WO2023023916A1 - 电池单体及其制造方法和制造系统、电池以及用电装置 - Google Patents

电池单体及其制造方法和制造系统、电池以及用电装置 Download PDF

Info

Publication number
WO2023023916A1
WO2023023916A1 PCT/CN2021/114155 CN2021114155W WO2023023916A1 WO 2023023916 A1 WO2023023916 A1 WO 2023023916A1 CN 2021114155 W CN2021114155 W CN 2021114155W WO 2023023916 A1 WO2023023916 A1 WO 2023023916A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
cover
tab
electrode
battery
Prior art date
Application number
PCT/CN2021/114155
Other languages
English (en)
French (fr)
Inventor
方堃
郭志君
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020237015990A priority Critical patent/KR102637317B1/ko
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180024771.2A priority patent/CN116018718B/zh
Priority to JP2023529132A priority patent/JP7445823B2/ja
Priority to PCT/CN2021/114155 priority patent/WO2023023916A1/zh
Priority to CN202311728665.XA priority patent/CN117791003A/zh
Priority to EP21876743.2A priority patent/EP4170781A4/en
Priority to US17/715,076 priority patent/US20230055271A1/en
Priority to CN202222212967.9U priority patent/CN218586157U/zh
Priority to CN202280007865.3A priority patent/CN116636057A/zh
Priority to PCT/CN2022/114022 priority patent/WO2023025104A1/zh
Priority to EP22860450.0A priority patent/EP4293769A1/en
Publication of WO2023023916A1 publication Critical patent/WO2023023916A1/zh
Priority to US18/412,586 priority patent/US20240154218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell, a manufacturing method and system thereof, a battery, and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides a battery cell, its manufacturing method and manufacturing system, a battery and an electrical device, which can improve the flow capacity of the battery cell and simplify the structure of the battery cell.
  • an embodiment of the present application provides a battery cell for a battery, which includes:
  • an electrode assembly comprising first and second tabs of opposite polarity
  • the casing is used to accommodate the electrode assembly.
  • the casing includes a cylinder and a cover connected to the cylinder.
  • the cylinder is arranged around the periphery of the electrode assembly.
  • the cover is provided with an electrode lead-out hole. At least a part of the cover is used to electrically connect the battery the first connecting member and the first tab; and
  • the electrode terminal is used to electrically connect the second connecting member and the second tab of the battery.
  • the electrode terminal is insulated from the cover and installed in the electrode lead-out hole.
  • One of the cover and the electrode terminal is the positive electrode of the battery cell. output pole, and the other is the negative output pole of the battery cell.
  • the cover body and the electrode terminal as the output pole, the structure of the battery cell can be simplified and the overcurrent capability of the battery cell can be ensured.
  • the cover and the electrode terminals are located at the same end of the battery cell, so that the first connecting member and the second connecting member can be assembled on the same side of the battery cell, which can simplify the assembly process and improve the efficiency of assembling multiple battery cells into groups. efficiency.
  • the cover body and the barrel body form an integral structure.
  • the integral molding structure can save the connecting process of the cover body and the cylinder body.
  • the cover body includes a connecting portion and a bent portion
  • the connecting portion is provided with an electrode lead-out hole
  • at least a part of the connecting portion is used to connect the first connecting member and the first tab
  • the bent portion is used to connect the barrel body and connections.
  • the bent portion can release stress during the molding process of the casing, reduce stress concentration, and reduce the risk of casing rupture.
  • connection portion includes a body portion and a first recess, the body portion is disposed around the periphery of the first recess, the body portion is used to connect the first connection member and the first tab, and the first recess is formed from the outer surface of the body portion It is recessed along the direction facing the electrode assembly, and the electrode lead-out hole penetrates the bottom wall of the first recess and communicates the first recess with the inside of the housing.
  • the battery cell further includes a first insulating member, the first recess configured to accommodate at least a portion of the first insulating member, and the portion of the first insulating member accommodated in the first recess is attached to a side wall and/or a bottom of the first recess. wall.
  • the first insulating member can be positioned, which simplifies the assembly process.
  • the first recess can accommodate at least a part of the first insulating member, so that the size of the outer surface of the first insulating member protruding from the main body can be reduced, so as to reduce the maximum size of the battery cell and improve energy density.
  • the thickness of the body portion is greater than the wall thickness of the barrel.
  • the body part is used to connect with the first connecting member, so the body part needs to have a larger thickness to ensure the connection strength between the body part and the first connecting member.
  • the body portion with a larger thickness can better support components such as electrode terminals.
  • the barrel mainly separates the electrode assembly from the outside, and it may have a relatively small thickness to reduce the weight of the battery cell as a whole.
  • the difference between the thickness D1 of the body part and the wall thickness D2 of the barrel satisfies: 0.1mm ⁇ D1-D2 ⁇ 2mm.
  • D1-D2 is less than 0.1mm, then the thickness of the body part is too small or the thickness of the cylinder is too large, the thickness of the body part is too small will cause the strength of the body part is insufficient, and the thickness of the cylinder will cause the weight of the cylinder to be too large Large, affecting the energy density. If D1-D2 is greater than 2 mm, the difference between the stretching amount of the main body and the barrel body is too large during the stretching process, and the barrel body is easily damaged during the stretching process. Therefore, the embodiment of the present application makes D1 and D2 satisfy: 0.1mm ⁇ D1-D2 ⁇ 2mm.
  • the barrel is cylindrical
  • the electrode lead-out hole is a circular hole
  • the central axis of the barrel and the central axis of the electrode lead-out hole are coincidently arranged.
  • the electrode lead-out hole is used to define the position of the electrode terminal.
  • the central axis of the electrode lead-out hole coincides with the central axis of the cylinder, so that at least part of the electrode terminal can be located at the center of the cover.
  • the inner radius L1 of the barrel and the width L2 of the main body satisfy: 0.2 ⁇ L2/L1 ⁇ 0.8, and the width L2 of the main body is the difference between the outer radius of the main body and the inner radius of the main body.
  • the width L2 of the main body is negatively correlated with the radius of the electrode lead-out hole. If the width L2 of the main body is too small, the current flow capacity of the main body will be insufficient; if the width L2 of the main body is too large, the radius of the electrode lead-out hole will be too small, and the current flow capacity of the electrode terminal will be insufficient.
  • the inventors have tested and found that when the inner radius L1 of the cylinder and the width L2 of the main body meet: 0.2 ⁇ L2/L1 ⁇ 0.8, the overcurrent capacity of the main body and the overcurrent capacity of the electrode terminals can be better balanced to meet the requirements for Requirements for the overcurrent capability of the battery cell.
  • the body part is used for welding with the first connecting member and forms a first welding area on the body part, the first welding area is spaced apart from the first end of the bending part, and the first end is used for connecting body department.
  • the first welding area is spaced apart from the first end of the bent part to reduce the risk of welding to the bent part due to process errors during the welding process, reduce the possibility of false welding, and ensure that the main body and the connection strength between the first connecting member.
  • the welding depth D3 of the first welding region and the thickness D1 of the body part satisfy: 0.1 ⁇ D3/D1 ⁇ 0.8.
  • the value of D3/D1 is made greater than or equal to 0.1 to ensure the connection strength and flow capacity between the main body and the first connection member. If the value of D3/D1 is too large, the power required for welding will be too high, and the high temperature generated during welding will easily burn other components. In addition, if the value of D3/D1 is too large, the risk of the main body being melted will be increased. After the main body is melted, it is easier to burn other components in the casing. Therefore, the embodiment of the present application makes the value of D3/D1 less than or equal to 0.8, so as to reduce the temperature during welding and reduce the risk of burning other components.
  • the battery cell further includes a second insulating member
  • the second insulating member includes an insulating body and an insulating protrusion protruding from the outer periphery of the insulating body, the insulating body leans against the side of the body portion facing the electrode assembly,
  • the insulating protrusion is arranged on the side of the bending portion facing the electrode assembly, and the surface of the insulating protrusion facing away from the electrode assembly is closer to the electrode assembly than the surface of the insulating body facing away from the electrode assembly, so as to form a first place for avoiding the bending portion.
  • Two recesses Two recesses.
  • the insulating body can separate at least part of the main body from the electrode assembly, and the insulating protrusion can separate at least part of the bending part from the electrode assembly.
  • this embodiment can reduce the The risk of contact between the electrode assembly and the main body and the risk of contact between the electrode assembly and the bending part are eliminated, thereby improving safety performance.
  • the bent portion is avoided by providing the second concave portion, so as to prevent the bent portion from interfering with the second insulating member.
  • the insulation protrusion is beyond the second end of the bent portion along a direction facing the electrode assembly, and the second end is used for connecting the barrel.
  • the outer surface of the insulating protrusion is spaced apart from the inner surface of the bent portion, so as to avoid interference between the insulating protrusion and the bent portion.
  • the size of the insulating protrusion protruding from the insulating main body is not affected by the bending portion, which can improve the isolation effect of the insulating protrusion.
  • the inner surface of the insulating body is formed with a third recess recessed in a direction away from the electrode assembly, at least part of the electrode terminal is accommodated in the third recess.
  • the provision of the third recess can reduce the space occupied by the second insulating member and the electrode terminals, so as to improve the energy density of the battery cell.
  • the thickness of the insulating body is greater than the thickness of the body portion.
  • the thickness of the insulating main body is greater than that of the main body, so as to extend the path of heat transfer and reduce the influence of heat on other components.
  • the insulating body in this embodiment has a relatively large thickness, so that even if the part of the insulating body close to the first welding area is burned, the insulating effect can be ensured.
  • a convex portion protruding from an inner surface of the body portion in a direction facing the electrode assembly is formed on the connecting portion at a position opposite to the first concave portion.
  • the connecting portion further includes a fourth concave portion, which is recessed from the top end surface of the convex portion to the inner surface of the main body portion in a direction away from the electrode assembly.
  • the battery cell further includes a second insulating member, the fourth recess configured to accommodate at least part of the second insulating member, the portion of the second insulating member accommodated in the fourth recess is attached to a side wall and/or a bottom of the fourth recess wall.
  • the thickness of the bottom wall of the first concave portion can be increased by providing the convex portion to increase the strength of the bottom wall of the first concave portion, so that the bottom wall of the first concave portion can effectively support the electrode terminal.
  • the second insulating member can cover the main body from the inside to separate the electrode assembly from the main body, reduce the risk of contact and conduction between the electrode assembly and the main body when the battery cell vibrates, and improve safety performance.
  • the fourth recess the second insulating member can be positioned, which simplifies the assembly process.
  • the fourth recess can accommodate at least a part of the second insulating member, so that the inner space of the casing can be fully utilized and the energy density can be improved.
  • the bent part includes a first end for connecting the connecting part and a second end for connecting the barrel, the first end points to the direction of the second end, and the thickness of the bent part is slowing shrieking.
  • the thickness of the bent portion is gradually changed to adapt to the difference in thickness between the connecting portion and the cylinder, and the cylinder and the connecting portion are smoothly connected to reduce the risk of steps being formed on the inner and outer surfaces of the housing. Reduce stress concentration.
  • the second tab is provided at one end of the electrode assembly facing the cover, and the first tab is provided at the other end of the electrode assembly away from the cover.
  • the cylindrical body is used for connecting the first tab and the cover, so that the first tab is electrically connected to the cover.
  • the first tab and the second tab are arranged at both ends of the electrode assembly, which can reduce the risk of conduction between the first tab and the second tab, and increase the flow area of the first tab and the The flow area of the second tab.
  • the first tab is a negative tab
  • the base material of the casing is steel.
  • the casing is electrically connected to the negative pole tab, that is, the casing is in a low potential state.
  • the steel shell is not easily corroded by the electrolyte in a low potential state to reduce safety risks.
  • the cylinder body has an opening at an end facing away from the cover body, and the battery cell further includes a cover plate for closing the opening.
  • an embodiment of the present application provides a battery, comprising: the battery cell according to any one of the embodiments in the first aspect; a first connecting member connected to a cover; and a second connecting member connected to an electrode terminal.
  • an embodiment of the present application provides an electrical device, including the battery in the second aspect, and the battery is used to provide electrical energy.
  • the embodiment of the present application provides a method for manufacturing a battery cell, including:
  • a casing and electrode terminals are provided.
  • the casing includes a cylinder and a cover connected to the cylinder.
  • the cover is provided with an electrode lead-out hole.
  • the cylinder has an opening at the end away from the cover.
  • the electrode terminals are insulated from the cover and installed on the Electrode lead-out hole;
  • the electrode assembly includes a first tab and a second tab with opposite polarities;
  • the cover is used to electrically connect the first connection member and the first tab of the battery
  • the electrode terminal is used to electrically connect the second connection member and the second tab of the battery.
  • One is the positive output pole of the battery cell, and the other is the negative output pole of the battery cell.
  • the embodiment of the present application provides a battery cell manufacturing system, including:
