WO2023178639A1 - 电池单体、电池、用电装置以及制备电池的方法和装置 - Google Patents

电池单体、电池、用电装置以及制备电池的方法和装置 Download PDF

Info

Publication number
WO2023178639A1
WO2023178639A1 PCT/CN2022/082982 CN2022082982W WO2023178639A1 WO 2023178639 A1 WO2023178639 A1 WO 2023178639A1 CN 2022082982 W CN2022082982 W CN 2022082982W WO 2023178639 A1 WO2023178639 A1 WO 2023178639A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
pressure relief
hole
boss
electrode assembly
Prior art date
Application number
PCT/CN2022/082982
Other languages
English (en)
French (fr)
Inventor
苏华圣
邢承友
李全坤
卓为荣
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/082982 priority Critical patent/WO2023178639A1/zh
Priority to CN202280061006.2A priority patent/CN117941135A/zh
Priority to EP22932703.6A priority patent/EP4398386A1/en
Priority to CN202320568358.9U priority patent/CN219873977U/zh
Publication of WO2023178639A1 publication Critical patent/WO2023178639A1/zh
Priority to US18/665,503 priority patent/US20240297401A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, and in particular to a battery cell, a battery, an electrical device, and a method and device for preparing a battery.
  • the present application provides a battery cell, a battery, an electrical device, and a method and device for preparing a battery, which can improve the overall performance of the battery.
  • a battery cell including: a casing with an opening; an electrode assembly housed in the casing; an end cover covering the opening and provided with a pressure relief mechanism, and the pressure relief mechanism is used inside the battery cell.
  • the pressure or temperature reaches a preset threshold, it is activated to release the internal pressure to the outside of the battery cell; the insulating member is disposed between the end cover and the electrode assembly to insulate and isolate the end cover and the electrode assembly.
  • the insulating member includes a body and a protrusion.
  • the main body is provided with a first through hole in an area corresponding to the pressure relief mechanism.
  • the boss is connected to the body and extends toward the electrode assembly.
  • a second through hole is formed on the side of the boss. The first through hole and the second through hole are used for An exhaust passage is formed from the inside of the battery cell to the pressure relief mechanism.
  • an insulating member for insulating the end cap and the electrode assembly is provided in the battery cell.
  • the insulating member includes a boss, which can block the contact of the deformed electrode assembly in the battery cell.
  • the pressure relief mechanism on the end cover prevents the electrode assembly from affecting the pressure relief mechanism, ensures the normal operation of the battery cells, and improves its safety performance.
  • a second through hole is formed on the side of the boss. The second through hole and the first through hole on the body of the insulator form an exhaust passage from the inside of the battery cell to the pressure relief mechanism, thus ensuring that the pressure relief mechanism is vented.
  • the pressure relief function of the pressure mechanism further ensures the safety performance of the battery cells.
  • the boss is a hollow structure.
  • the ratio of the area of the second through hole to the area of the pressure relief area in the pressure relief mechanism is greater than or equal to 40%.
  • the pressure relief mechanism is arranged corresponding to the tab of the electrode assembly, the boss has a first wall facing the inside of the battery cell, and the area of the first wall corresponding to the first through hole is a solid area.
  • the area corresponding to the first through hole in the first wall of the boss is a solid area. Since the first through hole corresponds to the pressure relief mechanism, the area of the first wall of the boss corresponding to the pressure relief mechanism is a solid area, and the first wall has a good isolation effect on the pressure relief mechanism and the tab of the electrode assembly. , which can effectively prevent the tabs of the electrode assembly from lifting up and overlapping the pressure relief mechanism, thereby improving the safety performance of the battery cells.
  • the battery cell further includes: a current collecting member and an electrode terminal installed on the end cover; wherein the current collecting member is configured to connect the electrode terminal and the electrode assembly, and the first wall of the boss is configured to Contact with the current collecting member.
  • the first wall of the boss can also be configured to abut the current collecting member to improve the performance of the current collecting member in the battery cell.
  • the installation stability in the body is improved, thereby improving the reliability of the battery cells.
  • the boss further has a second wall.
  • the second wall is connected to the first wall and is inclined relative to the first wall toward the center of the end cap.
  • the gap between the first wall and the second wall is The angle is obtuse.
  • an inclined second wall is provided in the boss, which not only saves the internal space of the battery cell but also improves the energy density of the battery cell while ensuring the isolation performance between the electrode assembly and the pressure relief mechanism. , it can also prevent the boss from interfering with other components assembled on the insulator, improving the production efficiency of the battery cells and the overall performance of the battery cells.
  • the second wall has a good correspondence with the first through hole.
  • the second wall can also have a good isolation effect on the pressure relief mechanism and the tab of the electrode assembly, and the second wall is in the third wall.
  • the projection of a through hole on the plane does not exceed the area where the first through hole is located, and the second wall does not occupy too much of the internal space of the battery cell, reducing the impact of the boss on the internal space of the battery cell.
  • an electrical device in a third aspect, includes: the battery in the third aspect, and the battery is used to provide electrical energy to the electrical device.
  • a method for preparing a battery cell including: providing a casing with an opening; providing an electrode assembly; and providing an end cover, the end cover being provided with a pressure relief mechanism, and the pressure relief mechanism is used in the battery cell.
  • the internal pressure or temperature reaches a preset threshold, it is activated to release the internal pressure to the outside of the battery cell; an insulating member is provided, and the insulating member includes a body and a boss, and the body is provided with a first passage in an area corresponding to the pressure relief mechanism.
  • the boss is connected to the body and extends toward the electrode assembly, a second through hole is formed on the side of the boss, the first through hole and the second through hole are used to form an exhaust passage from the inside of the battery cell to the pressure relief mechanism;
  • the electrode assembly is accommodated in the casing and the end cover covers the opening; an insulating member is disposed between the end cover and the electrode assembly to insulate and isolate the end cover and the electrode assembly.
  • a device for preparing a battery cell including: a first providing module for providing a housing with an opening; a second providing module for providing an electrode assembly; and a third providing module for Provide an end cover, the end cover is provided with a pressure relief mechanism, the pressure relief mechanism is used to be activated when the internal pressure or temperature of the battery cell reaches a preset threshold to release the internal pressure to the outside of the battery cell; a fourth module is provided , used to provide an insulator.
  • the insulator includes a body and a boss. The body is provided with a first through hole in an area corresponding to the pressure relief mechanism. The boss is connected to the body and extends toward the electrode assembly. A second through hole is formed on the side of the boss.
  • the installation module is used to accommodate the electrode assembly in the case and cover the end cover on the opening, and
  • the insulator is disposed between the end cap and the electrode assembly to insulate and isolate the end cap and the electrode assembly.
  • an insulating member for insulating the end cap and the electrode assembly is provided in the battery cell.
  • the insulating member includes a boss, which can block the contact of the deformed electrode assembly in the battery cell.
  • the pressure relief mechanism on the end cover prevents the electrode assembly from affecting the pressure relief mechanism, ensures the normal operation of the battery cells, and improves its safety performance.
  • a second through hole is formed on the side of the boss. The second through hole and the first through hole on the body of the insulator form an exhaust passage from the inside of the battery cell to the pressure relief mechanism, thus ensuring that the pressure relief mechanism is vented.
  • the pressure relief function of the pressure mechanism further ensures the safety performance of the battery cells.
  • Figure 2 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 4 is a schematic enlarged view of the end cap and insulator in Figure 3;
  • Figure 5 is a schematic structural diagram of an insulating member disclosed in an embodiment of the present application.
  • Figure 6 is a partial structural schematic diagram of a battery cell disclosed in another embodiment of the present application.
  • Figure 7 is a schematic top view and a cross-sectional view of an assembly of an end cap and an insulator disclosed in an embodiment of the present application;
  • Figure 8 is a schematic structural diagram of an insulating member disclosed in another embodiment of the present application.
  • Figure 9 is a schematic top view and a cross-sectional view of an assembly of an end cap and an insulator disclosed in another embodiment of the present application.
  • Figure 10 is a partial structural schematic diagram of a battery cell disclosed in another embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a battery cell disclosed in another embodiment of the present application.
  • Figure 12 is a schematic flow chart of a method for preparing battery cells disclosed in an embodiment of the present application.
  • Figure 13 is a schematic structural block diagram of a device for preparing battery cells disclosed in an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a cuboid, or other regular or irregular shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the battery cells are equipped with a pressure relief mechanism.
  • the pressure relief mechanism can be activated when the internal pressure or temperature of the battery cell reaches a preset threshold to release the internal pressure or temperature of the battery cell to prevent the explosion of the battery cell from causing safety issues.
  • the pressure relief mechanism is located at the end cover of the battery cell, and the pressure relief mechanism is directly opposite to the electrode assembly inside the battery cell.
  • the electrode assembly may be deformed due to factors such as pressure changes inside the battery cell or manufacturing processes, causing the deformed electrode assembly to overlap the pressure relief mechanism, causing a certain impact on the pressure relief mechanism, and thus affecting the function of the pressure relief mechanism. pressure relief performance and even the overall performance of the battery cell.
  • the present application provides a battery cell, which includes a case, an electrode assembly, an end cap and an insulator.
  • the housing has an opening, the electrode assembly is accommodated in the housing, the end cover covers the opening of the housing, and the end cover is provided with a pressure relief mechanism.
  • the insulating member is disposed between the end cover and the electrode assembly to insulate and isolate the end cover and the electrode assembly, and the insulating member includes a body and a boss connected to the body and extending toward the electrode assembly, wherein the body is provided corresponding to the area of the pressure relief mechanism There is a first through hole, and a second through hole is formed on the side of the boss.
  • the first through hole and the second through hole are used to form an exhaust passage from the inside of the battery cell to the pressure relief mechanism.
  • an insulating member for insulating and isolating the end cover and the electrode assembly is provided in the battery cell.
  • the insulating member includes a boss, which can block the deformed electrode assembly in the battery cell from contacting the end cap.
  • the pressure relief mechanism prevents the electrode assembly from affecting the pressure relief mechanism, ensures the normal operation of the battery cell, and improves its safety performance.
  • a second through hole is formed on the side of the boss.
  • the second through hole and the first through hole on the body of the insulator form an exhaust passage from the inside of the battery cell to the pressure relief mechanism, thus ensuring that the pressure relief mechanism is vented.
  • the pressure relief function of the pressure mechanism further ensures the safety performance of the battery cells.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include one or more battery cells.
  • the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series connection and parallel connection.
  • the battery 10 may also be referred to as a battery pack.
  • multiple battery cells may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form the battery 10 . That is to say, multiple battery cells can directly form the battery 10, or they can first form a battery module, and then the battery module can form the battery 10.
  • FIG. 2 shows a schematic structural diagram of a battery 10 provided by an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a case (or cover).
