WO2023178566A1 - 气溶胶产生装置 - Google Patents

气溶胶产生装置 Download PDF

Info

Publication number
WO2023178566A1
WO2023178566A1 PCT/CN2022/082586 CN2022082586W WO2023178566A1 WO 2023178566 A1 WO2023178566 A1 WO 2023178566A1 CN 2022082586 W CN2022082586 W CN 2022082586W WO 2023178566 A1 WO2023178566 A1 WO 2023178566A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol generating
probes
generating device
receiving
probe
Prior art date
Application number
PCT/CN2022/082586
Other languages
English (en)
French (fr)
Inventor
杜靖
曾葆青
刘志伟
梁峰
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Priority to PCT/CN2022/082586 priority Critical patent/WO2023178566A1/zh
Publication of WO2023178566A1 publication Critical patent/WO2023178566A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present invention relates to the field of electronic atomization, and more specifically, to an aerosol generating device.
  • Heat Not Burning (HNB) device is a combination of a heating device and an aerosol-generating substrate (processed plant leaf products).
  • the external heating device heats the aerosol-generating matrix at high temperature to a temperature where the aerosol-generating matrix can generate aerosols but is not sufficient to burn, allowing the aerosol-generating matrix to generate the aerosols required by the user without burning.
  • heat-not-burn appliances on the market mainly use resistance heating, which uses a central heating piece or heating needle to be inserted from the center of the aerosol-generating substrate into the interior of the aerosol-generating substrate for heating. This kind of appliance requires a long preheating time before use and cannot be freely pumped and stopped.
  • the aerosol-generating matrix is carbonized unevenly, resulting in insufficient baking of the aerosol-generating matrix and low utilization rate.
  • the heating plate of HNB appliances is easy to be in the aerosol. Dirt is generated in the matrix extractor and the base of the heating piece, which is difficult to clean; the local aerosol that contacts the heating element will cause the matrix temperature to be too high, causing partial decomposition, and releasing substances harmful to the human body. Therefore, microwave heating technology gradually replaces resistance heating as a new heating method. Microwave heating technology has the characteristics of high efficiency, timeliness, selectivity and no delay in heating. It only has a heating effect on substances with specific dielectric properties. The application advantages of using microwave heating atomization are: a.
  • Microwave heating is radiant heating, non-heat conduction, and can be smoked and stopped; b. There is no heating plate, so there is no problem of fragmentation and cleaning of the heating plate; c. Aerosol generation The matrix utilization rate is high, the taste consistency is high, and the taste is closer to cigarettes.
  • the microwave is generally fed from one end and then resonates in the resonator. Since the resonant cavity is small, the distribution of electromagnetic waves in the resonator is relatively uneven and the uniformity of heating is poor.
  • the technical problem to be solved by the present invention is to provide an improved aerosol generating device in view of the shortcomings of related technologies.
  • An aerosol generating device including a microwave resonator and a receiving seat; the microwave resonator includes a resonant cavity and an inner conductor unit disposed in the resonant cavity, and the inner conductor unit includes a probe device; the receiving seat is provided The seat includes a receiving portion disposed in the resonant cavity to receive the aerosol-generating matrix; the probe device includes at least two probes, the at least two probes are arranged on the sides of the receiving portion, and Lengths vary.
  • the probe device includes a base connected to the at least two probes.
  • the base is provided at the bottom of the receiving portion.
  • the at least two probes are elongated, and their length direction is parallel to the axis of the receiving portion.
  • the at least two probes are distributed at equal intervals in the circumferential direction of the side of the receiving portion.
  • the at least two probes include at least two pairs of probes with different lengths between pairs, and the at least two pairs of probes are alternately and evenly distributed on the side of the receiving part. circumference upward.
  • the at least two probes include at least two groups of probes with different lengths between groups, and the at least two groups of probes are alternately and evenly distributed on the side of the receiving part. circumference upward.
  • the at least two probes are coupled to the receiving portion.
  • the at least two probes are integrally formed using conductive metal sheets, or formed by electroplating or printing.
  • the thickness of the at least two probes ranges from 1 to 2000 microns.
  • the at least two probes are distributed on the inner or outer wall of the receiving portion, or are wholly or partially embedded in the side wall of the receiving portion.
  • the receiving portion includes a receiving cavity for receiving the aerosol-generating matrix, the receiving cavity includes a longitudinal axis, and the at least two probes are along a direction parallel to the longitudinal axis. extend.
  • the receiving base further includes a fixing part connected to the receiving part, and the fixing part includes a through hole connecting the receiving chamber to the environment.
  • the receiving seat includes a plurality of positioning ribs, and these positioning ribs are evenly spaced in the circumferential direction of the wall surface of the receiving cavity and/or the through hole.
  • a longitudinally extending first air inlet channel is formed between at least part of adjacent positioning ribs; the receiving seat includes several support ribs, and these support ribs are radially distributed on the bottom surface of the receiving cavity, Radially extending second air inlet passages are formed between at least some adjacent support ribs, and these second air inlet passages are respectively connected with these first air inlet passages.
  • the microwave resonator is a quarter-wavelength coaxial line resonator.
  • the receiving seat is made of a composite of one or more of plastic, microwave transparent ceramics, glass, alumina, zirconia, and silicon oxide.
  • the axis of the inner conductor unit and the axis of the outer conductor unit are coincident or parallel to each other.
  • the probe device and the conductor post are detachable or locked when the constraints of the external force are removed.
  • the length of the at least one probe ranges from 0 to (L1+5) mm, where L1 is the length of the aerosol-generating matrix.
  • the inner conductor unit further includes a conductor post disposed in the resonant cavity.
  • the conductor post includes a free end extending toward the receiving portion, and the free end is connected to the probe device. Ohmic contact.
  • the microwave resonator includes an outer conductor unit for defining the resonant cavity, and the outer conductor unit includes an open end and a closed end opposite to the open end.
  • the receiving seat is connected to the open end.
  • the conductor post includes a fixed end connected to the closed end.
  • the axis of the conductor post coincides with or is parallel to the axis of the outer conductor unit.
  • An aerosol generating device including a quarter-wavelength coaxial line resonator and a receiving cavity for receiving an aerosol generating substrate;
  • the coaxial line resonator includes a resonant cavity and a resonant cavity disposed in the resonant cavity
  • the inner conductor unit in the inner conductor unit includes a probe device; the receiving cavity is provided in the resonant cavity; the probe device includes at least two probes, and the at least two probes are arranged in the resonant cavity.
  • the sides of the receiving cavity are of different lengths.
  • the probe device includes a base connected to the at least two probes.
  • the base corresponds to the bottom of the receiving cavity.
  • the receiving chamber includes a longitudinal axis and the at least two probes extend in a direction parallel to the longitudinal axis.
  • the receiving cavity includes a longitudinal axis, and the at least two probes are elongated, with their length direction parallel to the longitudinal axis of the receiving cavity.
  • the at least two probes are equally spaced and distributed circumferentially on the sides of the receiving cavity.
  • the at least two probes include at least two pairs of probes with different lengths between pairs, and the at least two pairs of probes are alternately and evenly distributed on the side of the receiving chamber. circumference upward.
  • the length of the at least one probe ranges from 0 to (L1+5) mm, where L1 is the length of the aerosol-generating matrix.
  • the inner conductor unit further includes a conductor post disposed in the resonant cavity.
  • the conductor post includes a free end extending toward the receiving cavity, and the free end is connected to the probe device. Ohmic contact.
  • the aerosol generating device of the present invention has the following beneficial effects: at least two probes of the probe device extend to the periphery of the receiving chamber and have equal lengths, which significantly improves the uniformity of the microwave field and facilitates heating of the aerosol generating substrate.
  • the uniformity of heating of the aerosol-generating substrate is significantly enhanced, thereby improving the utilization of the aerosol-generating substrate.
  • Figure 1 is a schematic three-dimensional structural diagram of an aerosol generating device in some embodiments of the present invention.
  • Figure 2 is a schematic structural diagram of a longitudinal section of the aerosol generating device shown in Figure 1;
  • Figure 3 is a schematic three-dimensional exploded structural view of the aerosol generating device shown in Figure 1;
  • Figure 4 is a schematic longitudinal cross-sectional structural diagram of the aerosol generating device shown in Figure 3 in an exploded state;
  • Figure 5 is a schematic longitudinal cross-sectional structural diagram of an aerosol generating device in some embodiments of the present invention.
  • Figures 1 to 4 show an aerosol generating device 1 in some embodiments of the present invention.
  • the aerosol generating device 1 can use microwaves to heat an aerosol generating substrate to atomize it to generate aerosol for the user to inhale.
