WO2023177129A1 - 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물 - Google Patents

리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물 Download PDF

Info

Publication number
WO2023177129A1
WO2023177129A1 PCT/KR2023/002968 KR2023002968W WO2023177129A1 WO 2023177129 A1 WO2023177129 A1 WO 2023177129A1 KR 2023002968 W KR2023002968 W KR 2023002968W WO 2023177129 A1 WO2023177129 A1 WO 2023177129A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbon atoms
group
ligand compound
chromium
Prior art date
Application number
PCT/KR2023/002968
Other languages
English (en)
French (fr)
Inventor
김석순
사석필
김태희
정승환
신은지
조연호
임원택
김희정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2023177129A1 publication Critical patent/WO2023177129A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/107Alkenes with six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium

Definitions

  • the present invention relates to a ligand compound, an organic chromium compound, a catalyst composition containing the organic chromium compound, and a method for ethylene oligomerization using the same.
  • Linear alpha-olefins such as 1-hexene and 1-octene are used as detergents, lubricants, and plasticizers, and are mainly used as comonomers to control the density of polymers, especially in the production of linear low-density polyethylene (LLDPE). It is being used.
  • LLDPE linear low-density polyethylene
  • alpha-olefins such as ethylene
  • ethylene is used to control density by forming branches in the polymer backbone together with ethylene.
  • Copolymerization was performed with comonomers such as 1-hexene and 1-octene.
  • Patent Document 1 US 5064802 B2
  • the problem to be solved by the present invention is to provide a ligand compound with a novel structure, an organic chromium compound, and the like, which exhibit high catalytic activity and high 1-hexene and 1-octene selectivity, enabling ethylene oligomerization with excellent efficiency.
  • a catalyst composition comprising.
  • the present invention provides a ligand compound, an organic chromium compound, a catalyst composition, and an ethylene oligomerization method.
  • the present invention provides a ligand compound represented by the following formula (1).
  • R 1 to R 4 are each independently an alkyl group or a trialkylsilyl group having 5 to 20 carbon atoms
  • the alkyl group of the trialkylsilyl group is an alkyl group having 1 to 4 carbon atoms
  • R 5 is an alkyl group having 1 to 10 carbon atoms.
  • An alkyl group an alkyl group with 1 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, or an aryl group with 6 to 10 carbon atoms, It is a fused cycloalkyl group having 5 to 10 carbon atoms.
  • the present invention provides the ligand compound according to (1) above, wherein R 1 to R 4 are each independently an alkyl group, tripropylsilyl group, or tributylsilyl group having 8 to 12 carbon atoms.
  • the present invention provides the ligand compound according to (1) or (2) above, wherein R 1 to R 4 are each independently an n-decyl group, tripropylsilyl group, or tributylsilyl group.
  • R 5 is an alkyl group having 3 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms, or an aryl group having 5 to 8 carbon atoms. It provides a ligand compound that is a cycloalkyl group of 5 to 10 carbon atoms substituted with a cycloalkyl group, an aryl group of 6 to 10 carbon atoms, or a cycloalkyl group of 5 to 8 carbon atoms fused with an aryl group of 6 to 10 carbon atoms.
  • the present invention provides the ligand compound according to (1) above, wherein the ligand compound represented by the formula (1) is represented by the formula (2) below.
  • R 5 is an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 10 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms.
  • the present invention provides a ligand compound according to (5) above, wherein the ligand compound represented by Formula 2 is one selected from the group consisting of ligand compounds represented by Formulas 2-1 to 2-11 below.
  • the present invention provides the ligand compound according to (1) above, wherein the ligand compound represented by the formula (1) is represented by the formula (3) below.
  • R 5 is an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 10 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms.
  • the present invention provides a ligand compound according to (7) above, wherein the ligand compound represented by the formula (3) is a ligand compound represented by the following formula (3-1).
  • the present invention provides the ligand compound according to (1) above, wherein the ligand compound represented by the formula (1) is represented by the formula (4) below.
  • R 5 is an alkyl group with 1 to 10 carbon atoms, an alkyl group with 1 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms, or 5 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 10 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms.
  • the present invention provides a ligand compound according to (9) above, wherein the ligand compound represented by the formula (4) is a ligand compound represented by the following formula (4-1) or formula (4-2).
  • the present invention provides the ligand compound according to (1) above, wherein the ligand compound represented by the formula (1) is represented by the formula (5) below.
  • R 5 is an alkyl group with 1 to 10 carbon atoms, an alkyl group with 1 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms, or 5 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 6 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms, and n is 4 to 14.
  • the present invention provides a ligand compound according to (11) above, wherein the ligand compound represented by the formula (5) is a ligand compound represented by the following formula (5-1).
  • the present invention provides a ligand compound according to any one of (1) to (12) above and an organic chromium compound containing chromium coordinated to the ligand compound.
  • the present invention provides the organic chromium compound according to (13) above, wherein at least one lone pair of N and two P in the ligand compound represented by Formula 1 is coordinated to chromium.