  • the interior of the case is a hollow structure, and the plurality of battery cells 20 can be accommodated in the case.
  • the box body may include two parts, here respectively referred to as the first part 111 and the second part 112.
  • the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 20 , and each of the first part 111 and the second part 112 may have an opening.
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component (not shown in the figure), which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20.
  • the bus component may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the conductive mechanism may also belong to the bus component.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power.
  • the following description mainly takes the cylindrical battery cell 20 shown in FIG. 2 as an example.
  • the battery cells in the embodiments of the present application can also be square battery cells or battery cells of other shapes.
  • FIG. 3 shows a schematic structural diagram of a battery cell 20 provided by an embodiment of the present application.
  • the battery cell 20 includes: a casing 210 with an opening 211; an electrode assembly 220 accommodated in the casing 210; an end cover 310 covering the opening 211 and provided with a pressure relief mechanism 330.
  • the pressure relief mechanism 330 is used to be activated when the internal pressure or temperature of the battery cell 20 reaches a preset threshold to release the internal pressure or temperature to the outside of the battery cell 20; the insulator 340 is provided on the end cap 310 and the electrode.
  • the end cap 310 and the electrode assembly 220 are separated by insulation between the components 220.
  • the insulator 340 includes a body 341 and a boss 342.
  • the body 341 is provided with a first through hole 343 and a boss 342 in a region corresponding to the pressure relief mechanism 330. Connected to the body 341 and extending toward the electrode assembly 220 , a second through hole 344 is formed on the side of the boss 342 . The first through hole 343 and the second through hole 344 are used to form the interior of the battery cell 20 to the pressure relief mechanism 330 exhaust channel.
  • the case 210 can be determined according to the shape of the electrode assembly 220 .
  • the electrode assembly 220 is a cylindrical electrode assembly formed by stacking positive electrode sheets, negative electrode sheets and separators
  • the housing 210 is a hollow cylindrical housing adapted to the electrode assembly 220 .
  • at least one surface of the housing 210 has an opening 211 so that the electrode assembly 220 is placed in the housing 210 .
  • at least one end of the housing 210 has an opening 211 .
  • the battery cell 20 also includes an end cover 310 covering the opening 211 of the case 210 to form a closed cavity in the case 210 for accommodating the electrode assembly 220.
  • the closed cavity is also filled with electrolyte, such as electrolyte.
  • tabs 221 are formed on the end of the cylindrical electrode assembly 220 , and the tabs 221 are used to conduct electrical energy of the electrode assembly 220 .
  • the tab 221 is a positive tab formed by the positive tab in the electrode assembly 220 , or the tab 221 can also be a negative tab formed by the negative tab in the electrode assembly 220 .
  • the material of the end cap 310 may be metal, for example, aluminum, steel, etc.
  • An insulating member 340 is provided between the end cap 310 and the electrode assembly 220.
  • the insulating member 340 is used to insulate and isolate the end cap 310 and the electrode assembly 220.
  • the material of the insulating member 340 includes but is not limited to plastic material.
  • FIG. 4 shows a schematic enlarged view of the end cap 310 and the insulating member 340 in FIG. 3 .
  • a pressure relief mechanism 330 is provided on the end cover 310.
  • the pressure relief mechanism 330 is used when the internal pressure or temperature of the battery cell 20 reaches a threshold. Activate to relieve the internal pressure or temperature.
  • the pressure relief mechanism 330 and the end cover 310 may be of an integral structure, or the pressure relief mechanism 330 may be of a separate structure from the end cover 310 .
  • the pressure relief mechanism 330 may be formed by providing notches on the end cover 310 , or the pressure relief mechanism 330 may be a pressure relief piece independent of the end cover 310 , with notches provided on the pressure relief piece to achieve relief. Press function.
  • the pressure relief mechanism 330 A rupture can occur at the notch, causing the inside and outside of the battery cell 20 to communicate, and the gas pressure and temperature can be released outward through the rupture of the pressure relief mechanism 330 , thus preventing the battery cell 20 from exploding.
  • the insulator 340 includes a body 341.
  • a first passage is provided in the area of the body 341 corresponding to the pressure relief mechanism 330.
  • the area of the first through hole 343 at least partially coincides with the projection area of the pressure relief mechanism 330 on the body 341 along the first direction x, where the first direction x is perpendicular to the end cover 310 And points in the direction inside the battery cell 20 .
  • the first direction x may be parallel to the height direction of the cylindrical battery cell.
  • the boss 342 can be provided corresponding to the first through hole 343 in the body 341 , and the boss 342 can be located at the side of the first through hole 343 facing the electrode assembly 220 . one side.
  • the boss 342 may be a cylindrical boss.
  • the boss 342 may also be a frustum-shaped boss, a truncated cone-shaped boss, or other shaped bosses.
  • the embodiment of the present application does not limit the specific shape of the boss 342 .
  • the pressure relief mechanism 330 corresponding to the first through hole 343 can be isolated from the electrode assembly 220 inside the battery cell 20, preventing the electrode assembly 220 from deforming and overlapping the pressure relief mechanism 330, thereby affecting the pressure relief mechanism. 330 effects. Therefore, through the arrangement of the boss 342, the reliability of the pressure relief mechanism 330 can be improved, the normal use of the battery cell 20 can be ensured, and the safety performance of the battery cell 20 can be improved.
  • a second second boss 342 is formed on the side of the boss 342 .
  • the through hole 344 , the second through hole 344 and the above-mentioned first through hole 343 together form an exhaust passage from the inside of the battery cell 20 to the pressure relief mechanism 330 .
  • the internal pressure or temperature of the battery cell 20 reaches the preset threshold, the internal gas of the battery cell 20 can reach the pressure relief mechanism 330 through the second through hole 344 and the first through hole 343, and be discharged to the pressure relief mechanism 330 through the pressure relief mechanism 330.
  • the outside of the battery cell 20 prevents the battery cell 20 from exploding to ensure the safety performance of the battery cell 20 .
  • an insulating member 340 for insulating the isolation end cap 310 and the electrode assembly 220 is provided in the battery cell 20.
  • the insulating member 340 includes a boss 342, and the boss 342 can It blocks the deformed electrode assembly 220 in the battery cell 20 from contacting the pressure relief mechanism 330 on the end cover 310, preventing the electrode assembly 220 from affecting the pressure relief mechanism 330, ensuring the normal operation of the battery cell 20, and improving its safety performance.
  • a second through hole 344 is formed on the side of the boss 342 , and the second through hole 344 and the first through hole 343 on the body 341 of the insulator 340 form a connection from the inside of the battery cell 20 to the pressure relief mechanism 330 .
  • the exhaust channel can thus ensure the pressure relief function of the pressure relief mechanism 330, thereby further ensuring the safety performance of the battery cell 20.
  • the boss 342 is a hollow structure.
  • the side facing the outside of the battery cell 20 corresponds to the first through hole 343
  • the side facing the inside of the battery cell 20 has a
  • the boss 342 has a solid wall structure
  • the side surface of the boss 342 also has a solid wall structure
  • the second through hole 344 is formed on the side wall structure.
  • the internal space of the battery cell 20 is connected to the hollow space inside the boss 342 through the second through hole 344
  • the hollow space is connected to the space where the pressure relief mechanism 330 is located through the first through hole 343 .
  • the ratio of the area of the second through hole 344 to the area of the pressure relief area in the pressure relief mechanism 330 is greater than or equal to 40%.
  • the pressure relief area may refer to an area in the pressure relief mechanism 330 for the internal gas to pass through the battery cell 20 when the pressure relief mechanism 330 is actuated.
  • the notch when a notch is provided in the pressure relief mechanism 330, the notch can surround and form a closed pattern, and the area where the closed pattern is located can be understood as the pressure relief area in this embodiment.
  • the pressure relief area may also refer to the area in the end cover 310 for installing the pressure relief mechanism 330 .
  • an accommodation area (such as a through hole) for installing the pressure relief plate is formed in the end cover 310.
  • the accommodation area It can be understood as the pressure relief area in this embodiment.
  • the second through hole 344 may be a regular-shaped or irregular-shaped through hole, which is provided on the side of the cylindrical boss 342 .
  • the second through hole 344 may be a rectangular through hole.
  • the second through hole 344 may also be a circular, polygonal, or other shaped through hole, and the specific shape of the second through hole 344 is not limited in this application.
  • the area of the second through hole 344 is designed according to the area of the pressure relief area in the pressure relief mechanism 330, so that the exhaust effect of the second through hole 343 can be adapted to the pressure relief of the pressure relief mechanism 330. function to prevent the second through hole 344 from being too small and affecting the pressure relief function of the pressure relief mechanism 330, ensuring the exhaust effect of the pressure relief mechanism 330 and thereby ensuring the safety performance of the battery cell 20.
  • a plurality of second through holes 344 are formed on the side of the boss 342 .
  • the pressure relief mechanism 330 is disposed corresponding to the tab 221 of the electrode assembly 220.
  • the boss 342 has a first wall 3421 facing the inside of the battery cell 20, and the first wall 3421 corresponds to the first through hole.
  • the area of 343 is the physical area. Wherein, the solid area refers to an area where no through holes are provided.
  • the projection area of the first through hole 343 on the first wall 3421 along the first direction x may be an area in the first wall 3421 corresponding to the first through hole 343 .
  • the first wall 3421 is parallel to the main body wall 3401 in the body 341 of the insulating member 340 .
  • the main body wall 3401 is parallel to the end cover 310 and is provided with a first through hole 343 . All areas in the first wall 3421 correspond to the first through holes 343, and all areas in the first wall 3421 are solid areas. In other words, all areas in the first wall 3421 are not provided with through holes.
  • the area corresponding to the first through hole 343 in the first wall 3421 of the boss 342 is a solid area, and the first wall 3421 has a good isolation effect on the pressure relief mechanism 330 and the electrode assembly 220.
  • the safety performance of the battery cell 20 can be further improved.
  • FIG. 6 shows a partial structural diagram of a battery cell 20 provided by another embodiment of the present application.
  • the current collecting member 350 may be configured to connect the electrode terminal 320 and the tab 221 in the electrode assembly 220 .
  • the current collecting member 350 is disposed on the side of the insulating member 340 facing the inside of the battery cell 20 , and the current collecting member 350 can contact the tabs 221 in the electrode assembly 220 .
  • the current collecting member 350 , the insulating member 340 and the end cover 310 are all formed with electrode lead-out holes, so that the electrode terminal 320 is connected to the current collecting member 350 through the electrode lead-out hole, and is installed on the end cover 310 through the insulating member 340 .
  • the current collecting member 350 is a foldable component. Before the end cap 310 closes the housing 210, the current collecting member 350 is in an expanded state. After the end cover 310 closes the housing 210, the current collecting member 350 will be folded into a folded state.
  • the current collecting member 350 includes a first folding part 351 , a second folding part 352 and a third folding part 353 .
  • the first folding part 351, the second folding part 352 and the third folding part 353 are in an unfolded state as shown in FIG. 6 .
  • the first folding portion 351, the second folding portion 352 and the third folding portion 353 can be configured to be stacked in sequence along the first direction x.
  • the first folding portion 351, the second folding part 352 and the third folding part 353 are in a folded state.
  • FIG. 7 shows a schematic top view and a cross-sectional view of the assembly of the end cap 310 and the insulator 340 provided by an embodiment of the present application.
  • Figure 7 (a) is a schematic top view of the assembly of the end cap 310 and the insulator 340
  • Figure 7 (b) is a schematic cross-sectional view of the A-A' section in figure (a).
  • the third folded portion 353 has a large area and can be well connected to the tab 221 of the electrode assembly 220 .
