒定值,不再随着接收到的能量的增大而增大,导致荧光组件103上能量密度较高的区域有可能无法充分发挥光转换的作用,部分激光光束s1不能有效的转换为荧光,降低了激光光源系统10提供的光束的整体亮度。
图12是本申请实施例示出的另一种激光光源系统的结构示意图,图13是本申请实施例示出的另一种激光光源系统的结构示意图,请参考图12和图13。可选地,激光光源系统20还可以包括整形匀光组件31,发光组件21可以包括激光器21A,合光光路组件24包括合光镜片24A。即就是,激光光源系统20可以包括:激光器21A、整形匀光组件31、合光镜片 24A、荧光轮22、光谱选择组件23以及出光口25。
整形匀光组件31可以位于激光器21A和合光镜片24A之间,且整形匀光组件31可以包括扩散单元311和第一透镜312,扩散单元311可以位于第一透镜312靠近激光器21A的一侧,扩散单元311可以接收激光器21A提供的激光光束s1,并将匀化后的激光光束s1导向第一透镜312,以透过第一透镜312后射向合光镜片24A。
合光镜片24A位于荧光轮22和整形匀光组件31之间,出光口25位于合光镜片24A朝向荧光轮22的一侧,合光镜片24A可以将整形匀光组件31提供的激光光束s1导向荧光轮22,并将荧光轮22提供的光束导向出光口25。
荧光轮22可以包括至少一种荧光转换材料,该荧光转换材料可以在激光光束s1的照射下受激产生荧光s2,并将荧光s2射出荧光轮22。荧光轮22还可以反射激光器21A提供的激光光束s1,将反射后的激光s3反射向合光组件23。
扩散单元311可以对激光器21A提供的激光光束s1的能量进行匀化,匀化后的激光光束s1照射至荧光轮22上的光斑的能量密度分布较为均匀,可以提高荧光轮22发出的光束的亮度均匀性,还可以避免荧光轮22上出现能量集中而导致的光饱和现象,可以提高激光光源系统20的整体亮度。
本申请实施例提供了一种激光光源系统,包括激光器、整形匀光组件、合光镜组、荧光轮以及出光口。其中,整形匀光组件包括扩散单元和第一透镜,通过该整形匀光组件对激光器提供的激光进行匀化处理,可以使得照射至荧光轮的激光的光斑各个区域的能量密度较为均匀,合光镜组可以将荧光轮提供的亮度均匀性较好的光束导向出光口,如此,可以使得激光光源系统提供的光束的亮度均匀性较好,解决了相关技术中激光光源系统提供的光束的亮度均匀性较差的问题,实现了提高激光光源系统提供的光束的亮度均匀性的效果。
可选地,如图12所示,扩散单元311可以包括第一复眼透镜313,第一复眼透镜313可以具有多个阵列排布的微透镜2232,第一透镜312可以包括凸透镜。
扩散单元311可以位于第一透镜312靠近激光器21A的一侧,可以增大扩散单元311上接收的激光光束s1的光斑面积,可以提高扩散单元311对激光光束s1的匀化效果。第一复眼透镜313可以包括玻璃衬底3131以及位于玻璃衬底3131的入光面上的阵列排布的多个微透镜3132。其中,微透镜3132可以包括平凸透镜,该平凸透镜可以包括朝向玻璃衬底3131的平面和背离玻璃衬底3131的曲面。该曲面在玻璃衬底3131上的正投影可以为矩形,这样,第一复眼透镜313的入光面上的多个微透镜3132可以将输入的激光光束s1的光斑分割为多个矩形光斑,从而可以实现对激光光束s1光束的匀化。其中,第一复眼透镜313中的微透镜可以为球面凸透镜或非球面凸透镜。第一透镜312可以对分割后的多个矩形光斑进行汇聚,将匀化后的激光光束s1汇聚至荧光轮22。
可选地,扩散单元311还可以包括扩散片,扩散片可以包括透明基板以及在设置透明基板上的漫射体,第一透镜312可以包括凸透镜。漫射体可以包括毛玻璃,该毛玻璃可以破坏照射至扩散片的激光光束s1的方向性,以对透过扩散片的激光光束s1进行匀光。第一透镜312可以接收透过扩散片的激光光束s1,并将匀化后的激光光束s1汇聚至荧光轮22。
可选地,如图14和图15所示,图14是本申请实施例提供的另一种激光光源系统的结构示意图。图15是图14所示的激光光源系统中的合光镜组的结构示意图。合光镜片24A可以具有透光区q2和围绕透光区q2设置的反射区q3。透光区q2可以透过整形匀光组件31提供的激光光束s1,反射区q3可以反射接收到的荧光轮22提供的光束。
可选地,合光镜片24A可以包括透明基板以及位于透明基板上的二向色膜以及反射膜。其中,二向色膜可以位于透光区q2,反射膜可以位于反射区q3。合光镜片24A可以为一体结构的镜片,可以先在透明基板上划分透光区q2以及反射区q3,然后在透光区q2镀二向色膜,且在反射区q3镀反射膜,以使得合光镜片24A可以具有透射和反射两种功能。如此,可以减少激光光源系统20中的光学元件的数量。
激光光源系统20还可以包括聚焦透镜251以及光导管252,聚焦透镜251和光导管252 可以位于出光口25处,聚焦透镜251可以接收合光镜片24A提供的光束,并汇聚光束至光导管252。
光导管252可以空心光导管和实心光导管。空心光导管是一种由四片平面反射片拼接而成的管状器件,光线在空心光导管内部多次反射,达到匀光的效果。实心光导管可以为石英材质,通过使得光束在实心光导管的内部产生全反射来传导光束。光束从光导管的入光口进入,再从光导管的出光口射出激光光源系统20,在经过光导管的过程中完成光束匀化以及光斑优化。
可选地,如图9所示,荧光轮22可以包括荧光区和漫反射区q5。荧光轮22可以包括位于荧光区的至少一种荧光转换材料,该荧光转换材料可以在激光光束s1的照射下受激产生荧光s2,并将荧光s2射出荧光轮22。
荧光区在激光光束s1的激发下产生荧光s2,并将荧光s2射向合光镜片24A,荧光轮22的漫反射区q5可以用于将接收到的激光光束s1处理为漫射光s3,并反射该漫射光s3。漫反射区q5将漫射光s3导向合光镜片24A,合光镜片24A的反射区q3将荧光轮22提供的荧光s2以及漫射光s3反射向出光口25。可以减少激光器21A发出的激光光束s1在激光光源系统20的行进过程中,经过合光镜片24A的透光区q2的次数,可以避免激光器21A提供的激光光束s1的光损失较大。
荧光区中可以设置不同种类的荧光转换材料,示例性的,如图9所示,荧光区可以包括第一荧光激发区q1和第二荧光激发区q2,第一荧光激发区q1和第二荧光激发区q2中可以分别设置用于发出不同颜色的荧光转换材料。该荧光转换材料可以为绿色荧光转换材料,黄色荧光转换材料或红色荧光转换材料中的至少一种,其中,绿色荧光转换材料用于受激产生绿色的荧光s2,黄色荧光转换材料用于受激产生黄色的荧光s2,红色荧光转换材料用于受激产生红色的荧光s2。激光器21A可以发出蓝色的激光光束s1。
