WO2023178837A1 - 一种基于定点巡回测量的隧道自动化监控测量设备及方法 - Google Patents

一种基于定点巡回测量的隧道自动化监控测量设备及方法 Download PDF

Info

Publication number
WO2023178837A1
WO2023178837A1 PCT/CN2022/097614 CN2022097614W WO2023178837A1 WO 2023178837 A1 WO2023178837 A1 WO 2023178837A1 CN 2022097614 W CN2022097614 W CN 2022097614W WO 2023178837 A1 WO2023178837 A1 WO 2023178837A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
point
tunnel
qmin
deformation
Prior art date
Application number
PCT/CN2022/097614
Other languages
English (en)
French (fr)
Inventor
胡强
杜镔
王义成
刘晓勇
苟德明
杨洪
春军伟
吴铭芳
戴明江
Original Assignee
贵州省交通规划勘察设计研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州省交通规划勘察设计研究院股份有限公司 filed Critical 贵州省交通规划勘察设计研究院股份有限公司
Publication of WO2023178837A1 publication Critical patent/WO2023178837A1/zh
Priority to US18/512,117 priority Critical patent/US20240093608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a tunnel automatic monitoring and measurement equipment and method based on fixed-point patrol measurement, and belongs to the technical field of tunnel engineering construction.
  • tunnel monitoring and measurement As an important means of tunnel construction using the New Austrian Method, the importance of tunnel monitoring and measurement is self-evident.
  • monitoring and measurement is a crucial technical means in the tunnel construction process, and it is also an information weapon to ensure the safety of tunnel construction.
  • tunnel monitoring and measurement work is generally carried out manually using measuring instruments such as total stations, levels or convergence meters, which can theoretically meet relevant monitoring requirements.
  • measuring instruments such as total stations, levels or convergence meters
  • the purpose of the present invention is to provide an automated tunnel monitoring and measurement equipment and method based on fixed-point patrol measurement, which can overcome the shortcomings of the existing technology.
  • An automated tunnel monitoring and measurement equipment based on fixed-point patrol measurement which includes a monitoring trolley that can move freely longitudinally in the tunnel.
  • the monitoring trolley is equipped with multiple automatic tracking and identification devices.
  • the automatic tracking and identification device communicates with the background processing system. connected; a number of reflective signs used to mark the locations of monitoring points are arranged on the surface of the tunnel support structure.
  • the reflective signs form a monitoring section in the lateral direction of the tunnel and a monitoring measurement line in the axial direction of the tunnel; each automatic tracking and identification device is equipped with a corresponding The monitoring line is relative.
  • the aforementioned monitoring trolley includes an arched truss corresponding to the contour of the tunnel, and a walking mechanism is provided at the bottom of the arched truss; the automatic tracking and identification device is a plurality of pieces of annular arrangement arranged on the front side of the arched truss to achieve monitoring of the monitoring trolley. All-round detection of the tunnel contour ahead.
  • the aforementioned automatic tracking and identification device includes an intelligent scanning camera and a laser ray head, which are fixed on the arched truss through a fixed frame that can adjust the lateral and vertical deflection angles of the laser ray head.
  • the aforementioned fixed frame includes a connecting seat that is sleeved with the rods of the arched truss.
  • a connecting plate is provided on the connecting seat.
  • a horizontal rotating turntable is rotatably connected to the connecting plate.
  • a coordinate target is provided on the back of the horizontal rotating turntable.
  • the bottom is provided with a hinge base, and the intelligent scanning camera and laser ray head are hinged on the hinge base through a vertical rotation axis.
  • An automated tunnel monitoring and measurement method based on fixed-point patrol measurement which includes the following steps:
  • Multiple groups of monitoring sections are set up on the surface of the tunnel support structure. Multiple monitoring points are set up on each group of monitoring sections. The longitudinal positions of adjacent monitoring points are relative to each other, so that the monitoring points on the multiple groups of monitoring sections constitute multiple monitoring lines. Wire;
  • step s1 at least five monitoring points are set on each group of monitoring sections and arranged on the tunnel vault, and relatively The vaults are symmetrically arranged at the arch waist and arch feet, so that multiple sets of monitoring points on the monitoring sections form five monitoring lateral lines to monitor the tunnel's vault, arch waist and arch feet respectively.
  • the tunnel measurement coordinate system and the unit coordinate system of the monitoring point are collected.
  • the tunnel measurement coordinate system is consistent with the project's construction control network coordinate system;
  • the unit coordinate system of the monitoring point is The tangent line direction of the monitoring point is the positive direction of the y-axis, the vertical direction is the z-axis direction, and then the x-axis direction is determined according to the right-hand rule;
  • the longitudinal declination angle, transverse declination angle, laser ray length, monitoring time point, automatic tracking and identification device shift coordinates and patrol monitoring number information of the laser ray.
  • (x Qm , y Qm , z Qm ) are the absolute coordinates of the automatic tracking and identification device Q after monitoring the m-th moving position of the trolley,
  • a Qmin , b Qmin , c Qmin are the monitoring variables corresponding to the x, y, and z directions respectively.
  • L Qmin is the corresponding laser ray length
  • ⁇ Qmin is the corresponding vertical declination angle
  • ⁇ Qmin is the corresponding lateral deflection angle
  • T Qmin is the corresponding monitoring time.
  • the aforementioned control measurement method uses the principle of fixed-point monitoring to calculate the deformation of the supporting structure during the monitoring period;
  • the automatic tracking and identification device Q, the monitoring section Dn , the deformation of the monitoring point under the i-th cycle monitoring under the m-th movement position of the monitoring trolley and the h-th cycle monitoring under the r-th movement position of the monitoring trolley are calculated. as follows:
  • ⁇ VH Qn(mi-rh) ⁇ H Qn(mi-rh) /(T Qmin -T Qrhn );
  • ⁇ VY Qn(mi-rh) ⁇ Y Qn(mi-rh) /(T Qmin -T Qrhn )
  • ⁇ L (( ⁇ X Qn(mi-rh) ) 2 +( ⁇ Y Qn(mi-rh) ) 2 ) 0.5
  • ⁇ L is the length of the line connecting the coordinate points of the monitoring point before and after deformation
  • is the angle between the positive direction of the y-axis of the unit coordinate system of the monitoring point and the positive direction of the y-axis of the tunnel measurement coordinate system
  • is the angle between the line connecting the coordinate points before and after the deformation of the monitoring point and the negative direction of the y-axis of the tunnel measurement coordinate system
  • is the angle between the line connecting the coordinate points before and after the deformation of the monitoring point and the positive y-axis of the unit coordinate system
  • ⁇ X′ is the displacement value of the monitoring point in the x-axis direction of the unit coordinate system, that is, the horizontal convergence value of the monitoring point.
  • the horizontal convergence rate of the monitoring point is ⁇ X′/(T Qmin -T Qrhn ),
  • ⁇ Y′ is the displacement value of the monitoring point in the y-axis direction of the unit coordinate system, that is, the axial displacement value of the monitoring point.
  • the axial displacement rate of the monitoring point is ⁇ Y′/(T Qmin -T Qrhn ).
  • step 4 the monitoring situation is judged based on the cumulative deformation value and deformation rate, and the system's prefabricated support structure deformation risk determination criteria and corresponding early warning levels and automatic emergency measures are processed in the background to perform monitoring and early warning;
  • the monitoring frequency will be automatically doubled, and a reminder signal will be sent to the relevant person in charge of the project through the wireless communication facility of the monitoring equipment;
  • the monitoring frequency will be automatically increased by two times, and a risk warning signal will be sent to the relevant person in charge of the project through the wireless communication facility of the monitoring equipment;
  • the deformation rate of the monitoring point is less than 0.2mm/d, it is considered safe and normal monitoring
  • the monitoring frequency will be automatically doubled, and a reminder signal will be sent to the relevant person in charge of the project through the wireless communication facility of the monitoring equipment;
  • the monitoring frequency will be automatically increased by two times, and a risk warning signal will be sent to the relevant person in charge of the project through the wireless communication facility of the monitoring equipment.
  • the present invention discloses a tunnel automated monitoring and measuring equipment and method based on fixed-point patrol measurement, which includes a monitoring trolley that can move longitudinally freely in the tunnel.
  • the automatic tracking and identification device connected to the processing system has a number of monitoring points with reflective markings on the surface of the tunnel support structure.
  • the monitoring points form a number of monitoring and measuring lines on the tunnel axis.
  • Each automatic tracking and identification device corresponds to a specific monitoring and measuring line. Line, by monitoring the longitudinal displacement of the trolley and the intelligent scanning and identification and laser point measurement functions of the automatic tracking and identification device, fixed-point automated patrol measurements of the reflective signs set on the tunnel support structure can be carried out to obtain relevant monitoring at different time points.
  • the automatic tracking and identification device can intelligently track and identify the reflective signs arranged on the surface of the tunnel support structure, and obtain the coordinate information of the corresponding monitoring points to calculate the deformation of the support structure, which can realize a set of
  • the automatic tracking and identification device has an automatic monitoring effect on the full range of dynamic ranges in the tunnel; compared with the conventional manual measurement mode that relies on manual operation of total stations and other measuring instruments to find the displaced monitoring points and perform measurement work, the monitoring of the present invention
  • the process is more intelligent and efficient, and the monitoring results are more scientific and reliable.
  • the present invention locates the monitoring area in the form of fixed monitoring points.