  • the third folded portion 353 can extend to the side of the first wall 3421 of the boss 342 away from the end cover 310 .
  • the first wall 3421 of the boss 342 can also be configured to abut the third folded portion 353 of the current collecting member 350 . Therefore, the first wall 3421 of the boss 342 can improve the installation stability of the current collecting member 350 in the battery cell 20, thereby improving the use reliability of the battery cell 20.
  • FIG. 8 shows a schematic structural diagram of the insulating member 340 provided by another embodiment of the present application.
  • the first direction x is upward, that is, the insulating member 340 shown in FIG. 8 is a schematic diagram of the insulating member 340 in FIG. 6 turned upside down.
  • the boss 342 also has a second wall 3422, which is connected to the first wall 3421 and is inclined toward the center of the end cap 310 (not shown in the figure) relative to the first wall 3421. It is provided that the angle between the first wall 3421 and the second wall 3422 is an obtuse angle.
  • the inclined second wall 3422 can also prevent the boss 342 from interfering with other components assembled on the insulator 340 (for example, the current collecting member 350 in the above embodiment), which is beneficial to improving the production of the battery cells 20 efficiency as well as the overall performance of the battery cells 20 .
  • the second wall 3422 is connected to the first wall 3421, and the angle between the second wall 3422 and the first wall 3421 is an obtuse angle.
  • the second wall 3422 and the first wall 3421 can be used together to isolate the electrode assembly. and the pressure relief mechanism 330 to improve the safety performance of the battery cell 20 .
  • the inclined second wall 3422 is provided in the boss 342, which not only saves the battery cell 20 while ensuring the isolation performance between the electrode assembly 220 and the pressure relief mechanism 330.
  • the internal space improves the energy density of the battery cell 20 and prevents the boss 342 from interfering with other components assembled on the insulator 340 , thereby improving the production efficiency of the battery cell 20 and the overall performance of the battery cell 20 .
  • the projection of the second wall 3422 on the plane of the first through hole 343 is located in the first through hole 343 .
  • the area of the second wall 3422 may be less than or equal to the area of the first through hole 343, and the projection of the second wall 3422 on the plane of the first through hole 343 may be completely located on the first through hole 343. Hole 343.
  • the second wall 3422 has a good correspondence with the first through hole 343, and the second wall 3422 can have a good isolation effect on the pressure relief mechanism 330 and the tab 221 of the electrode assembly 220, and the second wall 3422 has a good isolation effect.
  • the projection of the second wall 3422 on the plane where the first through hole 343 is located does not exceed the area where the first through hole 343 is located.
  • the second wall 3422 will not occupy too much of the internal space of the battery cell 20 and reduce the boss 342 influence on the internal space of the battery cell 20 .
  • the second wall 3422 may be located on a side of the first wall 3421 facing the center of the insulating member 340 .
  • the second through hole 344 located on the side of the boss 342 can also be provided close to the second wall 3422 , that is, close to the center of the insulating member 340 .
  • the shape of the second through hole 344 may be approximately a trapezoid.
  • the length of the upper bottom of the trapezoid may be equal to an arc length of the first wall 3421 corresponding to the upper bottom.
  • the length of the lower bottom of the trapezoid may be equal to the arc length of the first wall 3421 corresponding to the upper bottom.
  • the height of the trapezoid may be less than or equal to the height of the boss 342 .
  • the main body wall 3401 of the insulator 340 is also provided with a support boss 345 on the side facing the inside of the battery cell 20 , which is different from the above-mentioned support boss 345 for isolating the electrode assembly 220 and the pressure relief mechanism 330 .
  • the boss 342 and the support boss 345 are used to support related components (for example, the above-mentioned current collecting member 350 ) installed on the insulator 340 to ensure the safety and stability of the related components in the battery cell 20 .
  • the height of boss 342 may be the same as the height of support boss 345.
  • the boss 342 and the support boss 345 can jointly support the current collecting member 350 in the above application embodiment.
  • FIG. 9 shows a schematic top view and a cross-sectional view of an assembly of an end cap 310 and an insulator 340 provided by another embodiment of the present application.
  • Figure 9 (a) is a schematic top view of the assembly of the end cap 310 and the insulator 340
  • Figure 9 (b) is a schematic cross-sectional view of the B-B' section in figure (a).
  • the battery cell 20 further includes: a current collecting member 350 , wherein before the end cover 310 closes the housing 210 , the current collecting member 350 is in an expanded state, and the second wall 3422 of the boss 342 is configured to abut. to the current collecting member 350.
  • the first folded portion 351 in the current collecting member 350 is first assembled on the insulating member 340 , and both the second folded portion 352 and the third folded portion 353 are in an unfolded state.
  • the inclined second wall 3422 can avoid interference with the second folding portion 352, so that the third folding portion 353 extends a longer distance relative to the insulating member 340, and the inclined second wall 3422 can avoid interference with the second folding portion 352.
  • 3422 can also be used to support the second folding part 352 to ensure the stability of the current collecting member 350.
  • the third folded portion 353 in the current collecting member 350 is welded to the electrode assembly 220 inside the battery cell 20 .
  • the welding tool used to weld the third folded portion 353 and the electrode assembly 220 can be relatively stable. It is convenient to realize the welding between the two and improve the welding efficiency and welding performance.
  • the second wall 3422 of the boss 342 is configured to abut against the current collecting member 350.
  • the boss 342 can also provide support to the current collecting member 350 through the second wall 3422, so that the current collecting member 350 has higher stability. , the welding performance between the third folding portion 353 and the electrode assembly 220 can also be further improved.
  • the second wall 3422 in addition to preventing the boss 342 from interfering with the current collecting member 350, can also support the second wall 3422 of the current collecting member 350.
  • the two folded portions 352 are used to improve the installation stability of the current collecting member 350 in the battery cell 20, thereby improving the use reliability of the battery cell 20.
  • FIG. 10 shows a partial structural diagram of a battery cell 20 provided by another embodiment of the present application.
  • the battery cell 20 also includes: a riveting part 360 and an insulating part 370 .
  • the rivet 360 is disposed on the side of the end cover 310 facing the outside of the battery cell 20 .
  • the rivet 360 is used to fix the electrode terminal 320 protruding from the end cover 310 .
  • the rivet 360 is made of metal material.
  • the bus component outside the battery cell 20 can be connected to the rivet 360 to output the electric energy of the battery cell 20 .
  • the insulating part 370 is disposed between the riveting part 360 and the end cover 310 for isolating the end cover 310 and the riveting part 360 .
  • the material of the insulating portion 370 includes, but is not limited to, plastic material.
  • the battery cell 20 may also include a sealing ring 380 for sealing the end cap 310 and/or the electrode lead-out hole in the insulating part 340 .
  • a sealing ring 380 for sealing the end cap 310 and/or the electrode lead-out hole in the insulating part 340 .
  • the pressure relief mechanism 330 may include a protection piece 331 and a pressure relief piece 332 , wherein the pressure relief piece 332 may be provided with a score, and the protection piece 331 is disposed on the pressure relief piece 332 toward the battery cell.
  • the outer side of the body 20 is used to protect the pressure relief piece 332 .
  • the end cover 310 is provided with a third through hole 311 corresponding to the pressure relief mechanism 330.
  • the protection piece 331 and the pressure relief piece 332 are respectively provided on both sides of the third through hole 311.
  • FIG. 11 shows a schematic structural diagram of a battery cell 20 provided by another embodiment of the present application.
  • the battery cell 20 includes a housing 210 with an opening 211 .
  • the housing 210 is a hollow cylindrical housing with an opening 211 on an end surface of at least one end thereof.
  • the battery cell 20 further includes: an electrode assembly 220 accommodated in the housing 210 and an end cap 310 covering the opening 211 .
  • a pressure relief mechanism 330 is provided in the end cover 310 . The pressure relief mechanism 330 is used to be activated when the internal pressure or temperature of the battery cell 20 reaches a preset threshold to release the internal pressure or temperature to the battery cell 20 . external.
  • the boss 342 has a hollow structure, and a second through hole 344 is formed on the side of the boss 342.
  • the first through hole 343 and the second through hole 344 are used to form a discharge passage from the inside of the battery cell 20 to the pressure relief mechanism 330. air channel.
  • the boss 342 has a first wall 3421 facing the inside of the battery cell 20 .
  • the area of the first wall 3421 corresponding to the first through hole 343 is a solid area, and the first wall 3421 of the boss 342 is also covered by It is configured to contact the current collecting member 350 .
  • the battery 10 may include a box and a plurality of battery cells 20 in the previous embodiment, wherein the plurality of battery cells 20 are accommodated and arranged in the box.
  • An embodiment of the present application also provides an electrical device.
  • the electrical device may include the battery 10 in the previous embodiment.
  • the battery 10 is used to provide electrical energy to the electrical device.
  • the electrical device may be a vehicle 1, a ship or a spacecraft.
  • Figure 12 shows a schematic flowchart of a method 200 for preparing a battery cell according to an embodiment of the present application. As shown in Figure 12, the method 200 may include the following steps.
  • S201 Provide a housing 210 having an opening 211.
  • S202 Provide an electrode assembly 220.
  • S203 Provide an end cover 310, which is provided with a pressure relief mechanism 330.
  • the pressure relief mechanism 330 is used to be activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a preset threshold. to the outside of the battery cell 20 .
  • the insulating member 340 includes a body 341 and a boss 342.
  • the body 341 is provided with a first through hole 343 in an area corresponding to the pressure relief mechanism 330.
  • the boss 342 is connected to the body 341 and faces the electrode assembly 220. Extending, a second through hole 344 is formed on the side of the boss 342 .
  • the first through hole 343 and the second through hole 344 are used to form an exhaust passage from the inside of the battery cell 20 to the pressure relief mechanism 330 .
  • S205 Receive the electrode assembly 220 in the housing 210 and cover the opening 211 with the end cover 310.
  • S206 Arrange the insulating member 340 between the end cap 310 and the electrode assembly 220 to insulate and isolate the end cap 310 and the electrode assembly 220.
  • Figure 13 shows a schematic structural block diagram of a device 300 for preparing battery cells according to an embodiment of the present application.
  • the device 300 for preparing a battery may include: a first providing module 301 , a second providing module 302 , a third providing module 303 and an installation module 304 .
  • the first providing module 301 is used to provide a housing 210 having an opening 211 .
  • the second providing module 302 is used to provide the electrode assembly 220 .
  • the third providing module 303 provides an end cover 310.
  • the end cover 310 is provided with a pressure relief mechanism 330.
  • the pressure relief mechanism 330 is used to be activated to reduce the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a preset threshold. Or the temperature is released to the outside of the battery cell 20 .
  • the fourth providing module 304 is used to provide an insulating member 340.
  • the insulating member 340 includes a body 341 and a boss 342.
  • the body 341 is provided with a first through hole 343 corresponding to the area of the pressure relief mechanism 330.
  • the boss 342 is connected to the body. 341 and extends toward the electrode assembly 220.
  • a second through hole 344 is formed on the side of the boss 342. The first through hole 343 and the second through hole 344 are used to form exhaust from the inside of the battery cell 20 to the pressure relief mechanism 330. aisle.
  • the installation module 305 is used for accommodating the electrode assembly 220 in the housing 210 and covering the end cover 310 on the opening 211, and disposing the insulator 340 between the end cover 310 and the electrode assembly 220 to insulate and isolate the end cover 310 and the electrode assembly 220. Electrode assembly 220.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池单体、电池、用电装置以及制备电池的方法和装置,能够提高电池的整体性能。该电池单体(20)包括:壳体(210),具有开口(211);电极组件(220),容纳于壳体(210)内;端盖(310),覆盖开口(211)并设置有泄压机构(330);绝缘件(340),设置于端盖(310)和电极组件(220)之间以绝缘隔离端盖(310)和电极组件(220),绝缘件(340)包括本体(341)和凸台(342),本体(341)对应于泄压机构(330)的区域设置有第一通孔(343),凸台(342)连接于本体(341)并朝向电极组件(220)延伸,凸台(342)的侧面形成有第二通孔(344),第一通孔(343)和第二通孔(344)用于形成电池单体(20)的内部至泄压机构(330)的排气通道。