  • the first providing device is used to provide a shell and an electrode terminal.
  • the shell includes a cylinder and a cover connected to the cylinder.
  • the cover is provided with an electrode lead-out hole.
  • the cylinder has an opening at the end away from the cover, and the electrode terminal is insulated. Set on the cover and installed in the electrode lead-out hole;
  • the second providing device is used to provide an electrode assembly, the electrode assembly includes a first tab and a second tab with opposite polarities;
  • the first assembly device is used to install the electrode assembly into the casing, so that the cylinder is arranged around the outer periphery of the electrode assembly, and the second tab is electrically connected to the electrode terminal;
  • the second assembly device is used to provide a cover plate, and connect the cover plate to the barrel to close the opening of the barrel, and electrically connect the first tab to the cover plate so that the first tab passes through the cover plate and the barrel electrically connected to the cover;
  • the cover is used to electrically connect the first connection member and the first tab of the battery
  • the electrode terminal is used to electrically connect the second connection member and the second tab of the battery.
  • One is the positive output pole of the battery cell, and the other is the negative output pole of the battery cell.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is an explosion schematic diagram of the battery module shown in FIG. 2;
  • Fig. 4 is a partial cross-sectional schematic diagram of a battery provided by some embodiments of the present application.
  • Fig. 5 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Figure 6 is an enlarged schematic view of the battery shown in Figure 4 at box A;
  • Fig. 7 is a partial cross-sectional schematic diagram of a battery cell housing provided by some embodiments of the present application.
  • FIG. 8 is an enlarged schematic view of the battery shown in FIG. 6 at the circle B;
  • Fig. 9 is a schematic structural diagram of a second insulating member of a battery cell provided in some embodiments of the present application.
  • FIG. 10 is an enlarged schematic view of the battery shown in FIG. 6 at the circle C;
  • Fig. 11 is a schematic structural view of electrode terminals of battery cells provided by some embodiments of the present application.
  • Fig. 12 is a schematic flowchart of a method for manufacturing a battery cell provided in some embodiments of the present application.
  • Fig. 13 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • Batteries generally include a case for enclosing one or more battery cells.
  • the box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode current collector and a positive electrode lug protruding from the positive electrode current collector. part is coated with a positive electrode active material layer, and at least part of the positive electrode tab is not coated with a positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode tab protruding from the negative electrode current collector, and the negative electrode current collector part is coated with a negative electrode active material layer, and at least part of the negative electrode tab is not coated with a negative electrode active material layer.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • a plurality of battery cells are electrically connected through a bus member.
  • the inventors set the positive output pole and the negative output pole of the battery cell to the same end of the battery cell, so as to facilitate the connection of the bus component to the positive output pole and the negative output pole.
  • the battery cells are usually provided with electrode terminals, and use the electrode terminals as output poles.
  • the inventor tried to arrange the two electrode terminals at the same end of the battery cell, and serve as the positive output pole and the negative output pole of the battery cell respectively.
  • the inventors found that for a battery cell with a small size, if two electrode terminals are arranged at the same end of the battery cell, in order to facilitate the assembly of the electrode terminal and the bus component, it is necessary to ensure that the distance between the two electrode terminals is relatively large. Larger, which will compress the size of the electrode terminal itself, resulting in a smaller electrode terminal flow area, affecting the flow capacity of the battery cell.
  • the embodiment of the present application provides a technical solution, which uses the cover body of the casing as the output pole, and makes the cover body and the electrode terminal at the same end of the battery cell, which can simplify the structure of the battery cell and ensure that the battery cell body flow capacity.
  • Electric devices can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and electric tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiments of the present application do not impose special limitations on the above-mentioned electrical devices.
  • the electric device is taken as an example for description.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4 , the controller 3 is used to control the battery 2 to supply power to the motor 4 , for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a box body 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the box body 5 .
  • the box body 5 is used to accommodate the battery cells, and the box body 5 may have various structures.
  • the box body 5 may include a first box body part 51 and a second box body part 52, the first box body part 51 and the second box body part 52 cover each other, the first box body part 51 and the second box body part 51
  • the two box parts 52 jointly define an accommodating space 53 for accommodating the battery cells.
  • the second box part 52 can be a hollow structure with one end open, the first box part 51 is a plate-shaped structure, and the first box part 51 covers the opening side of the second box part 52 to form an accommodating space 53
  • the box body 5; the first box body portion 51 and the second box body portion 52 also can be a hollow structure with one side opening, and the opening side of the first box body portion 51 is covered on the opening side of the second box body portion 52 , to form a box body 5 with an accommodation space 53 .
  • the first box body portion 51 and the second box body portion 52 can be in various shapes, such as a cylinder, a cuboid, and the like.
  • a sealing member may also be provided between the first box body portion 51 and the second box body portion 52, such as sealant, sealing ring, etc. .
  • the first box part 51 covers the top of the second box part 52
  • the first box part 51 can also be called an upper box cover
  • the second box part 52 can also be called a lower box.
  • the battery 2 there may be one or more battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel or in parallel.
  • the hybrid connection means that there are both series and parallel connections among the multiple battery cells.
  • a plurality of battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of a plurality of battery cells is accommodated in the box 5; of course, it is also possible to first connect a plurality of battery cells in series or parallel or
  • the battery modules 6 are formed by parallel connection, and multiple battery modules 6 are connected in series or in parallel or in series to form a whole, and are housed in the box body 5 .
  • FIG. 3 is an exploded schematic diagram of the battery module shown in FIG. 2 .
  • FIG. 3 there are multiple battery cells 7 , and the multiple battery cells 7 are connected in series, in parallel, or in parallel to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series, in parallel or in parallel to form a whole, and accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a confluence component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • Fig. 4 is a partial cross-sectional schematic diagram of a battery provided by some embodiments of the present application
  • Fig. 5 is an exploded schematic diagram of a battery cell provided by some embodiments of the present application
  • Fig. 6 is an enlarged view of the battery shown in Fig. 4 at box A Schematic diagram
  • FIG. 7 is a partial cross-sectional schematic diagram of the casing of the battery cell provided by some embodiments of the present application
  • FIG. 8 is an enlarged schematic diagram of the battery shown in FIG. 6 at the circle B.
  • the battery cell 7 of the embodiment of the present application includes: an electrode assembly 10 including a first tab 11 and a second tab 12 with opposite polarities; a casing 20 for accommodating the electrode assembly 10.
  • the housing 20 includes a cylinder 21 and a cover 22 connected to the cylinder 21.
  • the cylinder 21 is arranged around the periphery of the electrode assembly 10.
  • the cover 22 is provided with an electrode lead-out hole 221. At least a part of the cover 22 is used for electrical
  • the first connection member 81 and the first tab 11 of the battery 2 are connected; and the electrode terminal 30 is used to electrically connect the second connection member 82 of the battery 2 and the second tab 12.
  • the electrode terminal 30 is insulated from the cover 22 and Installed in the electrode lead-out hole 221 , one of the cover body 22 and the electrode terminal 30 is the positive output pole of the battery cell 7 , and the other is the negative output pole of the battery cell 7 .
  • the electrode assembly 10 includes a first pole piece, a second pole piece and a spacer, and the spacer is used to separate the first pole piece from the second pole piece.
  • the polarity of the first pole piece and the second pole piece is opposite, in other words, one of the first pole piece and the second pole piece is a positive pole piece, and the other of the first pole piece and the second pole piece is a negative pole piece pole piece.
  • the first pole piece, the second pole piece and the spacer are all strip structures, and the first pole piece, the second pole piece and the spacer are wound together to form a winding structure.
  • the wound structure can be a cylindrical structure, a flat structure or other shapes.
  • the electrode assembly 10 includes a main body 13 , a first tab 11 and a second tab 12 , and the first tab 11 and the second tab 12 protrude from the main body 13 .
  • the first tab 11 is the part of the first pole piece not coated with the active material layer
  • the second tab 12 is the part of the second pole piece not coated with the active material layer.
  • the first tab 11 and the second tab 12 are used to lead out the current in the main body 13 .
  • the first tab 11 and the second tab 12 may protrude from the same side of the main body 13, or may protrude from opposite sides respectively.
  • the first tab 11 and the second tab 12 can be respectively disposed on both sides of the main body 13 along the first direction X, in other words, the first tab 11 and the second tab 12 are respectively disposed on the electrode assembly 10 along the first direction. Both ends of the X.
  • the first tab 11 is wound around the central axis of the electrode assembly 10 in multiple turns, and the first tab 11 includes multiple turns of tab layers.
  • the first tab 11 is generally cylindrical, and there is a gap between two adjacent tab layers.
  • the first tab 11 can be treated to reduce the gap between the tab layers, so as to facilitate the connection of the first tab 11 to other conductive structures.
  • the first tab 11 can be flattened so that the end area of the first tab 11 away from the main body 13 is gathered and gathered together; One end of the main body part 13 forms a dense end surface, which reduces the gap between the tab layers and facilitates the connection of the first tab 11 with other conductive structures.
  • a conductive material may also be filled between two adjacent tab layers, so as to reduce the gap between the tab layers.
  • the second tab 12 is wound around the central axis of the electrode assembly 10 in multiple turns, and the second tab 12 includes multiple turns of tab layers.
  • the second tab 12 has also been smoothed to reduce the gap between the tab layers of the second tab 12 .
  • the casing 20 is a hollow structure, and a space for accommodating the electrode assembly 10 is formed inside it.
  • the shape of the case 20 may be determined according to the specific shape of the electrode assembly 10 . For example, if the electrode assembly 10 has a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly 10 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • both the electrode assembly 10 and the casing 20 are cylinders; correspondingly, the barrel 21 is a cylinder, and the cover 22 is a circular plate-shaped structure.
  • the cover 22 is electrically connected to the barrel 21 , and the cover 22 and the barrel 21 may have the same polarity.
  • the cover body 22 and the cylinder body 21 may be integrally formed, that is, the housing 20 is an integrally formed component.
  • the cover body 22 and the barrel body 21 may also be two components provided separately, and then connected together by means of welding, riveting, bonding or the like.
  • the housing 20 is a hollow structure with one end open. Specifically, the cylinder body 21 has an opening 211 at an end facing away from the cover body 22 .
  • the battery cell 7 further includes a cover plate 40 , and the cover plate 40 covers the opening of the barrel 21 to close the opening 211 of the barrel 21 .
  • the cover plate 40 can be of various structures, for example, the cover plate 40 is a plate-shaped structure.
  • the electrode lead-out hole 221 passes through the cover body 22 so as to lead out the electric energy in the electrode assembly 10 to the outside of the casing 20 .
  • the electrode lead-out hole 221 penetrates through the cover body 22 along the first direction X.
  • the central axis of the electrode assembly 10 is a virtual straight line parallel to the first direction X.
  • the central axis of the electrode assembly 10 may pass through the electrode lead-out hole 221 , or may be staggered from the electrode lead-out hole 221 , which is not limited in this embodiment.
  • the first tab 11 is electrically connected to the cover 22 .
  • the first tab 11 may be directly electrically connected to the cover 22 , or may be indirectly electrically connected to the cover 22 through other conductive structures.
  • the first tab 11 may be electrically connected to the cover 22 through the barrel 21 .
  • the second tab 12 is electrically connected to the electrode terminal 30 .
  • the second tab 12 may be directly electrically connected to the electrode terminal 30 , or may be indirectly electrically connected to the electrode terminal 30 through other conductive structures.
  • the electrode terminal 30 is insulated from the cover 22 , therefore, the electrode terminal 30 and the cover 22 may have different polarities, and the electrode terminal 30 and the cover 22 may serve as different output poles.
  • the electrode terminal 30 is fixed to the cover body 22 .
  • the electrode terminal 30 can be integrally fixed on the outside of the cover body 22, or can extend into the inside of the casing 20 through the electrode lead-out hole 221.
  • the cover 22 is the negative output pole of the battery cell 7
  • the electrode terminal 30 is the positive output pole of the battery cell 7
  • the cover 22 is the positive output pole of the battery cell 7
  • the electrode terminal 30 is the negative output pole of the battery cell 7 .
  • the bus part includes a first connecting member 81 for connecting to the cover body 22 of the battery cell 7 and a second connecting member 82 for connecting to the electrode terminal of the battery cell 7 30.
  • the first connection member 81 can be connected to the cover body 22 by welding, bonding or other means, so as to realize the electrical connection between the first connection member 81 and the cover body 22 .
  • the second connection member 82 may be connected to the electrode terminal 30 by welding, bonding, riveting or other means, so as to realize the electrical connection between the second connection member 82 and the electrode terminal 30 .
  • the first connecting member 81 connects the cover body 22 of one battery cell 7 and the electrode terminal 30 of another battery cell 7, and the second connecting member 82 connects the electrode terminal 30 of the one battery cell 7 and the second connecting member 82.
