WO2023177327A1 - Узел крепления измерительных труб в корпусе вибрационного измерительного устройства - Google Patents

Узел крепления измерительных труб в корпусе вибрационного измерительного устройства Download PDF

Info

Publication number
WO2023177327A1
WO2023177327A1 PCT/RU2023/050049 RU2023050049W WO2023177327A1 WO 2023177327 A1 WO2023177327 A1 WO 2023177327A1 RU 2023050049 W RU2023050049 W RU 2023050049W WO 2023177327 A1 WO2023177327 A1 WO 2023177327A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
common flange
end element
tubes
measuring tubes
Prior art date
Application number
PCT/RU2023/050049
Other languages
English (en)
French (fr)
Inventor
Николай Васильевич СИЗОВ
Владимир Федорович САРАНЦЕВ
Original Assignee
Общество с ограниченной ответственностью Научно-производственное предприятие "Электротех"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2022106477A external-priority patent/RU2782963C1/ru
Application filed by Общество с ограниченной ответственностью Научно-производственное предприятие "Электротех" filed Critical Общество с ограниченной ответственностью Научно-производственное предприятие "Электротех"
Publication of WO2023177327A1 publication Critical patent/WO2023177327A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters

Definitions

  • the invention relates to measuring technology and can be used in the oil and gas, chemical and other industries to measure the parameters of liquid media (for example, density, flow rate) flowing under high pressure (up to 100 MPa).
  • liquid media for example, density, flow rate
  • high pressure up to 100 MPa
  • Such operating pressures arise, for example, when cementing deep wells with high-density cement solutions up to 2.2 kg/dm.
  • a known mounting unit for measuring pipes in the housing of a vibration measuring device namely a high-pressure density meter (W02008059262), consisting of a flow divider connected by butt welding to the measuring pipes.
  • the welded assembly is heat treated to relieve stress on the welds by heating the assembled density meter at 900-1000°F for 4 hours.
  • Flow dividers and measuring tubes are made of alloy steel with a hardness of 270-301 HB (Brinell).
  • the body is made of carbon steel with a hardness of 100-400 HB.
  • Its disadvantage is the inoperability of the unit at pressures up to 100 MPa.
  • the manufacture of measuring pipes of sufficient strength to operate at such pressure requires an increase in wall thickness, which leads to a decrease in the accuracy and sensitivity of measurements.
  • Titanium alloys have a lower elastic modulus compared to simple and stainless alloys, the coefficient of linear expansion with temperature is almost 2 times lower than that of stainless steel, the specific gravity of titanium alloys is 4.5 g/cm. cube below the specific gravity of stainless steel 7.8 g/cm. cube This combination of properties makes it possible to obtain a measuring part of a vibration device with characteristics unattainable for a measuring part made of stainless steel. But the high cost of titanium alloys leads to a high cost of the device, if it is made entirely of titanium alloys.
  • a known mounting unit for measuring pipes in the housing of a vibration measuring device operating at pressures up to 100 MPa consisting of a flow divider in which measuring pipes are fixed by welding or rolling.
  • the measuring pipes have a shut-off element in the form of a massive disk with holes, which can be installed close to the flow divider.
  • the flow divider is connected by welding to the body of the measuring device. Its disadvantages are that to ensure strength at high pressures, the measuring tubes must be made of thick-walled, high-carbon steels, the welding of which is complicated by the need to preheat the mating parts in a furnace to a temperature of 600 degrees Celsius and gradually reduce the temperature after welding.
  • the technical objective of the invention is to create a mounting unit for measuring pipes in the housing of a vibration measuring device operating at high pressure (up to 100 MPa), characterized by manufacturability.
  • the technical result of the invention is to increase the permissible operating pressure in the mounting unit of the measuring pipes in the housing of the vibration measuring device. In addition, the manufacturability of its production increases.
  • the mounting unit of the measuring pipes in the body of the vibration measuring device including a flow divider and an end element made of stainless steel, connected by a permanent connection.
  • Stainless steel here means an alloy in which, in addition to iron and carbon, the alloying components chromium, nickel, and molybdenum are present.
  • the measuring pipes are made of titanium alloy, equipped with a common flange and secured in the end element by a screw connection with a common flange and flaring of the measuring pipes.
  • titanium alloy we mean an alloy containing at least 90% titanium by weight.
  • Alloying elements can be such elements as: aluminum, tin, manganese, zirconium, vanadium, molybdenum, tungsten, tantalum, niobium.
  • the common flange is configured to be installed on the inner projection of the cylindrical body of the measuring device. The measuring pipes and the common flange are connected by welding. The common flange is made in the form of a plate with holes for measuring pipes.
  • the end element has annular grooves for rolling measuring tubes. The measuring tubes are rolled into an end member to form a conical flare at the ends of the tubes.
  • Fig. 1 mounting unit for measuring pipes in the body of the vibration measuring device
  • fig. 2 common flange
  • fig. 3 vibration measuring device with two mounting points for measuring pipes in the housing.
  • the fastening unit includes a flow divider 1 with passage channels 2 for the working medium, combined during assembly with measuring pipes 3 and an end element 4.