Description

电池单体、电池、用电装置以及制备电池的方法和装置 技术领域
本申请涉及电池领域,特别是涉及一种电池单体、电池、用电装置以及制备电池的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
因此,如何提高电池的安全性能,是电池技术中的一个亟待解决的技术问题。
发明内容
本申请提供一种电池单体、电池、用电装置以及制备电池的方法和装置,能够提高电池的整体性能。
第一方面,提供一种电池单体,包括:壳体,具有开口;电极组件,容纳于壳体内;端盖,覆盖开口并设置有泄压机构,泄压机构用于在电池单体的内部压力或温度达到预设阈值时致动以将内部压力泄放至电池单体的外部;绝缘件,设置于端盖和电极组件之间以绝缘隔离端盖和电极组件,绝缘件包括本体和凸台,本体对应于泄压机构的区域设置有第一通孔,凸台连接于本体并朝向电极组件延伸,凸台的侧面形成有第二通孔,第一通孔和第二通孔用于形成电池单体的内部至泄压机构的排气通道。
在本申请实施例的技术方案中,在电池单体中设置用于绝缘隔离端盖和电极组件的绝缘件,该绝缘件包括凸台,该凸台能够阻隔电池单体中变形的电极组件接触于端盖上的泄压机构,防止电极组件对泄压机构造成影响,保证电池单体的正常运行,并提升其安全性能。与此同时,凸台的侧面形成有第二通孔,该第二通孔和绝缘件的本体上的第一通孔形成电池单体的内部至泄压机构的排气通道,因而可以保证泄压机构的泄压功能,从而进一步保证电池单体的安全性能。
在一些可能的实施方式中,凸台为中空结构。
通过该实施方式的技术方案,凸台的内部为中空空间,该中空空间与第一通孔、第二通孔共同形成电池单体的内部至泄压机构的排气通道,能够增大排气通道的空间,提升电池单体的排气效果以增强电池单体的安全性能。与此同时,将凸台设置为中空结构,还能降低凸台的质量以降低电池单体的整体质量,提升电池单体的能量密度。
在一些可能的实施方式中,第二通孔的面积与泄压机构中泄压区域的面积之比 大于或等于40%。
通过该实施方式的技术方案,根据泄压机构中泄压区域的面积设计第二通孔的面积,可以使得第二通孔的排气效果适配于泄压机构的泄压功能,避免第二通孔过小影响泄压机构的泄压功能,保证泄压机构的排气效果从而保证电池单体的安全性能。
在一些可能的实施方式中,凸台的侧面形成有多个第二通孔。
通过该实施方式的技术方案,凸台侧面的第二通孔的数量为多个,多个第二通孔的排气效果较优,进而可以进一步保证泄压机构的泄压功能。
在一些可能的实施方式中,泄压机构与电极组件的极耳对应设置,凸台具有朝向电池单体的内部的第一壁,第一壁中对应于第一通孔的区域为实体区域。
通过该实施方式的技术方案,在端盖上的泄压机构与电极组件的极耳对应设置时,凸台的第一壁中对应于第一通孔的区域为实体区域。由于第一通孔对应于泄压机构,因而,凸台的第一壁中对应于泄压机构的区域为实体区域,该第一壁对泄压机构和电极组件的极耳具有良好的隔离作用,能够有效防止电极组件的极耳翘起搭接于泄压机构,从而提高电池单体的安全性能。
在一些可能的实施方式中,电池单体还包括:集流构件和安装于端盖的电极端子;其中,集流构件被配置为连接电极端子与电极组件,凸台的第一壁被配置为抵接于集流构件。
通过该实施方式的技术方案,凸台的第一壁除了用于隔离电极组件与泄压机构以外,该第一壁还能够被配置为抵接于集流构件,以提高集流构件在电池单体中的安装稳定性,从而提高电池单体的使用可靠性。
在一些可能的实施方式中,凸台还具有第二壁,第二壁连接于第一壁,且相对于第一壁朝向端盖的中心倾斜设置,第一壁与第二壁之间的夹角为钝角。
通过该实施方式的技术方案,在凸台中设置倾斜的第二壁,在保证电极组件与泄压机构之间隔离性能的同时,不仅能节省电池单体的内部空间,提升电池单体的能量密度,还能避免凸台对其它装配于绝缘件的部件造成干涉,提升电池单体的生产效率以及电池单体的整体性能。
在一些可能的实施方式中,第二壁在第一通孔的所在平面上的投影位于第一通孔中。
通过该实施方式的技术方案,第二壁与第一通孔的对应性良好,该第二壁也能够对泄压机构和电极组件的极耳起到良好的隔离效果,且第二壁在第一通孔的所在平面上的投影没有超过第一通孔的所在区域,该第二壁不会占用过多的电池单体的内部空间,减小凸台对于电池单体的内部空间的影响。
第二方面,提供一种电池,其中,该电池包括:箱体,以及,第二方面中的电池单体,该电池单体容纳于箱体中。
第三方面,提供一种用电装置,其中,该用电装置包括:第三方面中的电池,该电池用于向用电装置提供电能。
第四方面,提供一种制备电池单体的方法,包括:提供壳体,壳体具有开口;提供电极组件;提供端盖,端盖设置有泄压机构,泄压机构用于在电池单体的内部压 力或温度达到预设阈值时致动以将内部压力泄放至电池单体的外部;提供绝缘件,绝缘件包括本体和凸台,本体对应于泄压机构的区域设置有第一通孔,凸台连接于本体并朝向电极组件延伸,凸台的侧面形成有第二通孔,第一通孔和第二通孔用于形成电池单体的内部至泄压机构的排气通道;将电极组件容纳于壳体内且将端盖覆盖于开口;将绝缘件设置于端盖和电极组件之间以绝缘隔离端盖和电极组件。
第五方面,提供一种制备电池单体的装置,包括:第一提供模块,用于提供壳体,壳体具有开口;第二提供模块,用于提供电极组件;第三提供模块,用于提供端盖,端盖设置有泄压机构,泄压机构用于在电池单体的内部压力或温度达到预设阈值时致动以将内部压力泄放至电池单体的外部;第四提供模块,用于提供绝缘件,绝缘件包括本体和凸台,本体对应于泄压机构的区域设置有第一通孔,凸台连接于本体并朝向电极组件延伸,凸台的侧面形成有第二通孔,第一通孔和第二通孔用于形成电池单体的内部至泄压机构的排气通道;安装模块,用于将电极组件容纳于壳体内且将端盖覆盖于开口,且将绝缘件设置于端盖和电极组件之间以绝缘隔离端盖和电极组件。
在本申请实施例的技术方案中,在电池单体中设置用于绝缘隔离端盖和电极组件的绝缘件,该绝缘件包括凸台,该凸台能够阻隔电池单体中变形的电极组件接触于端盖上的泄压机构,防止电极组件对泄压机构造成影响,保证电池单体的正常运行,并提升其安全性能。与此同时,凸台的侧面形成有第二通孔,该第二通孔和绝缘件的本体上的第一通孔形成电池单体的内部至泄压机构的排气通道,因而可以保证泄压机构的泄压功能,从而进一步保证电池单体的安全性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的车辆的结构示意图;
图2是本申请一实施例公开的电池的结构示意图;
图3是本申请一实施例公开的电池单体的结构示意图;
图4为图3中端盖和绝缘件的示意性放大图;
图5是本申请一实施例公开的绝缘件的结构示意图;
图6是本申请另一实施例公开的电池单体的局部结构示意图;
图7是本申请一实施例公开的端盖和绝缘件的组合件的俯视示意图和截面示意图;
图8是本申请另一实施例公开的绝缘件的结构示意图;
图9是本申请另一实施例公开的端盖和绝缘件的组合件的俯视示意图和截面示意图;
图10是本申请另一实施例公开的电池单体的局部结构示意图;
图11是本申请另一实施例公开的电池单体的结构示意图;
图12是本申请一实施例公开的制备电池单体的方法的流程示意图;
图13是本申请一实施例公开的制备电池单体的装置的结构示意框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它规则或者不规则的形状,本申请实施例对此也不 限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
随着能源技术的发展,消费者对于电池以及电池单体的性能要求越来越高。为了提高电池单体的安全性能,电池单体中设置有泄压机构。该泄压机构能够在电池单体的内部压力或者温度达到预设阈值时致动,以泄放电池单体的内部压力或者温度,防止电池单体爆炸引发安全问题。
在一些相关的技术方案中,泄压机构位于电池单体的端盖,且泄压机构与电池单体内部的电极组件直接相对设置。该电极组件可能会由于电池单体内部的压力变化或者是制造工艺等因素发生形变,导致该变形的电极组件搭接至泄压机构,对泄压机构造成一定的影响,进而影响泄压机构的泄压性能乃至电池单体的整体性能。
鉴于此,本申请提供一种电池单体,该电池单体包括壳体、电极组件、端盖和绝缘件。其中,壳体具有开口,电极组件容纳于壳体内,端盖覆盖于壳体的开口,且端盖设置有泄压机构。绝缘件设置于端盖和电极组件之间以绝缘隔离端盖和电极组件,且该绝缘件包括本体以及连接于本体并朝向电极组件延伸的凸台,其中,本体对应于泄压机构的区域设置有第一通孔,凸台的侧面形成有第二通孔,该第一通孔和第二通孔用于形成电池单体的内部至泄压机构的排气通道。通过该技术方案,在电池单体中设置用于绝缘隔离端盖和电极组件的绝缘件,该绝缘件包括凸台,该凸台能够阻隔电池单体中变形的电极组件接触于端盖上的泄压机构,防止电极组件对泄压机构造成影响,保证电池单体的正常运行,并提升其安全性能。与此同时,凸台的侧面形成有第二通孔,该第二通孔和绝缘件的本体上的第一通孔形成电池单体的内部至泄压机构的排气通道,因而可以保证泄压机构的泄压功能,从而进一步保证电池单体的安全性能。
本申请实施例描述的技术方案可以适用于各种使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1示出了本申请一实施例提供的车辆1的结构示意图。
该车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括一个或多个电池单体。在电池10包括多个电池单体的情况下,该多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池10。也就是说,多个电池单体可以直接组成电池10,也可以先组成电池模块,电池模块再组成电池10。
图2示出了本申请一实施例提供的电池10的结构示意图。
如图2所示,电池10可以包括多个电池单体20。除了多个电池单体20之外,电池10还可以包括箱体(或称罩体),箱体的内部为中空结构,多个电池单体20可容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
在一些实施例中,电池10还可以包括其它结构,在此不再一一赘述。例如,电池10还可以包括汇流部件(图中未示出),汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极 端子实现电池单体20之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。在一些实施例中,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。