  • the structural deformation monitoring work at specific monitoring points is not affected by the displacement of the automatic tracking and identification device, and the continuity of structural deformation monitoring data is guaranteed.
  • it can extract settlement deformation data, horizontal convergence data and axial deformation data of monitoring points during any monitoring period according to actual construction needs, which can effectively reflect the deformation of the supporting structure and guide on-site construction;
  • the invention has a simple structure and low cost. It has low performance requirements for the attached monitoring trolley. It only requires that the trolley has a reliable structure and can be parked stably. It can provide columns or beams for fixing the automatic tracking and identification device, and The trolley can advance along with the tunnel excavation. By monitoring the longitudinal forward movement of the trolley and the automatic tracking and identification device installed on it, an automatic tracking and identification device can be realized to monitor the dynamic section from the trolley to the tunnel face. The test effect is low, and the number of automatic tracking and identification devices invested is low.
  • the main components of the automatic tracking and identification device are intelligent scanning cameras and laser ray heads. Its manufacturing cost is low, the required use cost is controllable, and it has good economic and practical sex;
  • the operation is simple and requires low monitoring personnel.
  • the camera scanning positioning + point laser measurement + background processing system realizes automatic processing of data collection, calculation and analysis results.
  • the monitoring results exceed the risk prediction standard, it can be processed as scheduled
  • the program issues early warning information and adopts emergency monitoring measures, which can effectively improve construction safety while greatly reducing manpower investment;
  • the operation reliability is strong.
  • the longitudinal monitoring mode is adopted.
  • the monitoring direction of the equipment intersects with the tunnel axis at a small angle.
  • the camera line of sight and laser rays are not easily blocked by the construction machinery because they are close to the supporting structure side. During the monitoring process, they are affected by the construction in the tunnel.
  • the interference of the operation is small, which can effectively ensure the effective duration of the automated monitoring work;
  • the equipment is fully functional.
  • the present invention can also input coordinate information in the background processing system, and then indicate the spatial position of the corresponding coordinate point through the pointing function of the laser ray head of the automatic tracking and identification device, thus having certain construction auxiliary functions.
  • Figure 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic structural diagram of the connecting plate 204 disposed at the lower part of the connecting base 203 .
  • FIG. 3 is a schematic structural diagram of the connecting plate 204 being disposed on the left side of the connecting base 203 .
  • FIG. 4 is a schematic structural diagram of the connecting plate 204 disposed on the right side of the connecting base 203 .
  • Figure 5 is a schematic diagram of the installation of the explosion-proof sleeve 3.
  • Figure 6 is a schematic diagram of monitoring according to the present invention.
  • Figure 7 is a schematic diagram of the laser beam deflection angle of the automatic tracking and identification device.
  • Figure 8 is a schematic diagram of the numerical coordinate conversion parameters of the deformation of the monitoring point.
  • An automated tunnel monitoring and measuring equipment based on fixed-point patrol measurement which includes a monitoring trolley 1 that can move freely longitudinally in the tunnel.
  • the monitoring trolley 1 is provided with multiple automatic tracking and identification devices 2.
  • the automatic tracking and identification devices 2. Telecommunications connection with the background processing system; a number of reflective signs are arranged on the surface of the tunnel support structure. The reflective signs mark the location of the monitoring points.
  • the monitoring points form multiple monitoring sections in the lateral direction of the tunnel and multiple monitoring measurement lines in the axial direction of the tunnel.
  • each automatic tracking and identification device 2 is relative to the position of the corresponding monitoring measurement line; the automatic tracking and identification device is used to automatically track reflective signs, collect monitoring time points of monitoring points, shift coordinate information of monitoring points, and patrol monitoring numbers, etc.
  • Information the background processing system is used to store, analyze and call data in a sequence form, and then calculate and analyze the relative monitoring data to obtain the deformation of the support structure; when the deformation exceeds the preset situation, then Early warning messages can be automatically issued.
  • the monitoring trolley 1 is a special monitoring and measurement trolley, which includes an arched truss 101 corresponding to the tunnel contour, and a traveling mechanism 102 is provided at the bottom of the arched truss 101.
  • the arched truss 101 includes a support frame composed of cross beams and several roof beams, longitudinal beams, and diagonal braces spliced together.
  • the support frame should be larger than the structural frame of conventional waterproof board trolleys and secondary lining trolleys. Ensure the smoothness of the driving channel and try to avoid collisions between the monitoring trolley 1 and the construction vehicles; the bottom end of the support frame is connected to the triangular support foot through a column, and the walking mechanism 102 and the vibration monitoring instrument are set in the middle of the triangular support foot.
  • the automatic tracking and identification device 2 is a plurality of pieces arranged in an annular shape on the front side of the arched truss 101 to achieve all-round detection of the tunnel contour in front of the monitoring trolley 1 .
  • three of the automatic tracking and identification devices 2 are correspondingly arranged in the middle and left and right sides of the beam to monitor the tunnel vault and the arch waist positions on both sides; the other two automatic tracking and identification devices 2 are correspondingly arranged on the left and right columns. Used to monitor the position of the left and right arches of the tunnel.
  • the automatic tracking and identification device includes an intelligent scanning camera 201 and a laser ray head 202, which are connected to the arched truss 101 through a fixed frame that can adjust the lateral and vertical declination angles of the laser ray head 202.
  • the fixed frame includes a connecting seat 203 that is sleeved with the rods of the arched truss 101.
  • a connecting plate 204 is provided on the connecting seat 203.
  • a horizontal rotating turntable 205 is rotatably connected to the connecting plate 204.
  • On the horizontal rotating turntable 205 There is a hinge base 206 on which the intelligent scanning camera 201 and the laser ray head 202 are hinged on the hinge base 206 through the vertical rotation shaft 207; the horizontal rotation turntable 205 and the vertical rotation shaft 207 are both connected to the background processing system.
  • the horizontal rotating dial 205 can be used to adjust the lateral angle of the automatic tracking and identification device; the vertical rotating shaft 207 is used to adjust the vertical angle of the automatic tracking and identification device.
  • the intelligent scanning camera 201 and the laser ray head 202 can realize the lateral declination and vertical declination in two directions.
  • the automatic tracking and identification device 2 is extremely flexible and can realize the monitoring of multiple monitoring lines and multiple monitoring points by a single device.
  • the background processing system is also connected to the remote controller that controls the movement of the monitoring trolley 1. By controlling the monitoring trolley to move longitudinally along the tunnel through the remote controller, mobile monitoring along the longitudinal direction of the tunnel can be realized.
  • the connecting seat 203 is made of two halves of anchor blocks spliced together by bolts 2031.
  • a slot formed by splicing the two halves is provided at the joint surface of the two halves of the anchor blocks.
  • the slot is in contact with the rods of the arched truss 101. Adaptation allows the two halves of the anchor blocks to be fixed on the rods of the arched truss 101 through the slots.
  • the connecting plates 204 are respectively arranged at the lower part and the left and right sides of the connecting seat 203 to ensure that the connecting plates 204 are located inside the arched truss 101, and the connecting plates 204 and half of the anchor blocks are an integrated structure.
  • the horizontal rotating turntable 205 penetrates the connecting plate 204 and is provided with a coordinate target point behind it.
  • the coordinate target point is used to assist in positioning the coordinate points of the automatic tracking and identification device 2.
  • measuring instruments such as a total station can be manually operated.
  • the absolute coordinate values of each automatic tracking and identification device are measured from the rear of the monitoring trolley 1.
  • a vibration monitoring instrument is installed on the monitoring trolley.
  • the vibration monitoring instrument senses that the monitoring trolley is collided and displaced, it immediately sends a collision and displacement signal to the person in charge of tunnel monitoring and measurement.
  • the person in charge of monitoring and measurement organizes relevant personnel to inspect Monitor the parking situation of the trolley, re-measure the coordinate points of each automatic tracking and identification device 2, and perform coordinate correction.
  • It also includes an explosion-proof sleeve 3, which can be nested outside the horizontal rotating turntable 205 as a protection device for the intelligent scanning camera 201 and the laser ray head 202.
  • An automated tunnel monitoring and measurement method based on fixed-point patrol measurement which includes the following steps:
  • step s1 the longitudinal positions of the monitoring points on each group of monitoring sections are relative to each other one by one, so that the monitoring points on the multiple groups of monitoring sections form multiple monitoring lateral lines.
  • at least five monitoring points are set up on each group of monitoring sections, and are arranged on the tunnel vault, and are symmetrically arranged at the arch waist and arch feet relative to the vault, so that the monitoring points on the multiple groups of monitoring sections constitute five monitoring lateral lines. , respectively monitor the tunnel's vault, waist and arch feet.
  • the tunnel measurement coordinate system and the unit coordinate system of the monitoring point are collected.