  • the end element 4 and the flow divider 1 are made of stainless steel and connected using a permanent connection, for example, by welding 5.
  • the measuring pipes 3 are made of titanium alloy and are equipped with a common flange 6, which can also be made of a titanium alloy, in which case the measuring pipes 3 and the common flange 6 can be connected by welding.
  • the common flange 6 is made in the form of a plate with holes for measuring pipes 3.
  • the measuring pipes 3 are fixed in the end element 4 by a screw connection 5 with a common flange 6 and flaring of the measuring pipes 3.
  • the end element 4 can be made with annular grooves 7 for more reliable rolling of sections of the measuring pipes 3 placed in the end element 4, as shown in Fig. . 1 .
  • Measuring tubes 3 are rolled into end element 4 to form a conical expansion at the ends of the measuring tubes
  • the common flange 6 is designed to be installed on the inner projection 8 of the cylindrical housing 9 of the measuring device.
  • the steel flow divider 1 is connected to the steel housing 9 of the measuring device by circumferential welding 11.
  • FIG. 3 shows an assembled measuring device (vibrating flow meter), which includes a housing 9 with two flow dividers 1 fixed in it, two parallel measuring tubes 3 with elements for excitation and reception of vibrations.
  • Input flow divider 1 is equipped with pressure sensor 10.
  • the flow meter is manufactured as follows: common flanges 6 and end elements 4 are attached to a pair of measuring pipes 3 on both sides. Common flanges 6 are attached to end elements 4 with a group of screws 13. After this, welding seams 12 are made between the measuring pipes 3 and common flanges 6, with by pressurizing argon inside the measuring pipes 3 to protect the inner surface of the weld on the titanium measuring pipe 3 from oxidation. After these operations and cooling of the weld zone, the ends of the measuring pipes 3 are rolled into the end element 4.
  • the metal of the measuring pipes 3 fills the annular grooves 7 inside end elements 4, wherein common flanges 6 welded to the measuring pipes 3 and secured by a group of screws 13 in the end element 4 create conditions for the impossibility of metal flow at the time of rolling in the direction of the axis of the measuring pipe 3 and thus ensure constancy of the linear size between the opposite end elements 4.
  • the metal of the measuring pipes 3 flows only in two directions, in the radial direction, filling the annular grooves 7 and in the axial direction, forming conical expansions at the entrance to the measuring pipe 3, providing maximum sealing effect between the measuring pipes 3 and the end elements 4.
  • flow dividers 1 are combined with end elements 4, so that the passage channels 2 inside flow dividers 1 coincide with the cavities of the measuring pipes 3, after which a welding seam 5 is made between flow divider 1 and end element 4.
  • coolant is pumped through the cavities of the measuring pipes 3 and the flow divider 1, which removes excess heat from the rolling joint area and maintains the achieved level of interference between the surfaces of the measuring pipes 3 and the end elements 4.
  • the general assembly containing measuring pipes 3, end elements 4 and flow dividers 1 welded to them are inserted into the cylindrical body 9 so that the common flange 6 comes into close contact with the inner protrusion 8 of the cylindrical body 9.
  • the next operation is to perform weld seam And between the flow divider 1 and the cylindrical body 9.
  • the entire assembly is tested by overpressure pressing. Axial forces from the action of pressure, inside the cavity of the measuring pipes 3 and passage channels 2 inside the flow divider 1, are discharged into the internal protrusion 8 and the annular weld seam I, ensuring the integrity of the structure of the device under excess pressure.
  • Titanium thanks to its physical and technological characteristics, makes it possible to obtain vibration devices with characteristics unattainable for stainless steel devices, such as operating pressure (up to 100 MPa) and accuracy of density and flow measurement. At the same time, the manufacturability of the mounting unit for measuring pipes in the body of the vibration measuring device is ensured.
  • the specific gravity of titanium is 4.5 g/cm. cube allows you to obtain more accurate readings on density and flow due to a larger range of changes in the ratio of the specific gravities of the measuring tube and the measured medium.
  • the coefficient of linear thermal expansion of titanium is almost 2 times lower than the coefficient of linear thermal expansion of stainless steel, which leads to lower stress values in the material of the measuring tube, which in turn reduces the need for measures for thermal compensation of the measuring tube.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано в нефтегазовой, химической и других отраслях промышленности для измерения параметров жидких сред, протекающих под высоким давлением. Узел крепления измерительных труб в корпусе вибрационного измерительного устройства включает делитель потока и торцовый элемент, выполненные из нержавеющей стали, соединённые при помощи неразъёмного соединения. Измерительные трубы выполнены из титанового сплава, снабжены общим фланцем и закреплены в торцовом элементе винтовым соединением с общим фланцем и развальцовкой измерительных труб. Общий фланец выполнен с возможностью установки на внутреннем выступе цилиндрического корпуса измерительного устройства. Измерительные трубы и общий фланец соединены сваркой. Общий фланец выполнен в виде пластины с отверстиями для измерительных труб. Торцовый элемент имеет кольцевые проточки для вальцовки измерительных труб. Измерительные трубы вальцуются в торцовый элемент с формированием конического расширения на концах труб. Изобретение обеспечивает повышение допустимого рабочего давления в узле крепления измерительных труб, чувствительности и технологичности изготовления.