为了便于说明,下文中主要以图2所示的圆柱形电池单体20为例进行说明。但应理解,本申请实施例的电池单体除了可以为圆柱形电池单体外,还可以为方形电池单体或者其它形状的电池单体。
图3示出了本申请一实施例提供的电池单体20的结构示意图。
如图3所示,该电池单体20包括:壳体210,具有开口211;电极组件220,容纳于该壳体210内;端盖310,覆盖该开口211并设置有泄压机构330,该泄压机构330用于在电池单体20的内部压力或温度达到预设阈值时致动以将内部压力或温度泄放至电池单体20的外部;绝缘件340,设置于端盖310和电极组件220之间以绝缘隔离该端盖310和电极组件220,该绝缘件340包括本体341和凸台342,该本体341对应于泄压机构330的区域设置有第一通孔343,凸台342连接于本体341并朝向电极组件220延伸,凸台342的侧面形成有第二通孔344,该第一通孔343和第二通孔344用于形成电池单体20的内部至泄压机构330的排气通道。
具体地,在本申请实施例提供的电池单体20中,壳体210可根据该电极组件220的形状而定。作为示例,如图3所示,电极组件220为正极极片、负极极片以及隔膜层叠卷绕形成的圆柱状电极组件,壳体210为适配于该电极组件220的中空圆柱状壳体。另外,壳体210的至少一个面具有开口211以便电极组件220放置于壳体210内。例如,如图3所示,在中空圆柱状的壳体210中,该壳体210至少一端的端面具有开口211。
除了壳体210和电极组件220以外,电池单体20还包括端盖310,该端盖310覆盖于壳体210的开口211,以在壳体210中形成容纳电极组件220的封闭的腔体。该封闭的腔体除了容纳有电极组件220以外,还填充有电解质,例如电解液。
在图3所示实施例中,圆柱状的电极组件220的端部形成有极耳221,该极耳221用于传导电极组件220的电能。在一些实施方式中,该极耳221为电极组件220中正极极片形成的正极极耳,或者,该极耳221也可以为电极组件220中负极极片形成的负极极耳。
在一些实施方式中,为了提高端盖310的使用可靠性,端盖310的材料可以为金属,例如,例如铝材、钢材等等。
为了防止壳体210内部的电极组件220对端盖310造成影响(例如,电池单体20的内部的电解质对金属的端盖310造成影响),保证电池单体20的正常使用以及安全性。端盖310与电极组件220之间设置有绝缘件340,该绝缘件340用于绝缘隔离端盖310与电极组件220。作为示例,该绝缘件340的材料包括但不限于是塑胶材料。
为了便于示意,图4示出了图3中端盖310和绝缘件340的示意性放大图。
如图3和图4所示,为了保证电池单体20的安全性能,端盖310上设置有泄压 机构330,该泄压机构330用于在电池单体20的内部压力或温度达到阈值时致动以泄放该内部压力或温度。
在本申请实施例中,泄压机构330可以为各种可能的泄压机构,本申请实施例对此并不限定。例如,泄压机构330可以为温敏泄压机构,该温敏泄压机构被配置为在设有泄压机构的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构330可以为压敏泄压机构,该压敏泄压机构被配置为在设有泄压机构的电池单体20的内部气压达到阈值时能够破裂。
在一些实施方式中,该泄压机构330可以与端盖310为一体式结构,或者,该泄压机构330也可以与端盖310为分体式结构。作为示例,泄压机构330可以通过在端盖310上设置刻痕的方式形成,或者,泄压机构330可以为独立于端盖310的泄压片,在该泄压片上设置刻痕以实现泄压功能。
具体地,在泄压机构330为独立于端盖310的泄压片的情况下,该泄压片中与该刻痕对应的泄压片的厚度小于泄压片中除刻痕处其他区域的厚度。刻痕处是泄压机构330最薄弱的位置。当电池单体20产生的气体太多使得电池单体20的内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构330可以在刻痕处发生破裂而导致电池单体20内外相通,气体压力及温度通过泄压机构330的裂开向外释放,进而避免电池单体20发生爆炸。
如图3和图4所示,绝缘件340包括本体341,为了使得电池单体20的内部产生的气体到达泄压机构330,该本体341中对应于泄压机构330的区域设置有第一通孔343。在一些实施方式中,该第一通孔343的所在区域与该泄压机构330沿第一方向x在本体341上的投影区域至少部分重合,其中,该第一方向x为垂直于端盖310且指向电池单体20的内部的方向。在电池单体20为圆柱电池单体的情况下,该第一方向x可平行于圆柱电池单体的高度方向。
继续参见图3和图4,绝缘件340除了具有本体341以外,还具有连接于该本体341并朝向电极组件220延伸的凸台342。在一些实施方式中,该凸台342朝向第一方向x延伸。为了更好的示意该凸台342,图5示出了本申请一实施例提供的绝缘件340的结构示意图,该图5中所示的绝缘件340为图4中的绝缘件340上下翻转后的示意图。
结合图4和图5所示,在本申请实施例中,凸台342可与本体341中的第一通孔343对应设置,该凸台342可位于该第一通孔343朝向电极组件220的一侧。作为示例,在图5所示的实施方式中,凸台342可以为柱形凸台。或者,在其它替代的实施方式中,凸台342还可以为锥台形凸台,圆台形凸台等其它形状的凸台,本申请实施例对该凸台342的具体形状不做限定。
通过该凸台342的设置,可以隔离第一通孔343对应的泄压机构330与电池单体20内部的电极组件220,防止该电极组件220形变搭接至泄压机构330,对泄压机构330造成影响。因此,通过该凸台342的设置,能够提升泄压机构330的使用可靠性,保证电池单体20的正常使用且提升电池单体20的安全性能。
结合图4和图5所示,在绝缘件340设置有凸台342的基础上,为了防止该凸 台342对泄压机构330的泄压功能造成影响,该凸台342的侧面形成有第二通孔344,该第二通孔344和上述第一通孔343共同形成电池单体20的内部至泄压机构330的排气通道。当电池单体20的内部压力或者温度达到预设阈值时,电池单体20的内部气体可以通过第二通孔344和第一通孔343到达泄压机构330,并通过泄压机构330排放至电池单体20的外部,防止电池单体20发生爆炸从而保证电池单体20的安全性能。
综上,在本申请实施例的技术方案中,在电池单体20中设置用于绝缘隔离端盖310和电极组件220的绝缘件340,该绝缘件340包括凸台342,该凸台342能够阻隔电池单体20中变形的电极组件220接触于端盖310上的泄压机构330,防止电极组件220对泄压机构330造成影响,保证电池单体20的正常运行,并提升其安全性能。与此同时,凸台342的侧面形成有第二通孔344,该第二通孔344和绝缘件340的本体341上的第一通孔343形成电池单体20的内部至泄压机构330的排气通道,因而可以保证泄压机构330的泄压功能,从而进一步保证电池单体20的安全性能。
在一些实施方式中,凸台342为中空结构。
作为示例,如图4和图5所示,中空结构的凸台342中,朝向电池单体20的外部的一侧对应于第一通孔343,而朝向电池单体20的内部的一侧具有实体的壁结构,且凸台342的侧面也具有实体的壁结构,该侧面的壁结构上具有第二通孔344。电池单体20的内部空间通过第二通孔344连通于凸台342内部的中空空间,且该中空空间再通过第一通孔343连接于泄压机构330的所在空间。
通过该实施方式的技术方案,凸台342的内部为中空空间,该中空空间与第一通孔343、第二通孔344共同形成电池单体20的内部至泄压机构330的排气通道,能够增大排气通道的空间,提升电池单体20的排气效果以增强电池单体20的安全性能。与此同时,将凸台342设置为中空结构,还能降低凸台342的质量以降低绝缘件340的整体质量,提升电池单体20的能量密度。
在一些实施方式中,第二通孔344的面积与泄压机构330中泄压区域的面积之比大于或等于40%。
具体地,在泄压机构330中,泄压区域可以是指:当泄压机构330致动时,泄压机构330中用于通过电池单体20的内部气体的区域。在一些实施例中,当泄压机构330中设置有刻痕时,该刻痕可包围形成封闭图形,该封闭图形的所在区域可理解为本实施方式中的泄压区域。
或者,在泄压机构330中,泄压区域也可以是指:端盖310中用于安装泄压机构330的区域。在一些实施例中,当泄压机构330为独立于端盖310的泄压片时,该端盖310中形成有用于安装该泄压片的容置区域(例如通孔),该容置区域可理解为本实施方式中的泄压区域。
在本实施方式中,第二通孔344可以为规则形状或者不规则形状的通孔,其设置于柱形的凸台342的侧面。例如,如图5所示,第二通孔344可以为矩形通孔。又例如,第二通孔344也可以为圆形、多边形等等其它形状的通孔,本申请对该第二通孔344的具体形状不做限定。
通过该实施方式的技术方案,根据泄压机构330中泄压区域的面积设计第二通 孔344的面积,可以使得第二通孔的343的排气效果适配于泄压机构330的泄压功能,避免第二通孔344过小影响泄压机构330的泄压功能,保证泄压机构330的排气效果从而保证电池单体20的安全性能。
除了图5所示实施方式中,凸台342的侧面形成有一个第二通孔344的方案以外,在另一些实施方式中,凸台342的侧面形成有多个第二通孔344。
通过该实施方式的技术方案,凸台342侧面的第二通孔344的数量为多个,多个第二通孔344的排气效果较优,进而可以进一步保证泄压机构330的泄压功能。
在一些实施方式中,泄压机构330与电极组件220的极耳221对应设置,凸台342具有朝向电池单体20的内部的第一壁3421,该第一壁3421中对应于第一通孔343的区域为实体区域。其中,该实体区域是指未设置有通孔的区域。
在本实施方式中,第一通孔343沿第一方向x在第一壁3421上的投影区域可为第一壁3421中对应于第一通孔343的区域。
作为示例,如图5所示,第一壁3421平行于绝缘件340的本体341中的主体壁3401,该主体壁3401平行于端盖310且设置有第一通孔343。该第一壁3421中的全部区域均对应于第一通孔343,该第一壁3421中的全部区域均为实体区域,换言之,该第一壁3421中的全部区域未设置有通孔。
当然,在其它示例中,第一壁3421也可以相对于绝缘件340的本体341中的主体壁3401倾斜设置,即第一壁3421不平行于本体341中的主体壁3401。该第一壁3421中也可仅部分区域对应于第一通孔343。本申请对该第一壁3421的具体设置不做限定。