  • the tunnel measurement coordinate system is consistent with the project's construction control network coordinate system to ensure the versatility of the measurement results;
  • the unit of the monitoring point is
  • the coordinate system uses the tangent line direction of the monitoring point as the positive direction of the y-axis, the vertical direction as the z-axis direction, and then determines the x-axis direction according to the right-hand rule; reflective markers are set on each monitoring point, and through automatic tracking
  • the identification device performs automated intelligent tracking and identification; specifically, an automatic tracking and identification device with an intelligent scanning camera is used to automatically patrol and identify reflective signs according to a preset program, and then collects coordinate information of relevant monitoring points through point laser measurement, including monitoring work
  • the longitudinal declination angle, transverse declination angle, laser ray length, monitoring time point, automatic tracking and identification device shift coordinates and patrol monitoring number information are included.
  • the steps for collecting and calculating coordinate data of relevant monitoring points are as follows:
  • the tracking and identification device Q monitors the monitoring information of the cross-section D n reflective marking points during the m-th shift position of the monitoring trolley and the i-th cycle monitoring:
  • (x Qm , y Qm , z Qm ) are the absolute coordinates of the automatic tracking and identification device Q under the m-th shift position of the monitoring trolley,
  • a Qmin , b Qmin , c Qmin are the monitoring variables corresponding to the x, y, and z directions respectively.
  • L Qmin is the corresponding laser ray length
  • ⁇ Qmin is the corresponding vertical declination angle
  • ⁇ Qmin is the corresponding lateral deflection angle
  • T Qmin is the corresponding monitoring time.
  • each automatic tracking and identification device and use a total station to measure the absolute coordinates of each automatic tracking and identification device, that is, the absolute coordinates of the automatic tracking and identification device I at the first moving position of the monitoring trolley (x 11 , y 11 , z 11 ), the absolute coordinates of the automatic tracking and identification device II (x 21 , y 21 , z 21 )...,
  • each automatic tracking and identification device By adjusting the rotating turntable of each automatic tracking and identification device, the lenses of the intelligent scanning cameras of each automatic tracking and identification device are aligned with the five monitoring lateral lines of the vault, arch waist and arch foot, and the lateral deflection angle ⁇ 11 at this time is recorded respectively.
  • ⁇ 21 , ⁇ 31 , ⁇ 41 , ⁇ 51 , and the lateral deflection angles ⁇ 11 , ⁇ 21 , ⁇ 31 , ⁇ 41 , ⁇ 51 correspond to the initial lateral deflection angles of the five monitoring survey lines under the first moving position of the monitoring trolley. , before each patrol monitoring activity starts at the first moving position of the monitoring trolley, adjust the lateral deflection angle of the automatic tracking and recognition device to the above angle;
  • the longitudinal deflection angle ⁇ of the automatic tracking and identification device is reset to 90 degrees, and then the vertical rotation axis is used to continuously reduce the longitudinal deflection angle ⁇ of the automatic tracking and identification device, and through
  • the smart scanning camera dynamically identifies reflective signs within the camera scanning area; when the smart scanning camera recognizes the first reflective sign, the automatic tracking and identification device fine-tunes the lateral deflection angle ⁇ of the automatic tracking and identification device through the horizontal rotating turntable and the vertical rotating axis. and longitudinal deflection angle ⁇ , so that the laser beam is centered on the reflective mark and point laser measurement is performed.
  • the specific process is as follows:
  • the laser beam of the automatic tracking and identification device I is aligned with the reflective marking point on the arch of the monitoring section D1 .
  • the lateral deflection angle is recorded as ⁇ 1111
  • the longitudinal deflection angle is recorded as ⁇ 1111.
  • the laser beam The distance length is L 1111 and the monitoring time point T 1111 ;
  • the coordinates of the reflective marking point on the arch of monitoring section D 1 can be calculated as (x 11 +a 1111 , y 11 +b 1111 , z 11 +c 1111 ), where:
  • a 1111 L 1111 ⁇ cos ⁇ 1111 sin ⁇ 1111 ;
  • the automatic tracking and identification device I has completed its first cycle monitoring work at the first shift position of the monitoring trolley; through the vertical axis once sexually adjust the longitudinal declination angle to 90 degrees in the initial state, and then start the next cycle of monitoring work after a certain period of time.
  • the interval time period can be dynamically adjusted according to the frequency of monitoring required;
  • the tunnel face and supporting structure will move forward. After a period of time, the position of the automatic tracking and identification device will lag relatively behind. At this time, the monitoring trolley needs to be moved forward to ensure automatic tracking.
  • the identification device can always monitor the supporting structure of the dynamic section between the front end face and the tunnel face.
  • the monitoring information of automatic tracking and identification device II, automatic tracking and identification device III...automatic tracking and identification device V can be obtained.
  • step s3 the fixed-point monitoring principle is used to calculate the deformation of the supporting structure during the monitoring period;
  • the automatic tracking and identification device Q the monitoring section Dn , the i-th cycle monitoring under the m-th moving position of the monitoring trolley and the h-th cycle monitoring under the r-th moving position of the monitoring trolley, the deformation of the same monitoring point on the supporting structure
  • the situation is calculated as follows:
  • ⁇ VH Qn(mi-rh) ⁇ H Qn(mi-rh) /(T Qmin -T Qrhn ),
  • z Qm and z Qr are the absolute coordinates in the z-axis direction of the automatic tracking and identification device Q after the m-th and r-th movement of the monitoring trolley,
  • c Qmin and c Qrhn are the corresponding monitoring variables respectively
  • T Qmin and T Qrhn are the corresponding monitoring times respectively;
  • ⁇ VY Qn(mi-rh) ⁇ Y Qn(mi-rh) /(T Qmin -T Qrhn )
  • ⁇ L (( ⁇ X Qn(mi-rh) ) 2 +( ⁇ Y Qn(mi-rh) ) 2 ) 0.5
  • x Qm and x Qr are the absolute coordinates in the x-axis direction of the automatic tracking and identification device Q after the monitoring trolley moves for the m-th and r-th times,
  • y Qm and y Qr are the absolute coordinates in the y-axis direction of the automatic tracking and identification device Q after the monitoring trolley moves for the m-th and r-th times,
  • a Qmin , a Qrhn , b Qmin and b Qrhn are the corresponding monitoring variables respectively
  • T Qmin , T Qrhn , T Qmin , and T Qrhn are the corresponding monitoring times respectively.
  • ⁇ L is the length of the line connecting the coordinate points of the monitoring point before and after deformation
  • is the angle between the positive direction of the y-axis of the unit coordinate system of the monitoring point and the positive direction of the y-axis of the tunnel measurement coordinate system
  • is the angle between the line connecting the coordinate points before and after the deformation of the monitoring point and the negative direction of the y-axis of the tunnel measurement coordinate system
  • is the angle between the line connecting the coordinate points before and after the deformation of the monitoring point and the positive y-axis of the unit coordinate system of the monitoring point
  • ⁇ X′ is the displacement value of the monitoring point in the x-axis direction of the unit coordinate system, that is, the horizontal convergence value of the monitoring point.
  • the horizontal convergence rate of the monitoring point is ⁇ X′/(T Qmin -T Qrhn ),
  • ⁇ Y′ is the displacement value of the monitoring point in the y-axis direction of the unit coordinate system, that is, the axial displacement value of the monitoring point.
  • the axial displacement rate of the monitoring point is ⁇ Y′/(T Qmin -T Qrhn ).
  • step 4 through the background system of the automatic tracking and identification device, multiple support structure deformation risk determination criteria, corresponding early warning levels, and automatic emergency measures are formulated in advance. If the monitoring data exceeds any of the risk determination criteria during the monitoring process, , the automatic tracking and identification device immediately sends out an early warning message according to the predetermined procedure, and adopts the predetermined emergency procedure:
  • a reminder signal should be sent to the relevant person in charge of the project through the wireless communication facility of the automatic tracking and identification device, and the monitoring frequency should be automatically increased by one. times;
  • a risk warning signal should be sent to the relevant person in charge of the project through the wireless communication facility of the automatic tracking and identification device, and the monitoring frequency should be automatically increased by two times;
  • the deformation rate of the monitoring point is less than 0.2mm/d, it is considered safe and the automatic tracking and identification device monitors normally;
  • a reminder signal should be sent to the relevant person in charge of the project through the wireless communication facility of the automatic tracking and identification device, and the monitoring frequency should be doubled automatically;
  • a risk warning signal should be sent to the relevant person in charge of the project through the wireless communication facility of the automatic tracking and identification device, and the monitoring frequency should be automatically increased by two times;
  • risk determination criteria can be formulated based on actual site conditions.
  • the settlement deformation curve and horizontal convergence curve of the characteristic monitoring points can be fitted using the monitoring time as the abscissa and the cumulative deformation value as the ordinate; or through
  • the coordinate data of multiple monitoring points at a specific monitoring time can be used to fit the three-dimensional structure model of the tunnel at a specific time point, and the spatial deformation of the tunnel structure can be presented three-dimensionally through the volume difference of the three-dimensional structure model of the tunnel at two specific time points.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明公开了一种基于定点巡回测量的隧道自动化监控测量设备及方法,其包括能在隧道内纵向自由移动的监测台车,在监测台车上设有多件与后台处理系统相连的自动追踪识别装置,在隧道支护结构表面布设有若干贴有反光标识的监测点,在监测台车与自动追踪识别装置的协同合作下,可对设置在隧道支护结构上的反光标识进行定点自动化巡回测量,获取相关监测点的坐标信息;再通过坐标信息计算提取出施工过程所需要的支护结构变形数据,实现隧道的全方位实时监测及预警。本发明结构简单,成本低廉,操作简单,对监测人员要求较低,操作灵活性好,可靠性强,功能齐全,推广性高。