Description

Узел крепления измерительных труб в корпусе вибрационного измерительного устройства
Изобретение относится к измерительной технике и может быть использовано в нефтегазовой, химической и других отраслях промышленности для измерения параметров жидких сред (например, плотности, расхода), протекающих под высоким давлением (до 100 МПа). Такие рабочие давления возникают, например, при цементировании глубоких скважин цементными растворами высокой плотности до 2,2 кг/дм. куб.
Известен узел крепления измерительных труб в корпусе вибрационного измерительного устройства, а именно, плотномера высокого давления (W02008059262), состоящий из делителя потока, соединенного сваркой встык с измерительными трубами. Сварная сборка подвергается термообработке для снятия напряжения на сварных швах: собранный плотномер нагревают при температуре 900-1000 °F на 4 часа. Делители потока и измерительные трубы выполнены из легированной стали с твердостью 270- 301 НВ (по Бринеллю). Корпус выполнен из углеродистой стали с твердостью 100-400 НВ. Его недостатком является неработоспособность узла при давлениях до 100 Мпа. Изготовление измерительных труб достаточной прочности для работы при таком давлении требует увеличение толщины стенок, что приводит к снижению точности и чувствительности измерений Кроме того, его недостатками являются повышенная металлоемкость изготовления монолитных делителей потока с наплывами, выполняющих функцию отсечных элементов с переходными элементами. Требуются сложные операции по изготовлению монолитных делителей потока из массивных цилиндрических заготовок и сварка для формирования однородного по толщине и по физическим свойствам сварного шва. Возможно изготовление делителей потока и измерительных труб из титановых сплавов. Но это существенно снижает технологичность изготовления, поскольку детали из титановых сплавов характеризуются сложностью изготовления
Титановые сплавы имеют меньший модуль упругости по сравнению с простыми и нержавеющими сплавами, коэфф, линейного расширения от температуры почти в 2 раза ниже чем у нержавеющей стали, удельный вес титановых сплавов 4,5 г/см. куб ниже удельного веса нержавеющей стали 7,8 г/см. куб. Такое сочетание свойств позволяет получать измерительную часть вибрационного прибора с характеристиками недостижимыми для измерительной части, выполненной из нержавеющей стали. Но высокая стоимость титановых сплавов приводит к высокой стоимости прибора, в случае его изготовления целиком из титановых сплавов. Известен узел крепления измерительных труб в корпусе вибрационного измерительного устройства, работающего при давлениях до 100 МПа (по патенту RU 198129, выбран в качестве прототипа), состоящий из делителя потока, в котором при помощи сварки или вальцовки закреплены измерительные трубы. На измерительных трубах установлен отсечной элемент в виде массивного диска с отверстиями, который может быть вплотную установлены к делителю потока. Делитель потока соединен сваркой с корпусом измерительного устройства. Его недостатками являются то, что для обеспечения прочности при высоких давлениях измерительные трубки должны быть выполнены толстостенными, из высокоуглеродистых сталей, сварка которых осложнена необходимостью предварительного разогрева сопрягаемых деталей в печи до температуры 600 градусов Цельсия и плавного снижения температуры после выполнения сварки. Эта особенность сварки высокоуглеродистых сталей приводит к искажению первоначальной геометрии трубок, не параллельности осей трубок, снижению прочностных характеристик материала трубок в зоне термического влияния сварного шва (перекристаллизация, неоднородность свойств). Всё это, в том числе остаточные напряжения в трубках, сильно снижают вибрационные характеристики прибора, в частности стабильность резонансной частоты, что сказывается на чувствительности трубок к изменению плотности. Закрепление концов измерительных труб в монолитном делителе потока, имеющем одно выходное отверстие и криволинейные каналы, вальцовкой, технологически невозможно.
Технической задачей изобретения является создание узла крепления измерительных труб в корпусе вибрационного измерительного устройства, работающего при высоком давлении (до 100 МПа), характеризующегося технологичностью изготовления.