  • the present invention provides a catalyst composition comprising a ligand compound according to any one of (1) to (12) above, chromium, and a cocatalyst.
  • the chromium is derived from a chromium source, and the chromium source is chromium (III) acetylacetonate, chromium (III) chloride tetrahydrofuran, chromium (III) 2-ethyl.
  • the present invention provides the catalyst composition according to (15) or (16) above, wherein the cocatalyst is at least one selected from the group consisting of compounds represented by the following formulas (6) to (9).
  • R 13 is each independently a halogen group, a hydrocarbyl group having 1 to 20 carbon atoms, or a hydrocarbyl group having 1 to 20 carbon atoms substituted with a halogen group, and a is an integer of 2 or more.
  • E is aluminum or boron
  • R 14 is each independently hydrogen, a halogen group, a hydrocarbyl group with 1 to 20 carbon atoms, or a hydrocarbyl group with 1 to 20 carbon atoms substituted with a halogen group.
  • L is a neutral or cationic Lewis acid
  • [LH] + is a Bronsted acid
  • G is a Group 13 element
  • Y is each independently a substituted or unsubstituted group having 1 to 20 carbon atoms. It is an alkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • the substituent is a halogen group, a hydrocarbyl group with 1 to 20 carbon atoms, an alkoxy group with 1 to 20 carbon atoms, or a carbon number. It is an aryloxy group of 6 to 20.
  • the present invention provides a method for producing linear alpha-olefins, including the step (S10) of oligomerizing ethylene in the presence of the catalyst composition according to any one of (15) to (17) above.
  • the present invention provides a method for producing linear alpha-olefin according to (18) above, wherein the linear alpha-olefin is 1-hexene, 1-octene, or a mixture thereof.
  • linear alpha-olefins can be produced with excellent productivity due to high catalytic activity and high 1-hexene and 1-octene selectivity. You can.
  • the present invention provides a ligand compound applicable to a catalyst used in ethylene oligomerization reaction.
  • a catalyst composition for ethylene oligomerization reaction specifically linear alpha-olefin formation, it exhibits excellent catalytic activity and high selectivity for linear alpha-olefin, especially compared to existing PNP-based catalysts.
  • linear alpha-olefin can be produced more efficiently because the amount of solid polyethylene produced is small even under the same reaction conditions.
  • the organic chromium compound coordinated with the ligand compound can be used to produce linear alpha-olefin using ethylene, and the oligomerization reaction proceeds in the reaction under ethylene conditions to produce alpha-olefin in liquid form.
  • Olefin, specifically, 1-hexene or 1-octene in liquid form can be formed with high selectivity. This is because selectivity for alpha-olefins of a certain length increases through a transition state that forms a metal-containing ring compound (metallacycle) in the oligomerization reaction of ethylene.
  • the ligand compound includes a diphosphino aminol moiety, and an aryl having a specific substituent is connected to the end of the diphosphino aminol moiety, so that it is strong in itself. It may have a form that can serve as an electron donating group. Due to these structural characteristics, the ligand compound can be applied to an ethylene oligomerization catalyst system and exhibit high activity, and in particular, high selectivity for 1-hexene, 1-octene, etc. This can be seen as due to the interaction between each adjacent chromium active site.
  • the ligand compound is characterized in that the phenyl located at the end of the diphosphino aminol residue has a substituent in the meta position, an alkyl group with a specific carbon number, or a silyl group substituted with an alkyl group with a specific carbon number.
  • the substituent substituted at the meta position of the phenyl prevents the two molecules of the ligand compound from being bonded to the chromium atom and creates an inactive species, and lowers the rotation possibility of the nitrogen-phosphorus bond to prevent the ligand compound from dissociating from the catalyst. Because of this, a chromium catalyst with high stability and excellent activity and selectivity can be produced.
  • the ligand compound is bonded to a nitrogen atom to which two phosphorus atoms are bonded with a bulky substituent such as a cycloalkyl group or a phenyl group, and the bulky substituent bonded to nitrogen is a bond between nitrogen and phosphorus.
  • a bulky substituent such as a cycloalkyl group or a phenyl group
  • the bulky substituent bonded to nitrogen is a bond between nitrogen and phosphorus.
  • the steric strain of the substituent bonded to the nitrogen atom is too high, access to raw materials such as ethylene becomes difficult, which reduces the activity of the catalyst.
  • the steric group of the substituent bonded to the nitrogen atom is too low, rotation of the bond between the nitrogen atom and the phosphorus atom is not prevented, and the metal center atom is not protected, causing a decrease in the activity and stability of the catalyst. That is, if the steric strain of the substituent bonded to the nitrogen atom is too high or too low, the activity of the catalyst is lowered, stability is reduced, and the amount of by-products such as polyethylene wax produced increases.
  • the ligand compound may be represented by the following formula (1).