  • the cover body 22 of one battery cell 7 in this way, the first connecting member 81 and the second connecting member 82 connect three battery cells 7 in series.
  • the cover body 22 and the electrode terminal 30 as the output pole, the structure of the battery cell 7 can be simplified and the overcurrent capability of the battery cell 7 can be ensured.
  • the cover body 22 and the electrode terminal 30 are located at the same end of the battery cell 7, so that the first connection member 81 and the second connection member 82 can be assembled to the same side of the battery cell 7, which can simplify the assembly process and improve the efficiency of multiple batteries. Efficiency of monomer 7 assembly into groups.
  • the cover body 22 and the barrel body 21 are integrally formed. In this way, the connecting process of the cover body 22 and the cylinder body 21 can be omitted.
  • the housing 20 may be formed through a stretching process.
  • the electrode lead-out hole 221 in the embodiment of the present application is made after the casing 20 is stretched and formed.
  • the inventors have tried rolling the open end of the housing so that the open end of the housing is folded inward to form a flange structure, and the flange structure presses the cover plate to fix the cover plate.
  • the inventor installed the electrode terminals on the cover plate, and used the flanging structure and the electrode terminals as the two output poles of the battery cell.
  • the larger the size of the cuffed structure the higher the risk of curling and wrinkling after forming; if the cuffed structure curls and wrinkles, it will cause the surface of the cuffed structure to be uneven.
  • the connecting members are welded, there will be problems of poor welding. Therefore, the size of the flange structure is relatively limited, resulting in insufficient flow capacity of the battery cell.
  • an electrode lead-out hole 221 for installing the electrode terminal 30 is formed on the cover body 22 by using a hole-opening process, so that the positive output pole and the negative output pole are arranged at the end of the battery cell 7 away from the opening of the casing 20;
  • the cover body 22 is formed during the molding process of the casing 20 , and the flatness can be ensured even after opening the electrode lead-out hole 221 , so as to ensure the connection strength between the cover body 22 and the first connecting member 81 .
  • the flatness of the cover body 22 is not restricted by its own size, so the cover body 22 can have a larger size, thereby improving the flow-through capacity of the battery cell 7 .
  • the cover body 22 includes a connecting portion 222 and a bent portion 223, the connecting portion 222 is provided with an electrode lead-out hole 221, and at least a part of the connecting portion 222 is used to connect the first connecting member 81 and the first tab 11 , the bent portion 223 is used to connect the barrel 21 and the connecting portion 222 .
  • the thickness of the connecting portion 222 , the thickness of the bending portion 223 and the wall thickness of the cylinder 21 are not limited, and the thicknesses of the three can be determined according to requirements.
  • the connecting portion 222 is an annular plate-like structure extending along the circumference of the electrode lead-out hole 221 to surround the electrode lead-out hole 221 .
  • the connecting portion 222 having a plate-like structure can be better fitted to the first connecting member 81 , so as to ensure the connection strength and flow area between the two.
  • the first connecting member 81 can be connected to the connecting portion 222 by welding, bonding or other means, so as to realize the electrical connection between the first connecting member 81 and the cover body 22 .
  • the bent portion 223 can release stress during the molding process of the casing 20 , reduce stress concentration, and reduce the risk of the casing 20 breaking.
  • connection part 222 includes a body part 2221 and a first concave part 2222, the body part 2221 is arranged around the periphery of the first concave part 2222, the body part 2221 is used to connect the first connection member 81 and the first tab 11, the second A recess 2222 is recessed from the outer surface 222b of the main body in a direction facing the electrode assembly 10 , and the electrode lead-out hole 221 penetrates the bottom wall of the first recess 2222 and communicates the first recess 2222 with the inside of the casing 20 .
  • the battery cell 7 further includes a first insulating member 61 , the first recess 2222 is configured to receive at least a part of the first insulating member 61 , and the portion of the first insulating member 61 accommodated in the first recess 2222 is attached to the first recess 2222 side and/or bottom walls.
  • the body portion 2221 has an inner surface 222 a and an outer surface 222 b oppositely disposed along the thickness direction thereof, and the inner surface 222 a of the body portion faces the electrode assembly 10 .
  • the outer surface 222b of the main body can be flat, so as to be snugly connected with the first connecting member 81 .
  • the electrode terminal 30 is fixed to the connection portion 222 .
  • the bottom wall of the first concave portion 2222 can be used to cooperate with and fix the electrode terminal 30 .
  • the first insulating member 61 is used to insulate at least part of the electrode terminal 30 from the connection part 222 .
  • at least part of the first insulating member 61 is clamped between the bottom wall of the first recess 2222 and the electrode terminal 30 to insulate and separate the bottom wall of the first recess 2222 from the electrode terminal 30 to reduce the risk of short circuit.
  • a part of the first insulating member 61 can be accommodated in the first recess 2222 , or the whole of the first insulating member 61 can be accommodated in the first recess 2222 .
  • the part of the first insulating member 61 accommodated in the first recess 2222 may be attached only to the side wall of the first recess 2222, or may be attached only to the bottom wall of the first recess 2222, or may be attached to the first recess at the same time.
  • the bottom and side walls of 2222 may be attached only to the side wall of the first recess 2222, or may be attached only to the bottom wall of the first recess 2222, or may be attached to the first recess at the same time.
  • “Attachment” refers to attaching and contacting two components, and the two components may be attached and fixed, or only attached but not fixed.
  • the electrode terminal 30 and the bottom wall of the first concave portion 2222 sandwich the portion of the first insulating member 61 accommodated in the first concave portion 2222 from both sides, and the portion of the first insulating member 61 accommodated in the first concave portion 2222 is Attached to the bottom wall of the first recess 2222 under the action of clamping force.
  • the portion of the first insulating member 61 accommodated in the first recess 2222 may also be attached to the bottom wall of the first recess 2222 by adhesive.
  • the first insulating member 61 can be positioned, which simplifies the assembly process.
  • the first concave portion 2222 can accommodate at least part of the first insulating member 61 , which can reduce the size of the outer surface 222b of the first insulating member 61 protruding from the main body, so as to reduce the maximum size of the battery cell 7 and improve energy density.
  • the outer surface 222b of the body portion is exposed, which is not covered by the electrode terminal 30 and the first insulating member 61 .
  • the thickness of the body portion 2221 is greater than the wall thickness of the barrel 21 .
  • the body part 2221 is used to connect with the first connecting member 81 , so the body part 2221 needs to have a larger thickness to ensure the connection strength between the body part 2221 and the first connecting member 81 .
  • the body portion 2221 having a larger thickness can better support components such as the electrode terminal 30 .
  • the barrel 21 mainly separates the electrode assembly 10 from the outside, and may have a relatively small thickness to reduce the overall weight of the battery cell 7 .
  • the body part 2221 is welded to the first connection member 81 . If the thickness of the body portion 2221 is small, the body portion 2221 is easily melted during welding; therefore, the body portion 2221 of the embodiment of the present application has a relatively large thickness.
  • the difference between the thickness D1 of the body part 2221 and the wall thickness D2 of the barrel 21 satisfies: 0.1mm ⁇ D1-D2 ⁇ 2mm.
  • D1-D2 is less than 0.1mm, then the thickness of the body part 2221 is too small or the thickness of the cylinder 21 is too large, and the thickness of the body part 2221 is too small to cause insufficient strength of the body part 2221, while the thickness of the cylinder 21 is too large to cause The weight of the barrel 21 is relatively large, which affects the energy density.
  • the housing 20 is usually stretched using a flat plate. If D1-D2 is greater than 2 mm, the stretching amount of the main body 2221 and the stretching amount of the barrel 21 are too different during the stretching process, and the barrel 21 is easily damaged during the stretching process.
  • the embodiment of the present application makes D1 and D2 satisfy: 0.1mm ⁇ D1-D2 ⁇ 2mm.
  • the value of D1-D2 is 0.1mm, 0.2mm, 0.3mm, 0.5mm, 0.8mm, 1mm, 1.2mm, 1.5mm, 1.8mm or 2mm.
  • the cylinder body 21 is cylindrical
  • the electrode lead-out hole 221 is a circular hole
  • the central axis of the cylinder body 21 and the central axis of the electrode lead-out hole 221 are coincidently arranged.
  • the "coincident setting" does not require that the central axis of the cylinder body 21 and the central axis of the electrode lead-out hole 221 are absolutely completely coincident, and there may be deviations allowed by the process.
  • the electrode lead-out hole 221 is used to define the position of the electrode terminal 30 .
  • the central axis of the electrode lead-out hole 221 coincides with the central axis of the cylinder body 21 , so that at least part of the electrode terminal 30 can be located at the center of the cover body 22 . In this way, when a plurality of battery cells 7 are assembled into a group, the requirements on the position accuracy of the electrode terminals 30 can be reduced, the assembly process can be simplified, and the assembly efficiency can be improved.
  • the inner radius L1 of the cylinder 21 and the width L2 of the body part 2221 satisfy: 0.2 ⁇ L2/L1 ⁇ 0.8, the width L2 of the body part 2221 is the outer radius of the body part 2221 and the inner radius of the body part 2221 difference.
  • the body part 2221 is a ring structure, and the width L2 is the ring width of the ring structure.
  • the electrode assembly 10 is generally a cylindrical structure, and the inner radius L1 of the cylinder 21 is positively related to the radius of the electrode assembly 10 .
  • the larger the value of L1 the larger the volume and capacity of the electrode assembly 10 , and the higher the requirement of the battery cell 7 on the overcurrent capability.
  • Both the width L2 of the body portion 2221 and the radius of the electrode lead-out hole 221 are related to the flow capacity of the battery cell 7 .
  • the radius of the electrode lead-out hole 221 directly affects the flow area of the electrode terminal 30 , and correspondingly affects the flow capacity between the electrode terminal 30 and the second connection member 82 .
  • both the width L2 of the main body portion 2221 and the radius of the electrode lead-out hole 221 will affect the flow capacity of the battery cell 7 .
  • the width L2 of the main body portion 2221 is negatively related to the radius of the electrode lead-out hole 221 . If the width L2 of the main body 2221 is too small, the current flow capacity of the main body 2221 will be insufficient; if the width L2 of the main body 2221 is too large, the radius of the electrode lead-out hole 221 will be too small, and the current flow capacity of the electrode terminal 30 will be insufficient. .
  • the inventors have tested and found that when the inner radius L1 of the cylinder 21 and the width L2 of the main body 2221 satisfy: 0.2 ⁇ L2/L1 ⁇ 0.8, the overcurrent capacity of the main body 2221 and the overcurrent of the electrode terminal 30 can be better balanced capacity to meet the requirements for the overcurrent capacity of the battery cell 7 .
  • the inner radius L1 of the barrel 21 and the width L2 of the body portion 2221 satisfy: 0.3 ⁇ L2/L1 ⁇ 0.7.
  • the value of L2/L1 is 0.3, 0.4, 0.5, 0.6 or 0.7.
  • the body part 2221 is used for welding with the first connecting member 81 and forms a first welding area W11 on the body part 2221, the first welding area W11 is spaced apart from the first end 223a of the bending part 223, The first end portion 223a is used to connect to the body portion 2221 .
  • the body part 2221 is welded with the first connecting member 81 to form a first welding part W1.
  • the laser acts on the surface of the first connecting member 81 away from the body portion 2221, and the laser melts and connects a part of the first connecting member 81 and a part of the body portion 2221 to form the first welding portion W1. .
  • the first welding part W1 includes a first welding area W11 formed on the body part 2221 and a second welding area W12 formed on the first connection member 81 .
  • the bent portion 223 includes a first end portion 223 a and a second end portion 223 b oppositely disposed, the first end portion 223 a is used for connecting to the body portion 2221 , and the second end portion 223 b is used for connecting to the cylinder body 21 .
  • the bending portion 223 is in a bent state as a whole, and its inner surface and outer surface are generally curved.
  • the first welding area W11 is spaced apart from the first end 223a of the bent portion 223 to reduce the risk of welding to the bent portion 223 due to process errors during the welding process and reduce the possibility of false welding , to ensure the connection strength between the body part 2221 and the first connection member 81 .
  • the welding depth D3 of the first welding region W11 and the thickness D1 of the body portion 2221 satisfy: 0.1 ⁇ D3/D1 ⁇ 0.8.
  • the welding depth D3 refers to the dimension of the first welding region W11 in the thickness direction of the main body portion 2221 .
  • D3/D1 The smaller the value of D3/D1, the smaller the part of the body part 2221 that needs to be melted during welding, and the lower the power required for welding; on the contrary, the larger the value of D3/D1, the smaller the part of the body part 2221 that needs to be melted during welding. The larger the part, the higher the power required for welding.
  • the value of D3/D1 is set to be greater than or equal to 0.1, so as to ensure the connection strength and flow capacity between the body part 2221 and the first connection member 81 .
  • the embodiment of the present application makes the value of D3/D1 less than or equal to 0.8, so as to reduce the temperature during welding and reduce the risk of burning other components.
  • the value of D3/D1 is 0.2, 0.3, 0.4, 0.5, 0.6 or 0.7.
  • a convex portion 2223 protruding from the inner surface 222 a of the body portion along a direction facing the electrode assembly 10 is formed on the connecting portion 222 at a position opposite to the first concave portion 2222 .
  • the connecting portion 222 further includes a fourth concave portion 2224 , and the fourth concave portion 2224 is recessed from the top end surface 222c of the convex portion 2223 to the inner surface 222a of the main body portion in a direction away from the electrode assembly 10 .
  • the battery cell 7 further includes a second insulating member 60 , the fourth recess 2224 is configured to accommodate at least a portion of the second insulating member 60 , and the portion of the second insulating member 60 accommodated in the fourth recess 2224 is attached to the fourth recess 2224 side and/or bottom walls.
  • the first concave portion 2222 and the convex portion 2223 can be formed by stamping the cover body 22 .
  • the top end surface 222c of the protrusion 2223 is the surface of the protrusion 2223 facing the electrode assembly 10 .