通过该实施方式的技术方案,凸台342的第一壁3421中对应于第一通孔343的区域为实体区域,该第一壁3421对泄压机构330和电极组件220具有良好的隔离作用,能够进一步提高电池单体20的安全性能。
图6示出了本申请另一实施例提供的电池单体20的局部结构示意图。
如图6所示,在本申请实施例中,除了上文实施例中所提到的部件以外,电池单体20还包括:集流构件350和安装于端盖310的电极端子320,其中,集流构件350被配置为连接电极端子320与电极组件220(图6中未示出),凸台342的第一壁3421被配置为抵接于集流构件350。
具体地,该集流构件350可以被配置为连接电极端子320与电极组件220中的极耳221。
具体地,该集流构件350设置于绝缘件340朝向电池单体20的内部的一侧,该集流构件350能够接触于电极组件220中的极耳221。另外,该集流构件350、绝缘件340以及端盖310中均形成有电极引出孔,以便于电极端子320通过该电极引出孔连接于集流构件350,并经过绝缘件340安装于端盖310。
在一些实施方式中,集流构件350为可折叠部件。在端盖310封闭壳体210之前,该集流构件350处于展开状态。当端盖310封闭壳体210之后,该集流构件350会经过折叠而处于折叠状态。
作为示例,如图6所示,集流构件350包括第一折叠部351、第二折叠部352以及第三折叠部353。在端盖310封闭壳体210之前,该第一折叠部351、第二折叠部352 以及第三折叠部353如图6所示处于展开状态。
可以理解的是,在端盖310封闭壳体210之后,该第一折叠部351、第二折叠部352以及第三折叠部353能够被配置为沿第一方向x依次堆叠,该第一折叠部351、第二折叠部352以及第三折叠部353处于折叠状态。
图7示出了本申请一实施例提供的端盖310和绝缘件340的组合件的俯视示意图和截面示意图。其中,图7中的(a)图为端盖310和绝缘件340的组合件的俯视示意图,图7中的(b)图为(a)图中A-A’截面的截面示意图。
该第三折叠部353具有较大的面积,能够良好的连接于电极组件220的极耳221。
由于第三折叠部353具有较大的面积,因而,该第三折叠部353能够延伸至凸台342的第一壁3421远离端盖310的一侧。该凸台342的第一壁3421除了用于隔离电极组件220与泄压机构330以外,还能够被配置为抵接于集流构件350的第三折叠部353。因此,该凸台342的第一壁3421能够提高集流构件350在电池单体20中的安装稳定性,从而提高电池单体20的使用可靠性。
对应于图6和图7中所示的端盖310和绝缘件340的组合件,图8示出了本申请另一实施例提供的绝缘件340的结构示意图。如图8所示,第一方向x朝上,即图8中所示的绝缘件340为图6中的绝缘件340上下翻转后的示意图。
如图8所示,凸台342还具有第二壁3422,该第二壁3422连接于上述第一壁3421,且相对于第一壁3421朝向端盖310(图中未示出)的中心倾斜设置,第一壁3421与第二壁3422之间的夹角为钝角。
具体地,在本申请实施例中,第二壁3422为相对于第一壁3421朝向端盖310的中心倾斜的倾斜斜面,该倾斜的第二壁3422能够降低凸台342向电池单体20的内部凸出的空间体积,从而节省电池单体20的内部空间,提升电池单体20的能量密度。
另外,倾斜设置的第二壁3422还能避免凸台342对其它装配于绝缘件340的部件(例如,上文实施例中的集流构件350)造成干涉,有利于提升电池单体20的生产效率以及电池单体20的整体性能。
再者,第二壁3422连接于第一壁3421,且该第二壁3422与第一壁3421之间的夹角为钝角,该第二壁3422与第一壁3421能够共同用于隔离电极组件与泄压机构330,提升电池单体20的安全性能。
综上,通过本申请实施例的技术方案,在凸台342中设置倾斜的第二壁3422,在保证电极组件220与泄压机构330之间隔离性能的同时,不仅能节省电池单体20的内部空间,提升电池单体20的能量密度,还能避免凸台342对其它装配于绝缘件340的部件造成干涉,提升电池单体20的生产效率以及电池单体20的整体性能。
在一些实施方式中,第二壁3422在第一通孔343的所在平面上的投影位于该第一通孔343中。
具体地,在本实施方式中,第二壁3422的面积可以小于或等于第一通孔343的面积,该第二壁3422在第一通孔343的所在平面上的投影可完全位于第一通孔343中。
通过该实施方式的技术方案,第二壁3422与第一通孔343的对应性良好,第二壁3422能够起到对泄压机构330和电极组件220的极耳221良好的隔离效果,且第二 壁3422在第一通孔343的所在平面上的投影没有超过第一通孔343的所在区域,该第二壁3422不会占用过多的电池单体20的内部空间,减小凸台342对于电池单体20的内部空间的影响。
如图8所示,当凸台342同时具有第一壁3421和第二壁3422时,该第二壁3422可以位于第一壁3421朝向绝缘件340的中心的一侧。另外,位于凸台342的侧面的第二通孔344也可靠近于第二壁3422设置,即靠近于绝缘件340的中心设置。
在图8所示示例中,第二通孔344的形状可近似为梯形,该梯形的上底长度可以等于第一壁3421中对应于该上底的一段弧长长度,该梯形的下底长度可以等于第一通孔343中对应于该下底的一段弧长长度,该梯形的高可以小于或等于凸台342的高度。通过对该梯形的面积的计算,可以得到第二通孔344的面积。
另外,在图8所示示例中,绝缘件340的主体壁3401朝向电池单体20的内部的一侧还设置有支撑凸台345,区别于上述用于隔离电极组件220与泄压机构330的凸台342,该支撑凸台345用于支撑安装于绝缘件340的相关部件(例如,上述集流构件350),以保证该相关部件在电池单体20中的安全稳定性。
在一些实施方式中,凸台342的高度可以与支撑凸台345的高度相同。该凸台342与支撑凸台345可以共同支撑上文申请实施例中的集流构件350。
图9示出了本申请另一实施例提供的端盖310和绝缘件340的组合件的俯视图示意图和截面示意图。其中,图9中的(a)图为端盖310和绝缘件340的组合件的俯视示意图,图9中的(b)图为(a)图中B-B’截面的截面示意图。
如图9所示,电池单体20还包括:集流构件350,其中,端盖310封闭壳体210之前,集流构件350为展开状态,凸台342的第二壁3422被配置为抵接于集流构件350。
具体地,如图9所示,集流构件350中的第一折叠部351首先装配于绝缘件340,第二折叠部352和第三折叠部353均处于展开状态。此时,凸台342中,倾斜的第二壁3422可以避免对第二折叠部352造成干涉,使得第三折叠部353相对于绝缘件340延伸出较长的距离,且该倾斜的第二壁3422还能够用于支撑第二折叠部352,保证集流构件350的稳定性。
当集流构件350处于图9所示的状态时,该集流构件350中的第三折叠部353与电池单体20内部的电极组件220进行焊接。当凸台342不会对集流构件350造成干涉,便于第三折叠部353相对于绝缘件340延伸出较长的距离时,用于焊接第三折叠部353与电极组件220的焊具能够较为方便的实现二者之间的焊接,提升焊接效率以及焊接性能。且凸台342的第二壁3422被配置为抵接于集流构件350,该凸台342还能通过第二壁3422对集流构件350提供支撑,使得集流构件350具有较高的稳定性,第三折叠部353与电极组件220之间的焊接性能也能够得到进一步的提高。
综上,通过本申请实施例的技术方案,凸台342的第二壁3422除了用于避免凸台342对集流构件350造成干涉以外,该第二壁3422还能够支撑集流构件350的第二折叠部352,以提高集流构件350在电池单体20中的安装稳定性,从而提高电池单体20的使用可靠性。
图10示出了本申请另一实施例提供的电池单体20的局部结构示意图。
如图10所示,在本申请实施例中,除了上文实施例中所提到的部件以外,电池单体20还包括:铆接件360和绝缘部370。其中,铆接件360设置于端盖310朝向电池单体20的外部的一侧,该铆接件360用于固定凸出于端盖310的电极端子320。
在一些实施例中,该铆接件360为金属材料。电池单体20外部的汇流部件可通过连接至该铆接件360,以输出电池单体20的电能。绝缘部370设置于铆接件360与端盖310之间,用于隔离端盖310和铆接件360。在一些实施例中,绝缘部370的材料包括但不限于是塑胶材料。
继续参见图10,除了铆接件360和绝缘部370以外,电池单体20还可以包括密封圈380,用于密封端盖310和/或绝缘件340中的电极引出孔。通过该密封圈380的设置,可以保证电池单体20的密封性,防止电池单体20的内部的电解质发生漏液,从而保证电池单体20的使用可靠性以及安全性。
另外,在图10所示实施例中,泄压机构330可以包括保护片331和泄压片332,其中,泄压片332可设置有刻痕,保护片331设置于泄压片332朝向电池单体20的外部的一侧,用于保护该泄压片332。为了安装该泄压机构330,端盖310上设置有对应于该泄压机构330的第三通孔311,保护片331和泄压片332分别设置于第三通孔311的两侧。
图11示出了本申请另一实施例提供的电池单体20的结构示意图。
在本申请实施例中,该电池单体20包括:具有开口211的壳体210。作为示例,如图11所示,该壳体210为中空圆柱状的壳体,其至少一端的端面具有开口211。另外,电池单体20还包括:容纳于该壳体210内的电极组件220和覆盖于开口211的端盖310。其中,端盖310中设置有泄压机构330,该泄压机构330用于在电池单体20的内部压力或温度达到预设阈值时致动以将内部压力或温度泄放至电池单体20的外部。在一些实施方式中,电极组件220的端部形成有极耳221,泄压机构330与该电极组件220的极耳221可对应设置。进一步地,电池单体20还包括:绝缘件340,该绝缘件340设置于端盖310和电极组件220之间以绝缘隔离该端盖310和电极组件220。具体地,该绝缘件340包括本体341和凸台342,该本体341对应于泄压机构330的区域设置有第一通孔343,凸台342连接于本体341并朝向电极组件220延伸。其中,凸台342为中空结构,凸台342的侧面形成有第二通孔344,该第一通孔343和第二通孔344用于形成电池单体20的内部至泄压机构330的排气通道。另外,凸台342具有朝向电池单体20的内部的第一壁3421,该第一壁3421中对应于第一通孔343的区域为实体区域,且该凸台342的第一壁3421还被配置为抵接于集流构件350。