  • R 1 to R 4 are each independently an alkyl group or a trialkylsilyl group having 5 to 20 carbon atoms
  • the alkyl group of the trialkylsilyl group is an alkyl group having 1 to 4 carbon atoms
  • R 5 is an alkyl group having 1 to 10 carbon atoms.
  • An alkyl group an alkyl group with 1 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, or an aryl group with 6 to 10 carbon atoms, It is a fused cycloalkyl group having 5 to 10 carbon atoms.
  • alkyl group may mean a straight-chain, cyclic, or branched hydrocarbon residue, and specific examples include, depending on the number of carbon atoms defined, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, It may be an isobutyl group, t-butyl group, n-pentyl group, isopentyl group, and hexyl group.
  • “trialkylsilyl group” is represented by -SiR 3 , and each R independently refers to a substituent that is an alkyl group.
  • the sum of the carbon numbers of R is the sum of all carbon atoms. It can mean.
  • aryl refers to an optionally substituted benzene ring, or to a ring system that can be formed by fusing one or more optional substituents.
  • exemplary optional substituents include a substituted alkyl group having 1 to 2 carbon atoms, a substituted alkenyl group having 2 to 3 carbon atoms, a substituted alkynyl group having 2 to 3 carbon atoms, a heteroaryl group, a heterocyclic group, an aryl group, and optionally 1 to 3 carbon atoms.
  • This ring or ring system may optionally be fused to an aryl ring (eg, a benzene ring), a carbocyclic ring, or a heterocyclic ring, optionally bearing one or more substituents. It may include, but is not limited to, phenyl, naphthyl, tetrahydronaphthyl, biphenyl, indanyl, anthracyl or phenanthryl and substituted derivatives thereof.
  • aryl ring eg, a benzene ring
  • carbocyclic ring e.g., a carbocyclic ring
  • heterocyclic ring optionally bearing one or more substituents. It may include, but is not limited to, phenyl, naphthyl, tetrahydronaphthyl, biphenyl, indanyl, anthracyl or phenanthryl and substituted derivatives thereof.
  • R 1 to R 4 may each independently be an alkyl group having 8 to 12 carbon atoms, a tripropylsilyl group, or a tributylsilyl group.
  • R 1 to R 4 may each independently be a tripropylsilyl group or a tripropylsilyl group. It may be a propylsilyl group, tributylsilyl group, or n-decyl group.
  • the ligand compound may have a substituent in which the phenyl located at the end of the diphosphino aminol residue is substituted in the meta position by an alkyl group having 10 carbon atoms, or a silyl group substituted by an alkyl group having 3 or 4 carbon atoms.
  • R 5 is an alkyl group with 3 to 5 carbon atoms, an alkyl group with 1 to 5 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, a cycloalkyl group with 5 to 8 carbon atoms, and an aryl group with 6 to 10 carbon atoms. It may be a substituted cycloalkyl group with 5 to 8 carbon atoms or a cycloalkyl group with 5 to 8 carbon atoms fused with an aryl group with 6 to 10 carbon atoms.
  • the ligand compound represented by Formula 1 may be represented by Formula 2 below.
  • R 5 is an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 10 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms.
  • the ligand compound represented by Formula 2 may be one selected from the group consisting of ligand compounds represented by Formulas 2-1 to 2-11 below.
  • the ligand compound represented by Formula 1 may be represented by Formula 3 below.
  • R 5 is an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 10 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms.
  • the ligand compound represented by Formula 3 may be represented by Formula 3-1 below.
  • the ligand compound represented by Formula 1 may be represented by Formula 4 below.
  • R 5 is an alkyl group with 1 to 10 carbon atoms, an alkyl group with 1 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms, or 5 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 10 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms.
  • the ligand compound represented by Formula 4 may be represented by Formula 4-1 or Formula 4-2 below.
  • the ligand compound represented by Formula 1 may be represented by Formula 5 below.
  • R 5 is an alkyl group with 1 to 10 carbon atoms, an alkyl group with 1 to 10 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms, a cycloalkyl group with 5 to 10 carbon atoms, or 5 carbon atoms substituted with an aryl group with 6 to 10 carbon atoms. It is a cycloalkyl group with 5 to 10 carbon atoms fused with a cycloalkyl group with 6 to 10 carbon atoms or an aryl group with 6 to 10 carbon atoms, and n is 4 to 14.
  • the ligand compound represented by Formula 5 may be represented by Formula 5-1 below.
  • the ligand compound may be implemented in various combinations within the range that satisfies the conditions described above, and any compound represented by Formula 1 can be applied as a ligand compound of the present invention. do.
  • the present invention provides an organic chromium compound comprising a ligand compound represented by Formula 1 and chromium (Cr) coordinated to the ligand compound.
  • the organic chromium compound is a chromium complex compound of the ligand compound, wherein the chromium source chromium is one or more lone pairs of N and two P in the ligand compound represented by Formula 1. It may have a form in which this coordination bond is formed. That is, it is a structure in which the phosphorus atom or nitrogen atom of the diphosphinoaminyl residue provides a lone pair of electrons to the chromium atom. In particular, a bidentated state in which two pairs of lone pairs are coordinated may be preferable.