Description

一种基于定点巡回测量的隧道自动化监控测量设备及方法 技术领域
本发明涉及一种基于定点巡回测量的隧道自动化监控测量设备及方法,属于隧道工程建设技术领域。
背景技术
作为隧道新奥法施工的重要手段,隧道监控量测的重要性不言而喻。通过监控量测手段动态监测初期支护的变形情况,可科学了解隧道支护结构与围岩的力学作用关系,掌握初期支护结构的稳定性情况,并为隧道动态设计和信息化施工提供必要的技术资料。可以说,监控量测是隧道建设过程中至关重要的技术手段,也是保证隧道施工安全的信息化武器。目前隧道监控量测工作一般是通过人工使用全站仪、水准仪或收敛计等测量仪器开展的,其在理论上可满足相关的监测要求,但受人为因素影响,不可避免的存在着监测频率过低、监测数据容易失真等现实问题,从而无法有效反映支护结构的动态变形情况。同时,现有监测数据的分析工作大多仍由人工组织开展,因而监测分析结果也受到了人为不确定因素的干扰。此外,当隧道初期支护出现严重开裂变形情况时,派遣测量人员进入洞内开展变形情况量测工作本身也存在一定的安全风险。
可以看出,以人工形式开展监控量测工作存在着不容忽视的弊端,而目前市场上现有的隧道自动监控量测系统则存在着设备功能简陋、仪器费用昂贵、实用性较低等诸多问题,导致实际使用效果欠差。鉴于上述考虑,研究一种基于定点巡回测量的隧道自动化监控测量设备及方法已经成为工程界亟待解决的问题。
发明内容
鉴于此,本发明的目的是提供一种基于定点巡回测量的隧道自动化监控测量设备及方法,可以克服现有技术的不足。
本发明的目的是通过以下技术方案实现的:
一种基于定点巡回测量的隧道自动化监控测量设备,其包括能在隧道内纵向自由移动的监测台车,在监测台车上设有多件自动追踪识别装置,自动追踪识别装置与后台处理系统电信相连;在隧道支护结构表面布设有若干用于标记监测点位置的反光标识,反光标识在隧道横向上形成监测断面,在隧道轴向上形成监测测线;每件自动追踪识别装置均与对应监测测线相对。
前述监测台车包括与隧道轮廓相对应的拱形桁架,拱形桁架底部设有行走机构;所述自动追踪识别装置为多件环形布设在拱形桁架的前侧面上,以实现对监测台车前方隧道轮廓的全方位检测。
前述的自动追踪识别装置包括智能扫描摄像头和激光射线头,其通过能调节激光射线头横向偏角和竖向偏角的固定架固连在拱形桁架上。
前述固定架包括与拱形桁架的杆件套接的连接座,在连接座上设有连接板,连接板上转动连接有平转转盘,在平转转盘背部设有坐标靶点,前部设有铰座,所述智能扫描摄像头和激光射线头通过竖转转轴铰接在铰座上。
一种基于定点巡回测量的隧道自动化监控测量方法,其包括以下步骤:
s1、在隧道支护结构表面设置多组监测断面,每组监测断面上设置多个监测点,相邻监测点的纵向位置一一相对,使多组监测断面上的监测点构成多条监测测线;
s2、通过自动追踪识别装置巡检方式获取相关监测点在不同时间点的坐标信息;
s3、通过对不同时间点下特定监测点的坐标信息进行计算,提取出所需要的初期支护变形数据;
s4、制定相应的支护结构变形风险判定准则,以及相应的预警等级、自动应急措施。
6.根据权利要求5所述的基于定点巡回测量的隧道自动化监控测量方法,其特征在于:步骤s1中,在每组监测断面上至少设置五个监测点,并且布置在隧道拱顶,及相对拱顶对称布置在拱腰和拱脚位置,使多组监测断面上的监测点构成五条监测侧线,分别进行隧道的拱顶、拱腰和拱脚监测。
前述的监控测量方法,步骤s2中,采集隧道测量坐标系以及监测点的单位坐标系,所述的隧道测量坐标系与项目的施工控制网坐标系保持一致;所述的监测点的单位坐标系以监测点所在线位的切线线路方向为y轴的正向,竖直方向为z轴方向,其后根据右手定律确定x轴方向;
在每个监测点上设置反光标识,采用带有智能扫描摄像头的自动追踪识别装置进行反光标识的自动化智能跟踪识别,进而通过激光射线点测量方式采集相关监测点的单位坐标信息,包括监测工作时激光射线的纵向偏角、横向偏角、激光射线长度、监测时间点、自动追踪识别装置移位坐标和巡回监测数信息。
前述的监控测量方法,相关监测点的坐标数据采集、计算步骤如下:
s2.1、根据现场施工需要,制定相关的监测方案;
s2.2、将监测台车移动到合适位置后停放稳固,对安装在监测台车上的自动追踪识别装置进行调试工作,使得多台自动追踪识别装置与相应的监测测线一一对应,并对各自动追踪 识别装置进行编号,采用全站仪测量得到各台自动追踪识别装置的绝对坐标值(x Qm,y Qm,z Qm),x Qm、y Qm、z Qm分别为监测台车在第m次移位后自动追踪识别装置Q在隧道测量坐标系上x、y、z轴方向的绝对坐标值;
s2.3、将自动追踪识别装置的激光射线对中对应的监测测线,获取每条监测测线的初始横向偏角β,并将自动追踪识别装置的竖向偏角α归零至90度;
s2.4、开始循回监测工作,逐步调整自动追踪识别装置的竖向偏角α,使其从90度至归零,此过程中智能捕捉对应监测点的反光标识并对监测点进行激光点测量,记录自动追踪识别装置Q在监测台车第m移位位置、第i循环监测中,监测断面D n反光标识点的监测信息:
D n-(x Qm+a Qmin,y Qm+b Qmin,z Qm+c Qmin)-T Qmin
其中,(x Qm,y Qm,z Qm)为自动追踪识别装置Q在监测台车第m次移动位置后的绝对坐标,
a Qmin、b Qmin、c Qmin分别为x、y、z方向对应的监测变量,
a Qmin=L Qmin×cosα Qminsinβ Qmin
b Qmin=L Qmin×cosα Qmincosβ Qmin
c Qmin=L Qmin×sinα Qmin
L Qmin为对应的激光射线长度;
α Qmin为对应的竖向偏角;
β Qmin为对应的横向偏角;
T Qmin为对应的监测时间。
前述的控测量方法,采用定点监测原理进行监测期间支护结构的变形计算;
其中,自动追踪识别装置Q,监测断面D n,在监测台车第m次移动位置下的第i循环监测与监测台车第r次移动位置下的第h循环监测下监测点的变形情况计算如下:
(1)沉降变形数值计算:
ΔH Qn(mi-rh)=(z Qm+c Qmin)-(z Qr+c Qrhn),
监测断面D n特定监测点的沉降变形速率计算:
ΔVH Qn(mi-rh)=ΔH Qn(mi-rh)/(T Qmin-T Qrhn);
(2)水平收敛数值计算:
(2.1)当监测点单位坐标系的y轴方向与隧道测量坐标系y轴方向一致时,即两者的夹角γ=0度时,支护结构变形计算结果如下:
监测断面D n特定监测点的水平收敛数值计算:
ΔX Qn(mi-rh)=(x Qm+a Qmin)-(x Qr+a Qrhn)
监测断面D n特定监测点的水平收敛速率计算:
ΔVX Qn(mi-rh)=ΔX Qn(mi-rh)/(T Qmin-T Qrhn)
监测断面D n特定监测点的轴向变形数值计算:
ΔY Qn(mi-rh)=(y Qm+b Qmin)-(y Qr+b Qrhn)
监测断面D n特定监测点的轴向变形速率计算:
ΔVY Qn(mi-rh)=ΔY Qn(mi-rh)/(T Qmin-T Qrhn)
(2.2)当监测点单位坐标系的y轴方向与隧道测量坐标系y轴方向存在夹角时,即两者的夹角γ≠0度时,支护结构变形计算结果如下:
ΔL=((ΔX Qn(mi-rh)) 2+(ΔY Qn(mi-rh)) 2) 0.5
δ=arctan(ΔX Qn(mi-rh)/ΔY Qn(mi-rh))
θ=180°-γ-δ
ΔX'=ΔL*sinθ
ΔY'=ΔL*cosθ
上述式中:
ΔL为监测点在变形前后坐标点的连线长度,
γ为监测点单位坐标系y轴正向与隧道测量坐标系y轴正向的夹角,
δ为监测点变形前后坐标点连线与隧道测量坐标系y轴负方向的夹角,
θ为监测点变形前后坐标点连线与单位坐标系y轴正向的夹角,
ΔX'为监测点单位坐标系x轴方向的位移值,也即监测点的水平收敛值,此时监测点的水平收敛速率为ΔX'/(T Qmin-T Qrhn),
ΔY'为监测点单位坐标系y轴方向的位移值,也即监测点的轴向位移值,此时监测点的轴向位移速率为ΔY'/(T Qmin-T Qrhn)。
前述的测量方法,步骤4中,根据累计变形数值、变形速率判断监测情况,在后台处理系统预制支护结构变形风险判定准则以及相应的预警等级、自动应急措施,进行监测预警;
1)累计变形数值判断准则:
若监测点的累计变形数值小于1/3预留变形量,则视为安全,正常监测;
若监测点的累计变形数值介于1/3~2/3预留变形量之间时,自动将监测频率提高一倍,并通过监测设备的无线通信设施给项目相关负责人发出提醒信号;
若监测点的累计变形数值大于2/3预留变形量时,自动将监测频率提高二倍,并通过监测设备的无线通信设施给项目相关负责人发出风险预警信号;
2)变形速率判断准则:
若监测点的变形速率小于0.2mm/d,则视为安全,正常监测;
若监测点的变形速率介于0.2mm/d~1mm/d之间时,自动将监测频率提高一倍,并通过监测设备的无线通信设施给项目相关负责人发出提醒信号;
若监测点的变形速率大于1mm/d时,自动将监测频率提高二倍,并通过监测设备的无线通信设施给项目相关负责人发出风险预警信号。
与现有技术比较,本发明公开的一种基于定点巡回测量的隧道自动化监控测量设备和方法,其包括能在隧道内纵向自由移动的监测台车,在监测台车上设有多件与后台处理系统相连的自动追踪识别装置,在隧道支护结构表面布设有若干贴有反光标识的监测点,监测点在隧道轴线上形成若干监测测线,每件自动追踪识别装置均对应特定的监测测线,通过监测台车的纵向移位和自动追踪识别装置的智能扫描识别和激光点测量功能,可对设置在隧道支护结构上的反光标识进行定点自动化巡回测量,从而获取不同时间点相关监测点的坐标信息;再通过后台处理系统进行坐标信息计算,可提取出施工过程所需要的支护结构变形数据;将相关变形数据与预先制定的支护结构变形风险判定准则进行匹配分析,进而发出对应等级的预警信息,并自动采取相适应的应急监测措施,可实现隧道的全方位实时监测及预警。在监测台车与自动追踪识别装置的协同合作下,自动追踪识别装置可以智能跟踪识别隧道支护结构表面布设的反光标识,获取相应监测点坐标信息来进行支护结构变形计算,可实现一套自动追踪识别装置对隧道内全范围动态区间的自动化监测效果;相较于常规依靠人工操作全站仪等测量仪器去寻找变位后的监测点并进行测量工作的人工测量模式,本发明的监测过程更加智能高效,监测结果更加科学可靠。