  • the aerosol-generating substrate is a solid aerosol-generating substrate such as a processed plant leaf product. It can be understood that in other embodiments, the aerosol-generating matrix may also be a liquid aerosol-generating matrix.
  • the aerosol generating device 1 may include a microwave resonator 10 , a receiving seat 20 and a microwave feeding device 30 in some embodiments.
  • the microwave resonator 10 may be cylindrical in some embodiments, and may include a resonant cavity 13 in which microwaves continuously oscillate.
  • the receiving seat 20 is used to load the aerosol-generating substrate, which is fixedly or detachably installed on the microwave resonator 10, so that the aerosol-generating substrate inside is exposed to the microwave field in the resonant cavity 13 and is heated by the microwave mist. change.
  • the microwave feeding device 30 is connected to the microwave resonator 10 and is used to feed the microwave generated by the microwave generating device (not shown) into the resonant cavity 13 . It can be understood that the microwave resonator 10 is not limited to a cylindrical shape, and may also be in a square cylinder, an elliptical cylinder or other shapes.
  • the microwave resonator 10 may be a quarter-wavelength coaxial line resonator, which may include a cylindrical outer conductor unit 11 for electromagnetic shielding, and is disposed in the outer conductor unit 11 to guide waves.
  • the longitudinal inner conductor unit 12 and the medium (for example, air) between the outer wall surface of the inner conductor unit 12 and the inner wall surface of the outer conductor unit 11, the outer conductor unit 11 and the inner conductor unit 12 together define the above-mentioned Resonant cavity 13.
  • the first end of the inner conductor unit 12 is in ohmic contact with the end wall 111 of the outer conductor unit 11 , forming a short-circuit end of the microwave resonator 10 .
  • the second end of the inner conductor unit 12 extends toward the opening 110 of the outer conductor unit 11 and is not in direct ohmic contact with the outer conductor unit 11 , forming an open end of the microwave resonator 10 .
  • the receiving seat 20 is installed (for example, detachably or non-detachably embedded) on the open end B of the microwave resonator 10 and is connected to the second end of the inner conductor unit 12 .
  • the axis of the inner conductor unit 12 and the axis of the outer conductor unit 11 coincide with or are parallel to each other. Preferably, the two coincide with each other.
  • Outer conductor unit 11 may in some embodiments include conductive side walls 111 , conductive end walls 112 and openings 110 .
  • the side wall 111 may be cylindrical in some embodiments and includes a first end and a second end opposite to the first end.
  • the end wall 112 is closed on the first end of the side wall 111 to form a closed end of the outer conductor unit 11 .
  • the opening 110 is formed on the second end of the side wall 111 to form an open end of the outer conductor unit 11 for the receiving seat 20 to be embedded therein.
  • a radially penetrating feed hole 1110 may be provided on the side wall 111 of the outer conductor unit 11 near the end wall 112 for the microwave feed device 30 to be installed therein.
  • a through-mounting hole 1120 is opened in the middle of the end wall 112 for the conductor post 121 of the inner conductor unit 12 to be inserted therein.
  • the first end (fixed end) of the inner conductor unit 12 is fixed on the end wall 112 of the outer conductor unit 11 and is in ohmic contact with the end wall 112; the second end (free end) of the inner conductor unit 12 faces the opening of the outer conductor unit 11
  • the extension of 110 is not in direct ohmic contact with the outer conductor unit 11 and is mainly used to emit microwaves.
  • the desired microwave field can be obtained through the shape and layout of the second end of the inner conductor unit 12 .
  • the outer conductor unit 11 can be integrally made of a conductive metal material, and the material can be aluminum, copper, gold, silver, stainless steel and other conductive metals. It can be understood that the outer conductor unit 11 is not limited to being integrally made of conductive material. It can also be realized by plating a conductive layer on the surface of the non-conductive cylinder. In some embodiments, the conductive layer may be a gold plating layer, a silver plating layer, a copper plating layer, or the like. It can be understood that the outer conductor unit 11 is not limited to a cylindrical shape, and may also be in a square cylindrical shape, an elliptical cylindrical shape, or other suitable shapes.
  • the inner conductor unit 12 may include a conductor post 121 located at a first end (first fixed end) and coaxial with the outer conductor unit 11 and a conductor post 121 located at a second end (first free end) and independent (ie, a conductor post 121 ).
  • the post 121 and the probe device 122 are not integrally connected together) to the probe device 122 of the outer conductor unit 11, and one end (the second fixed end) of the conductor post 121 is connected to the end wall 112 of the outer conductor unit 11, The other end (second free end) is in ohmic contact with the probe assembly 122 .
  • the probe device 122 is in ohmic contact with the conductor post 121 so that microwaves can be transmitted to the probe device 122 via the conductor post 121 .
  • the probe device 122 is specially configured in terms of shape and layout to promote a more even distribution of the microwave field around the periphery of the receiving seat 20, thereby achieving detection of the aerosol-generating matrix in the receiving seat 20. A more uniform microwave heating effect improves the utilization of the aerosol-generating matrix.
  • the probe device 122 and the conductor post 121 are designed to be independent of each other, the probe device 122 and the conductor post 121 can be respectively fixed on the receiving base 2 and the outer conductor unit 11 before assembly, forming a probe.
  • the design and assembly of device 122 provide great convenience.
  • the probe device 122 and the conductor post 121 are independent entities, after assembly, under the constraints of external forces (the resisting force of the outer conductor unit 11 and the receiving base 20), the contact between the two It is a simple face-to-face contact, and the two can be easily separated after eliminating the constraints of external forces. This situation is particularly suitable for the case where the receiving base 20 is detachably assembled to the microwave resonator 10 to facilitate cleaning.
  • a locking structure can be provided between the probe device 122 and the conductor post 121. After the probe device 122 and the conductor post 121 are assembled together, they can be locked with each other. This situation is suitable for the case where the receiving base 20 is non-detachably assembled to the microwave resonator 10 .
  • the conductor post 121 may be made of conductive materials such as metal in some embodiments.
  • the conductor post 121 can also be formed by coating a second conductive layer on the outer wall of a cylinder made of non-conductive material.
  • the second conductive layer is a metal-plated film layer, such as a gold-plated layer or a silver-plated layer. layer, copper plating layer, etc.
  • the conductor column 121 is not limited to a cylindrical shape, and may also be in a square columnar shape, an elliptical columnar shape, a stepped columnar shape, an irregular columnar shape, or other shapes.
  • the conductor post 121 may include a cylindrical main body part 1211 and a connecting part 1212 axially connected to one end of the main body part 1211.
  • the diameter of the main body portion 1211 is smaller than the inner diameter of the side wall 111 of the outer conductor unit 11 .
  • the diameter of the connecting portion 1212 is smaller than the diameter of the main portion 1211 . It is inserted into the mounting hole 1120 and allows the end surface of the main portion 1211 close to the connecting portion 1212 to fit against the inner wall surface of the end wall 112 . External threads may be formed on the side surface of the connecting portion 1212 so as to be screwed to the battery device (not shown) of the aerosol generating device 1 .
  • the receiving seat 20 may include a receiving part 21 and a fixing part 22 integrally connected with the receiving part 21 .
  • the receiving part 21 is used to receive the aerosol generating matrix; the fixing part 22 is used to axially seal the opening 110 of the outer conductor unit 11 and allow the receiving part 21 to extend into the receiving part 21 and connect with the inner conductor unit 12 .
  • the receiving seat 20 may be made of a low dielectric loss material, for example, one or more of plastic, microwave transparent ceramics, glass, alumina, zirconia, and silicon oxide. In addition, among plastic materials, PEEK and PTFE are preferred. The loss tangent of the material of the receiving seat 20 is preferably less than 0.1.
  • the receiving portion 21 may be cylindrical in some embodiments, and its outer diameter may be smaller than the inner diameter of the outer conductor unit 11 .
  • the receiving portion 21 may include an axial receiving cavity 210 for receiving the aerosol-generating matrix.
  • the fixing part 22 can be annular and coaxially connected with the receiving part 21 .
  • the fixing portion 22 can be coaxially blocked in the opening 11 of the outer conductor unit 11 to coaxially fix the receiving portion 21 in the microwave resonator 10 .
  • the fixing part 22 includes an axial through hole 220 that communicates the receiving chamber 210 with the environment, so that the aerosol-generating matrix can be placed into the receiving chamber 210 through the through hole 220 .
  • the receiving portion 21 may be cylindrical in some embodiments, and includes a flat bottom wall 211 and a cylindrical side wall 212 surrounding the bottom wall 211.
  • the outer diameter of the side wall 212 is smaller than the inner diameter of the outer conductor unit.
  • a plurality of longitudinally extending receiving grooves 2120 may be formed on the outer wall surface of the probe 212, and these receiving grooves 2120 are used to cooperate with the probe device 122.
  • the receiving base 20 may include a plurality of longitudinal positioning ribs 23 and a plurality of longitudinal supporting ribs 25 .
  • These positioning ribs 23 are evenly spaced in the circumferential direction of the walls of the receiving cavity 210 and/or the through hole 220 .
  • Each positioning rib 23 extends in a direction parallel to the axis of the receiving base 20 .
  • These support ribs 25 are evenly spaced and radially distributed on the bottom surface of the receiving cavity 210 .
  • the positioning ribs 23 can be used to clamp the aerosol-generating substrate inserted into the receiving cavity 210 and/or the through hole 220.
  • a longitudinally extending first air inlet channel is formed between each two adjacent positioning ribs 23.
  • the support ribs 25 are used to support the aerosol-generating matrix in one direction, and form a number of radial second air inlet channels in the other direction. These second air inlet channels are respectively connected with these first air inlet channels to facilitate ambient air to be sucked into the bottom of the aerosol generating matrix, and then enter the aerosol generating matrix to take away the aerosol generated by microwave heating.
  • the probe device 122 may include a base 1221 and a plurality of longitudinal probes 1222 in some embodiments.
  • the base portion 1221 is attached to an end surface of the receiving seat 20 facing the conductive post 121 (that is, the outer surface of the bottom wall 211 of the receiving portion 21 ), and is in ohmic contact with the conductive post 121 .
  • These probes 1222 are erected at intervals in the circumferential direction of the base 1221 and are attached to the receiving groove 2120 on the side wall of the receiving portion 21 of the receiving seat 20 to promote a more even distribution of the microwave field around the periphery of the receiving portion 21 .
  • the probe 1222 of the probe device 122 extends upward to the side of the receiving chamber 210, so that the uniformity of the microwave field is significantly improved, which is convenient for improving the uniformity of heating of the aerosol-generating substrate, and is beneficial to the uniformity of heating of the aerosol-generating substrate.
  • the field strength range within the aerosol generation matrix can be: 894.3-8086.4, with a maximum field strength ratio of 9.04.
  • the uniformity is greatly improved, and there is no such conventional method.
  • the field strength ratio of other forms of probe 1222 is generally above 30, and the uniformity is poor. It can be understood that the probe 1222 is not limited to being fixed on the side wall 212 of the receiving portion 21. In some embodiments, similar effects can also be achieved when a gap is provided between the probe 1222 and the side wall 212.
  • the electric field at the bottom of the probe device 122 is weak and the electric field at the top is strong. Therefore, if the probe 1222 of the probe device 122 is close to the top of the aerosol-generating substrate, the top of the aerosol-generating substrate can be rapidly heated, thereby causing rapid release. aerosol, which is beneficial to increasing the speed of smoke emitting and reducing preheating time, and the design of different probe lengths can make the heating uniformity of the aerosol-generating substrate better.
  • the optimal feed frequency fluctuation of the microwave resonator 10 narrows significantly, from ⁇ 150 MHz to Within 20MHz, it can not only reduce the requirements for microwave sources, but also be more conducive to complying with national regulations.
  • the national regulations stipulate that the frequency range of microwave heating is 2400-2500MHz.
  • the microwave feeding efficiency is significantly improved, and the overall feeding efficiency can be maintained above 80%.
  • the probe device 122 can be formed of conductive material, such as punching and bending of conductive material, which has a simple process and high efficiency.
  • the probe device 122 can also be coated and formed on the receiving base 20 using processes such as electroplating and printing.
  • the thickness of the probe device 122 is 1-2000 microns, and the material of the probe device 122 is at least one of copper, copper alloy, stainless steel, aluminum, and aluminum alloy.
  • the base 1221 is annular, and the central hole of the base 1221 is opposite to the bottom hole of the receiving base 20 . It is understandable that the base 1221 can also be in the shape of a disc, a square disc, a polygonal disc, or other shapes, which covers the lower end surface of the receiving seat 20 .
  • the probe 1222 extends upward from the bottom of the receiving portion 21 of the receiving seat 20 along the side wall.
  • the probe 1222 is located outside the side wall 212 of the receiving part 21 and is in contact with the outer wall surface of the receiving part 21.
  • a receiving groove 2120 is provided on the outer wall surface of the receiving part 21 for the probe 1222 to be inserted into the position.
  • the probe 1222 can also be located inside the side wall 212 of the receiving portion 21 and inserted into the inner wall surface of the receiving cavity 210 of the receiving portion 21 from the bottom surface of the receiving portion 21 .
  • a receiving groove 2120 may also be provided on the inner wall of the receiving cavity 210 for the probe 1222 to be inserted into the position.
  • the probe 1222 is completely or partially embedded in the side wall 212 of the receiving portion 21 .
  • the side wall of the receiving portion 21 may also be provided with an insertion hole extending upward from the bottom for the probe 1222 to be inserted.
  • the probe 1222 can be directly covered when the receiving seat 20 is formed.
  • the length of the probe 1222 ranges from 0 to Lmm, and H is less than or equal to the length L1 of the aerosol generating matrix in the receiving seat 20 plus approximately 5 mm. In other words, the length range of probe 1222 is 0-(L1+5) mm.
  • the length L1 of the aerosol-generating substrate is 12 mm, and the length L of the probe 1222 ranges from 0 to 17 mm.
  • the position of the free end of the probe 1222 is equivalent to the length of the aerosol-generating matrix in the receiving part 21.
  • the length L of the probe 1222 is 0-(12 mm + the bottom thickness of the receiving part 21), that is, the cigarette is inserted into the After the branch, the highest point of probe 1222 is basically flush with the position of the tobacco section.
  • the number of probes 1222 is at least two. In the illustrated embodiment, the number of probes 1222 is four. , and distributed along the circumferential direction of the receiving portion 21, and atomized on the circumference. In some embodiments, each probe 1222 is equally spaced along the circumferential direction of the receiving seat 20 to improve uniformity.
  • the lengths of the probes 1222 on the circumference may be the same or different.
  • the number of probes 1222 is an even number, and the lengths of each pair of probes 1222 include two or more types. Taking two lengths as an example, the long and short lengths are alternately distributed in the circumferential direction, that is, one long and one short are alternately distributed. . In the illustrated embodiment, four probes 1222 are taken as an example, two long and two short. The length of the two long probes 1222 is 11 mm, and the length of the two short probes 1222 is 6 mm. In some embodiments, multiple pairs of probes 1222 with different lengths can be provided to achieve better heating uniformity of the aerosol-generating substrate.
  • the number of probes 1222 may also be an odd number, such as nine, and may be divided into three groups of three.
  • the probes 1222 in the same group have the same length, and the probes 1222 in different groups have different lengths.
  • the three groups of probes 1222 can also be alternately and evenly distributed in the circumferential direction of the side wall of the receiving portion 21 .
  • the receiving seat 20 is made of low dielectric loss material, the loss tangent is less than 0.1, and can penetrate microwaves. Further, the material of the receiving seat 20 is one or a combination of one or more of plastic, microwave transparent ceramics, glass, alumina, zirconium oxide, and silicon oxide. Further, the plastic is PEEK or PTFE.
  • the microwave feed device 30 may be a coaxial connector in some embodiments, which may include an inner conductor 31, an outer conductor 33, and a dielectric layer 32 between the inner conductor 31 and the outer conductor 33.
  • the microwave feed device 30 When the microwave feed device 30 is installed on the microwave resonator 10, its inner conductor 31 is in ohmic contact with the inner wall surface of the outer conductor unit 11 and/or the surface of the conductor post 121 of the inner conductor unit 12, and its outer conductor 33 is in ohmic contact with the outer conductor.
  • the surface of the unit 11 is in ohmic contact to feed microwaves into the microwave resonator 10 .
  • the inner conductor 31 of the microwave feed device 30 is in a straight shape.
  • the inner conductor 31 is in ohmic contact with the surface of the conductor post 121 and is in ohmic contact with the conductor post 121.
  • the axes of 121 are perpendicular to each other.
  • serial numbers of the above steps are not used to limit the process, and the parallel steps in the specific manufacturing process can be adjusted in sequence. For example, the order of steps (1) and (2) above can be reversed.
  • FIG. 5 shows an aerosol generating device 1a in other embodiments of the present invention, which has basically the same structure as the above-mentioned aerosol generating device 1.
  • a microwave feeding device 30a is used instead of the above-mentioned aerosol generating device.
  • the microwave feeding device 30a may be a coaxial connector in some embodiments, which may include an inner conductor 31a, an outer conductor 33a, and a dielectric layer 32a between the inner conductor 31a and the outer conductor 33a.
  • the microwave feeding device 30a When the microwave feeding device 30a is installed on the microwave resonator 10, its inner conductor 31a is in ohmic contact with the inner wall surface of the outer conductor unit 11, and its outer conductor 33a is in ohmic contact with the surface of the outer conductor unit 11 to feed the microwave resonator 10 Internally fed microwave.
  • the inner conductor 31a of the microwave feeding device 30a may be L-shaped in some embodiments, and may include a first section 311a perpendicular to the axis of the microwave resonator 10 and a second section 312a parallel to the axis of the microwave resonator 10.
  • the second section 312a is in ohmic contact with the end wall 112 of the outer conductor unit 11 .

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

本发明涉及一种气溶胶产生装置,该气溶胶产生装置包括微波谐振器以及收容座;所述微波谐振器包括谐振腔以及设置于所述谐振腔内的内导体单元,所述内导体单元包括探针装置;所述收容座包括设置于所述谐振腔中、以收容气溶胶生成基质的收容部;所述探针装置包括至少两个探针,所述至少两个探针布置在所述收容部的侧部,且长度不等。该发明中,探针装置的至少两个探针延伸至收容腔外围且长度不等,使微波场的均匀性得到显著提高,便于提升对气溶胶生成基质加热的均匀性,对于气溶胶生成基质加热的均匀性有显著增强,进而提升了气溶胶生成基质的利用率。

Description

气溶胶产生装置 技术领域
本发明涉及电子雾化领域,更具体地说,涉及一种气溶胶产生装置。
背景技术
加热不燃烧(Heat Not Burning,HNB)装置,是一种加热装置加上气溶胶产生基质(经过处理的植物叶类制品)的组合设备。外部加热装置通过高温加热到气溶胶产生基质可以产生气溶胶但是却不足以燃烧的温度,能在不燃烧的前提下,让气溶胶产生基质产生用户所需要的气溶胶。目前市场上的加热不燃烧器具主要采用电阻加热方式,即利用中心发热片或发热针等从气溶胶产生基质中心插入至气溶胶生成基质内部进行加热。这种器具在使用前需预热等待时间长,不能抽停自由,气溶胶生成基质碳化不均匀,导致气溶胶生成基质烘烤不充分,利用率低;其次,HNB 器具发热片容易在气溶胶产生基质提取器和发热片基座中产生污垢,难清洁;会使接触发热体的局部气溶胶产生基质温度过高、发生部分裂解,释放出对人体有害的物质。因此微波加热技术逐渐替代电阻加热方式成为新的加热方式。微波加热技术具有高效、及时、选择性及加热无延缓性的特点,只对特定介电特性的物质有加热效果。采用微波加热雾化的应用优势有: a、微波加热为辐射加热,非热传导,可实现即抽即停;b、无加热片,因此不存在断片、清洁发热片的问题;c、气溶胶产生基质利用率高,口感一致性高,口感更接近香烟。
相关技术中用于加热气溶胶生成基质的微波加热装置,其微波一般从一端馈入,然后在谐振器内进行谐振。由于谐振腔较小,因此,谐振器内电磁波分布比较不均匀,加热的均匀性较差。
技术问题
本发明要解决的技术问题在于,针对相关技术的缺陷,提供一种改进的气溶胶产生装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:
提供一种气溶胶产生装置,包括微波谐振器以及收容座;所述微波谐振器包括谐振腔以及设置于所述谐振腔内的内导体单元,所述内导体单元包括探针装置;所述收容座包括设置于所述谐振腔中、以收容气溶胶生成基质的收容部;所述探针装置包括至少两个探针,所述至少两个探针布置在所述收容部的侧部,且长度不等。
在一些实施例中,所述探针装置包括与所述至少两个探针相连接的基部。
在一些实施例中,所述基部设置于所述收容部底部。
在一些实施例中,所述至少两个探针呈纵长型,其长度方向与所述收容部的轴线相平行。
在一些实施例中,所述至少两个探针等间隔地分布于所述收容部的侧部周向上。
在一些实施例中,所述至少两个探针包括对与对之间长度不等的至少两对探针,所述至少两对探针交替地、均匀地分布于所述收容部的侧部的周向上。
在一些实施例中,所述至少两个探针包括组与组之间长度不等的至少两组探针,所述至少两组探针交替地、均匀地分布于所述收容部的侧部的周向上。
在一些实施例中,,所述至少两个探针结合于所述收容部上。
在一些实施例中,所述至少两个探针采用导电金属片一体加工成型,或者通过电镀、印刷的方式成型。
在一些实施例中,所述至少两个探针的厚度范围为1-2000微米。
在一些实施例中,所述至少两个探针分布于所述收容部的内侧壁面或者外侧壁面,或者,整体地或局部地嵌置于所述收容部的侧壁中。
在一些实施例中,所述收容部包括用以收容所述气溶胶生成基质的收容腔,所述收容腔包括一个纵轴线,所述至少两个探针沿着平行于所述纵轴线的方向延伸。
在一些实施例中,所述收容座还包括与所述收容部连接的固定部,所述固定部包括一个将所述收容腔与环境相连通的通孔。
在一些实施例中,所述收容座包括若干个定位筋,这些定位筋间隔均匀地设置于所述收容腔和/或所述通孔的壁面周向上。
在一些实施例中,至少部分相邻定位筋之间形成有纵向延伸的第一进气通道;所述收容座包括若干个支撑筋,这些支撑筋呈放射状分布于所述收容腔的底面上,至少部分相邻支撑筋之间形成有放射状延伸的第二进气通道,这些第二进气通道分别与这些第一进气通道相连通。
在一些实施例中,所述微波谐振器为四分之一波长型同轴线谐振器。
在一些实施例中,所述收容座采用塑料、微波透明陶瓷、玻璃、氧化铝、氧化锆、氧化硅中的一种或多种的复合制成。
在一些实施例中,所述内导体单元的轴线与所述外导体单元的轴线相互重合或平行。
在一些实施例中,所述探针装置和所述导体柱之间在外力的束缚移除时是可分离的或者是锁死的。
在一些实施例中,所述至少一个探针的长度范围为0-(L1+5)mm,其中,L1为所述气溶胶生成基质的长度值。
在一些实施例中,所述内导体单元还包括设置于所述谐振腔中的导体柱,所述导体柱包括一个朝所述收容部延伸的自由端,所述自由端与所述探针装置欧姆接触。
在一些实施例中,所述微波谐振器包括用于界定所述谐振腔的外导体单元,所述外导体单元包括开口端与该开口端相对的封闭端。
在一些实施例中,所述收容座连接于所述开口端上。
在一些实施例中,所述导体柱包括固定端,所述固定端连接于所述封闭端。
在一些实施例中,所述导体柱的轴线与所述外导体单元的轴线相重合或者相平行。
还提供一种气溶胶产生装置,包括四分之一波长型同轴线谐振器以及用于收容气溶胶生成基质的收容腔;所述同轴线谐振器包括谐振腔以及设置于所述谐振腔内的内导体单元,所述内导体单元包括探针装置;所述收容腔设置于所述谐振腔中;所述探针装置包括至少两个探针,所述至少两个探针布置在所述收容腔的侧部,且长度不等。
在一些实施例中,所述探针装置包括与所述至少两个探针相连接的基部。
在一些实施例中,所述基部对应于所述收容腔的底部。
在一些实施例中,所述收容腔包括一个纵轴线,所述至少两个探针沿着平行于所述纵轴线的方向延伸。
在一些实施例中,所述收容腔包括一个纵轴线,所述至少两个探针呈纵长型,其长度方向与所述收容腔的纵轴线相平行。
在一些实施例中,所述至少两个探针等间隔地分布于所述收容腔的侧部周向上。
在一些实施例中,所述至少两个探针包括对与对之间长度不等的至少两对探针,所述至少两对探针交替地、均匀地分布于所述收容腔的侧部的周向上。
在一些实施例中,所述至少一个探针的长度范围为0-(L1+5)mm,其中,L1为所述气溶胶生成基质的长度值。
在一些实施例中,所述内导体单元还包括设置于所述谐振腔中的导体柱,所述导体柱包括一个朝所述收容腔延伸的自由端,所述自由端与所述探针装置欧姆接触。
有益效果
实施本发明的气溶胶产生装置,具有以下有益效果:探针装置的至少两个探针延伸至收容腔外围且长度相等,使微波场的均匀性得到显著提高,便于提升对气溶胶生成基质加热的均匀性,对于气溶胶生成基质加热的均匀性有显著增强,进而提升了气溶胶生成基质的利用率。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中的气溶胶产生装置的立体结构示意图;
图2是图1所示气溶胶产生装置的纵向剖面结构示意图;
图3是图1所示气溶胶产生装置的立体分解结构示意图;
图4是图3所示气溶胶产生装置在分解状态下的纵向剖面结构示意图;
图5是本发明一些实施例中的气溶胶产生装置的纵向剖面结构示意图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1至图4示出了本发明一些实施例中的气溶胶产生装置1,该气溶胶产生装置1可利用微波加热气溶胶生成基质,以雾化产生气溶胶,从而供使用者吸食。在一些实施例中,该气溶胶生成基质为诸如经过处理的植物叶类制品等固态气溶胶生成基质。可以理解地,在另一些实施例中,该气溶胶生成基质也可以为液态气溶胶生成基质。
再如图2所示,该气溶胶产生装置1在一些实施例中可包括微波谐振器10、收容座20以及微波馈入装置30。微波谐振器10在一些实施例中可呈圆柱状,其可包括一个让微波于其内持续振荡的谐振腔13。收容座20用于装载气溶胶生成基质,其固定地或可拆卸地安装于微波谐振器10上,以让其内的气溶胶生成基质暴露于谐振腔13内的微波场中,被微波加热雾化。微波馈入装置30连接于微波谐振器10上,用于将微波发生装置(未图示)产生的微波馈入谐振腔13中。可以理解地,微波谐振器10并不局限于圆柱状,其也可呈方柱、椭圆柱状等其他形状。
微波谐振器10在一些实施例中可为四分之一波长型同轴线谐振器,其可包括用于实现电磁屏蔽的筒状外导体单元11、设置于该外导体单元11中以导波的纵长内导体单元12以及介于该内导体单元12的外壁面和外导体单元11的内侧壁面之间的介质(例如,空气),外导体单元11和内导体单元12一道界定出上述的谐振腔13。内导体单元12的第一端与外导体单元11的端壁111欧姆接触,形成该微波谐振器10的短路端。内导体单元12的第二端向外导体单元11的开口110延伸,并不与外导体单元11直接欧姆接触,形成该微波谐振器10的开路端。收容座20安装(例如,可拆卸或不可拆卸地嵌置)于该微波谐振器10的开路端B,并与内导体单元12的第二端连接。在一些实施例中,内导体单元12的轴线与外导体单元11的轴线相互重合或平行,优选地,两者相互重合。
外导体单元11在一些实施例中可包括可导电的侧壁111、可导电的端壁112以及开口110。侧壁111在一些实施例中可呈圆筒状,其包括第一端以及与该第一端相对的第二端。端壁112封闭于该侧壁111的第一端上,形成外导体单元11的一个封闭端。开口110形成于侧壁111的第二端上,形成外导体单元11的一个开口端,用于供收容座20嵌置于其中。外导体单元11的侧壁111靠近端壁112处可设置一个径向贯通的馈入孔1110,以供微波馈入装置30安装于其中。端壁112的中部开设有一个贯通的安装孔1120,以供内导体单元12的导体柱121穿设于其中。内导体单元12第一端(固定端)系固定于外导体单元11的端壁112上,并与端壁112欧姆接触;内导体单元12第二端(自由端)朝向外导体单元11的开口110的延伸,并不与外导体单元11直接欧姆接触,主要用于发射微波。在一些实施例中,通过对内导体单元12第二端的形状和布局可以获取预期的微波场。
外导体单元11在一些实施例中可采用可导电的金属材料一体制成,其材质可为铝、铜、金、银、不锈钢等导电金属。可以理解地,外导体单元11并不局限于采用导电材料一体制成,其也可以通过在非导电筒体表面镀覆导电层的方式实现。该导电层在一些实施例可以是镀金层、镀银层、镀铜层等等。再可以理解地,外导体单元11并不局限于圆筒状,其也可以呈方筒状、椭圆筒状等其他适合的形状。
内导体单元12在一些实施例中可包括位于第一端(第一固定端)且与外导体单元11同轴的导体柱121以及位于第二端(第一自由端)且独立(也即导体柱121和探针装置122非一体式连接在一起)于外导体单元11的探针装置122,该导体柱121的一端(第二固定端)连接于的外导体单元11的端壁112上,另一端(第二自由端)与探针装置122欧姆接触。该探针装置122与该导体柱121欧姆接触,让微波能够经由导体柱121传导给探针装置122。在一些实施例中,探针装置122在形状和布局等方面被特别地配置,用于促进微波场更均匀地分布于收容座20的外围,从而实现对收容座20中的气溶胶生成基质的更均匀的微波加热效果,进而提升了气溶胶生成基质的利用率。
在一些实施例中,由于该探针装置122与导体柱121呈相互独立式设计,探针装置122与导体柱121在组装前可以分别固定于收容座2和外导体单元11上,为探针装置122的设计和装配提供了极大的便利。在一些实施例中,因为探针装置122和导体柱121是相互独立的个体,组装好之后,在外力(外导体单元11和收容座20的抵压力)的束缚下,两者之间的接触是简单的面对面接触,在消除外力的束缚后,两者可以很容易地分离的。此种情况,特别适合收容座20可拆卸地装配到微波谐振器10上的情形,以利于清洁。
在另一些实施例中,探针装置122和导体柱121之间可以设置锁扣结构,探针装置122和导体柱121组装在一起之后,两者可以相互锁死。此种情形适合收容座20不可拆卸地装配到微波谐振器10上的情形。
再如图3所示,导体柱121在一些实施例中可采用金属等导电材料制成。在其他一些实施例中,导体柱121也可以通过在非导电材料制成的圆柱体的外壁面涂覆第二导电层形成,该第二导电层为镀金属薄膜层,如镀金层、镀银层、镀铜层等等。可以理解地,在一些实施例中,导体柱121并不局限于呈圆柱状,其也可以呈方柱状、椭圆柱状、阶梯柱状、不规则柱状等其他形状。
导体柱121在一些实施例中可包括圆柱形的主体部1211以及轴向连接于该主体部1211一端的连接部1212。主体部1211的直径小于外导体单元11的侧壁111的内径。连接部1212的直径小于主体部1211的直径,其穿设于安装孔1120中,并让主体部1211靠近连接部1212的端面贴合于端壁112的内壁面上。连接部1212的侧表面上可形成有外螺纹,以便能够与该气溶胶产生装置1的电池装置(未图示)相螺接。
再如图4所示,收容座20在一些实施例中可包括收容部21以及与该收容部21一体连接的固定部22。收容部21用于收容气溶胶生成基质;固定部22用于轴向封堵于外导体单元11的开口110上,并让收容部21伸入到收容部21内,与内导体单元12相连接。收容座20在一些实施例中可采用低介电损耗材料,例如,为塑料、微波透明陶瓷、玻璃、氧化铝、氧化锆、氧化硅中的一种或多种的复合。另外,在塑料材料中,优选地为PEEK、PTFE。收容座20的材质的损耗角正切优选地小于0.1。
该收容部21在一些实施例中可呈圆筒状,且其外径可小于外导体单元11的内径。收容部21可包括一个轴向的收容腔210,该收容腔210用于收容气溶胶生成基质。该固定部22可呈环形,与收容部21共轴地连接一起。固定部22可共轴地封堵于外导体单元11的开口11中,以将收容部21共轴地固定于微波谐振器10中。固定部22包括一个将收容腔210与环境相连通的轴向的通孔220,令得气溶胶生成基质可以经由该通孔220放入收容腔210。
收容部21在一些实施例中可呈圆筒状,其包括平坦的底壁211以及围设在底壁211周缘的筒状侧壁212,侧壁212外径小于外导体单元的内径,侧壁212的外壁面可形成有若干个纵向延伸的收容槽2120,这些收容槽2120用以与探针装置122相配合。
收容座20在一些实施例中可包括若干个纵长的定位筋23和若干纵长的支撑筋25。这些定位筋23间隔均匀地设置于收容腔210和/或通孔220的壁面周向上。每一定位筋23均沿着平行于收容座20的轴线的方向延伸。这些支撑筋25均匀间隔地呈放射状分布于收容腔210的底面上。定位筋23一个方面可用于夹紧插入收容腔210和/或通孔220的气溶胶生成基质,另一个方面每相邻两定位筋23之间均形成一个纵向延伸的第一进气通道。支撑筋25一个方面用于支撑气溶胶生成基质,另一个方向形成若干放射状第二进气通道。这些第二进气通道分别与这些第一进气通道相连通,以方便环境空气被吸入到气溶胶生成基质的底部,再进入气溶胶生成基质中带走被微波加热产生的气溶胶。
再如图3所示,探针装置122在一些实施例中可包括基部1221以及若干个纵长的探针1222。该基部1221贴合于收容座20朝向导体柱121的一个端面(即收容部21的底壁211的外表面)上,并与导体柱121欧姆接触。这些探针1222间隔地立设于该基部1221的周向上,并贴合于收容座20的收容部21的侧壁面的收容槽2120上,以促进微波场更均匀地分布于收容部21的外围。
探针装置122的探针1222向上延伸至收容腔210的侧部,使微波场的均匀性得到显著提高,便于提升对气溶胶生成基质加热的均匀性,对于气溶胶生成基质加热的均匀性有显著增强,进而提升了气溶胶生成基质的利用率。在收容座20的收容部21侧壁212设置探针1222后,气溶胶生成基质内的场强范围可为:894.3-8086.4,场强比最高9.04,均匀性得到极大改善,常规没有此类探针1222的其他形式场强比一般为30以上,均匀性较差。可以理解地,探针1222并不局限于固定在收容部21的侧壁212上,在一些实施例中,当其其与侧壁212之间设有间隔时,也可以达到类似的效果。
一些实施例中,探针装置122底部电场较弱,顶部电场较强,因此探针装置122的探针1222如果接近气溶胶生成基质顶部,可以实现气溶胶生成基质顶部被迅速加热,从而快速释放气溶胶,即有利于提升出烟速度,减少预热时间,而不同探针长度的设计,则可以使气溶胶生成基质的加热均匀性更好。
在一些实施例中,在探针装置122增加了探针1222后,整个雾化过程、及抽吸过程中,微波谐振器10的最佳馈入频率波动明显变窄,从~150MHz缩窄到20MHz以内,因此既可以降低对微波源的要求,同时也更有利于符合国家法规,国家规定微波加热的频段范围为2400-2500MHz。在一些实施例中,整个雾化过程中,微波的馈入效率得到明显改善,整体馈入效率可以保持在80%以上。
在一些实施例中,探针装置122可以由导电材质成型形成,比如采用导电材质冲切弯折成型,工艺简单,效率高。另外,探针装置122也可采用电镀、印刷等工艺涂覆形成在收容座20上。在一些实施例中,探针装置122的厚度为1-2000微米,探针装置122的材质为铜、铜合金、不锈钢、铝、铝合金中的至少一种。
在本实施例中,基部1221为环形,且基部1221的中心孔与收容座20的底部穿孔相对。可以理解地,基部1221也可为圆盘形或方盘形、多边形盘等其他形状,其覆盖在收容座20的下端面。
在一些实施例中,探针1222由收容座20的收容部21底部沿侧壁向上延伸设置。探针1222位于收容部21的侧壁212的外侧,与收容部21的外壁面贴合,收容部21的外壁面设置的收容槽2120,供探针1222卡入定位。
在一些实施例中,探针1222也可位于收容部21的侧壁212的内侧,从收容部21的的底面插入到收容部21的的收容腔210的内侧壁面。在一些实施例中,也可在收容腔210的内侧壁面设置收容槽2120,供探针1222卡入定位。在一些实施例中,探针1222完全或局部地埋设在收容部21的侧壁212内,收容部21的侧壁也可设置由底部向上延伸的插孔,供探针1222插入。或者也可在收容座20成型时直接包覆探针1222。
探针1222的长度范围为0-Lmm,且H小于等于收容座20内气溶胶生成基质的长度L1加上大致5mm。换言之,探针1222的长度范围为0-(L1+5)mm。以气溶胶生成基质为IQOS公司的HEETS气溶胶生成基质为例,气溶胶生成基质的长度L1为12mm,则探针1222长度L范围为0-17mm。
优选地,探针1222的自由端部位置与收容部21内气溶胶生成基质的长度位置相当,优选地,探针1222的长度L为0-(12mm+收容部21的底部厚度),即插入烟支后,探针1222最高点和烟草段位置基本齐平。
在一些实施例中,为了更均匀地对收容部21内的气溶胶生成基质进行雾化,探针1222的数量为至少两个,在图示的实施例中,探针1222的数量为四个,且沿收容部21的周向分布,在周圈上进行雾化。在一些实施例中,各探针1222沿收容座20的周向等间隔分布,提升均匀性。
在一些实施例中,周圈上的探针1222的长度可以相同,也可以不同。优选地,探针1222的数量为偶数,且各对探针1222的长度包括两种或两种以上,以两种长度为例,则在周向上长短交替分布,即一长一短,交替分布。在图示的实施例中,以四条探针1222为例,两长两短,两长探针1222长度为11mm,两短探针1222长度为6mm。在一些实施例中,设置多对、长度不同的探针1222,则可以使气溶胶生成基质的加热均匀性更好。类似地,探针1222的数量也可以为奇数,例如九个,并可以分成三组,每组三个。同组探针1222的长度相同,不同组的探针1222的长度不同,这三组探针1222也可以交替均匀的地分布于收容部21的侧壁周向上。
收容座20的材质为低介电损耗材料,损耗角正切小于0.1,可穿透微波。进一步地,收容座20的材质为塑料、微波透明陶瓷、玻璃、氧化铝、氧化锆、氧化硅中的一种或多种的复合,进一步地,塑料为PEEK、PTFE。
再如图2所示,微波馈入装置30在一些实施例中可为同轴连接器,其可包括内导体31、外导体33以及介于内导体31和外导体33之间的介质层32。微波馈入装置30安装于微波谐振器10上时,其内导体31与外导体单元11的内壁面和/或内导体单元12的导体柱121的表面欧姆接触,且其外导体33与外导体单元11的表面欧姆接触,以向微波谐振器10内馈入微波。
在一些实施例中,微波馈入装置30的内导体31呈一字型,微波馈入装置30安装于微波谐振器10上时,内导体31与导体柱121的表面欧姆接触,且与导体柱121的轴线相垂直。
气溶胶产生装置1制造时,可采用如下步骤:
(1)提供一个外导体单元11和一个导体柱121,并将导体柱121的下端沿轴向插入外导体单元11的端壁111中;
(2)提供一个收容座20和一个探针装置122,将探针装置122安装到收容座20的收容部21上,形成一个组合体;
(3)将上述组合体塞入外导体单元11的开口110中,让探针装置122的基部1221与导体柱121的自由端欧姆接触;
(4)提供一个微波馈入装置30,将微波馈入装置30装入外导体单元11的馈入孔1110中,让微波馈入装置30的内导体31与导体柱121欧姆接触,外导体33与外导体单元11欧姆接触。
上述步骤的序号并非用于限定工序,具体制造过程中并行的步骤完全可以顺序调整。例如,上述步骤(1)和步骤(2)的顺序就可以调换。
图5示出了本发明另一些实施例中的气溶胶产生装置1a,其与上述气溶胶产生装置1的结构基本相同,两者的区别在于用微波馈入装置30a替代了上述气溶胶产生装置1的微波馈入装置30。
如图所示,微波馈入装置30a在一些实施例中可为同轴连接器,其可包括内导体31a、外导体33a以及介于内导体31a和外导体33a之间的介质层32a。微波馈入装置30a安装于微波谐振器10上时,其内导体31a与外导体单元11的内壁面欧姆接触,且其外导体33a与外导体单元11的表面欧姆接触,以向微波谐振器10内馈入微波。
微波馈入装置30a的内导体31a在一些实施例中可呈L型,其可包括一个垂直于微波谐振器10轴线的第一段311a和平行于微波谐振器10轴线的第二段312a,第二段312a与外导体单元11的端壁112欧姆接触。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (33)

  1. 一种气溶胶产生装置,包括微波谐振器(10)以及收容座(20);所述微波谐振器(10)包括谐振腔(13)以及设置于所述谐振腔(13)内的内导体单元(12),所述内导体单元(12)包括探针装置(122);所述收容座(20)包括设置于所述谐振腔(13)中、以收容气溶胶生成基质的收容部(21);其特征在于,所述探针装置(122)包括至少两个探针(1222),所述至少两个探针(1222)布置在所述收容部(21)的侧部,且长度不等。
  2. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述探针装置(122)包括与所述至少两个探针(1222)相连接的基部(1221)。
  3. 根据权利要求2所述的气溶胶产生装置,其特征在于,所述基部(1221)设置于所述收容部(21)底部。
  4. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)呈纵长型,其长度方向与所述收容部(21)的轴线相平行。
  5. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)等间隔地分布于所述收容部(21)的侧部周向上。
  6. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)包括对与对之间长度不等的至少两对探针(1222),所述至少两对探针(1222)交替地、均匀地分布于所述收容部(21)的侧部的周向上。
  7. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)包括组与组之间长度不等的至少两组探针(1222),所述至少两组探针(1222)交替地、均匀地分布于所述收容部(21)的侧部的周向上。
  8. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)结合于所述收容部(21)上。
  9. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)采用导电金属片一体加工成型,或者通过电镀、印刷的方式成型。
  10. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)的厚度范围为1-2000微米。
  11. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)分布于所述收容部(21)的内侧壁面或者外侧壁面,或者,整体地或局部地嵌置于所述收容部(21)的侧壁(212)中。
  12. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述收容部(21)包括用以收容所述气溶胶生成基质的收容腔(210),所述收容腔(210)包括一个纵轴线,所述至少两个探针(1222)沿着平行于所述纵轴线的方向延伸。
  13. 根据权利要求12所述的气溶胶产生装置,其特征在于,所述收容座(20)还包括与所述收容部(21)连接的固定部(22),所述固定部(22)包括一个将所述收容腔(210)与环境相连通的通孔(220)。
  14. 根据权利要求13所述的气溶胶产生装置,其特征在于,所述收容座(20)包括若干个定位筋(23),这些定位筋(23)间隔均匀地设置于所述收容腔(210)和/或所述通孔(220)的壁面周向上。
  15. 根据权利要求14所述的气溶胶产生装置,其特征在于,至少部分相邻定位筋(23)之间形成有纵向延伸的第一进气通道;所述收容座(20)包括若干个支撑筋(25),这些支撑筋(25)呈放射状分布于所述收容腔(210)的底面上,至少部分相邻支撑筋(25)之间形成有放射状延伸的第二进气通道,这些第二进气通道分别与这些第一进气通道相连通。
  16. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述微波谐振器(10)为四分之一波长型同轴线谐振器。
  17. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述收容座(20)采用塑料、微波透明陶瓷、玻璃、氧化铝、氧化锆、氧化硅中的一种或多种的复合制成。
  18. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述探针装置(122)和所述导体柱(121)之间在外力的束缚移除时是可分离的或者是锁死的。
    19根据权利要求1所述的气溶胶产生装置,其特征在于,所述至少一个探针(1222)的长度范围为0-(L1+5)mm,其中,L1为所述气溶胶生成基质的长度值。
  19. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括设置于所述谐振腔(13)中的导体柱(121),所述导体柱(121)包括一个朝所述收容部(21)延伸的自由端,所述自由端与所述探针装置(122)欧姆接触。
  20. 根据权利要求20所述的气溶胶产生装置,其特征在于,所述微波谐振器(10)包括用于界定所述谐振腔(13)的外导体单元(11),所述外导体单元(11)包括开口端与该开口端相对的封闭端。
  21. 根据权利要求21所述的气溶胶产生装置,其特征在于,所述收容座(20)连接于所述开口端上。
  22. 根据权利要求21所述的气溶胶产生装置,其特征在于,所述导体柱(121)包括固定端,所述固定端连接于所述封闭端。
  23. 根据权利要求21所述的气溶胶产生装置,其特征在于,所述导体柱(121)的轴线与所述外导体单元(11)的轴线相重合或者相平行。
  24. 根据权利要求21所述的气溶胶产生装置,其特征在于,所述内导体单元(12)的轴线与所述外导体单元(11)的轴线相互重合或平行。
  25. 一种气溶胶产生装置,包括四分之一波长型同轴线谐振器(10)以及用于收容气溶胶生成基质的收容腔(210);所述同轴线谐振器(10)包括谐振腔(13)以及设置于所述谐振腔(13)内的内导体单元(12),所述内导体单元(12)包括探针装置(122);所述收容腔(210)设置于所述谐振腔(13)中;其特征在于,所述探针装置(122)包括至少两个探针(1222),所述至少两个探针(1222)布置在所述收容腔(210)的侧部,且长度不等。
  26. 根据权利要求26所述的气溶胶产生装置,其特征在于,所述探针装置(122)包括与所述至少两个探针(1222)相连接的基部(1221)。
  27. 根据权利要求27所述的气溶胶产生装置,其特征在于,所述基部(1221)对应于所述收容腔(210)的底部。
  28. 根据权利要求26所述的气溶胶产生装置,其特征在于,所述收容腔(210)包括一个纵轴线,所述至少两个探针(1222)沿着平行于所述纵轴线的方向延伸。
  29. 根据权利要求26所述的气溶胶产生装置,其特征在于,所述收容腔(210)包括一个纵轴线,所述至少两个探针(1222)呈纵长型,其长度方向与所述收容腔(210)的纵轴线相平行。
  30. 根据权利要求26所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)等间隔地分布于所述收容腔(210)的侧部周向上。
  31. 根据权利要求26所述的气溶胶产生装置,其特征在于,所述至少两个探针(1222)包括对与对之间长度不等的至少两对探针(1222),所述至少两对探针(1222)交替地、均匀地分布于所述收容腔(210)的侧部的周向上。
  32. 根据权利要求26所述的气溶胶产生装置,其特征在于,所述至少一个探针(1222)的长度范围为0-(L1+5)mm,其中,L1为所述气溶胶生成基质的长度值。
  33. 根据权利要求26所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括设置于所述谐振腔(13)中的导体柱(121),所述导体柱(121)包括一个朝所述收容腔(210)延伸的自由端,所述自由端与所述探针装置(122)欧姆接触。
PCT/CN2022/082586 2022-03-23 2022-03-23 气溶胶产生装置 WO2023178566A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082586 WO2023178566A1 (zh) 2022-03-23 2022-03-23 气溶胶产生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082586 WO2023178566A1 (zh) 2022-03-23 2022-03-23 气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2023178566A1 true WO2023178566A1 (zh) 2023-09-28