  • the fourth concave portion 2224 is an annular concave portion surrounding the convex portion 2223 .
  • the bottom surface of the fourth concave portion 2224 is the inner surface 222a of the main body.
  • the part of the second insulating member 60 accommodated in the fourth recess 2224 may be attached only to the side wall of the fourth recess 2224, or may be attached only to the bottom wall of the fourth recess 2224, or may be attached to the fourth recess at the same time. 2224 side and bottom walls.
  • the thickness of the bottom wall of the first concave portion 2222 can be increased by providing the convex portion 2223 to improve the strength of the bottom wall of the first concave portion 2222 so that the bottom wall of the first concave portion 2222 can effectively support the electrode terminal 30 .
  • the second insulating member 60 can cover the main body 2221 from the inside to separate the electrode assembly 10 from the main body 2221 , reduce the risk of contact and conduction between the electrode assembly 10 and the main body 2221 when the battery cell 7 vibrates, and improve safety performance.
  • the fourth concave portion 2224 the second insulating member 60 can be positioned, which simplifies the assembly process.
  • the fourth concave portion 2224 can accommodate at least part of the second insulating member 60 , so that the inner space of the casing 20 can be fully utilized and the energy density can be improved.
  • the battery cell 7 further includes a sealing ring 62 , which is sleeved on the electrode terminal 30 and used to seal the electrode lead-out hole 221 .
  • a part of the sealing ring 62 extends into the electrode lead-out hole 221 to separate the hole wall of the electrode lead-out hole 221 from the electrode terminal 30 .
  • the bending portion 223 includes a first end portion 223a for connecting to the connecting portion 222 and a second end portion 223b for connecting to the barrel 21, and the first end portion 223a points to the second end portion 223b, the thickness of the bent portion 223 gradually decreases.
  • the thickness of the first end portion 223 a of the bending portion 223 is equal to the thickness of the body portion 2221 , and the thickness of the second end portion 223 b of the bending portion 223 is equal to the thickness of the barrel 21 .
  • the thickness of the bent portion 223 is gradually changed to adapt to the difference in thickness between the connecting portion 222 and the cylinder 21 , gently connect the cylinder 21 and the connecting portion 222 , and reduce the inner surface and outer surface of the housing 20 . Risk of step formation on the surface, reducing stress concentrations.
  • the second tab 12 is disposed at one end of the electrode assembly 10 facing the cover 22
  • the first tab 11 is disposed at the other end of the electrode assembly 10 facing away from the cover 22 .
  • the cylinder body 21 is used to connect the first tab 11 and the cover 22 so that the first tab 11 is electrically connected to the cover 22 .
  • the barrel 21 may be directly electrically connected to the first tab 11 , or may be electrically connected to the first tab 11 through other components.
  • the first tab 11 is electrically connected to the barrel 21 through the cover plate 40 .
  • the first tab 11 and the second tab 12 are arranged at both ends of the electrode assembly 10, which can reduce the risk of conduction between the first tab 11 and the second tab 12, and increase the size of the first tab. 11 and the second tab 12 flow area.
  • the first tab 11 is a negative tab
  • the base material of the casing 20 is steel
  • the casing 20 is electrically connected to the negative electrode tab, that is, the casing 20 is in a low potential state.
  • the steel casing 20 is not easily corroded by the electrolyte in a low potential state, so as to reduce safety risks.
  • the battery cell 7 further includes a current collecting member 50 for connecting the second tab 12 and the electrode terminal 30 .
  • the current collecting member 50 can be connected to the second tab 12 by welding, abutting or bonding, and connected to the electrode terminal 30 by welding, abutting, bonding, riveting, etc., so as to realize the connection between the second tab 12 and the electrode. Electrical connection between terminals 30.
  • the electrode terminal 30 is disposed opposite to the middle area of the second tab 12 . If the electrode terminal 30 and the second pole tab 12 are directly connected, the conductive path between the edge area of the second pole tab 12 and the electrode terminal 30 will be relatively long, causing the current density of the second pole piece of the electrode assembly 10 to be low. Uniformity increases the internal resistance and affects the overcurrent capability and charging efficiency of the battery cell 7 .
  • the current collecting member 50 and the second tab 12 of the embodiment of the present application may have a larger connection area, and the current of the second tab 12 may flow into the electrode terminal 30 through the current collecting member 50.
  • the current collecting member 50 It can reduce the difference in the conductive path between different regions of the second tab 12 and the electrode terminal 30, improve the uniformity of the current density of the second pole piece, reduce the internal resistance, and improve the overcurrent capacity and Charging efficiency.
  • Fig. 9 is a schematic structural diagram of a second insulating member of a battery cell provided by some embodiments of the present application.
  • the battery cell 7 further includes a second insulating member 60
  • the second insulating member 60 includes an insulating body 63 and an insulating protrusion 64 protruding from the outer periphery of the insulating body 63
  • the insulating main body 63 abuts against the side of the body part 2221 facing the electrode assembly 10, the insulating protrusion 64 is provided on the side of the bent part 223 facing the electrode assembly 10, and the surface of the insulating protrusion 64 facing away from the electrode assembly 10 is compared with A surface of the insulating body 63 facing away from the electrode assembly 10 is closer to the electrode assembly 10 to form a second concave portion 65 for avoiding the bent portion 223 .
  • the insulating body 63 has an inner surface and an outer surface oppositely disposed, and the inner surface 631 of the insulating body faces the electrode assembly 10 .
  • the insulating protrusion 64 has an inner surface and an outer surface oppositely disposed, and the inner surface 641 of the insulating protrusion faces the electrode assembly 10 .
  • the outer surface 642 of the insulating protrusion is closer to the electrode assembly 10 than the outer surface 632 of the insulating body.
  • the insulating body 63 and the body portion 2221 at least partially overlap, and the insulating protrusion 64 and the bent portion 223 at least partially overlap.
  • the insulating protrusion 64 is an annular structure surrounding the outer side of the insulating main body 63 .
  • the second recess 65 surrounds the outer side of the insulating body 63 .
  • the insulating body 63 leans against the surface of the body portion 2221 facing the electrode assembly 10 and covers the first welding region W11 .
  • the insulating body 63 can act as a stopper, reducing the risk of welding beads falling into the electrode assembly 10 , to reduce potential safety hazards.
  • the insulating main body 63 can separate at least part of the main body part 2221 from the electrode assembly 10, and the insulating protrusion 64 can separate at least part of the bent part 223 from the electrode assembly 10.
  • this embodiment can reduce the risk of contacting the electrode assembly 10 with the body part 2221 and the contacting risk of the electrode assembly 10 with the bending part 223, thereby improving safety performance.
  • the bent portion 223 is avoided by providing the second concave portion 65 , so as to prevent the bent portion 223 from interfering with the second insulating member 60 .
  • the insulating protrusion 64 extends beyond the second end 223 b of the bent portion 223 along the direction facing the electrode assembly 10 , and the second end 223 b is used for connecting the barrel 21 .
  • the outer surface 642 of the insulating protrusion is closer to the electrode assembly 10 than the second end portion 223b.
  • the outer surface 642 of the insulating protrusion can be spaced apart from the inner surface of the bent portion 223 to avoid interference between the insulating protrusion 64 and the bent portion 223 .
  • the size of the insulating protrusion 64 protruding from the insulating main body 63 is not affected by the bent portion 223 , which can improve the isolation effect of the insulating protrusion 64 .
  • the inner surface 641 of the insulating protrusion is flush with the inner surface 631 of the insulating body.
  • the inner surface 631 of the insulating body is formed with a third recess 66 recessed in a direction away from the electrode assembly 10 , at least part of the electrode terminal 30 is received in the third recess 66 .
  • the space occupied by the second insulating member 60 and the electrode terminal 30 can be reduced, so as to improve the energy density of the battery cell 7 .
  • the thickness of the insulating body 63 is greater than that of the body portion 2221 .
  • the thickness of the insulating main body 63 is greater than that of the main body portion 2221 to extend the heat transfer path and reduce the influence of heat on other components.
  • the insulating main body 63 in this embodiment has a relatively large thickness, so that even if the part of the insulating main body 63 close to the first welding area W11 is burned, the insulating effect can be ensured.
  • FIG. 10 is an enlarged schematic view of the battery shown in FIG. 6 at the circle C;
  • FIG. 11 is a schematic structural view of electrode terminals of a battery cell provided in some embodiments of the present application.
  • the electrode terminal 30 includes a terminal body 31 , the terminal body 31 includes a columnar portion 311 , a first limiting portion 312 and a second limiting portion 313 , at least a part of the columnar portion 311 is located in the electrode lead-out hole 221 , the first limiting portion 312 and the second limiting portion 313 are connected and protrude from the outer wall of the columnar portion 311, and the first limiting portion 312 and the second limiting portion 313 are respectively arranged on the connecting portion along the first direction X The outer and inner sides, and used to clamp part of the connection.
  • the terminal body 31 has an inner surface and an outer surface oppositely disposed, and the inner surface 314 of the terminal body faces the electrode assembly 10 .
  • the columnar portion 311 is provided with a fifth concave portion 311 a that is recessed from the outer surface 315 of the terminal body in a direction facing the electrode assembly 10 .
  • the bottom of the fifth concave portion 311 a forms an adapter portion 311 b for welding to the current collecting member 50 .
  • the thickness of the transition part 311b is reduced by setting the fifth concave part 311a, which can reduce the welding power required for welding the transition part 311b and the current collecting member 50, reduce heat generation, and reduce other components (such as the first Insulation member and second insulation member) risk of being burned.
  • the electrode terminal 30 further includes a sealing plate 32 for closing the opening of the fifth concave portion 311a.
  • the sealing plate 32 can be entirely located outside the fifth recess 311a, or partially accommodated in the fifth recess 311a, as long as the sealing plate 32 can close the opening of the fifth recess 311a.
  • the sealing plate 32 can protect the transfer portion 311b from the outside, reduce external impurities entering the fifth concave portion 311a, reduce the risk of the transfer portion 311b being damaged by external impurities, and improve the sealing performance of the battery cell 7 .
  • the fifth concave portion 311a is a stepped concave portion, and at least part of the sealing plate 32 is accommodated in the fifth concave portion 311a and supported by the stepped surface of the fifth concave portion 311a.
  • the sealing plate 32 is used for welding with the second connecting member 82 to form the second welding portion W2.
  • the second welding portion W2 can reduce the contact resistance between the sealing plate 32 and the second connecting member 82 and improve the flow-through capacity.
  • At least a portion of the sealing plate 32 protrudes beyond the outer surface 315 of the terminal body.
  • At least part of the sealing plate 32 protrudes from the outer surface 315 of the terminal body, so as to prevent the outer surface 315 of the terminal body from interfering with the bonding of the sealing plate 32 and the second connecting member 82, and ensure that the second connecting member 82 and the sealing plate 32 are in close contact. combine.
  • FIG. 12 is a schematic flowchart of a method for manufacturing a battery cell provided by some embodiments of the present application.
  • the manufacturing method of the battery cell provided in the embodiment of the present application includes:
  • the shell includes a cylinder and a cover connected to the cylinder.
  • the cover is provided with an electrode lead-out hole.
  • the cylinder has an opening at the end away from the cover.
  • the electrode terminal is insulated from the cover and Installed in the electrode lead-out hole;
  • S200 Provide an electrode assembly, where the electrode assembly includes a first tab and a second tab with opposite polarities;
  • S400 Provide a cover plate, and connect the cover plate to the barrel to close the opening of the barrel, and electrically connect the first tab to the cover, so that the first tab is electrically connected to the cover via the cover plate and the barrel ;
  • the cover is used to electrically connect the first connection member and the first tab of the battery
  • the electrode terminal is used to electrically connect the second connection member and the second tab of the battery.
  • One is the positive output pole of the battery cell, and the other is the negative output pole of the battery cell.
  • the steps may be performed in the order mentioned in the embodiment, or may be different from the order mentioned in the embodiment Steps are executed, or several steps are executed simultaneously.
  • the steps S100 and S200 are not executed sequentially, and may also be executed simultaneously.
  • Fig. 13 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • the battery cell manufacturing system 90 of the embodiment of the present application includes:
  • the first providing device 91 is used to provide a shell and an electrode terminal.
  • the shell includes a cylinder and a cover connected to the cylinder.
  • the cover is provided with an electrode extraction hole.
  • the cylinder has an opening at the end away from the cover.
  • the electrode terminal The insulation is set on the cover and installed in the electrode lead-out hole;
  • the second providing device 92 is used to provide an electrode assembly, and the electrode assembly includes a first tab and a second tab with opposite polarities;
  • the first assembly device 93 is used to install the electrode assembly into the casing, so that the cylinder is arranged around the outer circumference of the electrode assembly, and the second tab is electrically connected to the electrode terminal;
  • the second assembly device 94 is used to provide a cover plate, and connect the cover plate to the barrel to close the opening of the barrel, and electrically connect the first tab to the cover plate so that the first tab passes through the cover plate and the barrel
  • the body is electrically connected to the cover;
  • the cover is used to electrically connect the first connection member and the first tab of the battery
  • the electrode terminal is used to electrically connect the second connection member and the second tab of the battery.
  • One is the positive output pole of the battery cell, and the other is the negative output pole of the battery cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池单体及其制造方法和制造系统、电池以及用电装置。电池单体包括:电极组件,包括极性相反的第一极耳和第二极耳;壳体,用于容纳电极组件,壳体包括筒体和连接于筒体的盖体,筒体环绕电极组件的外周设置,盖体设有电极引出孔,盖体的至少一部分用于电连接电池的第一连接构件和第一极耳;以及电极端子,用于电连接电池的第二连接构件和第二极耳,电极端子绝缘设置于盖体并安装于电极引出孔,盖体和电极端子两者中的一者为电池单体的正输出极,另一者为电池单体的负输出极。本申请能够改善电池单体的过流能力、简化电池单体的结构。