如图14所示,第一透镜312的焦点c可以位于透光区q2的中心,如此,可以使得透光区q2的尺寸较小。如此,可以使得用于接收整形匀光组件31出射的激光光束s1的透光区q2的尺寸可以较小,进而可以使得激光光源系统20的尺寸较小。
激光光源系统20还可以包括位于荧光轮22和合光镜片24A之间的凸透镜组33,凸透镜组33可以包括至少一个凸透镜,凸透镜组33可以用于汇聚透过透光区q2的匀化后的激光光束s1,并将激光光束s1导向荧光区或漫反射区q5,荧光区用于在接收到的激光光束s1的激发下产生荧光s2,并将荧光s2射向凸透镜组33,漫反射区q5用于将接收到的激光光束s1反射至凸透镜组33。
可选地,图16是本申请实施例提供的激光的光斑照射至复眼透镜的示意图。请参考图14和图16,第一复眼透镜313的微透镜3132在垂直于第一透镜312的光轴L1的第一平面上的正投影可以为矩形。激光器21A可以包括多个阵列排布的发光芯片211,发光芯片211出射的激光光束s1照射至第一复眼透镜313上的光斑R可以为椭圆形,光斑R的长轴与微透镜3132在第一平面上的正投影的长边平行。
第一复眼透镜313可以接收并透过激光器21A发出的激光光束s1,并对接收到的激光光束s1进行匀化处理。该椭圆形的光斑R的长轴是指通过连接椭圆形的光斑R的边缘上的两个点所能获得的最长线段。
如此,发光芯片211发出的激光光束s1的光斑R的形状可以与微透镜3132的形状的相似度较高,以便于发光芯片211发出的激光光束s1能够在第一复眼透镜313的表面成像,进而可以使得较多的激光光束s1能够透过第一复眼透镜313,以提高激光光束s1的利用率。
可选地,图17是本申请实施例提供的另一种激光光源系统的结构示意图,图18是图17所示的激光光源系统沿第一方向看向激光光源系统的局部20A的结构示意图,图19是图17所示的激光光源系统中激光器的结构示意图。请参考图17、图18和图19。该第一方向可以与多个发光芯片的列方向f2平行,激光器21A可以包括多个行列排布的发光芯片211,激光光束s1光源系统20还可以包括第一反射镜组27,第一反射镜组27可以位于整形匀光组件 31和激光器21A之间,且激光器21A的出光面可以朝向整形匀光组件31。
第一反射镜组27可以包括第一反射镜单元271和第二反射镜单元272,第二反射镜单元272可以位于第一反射镜单元271远离激光器21A的一侧,多个发光芯片211在列方向f2上和行方向f1上均分为两组发光芯片211。示例性的,如图19所示,多个发光芯片211可以排布为2行8列,即就是多个发光芯片211可以包括2行发光芯片211,该2行发光芯片211可以排布为8列发光芯片。多个发光芯片211在行方向f1上分为第一发光芯片组211a和第二发光芯片组211b,第一发光芯片组211a可以包括8列发光芯片211中的4列发光芯片211,第二发光芯片组211b可以包括8列发光芯片211中的另外4列发光芯片211。多个发光芯片211在列方向f2上分为第三发光芯片组211c和第四发光芯片组211d,第一发光芯片组211a可以包括2行发光芯片211中的1行发光芯片211,第二发光芯片组211b可以包括2行发光芯片211中的另外1行发光芯片211。
如图17所示,第一反射镜单元271可以包括第一反射镜2711和第二反射镜2712,第一反射镜2711和第二反射镜2712沿列方向f2排布,且第二反射镜位于第一反射镜靠近第一透镜312的光轴L1的一侧,第一反射镜2711用于接收列方向f2上的一组发光芯片211发出的激光光束s1,并将接收到的激光光束s1导向第二反射镜2712,第二反射镜2712用于将接收到的激光光束s1导出第一反射镜单元271。第一反射镜2711和第二反射镜2712可以为平行且反射面相对设置的两个反射镜。图17中的行方向f1可以为垂直纸面的方向。
示例性的,第一反射镜单元271用于将接收到的第三发光芯片组211c发出的激光光束s1向靠近第一透镜312的光轴L1的方向平移,第四发光芯片组211d发出的激光光束s1可以距离第一透镜312的光轴L1较近,因此,可以通过设置第一反射镜单元271使得第三发光芯片组211c和第四发光芯片组211d发出的激光光束s1实现缩束的效果,以使得激光光束s1的光束可以更细,从而能够使得接收激光光束s1的整形匀光组件31的尺寸可以较小。
在一种可选地实施方式中,还可以在第四发光芯片组211d的出光方向上设置与第一反射镜单元271结构相似的反射镜单元,以将第四发光芯片组211d出射的激光光束s1向靠近第一透镜312的光轴L1的方向平移。
如图18所示,第二反射镜单元272可以包括第三反射镜2721和第四反射镜2722,第三反射镜2721和第四反射镜2722可以沿行方向f1排布,且第四反射镜2722位于第三反射镜2721靠近第一透镜312的光轴L1的一侧,第三反射镜2721用于接收行方向f1上的一组发光芯片211提供的激光光束s1,并将接收到的激光光束s1导向第四反射镜2722,第四反射镜2722用于将接收到的激光光束s1导向整形匀光组件31。图18中的列方向f2可以为垂直纸面的方向。
示例性的,第二反射镜单元272用于将接收第一发光芯片组211a发出的激光光束s1向靠近第一透镜312的光轴L1的方向平移,第二发光芯片组211b发出的激光光束s1可以距离第一透镜312的光轴L1较近,因此,可以通过设置第二反射镜单元272使得第一发光芯片组211a和第二发光芯片组211b发出的激光光束s1实现缩束的效果,从而能够使得接收激光光束s1的整形匀光组件31的尺寸可以较小。
如图20所示,图20是图18所示的激光器提供的激光在经过第一反射镜组前后的光斑示意图。图20中的光斑示意图201示出了激光器21A射出的激光光束s1未照射至第一反射镜组27前,在垂直于第一透镜312的光轴L1的第一平面m1上形成的光斑R1的示意图。光斑示意图202示出了激光器21A射出的激光光束s1经过第一反射镜组27缩束处理后,在垂直于第一透镜312的光轴L1的第一平面m1上形成的光斑R2的示意图。由图20中的两幅光斑示意图可以看出,第一反射镜组27可以使得多个发光芯片211提供的光斑较为紧凑,可以使得激光器21A提供的激光光束s1的光斑的尺寸较小。
可选地,图21是本申请实施例提供的一种激光器和第二反射镜组的结构示意图,图22是图21所示的激光光源系统沿第二方向看向激光光源系统的结构示意图,请参考图21和图22。该第二方向f3可以是垂直于激光器21A的出光面的方向,激光器21A可以包括多个行 列排布的发光芯片211,激光光源系统20还可以包括第二反射镜组28,第二反射镜组28位于整形匀光组件31和激光器21A之间,且激光器21A的出光方向与第一透镜312的光轴L1具有夹角。