Техническим результатом изобретения является повышение допустимого рабочего давления в узле крепления измерительных труб в корпусе вибрационного измерительного устройства. Кроме того, повышается технологичность его изготовления.
Технический результат достигается в узле крепления измерительных труб в корпусе вибрационного измерительного устройства (далее, также - узел крепления), включающем делитель потока и торцевой элемент, выполненные из нержавеющей стали, соединённые при помощи неразъёмного соединения. Под нержавеющей сталью здесь понимается сплав в котором, кроме железа и углерода, присутствуют легирующие компоненты хром, никель, молибден. Измерительные трубы выполнены из титанового сплава, снабжены общим фланцем и закреплены в торцевом элементе винтовым соединением с общим фланцем и развальцовкой измерительных труб. Под титановым сплавом здесь понимается сплав содержащий от 90% массовых частей титана. В качестве легирующих элементов могут быть такие элементы как: алюминий, олово, марганец, цирконий, ванадий, молибден, вольфрам, тантал, ниобий. Общий фланец выполнен с возможностью установки на внутреннем выступе цилиндрического корпуса измерительного устройства. Измерительные трубы и общий фланец соединены сваркой. Общий фланец выполнен в виде пластины с отверстиями для измерительных труб. Торцевой элемент имеет кольцевые проточки для вальцовки измерительных труб. Измерительные трубы вальцуются в торцевой элемент с формированием конического расширения на концах труб.
Изобретение поясняется рисунками: фиг. 1 - узел крепления измерительных труб в корпусе вибрационного измерительного устройства; фиг. 2 - общий фланец; фиг. 3 - вибрационное измерительное устройство с двумя узлами крепления измерительных труб в корпусе.
Узел крепления включает делитель потока 1 с проходными каналами 2 для рабочей среды, совмещаемыми при сборке с измерительными трубами 3 и торцевой элемент 4. Торцевой элемент 4 и делитель потока 1 выполнены из нержавеющей стали и соединены при помощи неразъёмного соединения, например, сваркой 5.
Измерительные трубы 3 выполнены из титанового сплава и снабжены общим фланцем 6, который также может быть выполнен из титанового сплава, в таком случае, измерительные трубы 3 и общий фланец 6 могут быть соединены сваркой. Общий фланец 6 выполнен в виде пластины с отверстиями для измерительных труб 3.
Измерительные трубы 3 закреплены в торцевом элементе 4 винтовым соединением 5 с общим фланцем 6 и развальцовкой измерительных труб 3. Торцевой элемент 4 может быть выполнен с кольцевыми проточками 7 для более надежной вальцовки участков измерительных труб 3, помещенных в торцевой элемент 4, как показано на фиг. 1 . Измерительные трубы 3 вальцуются в торцевой элемент 4 с формированием конического расширения на концах измерительных труб
Общий фланец 6 выполнен с возможностью установки на внутреннем выступе 8 цилиндрического корпуса 9 измерительного устройства Стальной делитель потока 1 соединяется со стальным корпусом 9 измерительного устройства кольцевой сваркой 11.
На фиг. 3 показано измерительное устройство в сборе (вибрационный расходомер), имеющее в составе корпус 9 с закрепленными в нем двумя делителями потока 1, две параллельные измерительные трубы 3 с элементами возбуждения и приема колебаний. Входной делитель потока 1 оснащен датчиком давления 10.
Расходомер изготавливают следующим образом: на пару измерительных труб 3 с двух сторон присоединяют общие фланцы 6 и торцевые элементы 4. Общие фланцы 6 крепятся к торцовым элементам 4 группой винтов 13. После этого выполняются сварочные швы 12 между измерительными трубами 3 и общими фланцами 6, с наддувом аргона внутрь измерительных труб 3 для защиты от окисления внутренней поверхности сварного шва на титановой измерительной трубе 3 После этих операций и остывания зоны сварного шва проводится вальцовка концов измерительных труб 3 в торцовый элемент 4. Под давлением вальцовки металл измерительных труб 3 заполняет кольцевые проточки 7 внутри торцевых элементов 4 причем общие фланцы 6 приваренные к измерительным трубам 3 и закрепленные группой винтов 13 в торцовом элементе 4 создают условия для невозможности течения металла