Description

电池单体及其制造方法和制造系统、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体及其制造方法和制造系统、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,如何改善电池单体的过流能力、简化电池单体的结构,是电池技术中一个研究方向。
发明内容
本申请提供了一种电池单体及其制造方法和制造系统、电池以及用电装置,能够改善电池单体的过流能力、简化电池单体的结构。
第一方面,本申请实施例提供了一种用于电池的电池单体,其包括:
电极组件,包括极性相反的第一极耳和第二极耳;
壳体,用于容纳电极组件,壳体包括筒体和连接于筒体的盖体,筒体环绕电极组件的外周设置,盖体设有电极引出孔,盖体的至少一部分用于电连接电池的第一连接构件和第一极耳;以及
电极端子,用于电连接电池的第二连接构件和第二极耳,电极端子绝缘设置于盖体并安装于电极引出孔,盖体和电极端子两者中的一者为电池单体的正输出极,另一者为电池单体的负输出极。
上述方案中,通过将盖体和电极端子作为输出极,可以简化电池单体的结构,并保证电池单体的过流能力。盖体和电极端子位于电池单体的同一端,这样,第一连接构件和第二连接构件可以装配到电池单体的同一侧,这样可以简化装配工艺,提高多个电池单体装配成组的效率。
在一些实施例中,盖体和筒体为一体形成结构。一体成型结构可以省去盖体和筒体的连接工序。
在一些实施例中,盖体包括连接部和弯折部,连接部上设有电极引出孔,并且连接部至少一部分用于连接第一连接构件和第一极耳,弯折部用于连接筒体和连接部。
上述方案中,弯折部可以在壳体的成型过程中释放应力,减小应力集中,降低壳体破裂的风险。
在一些实施例中,连接部包括本体部和第一凹部,本体部环绕第一凹部的外周设置,本体部用于连接第一连接构件和第一极耳,第一凹部从本体部的外表面沿面向电极组件的方向凹陷,电极引出孔贯穿第一凹部的底壁,并将第一凹部与壳体的内部连通。电池单体还包括第一绝缘构件,第一凹部被配置为容纳第一绝缘构件的至少一部分,第一绝缘构件容纳于第一凹部内的部分附接于第一凹部的侧壁和/或底壁。
上述方案中,通过设置第一凹部,可以对第一绝缘构件进行定位,简化装配工艺。第一凹部能够容纳第一绝缘构件的至少部分,这样能够减小第一绝缘构件凸出本体部的外表面的尺寸,以减小电池单体的最大尺寸,提高能量密度。
在一些实施例中,本体部的厚度大于筒体的壁厚。本体部用于与第一连接构件连接,所以本体部需要具有较大的厚度,以保证本体部和第一连接构件之间的连接强度。另外,具有较大厚度的本体部可以更好的支撑电极端子等构件。筒体主要是将电极组件与外界隔开,其可以具有相对较小的厚度,以减小电池单体整体的重量。
在一些实施例中,本体部的厚度D1和筒体的壁厚D2的差值满足:0.1毫米≤D1-D2≤2毫米。
如果D1-D2小于0.1mm,那么本体部的厚度偏小或者筒体的厚度偏大,本体部的厚度偏小会造成本体部的强度不足,而筒体的厚度偏大会造成筒体的重量偏大,影响能量密度。如果D1-D2大于2mm,那么在拉伸成型过程中,本体部的拉伸量和筒体的拉伸量差异过大,筒体容易在拉伸过程中破损。因此,本申请实施例使D1和D2满足:0.1毫米≤D1-D2≤2毫米。
在一些实施例中,筒体为圆筒状,电极引出孔为圆孔,筒体的中心轴和电极引出孔的中心轴重合设置。
上述方案中,电极引出孔用于限定电极端子的位置,本实施例将电极引出孔的中心轴与筒体的中心轴重合设置,可以使电极端子的至少部分位于盖体的中心位置。这样,当多个电池单体装配成组时,可以降低对电极端子的位置精度的要求,简化装配工艺,提高装配效率。
在一些实施例中,筒体的内半径L1和本体部的宽度L2满足:0.2≤L2/L1≤0.8,本体部的宽度L2为本体部的外半径与本体部的内半径的差值。
上述方案中,在筒体的内半径L1一定的前提下,本体部的宽度L2与电极引出孔的半径负相关。本体部的宽度L2过小,将会造成本体部的过流能力不足;而本体部的宽度L2过大,将使电极引出孔的半径过小,电极端子的过流能力不足。发明人经过试验,在筒体的内半径L1和本体部的宽度L2满足:0.2≤L2/L1≤0.8时,能够更好地平衡本体部的过流能力和电极端子的过流能力,满足对电池单体的过流能力的要求。
在一些实施例中,本体部用于与第一连接构件焊接并在本体部上形成第一焊接区域,第一焊接区域与弯折部的第一端部间隔设置,第一端部用于连接本体部。
上述方案中,将第一焊接区域与弯折部的第一端部间隔设置,以降低在焊接过程中因工艺误差而焊接到弯折部的风险,减小虚焊的可能性,保证本体部和第一连接 构件之间的连接强度。
在一些实施例中,第一焊接区域的焊接深度D3和本体部的厚度D1满足:0.1≤D3/D1≤0.8。
上述方案中,如果D3/D1的值过小,那么第一焊接区域的体积过小,这会导致本体部和第一连接构件之间的连接强度不足、过流能力偏低。因此,本实施例使D3/D1的值大于等于0.1,以保证本体部和第一连接构件之间的连接强度和过流能力。如果D3/D1的值过大,那么焊接所需的功率也就偏高,焊接时产生的高温容易烧伤其它构件。另外,D3/D1的值过大,还会增大本体部被熔穿的风险,本体部被熔穿后,更容易烧伤壳体内的其它构件。因此,本申请实施例使D3/D1的值小于等于0.8,以减小焊接时的温度,降低烧伤其它构件的风险。
在一些实施例中,电池单体还包括第二绝缘构件,第二绝缘构件包括绝缘主体和凸设于绝缘主体的外周的绝缘凸起,绝缘主体抵靠于本体部面向电极组件的一侧,绝缘凸起设于弯折部面向电极组件的一侧,绝缘凸起的背离电极组件的表面相较于绝缘主体的背离电极组件的表面更靠近电极组件,以形成用于避让弯折部的第二凹部。
上述方案中,绝缘主体能够将本体部的至少部分与电极组件隔开,绝缘凸起能够将弯折部的至少部分与电极组件隔开,这样,在电池单体震动时,本实施例能够降低电极组件与本体部接触的风险以及电极组件与弯折部接触的风险,从而提高安全性能。本实施例通过设置第二凹部来避让弯折部,以避免弯折部与第二绝缘构件干涉。
在一些实施例中,绝缘凸起沿面向电极组件的方向超出弯折部的第二端部,第二端部用于连接筒体。
上述方案中,绝缘凸起的外表面与弯折部的内表面间隔开,以避免绝缘凸起与弯折部干涉。绝缘凸起凸出绝缘主体的尺寸不受弯折部的影响,这样可以改善绝缘凸起的隔离效果。
在一些实施例中,绝缘主体的内表面形成有沿背离电极组件的方向凹陷的第三凹部,电极端子的至少部分容纳于第三凹部。设置第三凹部,可以减小第二绝缘构件和电极端子占用的空间,以提高电池单体的能量密度。
在一些实施例中,绝缘主体的厚度大于本体部的厚度。在焊接本体部和第一连接构件时,热量会传递到绝缘主体上。本实施例使绝缘主体的厚度大于本体部的厚度,以延长传热的路径,降低热量对其它构件的影响。本实施例的绝缘主体具有较大的厚度,这样,即使绝缘主体的靠近第一焊接区域的部分被烧伤,也能够保证绝缘效果。
在一些实施例中,连接部上与第一凹部相对的位置形成有从本体部的内表面沿面向电极组件的方向凸出的凸部。连接部还包括第四凹部,第四凹部从凸部的顶端面沿背离电极组件的方向凹陷至本体部的内表面。电池单体还包括第二绝缘构件,第四凹部被配置为容纳第二绝缘构件的至少部分,第二绝缘构件的容纳于第四凹部的部分附接于第四凹部的侧壁和/或底壁。
上述方案中,通过设置凸部,可以增大第一凹部的底壁的厚度,以提高第一凹部的底壁的强度,使第一凹部的底壁能够有效地支撑电极端子。第二绝缘构件能够从内侧覆盖本体部,以将电极组件与本体部隔开,在电池单体震动时降低电极组件与本 体部接触导通的风险,提高安全性能。通过设置第四凹部,可以对第二绝缘构件进行定位,简化装配工艺。第四凹部能够容纳第二绝缘构件的至少部分,这样能够充分利用壳体的内部空间,提高能量密度。
在一些实施例中,弯折部包括用于连接连接部的第一端部和用于连接筒体的第二端部,由第一端部指向第二端部的方向,弯折部的厚度逐渐减小。
上述方案中,使弯折部的厚度逐渐变化,以适应连接部和筒体之间的厚度差异,平缓地连接筒体和连接部,减小壳体的内表面和外表面形成台阶的风险,降低应力集中。
在一些实施例中,第二极耳设于电极组件面向盖体的一端,第一极耳设于电极组件背离盖体的另一端。筒体用于连接第一极耳和盖体,以使第一极耳电连接于盖体。
上述方案中,将第一极耳和第二极耳设于电极组件的两端,可以降低第一极耳和第二极耳导通的风险,并增大第一极耳的过流面积和第二极耳的过流面积。
在一些实施例中,第一极耳为负极极耳,壳体的基体材质为钢。壳体与负极极耳电连接,即壳体处于低电位状态。钢制的壳体在低电位状态下不易被电解液腐蚀,以降低安全风险。
在一些实施例中,筒体的在背离盖体的一端具有开口,电池单体还包括用于封闭开口的盖板。
第二方面,本申请实施例提供了一种电池,包括:第一方面任一实施例的电池单体;第一连接构件,连接于盖体;以及第二连接构件,连接于电极端子。
第三方面,本申请实施例提供了一种用电装置,包括第二方面的电池,电池用于提供电能。
第四方面,本申请实施例提供了一种电池单体的制造方法,包括:
提供壳体和电极端子,壳体包括筒体和连接于筒体的盖体,盖体设有电极引出孔,筒体在背离盖体的一端具有开口,电极端子绝缘设置于盖体并安装于电极引出孔;
提供电极组件,电极组件包括极性相反的第一极耳和第二极耳;
将电极组件安装到壳体内,以使筒体环绕电极组件的外周设置,并使第二极耳电连接于电极端子;
提供盖板,并将盖板连接到筒体,以封闭筒体的开口,将第一极耳电连接到盖板,以使第一极耳经由盖板和筒体电连接于盖体;
其中,盖体的至少一部分用于电连接电池的第一连接构件和第一极耳,电极端子用于电连接电池的第二连接构件和第二极耳,盖体和电极端子两者中的一者为电池单体的正输出极,另一者为电池单体的负输出极。
第五方面,本申请实施例提供了一种电池单体的制造系统,包括:
第一提供装置,用于提供壳体和电极端子,壳体包括筒体和连接于筒体的盖体,盖体设有电极引出孔,筒体在背离盖体的一端具有开口,电极端子绝缘设置于盖体并安装于电极引出孔;
第二提供装置,用于提供电极组件,电极组件包括极性相反的第一极耳和第二极耳;
第一组装装置,用于将电极组件安装到壳体内,以使筒体环绕电极组件的外周设置,并使第二极耳电连接于电极端子;
第二组装装置,用于提供盖板,并将盖板连接到筒体,以封闭筒体的开口,将第一极耳电连接到盖板,以使第一极耳经由盖板和筒体电连接于盖体;
其中,盖体的至少一部分用于电连接电池的第一连接构件和第一极耳,电极端子用于电连接电池的第二连接构件和第二极耳,盖体和电极端子两者中的一者为电池单体的正输出极,另一者为电池单体的负输出极。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的爆炸示意图;
图4为本申请一些实施例提供的电池的局部剖视示意图;
图5为本申请一些实施例提供的电池单体的爆炸示意图;
图6为图4所示的电池在方框A处的放大示意图;
图7为本申请一些实施例提供的电池单体的壳体的局部剖视示意图;
图8为图6所示的电池在圆框B处的放大示意图;
图9为本申请一些实施例提供的电池单体的第二绝缘构件的结构示意图;
图10为图6所示的电池在圆框C处的放大示意图;
图11为本申请一些实施例提供的电池单体的电极端子的结构示意图;
图12为本申请一些实施例提供的电池单体的制造方法的流程示意图;
图13为本申请一些实施例提供的电池单体的制造系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为 了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和凸出于正极集流部的正极极耳,正极集流部涂覆有正极活性物质层,正极极耳的至少部分未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和凸出于负极集流部的负极极耳,负极集流部涂覆有负极活性物质层,负极极耳的至少部分未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
在电池中,多个电池单体通过汇流部件电连接。为了简化电池的结构,发明人将电池单体的正输出极和负输出极设置到电池单体的同一端,以便于汇流部件连接到正输出极和负输出极。
电池单体通常设置有电极端子,并以电极端子作为输出极。发明人尝试将两个电极端子设置到电池单体的同一端,并分别作为电池单体的正输出极和负输出极。然而,发明人发现,对于尺寸较小的电池单体,如果在电池单体的同一端设置两个电极端子,为便于电极端子与汇流部件的装配,需要保证两个电极端子之间的距离相对较大,这就会压缩电极端子的自身尺寸,从而造成电极端子过流面积偏小,影响电池单体的过流能力。
鉴于此,本申请实施例提供一种技术方案,其将壳体的盖体作为输出极,并使盖体和电极端子位于电池单体的同一端,可以简化电池单体的结构并保证电池单体的过流能力。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部51和第二箱体部52,第一箱体部51与第二箱体部52相互盖合,第一箱体部51和第二箱体部52共同限定出用于容纳电池单体的容纳空间53。第二箱体部52可以是一端开口的空心结构,第一箱体部51为板状结构,第一箱体部51盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5;第一箱体部51和第二箱体部52也均可以是一侧开口的空心结构,第一箱体部51的开口侧盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5。当然,第一箱体部51和第二箱体部 52可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部51与第二箱体部52连接后的密封性,第一箱体部51与第二箱体部52之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部51盖合于第二箱体部52的顶部,第一箱体部51亦可称之为上箱盖,第二箱体部52亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块的爆炸示意图。
在一些实施例中,如图3所示,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。
图4为本申请一些实施例提供的电池的局部剖视示意图;图5为本申请一些实施例提供的电池单体的爆炸示意图;图6为图4所示的电池在方框A处的放大示意图;图7为本申请一些实施例提供的电池单体的壳体的局部剖视示意图;图8为图6所示的电池在圆框B处的放大示意图。
如图4至图8所示,本申请实施例的电池单体7包括:电极组件10,包括极性相反的第一极耳11和第二极耳12;壳体20,用于容纳电极组件10,壳体20包括筒体21和连接于筒体21的盖体22,筒体21环绕电极组件10的外周设置,盖体22设有电极引出孔221,盖体22的至少一部分用于电连接电池2的第一连接构件81和第一极耳11;以及电极端子30,用于电连接电池2的第二连接构件82和第二极耳12,电极端子30绝缘设置于盖体22并安装于电极引出孔221,盖体22和电极端子30两者中的一者为电池单体7的正输出极,另一者为电池单体7的负输出极。
电极组件10包括第一极片、第二极片和隔离件,隔离件用于将第一极片和第二极片隔开。第一极片和第二极片的极性相反,换言之,第一极片和第二极片中的一者为正极极片,第一极片和第二极片中的另一者为负极极片。
第一极片、第二极片和隔离件均为带状结构,第一极片、第二极片和隔离件卷绕为一体并形成卷绕结构。卷绕结构可以是圆柱状结构、扁平状结构或其它形状的结构。
从电极组件10的外形看,电极组件10包括主体部13、第一极耳11和第二极耳12,第一极耳11和第二极耳12凸出于主体部13。第一极耳11为第一极片的未涂覆活性物质层的部分,第二极耳12为第二极片的未涂覆活性物质层的部分。第一极耳11和第二极耳12用于将主体部13中的电流引出。
第一极耳11和第二极耳12可以从主体部13的同一侧伸出,也可以分别从相反 的两侧延伸出。
第一极耳11和第二极耳12可分别设于主体部13沿第一方向X的两侧,换言之,第一极耳11和第二极耳12分别设于电极组件10沿第一方向X的两端。
可选地,第一极耳11环绕电极组件10的中心轴卷绕为多圈,第一极耳11包括多圈极耳层。在卷绕完成后,第一极耳11大体为柱体状,相邻的两圈极耳层之间留有缝隙。本申请实施例可以对第一极耳11进行处理,以减小极耳层间的缝隙,便于第一极耳11与其它导电结构连接。例如,本申请实施例可对第一极耳11进行揉平处理,以使第一极耳11的远离主体部13的端部区域收拢、集合在一起;揉平处理在第一极耳11远离主体部13的一端形成致密的端面,减小极耳层间的缝隙,便于第一极耳11与其它导电结构连接。可替代地,本申请实施例也可以在相邻的两圈极耳层之间填充导电材料,以减小极耳层间的缝隙。
可选地,第二极耳12环绕电极组件10的中心轴卷绕为多圈,第二极耳12包括多圈极耳层。示例性地,第二极耳12也经过了揉平处理,以减小第二极耳12的极耳层间的缝隙。
壳体20为空心结构,其内部形成用于容纳电极组件10的空间。壳体20的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。可选地,电极组件10和壳体20均为圆柱体;对应地,筒体21为圆筒,盖体22为圆形板状结构。
盖体22电连接于筒体21,盖体22和筒体21可具有相同的极性。
盖体22和筒体21可为一体形成结构,即壳体20为一体成形的构件。当然,盖体22和筒体21也可以为分开提供的两个构件,然后通过焊接、铆接、粘接等方式连接在一起。