第二反射镜组28可以包括第三反射镜单元281和第四反射镜单元282,第三反射镜单元281位于多列发光芯片211的出光方向上,第四反射镜单元282位于第三反射镜单元281和整形匀光组件31之间,多个发光芯片211包括沿行方向f1排布的两组发光芯片。
第三反射镜单元281可以包括第五反射镜2811,第五反射镜2811可以用于接收沿行方向f1排布的两组发光芯片提供的激光光束s1,并将激光光束s1反射向第四反射镜单元282,第五反射镜2811可以用于改变激光器21A出射的激光光束s1的传输方向。如图11所示,第五反射镜2811可以包括两个平行设置的反射镜,这两个反射镜可以在第一透镜312的光轴L1的方向上没有交叠,可以用于分别接收两组发光芯片(第三发光芯片组211c和第四发光芯片组211d发出的激光),可以提高第五反射镜2811的摆放位置的灵活性。
第四反射镜单元282可以包括第六反射镜2821和第七反射镜2822,第六反射镜2821和第七反射镜2822沿行方向f1排布,且第七反射镜2822位于第六反射镜2821靠近第一透镜312的光轴L1的一侧,第六反射镜2821用于接收行方向f1上的一组发光芯片211提供的激光光束s1,并将接收到的激光光束s1导向第七反射镜2822,第七反射镜2822用于将接收到的激光光束s1导向整形匀光组件31。第六反射镜2821和第七反射镜2822可以为平行且反射面相对设置的两个反射镜。
示例性的,多个发光芯片211在行方向f1上分为第一发光芯片组211a和第二发光芯片组211b。第四反射镜单元282用于将接收的第一发光芯片组211a提供的激光光束s1向靠近第一透镜312的光轴L1的方向平移,第二发光芯片组211b发出的激光光束s1可以距离第一透镜312的光轴L1较近,因此,可以通过设置第四反射镜单元282使得第一发光芯片组211a和第二发光芯片组211b发出的激光光束s1实现缩束的效果,从而能够使得接收激光光束s1的整形匀光组件31的尺寸可以较小。
在一种可选地实施方式中,还可以在第二发光芯片组211b的提供的激光光束s1的光路上设置与第四反射镜单元282结构相似的反射镜单元,以将第二发光芯片组211b提供的激光光束s1向靠近第一透镜312的光轴L1的方向平移。
可选地,如图17所示,多个阵列排布的微透镜3132与第一透镜312朝向激光器21A的一面贴合。微透镜3132背离激光器21A的一面可以与第一透镜312背离合光组件23的一面胶合,或者,微透镜3132可以与第一透镜312为一体结构。如此,可以进一步使得激光光源系统20的光学架构较为紧凑,可以减小激光光源系统20的尺寸。第一透镜312的数值孔径(NA)可以小于0.3。
可选地,如图23和图24所示,图23是本申请实施例示出的另一种激光光源系统的结构示意图,图24是图23所示的激光光源系统中多色激光器的结构示意图。激光光源系统20还可以包括多色激光器291,多色激光器291可以包括多种类型的发光芯片,该多种类型的发光芯片用于发出不同颜色的激光,如,用于发出绿色激光的绿色发光芯片291G,用于发出蓝光的蓝色发光芯片291B以及用于发出红光的红色发光芯片291R。
多色激光器291可以发出多色激光s4,该多色激光s4可以照射至合光组件23的透光区q2,并透过透光区q2照射至出光口25。多色激光s4可以和荧光轮22提供的荧光s2和漫射光s3在出光口25处混合成白光,可以提高激光光源系统20的出光质量。
示例性的,如图24所示,多色激光器291可以包括9个发光芯片,该9个发光芯片可以排布为两列,其中一列发光芯片包括4个红色发光芯片291R,另外一列发光芯片包括两个蓝色发光芯片291B和三个绿色发光芯片291G,且两个蓝色发光芯片291B位于三个绿色发光芯片291G的两侧。
可选地,如图25所示,图25是本申请实施例示出的另一种激光光源系统的结构示意图。激光光源系统20还可以包括第三反射镜组292,多色激光器291的出光面可以和激光器21A 的出光面平行,第三反射镜组292可以接收多色激光器291发出的多色激光s4,并将多色激光s4反射至透光区q2。
其中,多色激光器291的多个发光芯片沿列方向f2排布为两列,第三反射镜组292可以包括第五反射镜单元2921和第八反射镜2922。第五反射镜单元2921可以包括第九反射镜29211和第十反射镜29212,第九反射镜29211和第十反射镜29212沿第三方向f4排布,该第三方向f4可以垂直于列方向f4,且第九反射镜29211和第十反射镜29212与两列发光芯片一一对应,即第九反射镜29211用于接收一列发光芯片(如红色发光芯片291R)提供的激光s5,并将接收到的激光s5导向第十反射镜29212,第十反射镜29212可以为二向色片,第十反射镜29212用于将接收到的第九反射镜29211提供的激光s5反射向第八反射镜2922,第十反射镜29212还用于接收另一列发光芯片(如蓝色发光芯片291B和绿色发光芯片291G)发出的激光s6,激光s6可以透过第十反射镜29212并照射至第八反射镜2922。第八反射镜2922可以接收第十反射镜29212提供的激光s5和激光s6,并将混合的多色激光s4反射至出光口25。
可选地,如图26所示,图26是本申请实施例示出的另一种激光光源系统的结构示意图。激光光源系统20还可以包括第十一反射镜295和滤光单元293,第十一反射镜295可以位于合光镜片24A的出光方向上,滤光单元293可以位于聚焦透镜251和光导管252之间,且聚焦透镜251、滤光单元293和光导管252依次沿第十一反射镜295的出光方向排布。该滤光单元293可以用于对导光棱镜291的第十一反射镜295反射的各种色光进行滤光,以使该激光光源系统20提供的各种色光的纯度更高。滤光单元293可以包括用于过滤各种色光的滤光片,例如可以包括蓝色滤光片、绿色滤光片以及红色滤光片。
在一种示例性实施例中,激光光源系统20包括色轮294,色轮294包括至少两个环形区域;荧光轮22的荧光区和漫反射区位于至少两个环形区域中的第一环形区域中。
滤光单元293包括滤色片,滤色片位于至少两个环形区域中的第二环形区域中。图27是图26所示的激光光源系统中色轮的一种俯视图,在该图中,滤光单元293包括第三滤色片2931、第四滤色片2932以及第五滤色片2933,其中,荧光轮22包括荧光区以及漫反射区q5,荧光区可以包括第一荧光区1和第二荧光区2,这两个荧光区用于在激光的激发下发出不同的色光,第三滤色片2931可以用于对应的对第一荧光区1发出的荧光进行滤光,第四滤色片2932可以用于对应的对第二荧光区2发出的荧光进行滤光,第五滤色片2933可以用于对应的对漫反射区q5反射出的漫射光进行滤光。