  • These organic chromium compounds can be applied to a catalyst system for the oligomerization reaction of ethylene and exhibit excellent catalytic activity and high selectivity for 1-hexene or 1-octene.
  • the "catalyst composition” may be an active catalyst composition obtained by adding three components including a chromium source, a ligand compound, and a cocatalyst, or two components, a transition metal compound and a cocatalyst, simultaneously or in any order. It means the state it is in.
  • the catalyst composition may also be referred to as a catalyst system, and in the present invention, the catalyst composition and catalyst system have the same meaning.
  • the three or two components of the catalyst composition may be added in the presence or absence of a solvent and monomer, and may be used in a supported or non-supported state.
  • the present invention provides a catalyst composition comprising the above ligand compound, chromium, and a cocatalyst.
  • the ligand compound represented by Formula 1 and chromium may be coordinated to form an organic chromium compound.
  • the catalyst system may be a three-component catalyst system including chromium, a ligand compound represented by Formula 1, and a cocatalyst, or a two-component catalyst system including the organic chromium compound and a cocatalyst.
  • the catalyst composition may include the ligand compound, an organic chromium compound containing chromium coordinated to the ligand compound, and a cocatalyst.
  • the catalyst composition may include a chromium compound in which some components of a cocatalyst are combined with the organic chromium compound.
  • the chromium may be derived from a chromium source, and the chromium source may be an organic or inorganic chromium compound whose chromium oxidation state is 0 to 6.
  • the chromium source may be chromium metal, or a compound in which any organic or inorganic radical is bonded to chromium.
  • the organic radical may be an alkyl, alkoxy, ester, ketone, amido, carboxylate radical, etc. having 1 to 20 carbon atoms per radical
  • the inorganic radical may be a halide, sulfate, oxide, etc.
  • the chromium source is a compound that exhibits high activity in oligomerization of olefins and is easy to use and obtain, including chromium (III) acetylacetonate, chromium (III) chloride tetrahydrofuran, and chromium ( III) 2-ethylhexanoate, chromium (III) acetate, chromium (III) butyrate, chromium (III) pentanoate, chromium (III) laurate, chromium (III) tris (2,2,6,6- It may be one or more compounds selected from the group consisting of tetramethyl-3.5-heptanedionate) and chromium (III) stearate.
  • the cocatalyst may be at least one selected from the group consisting of compounds represented by Formulas 6 to 9 below.
  • R 13 is each independently a halogen group, a hydrocarbyl group having 1 to 20 carbon atoms, or a hydrocarbyl group having 1 to 20 carbon atoms substituted with a halogen group, and a is an integer of 2 or more.
  • E is aluminum or boron
  • R 14 is each independently hydrogen, a halogen group, a hydrocarbyl group with 1 to 20 carbon atoms, or a hydrocarbyl group with 1 to 20 carbon atoms substituted with a halogen group.
  • L is a neutral or cationic Lewis acid
  • [LH] + is a Bronsted acid
  • G is a Group 13 element
  • Y is each independently a substituted or unsubstituted group having 1 to 20 carbon atoms. It is an alkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • the substituent is a halogen group, a hydrocarbyl group with 1 to 20 carbon atoms, an alkoxy group with 1 to 20 carbon atoms, or a carbon number. It is an aryloxy group of 6 to 20.
  • the catalyst composition can be prepared by a plurality of methods.
  • the catalyst composition may be prepared including the step of contacting the organic chromium compound with the compound represented by Formula 6 or Formula 7.
  • the catalyst composition includes obtaining a mixture by contacting the organic chromium compound with a compound represented by Formula 6 or Formula 7; and adding a compound represented by Formula 8 or Formula 9 to the mixture.
  • the catalyst composition may be prepared including the step of contacting the organic chromium compound with a compound represented by Formula 8 or Formula 9.
  • the catalyst composition includes the step of contacting the organic chromium compound with a compound represented by Formula 8 or Formula 9 to obtain a mixture; and adding a compound represented by Formula 6 or Formula 7 to the mixture.
  • the catalyst composition includes obtaining a reactant by contacting the chromium source with a compound represented by Formula 8 or Formula 9; and contacting the reactant with the ligand compound.
  • the molar ratio of the compound represented by Formula 6 or Formula 7 to the organic chromium compound is 1:2 to 5,000, respectively. It may be 1:100 to 3,000 as a specific example, and as a more specific example it may be 1:300 to 1,500. Within this range, the alkylation of the organic chromium compound may proceed completely, thereby improving the activity of the catalyst composition. , it is possible to prevent deterioration of the activation of the alkylated organic chromium compound due to side reactions between the remaining alkylating agents, and at the same time improve the economic efficiency and purity of the produced linear alpha-olefin.