壳体20为一端开口空心结构。具体地,筒体21的在背离盖体22的一端具有开口211。电池单体7还包括盖板40,盖板40盖合于筒体21的开口处,以封闭筒体21的开口211。盖板40可以是多种结构,比如,盖板40为板状结构。
电极引出孔221贯通盖体22,以便于电极组件10中的电能引出到壳体20的外部。示例性地,电极引出孔221沿第一方向X贯通盖体22。
电极组件10的中心轴为虚拟的直线,其平行于第一方向X。电极组件10的中心轴可以穿过电极引出孔221,也可以与电极引出孔221错开设置,本实施例对此不作限定。
第一极耳11电连接于盖体22。第一极耳11可以直接电连接于盖体22,也可以通过其它导电结构间接地电连接于盖体22,例如,第一极耳11可以通过筒体21电连接于盖体22。
第二极耳12电连接于电极端子30。第二极耳12可以直接电连接于电极端子30,也可以通过其它导电结构间接地电连接于电极端子30。
电极端子30绝缘设置于盖体22,因此,电极端子30和盖体22可以具有不同的极性,电极端子30和盖体22可以作为不同的输出极。
电极端子30固定于盖体22。电极端子30可以整体固定在盖体22的外侧,也 可以通过电极引出孔221伸入到壳体20的内部。
在第一极耳11为负极极耳、第二极耳12为正极极耳时,盖体22为电池单体7的负输出极,而电极端子30为电池单体7的正输出极。在第一极耳11为正极极耳、第二极耳12为负极极耳时,盖体22为电池单体7的正输出极,而电极端子30为电池单体7的负输出极。
在电池2中,多个电池单体7通过汇流部件电连接。汇流部件包括第一连接构件81和第二连接构件82,第一连接构件81用于连接到电池单体7的盖体22,而第二连接构件82用于连接到电池单体7的电极端子30。
第一连接构件81可通过焊接、粘接或其它方式连接到盖体22,以实现第一连接构件81和盖体22的电连接。第二连接构件82可通过焊接、粘接、铆接或其它方式连接到电极端子30,以实现第二连接构件82和电极端子30的电连接。
示例性地,第一连接构件81连接一个电池单体7的盖体22和另一个电池单体7的电极端子30,而第二连接构件82连接该一个电池单体7的电极端子30和再一个电池单体7的盖体22,这样,第一连接构件81和第二连接构件82将三个电池单体7串联。
在本实施例中,通过将盖体22和电极端子30作为输出极,可以简化电池单体7的结构,并保证电池单体7的过流能力。盖体22和电极端子30位于电池单体7的同一端,这样,第一连接构件81和第二连接构件82可以装配到电池单体7的同一侧,这样可以简化装配工艺,提高多个电池单体7装配成组的效率。
在一些实施例中,盖体22和筒体21为一体形成结构。这样可以省去盖体22和筒体21的连接工序。壳体20可通过拉伸工艺成型。
本申请实施例的电极引出孔221是在壳体20拉伸成型后制成。
发明人曾尝试辊压壳体的开口端,以使壳体的开口端向内翻折并形成翻边结构,翻边结构压住盖板以实现盖板的固定。发明人将电极端子安装到盖板上,并以翻边结构和电极端子作为电池单体的两个输出极。然而,翻边结构的尺寸越大,其在成型后出现卷曲和褶皱的风险越高;如果翻边结构出现卷曲和褶皱,那么会造成翻边结构的表面不平整,当翻边结构与外部的连接构件焊接时,会存在焊接不良的问题。因此,翻边结构的尺寸比较受限,造成电池单体的过流能力不足。
本实施例利用开孔的工艺在盖体22上形成用于安装电极端子30的电极引出孔221,以将正输出极和负输出极设置在电池单体7的背离壳体20开口的一端;盖体22是在壳体20的成型过程中形成,开设电极引出孔221后也能够保证平整性,保证盖体22和第一连接构件81的连接强度。同时,盖体22的平整性不受自身尺寸的约束,所以盖体22可以具有较大的尺寸,从而提高电池单体7的过流能力。
在一些实施例中,盖体22包括连接部222和弯折部223,连接部222上设有电极引出孔221,并且连接部222至少一部分用于连接第一连接构件81和第一极耳11,弯折部223用于连接筒体21和连接部222。
本实施例对连接部222的厚度、弯折部223的厚度以及筒体21的壁厚不作限制,三者的厚度可以根据需求确定。
连接部222为环形的板状结构,其沿着电极引出孔221的周向延伸,以围绕电极引出孔221。具有板状结构的连接部222可以更好的与第一连接构件81贴合,从而保证两者之间的连接强度和过流面积。
第一连接构件81可通过焊接、粘接或其它方式连接到连接部222,以实现第一连接构件81和盖体22的电连接。
在本申请实施例中,弯折部223可以在壳体20的成型过程中释放应力,减小应力集中,降低壳体20破裂的风险。
在一些实施例中,连接部222包括本体部2221和第一凹部2222,本体部2221环绕第一凹部2222的外周设置,本体部2221用于连接第一连接构件81和第一极耳11,第一凹部2222从本体部的外表面222b沿面向电极组件10的方向凹陷,电极引出孔221贯穿第一凹部2222的底壁,并将第一凹部2222与壳体20的内部连通。电池单体7还包括第一绝缘构件61,第一凹部2222被配置为容纳第一绝缘构件61的至少一部分,第一绝缘构件61容纳于第一凹部2222内的部分附接于第一凹部2222的侧壁和/或底壁。
本体部2221具有沿自身厚度方向相对设置的内表面222a和外表面222b,本体部的内表面222a面向电极组件10。本体部的外表面222b可为平面,以便于与第一连接构件81贴合连接。
电极端子30固定于连接部222。示例性地,第一凹部2222的底壁可用于与电极端子30配合固定。
第一绝缘构件61用于将电极端子30的至少部分与连接部222绝缘隔开。示例性地,第一绝缘构件61的至少部分夹持于第一凹部2222的底壁和电极端子30之间,以将第一凹部2222的底壁和电极端子30绝缘隔开,降低短路风险。
本实施例既可以是第一绝缘构件61的一部分容纳于第一凹部2222内,也可以是第一绝缘构件61整体容纳于第一凹部2222内。
第一绝缘构件61容纳于第一凹部2222内的部分可以仅附接于第一凹部2222的侧壁,也可以仅附接于第一凹部2222的底壁,还可以同时附接于第一凹部2222的底壁和侧壁。
“附接”是指将两个构件贴附接触,两个构件之间可以是贴附并固定,也可以仅是贴附而不固定。例如,电极端子30和第一凹部2222的底壁从两侧夹持第一绝缘构件61的容纳于第一凹部2222内的部分,第一绝缘构件61的容纳于第一凹部2222内的部分在夹持力的作用下附接在第一凹部2222的底壁。当然,第一绝缘构件61的容纳于第一凹部2222内的部分也可以通过粘接剂附接在第一凹部2222的底壁。
本实施例通过设置第一凹部2222,可以对第一绝缘构件61进行定位,简化装配工艺。第一凹部2222能够容纳第一绝缘构件61的至少部分,这样能够减小第一绝缘构件61凸出本体部的外表面222b的尺寸,以减小电池单体7的最大尺寸,提高能量密度。
在一些实施例中,本体部的外表面222b露出,其未被电极端子30和第一绝缘构件61覆盖。
在一些实施例中,本体部2221的厚度大于筒体21的壁厚。
本体部2221用于与第一连接构件81连接,所以本体部2221需要具有较大的厚度,以保证本体部2221和第一连接构件81之间的连接强度。另外,具有较大厚度的本体部2221可以更好的支撑电极端子30等构件。筒体21主要是将电极组件10与外界隔开,其可以具有相对较小的厚度,以减小电池单体7整体的重量。
示例性地,本体部2221焊接于第一连接构件81。如果本体部2221的厚度较小,那么本体部2221容易在焊接的过程中被熔穿;因此,本申请实施例的本体部2221具有较大的厚度。
在一些实施例中,本体部2221的厚度D1和筒体21的壁厚D2的差值满足:0.1毫米≤D1-D2≤2毫米。
如果D1-D2小于0.1mm,那么本体部2221的厚度偏小或者筒体21的厚度偏大,本体部2221的厚度偏小会造成本体部2221的强度不足,而筒体21的厚度偏大会造成筒体21的重量偏大,影响能量密度。
壳体20通常使用平板拉伸而成。如果D1-D2大于2mm,那么在拉伸成型过程中,本体部2221的拉伸量和筒体21的拉伸量差异过大,筒体21容易在拉伸过程中破损。
因此,本申请实施例使D1和D2满足:0.1毫米≤D1-D2≤2毫米。
可选地,D1-D2的值为0.1mm、0.2mm、0.3mm、0.5mm、0.8mm、1mm、1.2mm、1.5mm、1.8mm或2mm。
在一些实施例中,筒体21为圆筒状,电极引出孔221为圆孔,筒体21的中心轴和电极引出孔221的中心轴重合设置。
“重合设置”并不要求筒体21的中心轴和电极引出孔221的中心轴绝对地完全重合,可以存在工艺允许的偏差。
电极引出孔221用于限定电极端子30的位置,本实施例将电极引出孔221的中心轴与筒体21的中心轴重合设置,可以使电极端子30的至少部分位于盖体22的中心位置。这样,当多个电池单体7装配成组时,可以降低对电极端子30的位置精度的要求,简化装配工艺,提高装配效率。
在一些实施例中,筒体21的内半径L1和本体部2221的宽度L2满足:0.2≤L2/L1≤0.8,本体部2221的宽度L2为本体部2221的外半径与本体部2221的内半径的差值。
本体部2221为圆环结构,宽度L2即为圆环结构的环宽。
电极组件10大体为圆柱结构,筒体21的内半径L1与电极组件10的半径正相关。L1的值越大,电极组件10的体积、容量也就越大,电池单体7对过流能力的要求也就越高。
本体部2221的宽度L2以及电极引出孔221的半径均与电池单体7的过流能力相关。宽度L2的值越大,第一连接构件81和本体部2221之间的连接面积也就越大,第一连接构件81和本体部2221之间的过流能力越高。电极引出孔221的半径直接影响电极端子30的过流面积,也会对应地影响电极端子30和第二连接构件82之间的过流能力。总而言之,本体部2221的宽度L2和电极引出孔221的半径均会影响电池单体7 的过流能力。
然而,在筒体21的内半径L1一定的前提下,本体部2221的宽度L2与电极引出孔221的半径负相关。本体部2221的宽度L2过小,将会造成本体部2221的过流能力不足;而本体部2221的宽度L2过大,将使电极引出孔221的半径过小,电极端子30的过流能力不足。发明人经过试验,在筒体21的内半径L1和本体部2221的宽度L2满足:0.2≤L2/L1≤0.8时,能够更好地平衡本体部2221的过流能力和电极端子30的过流能力,满足对电池单体7的过流能力的要求。
在一些实施例中,筒体21的内半径L1和本体部2221的宽度L2满足:0.3≤L2/L1≤0.7。
可选地,L2/L1的值为0.3、0.4、0.5、0.6或0.7。
在一些实施例中,本体部2221用于与第一连接构件81焊接并在本体部2221上形成第一焊接区域W11,第一焊接区域W11与弯折部223的第一端部223a间隔设置,第一端部223a用于连接本体部2221。
本体部2221与第一连接构件81焊接并形成第一焊接部W1。示例性地,焊接时,激光作用在第一连接构件81的背离本体部2221的表面,激光将第一连接构件81的一部分和本体部2221的一部分熔融并连接,以形成将第一焊接部W1。
第一焊接部W1包括形成在本体部2221上的第一焊接区域W11和形成在第一连接构件81上的第二焊接区域W12。
弯折部223包括相对设置的第一端部223a和第二端部223b,第一端部223a用于连接到本体部2221,第二端部223b用于连接到筒体21。弯折部223整体呈弯折状态,其内表面和外表面大体为曲面。
本申请实施例将第一焊接区域W11与弯折部223的第一端部223a间隔设置,以降低在焊接过程中因工艺误差而焊接到弯折部223的风险,减小虚焊的可能性,保证本体部2221和第一连接构件81之间的连接强度。
在一些实施例中,第一焊接区域W11的焊接深度D3和本体部2221的厚度D1满足:0.1≤D3/D1≤0.8。
焊接深度D3是指第一焊接区域W11在本体部2221的厚度方向上的尺寸。
D3/D1的值越小,本体部2221在焊接时需要熔融的部分越小,焊接所需的功率也就越低;反之,D3/D1的值越大,本体部2221在焊接时需要熔融的部分越大,焊接所需的功率也就越高。
如果D3/D1的值过小,那么第一焊接区域W11的体积过小,这会导致本体部2221和第一连接构件81之间的连接强度不足、过流能力偏低。因此,本实施例使D3/D1的值大于或等于0.1,以保证本体部2221和第一连接构件81之间的连接强度和过流能力。
如果D3/D1的值过大,那么焊接所需的功率也就偏高,焊接时产生的高温容易烧伤其它构件,例如后述的第二绝缘构件。另外,D3/D1的值过大,还会增大本体部2221被熔穿的风险,本体部2221被熔穿后,更容易烧伤壳体20内的其它构件。因此,本申请实施例使D3/D1的值小于或等于0.8,以减小焊接时的温度,降低烧伤其它构件 的风险。
可选地,D3/D1的值为0.2、0.3、0.4、0.5、0.6或0.7。
在一些实施例中,连接部222上与第一凹部2222相对的位置形成有从本体部的内表面222a沿面向电极组件10的方向凸出的凸部2223。连接部222还包括第四凹部2224,第四凹部2224从凸部2223的顶端面222c沿背离电极组件10的方向凹陷至本体部的内表面222a。电池单体7还包括第二绝缘构件60,第四凹部2224被配置为容纳第二绝缘构件60的至少部分,第二绝缘构件60的容纳于第四凹部2224的部分附接于第四凹部2224的侧壁和/或底壁。
第一凹部2222和凸部2223可通过冲压盖体22形成。
凸部2223的顶端面222c为凸部2223的面向电极组件10的表面。第四凹部2224为环绕凸部2223设置的环形凹部。第四凹部2224的底面即为本体部的内表面222a。
第二绝缘构件60的容纳于第四凹部2224的部分可以仅附接于第四凹部2224的侧壁,也可以仅附接于第四凹部2224的底壁,还可以同时附接于第四凹部2224的侧壁和底壁。
本实施例通过设置凸部2223,可以增大第一凹部2222的底壁的厚度,以提高第一凹部2222的底壁的强度,使第一凹部2222的底壁能够有效地支撑电极端子30。第二绝缘构件60能够从内侧覆盖本体部2221,以将电极组件10与本体部2221隔开,在电池单体7震动时降低电极组件10与本体部2221接触导通的风险,提高安全性能。通过设置第四凹部2224,可以对第二绝缘构件60进行定位,简化装配工艺。第四凹部2224能够容纳第二绝缘构件60的至少部分,这样能够充分利用壳体20的内部空间,提高能量密度。
在一些实施例中,第一绝缘构件61和第二绝缘构件60中的一者用于密封电极引出孔221。在另一些实施例中,电池单体7还包括密封圈62,密封圈62套设在电极端子30上并用于密封电极引出孔221。可选地,密封圈62的一部分延伸到电极引出孔221内,以将电极引出孔221的孔壁和电极端子30隔开。
在一些实施例中,弯折部223包括用于连接到连接部222的第一端部223a和用于连接到筒体21的第二端部223b,由第一端部223a指向第二端部223b的方向,弯折部223的厚度逐渐减小。
弯折部223的第一端部223a的厚度等于本体部2221的厚度,弯折部223的第二端部223b的厚度等于筒体21的厚度。
本申请实施例使弯折部223的厚度逐渐变化,以适应连接部222和筒体21之间的厚度差异,平缓地连接筒体21和连接部222,减小壳体20的内表面和外表面形成台阶的风险,降低应力集中。
在一些实施例中,第二极耳12设于电极组件10面向盖体22的一端,第一极耳11设于电极组件10背离盖体22的另一端。筒体21用于连接第一极耳11和盖体22,以使第一极耳11电连接于盖体22。
筒体21可以直接电连接第一极耳11,也可以通过其它构件电连接第一极耳11。 例如,第一极耳11通过盖板40电连接到筒体21。
本申请实施例将第一极耳11和第二极耳12设于电极组件10的两端,可以降低第一极耳11和第二极耳12导通的风险,并增大第一极耳11的过流面积和第二极耳12的过流面积。
在一些实施例中,第一极耳11为负极极耳,壳体20的基体材质为钢。
壳体20与负极极耳电连接,即壳体20处于低电位状态。钢制的壳体20在低电位状态下不易被电解液腐蚀,以降低安全风险。
在一些实施例中,电池单体7还包括集流构件50,用于连接第二极耳12和电极端子30。
集流构件50可以通过焊接、抵接或粘接等方式连接于第二极耳12,通过焊接、抵接、粘接、铆接等方式连接到电极端子30,从而实现第二极耳12和电极端子30之间的电连接。
在第一方向X上,电极端子30与第二极耳12的中部区域相对设置。如果直接连接电极端子30和第二极耳12,那么将会导致第二极耳12的边缘区域与电极端子30之间的导电路径偏长,造成电极组件10的第二极片的电流密度不均匀,增大内阻,影响电池单体7的过流能力和充电效率。
本申请实施例的集流构件50与第二极耳12之间可具有较大的连接面积,第二极耳12的电流可以经由集流构件50汇入电极端子30,这样,集流构件50可以减小第二极耳12的不同区域与电极端子30之间的导电路径的差异,提高第二极片的电流密度的均匀性,减小内阻,提高电池单体7的过流能力和充电效率。
图9为本申请一些实施例提供的电池单体的第二绝缘构件的结构示意图。
如图8和图9所示,在一些实施例中,电池单体7还包括第二绝缘构件60,第二绝缘构件60包括绝缘主体63和凸设于绝缘主体63的外周的绝缘凸起64,绝缘主体63抵靠于本体部2221面向电极组件10的一侧,绝缘凸起64设于弯折部223面向电极组件10的一侧,绝缘凸起64的背离电极组件10的表面相较于绝缘主体63的背离电极组件10的表面更靠近电极组件10,以形成用于避让弯折部223的第二凹部65。
绝缘主体63具有相对设置的内表面和外表面,绝缘主体的内表面631面向电极组件10。绝缘凸起64具有相对设置的内表面和外表面,绝缘凸起的内表面641面向电极组件10。在第一方向X上,绝缘凸起的外表面642比绝缘主体的外表面632更靠近电极组件10。
在本体部2221的厚度方向上,绝缘主体63和本体部2221至少部分地重叠,绝缘凸起64和弯折部223至少部分地重叠。