示例性的,图26所示的激光光源系统中,色轮的结构可以如图27所示,其中,第三滤色片2931、第四滤色片2932以及第五滤色片2933所在的环形区域为第二环形区域,荧光区以及漫反射区q5所在的环形区域为第一环形区域。第三滤色片2931位于对第一荧光区1的对侧,第四滤色片2932位于对应的第二荧光区2的对侧,第五滤色片2933可位于对应的对漫反射区q5的对侧,该色轮以预设方向w1转动时,便可以实现上述产生荧光以及漫射光,并对荧光以及漫射光进行滤光的效果。如此结构下,该色轮即具有了荧光轮以及滤光部件的功能,进而该激光光源系统将荧光轮以及滤光部件进行了结合,简化了激光光源系统的结构,有利于激光光源系统的小型化。
如图11所示,图11是相关技术中一种激光光源系统的结构示意图,相关技术中的激光光源系统10包括激光器101、光路组件102、荧光组件103以及出光口104。光路组件102包括二向色片1021以及反射镜1022,荧光组件103包括荧光区和激光反射区,荧光区用于激发荧光,激光反射区用于反射二向色片1021透过的激光光束s1。
其中,二向色片1021接收激光器101发出的激光光束s1,并将激光光束s1导向荧光组件103,荧光组件103发出荧光和反射激光至二向色片1021,二向色片1021反射荧光至出光口104,并再次透过激光s2至反射镜,反射镜反射激光光束s1至二向色片1021,二向色片1021第三次透过激光光束s1至出光口104。
上述激光光源系统中,激光器101发出的激光光束s1在激光光源系统的光路中三次透过 二向色片1021后射向出光口104,二向色片1021的透光率约为96%~97%,则激光光束s1三次透过二向色片1021后,其光效率为[1-(4%)]3=0.88。导致激光光源系统的激光光束s1的光损较高。
图28是本申请实施例示出的另一种激光光源系统20的结构示意图,请参考图2。激光光源系统20可以包括:激光器21A、合光镜片24A、荧光轮22及出光口25。
合光镜片24A可以包括至少一个透光区221以及反射区q3,透光区221可以透过激光器21A发出的激光光束s1,反射区q3可以反射接收到的光束。激光器21A的出光方向f5与合光镜片24A的镜面之间的夹角a为锐角。
荧光轮22可以位于合光镜片24A远离激光器21A的一侧,荧光轮22可以包括荧光区和漫反射区q5。荧光轮22可以包括位于荧光区的至少一种荧光转换材料,该荧光转换材料可以在激光光束s1的照射下受激产生荧光s2,并将荧光s2射出荧光轮22。漫反射区q5可以反射接收到的激光光束s1。出光口25可以位于合光镜片24A朝向荧光轮22的一侧,即出光口25可以和荧光轮22位于合光镜片24A的同一侧。
其中,激光器21A发出的激光光束s1透过透光区221并射向荧光区或漫反射区q5。
荧光区在激光光束s1的激发下产生荧光s2,并将荧光s2射向合光镜片24A,荧光轮22的漫反射区q5可以用于将接收到的激光光束s1处理为漫射光s3,并反射该漫射光s3。其中,激光器21A发出的激光光束s1经反射镜22反射向荧光区或漫反射区q5。
漫反射区q5将漫射光s3导向合光镜片24A,合光镜片24A的反射区q3将荧光轮22提供的荧光s2以及漫射光s3反射向出光口25。激光器21A发出的激光光束s1在激光光源系统20的行进过程中,经过了一次合光镜的透光区221,相较于相关技术中激光光束s1多次经过透射激光的二向色片,可以使得激光器21A发出的激光光束s1在激光光源系统20的光路中经过合光镜片24A的透光区221的次数较少,可以避免激光器21A发光的激光光束s1的光损较大。
本申请实施例提供了一种激光光源系统,包括激光器、合光镜片、荧光轮及出光口。其中,合光镜片具有透光区和反射区,合光镜片能够透过激光器发出的激光,还能够反射荧光轮发出的荧光和激光,如此,可以使得激光器发出的激光在激光光源系统的光路中经过合光镜的透光区的次数较少,可以避免激光器发光的激光的光损较大,解决了相关技术中激光光源系统的激光的光损较高的问题,实现了提高激光光源系统中激光的利用率的效果。
此外,该激光光源系统的结构组件较少,可以简化激光光源系统的结构。
示例性的,激光器21A的出光方向f5与合光镜片24A的镜面之间的夹角a为45度。如此可以便于在合光镜片24A的四周分别设置荧光轮22以及出光口25。
透光区221的形状可以圆形、矩形、三角形等形状。合光镜片24A的透光区221的形状可以和激光器21A的出光面的形状相同,以使得透光区221的尺寸可以较小。
可选地,如图29所示,图29是本申请实施例提供的一种荧光轮22的截面结构示意图。荧光轮22可以包括荧光转盘222,以及设置在荧光转盘222上的第一反射层234和至少一种荧光转换材料235,该荧光转换材料235可以位于荧光区,第一反射层234可以位于漫反射区q5。
第一反射层234可以包括白色漫反射层,该白色漫反射层可以将接收到的激光光束s1漫反射至合光镜片24A,并对反射的激光光束s1起匀光作用。
示例性的,荧光区可以包括第一荧光区和第二荧光区,荧光轮22可以包括绿色荧光转换材料,黄色荧光转换材料或红色荧光转换材料中的两种荧光转换材料,两种荧光转换材料可以分别位于第一荧光区和第二荧光区。荧光轮22可以通过沿预设方向旋转使得荧光区或漫反射区q5接收激光光束s1。
荧光轮22还可以包括位于荧光区的第二反射层236,第二反射层236位于荧光转换材料靠近荧光转盘222的一侧。第二反射层可以增强荧光轮22对荧光s2的反射能力。
可选地,请参考图28,合光镜片24A可以包括位于透光区221的二向色片243,二向色 片243用于透过激光器21A发出的激光光束s1,并反射荧光轮22提供的荧光s2。如此,可以提高激光光源系统20中的荧光s2的出光量,使得更多的荧光s2可以照射至出光口25。
合光镜片24A还可以包括位于反射区的反射镜片242,反射镜片242用于反射荧光轮22提供的荧光s2和激光光束s1。其中,反射镜片242可以和二向色片243通过胶合或者键合的方式固定在一起。