  • the molar ratio of the compound represented by Formula 8 or Formula 9 to the organic chromium compound may be 1:1 to 500, and as a specific example It may be 1:1 to 50, and a more specific example may be 1:1 to 1:25. Within this range, the amount of activator is sufficient, so that the metal compound is completely activated and the activity of the catalyst composition is improved, By minimizing the remaining activator, the economics and purity of the produced linear alpha-olefin can be improved.
  • the compound represented by Formula 6 may be alkylaluminoxane, and specific examples include methylaluminoxane, ethyl aluminoxane, isobutylaluminoxane, butylaluminoxane, etc., and more specific examples include It may be methylaluminoxane.
  • the compound represented by Formula 7 may be trialkyl aluminum, dialkyl aluminum halide, alkyl aluminum dihalide, dialkyl aluminum hydride, alkyl aluminum dihydride, trialkyl boron, etc.
  • the compound represented by Formula 6 is trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, triisopropyl aluminum, tri-s-butyl aluminum, tricyclopentyl aluminum, and tripentyl.
  • trialkyl aluminum such as aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyldimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, and tri-p-tolyl aluminum; Dialkyl aluminum halides such as diethylaluminum chloride; Diethyl aluminum hydride, di-n-propyl aluminum hydride, diisopropyl aluminum hydride, di-n-butyl aluminum hydride, dibutyl aluminum hydride, diisobutyl aluminum hydride (DIBAH), di-n -Octyl aluminum hydride, diphenyl aluminum hydride, di-p-tolyl aluminum hydride, dibenzyl aluminum hydride, phenylethyl aluminum hydride, phenyl-n-propyl aluminum hydride, phenyl isopropyl aluminum hydride, phenyl -n-butyl aluminum hydride
  • dialkyl aluminum hydrides such as propyl aluminum hydride, benzyl-n-butyl aluminum hydride, benzylisobutyl aluminum hydride, or benzyl-n-octyl aluminum hydride; alkyl aluminum dihydrides such as n-propyl aluminum dihydride, isopropyl aluminum dihydride, n-butyl aluminum dihydride, isobutyl aluminum dihydride, or n-octyl aluminum dihydride; It may be trialkyl boron such as trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, etc.
  • the compound represented by Formula 8 or Formula 9 is trimethylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tributylammonium tetraphenylborate, N,N -Dimethylanilinium tetraphenylborate, N,N-diethylanilinium tetraphenylborate, trimethylammonium tetra(p-tolyl)borate, triethylammonium tetra(p-tolyl)borate, tripropylammonium tetra(p-tolyl) Borate, tributylammonium tetra(p-tolyl)borate, N,N-dimethylanilinium tetra(p-tolyl)borate, N,N-diethylanilinium tetra(p-
  • the content ratio of the components forming the catalyst composition may be determined in consideration of catalyst activity and selectivity to linear alpha-olepene.
  • the molar ratio of the diphosphino aminol residue of the ligand compound:chromium source:cocatalyst is about 1:1:1 to about 10:1:10,000, or about 1: It can be adjusted from 1:100 to 5:1:3,000.
  • the molar ratio of the diphosphino aminol residue of the organic chromium compound to the cocatalyst is 1:1 to 1:10,000, or 1:1 to 1:5,000, or 1:1. It can be adjusted from 1:3,000.
  • the reaction solvent is a hydrocarbon-based solvent such as pentane, hexane, heptane, etc.; Aromatic solvents such as benzene, toluene, etc. may be used.
  • the components forming the catalyst composition may be added simultaneously or in any order in the presence or absence of appropriate solvents and monomers to function as an active catalyst composition.
  • suitable solvents may include heptane, toluene, cyclohexane, methylcyclohexane, 1-hexene, 1-octene, diethyl ether, tetrahydrofuran, acetonitrile, dichloromethane, chloroform, chlorobenzene, methanol, acetone, etc. there is.
  • the organic chromium compound and cocatalyst may be used in a form supported on a carrier, and in this case, the carrier may be silica or alumina.
  • the catalyst composition may further include a carrier.
  • the ligand compound represented by Formula 1 may be applied to an ethylene oligomerization reaction in the form supported on a carrier.
  • the carrier may be a metal, metal salt, or metal oxide applied to a supported catalyst.
  • the carrier may be silica, silica-alumina, silica-magnesia, etc., Na 2 O, K 2 CO 3 , BaSO 4 , It may contain metal oxides such as Mg(NO 3 ) 2 , carbonate, sulfate, and trinitrate.
  • the catalyst composition can be used for the trimerization or tetramerization reaction of ethylene, and 1-hexene or 1-octene can be produced with high selectivity as described above.
  • the present invention provides a method for producing linear alpha-olefins as an ethylene oligomerization method comprising the step (S10) of oligomerizing ethylene in the presence of the catalyst composition.
  • oligomerization means polymerization of olefin. Depending on the number of olefins to be polymerized, it is called trimerization or tetramerization, and is collectively called multimerization. In particular, in this specification, it may mean selectively producing 1-hexene and 1-octene, which are the main comonomers of LLDPE, from ethylene.