绝缘凸起64为环绕在绝缘主体63的外侧的环形结构。第二凹部65环绕在绝缘主体63的外侧。
绝缘主体63抵靠于本体部2221面向电极组件10的表面,并覆盖第一焊接区域W11。在焊接第一连接构件81和本体部2221时,如果因操作失误而使本体部2221被熔穿时,绝缘主体63可以起到止挡的作用,减小焊珠掉落到电极组件10的风险,降低安全隐患。
在本实施例中,绝缘主体63能够将本体部2221的至少部分与电极组件10隔开,绝缘凸起64能够将弯折部223的至少部分与电极组件10隔开,这样,在电池单体7震动时,本实施例能够降低电极组件10与本体部2221接触的风险以及电极组件10与弯折部223接触的风险,从而提高安全性能。本实施例通过设置第二凹部65来避让弯折部223,以避免弯折部223与第二绝缘构件60干涉。
在一些实施例中,绝缘凸起64沿面向电极组件10的方向超出弯折部223的第二端部223b,第二端部223b用于连接筒体21。
在第一方向X上,绝缘凸起的外表面642比第二端部223b更靠近电极组件10。
本实施例能够将绝缘凸起的外表面642与弯折部223的内表面间隔开,避免绝缘凸起64与弯折部223干涉。绝缘凸起64凸出绝缘主体63的尺寸不受弯折部223的影响,这样可以改善绝缘凸起64的隔离效果。
在一些实施例中,绝缘凸起的内表面641和绝缘主体的内表面631齐平。
在一些实施例中,绝缘主体的内表面631形成有沿背离电极组件10的方向凹陷的第三凹部66,电极端子30的至少部分容纳于第三凹部66。
本实施例通过设置第三凹部66,可以减小第二绝缘构件60和电极端子30占用的空间,以提高电池单体7的能量密度。
在一些实施例中,绝缘主体63的厚度大于本体部2221的厚度。
在焊接本体部2221和第一连接构件81时,热量会传递到绝缘主体63上。本实施例使绝缘主体63的厚度大于本体部2221的厚度,以延长传热的路径,降低热量对其它构件的影响。本实施例的绝缘主体63具有较大的厚度,这样,即使绝缘主体63的靠近第一焊接区域W11的部分被烧伤,也能够保证绝缘效果。
图10为图6所示的电池在圆框C处的放大示意图;图11为本申请一些实施例提供的电池单体的电极端子的结构示意图。
如图10和图11所示,电极端子30包括端子主体31,端子主体31包括柱状部311、第一限位部312和第二限位部313,柱状部311至少一部分位于电极引出孔221内,第一限位部312和第二限位部313均连接并凸出于柱状部311的外侧壁,第一限位部312和第二限位部313分别设于连接部沿第一方向X的外侧和内侧,并用于夹持连接部的一部分。
端子主体31具有相对设置的内表面和外表面,端子主体的内表面314面向电极组件10。柱状部311设有第五凹部311a,第五凹部311a从端子主体的外表面315沿面向电极组件10的方向凹陷。第五凹部311a的底部形成转接部311b,转接部311b用于焊接到集流构件50。
当电极组件和集流构件50经由筒体的开口安装至壳体内,且集流构件50抵压于转接部311b之后,外部焊接设备能够从转接部311b的背离集流构件50的一侧将转接部311b和集流构件50焊接。
本实施例通过设置第五凹部311a来减小转接部311b的厚度,这样可以减小转接部311b与集流构件50焊接所需的焊接功率,减少产热,降低其它构件(例如第一绝缘构件和第二绝缘构件)被烧伤的风险。
在一些实施例中,电极端子30还包括密封板32,密封板32用于封闭第五凹部311a的开口。密封板32可以整体位于第五凹部311a的外侧,也可以部分地容纳于第五凹部311a内,只要密封板32能够封闭第五凹部311a的开口即可。密封板32可以从外侧保护转接部311b,减少进入第五凹部311a的外部杂质,降低转接部311b被外部杂质损伤的风险,提高电池单体7的密封性能。
在一些实施例中,第五凹部311a为台阶式凹部,密封板32的至少部分容纳于第五凹部311a内并由第五凹部311a的台阶面支撑。
在一些实施例中,密封板32用于与第二连接构件82焊接并形成第二焊接部W2。第二焊接部W2可以减小密封板32与第二连接构件82之间的接触电阻,提高过流能力。
在一些实施例中,密封板32的至少部分凸出于端子主体的外表面315。
当需要焊接第二连接构件82和密封板32时,先将第二连接构件82贴合到密封板32的上表面(即密封板32的背离转接部311b的外表面),然后再焊接第二连接构件82和密封板32。
密封板32的至少部分凸出于端子主体的外表面315,以避免端子主体的外表面315干涉密封板32和第二连接构件82的贴合,保证第二连接构件82和密封板32紧密贴合。
图12为本申请一些实施例提供的电池单体的制造方法的流程示意图。
如图12所示,本申请实施例提供的电池单体的制造方法包括:
S100、提供壳体和电极端子,壳体包括筒体和连接于筒体的盖体,盖体设有电极引出孔,筒体在背离盖体的一端具有开口,电极端子绝缘设置于盖体并安装于电极引出孔;
S200、提供电极组件,电极组件包括极性相反的第一极耳和第二极耳;
S300、将电极组件安装到壳体内,以使筒体环绕电极组件的外周设置,并使第二极耳电连接于电极端子;
S400、提供盖板,并将盖板连接到筒体,以封闭筒体的开口,将第一极耳电连接到盖板,以使第一极耳经由盖板和筒体电连接于盖体;
其中,盖体的至少一部分用于电连接电池的第一连接构件和第一极耳,电极端子用于电连接电池的第二连接构件和第二极耳,盖体和电极端子两者中的一者为电池单体的正输出极,另一者为电池单体的负输出极。
需要说明的是,通过上述电池单体的制造方法制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
在基于上述的电池单体的制造方法组装电池单体时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S100、S200的执行不分先后,也可以同时进行。
图13为本申请一些实施例提供的电池单体的制造系统的示意性框图。
如图13所示,本申请实施例的电池单体的制造系统90包括:
第一提供装置91,用于提供壳体和电极端子,壳体包括筒体和连接于筒体的盖 体,盖体设有电极引出孔,筒体在背离盖体的一端具有开口,电极端子绝缘设置于盖体并安装于电极引出孔;
第二提供装置92,用于提供电极组件,电极组件包括极性相反的第一极耳和第二极耳;
第一组装装置93,用于将电极组件安装到壳体内,以使筒体环绕电极组件的外周设置,并使第二极耳电连接于电极端子;
第二组装装置94,用于提供盖板,并将盖板连接到筒体,以封闭筒体的开口,将第一极耳电连接到盖板,以使第一极耳经由盖板和筒体电连接于盖体;
其中,盖体的至少一部分用于电连接电池的第一连接构件和第一极耳,电极端子用于电连接电池的第二连接构件和第二极耳,盖体和电极端子两者中的一者为电池单体的正输出极,另一者为电池单体的负输出极。
通过上述制造系统制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种电池单体,用于电池,包括:
    电极组件,包括极性相反的第一极耳和第二极耳;
    壳体,用于容纳所述电极组件,所述壳体包括筒体和连接于所述筒体的盖体,所述筒体环绕所述电极组件的外周设置,所述盖体设有电极引出孔,所述盖体的至少一部分用于电连接所述电池的第一连接构件和所述第一极耳;以及
    电极端子,用于电连接所述电池的第二连接构件和所述第二极耳,所述电极端子绝缘设置于所述盖体并安装于所述电极引出孔,所述盖体和所述电极端子两者中的一者为所述电池单体的正输出极,另一者为所述电池单体的负输出极。
  2. 根据权利要求1所述的电池单体,其中,所述盖体和所述筒体为一体形成结构。
  3. 根据权利要求1或2所述的电池单体,其中,所述盖体包括连接部和弯折部,所述连接部上设有所述电极引出孔,并且所述连接部至少一部分用于连接所述第一连接构件和所述第一极耳,所述弯折部用于连接所述筒体和所述连接部。
  4. 根据权利要求3所述的电池单体,其中,所述连接部包括本体部和第一凹部,所述本体部环绕所述第一凹部的外周设置,所述本体部用于连接所述第一连接构件和所述第一极耳,所述第一凹部从所述本体部的外表面沿面向所述电极组件的方向凹陷,所述电极引出孔贯穿所述第一凹部的底壁,并将所述第一凹部与所述壳体的内部连通;
    所述电池单体还包括第一绝缘构件,所述第一凹部被配置为容纳所述第一绝缘构件的至少一部分,所述第一绝缘构件容纳于所述第一凹部内的部分附接于所述第一凹部的侧壁和/或底壁。
  5. 根据权利要求4所述的电池单体,其中,所述本体部的厚度大于所述筒体的壁厚。
  6. 根据权利要求5所述的电池单体,其中,所述本体部的厚度D1和所述筒体的壁厚D2的差值满足:0.1毫米≤D1-D2≤2毫米。
  7. 根据权利要求4-6任一项所述的电池单体,其中,所述筒体为圆筒状,所述电极引出孔为圆孔,所述筒体的中心轴和所述电极引出孔的中心轴重合设置。
  8. 根据权利要求7所述的电池单体,其中,所述筒体的内半径L1和所述本体部的宽度L2满足:0.2≤L2/L1≤0.8,所述本体部的宽度L2为所述本体部的外半径与所述本体部的内半径的差值。
  9. 根据权利要求4-8任一项所述的电池单体,其中,所述本体部用于与所述第一连接构件焊接并在所述本体部上形成第一焊接区域,所述第一焊接区域与所述弯折部的第一端部间隔设置,所述第一端部用于连接所述本体部。
  10. 根据权利要求9所述的电池单体,其中,所述第一焊接区域的焊接深度D3和所述本体部的厚度D1满足:0.1≤D3/D1≤0.8。
  11. 根据权利要求4-10任一项所述的电池单体,其中,所述电池单体还包括第二绝缘构件,所述第二绝缘构件包括绝缘主体和凸设于所述绝缘主体的外周的绝缘凸起,所述绝缘主体抵靠于所述本体部面向所述电极组件的一侧,所述绝缘凸起设于所述弯 折部面向所述电极组件的一侧,所述绝缘凸起的背离所述电极组件的表面相较于所述绝缘主体的背离所述电极组件的表面更靠近所述电极组件,以形成用于避让所述弯折部的第二凹部。
  12. 根据权利要求11所述的电池单体,其中,所述绝缘凸起沿面向所述电极组件的方向超出所述弯折部的第二端部,所述第二端部用于连接所述筒体。
  13. 根据权利要求11或12所述的电池单体,其中,所述绝缘主体的内表面形成有沿背离所述电极组件的方向凹陷的第三凹部,所述电极端子的至少部分容纳于所述第三凹部。
  14. 根据权利要求11-13任一项所述的电池单体,其中,所述绝缘主体的厚度大于所述本体部的厚度。
  15. 根据权利要求4-14任一项所述的电池单体,其中,所述连接部上与所述第一凹部相对的位置形成有从所述本体部的内表面沿面向所述电极组件的方向凸出的凸部;
    所述连接部还包括第四凹部,所述第四凹部从所述凸部的顶端面沿背离所述电极组件的方向凹陷至所述本体部的内表面;
    所述电池单体还包括第二绝缘构件,所述第四凹部被配置为容纳所述第二绝缘构件的至少部分,所述第二绝缘构件的容纳于所述第四凹部的部分附接于所述第四凹部的侧壁和/或底壁。
  16. 根据权利要求3-15任一项所述的电池单体,其中,所述弯折部包括用于连接所述连接部的第一端部和用于连接所述筒体的第二端部,由所述第一端部指向所述第二端部的方向,所述弯折部的厚度逐渐减小。
  17. 根据权利要求1-16中任一项所述的电池单体,其中,所述第二极耳设于所述电极组件面向所述盖体的一端,所述第一极耳设于所述电极组件背离所述盖体的另一端;
    所述筒体用于连接所述第一极耳和所述盖体,以使所述第一极耳电连接于所述盖体。
  18. 根据权利要求1-17中任一项所述的电池单体,其中,所述第一极耳为负极极耳,所述壳体的基体材质为钢。
  19. 根据权利要求1-18中任一项所述的电池单体,其中,所述筒体的在背离所述盖体的一端具有开口,所述电池单体还包括用于封闭所述开口的盖板。
  20. 一种电池,包括:
    根据权利要求1-19中任一项所述的电池单体;
    第一连接构件,连接于所述盖体;以及
    第二连接构件,连接于所述电极端子。
  21. 一种用电装置,包括根据权利要求20所述的电池,所述电池用于提供电能。
  22. 一种电池单体的制造方法,包括:
    提供壳体和电极端子,所述壳体包括筒体和连接于所述筒体的盖体,所述盖体设有电极引出孔,所述筒体在背离所述盖体的一端具有开口,所述电极端子绝缘设置于所述盖体并安装于所述电极引出孔;
    提供电极组件,所述电极组件包括极性相反的第一极耳和第二极耳;
    将所述电极组件安装到所述壳体内,以使所述筒体环绕所述电极组件的外周设置,并使所述第二极耳电连接于所述电极端子;
    提供盖板,并将所述盖板连接到所述筒体,以封闭所述筒体的开口,将所述第一极耳电连接到所述盖板,以使所述第一极耳经由所述盖板和所述筒体电连接于所述盖体;
    其中,所述盖体的至少一部分用于电连接电池的第一连接构件和所述第一极耳,所述电极端子用于电连接所述电池的第二连接构件和所述第二极耳,所述盖体和所述电极端子两者中的一者为所述电池单体的正输出极,另一者为所述电池单体的负输出极。
  23. 一种电池单体的制造系统,包括:
    第一提供装置,用于提供壳体和电极端子,所述壳体包括筒体和连接于所述筒体的盖体,所述盖体设有电极引出孔,所述筒体在背离所述盖体的一端具有开口,所述电极端子绝缘设置于所述盖体并安装于所述电极引出孔;
    第二提供装置,用于提供电极组件,所述电极组件包括极性相反的第一极耳和第二极耳;
    第一组装装置,用于将所述电极组件安装到所述壳体内,以使所述筒体环绕所述电极组件的外周设置,并使所述第二极耳电连接于所述电极端子;
    第二组装装置,用于提供盖板,并将所述盖板连接到所述筒体,以封闭所述筒体的开口,将所述第一极耳电连接到所述盖板,以使所述第一极耳经由所述盖板和所述筒体电连接于所述盖体;
    其中,所述盖体的至少一部分用于电连接电池的第一连接构件和所述第一极耳,所述电极端子用于电连接所述电池的第二连接构件和所述第二极耳,所述盖体和所述电极端子两者中的一者为所述电池单体的正输出极,另一者为所述电池单体的负输出极。
PCT/CN2021/114155 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置 WO2023023916A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP21876743.2A EP4170781A4 (en) 2021-08-23 Battery cell and manufacturing method and manufacturing system therefor, battery, and power consuming device
CN202180024771.2A CN116018718B (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置
JP2023529132A JP7445823B2 (ja) 2021-08-23 2021-08-23 電池セル及びその製造方法と製造システム、電池及び電力消費装置
PCT/CN2021/114155 WO2023023916A1 (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置
CN202311728665.XA CN117791003A (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置
KR1020237015990A KR102637317B1 (ko) 2021-08-23 2021-08-23 배터리 셀 및 그 제조 방법과 제조 시스템, 배터리 및 전기 장치
US17/715,076 US20230055271A1 (en) 2021-08-23 2022-04-07 Battery cell, method and system for manufacturing a battery cell, battery and electrical device
PCT/CN2022/114022 WO2023025104A1 (zh) 2021-08-23 2022-08-22 电池单体、电池以及用电装置
CN202280007865.3A CN116636057A (zh) 2021-08-23 2022-08-22 电池单体、电池以及用电装置
CN202222212967.9U CN218586157U (zh) 2021-08-23 2022-08-22 电池单体、电池以及用电装置
EP22860450.0A EP4293769A1 (en) 2021-08-23 2022-08-22 Battery cell, battery, and electric device
US18/412,586 US20240154218A1 (en) 2021-08-23 2024-01-14 Battery cell, battery, and electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/114155 WO2023023916A1 (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/715,076 Continuation US20230055271A1 (en) 2021-08-23 2022-04-07 Battery cell, method and system for manufacturing a battery cell, battery and electrical device