激光器21A发出的激光光束s1可以透过二向色片243,并照射到荧光轮22上,荧光轮22可以通过转动来改变激光器21A发出的激光光束s1照射到荧光轮22上的位置,进而使激光光源系统20的出光口25输出不同颜色的光线,在激光器21A发出的激光光束s1照射到荧光轮22上的漫反射区q5时,激光器21A发出的激光光束s1可以依次经漫反射区q5、反射区q3和出光口25后输出激光光源系统20。在激光器21A发出的激光光束s1照射到荧光轮22上的荧光区时,激光器21A发出的激光光束s1激发荧光区中的荧光转换材料发出荧光s2,荧光s2可以依次经荧光区、反射区q3和出光口25后输出激光光源系统20。其中,激光器21A可以包括发出蓝色激光光束s1的激光器21A。
可选地,如图30所示,图30是本申请实施例提供的另一种合光镜片24A的结构示意图。合光镜片24A可以包括透明基板244以及位于透明基板244上的二向色膜245以及反射膜246,其中,二向色膜245可以位于透光区221,反射膜246可以位于反射区q3。合光镜片24A可以为一体结构的镜片,可以先在透明基板244上划分透光区221以及反射区q3,然后在透光区221镀二向色膜245,且在反射区q3镀反射膜246,以使得合光镜片24A可以具有透射和反射两种功能。
可选地,如图31所示,图31是本申请实施例提供的另一种合光镜片24A的结构示意图。合光镜片24A可以包括透明基板244以及反射膜246,透明基板244上具有位于透光区221的通孔247,反射膜246位于反射区q3。合光镜片24A可以为具有通孔247的一体结构的镜片,可以先在具有通孔247的透明基板244上镀反射膜246,透明基板244上的通孔247所在的区域可以用于透过激光器21A发出的激光光束s1,镀反射膜246的区域可以反射接收到的荧光s2和漫射光s3,如此,可以使得合光镜片24A可以具有透射和反射两种功能,并且,可以节省制造合光镜片24A的材料以及简化合光镜片24A的制造工序。
可选的,如图28所示,激光光源系统20还可以包括凸透镜组33,凸透镜组33可以位于合光镜片24A与荧光轮22之间。可选地,如图32和图33所示,图32是本申请实施例提供的另一种激光光源系统20的结构示意图,图33是图32所示的激光光源系统20中的合光镜片24A的结构示意图。第二复眼透镜248可以包括玻璃基板2281以及位于玻璃基板2281上的多个微透镜2282,微透镜2282可以包括曲面,曲面在玻璃基板上的正投影的相邻的两条边的长度比的范围为1.3~2.5,曲面的曲率半径的范围为1.3~2.5,以使得多个微透镜对激光器21A发出的激光光束s1的光斑进行整形。透镜组25可以接收并汇聚第二复眼透镜248透过的激光光束s1,并将激光光束s1导向荧光轮22。
即就是,第二复眼透镜248可以接收并透过激光器21A发出的激光光束s1,并对接收到的激光光束s1进行匀化和整形处理。示例性的,如图34所示,图34是本申请实施例提供的激光的光斑R照射至复眼透镜的示意图。图34中示出了两种激光器21A射出的激光光束s1照射至第二复眼透镜248上的情况,激光器21A射出的激光光束s1的光斑R的形状可以为椭圆形,当激光器21A的摆放位置不同时,照射至第二复眼透镜248上的光斑R的位置也会有所变化,即椭圆形的光斑R的长轴的方向会发生变化,该椭圆形的光斑R的长轴是指通过连接椭圆形的光斑的边缘上的两个点所能获得的最长线段。
第二复眼透镜248可以包括玻璃衬底2281以及位于玻璃衬底的入光面上的阵列排布的多个微透镜2282。其中,微透镜可以包括平凸透镜,该平凸透镜可以包括朝向玻璃衬底的平面和背离玻璃衬底的曲面。该曲面在玻璃衬底2281上的正投影可以为矩形,这样,入光面上的多个微透镜可以将输入的激光光束s1的光斑R分割为多个矩形光斑R,并通过透镜组25对分割后的多个矩形光斑R进行累加,将多个矩形光斑R汇聚成一个矩形光斑R照射至荧光轮 22,从而可以实现对激光光束s1光束的匀化和整形,以使得荧光轮22接收到的激光光束s1的光斑R形状与后续的光学元件(如,光导管的入光口)的形状相匹配。其中,第二复眼透镜248中的微透镜可以为球面凸透镜或非球面凸透镜。
合光镜片24A还可以包括位于反射区的反射镜片242,反射镜片242用于反射荧光轮22提供的荧光s2和漫射光s3。其中,反射镜片242可以和第二复眼透镜248通过胶合或者键合的方式固定在一起。
可选地,如图28所示,透光区221的数量可以为一个,反射区q3可以围绕透光区221,透光区221可以位于合光镜片24A的中心区域。以使得合光镜片24A的反射区q3的尺寸相对于透光区221的尺寸较大,以便于反射区q3接收荧光轮22射出的漫射光s3和荧光s2。
其中,透光区221的面积和反射区q3的面积的比值范围可以为3%~10%。
可选地,如图35和图36所示,图35是本申请实施例提供的另一种激光光源系统20的结构示意图,图3是图35所示的激光光源系统20中的合光镜片24A的结构示意图。透光区221的数量可以为至少两个,至少两个透光区221可以包括第一透光区q21和第二透光区2212,第一透光区q21和第二透光区2212可以位于合光镜片24A的中心的两侧。第一透光区q21和第二透光区2212可以位于合光镜片24A的边缘区域,进一步的,第一透光区q21和第二透光区2212与合光镜片24A的边缘接触,以使得合光镜片24A的反射区q3可以接收较多的荧光轮22射出的荧光和激光。
激光光源系统20还可以包括分光镜组27A,分光镜组27A位于合光镜片24A和激光器21A之间,分光镜组27A包括第四反射镜组27A1和第五反射镜组27A2,第四反射镜组27A1和第五反射镜组27A2分别接收激光器21A发出的激光光束s1,并将激光光束s1分别反射向第一透光区q21和第二透光区2212。
激光器21A可以包括多个阵列排布的激光芯片,激光芯片可以用于发出激光光束s1。第四反射镜组27A1可以包括第十二反射镜27A11和第十三反射镜27A12,第十二反射镜27A11可以接收激光器21A中部分激光芯片发出的激光光束s1,并将接收到的激光光束s1反射向第十三反射镜27A12,第十三反射镜27A12将接收到的激光光束s1反射向第一透光区q21;第五反射镜组27A2可以包括第十四反射镜27A21和第十五反射镜27A22,第十四反射镜27A21可以接收激光器21A中另一部分激光芯片发出的激光光束s1,并将接收到的激光光束s1反射向第十五反射镜27A22,第十五反射镜27A22将接收到的激光光束s1反射向第二透光区2212。如此,可以实现激光器21A发出的激光光束s1的分束。