  • the oligomerization reaction of ethylene may be a trimerization or tetramerization reaction of ethylene, and 1-hexene or 1-octene is formed as a result of the reaction, and the linear alpha-olefin is It may be 1-hexene, 1-octene, or a mixture thereof.
  • the oligomerization method of ethylene can be performed using ethylene as a raw material and applying the previously described catalyst composition and conventional equipment and contact technology.
  • the oligomerization reaction of ethylene is a homogeneous liquid phase reaction in the presence or absence of an inert solvent, or a slurry reaction in which part or all of the catalyst composition is in an undissolved form, or the product alpha-olefin serves as the main medium. It can be performed as a bulk phase reaction, or as a gas phase reaction.
  • the oligomerization reaction of ethylene may be performed under an inert solvent.
  • the inert solvents include benzene, toluene, xylene, cumene, chlorobenzene, dichlorobenzene, heptane, cyclohexane, methylcyclohexane, methylcyclopentane, n-hexane, 1-hexene, 1-octene and 2,2, It may be 4-trimethylpentane, etc.
  • the oligomerization reaction of ethylene may be performed at a temperature of 0°C to 200°C, or 0°C to 150°C, or 30°C to 100°C, or 50°C to 100°C. Additionally, the reaction may be performed under a pressure of 15 psig to 3000 psig, or 15 psig to 1500 psig, or 15 psig to 1,000 psig.
  • N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine N-cycloheptyl-1,1-bis(3-(tripropylsilyl)
  • phenyl)phosphanamine 5 mmol (1 eq)
  • methyl t-butyl ether methyl tert-butyl ether 13 ml were added under a nitrogen atmosphere, cooled to -78°C, and stirring was started.
  • N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine N-(4-phenylcyclohexyl)-1 was added to the dried flask.
  • 5 mmol (1 eq) of 1-bis(3-(tripropylsilyl)phenyl)phosphanamine) and 13 ml of methyl t-butyl ether were added under a nitrogen atmosphere, cooled to -78°C, and stirred. It started.
  • the ethylene line valve was closed, the reactor was cooled to 0°C using a dry ice/acetone bath, unreacted ethylene was slowly vented, and 0.5 ml of nonane (GC internal standard) was added. After stirring for 10 seconds, 2 ml of the liquid portion of the reactor was taken and quenched with water, and the obtained organic portion was filtered through a PTFE syringe filter to make a GC-FID sample. And the distribution of the liquid product was analyzed by GC (Agilent 6890N, Alltech AT-5 (30 m ⁇ 0.32 mm ID ⁇ 0.25 ⁇ m; series no. 12446)).
  • Example 1-1 The same method as Example 1-1 was carried out, except that the catalyst type was changed as shown in Table 1 below.
  • a Parr reactor with a capacity of 600 ml was prepared and held under vacuum at 120°C for 2 hours, then the interior was replaced with argon and the temperature was lowered to 70°C. Afterwards, 180 ml of methylcyclohexane and 725 ⁇ mol of diisobutyl aluminum hydride as an activator in 2 ml were injected, and 5 ml (0.75 ⁇ mol Cr) of the catalyst solution was injected. After stirring at 1,000 rpm for 2 minutes, the valve of the ethylene line set to 40 bar was opened to fill the reactor with ethylene, and then stirred at 1,000 rpm for 60 minutes.
  • the ethylene line valve was closed, the reactor was cooled to 0°C using a dry ice/acetone bath, unreacted ethylene was slowly vented, and 0.5 ml of nonane (GC internal standard) was added. After stirring for 10 seconds, 2 ml of the liquid portion of the reactor was taken and quenched with water, and the obtained organic portion was filtered through a PTFE syringe filter to make a GC-FID sample. And the distribution of the liquid product was analyzed by GC (Agilent 6890N, Alltech AT-5 (30 m ⁇ 0.32 mm ID ⁇ 0.25 ⁇ m; series no. 12446)).
  • Example 2 The same method as Example 1-2 was carried out, except that the catalyst type was changed as shown in Table 2 below.
  • Catalyst activity was calculated from the total product weight (ton) combined with the weight (ton) of the obtained liquid product and solid product.
  • Solid (% by weight) The weight % of the solid product was calculated based on the total weight of the product. This indicates the extent to which polyethylene with a carbon number of about 40 or more is produced as an insoluble solid that does not dissolve in the solvent.