в момент вальцовки в направлении оси измерительной трубы 3 и таким образом обеспечивают постоянство линейного размера между противоположными торцовыми элементами 4. В этих условиях под действием давления вальцовки, металл измерительных труб 3 течет только в двух направлениях, в радиальном направлении, заполняя кольцевые проточки 7 и в осевом направлении формируя конические расширения на входе в измерительную трубу 3, обеспечивая максимальный уплотняющий эффект между измерительными трубами 3 и торцовыми элементами 4. В следующей операции, делители потока 1 совмещаются с торцовыми элементами 4, таким образом, чтобы проходные каналы 2 внутри делителей потока 1 совпали с полостями измерительных труб 3 , после чего происходит выполнение сварочного шва 5 между делителем потока 1 и торцовым элементом 4. В момент выполнения сварочного шва 5 между делителем потока 1 и торцовым элементом 4, через полости измерительных труб 3 и делителя потока 1 прокачивается охлаждающая жидкость, которая уносить избытки тепла из зоны вальцовочного соединения и сохраняет достигнутый уровень натяга между поверхностями измерительных труб 3 и торцовыми элементами 4. В следующей операции общая сборка, содержащая измерительные трубы 3, торцовые элементы 4 и приваренные к ним делители потока 1 вставляются в цилиндрический корпус 9 таким образом, чтобы общий фланец 6 вошел в плотный контакт с внутренним выступом 8 цилиндрического корпуса 9. Следующая операция заключается в выполнении сварного шва И между делителем потока 1 цилиндрическим корпусом 9. После выполнения сварного шва 11 вся сборка проходит испытания прессовкой избыточным давление. Осевые силы от действия давления, внутри полости измерительных труб 3 и проходных каналов 2 внутри делителя потока 1 разряжаются в внутренний выступ 8 и кольцевой сварной шов И, обеспечивая целостность конструкции прибора под избыточным давлением Таким образом, наличие общего фланца 6 приваренного к измерительным трубам 3 и одновременно закрепленного группой винтов 13 к торцовому элементу 4 создает условия для эффективной вальцовки, (заполнение материалом труб 3 кольцевых проточек 7 внутри торцевого элемента 4) и сохранения линейных размеров сборки позволяет плотно фиксировать общие фланцы 6 между внутренними выступами 8 цилиндрического корпуса 9 что в свою очередь после выполнения кольцевого шва 11 создает условия для замыкания всех осевых усилий возникающих в конструкции от действия избыточного давления, между внутренним выступом 8 цилиндрического корпуса 9 и кольцевым швом И между делителем потока 1 и цилиндрическим корпусом 9. Именно эта совокупность конструктивных элементов и последовательность технологических операций (вальцовка, сварка) позволяет использовать в конструкции вибрационного прибора в качестве измерительных труб 3 титановые трубы, а в качестве торцового элемента 4 , делителя потока 1 , цилиндрического корпуса 9 нержавеющую сталь. Титан, благодаря своим физическим и технологическим характеристикам позволяет получить вибрационные приборы с недостижимыми для приборов из нержавеющей стали характеристиками, такими как рабочее давление (до 100 МПа) и точность измерения плотности и расхода. При этом, обеспечивается технологичность изготовления узла крепления измерительных труб в корпусе вибрационного измерительного устройства. Удельный вес титана 4,5 г/см. куб. позволяет получать более точные показания по плотности и расходу за счет большего диапазона изменений отношения удельных весов измерительной трубки и измеряемой среды . Меньшее значение модуля упругости титана , по отношению к модулю упругости нержавеющей стали , приводит к меньшей жесткости измерительной трубки из титана при равных сочетаниях диаметров и толщины стеки у такой же измерительной трубки выполненной из нержавеющей стали, что в свою очередь позволяет получать более чувствительную и устойчивую колебательную систему. Коэффициент линейного температурного расширения титана почти в 2 раза ниже коэффициента линейного температурного расширения нержавеющей стали , что приводит к меньшим значениям напряжений в материале измерительной трубы, что в свою очередь снижает необходимость в мероприятиях по термо-компенсации измерительной трубы .