本发明的有益效果是:
(1)本发明通过固定监测点的形式来定位监测区域,特定监测点的结构变形监测工作不受自动追踪识别装置移位的影响,结构变形监测数据的持续性有所保障。同时,其可以根据施工实际需要提取任一监测时间段内监测点的沉降变形数据、水平收敛数据及轴向变形数据,可有效反映支护结构的变形情况,从而指导现场施工;
(2)本发明结构简单,成本低廉,其对所依附的监测台车性能要求较低,仅要求台车结构可靠,能够停放稳固,可提供用来固定自动追踪识别装置的立柱或横梁,且台车能随着隧道掘进向前推进即可,通过监测台车及安装在其上自动追踪识别装置的纵向前移运动,可实现一套自动追踪识别装置对台车至掌子面动态区段的通测效果,投入的自动追踪识别装置数量低,而自动追踪识别装置的主要部件为智能扫描摄像头和激光射线头,其制造成本较低,所需的使用成本可控,具有良好的经济实用性;
(3)操作简单,对监测人员要求较低,通过摄像头扫描定位+点激光测量+后台处理系统实现数据采集、计算和分析结果的自动化处理,当监测结果超过风险预判标准后则可以按预 定程序发出预警信息并采用应急监测措施,可在大大减少人力投入的同时,有效提高施工安全性;
(4)操作灵活性好,其可根据支护结构变形监测需要灵活设置带反光标识的监测点,配合上智能扫描摄像头纵向扫描识别及点激光测量的工作模式,实现对结构变形监测断面的灵活增减,从而最大程度的满足现场施工对监测断面的需求。此外,可根据实际需要灵活确定监测测线的数量及位置,且对应的自动追踪识别装置所需数量及其安装位置也可灵活设置,所能提供的监测方案灵活多样,通用性强;
(5)操作可靠性强,采用纵向监测的模式,设备监测方向与隧道轴向呈小角度相交,摄像头视线和激光射线因贴近支护结构侧不易被施工机械遮挡,监测过程中受隧道内施工作业的干扰较小,可有效保障自动化监测工作的有效时长;
(6)设备功能齐全,本发明还可通过在后台处理系统输入坐标信息,进而通过自动追踪识别装置的激光射线头的指向功能将相应坐标点的空间位置指示出来,具备一定的施工辅助功能。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:
图1为本发明的结构示意图。
图2为连接板204设置在连接座203下部的结构示意图。
图3为连接板204设置在连接座203左侧的结构示意图。
图4为连接板204设置在连接座203右侧的结构示意图。
图5为防爆套筒3的安装示意图。
图6为本发明的监测示意图。
图7为自动追踪识别装置激光射线偏角示意图。
图8为监测点变形数值坐标换算参数示意图。
具体实施方式
以下将参照附图,对本发明的优选实施例进行详细的描述。应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
如图1-图5所示,
一种基于定点巡回测量的隧道自动化监控测量设备,其包括能在隧道内纵向自由移动的监测台车1,在监测台车1上设有多件自动追踪识别装置2,所述自动追踪识别装置2与后台处理系统电信相连;在隧道支护结构表面布设有若干反光标识,反光标识标记监测点位置,监测点在隧道横向上形成多个监测断面,在隧道轴向上形成多条监测测线,每件自动追踪识别装置2均与对应监测测线位置相对;所述自动追踪识别装置用于自动追踪反光标识,采集监测点的监测时间点、监测点的移位坐标信息和巡回监测数等信息,所述后台处理系统用于以序列形式存储、分析及调用数据,并进而对相对的监测数据进行计算分析,得出支护结构变形情况;当变形情况超过预先设定的情况时,则可自动发出预警信息。
所述监测台车1为专用监控量测台车,其包括与隧道轮廓相对应的拱形桁架101,拱形桁架101底部设有行走机构102。
所述拱形桁架101包括由横梁和若干顶梁、纵梁、斜撑相互拼接构成的支撑架,所述的支撑架应比常规的防水板台车、二衬台车的结构框架大,以保证行车通道的畅通,并尽量避免监测台车1与施工车辆的磕碰事件;支撑架底端通过立柱与三角形支撑脚连接,所述行走机构102及振动监测仪器设置在三角形支撑脚中部。
所述自动追踪识别装置2为多件环形布设在拱形桁架101的前侧面上,以实现对监测台车1前方隧道轮廓的全方位检测。
优选地,所述激光射线装置2为至少五个设置,其安装在拱形桁架101的横梁和立柱且分别与隧道拱顶、拱腰和拱脚位置相对应。具体地,其中三台自动追踪识别装置2对应布设在横梁中部及左右侧,用于监测隧道拱顶、两侧拱腰位置;另外两台自动追踪识别装置2对应布设在左右侧的立柱上,用于监测隧道左右侧拱脚位置。
所述自动追踪识别装置包括智能扫描摄像头201和激光射线头202,其通过能实现激光射线头202横向偏角和竖向偏角角度调节的固定架与拱形桁架101相连接。
所述固定架包括与拱形桁架101的杆件套接的连接座203,在连接座203上设有连接板204,连接板204上转动连接有平转转盘205,在平转转盘205上设有铰座206,所述智能扫描摄像头201和激光射线头202通过竖转转轴207铰接在铰座206上;所述平转转盘205和竖转转轴207均与后台处理系统相连,平转转盘205可用于调节自动追踪识别装置的横向角度;竖转转轴207用于调节自动追踪识别装置的竖向角度。具体地,使用时通过平转转盘205和竖向转轴207的配合,由后台处理系统远程程序化操控,可实现智能扫描摄像头201及激光射线头202横向偏角、竖向偏角两个方向自由度的远程自动化调整,自动追踪识别装置2的灵活度极高,可实现单台设备对多条监测测线多个监测点的监测工作。
所述后台处理系统还与控制监测台车1移动的远程遥控器相连,通过遥控器控制监测台车沿隧道纵向移动,即可实现沿隧道纵向上的移动式监测。
所述连接座203由两半锚固块通过螺栓2031拼接而成,在两半锚固块的对接面处设有两半拼接而成的卡槽,所述卡槽与拱形桁架101的杆件相适配,可使两半锚固块通过卡槽卡固在拱形桁架101的杆件上。
根据自动追踪识别装置在拱形桁架101的安装位置,所述连接板204分别对应设置在连接座203下部和左、右侧,以保证连接板204在拱形桁架101的内测,并且连接板204与其中一半锚固块为一体式结构。
所述的平转转盘205贯穿连接板204并且其背后设置有坐标靶点,坐标靶点用于辅助定位自动追踪识别装置2的坐标点,通过坐标靶点,人工操作全站仪等测量仪器从监测台车1后方测量得到各自动追踪识别装置的绝对坐标值。
此外,监测台车上安装有振动监测仪器,当振动监测仪器感应到监测台车被碰撞移位时,即时发出碰撞移位信号给隧道监控量测负责人员,监控量测负责人员组织相关人员检查监测台车的停放情况,并重新量测各台自动追踪识别装置2的坐标点位,并进行坐标修正。
还包括防爆套筒3,防爆套筒3可嵌套在所述平转转盘205外部,作为智能扫描摄像头201和激光射线头202的保护装置。
如图1-图3所示,
一种基于定点巡回测量的隧道自动化监控测量方法,其包括以下步骤:
s1、在隧道支护结构表面设置多组监测断面,每组监测断面上设置多个监测点;
s2、通过自动追踪识别装置巡检方式获取相关监测点的在不同时间点的坐标信息;
s3、;通过对不同时间点下特定监测点的坐标信息进行计算,提取出所需要的初期支护变形数据;
s4、制定相应的支护结构变形风险判定准则,以及相应的预警等级、自动应急措施。
步骤s1中,在每组监测断面上监测点的纵向位置一一相对,使多组监测断面上的监测点构成多条监测侧线。优选地,在每组监测断面上至少设置五个监测点,并且布置在隧道拱顶,及相对拱顶对称布置在拱腰和拱脚位置,使多组监测断面上的监测点构成五条监测侧线,分别进行隧道的拱顶、拱腰和拱脚监测。
步骤s2中,采集隧道测量坐标系以及监测点的单位坐标系,所述的隧道测量坐标系与项目的施工控制网坐标系保持一致,以确保测量结果的通用性;所述的监测点的单位坐标系以监测点所在线位的切线线路方向为y轴的正向,竖直方向为z轴方向,其后根据右手定律确定x轴方向;在每个监测点上设置反光标识,通过自动追踪识别装置进行自动化智能跟踪识 别;具体地,采用带有智能扫描摄像头的自动追踪识别装置按预先设定程序自动化巡视识别反光标识,进而通过点激光测量方式采集相关监测点的坐标信息,包括监测工作时激光射线的纵向偏角、横向偏角、激光射线长度、监测时间点、自动追踪识别装置移位坐标和巡回监测数信息。
具体地,相关监测点的坐标数据采集、计算步骤如下:
s2.1、根据现场施工需要,制定相关的监测方案,进而在支护结构表面布置监测点;
s2.2、将监测台车移动到合适位置后停放稳固,对安装在监测台车上的自动追踪识别装置进行调试工作,使得多台自动追踪识别装置与相应的监测测线一一对应,并对各自动追踪识别装置进行编号,采用全站仪测量得到各台自动追踪识别装置的绝对坐标值(x Qm,y Qm,z Qm),x Qm、y Qm、z Qm分别为监测台车在第m次移位后自动追踪识别装置Q在隧道测量坐标系上x、y、z轴方向的绝对坐标值;
s2.3、将自动追踪识别装置的激光射线对中对应的监测测线,获取每条监测测线的初始横向偏角β,并将自动追踪识别装置的竖向偏角α归零至90度;
s2.4、开始循回监测工作,逐步调整自动追踪识别装置的竖向偏角α从90度至归零,过程中智能捕捉对应监测点的反光标识并对监测点进行点激光测量,记录自动追踪识别装置Q在监测台车第m移位位置、第i循环监测中,监测断面D n反光标识点的监测信息:
D n-(x Qm+a Qmin,y Qm+b Qmin,z Qm+c Qmin)-T Qmin
其中,(x Qm,y Qm,z Qm)为监测台车第m次移位位置下自动追踪识别装置Q的绝对坐标,
a Qmin、b Qmin、c Qmin分别为x、y、z方向对应的监测变量,
a Qmin=L Qmin×cosα Qminsinβ Qmin
b Qmin=L Qmin×cosα Qmincosβ Qmin
c Qmin=L Qmin×sinα Qmin
L Qmin为对应的激光射线长度;
α Qmin为对应的竖向偏角;
β Qmin为对应的横向偏角;
T Qmin为对应的监测时间。