  • Example 8-1 341 39.3 46.8 86.5 0.53
  • Example 1-2 135 27.8 59.9 87.7 0.58
  • Example 2-2 185 23.5 61.0 84.5 0.65
  • Example 3-2 201 26.1 62.9 89.0 0.47
  • Example 4-2 118 32.9 57.0 89.9 0.69
  • Example 5-2 157 26.6 62.0 88.6 0.52
  • Example 6-2 188 25.4 60.7 86.1 0.56
  • Example 7 179 24.1 62.1 86.2 0.50
  • Example 9-2 110 18.6 64.0 82.6 0.67
  • Example 10-2 103 17.9 65.1 83.0 0.61
  • Example 12 185 25.8 62.5 88.3 0.60
  • Example 13-2 197 25.8 62.5 88.3 0.45
  • Example 14-2 163 22.7 60.5 83.2 0.37
  • Example 15-2 163 22.7 60.5 83.2 0.37
  • Example 15-2 163 22.7 60.5 83.2 0.37
  • the phenyl located at the end of the diphosphino aminol residue has a specific carbon number in the meta position.
  • catalytic activity, selectivity and stability were all improved by controlling the steric group around the P-N-P functional group from the substituent substituted on the nitrogen atom.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

본 발명은 높은 촉매 활성을 나타내면서도, 높은 1-헥센 및 1-옥텐 선택성을 나타내어, 우수한 효율로 에틸렌 올리고머화를 실시할 수 있는 신규한 구조의 리간드 화합물, 유기 크롬 화합물, 상기 유기 크롬 화합물을 포함하는 촉매 조성물 및 이를 이용한 에틸렌의 올리고머화 방법에 관한 것이다.

Description

리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물
[관련출원과의 상호인용]
본 발명은 2022년 3월 14일에 출원된 한국 특허 출원 제10-2022-0031616호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 리간드 화합물, 유기 크롬 화합물, 상기 유기 크롬 화합물을 포함하는 촉매 조성물 및 이를 이용한 에틸렌 올리고머화 방법에 관한 것이다.
1-헥센, 1-옥텐 등과 같은 선형 알파-올레핀(Linear alpha-olefin)은 세정제, 윤활제, 가소제 등으로 사용되며, 특히 선형 저밀도 폴리에틸렌(LLDPE)의 제조시 폴리머의 밀도 조절을 위한 공단량체로 주로 사용되고 있다.
종래의 LLDPE(Linear Low-Density Polyethylene, 선형 저밀도 폴리에틸렌)의 제조 과정에는 에틸렌과 함께 폴리머 골격(polymer backbone)에 분지(branch)를 형성하여 밀도(density)를 조절하기 위하여 알파-올레핀, 예를 들어 1-헥센, 1-옥텐과 같은 공단량체와 공중합이 이루어지도록 하였다.
따라서, 공단량체의 함량이 높은 LLDPE의 제조를 위해서는 공단량체의 가격이 제조 비용의 큰 부분을 차지한다는 문제점이 있었다. 이러한 문제점을 해결하기 위하여 다양한 시도가 있어 왔다.
이러한 선형 알파-올레핀은 Shell Higher Olefin Process를 통해 주로 생산되었다. 그러나, 상기 방법은 Schultz-Flory 분포에 따라 다양한 길이의 알파-올레핀이 동시에 합성되기 때문에, 특정 알파-올레핀을 얻기 위해서는 별도의 분리 공정을 거쳐야 하는 번거로움이 있었다.
이러한 문제점을 해결하기 위해, 에틸렌의 삼량화 반응을 통해 1-헥센을 선택적으로 합성하거나, 에틸렌의 사량화 반응을 통해 1-옥텐을 선택적으로 합성하는 방법이 제안되었다. 그리고, 이러한 선택적인 에틸렌의 올리고머화를 가능케 하는 촉매 시스템에 대한 많은 연구가 이루어지고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) US 5064802 B2
본 발명에서 해결하고자 하는 과제는 높은 촉매 활성을 나타내면서도, 높은 1-헥센 및 1-옥텐 선택성을 나타내어, 우수한 효율로 에틸렌 올리고머화를 실시할 수 있는 신규한 구조의 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 리간드 화합물, 유기 크롬 화합물, 촉매 조성물 및 에틸렌 올리고머화 방법을 제공한다.
(1) 본 발명은 하기 화학식 1로 표시되는 리간드 화합물을 제공한다.
[화학식 1]
Figure PCTKR2023002968-appb-img-000001
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 탄소수 5 내지 20의 알킬기 또는 트리알킬실릴기이고, 트리알킬실릴기의 알킬기는 탄소수 1 내지 4의 알킬기이고, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(2) 본 발명은 상기 (1)에 있어서, R1 내지 R4는 각각 독립적으로 탄소수 8 내지 12의 알킬기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, R1 내지 R4는 각각 독립적으로 n-데실기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, R5는 탄소수 3 내지 5의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 5의 알킬기, 탄소수 5 내지 8의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 8의 시클로알킬기인 리간드 화합물을 제공한다.
(5) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 2로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 2]
Figure PCTKR2023002968-appb-img-000002
상기 화학식 2에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(6) 본 발명은 상기 (5)에 있어서, 상기 화학식 2로 표시되는 리간드 화합물은 하기 화학식 2-1 내지 화학식 2-11로 표시되는 리간드 화합물로 이루어진 군으로부터 선택된 1종인 리간드 화합물을 제공한다.