Publications (1)

Publication Number Publication Date
WO2023023916A1 true WO2023023916A1 (zh) 2023-03-02

Family

ID=85227678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114155 WO2023023916A1 (zh) 2021-08-23 2021-08-23 电池单体及其制造方法和制造系统、电池以及用电装置

Country Status (5)

Country Link
US (1) US20230055271A1 (zh)
JP (1) JP7445823B2 (zh)
KR (1) KR102637317B1 (zh)
CN (2) CN117791003A (zh)
WO (1) WO2023023916A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207800665U (zh) * 2018-02-01 2018-08-31 宁德时代新能源科技股份有限公司 二次电池的顶盖组件以及二次电池
US20200035959A1 (en) * 2017-01-19 2020-01-30 Lg Chem, Ltd. Battery pack comprising electrode terminal connection plate
CN111106304A (zh) * 2018-10-30 2020-05-05 宁德时代新能源科技股份有限公司 二次电池
CN112335117A (zh) * 2018-06-22 2021-02-05 松下知识产权经营株式会社 电池模块

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277330C (zh) * 1999-08-10 2006-09-27 三洋电机株式会社 非水电解液二次蓄电池及其制造方法
JP4501361B2 (ja) 2003-06-05 2010-07-14 パナソニック株式会社 二次電池
JP4124756B2 (ja) 2003-10-03 2008-07-23 日立マクセル株式会社 密閉型電池
JP2006228520A (ja) 2005-02-16 2006-08-31 Matsushita Electric Ind Co Ltd 二次電池
CN100573978C (zh) 2005-12-30 2009-12-23 比亚迪股份有限公司 二次电池
FR2905525B1 (fr) * 2006-09-05 2008-10-31 Accumulateurs Fixes Dispositif de raccordement electrique pour borne de sortie d'un accumulateur de courant
JP2015099681A (ja) 2013-11-19 2015-05-28 日立マクセル株式会社 密閉型電池
CN206619636U (zh) * 2017-03-30 2017-11-07 陕西沃特玛新能源有限公司 一种电池
US10784519B2 (en) * 2018-03-02 2020-09-22 Energizer Brands, Llc Electrochemical cell with electrode filled protrusion
JP7157956B2 (ja) * 2018-11-29 2022-10-21 パナソニックIpマネジメント株式会社 円筒型電池及びその製造方法
US20220123395A1 (en) 2018-11-30 2022-04-21 Panasonic Intellectual Property Management Co., Ltd. Battery
CN112821015A (zh) * 2021-03-05 2021-05-18 烯晶碳能电子科技无锡有限公司 铜铝复合的极柱、负极盖板组件结构及储能单元
JP2023529119A (ja) 2021-03-12 2023-07-07 エルジー エナジー ソリューション リミテッド バスバーアセンブリ、このようなバスバーアセンブリを含むバッテリーパック、及びこのようなバッテリーパックを含む自動車
CN113555602A (zh) 2021-08-19 2021-10-26 多氟多新能源科技有限公司 一种新型圆柱锂离子电池及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200035959A1 (en) * 2017-01-19 2020-01-30 Lg Chem, Ltd. Battery pack comprising electrode terminal connection plate
CN207800665U (zh) * 2018-02-01 2018-08-31 宁德时代新能源科技股份有限公司 二次电池的顶盖组件以及二次电池
CN112335117A (zh) * 2018-06-22 2021-02-05 松下知识产权经营株式会社 电池模块
CN111106304A (zh) * 2018-10-30 2020-05-05 宁德时代新能源科技股份有限公司 二次电池

Also Published As

Publication number Publication date
JP2023548949A (ja) 2023-11-21
CN116018718A (zh) 2023-04-25
CN116018718B (zh) 2024-01-09
EP4170781A1 (en) 2023-04-26
US20230055271A1 (en) 2023-02-23
KR20230070526A (ko) 2023-05-23
KR102637317B1 (ko) 2024-02-19
CN117791003A (zh) 2024-03-29
JP7445823B2 (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023092758A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电设备
CN215578764U (zh) 电池单体、电池以及用电装置
WO2023023917A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
EP4138166A1 (en) Battery cell, battery, electrical device, and manufacturing method and device for battery cell
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
US20230216154A1 (en) Current collecting member, battery cell, battery, and power consuming device
US20240154218A1 (en) Battery cell, battery, and electrical apparatus
US20240055705A1 (en) Battery cell, battery, power consuming apparatus, and method and apparatus for manufacturing battery cell
WO2022170553A1 (zh) 电池单体、电池、用电设备及电池单体的制造设备和方法
WO2023023915A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023065173A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050281A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050289A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023000184A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023023916A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
JP2024503489A (ja) 電池セル、電池、電力消費機器及び電池セルの製造方法と機器
WO2023050282A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023133806A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050197A1 (zh) 电池单体及其制造方法和制造系统、电池及用电装置
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021876743

Country of ref document: EP

Effective date: 20220413

ENP Entry into the national phase

Ref document number: 20237015990

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023529132

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE