WO2023065138A1 - 气溶胶产生装置 - Google Patents

气溶胶产生装置 Download PDF

Info

Publication number
WO2023065138A1
WO2023065138A1 PCT/CN2021/124893 CN2021124893W WO2023065138A1 WO 2023065138 A1 WO2023065138 A1 WO 2023065138A1 CN 2021124893 W CN2021124893 W CN 2021124893W WO 2023065138 A1 WO2023065138 A1 WO 2023065138A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
microwave
resonant
column
aerosol generating
Prior art date
Application number
PCT/CN2021/124893
Other languages
English (en)
French (fr)
Inventor
杜靖
Original Assignee
深圳麦克韦尔科技有限公司
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司, 深圳麦时科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to KR1020227038190A priority Critical patent/KR20230058006A/ko
Priority to EP21952125.9A priority patent/EP4193853A4/en
Priority to PCT/CN2021/124893 priority patent/WO2023065138A1/zh
Priority to JP2022566627A priority patent/JP7481495B2/ja
Publication of WO2023065138A1 publication Critical patent/WO2023065138A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present application belongs to the technical field of electronic atomization, and in particular relates to an aerosol generating device.
  • a heat not burn (Heat Not Burning, HNB) device is a combination of a heating device and an aerosol-generating substrate (treated plant leaf products).
  • the external heating device heats the aerosol-generating substrate through high temperature to a temperature at which the aerosol-generating substrate can generate aerosol but is not high enough to burn, so that the aerosol-generating substrate can generate the aerosol required by the user without burning.
  • Heat-not-burn appliances currently on the market mainly adopt resistance heating, that is, use a central heating sheet or a heating needle to insert from the center of the aerosol-generating substrate into the interior of the aerosol-generating substrate for heating.
  • This kind of appliance needs to be preheated for a long time before use, and it cannot be pumped and stopped freely.
  • the carbonization of the aerosol-generating matrix is uneven, resulting in insufficient baking of the aerosol-generating matrix and low utilization rate; Dirt is generated in the matrix extractor and the base of the heating sheet, which is difficult to clean; the local aerosol in contact with the heating element will cause the temperature of the matrix to be too high, and partial cracking will occur, releasing substances harmful to the human body. Therefore, microwave heating technology has gradually replaced resistance heating as a new heating method.
  • Microwave heating technology has the characteristics of high efficiency, timeliness, selectivity and no delay in heating, and it only has a heating effect on substances with specific dielectric properties.
  • the application advantages of using microwave heating atomization are: a. Microwave heating is radiation heating, non-thermal conduction, which can realize immediate pumping and stop; b. There is no heating sheet, so there is no problem of broken pieces and cleaning heating sheets; c. Aerosol generation The matrix utilization rate is high, the taste consistency is high, and the taste is closer to cigarettes.
  • microwaves are usually fed into the resonant cavity from one end, resulting in uneven heating of the matrix generated by the aerosol in the resonant cavity.
  • This application aims to solve one of the technical problems existing in the prior art or related art.
  • an aerosol generating device including: a casing, a resonant cavity is arranged in the casing, and the resonant cavity can accommodate an aerosol generating substrate; a microwave component is arranged on the casing, and the microwave component is used to resonate Microwaves are fed into the cavity; the first end of the resonant column is connected to the bottom wall of the resonant cavity, and the second end of the resonant column faces the opening of the resonant cavity; the number of probes is at least two, at least two The probes are arranged at intervals on the resonance column, and the aerosol generating substrate is located between at least two probes.
  • the aerosol generating device includes: a casing, a resonant cavity, a microwave component, a resonant column and a probe.
  • the resonant cavity is arranged in the shell, the microwave component is installed on the shell, and the microwave component can feed microwaves into the resonant cavity.
  • the resonant post is installed inside the resonant cavity, the diameter of the resonant post is smaller than the inner diameter of the resonant cavity, and there is a gap between the outer side wall of the resonant cavity and the inner side wall of the resonant cavity.
  • the microwave fed into the resonant cavity by the microwave component can be conducted along the resonant column.
  • the first end of the resonant column is connected to the bottom wall of the resonant cavity, and the second end of the resonant column is facing the opening of the resonant cavity.
  • the fed microwave can be transmitted along the Conduction from the first end to the second end of the resonant column.
  • the aerosol generating matrix is inserted into the resonating cavity from the opening of the resonating cavity.
  • the aerosol generating matrix is located near the opening of the resonating cavity.
  • the conducted microwave can act on the aerosol generating substrate, so that the aerosol generating substrate is heated and atomized.
  • the microwave transmitted to the aerosol-generating substrate by the resonant column acts on one end of the aerosol-generating substrate.
  • a plurality of probes are arranged on the resonance column, and the detection of the plurality of probes is distributed on the side wall of the resonance column, and the aerosol generating matrix is located between the plurality of probes, so that the plurality of probes are distributed on the peripheral side wall of the aerosol generating device , the probe can further conduct the microwave conducted through the resonant column, and multiple probes can conduct the microwave to the peripheral side wall of the aerosol generating substrate, so that during the operation of the aerosol generating device, the microwave can be conducted to the air through the probe.
  • the surrounding side of the aerosol-generating matrix is heated from the surrounding side of the aerosol-generating matrix, which reduces the distance of heat conduction in the aerosol-generating matrix, improves the uniformity of heating the aerosol-generating matrix, and prevents the aerosol-generating matrix from being heated Incomplete, improving the utilization of the aerosol-generating substrate.
  • the aerosol generating substrates in the related art are all set in the shape of a columnar body, and the microwaves act on one end of the aerosol generating substrate, and one end of the aerosol generating substrate is heated and conducts heat to the other end, and the aerosol generates Due to the incomplete heating of the matrix, there is the problem of incomplete atomization.
  • the microwave is conducted to the peripheral side of the aerosol generating substrate by setting the probe, so that the heating of the aerosol generating substrate is more complete.
  • the microwave is transmitted to the aerosol-generating matrix through the resonant column and the probe, so that the microwave can act on the aerosol-generating matrix, the aerosol-generating matrix absorbs the microwave, and the polar molecules in the aerosol-generating matrix vibrate quickly and convert into heat energy , so that the aerosol-generating substrate is heated and atomized.
  • the material of the resonant column is metal
  • the resonant column is made of metal such as iron, copper, or aluminum
  • the resonant column is made of an alloy of metals such as iron, copper, and aluminum.
  • At least two probes are uniformly arranged on the peripheral sidewall of the resonant column.
  • the number of probes is multiple, and multiple probes are arranged on the peripheral side wall of the resonant column, and multiple probes are surrounded to form an accommodating space.
  • the aerosol generating matrix is inserted into the resonant cavity, and the aerosol generating matrix located in the containment space.
  • a plurality of probes are evenly arranged on the peripheral side wall of the resonant column, and the plurality of probes extend toward the opening direction of the resonant cavity, so that the probes are distributed on the peripheral side of the aerosol generating matrix inserted into the resonant cavity, realizing
  • the microwave can act on the aerosol-generating substrate in multiple directions, and the microwave action position is more uniform, which improves the uniformity of the heating of the aerosol-generating substrate, makes the atomization of the aerosol-generating substrate more thorough, and improves the utilization of the aerosol-generating substrate Rate.
  • the peripheral sidewall of the aerosol-generating substrate is in contact with a plurality of probes, and the microwaves output by the plurality of probes can directly act on the peripheral sidewall of the aerosol-generating substrate, that is, the peripheral surface of the aerosol-generating substrate. After the side is heated, the heat gradually diffuses from the peripheral side of the aerosol-generating substrate to the inside of the aerosol-generating substrate. Since the probes are evenly distributed on the peripheral side of the aerosol-generating substrate, the aerosol-generating substrate is heated more evenly.
  • the number of probes can be optionally two, three, four, five or six.
  • the angle between two adjacent probes is 360°/N.
  • the probe includes: a connection part, the connection part is connected with the peripheral side wall of the resonant column; an extension part, the first end of the extension part is connected with the connection part, and the second end of the extension part faces the resonant cavity The opening direction extends.
  • the probe includes a connection part and an extension part.
  • the probe is arranged on the peripheral side wall of the resonant column through the connection part.
  • the extension part can continue to conduct the microwave conducted by the resonant column, and the extension direction of the extension part faces the resonant cavity. In the direction of the opening, the extension part can be located on the peripheral side of the aerosol-generating substrate, thereby uniformly heating the peripheral side of the aerosol-generating substrate.
  • the extensions of the plurality of probes all extend toward the opening of the atomization chamber, and the lengths of the extensions of the plurality of probes can be set correspondingly according to the size of the aerosol-generating substrate. For example: the length of multiple probes is set longer, and the ends of multiple probes are set near the aerosol output part of the aerosol-generating substrate, then the microwaves transmitted by the probes can act on the aerosol output near the aerosol.
  • the internal aerosol generating substrate realizes the effect of rapid release of aerosol during the use of the aerosol generating device, and reduces the preheating time for the aerosol generating substrate.
  • connection part ranges from 80° to 100°.
  • the range of the included angle between the connection part and the extension part is set to 80° to 100°, thereby ensuring that the extension part is relatively parallel to the side wall of the aerosol-generating substrate, so that the aerosol-generating substrate.
  • the shorter distance to the extension improves the utilization rate of microwaves transmitted through the probe to the aerosol-generating substrate.
  • the connecting portion is arranged perpendicularly to the peripheral sidewall of the resonant column, and the extension portion is arranged parallel to the peripheral sidewall of the resonant column, so that the angle between the connecting portion and the extending portion is set to 90°.
  • the extensions of the plurality of probes are arranged parallel to the peripheral side wall of the resonant column, which can ensure that the distances between the extensions of the plurality of probes and the peripheral side wall of the aerosol-generating substrate are equal, further ensuring that the plurality of The microwave transmitted by the probe produces the uniformity of microwave atomization of the substrate for the aerosol.
  • At least two connecting parts have the same size; and/or at least two extending parts have the same size.
  • At least two connecting parts have the same size, which can ensure that the extension part connected to each connecting part has the same size from the resonant column. Since the resonant column and the aerosol generating matrix are coaxially arranged, multiple probes are guaranteed.
  • the distance between the extension part of the needle and the aerosol-generating substrate is equal to further ensure the uniformity of microwave atomization of the aerosol-generating substrate by microwaves transmitted by multiple probes.
  • the microwave atomization device also includes a fixed seat, which is arranged in the resonant cavity, and the fixed seat is arranged opposite to the resonant column, and at least two probes are distributed around the peripheral side wall of the fixed seat; the atomizing cavity, Arranged in the fixed seat, the atomization chamber is used for accommodating the aerosol generating substrate.
  • the microwave atomization device also includes a fixed seat and an atomizing chamber.
  • the fixed seat is arranged in the resonant cavity, and an atomizing chamber is opened inside the fixed seat.
  • An opening is provided at one end of the fixed seat, and the opening communicates with the atomizing chamber.
  • the aerosol-generating substrate is inserted into the fixing seat through the opening.
  • the fixing seat can fix the aerosol-generating substrate.
  • the aerosol-generating substrate will produce solid or liquid waste during the heated atomization process.
  • the material of the fixing seat is selected as a material with low electrical loss, such as microwave transparent ceramics, glass, or alumina.
  • the centerline of the resonant column coincides with the centerline of the atomizing chamber.
  • both the resonant column and the atomizing cavity are of regular shape.
  • both the resonating column and the atomizing cavity are cylinders, and the centerline of the resonating column coincides with the centerline of the atomizing cavity, that is, the axis of the resonating column Coincident with the axis of the atomization chamber, by setting the center of the resonant column to coincide with the center of the atomization chamber, the center of the resonant column and the aerosol-generating substrate coincide, which allows the microwave conducted by the resonant column to act more on the aerosol-generating substrate , by concentrating microwaves on the aerosol-generating substrate, the aerosol-generating substrate can be heated in a relatively short period of time, which is beneficial to realize instant heating.
  • the fixing base is detachably connected to the housing.
  • the fixed seat is detachably connected to the shell, and the user can disassemble and clean the fixed seat separately.
  • the user can disassemble and clean the fixed seat separately.
  • the fixing of the aerosol-generating matrix is required. Clean the seat to avoid affecting the electronic components in the aerosol generating device during the cleaning process.
  • the second end of the resonance column abuts against the fixing base.
  • the second end of the resonant column is in contact with the fixed seat, so the distance between the aerosol generating matrix and the resonant column is the thickness of the bottom of the fixed seat, and the resonant column and the fixed seat are offset to minimize the The distance between the resonant column and the aerosol-generating matrix.
  • the resonant column transmits microwaves, the attenuation of the microwave is small.
  • the microwave is prone to rapid attenuation, so reduce the resonance as much as possible.
  • the distance between the column and the aerosol-generating substrate can reduce the attenuation of microwaves as much as possible, so that the amount of microwaves acting on the aerosol-generating substrate can be increased, and the heating rate of the aerosol-generating substrate can be increased.
  • the resonant column and the fixing seat are taken along a direction perpendicular to the centerline of the resonating column, and the cross-sectional area of the resonating column is smaller than or equal to the cross-sectional area of the fixing seat.
  • the edge of the side of the resonant column does not extend beyond the edge of the side of the fixed seat, so the projection of the resonant column on the bottom wall of the resonant cavity falls within the projection range of the fixed seat on the bottom wall of the resonant cavity, That is, the fixed seat is thicker than the resonant column, which allows most of the microwaves transmitted through the resonant column to directly act on the aerosol-generating substrate, and the microwave directly acts on the aerosol-generating substrate without attenuation or with a small attenuation , the aerosol-generating substrate can be heated in a relatively short period of time, which improves the heating efficiency of the aerosol-generating substrate, and is conducive to realizing instant heating.
  • the shell includes: a first shell, on which the resonant column is disposed; and a second shell, which is detachably connected to the first shell.
  • the shell includes a detachable first shell and a second shell, and the resonance column is connected to the bottom wall of the inner cavity of the first shell, which is convenient for users to clean the first shell and the second shell respectively Maintenance, and when the first casing or the second casing is dirty, only the dirty first casing or the second casing can be replaced, which reduces the daily maintenance cost of the aerosol generating device.
  • the fixing seat is fixedly connected with the second casing, and when the fixing seat needs to be cleaned, the second casing can be disassembled from the first casing, which realizes the convenience for cleaning the first casing And the role of fixing seat cleaning and maintenance.
  • the aerosol generating device includes: a through hole, arranged in the casing; a pressure sensor, arranged in the casing, and the collection end of the pressure sensor communicates with the resonant cavity through the through hole, and is used to collect air pressure value.
  • the aerosol generating device also includes a through hole arranged on the housing, and the pressure sensor is arranged corresponding to the through hole, and the pressure sensor can collect the air pressure value in the resonant cavity through the through hole.
  • the air pressure value in the resonant cavity will change, and the air pressure value collected by the pressure sensor can detect whether the aerosol generating device is in the suction state.
  • the microwave component run control. After the user stops the suction, the microwave component can be controlled to stop running in time, thereby avoiding the waste of electric energy and aerosol-generating substrates.
  • the preheating effect of the aerosol generating substrate is realized when the aerosol generating device is in the non-puffing state, and the aerosol generating substrate can be quickly heated to the atomization temperature in the pumping state, which reduces energy consumption and improves aerosol
  • the atomization efficiency of the generated substrate also improves the atomization range of the aerosol generated substrate, thereby improving the user experience.
  • the microwave component includes: a microwave introduction part, which is arranged on the side wall of the housing; a microwave emission source, which is connected to the microwave introduction part, and the microwave output by the microwave emission source is fed into the resonant cavity through the microwave introduction part, so that the microwave Conduction along the direction from the first end of the resonant column to the second end of the resonant column.
  • the microwave emission source can generate microwaves, and the microwaves are introduced into the resonant cavity through the microwave introduction part.
  • the microwave introduction part By setting the microwave introduction part, the introduction position of the microwave in the resonant cavity can be changed, and the components in the resonant cavity can be avoided. , it can also ensure that the microwave is stably transmitted from the first end of the resonant column to the second end of the resonant column.
  • the microwave introduction part includes: a first introduction part arranged on the side wall of the casing; a second introduction part, the first end of the second introduction part is connected with the first introduction part, and the second introduction part is located at In the resonant cavity, the second end of the second lead-in part faces the cavity bottom wall of the resonant cavity.
  • the microwave introduction part is composed of the first introduction part and the second introduction part.
  • the first introduction part is arranged on the side wall of the housing, and the first introduction part is connected with the microwave emission source, so that the microwave emission source generates
  • the microwave first guide is fed into the resonant cavity, and the second guide can change the direction of microwave transmission. Since the second guide is facing the bottom wall of the resonant cavity, the microwave is transmitted to the bottom wall of the resonant cavity, and the bottom wall of the resonant cavity.
  • the microwave is transmitted to the aerosol-generating matrix through the resonant column, and the second introduction part is set to face the bottom wall of the resonant cavity to ensure that the microwave can be transmitted from the first end of the resonant column to avoid microwave loss.
  • the microwave introduction part includes: a third introduction part, arranged on the side wall of the housing; a fourth introduction part, the first end of the fourth introduction part is connected with the third introduction part, and the fourth introduction part is located at In the resonant cavity, the second end of the fourth guide is facing the resonant column.
  • the microwave introduction part is composed of the first introduction part and the second introduction part.
  • the first introduction part is arranged on the side wall of the housing, and the first introduction part is connected with the microwave emission source, so that the microwave emission source generates
  • the microwave first guide is fed into the resonant cavity, and the second guide is facing the resonant column, that is, the second guide is parallel to the bottom wall of the resonant cavity, so that the length of the second guide is relatively short, so that the microwave can be quickly transmitted to the Resonant column to avoid microwave loss.
  • Fig. 1 shows one of the structural schematic diagrams of the aerosol generating device in the embodiment of the present application
  • Fig. 2 shows one of the structural schematic diagrams of the resonant column and the probe of the aerosol generating device in the embodiment of the present application;
  • Fig. 3 shows the second structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application
  • Fig. 4 shows the third structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application
  • FIG. 5 shows the fourth structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application
  • Fig. 6 shows the fifth structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application
  • Fig. 7 shows the sixth structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application
  • Fig. 8 shows the seventh structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application;
  • Fig. 9 shows the eighth structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application.
  • Fig. 10 shows the ninth structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application;
  • Fig. 11 shows the tenth structural schematic diagram of the resonant column and the probe of the aerosol generating device in the embodiment of the present application;
  • Fig. 12 shows the second structural schematic diagram of the aerosol generating device in the embodiment of the present application.
  • 100 aerosol generating device 110 casing, 112 first casing, 114 second casing, 120 microwave assembly, 122 microwave introduction part, 1222 first introduction part, 1224 second introduction part, 1226 third introduction part, 1228 first introduction part Four introduction parts, 124 microwave emission source, 130 resonance column, 140 probe, 142 connection part, 144 extension part, 150 fixing seat, 152 atomization chamber, 160 through hole, 170 pressure sensor.
  • An aerosol generating device 100 according to some embodiments of the present application is described below with reference to FIGS. 1 to 12 .
  • an aerosol generating device 100 is provided in an embodiment of the present application, including: a housing 110 , a resonant cavity, a microwave component 120 , a resonant column 130 and a probe 140 .
  • the housing 110 is provided with a resonant cavity inside the housing 110, and the resonant cavity can accommodate the aerosol generating matrix;
  • the microwave component 120 is arranged on the casing 110, and the microwave component 120 is used to feed microwaves into the resonant cavity;
  • the first end of the resonant column 130 is connected to the cavity bottom wall of the resonant cavity, and the second end of the resonant column 130 faces the opening of the resonant cavity;
  • the number of probes 140 is at least two, and the at least two probes 140 are arranged at intervals on the resonance column 130 , and the aerosol generating substrate is located between the at least two probes 140 .
  • the aerosol generating device 100 includes: a housing 110 , a resonant cavity, a microwave component 120 , a resonant column 130 and a probe 140 .
  • the resonant cavity is arranged in the casing 110, and the microwave assembly 120 is installed on the casing 110, and the microwave assembly 120 can feed microwaves into the resonant cavity.
  • the resonant post 130 is installed inside the resonant cavity, the diameter of the resonant post 130 is smaller than the inner diameter of the resonant cavity, and there is a gap between the outer wall of the resonant cavity and the inner wall of the resonant cavity.
  • the microwave fed into the resonant cavity by the microwave assembly 120 can be conducted along the resonant column 130.
  • the first end of the resonant column 130 is connected to the bottom wall of the resonant cavity, and the second end of the resonant column 130 faces the opening of the resonant cavity.
  • Microwaves can be transmitted along the direction from the first end to the second end of the resonant column 130.
  • the aerosol generating substrate is inserted into the resonating cavity from the opening of the resonating cavity, and the aerosol generating substrate is located near the opening of the resonating cavity. position, the microwaves conducted by the resonant column 130 can act on the aerosol-generating substrate, so that the aerosol-generating substrate is heated and atomized.
  • the microwave transmitted to the aerosol-generating substrate by the resonance column 130 acts on one end of the aerosol-generating substrate.
  • Multiple probes 140 are arranged on the resonant column 130, and multiple probes 140 are detected and distributed on the side wall of the resonant column 130.
  • the aerosol generating substrate is located between the multiple probes 140, so that the multiple probes 140 are distributed on the The peripheral side wall of the generating device 100, the probe 140 can further conduct the microwave transmitted through the resonant column 130, and the multiple probes 140 can conduct the microwave to the peripheral side wall of the aerosol generating substrate, so that the aerosol generating device 100 can operate During the process, the microwave can be conducted to the surrounding side of the aerosol generating matrix through the probe 140, and it is heated from the surrounding side of the aerosol generating matrix, which reduces the distance of heat conduction in the aerosol generating matrix and improves the aerosol generating efficiency.
  • the uniform heating of the matrix avoids incomplete heating of the aerosol-generating matrix and improves the utilization rate of the aerosol-generating matrix.
  • the aerosol generating substrates in the related art are all set in the shape of a columnar body, and the microwaves act on one end of the aerosol generating substrate, and one end of the aerosol generating substrate is heated and conducts heat to the other end, and the aerosol generates Due to the incomplete heating of the matrix, there is the problem of incomplete atomization.
  • the probe 140 is set to conduct the microwave to the peripheral side of the aerosol generating substrate, so that the aerosol generating substrate is heated more completely.
  • the microwave is transmitted to the aerosol-generating matrix through the resonant column 130 and the probe 140, so that the microwave can act on the aerosol-generating matrix, the aerosol-generating matrix absorbs the microwave, and the polar molecules in the aerosol-generating matrix rapidly oscillate and transform As thermal energy, the aerosol-generating substrate is heated and atomized.
  • the resonant column 130 is made of metal, for example, the resonant column 130 is made of iron, copper or aluminum, or the resonant column 130 is made of iron, copper, aluminum or other metal alloy.
  • At least two probes 140 are uniformly arranged on the peripheral sidewall of the resonant pillar 130 along the peripheral sidewall of the resonant pillar 130 .
  • the number of probes 140 is multiple, and the multiple probes 140 are arranged on the peripheral sidewall of the resonant column 130, and the multiple probes 140 surround to form an accommodating space, and the aerosol generating matrix is inserted into the resonant cavity, And the aerosol generating substrate is located in the containing space.
  • a plurality of probes 140 are evenly arranged on the peripheral side wall of the resonant column 130, and the plurality of probes 140 extend toward the opening direction of the resonant cavity, so that the probes 140 are distributed in the aerosol generating matrix inserted into the resonant cavity
  • the microwave can act on the aerosol-generating substrate in multiple directions, and the microwave action position is more uniform, which improves the uniformity of the heating of the aerosol-generating substrate, makes the atomization of the aerosol-generating substrate more thorough, and improves the aerosol Generate substrate utilization.
  • the peripheral sidewall of the aerosol-generating substrate is in contact with a plurality of probes 140, and the microwaves output by the plurality of probes 140 can directly act on the peripheral sidewall of the aerosol-generating substrate, that is, the aerosol-generating substrate After the peripheral side of the aerosol generating substrate is heated, the heat gradually diffuses from the peripheral side of the aerosol generating substrate to the inside of the aerosol generating substrate. Since the probes 140 are evenly distributed on the peripheral side of the aerosol generating substrate, the aerosol generating substrate is heated more evenly.
  • the number of probes 140 may be two or three. one, four, five or six.
  • the number of probes 140 is set to N, and the angle between two adjacent probes 140 is 360°/N.
  • the probe 140 includes: a connection part 142 and an extension part 144 .
  • the connecting portion 142 is connected to the peripheral side wall of the resonant column 130;
  • a first end of the extension part 144 is connected to the connection part 142 , and a second end of the extension part 144 extends toward the opening direction of the resonant cavity.
  • the probe 140 includes a connection part 142 and an extension part 144, the probe 140 is arranged on the peripheral side wall of the resonant column 130 through the connection part 142, and the extension part 144 can continue to conduct the microwave conducted by the resonant column 130,
  • the extending direction of the extension part 144 faces the opening direction of the resonant cavity, so that the extension part 144 can be located on the peripheral side of the aerosol-generating substrate, thereby uniformly heating the peripheral side of the aerosol-generating substrate.
  • the extensions 144 of the plurality of probes 140 all extend toward the opening of the atomization chamber 152 , and the lengths of the extensions 144 of the plurality of probes 140 can be set correspondingly according to the size of the aerosol-generating substrate. For example: the length of a plurality of probes 140 is set longer, and the ends of a plurality of probes 140 are arranged near the aerosol output part of the aerosol generating substrate, then the microwaves transmitted by the probes 140 can act on The aerosol generating substrate of the aerosol output part realizes the effect of releasing the aerosol rapidly during the use of the aerosol generating device 100 and reduces the preheating time of the aerosol generating substrate.
  • the angle between the connecting portion 142 and the extending portion 144 ranges from 80° to 100°.
  • the range of the included angle between the connecting portion 142 and the extending portion 144 is set to 80° to 100°, thereby ensuring that the extending portion 144 is relatively parallel to the side wall of the aerosol generating substrate, so that The distance between the aerosol-generating substrate and the extension part 144 is relatively close, which improves the utilization rate of the microwave transmitted to the aerosol-generating substrate through the probe 140 .
  • the connecting portion 142 is arranged vertically to the peripheral sidewall of the resonant column 130
  • the extension portion 144 is arranged parallel to the peripheral sidewall of the resonant column 130 , so that the angle between the connecting portion 142 and the extending portion 144 is set to 90°. °.
  • the extensions 144 of the plurality of probes 140 are arranged parallel to the peripheral sidewall of the resonant column 130, which can ensure that the distances between the extensions 144 of the plurality of probes 140 and the peripheral sidewall of the aerosol-generating matrix are equal. , to further ensure the uniformity of microwave atomization of the aerosol-generating substrate by the microwaves transmitted by the plurality of probes 140 .
  • At least two connecting parts 142 have the same size; and/or at least two extension parts 144 have the same size.
  • At least two connecting parts 142 have the same size, which can ensure that the extension part 144 connected by each connecting part 142 has the same size from the resonant column 130. Since the resonant column 130 is coaxially arranged with the aerosol generating matrix, Therefore, the distance between the extension parts 144 of the plurality of probes 140 and the aerosol-generating substrate is ensured to be equal, and the uniformity of microwave atomization of the aerosol-generating substrate by the microwaves transmitted by the plurality of probes 140 is further ensured.
  • the extensions 144 of the plurality of probes 140 By setting the extensions 144 of the plurality of probes 140 to the same size, it can be ensured that the ends of the extensions 144 of the plurality of probes 140 are located on the same cross-section of the aerosol generating substrate, and the uniformity of output microwaves can be ensured.
  • the microwave atomization device further includes a fixing seat 150 and an atomization cavity 152 .
  • the fixed seat 150 is arranged in the resonant cavity, the fixed seat 150 is arranged opposite to the resonant column 130, and at least two probes 140 are distributed around the peripheral side wall of the fixed seat 150;
  • the atomizing chamber 152 is disposed in the fixing seat 150, and the atomizing chamber 152 is used for accommodating the aerosol generating substrate.
  • the microwave atomization device further includes a fixed seat 150 and an atomization chamber 152, the fixed seat 150 is arranged in the resonant cavity, the interior of the fixed seat 150 is provided with an atomization chamber 152, and one end of the fixed seat 150 is provided with an opening, The opening communicates with the atomizing chamber 152 , and the aerosol-generating substrate is inserted into the fixing seat 150 through the opening.
  • the fixing seat 150 can fix the aerosol-generating substrate.
  • the aerosol-generating substrate will produce solid or liquid waste during the heated atomization process. It can ensure that waste will not enter the resonant cavity, and ensure that the resonant cavity will not be dirty.
  • a plurality of probes 140 are distributed around the outer wall of the fixed seat 150, so that the microwaves transmitted by the probes 140 can directly act on the aerosol-generating substrate in the atomizing chamber 152 of the fixed seat 150.
  • the material of the fixing base 150 is selected as a material with low electrical loss, such as microwave transparent ceramics, glass, or alumina.
  • the centerline of the resonance column 130 coincides with the centerline of the atomizing chamber 152 .
  • both the resonance column 130 and the atomization chamber 152 are of regular shape.
  • both the resonance column 130 and the atomization chamber 152 are cylinders, and the centerline of the resonance column 130 and the centerline of the atomization chamber 152 Coincident, that is, the axis of the resonant column 130 coincides with the axis of the atomization chamber 152.
  • the centers of the resonant column 130 and the atomization chamber 152 are coincident, which makes the resonant column 130
  • the conducted microwave can act more on the aerosol-generating substrate, and by concentrating the microwave on the aerosol-generating substrate, the aerosol-generating substrate can be heated in a short period of time, which is conducive to realizing instant heating.
  • the fixing seat 150 is detachably connected to the housing 110 .
  • the fixing seat 150 is detachably connected to the housing 110, and the user can disassemble and clean the fixing seat 150 separately.
  • the user can disassemble and clean the fixing seat 150 separately.
  • the aerosol-containing The fixing seat 150 where the matrix is generated is cleaned to avoid affecting the electronic components in the aerosol generating device 100 during the cleaning process.
  • the second end of the resonance column 130 abuts against the fixing base 150 .
  • the second end of the resonant column 130 abuts against the fixed seat 150, so the distance between the aerosol generating matrix and the resonant column 130 is the thickness of the bottom of the fixed seat 150, and the resonant column 130 and the fixed seat 150 are In contrast, the distance between the resonant column 130 and the aerosol generating matrix can be reduced as much as possible.
  • the resonating column 130 transmits microwaves, the attenuation of the microwave is small.
  • the microwave is easily Attenuation occurs quickly, so the distance between the resonant column 130 and the aerosol-generating matrix can be reduced as much as possible, and the attenuation of the microwave can be reduced as much as possible, so that the amount of microwaves acting on the aerosol-generating matrix can be increased, and the impact on the aerosol-generating matrix can be improved. heating rate.
  • the resonant column 130 and the fixed seat 150 are taken along a direction perpendicular to the center line of the resonant column 130, and the cross-sectional area of the resonant column 130 is less than or equal to that of the fixed seat 150 area.
  • the edge of the side of the resonant post 130 does not protrude from the edge of the side of the fixed seat 150, so the projection of the resonant post 130 on the bottom wall of the resonant cavity falls into the bottom wall of the fixed seat 150 on the resonant cavity.
  • the fixed base 150 is thicker than the resonant column 130, which makes most of the microwaves transmitted through the resonant column 130 directly act on the aerosol-generating substrate, and the microwaves are not attenuated or under the condition of a small attenuation
  • the aerosol-generating substrate can be heated in a relatively short period of time, which improves the heating efficiency of the aerosol-generating substrate, and facilitates instant heating.
  • the housing 110 includes: a first housing 112 and a second housing 114 .
  • the resonance column 130 is disposed on the first housing 112 , and the second housing 114 is detachably connected to the first housing 112 .
  • the shell 110 includes a detachable first shell 112 and a second shell 114, and the resonant column 130 is connected to the bottom wall of the inner cavity of the first shell 112, so that the user can install the first shell 112 respectively. and the second casing 114 for cleaning and maintenance, and when the first casing 112 or the second casing 114 is dirty, only the dirty first casing 112 or the second casing 114 can be replaced, reducing air pollution.
  • the daily maintenance cost of the sol generating device 100 is a detachable first shell 112 and a second shell 114, and the resonant column 130 is connected to the bottom wall of the inner cavity of the first shell 112, so that the user can install the first shell 112 respectively. and the second casing 114 for cleaning and maintenance, and when the first casing 112 or the second casing 114 is dirty, only the dirty first casing 112 or the second casing 114 can be replaced, reducing air pollution.
  • the daily maintenance cost of the sol generating device 100 is
  • the fixing base 150 is fixedly connected with the second housing 114, and when the fixing base 150 needs to be cleaned, the second housing 114 can be disassembled from the first housing 112, realizing convenience for use The function of cleaning and maintaining the first housing 112 and the fixing seat 150 .
  • the aerosol generating device 100 includes: a through hole 160 and a pressure sensor 170 .
  • the through hole 160 is disposed in the casing
  • the pressure sensor 170 is disposed on the casing, and the collection end of the pressure sensor 170 communicates with the resonant cavity through the through hole 160 for collecting the air pressure value in the resonant cavity.
  • the aerosol generating device 100 also includes a through hole 160 disposed on the casing, and a pressure sensor 170 is disposed corresponding to the through hole 160, and the pressure sensor 170 can collect the air pressure value in the resonant cavity through the through hole 160, because During the user's suction process, the air pressure value in the resonant cavity will change. The air pressure value collected by the pressure sensor 170 can detect whether the aerosol generating device 100 is in the suction state. Further, according to the aerosol generating device The suction state of the microwave assembly 100 controls the operation of the microwave assembly 120 . After the user stops inhaling, the microwave component 120 can be controlled to stop running in time, which avoids waste of electric energy and aerosol-generating substrates.
  • the preheating effect of the aerosol generating substrate is realized when the aerosol generating device 100 is in the non-puffing state, and the aerosol generating substrate can be quickly heated to the atomization temperature in the pumping state, which reduces energy consumption and improves aerosol generation.
  • the atomization efficiency of the aerosol-generating substrate also improves the atomization process of the aerosol-generating substrate, thereby improving user experience.
  • the microwave assembly 120 includes: a microwave introduction part 122 and a microwave emission source 124 .
  • the microwave introduction part 122 is arranged on the side wall of the housing 110;
  • the microwave emission source 124 is connected with the microwave introduction part 122, and the microwave output by the microwave emission source 124 is fed into the resonant cavity through the microwave introduction part 122, so that the microwave is transmitted along the direction from the first end of the resonant column 130 to the second end of the resonant column 130.
  • the microwave emission source 124 can generate microwaves, and the microwaves are introduced into the resonant cavity through the microwave introduction part 122. Avoiding the components can also ensure that the microwave is stably transmitted from the first end of the resonant column 130 to the second end of the resonant column 130 .
  • the microwave introduction part 122 includes: a first introduction part 1222 and a second introduction part 1224 .
  • the first introduction part 1222 is disposed on the side wall of the housing 110;
  • the first end of the second introduction part 1224 is connected with the first introduction part 1222, the second introduction part 1224 is located in the resonant cavity, and the second end of the second introduction part 1224 faces the cavity bottom wall of the resonant cavity.
  • the microwave introduction part 122 is composed of a first introduction part 1222 and a second introduction part 1224. Connected, so that the microwave first introduction part 1222 generated by the microwave emission source 124 is fed into the resonant cavity, and the second introduction part 1224 can change the conduction direction of the microwave. Since the second introduction part 1224 faces the bottom wall of the resonant cavity, the microwave direction The bottom wall of the cavity is conducted, and the microwave at the bottom wall of the resonant cavity is conducted to the aerosol-generating matrix through the resonant column 130, and the second introduction part 1224 is set to face the bottom wall of the resonant cavity, so as to ensure that the microwave can be transmitted from the first end of the resonant column 130. The microwave is conducted to avoid microwave loss.
  • the microwave introduction part 122 includes: a third introduction part 1226 and a fourth introduction part 1228 .
  • the third introduction part 1226 is disposed on the side wall of the housing 110;
  • the first end of the fourth guide 1228 is connected to the third guide 1226 , the fourth guide 1228 is located in the resonant cavity, and the second end of the fourth guide 1228 faces the resonant column 130 .
  • the microwave introduction part 122 is composed of a first introduction part 1222 and a second introduction part 1224.
  • the first introduction part 1222 is arranged on the side wall of the casing. Connected so that the microwave first introduction part 1222 generated by the microwave emission source 124 is fed into the resonant cavity, and the second introduction part 1224 faces the resonant column 130, that is, the second introduction part 1224 is parallel to the bottom wall of the resonant cavity, so that the second introduction part
  • the length of 1224 is relatively short, so that the microwave can be transmitted to the resonant column 130 quickly to avoid microwave loss.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种气溶胶产生装置(100),包括:外壳(110),外壳(110)内设置有谐振腔,谐振腔能够容置气溶胶产生基质;微波组件(120),设置于外壳(110),微波组件(120)用于向谐振腔内馈入微波;谐振柱(130),谐振柱(130)的第一端与谐振腔的腔底壁相连,谐振柱(130)的第二端朝向谐振腔的开口;探针(140),探针(140)的数量为至少两个,至少两个探针(140)间隔设置于谐振柱(130),气溶胶产生基质位于至少两个探针(140)之间。提高对气溶胶产生基质加热的均匀性,避免气溶胶产生基质受热不完全,提升了气溶胶产生基质的利用率。

Description

气溶胶产生装置 技术领域
本申请属于电子雾化技术领域,具体而言,涉及一种气溶胶产生装置。
背景技术
加热不燃烧(Heat Not Burning,HNB)装置,是一种加热装置加上气溶胶产生基质(经过处理的植物叶类制品)的组合设备。外部加热装置通过高温加热到气溶胶产生基质可以产生气溶胶但是却不足以燃烧的温度,能在不燃烧的前提下,让气溶胶产生基质产生用户所需要的气溶胶。
目前市场上的加热不燃烧器具主要采用电阻加热方式,即利用中心发热片或发热针等从气溶胶产生基质中心插入至气溶胶生成基质内部进行加热。这种器具在使用前需预热等待时间长,不能抽停自由,气溶胶生成基质碳化不均匀,导致气溶胶生成基质烘烤不充分,利用率低;其次,HNB器具发热片容易在气溶胶产生基质提取器和发热片基座中产生污垢,难清洁;会使接触发热体的局部气溶胶产生基质温度过高、发生部分裂解,释放出对人体有害的物质。因此微波加热技术逐渐替代电阻加热方式成为新的加热方式。微波加热技术具有高效、及时、选择性及加热无延缓性的特点,只对特定介电特性的物质有加热效果。采用微波加热雾化的应用优势有:a、微波加热为辐射加热,非热传导,可实现即抽即停;b、无加热片,因此不存在断片、清洁发热片的问题;c、气溶胶产生基质利用率高,口感一致性高,口感更接近香烟。
现有技术中,微波通常从一端馈入谐振腔,导致对谐振腔内的气溶胶产生基质受热不均匀。
申请内容
本申请旨在解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本申请实施例提出一种气溶胶产生装置,包括:外壳,外壳 内设置有谐振腔,谐振腔能够容置气溶胶产生基质;微波组件,设置于外壳,微波组件用于向谐振腔内馈入微波;谐振柱,谐振柱的第一端与谐振腔的腔底壁相连,谐振柱的第二端朝向谐振腔的开口;探针,探针的数量为至少两个,至少两个探针间隔设置于谐振柱,气溶胶产生基质位于至少两个探针之间。
本申请提供的气溶胶产生装置包括:外壳、谐振腔、微波组件、谐振柱和探针。谐振腔设置在外壳内,微波组件安装在外壳上,微波组件能够向谐振腔内馈入微波。谐振柱安装在谐振腔内部,谐振柱的直径小于谐振腔的内径,谐振腔的外侧壁与谐振腔的内侧壁之间设置有间隙。微波组件馈入至谐振腔内的微波,能够沿谐振柱传导,谐振柱的第一端与谐振腔的底壁相连,谐振柱的第二端朝向谐振腔的开口,馈入的微波能够沿着谐振柱第一端至第二端的方向传导,气溶胶产生装置在使用过程中,气溶胶产生基质从谐振腔的开口插入谐振腔内,气溶胶产生基质位于谐振腔靠近开口的位置,经谐振柱传导的微波能够作用于气溶胶产生基质,使气溶胶产生基质受热雾化。谐振柱传导至气溶胶产生基质处的微波,作用于气溶胶产生基质的一端。在谐振柱上设置多个探针,多个探针检测分布于谐振柱的侧壁,气溶胶产生基质位于多个探针之间,使多个探针分布于气溶胶产生装置的周侧壁,探针能够对通过谐振柱传导的微波进一步传导,多个探针能够将微波传导至气溶胶产生基质的周侧壁位置,使气溶胶产生装置运行过程中,微波能够通过探针传导至气溶胶产生基质的周侧,从气溶胶产生基质的周侧对其进行加热,减少了热量在气溶胶产生基质内传导的距离,提高对气溶胶产生基质加热的均匀性,避免气溶胶产生基质受热不完全,提升了气溶胶产生基质的利用率。
可以理解的是,相关技术中气溶胶产生基质均设置为柱状体形状,微波均是作用于气溶胶产生基质的一端,气溶胶产生基质的一端受热后将热量向另一端进行传导,气溶胶产生基质由于受热不完全,存在雾化不彻底的问题。本申请实施例通过设置探针将微波传导至气溶胶产生基质的周侧,使气溶胶产生基质的受热更加完全。
值得说明的是,微波经过谐振柱和探针传导至气溶胶产生基质,使得微波能够作用于气溶胶产生基质,气溶胶产生基质吸收微波,气溶胶产生基质中的极性份子快速震荡转化为热能,从而使气溶胶产生基质受热雾化。
举例来说,谐振柱的材质为金属材质,例如谐振柱有铁、铜或铝等金属单质制备,或谐振柱由铁、铜、铝等金属的合金制备。
另外,根据本申请提供的上述技术方案中的气溶胶产生装置,还可以具有如下附加技术特征:
在一种可能的设计中,沿谐振柱的周侧壁,至少两个探针均匀设置于谐振柱的周侧壁。
在该设计中,探针的数量为多个,多个探针设置在谐振柱的周侧壁,多个探针围合形成容置空间,气溶胶产生基质插入谐振腔,且气溶胶产生基质位于容置空间内。将多个探针均匀地设置在谐振柱的周侧壁,并且多个探针朝向谐振腔的开口方向延伸,从而使探针分布在插入到谐振腔内的气溶胶产生基质的周侧,实现了微波能够在多个方向作用于气溶胶产生基质,且微波作用位置更加均匀,提高了气溶胶产生基质受热的均匀性,使气溶胶产生基质雾化更加彻底,提高了气溶胶产生基质的利用率。
在一些实施例中,气溶胶产生基质的周侧壁与多个探针相接触,多个探针输出的微波直接能够直接作用于气溶胶产生基质的周侧壁,即气溶胶产生基质的周侧受热后,热量从气溶胶产生基质的周侧向气溶胶产生基质的内部逐渐扩散,由于探针均匀分布于气溶胶产生基质的周侧,从而使气溶胶产生基质受热更加均匀。
在一些实施中,探针的数量可选为两个、三个、四个、五个或六个。
在这些实施例中,探针的数量设置为N个,则相邻两个探针之间的夹角为360°/N。
在一种可能的设计中,探针包括:连接部,连接部与谐振柱的周侧壁相连;延伸部,延伸部的第一端与连接部相连,延伸部的第二端朝向谐振腔的开口方向延伸。
在该设计中,探针包括连接部和延伸部,探针通过连接部设置在谐振柱的周侧壁,延伸部能够继续对谐振柱传导的微波进行传导,延伸部的延伸方向朝向谐振腔的开口方向,能够使延伸部位于气溶胶产生基质的周侧,从而对气溶胶产生基质周侧进行均匀加热。
值得说明的是,多个探针的延伸部均朝向雾化腔的开口方向延伸,多个探针的延伸部的长度可以根据气溶胶产生基质的尺寸相应设置。例如:将多个探针的长度设置较长,并将多个探针的末端设置在靠近气溶胶产生基质的气溶胶输出部的位置,则通过探针传输的微波能够作用于靠近气溶胶输出部的气溶胶产生基质,实现了气溶胶产生装置使用过程中的快速释放气溶胶的效果,减少了对气溶胶产生基质的预热时长。
在一种可能的设计中,连接部与延伸部之间的夹角取值范围为80°至100°。
在该设计中,将连接部与延伸部之间的夹角取值范围设置为80°至100°,从而保证了延伸部与气溶胶产生基质的侧壁相对平行的设置,使气溶胶产生基质与延伸部的距离较近,提高了经过探针传输至气溶胶产生基质的微波的利用率。
在一些实施例中,连接部与谐振柱的周侧壁垂直设置,延伸部与谐振柱的周侧壁平行设置,使连接部与延伸部之间的夹角设置为90°。
在这些实施中,多个探针的延伸部与谐振柱的周侧壁平行设置,能够保证多个探针的延伸部与气溶胶产生基质的周侧壁之间的距离相等,进一步保证多个探针传输的微波对气溶胶产生基质微波雾化的均匀性。
在一种可能的设计中,至少两个连接部的尺寸相同;和/或至少两个延伸部的尺寸相同。
在该设计中,至少两个连接部的尺寸相同,能够保证每个连接部所连接的延伸部距离谐振柱的尺寸相同,由于谐振柱与气溶胶产生基质同轴设置,从而保证了多个探针的延伸部与气溶胶产生基质的距离相等,进一步保证多个探针传输的微波对气溶胶产生基质微波雾化的均匀性。通过将多个探针的延伸部的尺寸设置为相同尺寸,能够保证多个探针的延伸部末端均位于气 溶胶产生基质的同一截面上,能够保证输出的微波的均匀性。
在一种可能的设计中,微波雾化装置还包括固定座,设置于谐振腔内,固定座与谐振柱相对设置,至少两个探针环绕分布于固定座的周侧壁;雾化腔,设置于固定座内,雾化腔用于容置气溶胶产生基质。
在该设计中,微波雾化装置还包括固定座和雾化腔,固定座设置在谐振腔内,固定座内部开设有雾化腔,固定座的一端设置有开口,开口与雾化腔相连通,气溶胶产生基质通过开口插入固定座内。固定座能够对气溶胶产生基质进行固定,气溶胶产生基质在受热雾化过程中会产生固态或液态的废料,通过将气溶胶产生基质设置在固定座内的雾化腔内进行雾化,能够保证废料不会进入到谐振腔内,保证了谐振腔不会受到脏污。多个探针环绕分布与固定座的外侧壁,使探针传输的微波能够直接作用于固定座的雾化腔内的气溶胶产生基质。
可以理解的是,固定座的材质选为低接电损耗材料,例如:微波透明陶瓷、玻璃、或氧化铝等。
在一种可能的设计中,谐振柱的中心线和雾化腔的中心线重合。
在该设计中,谐振柱和雾化腔均为规则形状,示例性地,谐振柱和雾化腔均为圆柱体,谐振柱的中心线和雾化腔的中心线重合,即谐振柱的轴线和雾化腔的轴线重合,通过设置谐振柱和雾化腔的中心重合,使得谐振柱和气溶胶产生基质的中心重合,这就使得由谐振柱传导的微波能够更多的作用于气溶胶产生基质,通过将微波集中作用于气溶胶产生基质,气溶胶产生基质能够在较短的时间内被加热,有利于实现即时加热。
在一种可能的设计中,固定座与外壳可拆卸相连。
在该设计中,将固定座设置与外壳可拆卸相连,用户能够将固定座单独进行拆卸清洗,对气溶胶产生基质雾化过程中产生的废料进行清洁时仅需要对容纳气溶胶产生基质的固定座进行清洗,避免清洗过程中对气溶胶产生装置中的电子元件造成影响。
在一种可能的设计中,谐振柱的第二端与固定座相抵靠。
在该设计中,谐振柱的第二端与固定座部相抵接,所以气溶胶产生基质和谐振柱的间距为固定座部底部的厚度,将谐振柱与固定座部相抵,能够尽可能减小谐振柱和气溶胶产生基质的间距,谐振柱对微波进行传输时,微波的衰减量较小,在气溶胶产生基质和谐振柱之间的空隙处,微波容易快速出现衰减,所以尽可能减小谐振柱和气溶胶产生基质的间距,能够尽可能减小微波的衰减量,从而能够使得作用于气溶胶产生基质的微波量较大,提高对气溶胶产生基质的加热速度。
在一种可能的设计中,沿垂直于谐振柱中心线的方向截取谐振柱和固定座,谐振柱的截面积小于或等于固定座的截面积。
在该设计中,谐振柱侧部的边沿未伸出固定座侧部的边沿,所以,谐振柱在谐振腔的底壁上的投影落入固定座在谐振腔的底壁上的投影范围内,即固定座比谐振柱更粗,这就使得经由谐振柱传导的大部分微波能够直接作用于气溶胶产生基质,微波未经过衰减或在衰减量较小的情况下就直接作用于气溶胶产生基质,气溶胶产生基质能够在较短的时间内被加热,提高对气溶胶产生基质的加热效率,有利于实现即时加热。
在一种可能的设计中,外壳包括:第一壳体,谐振柱设置于第一壳体;第二壳体,与第一壳体可拆卸相连。
在该设计中,外壳包括可拆卸地第一壳体和第二壳体,谐振柱与第一壳体的内腔底壁相连接,便于用户分别对第一壳体和第二壳体进行清洗维护,并且在第一壳体或第二壳体污损时,能够仅对污损的第一壳体或第二壳体进行更换,降低了气溶胶产生装置的日常维护成本。
在一些实施例中,固定座与第二壳体固定相连,在需要对固定座进行清洗时,能够将第二壳体从第一壳体上拆卸下来,实现了便于用于对第一壳体和固定座清洗维护的作用。
在一种可能的设计中,气溶胶产生装置包括:通孔,设置于壳体;压力传感器,设置于壳体,压力传感器的采集端通过通孔与谐振腔相连通,用于采集谐振腔内的气压值。
在该设计中,气溶胶产生装置还包括设置在壳体上的通孔,压力传感器与通孔对应设置,压力传感器能够通过通孔采集谐振腔内的气压值,由于在用户抽吸过程中,会使谐振腔内的气压值发生变化,通过压力传感器采集到的气压值,能够对气溶胶产生装置是否处于抽吸状态进行检测,进一步,根据气溶胶产生装置的抽吸状态,对微波组件的运行进行控制。在用户停止抽吸后,能够及时控制微波组件停止运行,避免了电能以及气溶胶产生基质的浪费。实现了在气溶胶产生装置处于未抽吸状态下对气溶胶产生基质的预热效果,在抽吸状态下能够将气溶胶产生基质快速加热至雾化温度,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程,进而提高了用户的使用体验。
在一种可能的设计中,微波组件包括:微波导入部,设置于外壳的侧壁;微波发射源,与微波导入部相连,微波发射源输出的微波经过微波导入部馈入谐振腔,使微波沿谐振柱的第一端至谐振柱的第二端的方向传导。
在该设计中,微波发射源能够产生微波,微波通过微波导入部导入至谐振腔内,通过设置微波导入部,能够改变微波在谐振腔内的导入位置,既能对谐振腔内的部件进行避让,也能够保证微波稳定地由谐振柱的第一端向谐振柱的第二端传导。
在一种可能的设计中,微波导入部包括:第一导入件,设置于外壳的侧壁;第二导入件,第二导入件的第一端与第一导入件相连,第二导入件位于谐振腔内,第二导入件的第二端朝向谐振腔的腔底壁。
在该设计中,微波导入部由第一导入件和第二导入件两部分组成,第一导入件设置在壳体的侧壁上,第一导入件与微波发射源相连,使得微波发射源产生的微波第一导入件馈入谐振腔内,第二导入件能够改变微波的传导方向,由于第二导入件朝向谐振腔的底壁,所以微波向谐振腔的底壁传导,谐振腔底壁处的微波通过谐振柱向气溶胶产生基质传导,设置第二导入件朝向谐振腔的底壁,确保微波能够由谐振柱的第一端开始对微波进行传导,避免造成微波损耗。
在一种可能的设计中,微波导入部包括:第三导入件,设置于外壳的侧壁;第四导入件,第四导入件的第一端与第三导入件相连,第四导入件位于谐振腔内,第四导入件的第二端朝向谐振柱。
在该设计中,微波导入部由第一导入件和第二导入件两部分组成,第一导入件设置在壳体的侧壁上,第一导入件与微波发射源相连,使得微波发射源产生的微波第一导入件馈入谐振腔内,第二导入件朝向谐振柱,即第二导入件与谐振腔的底壁平行,使得第二导入件的长度较短,从而能够快速将微波传导至谐振柱,避免造成微波损耗。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的实施例中的气溶胶产生装置的结构示意图之一;
图2示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之一;
图3示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之二;
图4示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之三;
图5示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之四;
图6示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之五;
图7示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之六;
图8示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之七;
图9示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之八;
图10示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之九;
图11示出了本申请的实施例中的气溶胶产生装置的谐振柱和探针的结构示意图之十;
图12示出了本申请的实施例中的气溶胶产生装置的结构示意图之二。
其中,图1至图12中附图标记与部件名称之间的对应关系为:
100气溶胶产生装置,110外壳,112第一壳体,114第二壳体,120微波组件,122微波导入部,1222第一导入件,1224第二导入件,1226第三导入件,1228第四导入件,124微波发射源,130谐振柱,140探针,142连接部,144延伸部,150固定座,152雾化腔,160通孔,170压力传感器。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图12描述根据本申请一些实施例的一种气溶胶产生装置100。
如图1所示,本申请的实施例中提供了一种气溶胶产生装置100,包括:外壳110、谐振腔、微波组件120、谐振柱130和探针140。
其中,外壳110,外壳110内设置有谐振腔,谐振腔能够容置气溶胶产生基质;
微波组件120设置于外壳110,微波组件120用于向谐振腔内馈入微波;
谐振柱130的第一端与谐振腔的腔底壁相连,谐振柱130的第二端朝向谐振腔的开口;
探针140的数量为至少两个,至少两个探针140间隔设置于谐振柱130,气溶胶产生基质位于至少两个探针140之间。
本申请提供的气溶胶产生装置100包括:外壳110、谐振腔、微波组件120、谐振柱130和探针140。谐振腔设置在外壳110内,微波组件120安装在外壳110上,微波组件120能够向谐振腔内馈入微波。谐振柱130安装在谐振腔内部,谐振柱130的直径小于谐振腔的内径,谐振腔的外侧壁与谐振腔的内侧壁之间设置有间隙。微波组件120馈入至谐振腔内的微波,能够沿谐振柱130传导,谐振柱130的第一端与谐振腔的底壁相连,谐振柱130的第二端朝向谐振腔的开口,馈入的微波能够沿着谐振柱130第一端至第二端的方向传导,气溶胶产生装置100在使用过程中,气溶胶产生基质从谐振腔的开口插入谐振腔内,气溶胶产生基质位于谐振腔靠近开口的位置,经谐振柱130传导的微波能够作用于气溶胶产生基质,使气溶胶产生基质受热雾化。谐振柱130传导至气溶胶产生基质处的微波,作用于气溶胶产生基质的一端。在谐振柱130上设置多个探针140,多个探针140检测分布于谐振柱130的侧壁,气溶胶产生基质位于多个探针140之间,使多个探针140分布于气溶胶产生装置100的周侧壁,探针140能够对通过谐振柱130传导的微波进一步传导,多个探针140能够将微波传导至气溶胶产生基质的周侧壁位置,使气溶胶产生装置100运行过程中,微波能够通过探针140传导至气溶胶产生基质的周侧,从气溶胶产生基质的周侧对其进行加热,减少了热量在气溶胶产生基质内传导的距离,提高对气溶胶产生基质加热的均匀性,避免气溶胶产生基质受热不完全,提升了气溶胶产生基质的利用率。
可以理解的是,相关技术中气溶胶产生基质均设置为柱状体形状,微波均是作用于气溶胶产生基质的一端,气溶胶产生基质的一端受热后将热量向另一端进行传导,气溶胶产生基质由于受热不完全,存在雾化不彻底的问题。本申请实施例通过设置探针140将微波传导至气溶胶产生基质的周侧,使气溶胶产生基质的受热更加完全。
值得说明的是,微波经过谐振柱130和探针140传导至气溶胶产生基质,使得微波能够作用于气溶胶产生基质,气溶胶产生基质吸收微波,气溶胶产生基质中的极性份子快速震荡转化为热能,从而使气溶胶产生基质受热雾化。
举例来说,谐振柱130的材质为金属材质,例如谐振柱130有铁、铜或铝等金属单质制备,或谐振柱130由铁、铜、铝等金属的合金制备。
另外,根据本申请提供的上述技术方案中的气溶胶产生装置100,还可以具有如下附加技术特征:
在上述任一实施例中,沿谐振柱130的周侧壁,至少两个探针140均匀设置于谐振柱130的周侧壁。
在该实施例中,探针140的数量为多个,多个探针140设置在谐振柱130的周侧壁,多个探针140围合形成容置空间,气溶胶产生基质插入谐振腔,且气溶胶产生基质位于容置空间内。将多个探针140均匀地设置在谐振柱130的周侧壁,并且多个探针140朝向谐振腔的开口方向延伸,从而使探针140分布在插入到谐振腔内的气溶胶产生基质的周侧,实现了微波能够在多个方向作用于气溶胶产生基质,且微波作用位置更加均匀,提高了气溶胶产生基质受热的均匀性,使气溶胶产生基质雾化更加彻底,提高了气溶胶产生基质的利用率。
在一些实施例中,气溶胶产生基质的周侧壁与多个探针140相接触,多个探针140输出的微波直接能够直接作用于气溶胶产生基质的周侧壁,即气溶胶产生基质的周侧受热后,热量从气溶胶产生基质的周侧向气溶胶产生基质的内部逐渐扩散,由于探针140均匀分布于气溶胶产生基质的周侧,从而使气溶胶 产生基质受热更加均匀。
如图2、图3、图4、图5、图6、图7、图8、图9、图10和图11所示,在一些实施中,探针140的数量可选为两个、三个、四个、五个或六个。
在这些实施例中,探针140的数量设置为N个,则相邻两个探针140之间的夹角为360°/N。
在上述任一实施例中,探针140包括:连接部142和延伸部144。
其中,连接部142与谐振柱130的周侧壁相连;
延伸部144的第一端与连接部142相连,延伸部144的第二端朝向谐振腔的开口方向延伸。
在该实施例中,探针140包括连接部142和延伸部144,探针140通过连接部142设置在谐振柱130的周侧壁,延伸部144能够继续对谐振柱130传导的微波进行传导,延伸部144的延伸方向朝向谐振腔的开口方向,能够使延伸部144位于气溶胶产生基质的周侧,从而对气溶胶产生基质周侧进行均匀加热。
值得说明的是,多个探针140的延伸部144均朝向雾化腔152的开口方向延伸,多个探针140的延伸部144的长度可以根据气溶胶产生基质的尺寸相应设置。例如:将多个探针140的长度设置较长,并将多个探针140的末端设置在靠近气溶胶产生基质的气溶胶输出部的位置,则通过探针140传输的微波能够作用于靠近气溶胶输出部的气溶胶产生基质,实现了气溶胶产生装置100使用过程中的快速释放气溶胶的效果,减少了对气溶胶产生基质的预热时长。
在上述任一实施例中,连接部142与延伸部144之间的夹角取值范围为80°至100°。
在该实施例中,将连接部142与延伸部144之间的夹角取值范围设置为80°至100°,从而保证了延伸部144与气溶胶产生基质的侧壁相对平行的设置,使气溶胶产生基质与延伸部144的距离较近,提高了经过探针140传输至气溶胶产生基质的微波的利用率。
在一些实施例中,连接部142与谐振柱130的周侧壁垂直设置,延伸部 144与谐振柱130的周侧壁平行设置,使连接部142与延伸部144之间的夹角设置为90°。
在这些实施中,多个探针140的延伸部144与谐振柱130的周侧壁平行设置,能够保证多个探针140的延伸部144与气溶胶产生基质的周侧壁之间的距离相等,进一步保证多个探针140传输的微波对气溶胶产生基质微波雾化的均匀性。
在上述任一实施例中,至少两个连接部142的尺寸相同;和/或至少两个延伸部144的尺寸相同。
在该实施例中,至少两个连接部142的尺寸相同,能够保证每个连接部142所连接的延伸部144距离谐振柱130的尺寸相同,由于谐振柱130与气溶胶产生基质同轴设置,从而保证了多个探针140的延伸部144与气溶胶产生基质的距离相等,进一步保证多个探针140传输的微波对气溶胶产生基质微波雾化的均匀性。通过将多个探针140的延伸部144的尺寸设置为相同尺寸,能够保证多个探针140的延伸部144末端均位于气溶胶产生基质的同一截面上,能够保证输出的微波的均匀性。
如图1和图12所示,在上述任一实施例中,微波雾化装置还包括固定座150和雾化腔152。
其中,固定座150设置于谐振腔内,固定座150与谐振柱130相对设置,至少两个探针140环绕分布于固定座150的周侧壁;
雾化腔152设置于固定座150内,雾化腔152用于容置气溶胶产生基质。
在该实施例中,微波雾化装置还包括固定座150和雾化腔152,固定座150设置在谐振腔内,固定座150内部开设有雾化腔152,固定座150的一端设置有开口,开口与雾化腔152相连通,气溶胶产生基质通过开口插入固定座150内。固定座150能够对气溶胶产生基质进行固定,气溶胶产生基质在受热雾化过程中会产生固态或液态的废料,通过将气溶胶产生基质设置在固定座150内的雾化腔152内进行雾化,能够保证废料不会进入到谐振腔内,保证了谐振腔不会受到脏污。多个探针140环绕分布与固定座150的外侧 壁,使探针140传输的微波能够直接作用于固定座150的雾化腔152内的气溶胶产生基质。
可以理解的是,固定座150的材质选为低接电损耗材料,例如:微波透明陶瓷、玻璃、或氧化铝等。
在上述任一实施例中,谐振柱130的中心线和雾化腔152的中心线重合。
在该实施例中,谐振柱130和雾化腔152均为规则形状,示例性地,谐振柱130和雾化腔152均为圆柱体,谐振柱130的中心线和雾化腔152的中心线重合,即谐振柱130的轴线和雾化腔152的轴线重合,通过设置谐振柱130和雾化腔152的中心重合,使得谐振柱130和气溶胶产生基质的中心重合,这就使得由谐振柱130传导的微波能够更多的作用于气溶胶产生基质,通过将微波集中作用于气溶胶产生基质,气溶胶产生基质能够在较短的时间内被加热,有利于实现即时加热。
如图1和图12所示,在上述任一实施例中,固定座150与外壳110可拆卸相连。
在该实施例中,将固定座150设置与外壳110可拆卸相连,用户能够将固定座150单独进行拆卸清洗,对气溶胶产生基质雾化过程中产生的废料进行清洁时仅需要对容纳气溶胶产生基质的固定座150进行清洗,避免清洗过程中对气溶胶产生装置100中的电子元件造成影响。
在上述任一实施例中,谐振柱130的第二端与固定座150相抵靠。
在该实施例中,谐振柱130的第二端与固定座150部相抵接,所以气溶胶产生基质和谐振柱130的间距为固定座150部底部的厚度,将谐振柱130与固定座150部相抵,能够尽可能减小谐振柱130和气溶胶产生基质的间距,谐振柱130对微波进行传输时,微波的衰减量较小,在气溶胶产生基质和谐振柱130之间的空隙处,微波容易快速出现衰减,所以尽可能减小谐振柱130和气溶胶产生基质的间距,能够尽可能减小微波的衰减量,从而能够使得作用于气溶胶产生基质的微波量较大,提高对气溶胶产生基质的加热速度。
如图1和图12所示,在上述任一实施例中,沿垂直于谐振柱130中心线的方向截取谐振柱130和固定座150,谐振柱130的截面积小于或等于固定座150的截面积。
在该实施例中,谐振柱130侧部的边沿未伸出固定座150侧部的边沿,所以,谐振柱130在谐振腔的底壁上的投影落入固定座150在谐振腔的底壁上的投影范围内,即固定座150比谐振柱130更粗,这就使得经由谐振柱130传导的大部分微波能够直接作用于气溶胶产生基质,微波未经过衰减或在衰减量较小的情况下就直接作用于气溶胶产生基质,气溶胶产生基质能够在较短的时间内被加热,提高对气溶胶产生基质的加热效率,有利于实现即时加热。
如图1和图12所示,在上述任一实施例中,外壳110包括:第一壳体112和第二壳体114。
其中,谐振柱130设置于第一壳体112,第二壳体114与第一壳体112可拆卸相连。
在该实施例中,外壳110包括可拆卸地第一壳体112和第二壳体114,谐振柱130与第一壳体112的内腔底壁相连接,便于用户分别对第一壳体112和第二壳体114进行清洗维护,并且在第一壳体112或第二壳体114污损时,能够仅对污损的第一壳体112或第二壳体114进行更换,降低了气溶胶产生装置100的日常维护成本。
在一些实施例中,固定座150与第二壳体114固定相连,在需要对固定座150进行清洗时,能够将第二壳体114从第一壳体112上拆卸下来,实现了便于用于对第一壳体112和固定座150清洗维护的作用。
如图1和图12所示,在上述任一实施例中,气溶胶产生装置100包括:通孔160和压力传感器170。
通孔160设置于壳体;
压力传感器170设置于壳体,压力传感器170的采集端通过通孔160与谐振腔相连通,用于采集谐振腔内的气压值。
在该实施例中,气溶胶产生装置100还包括设置在壳体上的通孔160,压力传感器170与通孔160对应设置,压力传感器170能够通过通孔160采集谐振腔内的气压值,由于在用户抽吸过程中,会使谐振腔内的气压值发生变化,通过压力传感器170采集到的气压值,能够对气溶胶产生装置100是否处于抽吸状态进行检测,进一步,根据气溶胶产生装置100的抽吸状态,对微波组件120的运行进行控制。在用户停止抽吸后,能够及时控制微波组件120停止运行,避免了电能以及气溶胶产生基质的浪费。实现了在气溶胶产生装置100处于未抽吸状态下对气溶胶产生基质的预热效果,在抽吸状态下能够将气溶胶产生基质快速加热至雾化温度,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程,进而提高了用户的使用体验。
如图1和图12所示,在上述任一实施例中,微波组件120包括:微波导入部122和微波发射源124。
微波导入部122设置于外壳110的侧壁;
微波发射源124与微波导入部122相连,微波发射源124输出的微波经过微波导入部122馈入谐振腔,使微波沿谐振柱130的第一端至谐振柱130的第二端的方向传导。
在该实施例中,微波发射源124能够产生微波,微波通过微波导入部122导入至谐振腔内,通过设置微波导入部122,能够改变微波在谐振腔内的导入位置,既能对谐振腔内的部件进行避让,也能够保证微波稳定地由谐振柱130的第一端向谐振柱130的第二端传导。
如图1所示,在上述任一实施例中,微波导入部122包括:第一导入件1222和第二导入件1224。
其中,第一导入件1222设置于外壳110的侧壁;
第二导入件1224的第一端与第一导入件1222相连,第二导入件1224位于谐振腔内,第二导入件1224的第二端朝向谐振腔的腔底壁。
在该实施例中,微波导入部122由第一导入件1222和第二导入件1224 两部分组成,第一导入件1222设置在壳体的侧壁上,第一导入件1222与微波发射源124相连,使得微波发射源124产生的微波第一导入件1222馈入谐振腔内,第二导入件1224能够改变微波的传导方向,由于第二导入件1224朝向谐振腔的底壁,所以微波向谐振腔的底壁传导,谐振腔底壁处的微波通过谐振柱130向气溶胶产生基质传导,设置第二导入件1224朝向谐振腔的底壁,确保微波能够由谐振柱130的第一端开始对微波进行传导,避免造成微波损耗。
如图12所示,在上述任一实施例中,微波导入部122包括:第三导入件1226和第四导入件1228。
其中,第三导入件1226设置于外壳110的侧壁;
第四导入件1228的第一端与第三导入件1226相连,第四导入件1228位于谐振腔内,第四导入件1228的第二端朝向谐振柱130。
在该实施例中,微波导入部122由第一导入件1222和第二导入件1224两部分组成,第一导入件1222设置在壳体的侧壁上,第一导入件1222与微波发射源124相连,使得微波发射源124产生的微波第一导入件1222馈入谐振腔内,第二导入件1224朝向谐振柱130,即第二导入件1224与谐振腔的底壁平行,使得第二导入件1224的长度较短,从而能够快速将微波传导至谐振柱130,避免造成微波损耗。
需要明确的是,在本申请的权利要求书、说明书和水明书附图中,术语“多个”则指两个或两个以上,除非有额外的明确限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了更方便地描述本申请和使得描述过程更加简便,而不是为了指示或暗示所指的装置或元件必须具有所描述的特定方位、以特定方位构造和操作,因此这些描述不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,举例来说,“连接”可以是多个对象之间的固定连接,也可以是多个对象之间的可拆卸连接,或一体地连接;可以是多个对象之间的直接相连,也可以是多个对象之间的通过中间媒介间接相连。对于本领域的 普通技术人员而言,可以根据上述数据地具体情况理解上述术语在本申请中的具体含义。
在本申请的权利要求书、说明书和水明书附图中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请的权利要求书、说明书和水明书附图中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种气溶胶产生装置,其中,包括:
    外壳,所述外壳内设置有谐振腔,所述谐振腔能够容置气溶胶产生基质;
    微波组件,设置于所述外壳,所述微波组件用于向所述谐振腔内馈入微波;
    谐振柱,所述谐振柱的第一端与所述谐振腔的腔底壁相连,所述谐振柱的第二端朝向所述谐振腔的开口;
    探针,所述探针的数量为至少两个,至少两个所述探针间隔设置于所述谐振柱,所述气溶胶产生基质位于至少两个所述探针之间。
  2. 根据权利要求1所述的气溶胶产生装置,其中,
    沿所述谐振柱的周侧壁,至少两个所述探针均匀设置于所述谐振柱的周侧壁。
  3. 根据权利要求1所述的气溶胶产生装置,其中,所述探针包括:
    连接部,所述连接部与所述谐振柱的周侧壁相连;
    延伸部,所述延伸部的第一端与所述连接部相连,所述延伸部的第二端朝向所述谐振腔的开口方向延伸。
  4. 根据权利要求3所述的气溶胶产生装置,其中,
    所述连接部与所述延伸部之间的夹角取值范围为80°至100°。
  5. 根据权利要求3所述的气溶胶产生装置,其中,
    至少两个所述连接部的尺寸相同;和/或
    至少两个所述延伸部的尺寸相同。
  6. 根据权利要求1至5中任一项所述的气溶胶产生装置,其中,还包括:
    固定座,设置于所述谐振腔内,所述固定座与所述谐振柱相对设置,至少两个所述探针环绕分布于所述固定座的周侧壁;
    雾化腔,设置于所述固定座内,所述雾化腔用于容置所述气溶胶产生基质。
  7. 根据权利要求6所述的气溶胶产生装置,其中,
    所述谐振柱的中心线和所述雾化腔的中心线重合。
  8. 根据权利要求6所述的气溶胶产生装置,其中,
    所述固定座与所述外壳可拆卸相连。
  9. 根据权利要求6所述的气溶胶产生装置,其中,
    所述谐振柱的第二端与所述固定座相抵靠。
  10. 根据权利要求6所述的气溶胶产生装置,其中,
    沿垂直于所述谐振柱中心线的方向截取所述谐振柱和所述固定座,所述谐振柱的截面积小于或等于所述固定座的截面积。
  11. 根据权利要求1至5中任一项所述的气溶胶产生装置,其中,所述外壳包括:
    第一壳体,所述谐振柱设置于所述第一壳体;
    第二壳体,与所述第一壳体可拆卸相连。
  12. 根据权利要求11所述的气溶胶产生装置,其中,所述气溶胶产生装置包括:
    通孔,设置于所述壳体;
    压力传感器,设置于所述壳体,所述压力传感器的采集端通过所述通孔与所述谐振腔相连通,用于采集所述谐振腔内的气压值。
  13. 根据权利要求1至5中任一项所述的气溶胶产生装置,其中,所述微波组件包括:
    微波导入部,设置于所述外壳的侧壁;
    微波发射源,与所述微波导入部相连,所述微波发射源输出的微波经过所述微波导入部馈入所述谐振腔,使所述微波沿所述谐振柱的第一端至所述谐振柱的第二端的方向传导。
  14. 根据权利要求13所述的气溶胶产生装置,其中,所述微波导入部包括:
    第一导入件,设置于所述外壳的侧壁;
    第二导入件,所述第二导入件的第一端与所述第一导入件相连,所述第二导入件位于所述谐振腔内,所述第二导入件的第二端朝向所述谐振腔的腔底壁。
  15. 根据权利要求13所述的气溶胶产生装置,其中,所述微波导入部包括:
    第三导入件,设置于所述外壳的侧壁;
    第四导入件,所述第四导入件的第一端与所述第三导入件相连,所述第四导入件位于所述谐振腔内,所述第四导入件的第二端朝向所述谐振柱。
PCT/CN2021/124893 2021-10-20 2021-10-20 气溶胶产生装置 WO2023065138A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227038190A KR20230058006A (ko) 2021-10-20 2021-10-20 에어로졸 생성 장치
EP21952125.9A EP4193853A4 (en) 2021-10-20 2021-10-20 AEROSOL GENERATION DEVICE
PCT/CN2021/124893 WO2023065138A1 (zh) 2021-10-20 2021-10-20 气溶胶产生装置
JP2022566627A JP7481495B2 (ja) 2021-10-20 2021-10-20 エアロゾル発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124893 WO2023065138A1 (zh) 2021-10-20 2021-10-20 气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2023065138A1 true WO2023065138A1 (zh) 2023-04-27

Family

ID=86057884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124893 WO2023065138A1 (zh) 2021-10-20 2021-10-20 气溶胶产生装置

Country Status (4)

Country Link
EP (1) EP4193853A4 (zh)
JP (1) JP7481495B2 (zh)
KR (1) KR20230058006A (zh)
WO (1) WO2023065138A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103315404A (zh) * 2013-07-17 2013-09-25 中国烟草总公司郑州烟草研究院 基于微波加热的非燃烧型烟草抽吸装置
US20150181945A1 (en) * 2013-12-31 2015-07-02 Martin Tremblay Electronic vaping device
CN108552613A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种微波谐振致雾化的电子烟
CN108552612A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振腔
CN108552614A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振雾化器
CN108777893A (zh) * 2018-06-26 2018-11-09 东莞市国研电热材料有限公司 一种电子烟用微波加热装置
CN110279150A (zh) * 2019-06-19 2019-09-27 云南巴菰生物科技有限公司 一种用于微波加热不燃烧设备的外导体加热腔
KR20200053812A (ko) * 2018-11-09 2020-05-19 주식회사 이엠텍 마이크로웨이브 발열 방식 미세 입자 발생 장치
CN112137167A (zh) * 2019-06-28 2020-12-29 北京航天雷特机电工程有限公司 一种微波天线及电子烟

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190356047A1 (en) * 2018-05-16 2019-11-21 Intrepid Brands, LLC Radio-frequency heating medium
PL3747289T3 (pl) 2019-06-06 2022-06-20 Nvx Labs Gmbh Jednostka do ogrzewania mikrofalami i sposób
KR102389832B1 (ko) 2019-06-18 2022-04-22 주식회사 케이티앤지 마이크로웨이브를 통해 에어로졸을 생성하는 에어로졸 생성장치 및 그 방법
WO2021013477A1 (en) * 2019-07-19 2021-01-28 Philip Morris Products S.A. An aerosol-generating system and method using dielectric heating
CN112044370A (zh) 2020-09-27 2020-12-08 深圳易佳特科技有限公司 一种用微波加热的气溶胶发生装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103315404A (zh) * 2013-07-17 2013-09-25 中国烟草总公司郑州烟草研究院 基于微波加热的非燃烧型烟草抽吸装置
US20150181945A1 (en) * 2013-12-31 2015-07-02 Martin Tremblay Electronic vaping device
CN108777893A (zh) * 2018-06-26 2018-11-09 东莞市国研电热材料有限公司 一种电子烟用微波加热装置
CN108552613A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种微波谐振致雾化的电子烟
CN108552612A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振腔
CN108552614A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振雾化器
KR20200053812A (ko) * 2018-11-09 2020-05-19 주식회사 이엠텍 마이크로웨이브 발열 방식 미세 입자 발생 장치
CN110279150A (zh) * 2019-06-19 2019-09-27 云南巴菰生物科技有限公司 一种用于微波加热不燃烧设备的外导体加热腔
CN112137167A (zh) * 2019-06-28 2020-12-29 北京航天雷特机电工程有限公司 一种微波天线及电子烟

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4193853A4 *

Also Published As

Publication number Publication date
JP2023549991A (ja) 2023-11-30
EP4193853A4 (en) 2024-01-17
JP7481495B2 (ja) 2024-05-10
EP4193853A1 (en) 2023-06-14
KR20230058006A (ko) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2023103656A1 (zh) 雾化器及电子雾化装置
CN108552613A (zh) 一种微波谐振致雾化的电子烟
CN110279151A (zh) 一种微波加热不燃烧烟具
CN108552612A (zh) 一种用于电子烟的微波谐振腔
WO2023165209A1 (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
CN108552614A (zh) 一种用于电子烟的微波谐振雾化器
WO2023116230A1 (zh) 气溶胶产生装置及其微波加热装置
WO2023246370A1 (zh) 气溶胶产生装置及其加热组件
WO2023035852A1 (zh) 导向部件、加热组件及气溶胶产生装置
CN217743173U (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
WO2023160128A1 (zh) 发热件及电子雾化装置
WO2023065138A1 (zh) 气溶胶产生装置
WO2023035853A1 (zh) 加热组件及气溶胶产生装置
CN113317560A (zh) 一种多功能的微波加热型加热卷烟抽吸装置
WO2022179400A1 (zh) 雾化器及电子雾化装置
WO2015139464A1 (zh) 微波炉的半导体微波发生器连接结构、微波炉的半导体微波发生器输入输出连接结构和微波炉
CN212545566U (zh) 发热体及气溶胶生成装置
WO2023155566A1 (zh) 加热雾化装置
WO2023023987A1 (zh) 气溶胶产生组件和气溶胶产生系统
WO2023004677A1 (zh) 气溶胶产生装置
WO2023109399A1 (zh) 电子雾化装置及其发热组件和发热体
WO2023115813A1 (zh) 一种电磁感应加热气溶胶形成装置及其用途
CN115989897A (zh) 气溶胶产生装置
WO2023065945A1 (zh) 气溶胶产生装置和气溶胶产生系统
WO2023044835A1 (zh) 气溶胶产生基质、气溶胶产生装置和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022566627

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021952125

Country of ref document: EP

Effective date: 20230210

NENP Non-entry into the national phase

Ref country code: DE