Claims

Узел крепления измерительных труб в корпусе вибрационного измерительного устройства, включающий делитель потока и торцовый элемент, выполненные из нержавеющей стали, соединённые при помощи неразъёмного соединения, измерительные трубы снабженные общим фланцем, выполненные из титанового сплава, и закрепленные в торцовом элементе винтовым соединением с общим фланцем и развальцовкой измерительных труб. Узел крепления по п.1, характеризующееся тем, что общий фланец выполнен с возможностью установки на внутреннем выступе цилиндрического корпуса измерительного устройства. Узел крепления по п.1, характеризующееся тем, что измерительные трубы и общий фланец соединены сваркой. Узел крепления по п.1, характеризующееся тем, что общий фланец выполнен в виде пластины с отверстиями для измерительных труб. Узел крепления по п.1, характеризующееся тем, что торцовый элемент имеет кольцевые проточки для вальцовки измерительных труб. Узел крепления по п.1, характеризующееся тем, что измерительные трубы вальцуются в торцовый элемент с формированием конического расширения на концах.
6
PCT/RU2023/050049 2022-03-14 2023-03-13 Узел крепления измерительных труб в корпусе вибрационного измерительного устройства WO2023177327A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2022106477A RU2782963C1 (ru) 2022-03-14 Узел крепления измерительных труб в корпусе вибрационного измерительного устройства
RU2022106477 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023177327A1 true WO2023177327A1 (ru) 2023-09-21