合光镜片24A可以包括两个二向色片243,这两个二向色片243可以分别位于第一透光区q21和第二透光区2212。或者,合光镜片24A可以包括透明基板244以及位于透明基板244上的二向色膜245以及反射膜246,其中,二向色膜245可以位于第一透光区q21和第二透光区2212,反射膜246可以位于反射区q3。或者,合光镜片24A可以包括透明基板244以及反射膜246,透明基板244上具有两个通孔247,该两个通孔247可以分别位于第一透光区q21和第二透光区2212,反射膜246位于反射区q3。
可选地,如图37和图38所示,图37是本申请实施例提供的另一种激光光源系统20的结构示意图,图38是图37所示的激光光源系统20中的合光镜片24A的结构示意图。合光镜片24A可以包括两个第二复眼透镜248,这两个第二复眼透镜248可以分别位于第一透光区q21和第二透光区2212。合光镜片24A还可以包括位于反射区的反射镜片242,反射镜片242用于反射荧光轮22提供的荧光s2和漫射光s3。其中,反射镜片242可以和两个第二复眼透镜248通过胶合或者键合的方式固定在一起。
可选地,如图37所示,激光光源系统20还可以包括聚焦镜组32以及光导管252,聚焦镜组32和光导管252位于出光口25处,聚焦镜组32接收合光镜片24A反射的光束,并汇聚光束至光导管252。
可选地,如图39所示,图39是本申请实施例提供的另一种激光光源系统20的结构示意图。激光光源系统20还可以包括光导管252,光导管252可以位于出光口25处。
合光镜片24A可以包括位于反射区q3的曲面反射镜249,曲面反射镜249的反射面可以朝向荧光轮22和光导管252,曲面反射镜249可以汇聚荧光轮22提供的荧光s2以及漫射光s3并反射向光导管252。曲面反射镜249可以包括曲面基板以及涂覆在曲面基板靠近光导管252一侧的反射膜246。该曲面反射镜249的反射面可以包括自由曲面。示例性的,该反射面可以为直纹曲面(可以由直母线运动而成的曲面,如:圆柱面),或者双曲曲面(可以由曲母线运动而成的曲面,如球面)。
合光镜片24A还可以包括位于透光区221的透光圆柱2201,该透光圆柱2201可以和曲面反射镜249固定连接,或者与曲面反射镜为一体结构,透光圆柱2201的轴线可以平行与激光器21A发出的激光的传输方向f1。透光圆柱2201靠近激光器21A的一面上可以设置二向色膜或者复眼透镜。可以使得激光器21A发出的激光光束s1较为垂直的入射至荧光轮22。
如此,可以使得激光光源系统20中的结构组件较少,可以简化激光光源系统20的结构。
需要说明的是,为了便于清楚的示出激光光源系统中光路的走向,图28和图32中示出的荧光轮22接收到的光束和射出的光束部分光束,使得图28和图32中示出的光路不符合反射定律,实际情况中,由于荧光轮22上的对接收到的光束产生漫反射的现象,在微观上荧光轮22接收到的光束和射出的光束仍符合反射定律。
图40是本申请实施例提供的一种投影仪的结构示意图,该投影仪包括光阀组件50、投影镜头40以及上述实施例提供的任一光源系统20。
其中,光阀组件50包括第一光阀51、第二光阀52以及棱镜组件53,棱镜组件53可以为偏振分光棱镜(polarization beam splitter,PBS),偏振分光棱镜能把入射的非偏振光分成两束垂直的线偏光。其中P偏光直接透过,而S偏光以45度角被反射,出射方向与P光成90度角。偏振分光棱镜可以由一对直角棱镜胶合而成,其中一个直角棱镜的斜边上镀有偏振分光介质膜。第一光阀51以及第二光阀52可以为硅基液晶光阀。
如图40所示,光源系统20能够三种颜色的色光,三种颜色的色光经棱镜组件53分为S偏振光以及P偏振光,其中S偏振光入射至第一光阀51,P偏振光入射至第二光阀52,这两个偏振光再经相位片471及相位片472进行相位偏转,再经棱镜组件53透射或反射向投影镜头,已从投影镜头射出投影仪,并在屏幕上成像。
图41是本申请实施例提供的另一种投影设备的结构示意图。参考图41可以看出,该投影设备可以包括:激光光源系统20,至少一个光阀组件50以及投影镜头40。激光光源系统20出射光束,至少一个光阀组件50对光束进行处理,并将处理后的光束导向投影组件40,进而实现成像功能。激光光源系统20可以为上述任一实施例中的激光光源系统。光阀组件50可以为数字微镜元件(英文:digital micromirror device;简写:DMD)。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种激光光源系统,其特征在于,所述激光光源系统包括发光组件,荧光轮,光谱选择组件、合光光路组件以及整形匀光组件;
    所述发光组件能够发出激光光束,且所述发光组件的出光方向朝向所述荧光轮;
    所述合光光路组件位于所述发光组件和所述荧光轮之间,所述光谱选择组件位于所述合光光路组件和所述荧光轮之间;
    所述荧光轮包括至少一个荧光激发区,所述至少一个荧光激发区包括第一荧光激发区,所述发光组件发出的激光光束能够透过所述合光光路组件和所述光谱选择组件后入射所述第一荧光激发区,所述第一荧光激发区能够在所述激光光束的激发下发出第一荧光,并将所述第一荧光反射向所述光谱选择组件,所述光谱选择组件能够透过在第一波长范围内的第一荧光,并将所述第一波长范围内的第一荧光导向所述合光光路组件后,经所述合光光路组件导向所述激光光源系统的出光口,所述光谱选择组件与所述第一荧光激发区的相对位置固定;
    所述整形匀光组件至少位于所述发光组件和所述合光光路组件之间,或者,至少位于所述荧光轮与所述合光光路组件之间,所述整形匀光组件用于对透过所述整形匀光组件的光束进行整形匀化处理。
  2. 根据权利要求1所述的激光光源系统,其特征在于,所述光谱选择组件包括第一滤色片,所述第一波长范围内的第一荧光包括第二色光,所述激光光束包括第一色光,所述第一滤色片与所述第一荧光激发区的相对位置固定;
    所述第一滤色片被配置为透过所述第二色光以及入射角度小于指定角度的所述第一色光,并反射入射角度大于或等于所述指定角度的所述第一色光。
  3. 根据权利要求1所述的激光光源系统,其特征在于,所述荧光轮包括至少两个荧光激发区,所述至少两个荧光激发区还包括第二荧光激发区,所述第二荧光激发区能够在所述激光光束的激发下发出第二荧光,并将所述第二荧光反射向所述光谱选择组件,所述光谱选择组件能够透过在第二波长范围内的第二荧光,并将所述第二波长范围内的第二荧光导向所述合光光路组件后,经所述合光光路组件导向所述激光光源系统的出光口;
    所述光谱选择组件包括至少两个滤色片,所述至少两个滤色片还包括第二滤色片,所述第二滤色片位于所述第二荧光激发区朝向所述发光组件的一侧,且与所述第二荧光激发区的相对位置固定,所述第二波长范围内的第二荧光包括第三色光,所述激光光束包括第一色光,所述第二滤色片被配置为透过所述第三色光以及至少部分所述第一色光。