本申请一个实施例还提供了一种电池10,该电池10可以包括箱体以及前述实施例中的多个电池单体20,其中,该多个电池单体20容纳设置于箱体中。
本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述实施例中的电池10,电池10用于向该用电装置提供电能。
在一些实施例中,用电装置可以为车辆1、船舶或航天器。
上文描述了本申请实施例电池单体20、电池10和用电装置,下面将描述本申 请实施例的制备电池单体的方法和装置,其中未详细描述的部分可参见前述各实施例。
图12示出了本申请一个实施例的制备电池单体的方法200的流程示意图。如图12所示,该方法200可以包括如下步骤。
S201:提供壳体210,该壳体210具有开口211。
S202:提供电极组件220。
S203:提供端盖310,该端盖310设置有泄压机构330,该泄压机构330用于在电池单体20的内部压力或温度达到预设阈值时致动以将内部压力或温度泄放至电池单体20的外部。
S204:提供绝缘件340,该绝缘件340包括本体341和凸台342,该本体341对应于泄压机构330的区域设置有第一通孔343,凸台342连接于本体341并朝向电极组件220延伸,凸台342的侧面形成有第二通孔344,该第一通孔343和第二通孔344用于形成电池单体20的内部至泄压机构330的排气通道。
S205:将电极组件220容纳于壳体210内且将端盖310覆盖于开口211。
S206:将绝缘件340设置于端盖310和电极组件220之间以绝缘隔离该端盖310和电极组件220。
图13示出了本申请一个实施例的制备电池单体的装置300的结构示意框图。如图13所示,制备电池的装置300可以包括:第一提供模块301、第二提供模块302、第三提供模块303和安装模块304。
第一提供模块301,用于提供壳体210,该壳体210具有开口211。
第二提供模块302,用于提供电极组件220。
第三提供模块303,提供端盖310,该端盖310设置有泄压机构330,该泄压机构330用于在电池单体20的内部压力或温度达到预设阈值时致动以将内部压力或温度泄放至电池单体20的外部。
第四提供模块304,用于提供绝缘件340,该绝缘件340包括本体341和凸台342,该本体341对应于泄压机构330的区域设置有第一通孔343,凸台342连接于本体341并朝向电极组件220延伸,凸台342的侧面形成有第二通孔344,该第一通孔343和第二通孔344用于形成电池单体20的内部至泄压机构330的排气通道。
安装模块305,用于将电极组件220容纳于壳体210内且将端盖310覆盖于开口211,且将绝缘件340设置于端盖310和电极组件220之间以绝缘隔离该端盖310和电极组件220。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种电池单体(20),包括:
    壳体(210),具有开口(211);
    电极组件(220),容纳于所述壳体(210)内;
    端盖(310),覆盖所述开口(211)并设置有泄压机构(330),所述泄压机构(330)用于在所述电池单体(20)的内部压力或温度达到预设阈值时致动以将所述内部压力泄放至所述电池单体(20)的外部;
    绝缘件(340),设置于所述端盖(310)和所述电极组件(220)之间以绝缘隔离所述端盖(310)和所述电极组件(220),所述绝缘件(340)包括本体(341)和凸台(342),所述本体(341)对应于所述泄压机构(330)的区域设置有第一通孔(343),所述凸台(342)连接于所述本体(341)并朝向所述电极组件(220)延伸,所述凸台(342)的侧面形成有第二通孔(344),所述第一通孔(343)和所述第二通孔(344)用于形成所述电池单体(20)的内部至所述泄压机构(330)的排气通道。
  2. 根据权利要求1所述的电池单体(20),其中,所述凸台(342)为中空结构。
  3. 根据权利要求1或2所述的电池单体(20),其中,所述第二通孔(344)的面积与所述泄压机构(330)中泄压区域的面积之比大于或等于40%。
  4. 根据权利要求1至3中任一项所述的电池单体(20),其中,所述凸台(342)的侧面形成有多个所述第二通孔(344)。
  5. 根据权利要求1至4中任一项所述的电池单体(20),其中,所述泄压机构(330)与所述电极组件(220)的极耳(221)对应设置,所述凸台(342)具有朝向所述电池单体(20)的内部的第一壁(3421),所述第一壁(3421)中对应于所述第一通孔(343)的区域为实体区域。
  6. 根据权利要求5所述的电池单体(20),其中,所述电池单体(20)还包括:集流构件(350)和安装于所述端盖(310)的电极端子(320);
    其中,所述集流构件(350)被配置为连接所述电极端子(320)与所述电极组件(220),所述凸台(342)的第一壁(3421)被配置为抵接于所述集流构件(350)。
  7. 根据权利要求5或6所述的电池单体(20),其中,所述凸台(342)还具有第二壁(3422),所述第二壁(3422)连接于所述第一壁(3421),且相对于所述第一壁(3421)朝向所述端盖(310)的中心倾斜设置,所述第一壁(3421)与所述第二壁(3422)之间的夹角为钝角。
  8. 根据权利要求7所述的电池单体(20),其中,所述第二壁(3422)在所述第一通孔(343)的所在平面上的投影位于所述第一通孔(343)中。
  9. 一种电池(10),包括:箱体,以及,
    多个如权利要求1至8中任一项所述的电池单体(20),多个所述电池单体(20)容纳于所述箱体中。
  10. 一种用电装置(1),包括:如权利要求10所述的电池(10),所述电池用于 向所述用电装置提供电能。
  11. 一种制备电池单体的方法(200),包括:
    提供壳体(210),所述壳体(210)具有开口(211);
    提供电极组件(220);
    提供端盖(310),所述端盖(310)设置有泄压机构(330),所述泄压机构(330)用于在所述电池单体(20)的内部压力或温度达到预设阈值时致动以将所述内部压力泄放至所述电池单体(20)的外部;
    提供绝缘件(340),所述绝缘件(340)包括本体(341)和凸台(342),所述本体(341)对应于所述泄压机构(330)的区域设置有第一通孔(343),所述凸台(342)连接于所述本体(341)并朝向所述电极组件(220)延伸,所述凸台(342)的侧面形成有第二通孔(344),所述第一通孔(343)和所述第二通孔(344)用于形成所述电池单体(20)的内部至所述泄压机构(330)的排气通道;
    将所述电极组件(220)容纳于所述壳体(210)内且将所述端盖(310)覆盖于所述开口(211);
    将所述绝缘件(340)设置于所述端盖(310)和所述电极组件(220)之间以绝缘隔离所述端盖(310)和所述电极组件(220)。
  12. 一种制备电池单体的装置(300),包括:
    第一提供模块(301),用于提供壳体(210),所述壳体(210)具有开口(211);
    第二提供模块(302),用于提供电极组件(220);
    第三提供模块(303),用于提供端盖(310),所述端盖(310)设置有泄压机构(330),所述泄压机构(330)用于在所述电池单体(20)的内部压力或温度达到预设阈值时致动以将所述内部压力泄放至所述电池单体(20)的外部;
    第四提供模块(304),用于提供绝缘件(340),所述绝缘件(340)包括本体(341)和凸台(342),所述本体(341)对应于所述泄压机构(330)的区域设置有第一通孔(343),所述凸台(342)连接于所述本体(341)并朝向所述电极组件(220)延伸,所述凸台(342)的侧面形成有第二通孔(344),所述第一通孔(343)和所述第二通孔(344)用于形成所述电池单体(20)的内部至所述泄压机构(330)的排气通道;
    安装模块(305),用于将所述电极组件(220)容纳于所述壳体(210)内且将所述端盖(310)覆盖于所述开口(211),且将所述绝缘件(340)设置于所述端盖(310)和所述电极组件(220)之间以绝缘隔离所述端盖(310)和所述电极组件(220)。
PCT/CN2022/082982 2022-03-25 2022-03-25 电池单体、电池、用电装置以及制备电池的方法和装置 WO2023178639A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2022/082982 WO2023178639A1 (zh) 2022-03-25 2022-03-25 电池单体、电池、用电装置以及制备电池的方法和装置
CN202280061006.2A CN117941135A (zh) 2022-03-25 2022-03-25 电池单体、电池、用电装置以及制备电池的方法和装置
EP22932703.6A EP4398386A1 (en) 2022-03-25 2022-03-25 Battery cell, battery, electrical device, and method and device for preparing battery
CN202320568358.9U CN219873977U (zh) 2022-03-25 2023-03-22 电池单体、电池以及用电装置
US18/665,503 US20240297401A1 (en) 2022-03-25 2024-05-15 Battery cell, battery, electrical device, and method and device for preparing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082982 WO2023178639A1 (zh) 2022-03-25 2022-03-25 电池单体、电池、用电装置以及制备电池的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/665,503 Continuation US20240297401A1 (en) 2022-03-25 2024-05-15 Battery cell, battery, electrical device, and method and device for preparing battery