现针对在隧道拱顶、拱腰及拱脚位置设置五条监测侧线的具体实例如下:
对各进行自动追踪识别装置进行编号,采用全站仪测量得到各台自动追踪识别装置的绝对坐标值,即自动追踪识别装置Ⅰ在监测台车第一移动位置下的绝对坐标(x 11,y 11,z 11)、自动追踪识别装置Ⅱ的绝对坐标(x 21,y 21,z 21)…,
按上述方法,获取监测台车后续移动位置下的自动追踪识别装置绝对坐标(x 12,y 12,z 12)、 (x 22,y 22,z 22)…,(x 13,y 13,z 13)、(x 23,y 23,z 23)…,…(x 1m,y 1m,z 1m)、(x 2m,y 2m,z 2m)…;
通过调整各自动追踪识别装置的平转转盘,使得各自动追踪识别装置的智能扫描摄像头的镜头分别对齐拱顶、拱腰和拱脚五条监测侧线,并分别记录此时的横向偏角β 11、β 21、β 31、β 41、β 51,横向偏角β 11、β 21、β 31、β 41、β 51对应在监测台车第一移动位置下5条监测测线的初始横向偏角,在监测台车第一移动位置的每次巡回监测活动开始前先将自动追踪识别装置的横向偏角调整至上述角度;
按上述方法,获取监测台车后续移动位置下的初始横向偏角β 12、β 22、β 32、β 42、β 52…β 1m、β 2m、β 3m、β 4m、β 5m
通过调整各自动追踪识别装置的竖转转轴,将自动追踪识别装置的纵向偏角α归零至90度,其后通过竖向转轴连续调小自动追踪识别装置的纵向偏角α,并通过智能扫描摄像头动态识别摄像头扫描区域范围内的反光标识;当智能扫描摄像头识别到第一个反光标识时,自动追踪识别装置通过平转转盘和竖向转轴微调自动追踪识别装置的横向偏角β和纵向偏角α,使得激光射线对中反光标识,并进行点激光测量工作,具体过程如下:
在监测台车的第一移位位置,自动追踪识别装置Ⅰ的激光射线对准监测断面D 1拱部的反光标识点的横向偏角记录为β 1111,纵向偏角记录为α 1111,激光射线的距离长度为L 1111以及监测时间点T 1111
根据自动追踪识别装置Ⅰ的坐标信息(x 11,y 11,z 11),通过计算可得监测断面D 1拱部反光标识点的坐标为(x 11+a 1111,y 11+b 1111,z 11+c 1111),其中:
a 1111=L 1111×cosα 1111sinβ 1111
b 1111=L 1111×cosα 1111cosβ 1111
c 1111=L 1111×sinα 1111
记录自动追踪识别装置Ⅰ在监测台车第一移位位置、第一循环监测中,监测断面D 1拱部反光标识点的监测信息:D 1-(x 11+a 1111,y 11+b 1111,z 11+c 1111)-T 1111
其后,调整自动追踪识别装置Ⅰ的横向偏角β回到β 11,进而通过竖向转轴继续调小自动追踪识别装置的纵向偏角α,并通过智能扫描摄像头动态识别摄像头扫描区域内的反光标识,直到智能扫描摄像头识别到下一个反光标识,进而按上述原理再次进行点激光测量工作;
记录自动追踪识别装置Ⅰ在监测台车第一移位位置、第一循环监测中,监测断面D n拱部反光标识点的监测信息:D n-(x 11+a 111n,y 11+b 111n,z 11+c 111n)-T 111n
持续进行上述监测工作,直到纵向偏角α从90度调整至0度,此时认为自动追踪识别装置Ⅰ完成其在监测台车第一移位位置的第一循环监测工作;通过竖向转轴一次性调整纵向偏角至初始状态的90度,再间隔一定的时间段后进行开始下一循环的监测工作,间隔的时间段 可根据需要监测的频率进行动态调整;
记录自动追踪识别装置Ⅰ在监测台车第一移位位置、第i循环监测中,监测断面D n拱部反光标识点的监测信息:D n-(x 11+a 11in,y 11+b 11in,z 11+c 11in)-T 11in
随着隧道向前掘进,掌子面及支护结构随之向前推进,一段时间后自动追踪识别装置的位置将相对滞后,此时则需要把监测台车向前移位,从而保证自动追踪识别装置可以始终对其前端面至掌子面之间的动态段落进行支护结构监测工作,
记录自动追踪识别装置Ⅰ在监测台车第m移位位置、第i循环监测中,监测断面D n拱部反光标识点的监测信息:D n-(x 1m+a 1min,y 1m+b 1min,z 1m+c 1min)-T 1min
可得到自动追踪识别装置Ⅱ、自动追踪识别装置Ⅲ…自动追踪识别装置Ⅴ的监测信息。
同理,记录自动追踪识别装置Q在监测台车第m移位位置、第i循环监测中,监测断面D n相对应监测位置反光标识点的监测信息:D n-(x Qm+a Qmin,y Qm+b Qmin,z Qm+c Qmin)-T Qmin
步骤s3中,采用定点监测原理进行监测期间支护结构的变形计算;
其中,自动追踪识别装置Q,监测断面D n,监测台车第m次移动位置下第i循环监测与监测台车第r次移动位置下第h循环监测,支护结构上同一监测点的变形情况计算如下:
(1)沉降变形数值计算:
ΔH Qn(mi-rh)=(z Qm+c Qmin)-(z Qr+c Qrhn),
监测断面D n特定监测点的沉降变形速率计算:
ΔVH Qn(mi-rh)=ΔH Qn(mi-rh)/(T Qmin-T Qrhn),
式中,z Qm、z Qr为监测台车第m次、第r次移动位置后自动追踪识别装置Q的z轴方向绝对坐标,
c Qmin、c Qrhn分别为对应的监测变量,
T Qmin、T Qrhn分别为对应的监测时间;
(2)水平收敛数值计算:
(2.1)当监测点单位坐标系的y轴正向与隧道测量坐标系y轴正向一致时,即两者的夹角γ=0度时,支护结构变形计算结果如下:
监测断面D n特定监测点的水平收敛数值计算:
ΔX Qn(mi-rh)=(x Qm+a Qmin)-(x Qr+a Qrhn)
监测断面D n特定监测点的水平收敛速率计算:
ΔVX Qn(mi-rh)=ΔX Qn(mi-rh)/(T Qmin-T Qrhn)
监测断面D n特定监测点的轴向变形数值计算:
ΔY Qn(mi-rh)=(y Qm+b Qmin)-(y Qr+b Qrhn)
监测断面D n特定监测点的轴向变形速率计算:
ΔVY Qn(mi-rh)=ΔY Qn(mi-rh)/(T Qmin-T Qrhn)
(2.2)当单位坐标系的y轴正向与隧道测量坐标系y轴正向存在夹角时,即两者的夹角γ≠0度时,支护结构变形计算结果如下:
ΔL=((ΔX Qn(mi-rh)) 2+(ΔY Qn(mi-rh)) 2) 0.5
δ=arctan(ΔX Qn(mi-rh)/ΔY Qn(mi-rh))
θ=180°-γ-δ
ΔX'=ΔL*sinθ
ΔY'=ΔL*cosθ
上述式中:
x Qm、x Qr为监测台车第m次、第r次移动位置后自动追踪识别装置Q的x轴方向绝对坐标,
y Qm、y Qr为监测台车第m次、第r次移动位置后自动追踪识别装置Q的y轴方向绝对坐标,
a Qmin、a Qrhn、b Qmin、b Qrhn分别为对应的监测变量,
T Qmin、T Qrhn、T Qmin、T Qrhn分别为对应的监测时间,
ΔL为监测点在变形前后坐标点的连线长度,
γ为监测点单位坐标系y轴正向与隧道测量坐标系y轴正向的夹角,
δ为监测点变形前后坐标点连线与隧道测量坐标系y轴负方向的夹角,
θ为监测点变形前后坐标点连线与监测点单位坐标系y轴正向的夹角,
ΔX'为监测点单位坐标系x轴方向的位移值,也即监测点的水平收敛值,此时监测点的水平收敛速率为ΔX'/(T Qmin-T Qrhn),
ΔY'为监测点单位坐标系y轴方向的位移值,也即监测点的轴向位移值,此时监测点的轴向位移速率为ΔY'/(T Qmin-T Qrhn)。
步骤4中,通过自动追踪识别装置的后台系统,提前制定多种支护结构变形风险判定准则以及相应的预警等级、自动应急措施,若监测过程中出现监测数据超出任一一种风险判定准则时,自动追踪识别装置立即按预定的程序发出预警信息,并采取预定的应急程序:
1)累计变形数值判断准则:
若监测点的累计变形数值小于1/3预留变形量,则视为安全,自动追踪识别装置正常监测;
若监测点的累计变形数值介于1/3~2/3预留变形量之间时,应通过自动追踪识别装置的无线通信设施给项目相关负责人发出提醒信号,并自动将监测频率提高一倍;
若监测点的累计变形数值大于2/3预留变形量时,应通过自动追踪识别装置的无线通信 设施给项目相关负责人发出风险预警信号,并自动将监测频率提高二倍;
2)变形速率判断准则:
若监测点的变形速率小于0.2mm/d,则视为安全,自动追踪识别装置正常监测;
若监测点的变形速率介于0.2mm/d~1mm/d之间时,应通过自动追踪识别装置的无线通信设施给项目相关负责人发出提醒信号,并自动将监测频率提高一倍;
若监测点的变形速率大于1mm/d时,应通过自动追踪识别装置的无线通信设施给项目相关负责人发出风险预警信号,并自动将监测频率提高二倍;
可根据现场实际情况制定其他的风险判定准则。
当需要出具监控量测报告时,除提供具体的监测数据外,还可以以监测时间为横坐标,累计变形值为纵坐标,拟合出特点监测点的沉降变形曲线和水平收敛曲线;或者通过某一特定监测时刻多个监测点的坐标数据,拟合出某一特定时间点的隧道三维结构模型,并可以通过两个特定时间点隧道三维结构模型的体积差异立体呈现隧道结构的空间变形情况。
另外,可以借助自动追踪识别装置的激光射线指向功能,通过与自动追踪识别装置相连的后台处理系统预设某一特定坐标位置,并操控自动追踪识别装置的激光射线在隧道内标示出相应的点位,可在一定程度上用于辅助施工。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式保密的限制,任何未脱离本发明技术方案内容、依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种基于定点巡回测量的隧道自动化监控测量设备,其特征在于,包括能在隧道内纵向自由移动的监测台车(1),在监测台车(1)上设有多件自动追踪识别装置(2),自动追踪识别装置(2)与后台处理系统电信相连;在隧道支护结构表面布设有若干用于标记监测点位置的反光标识,反光标识在隧道横向上形成监测断面,在隧道轴向上形成监测测线;每件自动追踪识别装置(2)均与对应监测测线相对。