  4. 根据权利要求3所述的激光光源系统,其特征在于,所述第二滤色片被配置为透过所述第三色光以及入射角度小于指定角度的所述第一色光,并反射入射角度大于或等于所述指定角度的所述第一色光。
  5. 根据权利要求3所述的激光光源系统,其特征在于,所述荧光轮还包括转轴以及荧光转盘,所述荧光转盘安装于所述转轴上,且能够以所述转轴为轴转动,所述至少两个荧光激发区在所述荧光转盘上沿周向排布;
    所述光谱选择组件包括滤光部件,所述滤光部件安装于所述转轴上,且能够以所述转轴为轴转动,所述至少两个滤色片在所述滤光部件上沿周向排布。
  6. 根据权利要求1所述的激光光源系统,其特征在于,所述发光组件包括激光器,所述合光光路组件包括合光镜片;
    所述整形匀光组件位于所述激光器和所述合光镜片之间,且包括扩散单元和第一透镜,所述扩散单元位于所述第一透镜靠近所述激光器的一侧,所述扩散单元接收所述激光器提供的激光光束,并将匀化后的激光导向所述第一透镜,以透过所述第一透镜后射向所述合光镜片;
    所述合光镜片位于所述荧光轮和所述整形匀光组件之间,所述出光口位于所述合光镜片朝向所述荧光轮的一侧,所述合光镜片将所述整形匀光组件提供的激光光束导向所述荧光轮,并将所述荧光轮提供的光束导向所述出光口。
  7. 根据权利要求6所述的激光光源系统,其特征在于,所述扩散单元包括第一复眼透镜,所述第一复眼透镜具有多个阵列排布的微透镜,所述第一透镜包括凸透镜。
  8. 根据权利要求6所述的激光光源系统,其特征在于,所述扩散单元包括扩散片,所述扩散片包括透明基板以及在设置所述透明基板上的漫射体,所述第一透镜包括凸透镜。
  9. 根据权利要求7所述的激光光源系统,其特征在于,所述微透镜在垂直于所述第一透镜的光轴的第一平面上的正投影为矩形;
    所述激光器包括多个阵列排布的发光芯片,所述发光芯片出射的激光照射至所述复眼透镜上的光斑为椭圆形,所述光斑的长轴与所述微透镜在所述第一平面上的正投影的长边平行。
  10. 根据权利要求6所述的激光光源系统,其特征在于,所述合光镜组具有透光区和围绕所述透光区设置的反射区,所述第一透镜的焦点位于所述透光区的中心;
    所述荧光轮还包括漫反射区;
    所述激光光源系统还包括位于所述荧光轮和所述合光镜片之间的透镜组,所述透镜组包括至少一个凸透镜,所述透镜组用于汇聚透过所述透光区的激光,并将所述激光导向所述荧光激发区或所述漫反射区,所述荧光激发区用于在接收到的激光的激发下产生荧光,并将所述荧光射向所述透镜组,所述漫反射区用于将接收到的激光反射至所述透镜组。
  11. 根据权利要求7所述的激光光源系统,其特征在于,所述微透镜在垂直于所述第一透镜的光轴的第一平面上的正投影为矩形;
    所述激光器包括多个阵列排布的发光芯片,所述发光芯片出射的激光照射至所述复眼透镜上的光斑为椭圆形,所述光斑的长轴与所述微透镜在所述第一平面上的正投影的长边平行。
  12. 根据权利要求7所述的激光光源系统,其特征在于,所述多个阵列排布的微透镜与所述第一透镜朝向所述激光器的一面贴合。
  13. 根据权利要求1所述的激光光源系统,其特征在于,所述发光组件包括激光器,所述合光光路组件包括合光镜片;
    所述合光镜片包括至少一个透光区以及反射区,所述激光器的出光方向与所述合光镜片的镜面之间的夹角为锐角,所述激光器的出光方向朝向所述透光区,所述反射区朝向所述荧光轮以及所述出光口,能够将所述荧光轮射出的光导向所述出光口。
  14. 根据权利要求13所述的激光光源系统,其特征在于,所述合光镜片包括位于所述透光区的二向色片,所述二向色片用于透过所述激光器发出的激光光束,并反射所述荧光轮提供的荧光。
  15. 根据权利要求13所述的激光光源系统,其特征在于,所述合光镜片包括透明基板以 及位于所述透明基板上的二向色膜以及反射膜,所述二向色膜位于所述透光区,所述反射膜位于所述反射区。
  16. 根据权利要求13所述的激光光源系统,其特征在于,所述合光镜片包括透明基板以及反射膜,所述透明基板上具有位于所述透光区的通孔,所述反射膜位于所述反射区。
  17. 根据权利要求13所述的激光光源系统,其特征在于,所述透光区的数量为至少两个,至少两个所述透光区包括第一透光区和第二透光区,所述第一透光区和第二透光区位于所述合光镜片的中心的两侧;
    所述激光光源系统还包括分光镜组,所述分光镜组位于所述合光镜片和所述激光器之间,所述分光镜组包括第一反射镜组和第二反射镜组,所述第一反射镜组和所述第二反射镜组分别接收所述激光器发出的激光光束,并将所述激光光束分别反射向所述第一透光区和所述第二透光区。
  18. 根据权利要求13所述的激光光源系统,其特征在于,所述激光光源系统还包括聚焦透镜以及光导管,所述聚焦透镜和所述光导管位于所述出光口处,所述聚焦透镜接收所述合光镜片反射的光束,并汇聚所述光束至所述光导管。
  19. 根据权利要求13所述的激光光源系统,其特征在于,所述激光光源系统还包括光导管,所述光导管位于所述出光口处;
    所述合光镜片包括位于所述反射区的曲面反射镜,所述曲面反射镜汇聚所述荧光轮提供的荧光以及激光并反射向所述光导管。
  20. 一种投影设备,其特征在于,所述投影仪包括权利要求1-19任一所述的激光光源系统。
PCT/CN2023/083066 2022-03-22 2023-03-22 激光光源系统和投影设备 WO2023179661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380018434.1A CN118556209A (zh) 2022-03-22 2023-03-22 激光光源系统和投影设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202220643953.XU CN217034495U (zh) 2022-03-22 2022-03-22 激光光源系统和投影设备
CN202210289237.0A CN114911123A (zh) 2022-03-22 2022-03-22 激光光源系统和投影设备
CN202220643953.X 2022-03-22
CN202210289237.0 2022-03-22
CN202210772848.0 2022-06-30