Family

ID=88023696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2023/050049 WO2023177327A1 (ru) 2022-03-14 2023-03-13 Узел крепления измерительных труб в корпусе вибрационного измерительного устройства

Country Status (1)

Country Link
WO (1) WO2023177327A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051898A1 (en) * 2000-01-13 2001-07-19 Halliburton Energy Services, Inc. Downhole densitometer
WO2008059262A1 (en) * 2006-11-16 2008-05-22 Halliburton Energy Services, Inc. High pressure resonant vibrating-tube densitometer
US20110167907A1 (en) * 2009-12-21 2011-07-14 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type
RU2557409C2 (ru) * 2010-09-16 2015-07-20 Эндресс+Хаузер Флоутек Аг Измерительная система для измерения плотности или весовой пропускной способности протекающей в трубопроводе среды
RU198129U1 (ru) * 2020-02-21 2020-06-19 Николай Васильевич Сизов Поточный прямотрубный плотнометр высокого давления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051898A1 (en) * 2000-01-13 2001-07-19 Halliburton Energy Services, Inc. Downhole densitometer
WO2008059262A1 (en) * 2006-11-16 2008-05-22 Halliburton Energy Services, Inc. High pressure resonant vibrating-tube densitometer
US20110167907A1 (en) * 2009-12-21 2011-07-14 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type
RU2557409C2 (ru) * 2010-09-16 2015-07-20 Эндресс+Хаузер Флоутек Аг Измерительная система для измерения плотности или весовой пропускной способности протекающей в трубопроводе среды
RU198129U1 (ru) * 2020-02-21 2020-06-19 Николай Васильевич Сизов Поточный прямотрубный плотнометр высокого давления

Similar Documents

Publication Publication Date Title
RU2492430C2 (ru) Вибрационный измерительный преобразователь, а также поточный контрольно-измерительный прибор с указанным преобразователем
US8099850B2 (en) Method for manufacturing a measuring transducer of vibration-type
US7549319B2 (en) High pressure resonant vibrating-tube densitometer
US7631561B2 (en) Measuring transducer of vibration-type
US5351561A (en) Coriolis-type flow meter having an improved temperature range of operation
CN107709951B (zh) 用于测量流过管路的流体的压强的装置
US9791389B2 (en) Pre-stressed gamma densitometer window and method of fabrication
US6170339B1 (en) Coriolis mass flowmeter
JP2001183205A (ja) コリオリ型・流量センサ
RU198129U1 (ru) Поточный прямотрубный плотнометр высокого давления
RU2782963C1 (ru) Узел крепления измерительных труб в корпусе вибрационного измерительного устройства
WO2023177327A1 (ru) Узел крепления измерительных труб в корпусе вибрационного измерительного устройства
KR20180060933A (ko) 다이어프램, 다이어프램을 이용한 압력 센서, 다이어프램의 제조 방법
RU2379633C2 (ru) Измерительный преобразователь вибрационного типа
RU2777673C1 (ru) Узел крепления измерительных труб в корпусе вибрационного измерительного устройства
JPH04351925A (ja) 電磁流量計
JP5343837B2 (ja) ダイアフラムシール型差圧測定装置
US2868513A (en) Heat exchanger
WO2010094293A1 (en) Electromagnetic flowmeter and method of manufacture thereof
KR101817522B1 (ko) 유량계용 센서 하우징
JP7158422B2 (ja) ガスケットアセンブリ及びガスケットアセンブリを形成する方法
Stacey et al. Influence of residual stress on fatigue crack growth in thick-walled cylinders
US20150330819A1 (en) Measuring device, especially flow measuring device, and method for manufacturing a measuring tube for a measuring device
US7874220B2 (en) Coriolis mass flowmeter with an oscillatable straight measuring tube
US20080124186A1 (en) Device for fastening an attachment to a measuring tube of a coriolis mass flowmeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23771167

Country of ref document: EP

Kind code of ref document: A1