  2. 根据权利要求1所述的基于定点巡回测量的隧道自动化监控测量设备,其特征在于,所述监测台车(1)包括与隧道轮廓相对应的拱形桁架(101),拱形桁架(101)底部设有行走机构(102);所述自动追踪识别装置(2)为多件环形布设在拱形桁架(101)的前侧面上,以实现对监测台车(1)前方隧道轮廓的全方位检测。
  3. 根据权利要求2所述的基于定点巡回测量的隧道自动化监控测量设备,其特征在于,所述的自动追踪识别装置包括智能扫描摄像头(201)和激光射线头(202),其通过能调节激光射线头(202)横向偏角和竖向偏角的固定架固连在拱形桁架(101)上。
  4. 根据权利要求3所述的基于定点巡回测量的隧道自动化监控测量设备,其特征在于,所述固定架包括与拱形桁架(101)的杆件套接的连接座(203),在连接座(203)上设有连接板(204),连接板(204)上转动连接有平转转盘(205),在平转转盘(205)背部设有坐标靶点,前部设有铰座(206),所述智能扫描摄像头(201)和激光射线头(202)通过竖转转轴(207)铰接在铰座(206)上。
  5. 一种基于定点巡回测量的隧道自动化监控测量方法,其特征在于,包括以下步骤:
    s1、在隧道支护结构表面设置多组监测断面,每组监测断面上设置多个监测点,相邻监测点的纵向位置一一相对,使多组监测断面上的监测点构成多条监测测线;
    s2、通过自动追踪识别装置巡检方式获取相关监测点在不同时间点的坐标信息;
    s3、通过对不同时间点下特定监测点的坐标信息进行计算,提取出所需要的初期支护变形数据;
    s4、制定相应的支护结构变形风险判定准则,以及相应的预警等级、自动应急措施。
  6. 根据权利要求5所述的基于定点巡回测量的隧道自动化监控测量方法,其特征在于:步骤s1中,在每组监测断面上至少设置五个监测点,并且布置在隧道拱顶,及相对拱顶对称布置在拱腰和拱脚位置,使多组监测断面上的监测点构成五条监测侧线,分别进行隧道的拱顶、拱腰和拱脚监测。
  7. 根据权利要求5或6所述的基于定点巡回测量的隧道自动化监控测量方法,其特征在 于:步骤s2中,采集隧道测量坐标系以及监测点的单位坐标系,所述的隧道测量坐标系与项目的施工控制网坐标系保持一致;所述的监测点的单位坐标系以监测点所在线位的切线线路方向为y轴的正向,竖直方向为z轴方向,其后根据右手定律确定x轴方向;
    在每个监测点上设置反光标识,采用带有智能扫描摄像头的自动追踪识别装置进行反光标识的自动化智能跟踪识别,进而通过激光射线点测量方式采集相关监测点的坐标信息,包括监测工作时激光射线的纵向偏角、横向偏角、激光射线长度、监测时间点、自动追踪识别装置移位坐标和巡回监测数信息。
  8. 根据权利要求7所述的基于定点巡回测量的隧道自动化监控测量方法,其特征在于:相关监测点的坐标数据采集、计算步骤如下:
    s2.1、根据现场施工需要,制定相关的监测方案;
    s2.2、将监测台车移动到合适位置后停放稳固,对安装在监测台车上的自动追踪识别装置进行调试工作,使得多台自动追踪识别装置与相应的监测测线一一对应,并对各自动追踪识别装置进行编号,采用全站仪测量得到各台自动追踪识别装置的绝对坐标值(x Qm,y Qm,z Qm),x Qm、y Qm、z Qm分别为监测台车在第m次移位后自动追踪识别装置Q在隧道测量坐标系上x、y、z轴方向的绝对坐标值;
    s2.3、将自动追踪识别装置的激光射线对中对应的监测测线,获取每条监测测线的初始横向偏角β,并将自动追踪识别装置的竖向偏角α归零至90度;
    s2.4、开始循回监测工作,逐步调整自动追踪识别装置的竖向偏角α,使其从90度至归零,此过程中智能捕捉对应监测点的反光标识并对监测点进行激光点测量,记录自动追踪识别装置Q在监测台车第m移位位置、第i循环监测中,监测断面D n反光标识点的监测信息:
    D n-(x Qm+a Qmin,y Qm+b Qmin,z Qm+c Qmin)-T Qmin
    其中,(x Qm,y Qm,z Qm)为自动追踪识别装置Q在监测台车第m次移动位置后的绝对坐标,
    a Qmin、b Qmin、c Qmin分别为x、y、z方向对应的监测变量,
    a Qmin=L Qmin×cosα Qminsinβ Qmin
    b Qmin=L Qmin×cosα Qmincosβ Qmin
    c Qmin=L Qmin×sinα Qmin
    L Qmin为对应的激光射线长度;
    α Qmin为对应的竖向偏角;
    β Qmin为对应的横向偏角;
    T Qmin为对应的监测时间。
  9. 根据权利要求8所述的基于定点巡回测量的隧道自动化监控测量方法,其特征在于, 采用定点监测原理进行监测期间支护结构的变形计算;
    其中,自动追踪识别装置Q,监测断面D n,在监测台车第m次移动位置下的第i循环监测与监测台车第r次移动位置下的第h循环监测下监测点的变形情况计算如下:
    (1)沉降变形数值计算:
    ΔH Qn(mi-rh)=(z Qm+c Qmin)-(z Qr+c Qrhn),
    监测断面D n特定监测点的沉降变形速率计算:
    ΔVH Qn(mi-rh)=ΔH Qn(mi-rh)/(T Qmin-T Qrhn);
    (2)水平收敛数值计算:
    (2.1)当监测点单位坐标系的y轴方向与隧道测量坐标系y轴方向一致时,即两者的夹角γ=0度时,支护结构变形计算结果如下:
    监测断面D n特定监测点的水平收敛数值计算:
    ΔX Qn(mi-rh)=(x Qm+a Qmin)-(x Qr+a Qrhn)
    监测断面D n特定监测点的水平收敛速率计算:
    ΔVX Qn(mi-rh)=ΔX Qn(mi-rh)/(T Qmin-T Qrhn)
    监测断面D n特定监测点的轴向变形数值计算:
    ΔY Qn(mi-rh)=(y Qm+b Qmin)-(y Qr+b Qrhn)
    监测断面D n特定监测点的轴向变形速率计算:
    ΔVY Qn(mi-rh)=ΔY Qn(mi-rh)/(T Qmin-T Qrhn)
    (2.2)当监测点单位坐标系的y轴方向与隧道测量坐标系y轴方向存在夹角时,即两者的夹角γ≠0度时,支护结构变形计算结果如下:
    ΔL=((ΔX Qn(mi-rh)) 2+(ΔY Qn(mi-rh)) 2) 0.5
    δ=arctan(ΔX Qn(mi-rh)/ΔY Qn(mi-rh))
    θ=180°-γ-δ
    ΔX'=ΔL*sinθ
    ΔY'=ΔL*cosθ
    上述式中:
    ΔL为监测点在变形前后坐标点的连线长度,
    γ为监测点单位坐标系y轴正向与隧道测量坐标系y轴正向的夹角,
    δ为监测点变形前后坐标点连线与隧道测量坐标系y轴负方向的夹角,
    θ为监测点变形前后坐标点连线与单位坐标系y轴正向的夹角,
    ΔX'为监测点单位坐标系x轴方向的位移值,也即监测点的水平收敛值,此时监测点的 水平收敛速率为ΔX'/(T Qmin-T Qrhn),
    ΔY'为监测点单位坐标系y轴方向的位移值,也即监测点的轴向位移值,此时监测点的轴向位移速率为ΔY'/(T Qmin-T Qrhn)。
  10. 根据权利要求9所述的基于定点巡回测量的隧道自动化监控测量方法,其特征在于,步骤4中,根据累计变形数值、变形速率判断监测情况,在后台处理系统预制支护结构变形风险判定准则以及相应的预警等级、自动应急措施,进行监测预警;
    1)累计变形数值判断准则:
    若监测点的累计变形数值小于1/3预留变形量,则视为安全,正常监测;
    若监测点的累计变形数值介于1/3~2/3预留变形量之间时,自动将监测频率提高一倍,并通过监测设备的无线通信设施给项目相关负责人发出提醒信号;
    若监测点的累计变形数值大于2/3预留变形量时,自动将监测频率提高二倍,并通过监测设备的无线通信设施给项目相关负责人发出风险预警信号;
    2)变形速率判断准则:
    若监测点的变形速率小于0.2mm/d,则视为安全,正常监测;
    若监测点的变形速率介于0.2mm/d~1mm/d之间时,自动将监测频率提高一倍,并通过监测设备的无线通信设施给项目相关负责人发出提醒信号;
    若监测点的变形速率大于1mm/d时,自动将监测频率提高二倍,并通过监测设备的无线通信设施给项目相关负责人发出风险预警信号。
PCT/CN2022/097614 2022-03-25 2022-06-08 一种基于定点巡回测量的隧道自动化监控测量设备及方法 WO2023178837A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/512,117 US20240093608A1 (en) 2022-03-25 2023-11-17 Tunnel automatic monitoring and measurement equipment and method based on fixed-point tour measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210302185.6 2022-03-25
CN202210302185.6A CN114705128B (zh) 2022-03-25 2022-03-25 一种基于定点巡回测量的隧道自动化监控测量设备及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/512,117 Continuation US20240093608A1 (en) 2022-03-25 2023-11-17 Tunnel automatic monitoring and measurement equipment and method based on fixed-point tour measurement