Publications (1)

Publication Number Publication Date
WO2023178639A1 true WO2023178639A1 (zh) 2023-09-28

Family

ID=88099549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082982 WO2023178639A1 (zh) 2022-03-25 2022-03-25 电池单体、电池、用电装置以及制备电池的方法和装置

Country Status (4)

Country Link
US (1) US20240297401A1 (zh)
EP (1) EP4398386A1 (zh)
CN (2) CN117941135A (zh)
WO (1) WO2023178639A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214898799U (zh) * 2021-06-30 2021-11-26 宁德时代新能源科技股份有限公司 端盖组件、电池及用电装置
CN215988966U (zh) * 2021-09-28 2022-03-08 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池以及用电装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214898799U (zh) * 2021-06-30 2021-11-26 宁德时代新能源科技股份有限公司 端盖组件、电池及用电装置
CN215988966U (zh) * 2021-09-28 2022-03-08 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池以及用电装置

Also Published As

Publication number Publication date
CN219873977U (zh) 2023-10-20
EP4398386A1 (en) 2024-07-10
US20240297401A1 (en) 2024-09-05
CN117941135A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN217182373U (zh) 连接构件、电池单体、电池和用电设备
EP4138166A1 (en) Battery cell, battery, electrical device, and manufacturing method and device for battery cell
CN216872186U (zh) 电池单体、电池及用电装置
WO2022246839A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
EP4235922A1 (en) Battery box, battery, electrical device, method and device for preparing battery
CN218414822U (zh) 电池单体、电池和用电设备
WO2023134479A1 (zh) 电池和用电设备
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023023916A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023004829A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法和设备
JP2024503489A (ja) 電池セル、電池、電力消費機器及び電池セルの製造方法と機器
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
WO2023185327A1 (zh) 端盖、电池单体、电池及用电设备
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2023178639A1 (zh) 电池单体、电池、用电装置以及制备电池的方法和装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023236219A1 (zh) 电池单体、电池及用电设备
KR102718700B1 (ko) 배터리 셀 및 그의 제조 방법과 제조 시스템, 배터리 및 전기 장치
CN219917360U (zh) 电池单体、电池以及用电设备
CN218827461U (zh) 电池单体的外壳、电池单体、电池和用电设备
WO2023193256A1 (zh) 连接构件、电池单体、电池和用电设备
WO2023097469A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061006.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022932703

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022932703

Country of ref document: EP

Effective date: 20240402