CN202210772848.0A CN117369201A (zh) 2022-06-30 2022-06-30 光源系统以及投影仪

Publications (2)

Publication Number Publication Date
WO2023179661A1 true WO2023179661A1 (zh) 2023-09-28
WO2023179661A9 WO2023179661A9 (zh) 2023-11-02

Family

ID=88100053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083066 WO2023179661A1 (zh) 2022-03-22 2023-03-22 激光光源系统和投影设备

Country Status (1)

Country Link
WO (1) WO2023179661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光系统和投影设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645827A (zh) * 2011-11-16 2012-08-22 深圳市光峰光电技术有限公司 光源系统及投影装置
JP2014110109A (ja) * 2012-11-30 2014-06-12 Asahi Glass Co Ltd 照明光学系、投影装置、偏向素子、偏光非解消拡散素子および波長選択発散状態変換素子
CN105182672A (zh) * 2015-07-07 2015-12-23 杨毅 发光装置和投影显示装置
CN113885284A (zh) * 2021-09-27 2022-01-04 青岛海信激光显示股份有限公司 光源组件与投影设备
CN217034495U (zh) * 2022-03-22 2022-07-22 青岛海信激光显示股份有限公司 激光光源系统和投影设备
CN114911123A (zh) * 2022-03-22 2022-08-16 青岛海信激光显示股份有限公司 激光光源系统和投影设备
CN217606234U (zh) * 2022-06-30 2022-10-18 青岛海信激光显示股份有限公司 光源系统以及投影仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645827A (zh) * 2011-11-16 2012-08-22 深圳市光峰光电技术有限公司 光源系统及投影装置
JP2014110109A (ja) * 2012-11-30 2014-06-12 Asahi Glass Co Ltd 照明光学系、投影装置、偏向素子、偏光非解消拡散素子および波長選択発散状態変換素子
CN105182672A (zh) * 2015-07-07 2015-12-23 杨毅 发光装置和投影显示装置
CN113885284A (zh) * 2021-09-27 2022-01-04 青岛海信激光显示股份有限公司 光源组件与投影设备
CN217034495U (zh) * 2022-03-22 2022-07-22 青岛海信激光显示股份有限公司 激光光源系统和投影设备
CN114911123A (zh) * 2022-03-22 2022-08-16 青岛海信激光显示股份有限公司 激光光源系统和投影设备
CN217606234U (zh) * 2022-06-30 2022-10-18 青岛海信激光显示股份有限公司 光源系统以及投影仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光系统和投影设备
CN117590678B (zh) * 2024-01-19 2024-05-28 宜宾市极米光电有限公司 合光系统和投影设备

Also Published As

Publication number Publication date
WO2023179661A9 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
JP2024023800A (ja) 光源装置、画像投射装置及び光源光学系
US10372028B2 (en) Light source device and projection type display apparatus
CN112782921B (zh) 光源装置和图像投影装置
CN113050354B (zh) 光源组件和投影设备
JP7543819B2 (ja) 光源装置及び画像投射装置
WO2019071951A1 (zh) 复眼透镜组及投影装置
JP2022084619A (ja) 光源光学系、光源装置及び画像投射装置
WO2020088671A1 (zh) 照明系统
WO2023179661A1 (zh) 激光光源系统和投影设备
CN217034495U (zh) 激光光源系统和投影设备
CN114911123A (zh) 激光光源系统和投影设备
US10634981B2 (en) Light source device and projection type display apparatus
JP2020160434A (ja) 光源装置、画像投射装置及び光源光学系
CN217034494U (zh) 激光光源系统和投影设备
JP7400417B2 (ja) 光源光学系、光源装置及び画像表示装置
CN217606234U (zh) 光源系统以及投影仪
WO2021259270A1 (zh) 光源组件和投影设备
CN118043737A (zh) 激光投影设备
CN118556209A (zh) 激光光源系统和投影设备
CN217386123U (zh) 激光光源系统和投影设备
CN111474816A (zh) 激光投影设备
JP2021005060A (ja) 光源装置およびこれを備える画像投射装置
WO2022188307A1 (zh) 激光光路系统和投影设备
JP7338409B2 (ja) 光源装置、画像投射装置及び光源光学系
JP7338410B2 (ja) 光源装置、画像投射装置及び光源光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773908

Country of ref document: EP

Kind code of ref document: A1