Publications (1)

Publication Number Publication Date
WO2023178837A1 true WO2023178837A1 (zh) 2023-09-28

Family

ID=82170047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097614 WO2023178837A1 (zh) 2022-03-25 2022-06-08 一种基于定点巡回测量的隧道自动化监控测量设备及方法

Country Status (3)

Country Link
US (1) US20240093608A1 (zh)
CN (1) CN114705128B (zh)
WO (1) WO2023178837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117268330A (zh) * 2023-11-16 2023-12-22 山东利沃信息科技有限公司 一种隧道拱顶沉降监控系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115816465B (zh) * 2023-01-06 2023-05-05 山东大学 用于隧道检测的地质雷达测线选取与随动控制方法及系统
CN117990072A (zh) * 2024-04-03 2024-05-07 中交天津港湾工程研究院有限公司 一种隧道围岩收敛自动监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066133A (ja) * 1999-08-26 2001-03-16 Fujita Corp トンネル内の遠隔測量システム及び測量台車
CN107747910A (zh) * 2017-09-19 2018-03-02 浙江大学 一种视觉引导的隧道标志点坐标激光测量系统及方法
CN109736895A (zh) * 2019-03-04 2019-05-10 中铁十六局集团有限公司 一种隧道变形预警监测系统
CN112461122A (zh) * 2020-09-21 2021-03-09 浙江大学 一种隧道表面特征检测装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843084A (ja) * 1994-08-03 1996-02-16 Nishimatsu Constr Co Ltd トンネル用多機能計測車
JP4533502B2 (ja) * 2000-04-10 2010-09-01 株式会社大林組 トンネル内施工状態検知方法
JP3668199B2 (ja) * 2002-02-22 2005-07-06 国土交通省東北地方整備局長 トンネルの変形測定方法
CN103791849B (zh) * 2014-01-27 2017-02-15 武汉长澳大地工程有限公司 激光智能应答式隧道收敛监测系统及测量方法
CZ2014489A3 (cs) * 2014-07-15 2015-10-14 R.O.G. S.R.O. Způsob měření, zpracování a využívání dat digitálního modelu terénu pro objektivní hodnocení geometrických parametrů měřených objektů a měřící zařízení pro provádění uvedeného způsobu
JP6611306B2 (ja) * 2015-04-15 2019-11-27 佐藤工業株式会社 トンネルの管理方法
CN105423940B (zh) * 2015-12-25 2017-12-26 同济大学 一种地铁隧道结构断面变形快速检测装置
CN106705876A (zh) * 2016-12-12 2017-05-24 浙江大学 基于陀螺仪定位的激光测距铁路隧道检测车及检测方法
CN107830839B (zh) * 2017-10-11 2020-06-26 北京工业大学 地面三维激光扫描数据处理方法及装置
JP7000195B2 (ja) * 2018-02-14 2022-01-19 古河電気工業株式会社 トンネル内部状況検知装置およびこれを装備したトンネル並びにトンネル内部状況監視システム
CN108917638A (zh) * 2018-09-25 2018-11-30 浙江科技学院 基于基准传递的地铁隧道三维变形监测的车载测量装置
CN110245734A (zh) * 2019-06-26 2019-09-17 重庆交通大学 基于轨道式巡检机器人的隧道结构病害识别系统与方法
CN110455211A (zh) * 2019-08-19 2019-11-15 云南航天工程物探检测股份有限公司 一种基于激光断面测距的自动监控量测方法
CN110823180A (zh) * 2019-10-17 2020-02-21 山东大学 智能化隧道全断面收敛监测装置及使用方法
CN111473734B (zh) * 2020-04-29 2021-12-07 同济大学 一种小净距隧道中夹岩稳定性监测系统及其方法
CN114046747A (zh) * 2021-06-03 2022-02-15 北京工业大学 一种基于移动点云数据的智能分析盾构隧道环间错台量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066133A (ja) * 1999-08-26 2001-03-16 Fujita Corp トンネル内の遠隔測量システム及び測量台車
CN107747910A (zh) * 2017-09-19 2018-03-02 浙江大学 一种视觉引导的隧道标志点坐标激光测量系统及方法
CN109736895A (zh) * 2019-03-04 2019-05-10 中铁十六局集团有限公司 一种隧道变形预警监测系统
CN112461122A (zh) * 2020-09-21 2021-03-09 浙江大学 一种隧道表面特征检测装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117268330A (zh) * 2023-11-16 2023-12-22 山东利沃信息科技有限公司 一种隧道拱顶沉降监控系统
CN117268330B (zh) * 2023-11-16 2024-03-01 山东利沃信息科技有限公司 一种隧道拱顶沉降监控系统

Also Published As

Publication number Publication date
US20240093608A1 (en) 2024-03-21
CN114705128B (zh) 2023-06-16
CN114705128A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023178837A1 (zh) 一种基于定点巡回测量的隧道自动化监控测量设备及方法
GB2585534A (en) Surveying robot-based bridge launching automatic monitoring method
CN102880179A (zh) 一种电力隧道内多功能智能化巡检机器人
CN201232146Y (zh) 隧道、轨道测量系统
CN110513116A (zh) 一种隧道顶进施工导向的监测装置及监测方法
CN201354440Y (zh) 采用便携式激光测距仪的轨道三维约束测量装置
CN206291859U (zh) 一种基于陀螺仪定位的激光测距铁路隧道检测车
CN108375800A (zh) 一种用于隧道二衬缺陷检测的抱轨式自动滑移检测装置
CN113608080B (zh) 一种地下管廊输电线路故障检测机器人
CN108222985B (zh) 用于锚杆钻机的数据采集系统
CN107962594B (zh) 工业化机器人实时高精度探测系统
CN200973140Y (zh) 定位用激光靶图像传输装置
CN207066377U (zh) 盾构/tbm滚刀磨损测量装置
CN115468545A (zh) 一种盾构施工智能导向测量系统及施工方法
CN102312031B (zh) 无料钟高炉炉顶料面测量装置及方法
CN207863986U (zh) 用于锚杆钻机的数据采集系统
CN112081627B (zh) 一种矿井分布式煤岩变形点定位方法及装置
CN110703784A (zh) 一种适用于变电站巡检机器人的自动循迹避障方法
CN110241735B (zh) 斜拉桥主塔索导管的定位调整装置和调整方法
CN201354439Y (zh) 采用拉线式位移传感器的轨道三维约束测量装置
CN108955521B (zh) 基于一站两机器人结构的起重机轨道检测装置及方法
CN114674281B (zh) 一种基于散点拟合测量的隧道自动化监控测量设备及方法
CN212300318U (zh) 一种基于北斗定位多点解算的铁塔姿态预警装置
CN108562947A (zh) 一种用于竖井或深孔的探测装置
CN209446104U (zh) 一种公路隧道专用全方位自动监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932889

Country of ref document: EP

Kind code of ref document: A1