Family

ID=88099400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082586 WO2023178566A1 (zh) 2022-03-23 2022-03-23 气溶胶产生装置

Country Status (1)

Country Link
WO (1) WO2023178566A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035587A1 (en) * 2018-08-17 2020-02-20 Philip Morris Products S.A. Aerosol-generating device for use with an aerosol-generating article comprising means for article identification
CN210353180U (zh) * 2019-06-28 2020-04-21 北京航天雷特机电工程有限公司 一种微波天线及电子烟
CN112137167A (zh) * 2019-06-28 2020-12-29 北京航天雷特机电工程有限公司 一种微波天线及电子烟
CN213006127U (zh) * 2020-07-20 2021-04-20 中国人民解放军火箭军工程大学 一种微波固化装置
CN113729304A (zh) * 2021-09-30 2021-12-03 深圳麦克韦尔科技有限公司 气溶胶产生装置
CN215381427U (zh) * 2021-02-09 2022-01-04 深圳麦克韦尔科技有限公司 气溶胶产生系统及其气溶胶生成制品
CN113925221A (zh) * 2021-11-18 2022-01-14 深圳麦时科技有限公司 气溶胶产生组件、气溶胶发生装置、系统和控制方法
CN215913314U (zh) * 2021-10-20 2022-03-01 深圳麦克韦尔科技有限公司 气溶胶产生装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035587A1 (en) * 2018-08-17 2020-02-20 Philip Morris Products S.A. Aerosol-generating device for use with an aerosol-generating article comprising means for article identification
CN210353180U (zh) * 2019-06-28 2020-04-21 北京航天雷特机电工程有限公司 一种微波天线及电子烟
CN112137167A (zh) * 2019-06-28 2020-12-29 北京航天雷特机电工程有限公司 一种微波天线及电子烟
CN213006127U (zh) * 2020-07-20 2021-04-20 中国人民解放军火箭军工程大学 一种微波固化装置
CN215381427U (zh) * 2021-02-09 2022-01-04 深圳麦克韦尔科技有限公司 气溶胶产生系统及其气溶胶生成制品
CN113729304A (zh) * 2021-09-30 2021-12-03 深圳麦克韦尔科技有限公司 气溶胶产生装置
CN215913314U (zh) * 2021-10-20 2022-03-01 深圳麦克韦尔科技有限公司 气溶胶产生装置
CN113925221A (zh) * 2021-11-18 2022-01-14 深圳麦时科技有限公司 气溶胶产生组件、气溶胶发生装置、系统和控制方法

Similar Documents

Publication Publication Date Title
CN114747803A (zh) 气溶胶产生装置及其制造方法
CN113729270B (zh) 气溶胶产生基质、气溶胶产生装置和系统
WO2023246370A1 (zh) 气溶胶产生装置及其加热组件
WO2023116230A1 (zh) 气溶胶产生装置及其微波加热装置
CN114831341A (zh) 雾化装置及用于微波雾化器具的微波加热组件
WO2023165209A1 (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
WO2023151328A1 (zh) 雾化器及电子雾化装置
CN217743173U (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
WO2023035853A1 (zh) 加热组件及气溶胶产生装置
WO2023178566A1 (zh) 气溶胶产生装置
WO2023178565A1 (zh) 气溶胶产生装置及其制造方法
CN212545566U (zh) 发热体及气溶胶生成装置
WO2024093332A1 (zh) 气溶胶产生装置及其微波加热组件
CN219556317U (zh) 气溶胶产生装置
CN219556318U (zh) 气溶胶产生装置
EP4104693A1 (en) Electronic atomization device and atomizer and atomization assembly thereof
WO2023109399A1 (zh) 电子雾化装置及其发热组件和发热体
WO2023115813A1 (zh) 一种电磁感应加热气溶胶形成装置及其用途
WO2023044835A1 (zh) 气溶胶产生基质、气溶胶产生装置和系统
WO2023065946A1 (zh) 气溶胶固定装置和气溶胶产生装置
WO2023065138A1 (zh) 气溶胶产生装置
WO2023004675A1 (zh) 气溶胶产生装置
WO2024016341A1 (zh) 气溶胶产生装置
CN115989897A (zh) 气溶胶产生装置
WO2024036935A1 (zh) 微波馈入装置、微波加热器及气溶胶产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932633

Country of ref document: EP

Kind code of ref document: A1