[화학식 2-1]
Figure PCTKR2023002968-appb-img-000003
[화학식 2-2]
Figure PCTKR2023002968-appb-img-000004
[화학식 2-3]
Figure PCTKR2023002968-appb-img-000005
[화학식 2-4]
Figure PCTKR2023002968-appb-img-000006
[화학식 2-5]
Figure PCTKR2023002968-appb-img-000007
[화학식 2-6]
Figure PCTKR2023002968-appb-img-000008
[화학식 2-7]
Figure PCTKR2023002968-appb-img-000009
[화학식 2-8]
Figure PCTKR2023002968-appb-img-000010
[화학식 2-9]
Figure PCTKR2023002968-appb-img-000011
[화학식 2-10]
Figure PCTKR2023002968-appb-img-000012
[화학식 2-11]
Figure PCTKR2023002968-appb-img-000013
(7) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 3으로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 3]
Figure PCTKR2023002968-appb-img-000014
상기 화학식 3에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(8) 본 발명은 상기 (7)에 있어서, 상기 화학식 3으로 표시되는 리간드 화합물은 하기 화학식 3-1로 표시되는 리간드 화합물인 리간드 화합물을 제공한다.
[화학식 3-1]
Figure PCTKR2023002968-appb-img-000015
(9) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 4로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 4]
Figure PCTKR2023002968-appb-img-000016
상기 화학식 4에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(10) 본 발명은 상기 (9)에 있어서, 상기 화학식 4로 표시되는 리간드 화합물은 하기 화학식 4-1 또는 화학식 4-2로 표시되는 리간드 화합물인 리간드 화합물을 제공한다.
[화학식 4-1]
Figure PCTKR2023002968-appb-img-000017
[화학식 4-2]
Figure PCTKR2023002968-appb-img-000018
(11) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 5로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 5]
Figure PCTKR2023002968-appb-img-000019
상기 화학식 5에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이고, n은 4 내지 14이다.
(12) 본 발명은 상기 (11)에 있어서, 상기 화학식 5로 표시되는 리간드 화합물은 하기 화학식 5-1로 표시되는 리간드 화합물인 리간드 화합물을 제공한다.
[화학식 5-1]
Figure PCTKR2023002968-appb-img-000020
(13) 본 발명은 상기 (1) 내지 (12) 중 어느 하나에 따른 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬을 포함하는 유기 크롬 화합물을 제공한다.
(14) 본 발명은 상기 (13)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물에서 N 및 두 개의 P 중 어느 하나 이상의 비공유 전자쌍이 크롬에 배위된 형태인 유기 크롬 화합물을 제공한다.
(15) 본 발명은 상기 (1) 내지 (12) 중 어느 하나에 따른 리간드 화합물, 크롬 및 조촉매를 포함하는 촉매 조성물을 제공한다.
(16) 본 발명은 상기 (15)에 있어서, 상기 크롬은 크롬 소스로부터 유래되고, 상기 크롬 소스는 크로뮴(III) 아세틸아세토네이트, 크로뮴(III) 클로라이드 테트라하이드로퓨란, 크로뮴(III) 2-에틸헥사노에이트, 크로뮴(III) 아세테이트, 크로뮴(III) 부티레이트, 크로뮴(III) 펜타노에이트, 크로뮴(III) 라우레이트, 크로뮴(III) 트리스(2,2,6,6-테트라메틸-3.5-헵테인디오네이트) 및 크로뮴(III) 스테아레이트로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 촉매 조성물을 제공한다.
(17) 본 발명은 상기 (15) 또는 (16)에 있어서, 상기 조촉매는 하기 화학식 6 내지 화학식 9로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 촉매 조성물을 제공한다.
[화학식 6]
-[Al(R13)-O]a-
상기 화학식 6에서, R13은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이고, a는 2 이상의 정수이다.
[화학식 7]
E(R14)3
상기 화학식 7에서, E는 알루미늄 또는 보론이고, R14는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이다.
[화학식 8]
[L-H]+[G(Y)4]-
[화학식 9]
[L]+[G(Y)4]-
상기 화학식 8 및 9에서, L은 중성 또는 양이온성 루이스 산이고, [L-H]+는 브뢴스테드 산이며, G는 13족 원소이며, Y는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고, 여기서, 알킬기 또는 아릴기가 치환되는 경우, 치환기는 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다.
(18) 본 발명은 상기 (15) 내지 (17) 중 어느 하나에 따른 촉매 조성물의 존재 하에, 에틸렌을 올리고머화하는 단계(S10)를 포함하는 선형 알파-올레핀 제조방법을 제공한다.
(19) 본 발명은 상기 (18)에 있어서, 상기 선형 알파-올레핀은 1-헥센, 1-옥텐 또는 이들의 혼합물인 선형 알파-올레핀 제조방법을 제공한다.
본 발명의 리간드 화합물을 포함하는 유기 크롬 화합물 및 촉매 조성물을 이용하여 에틸렌 올리고머화를 실시하는 경우, 높은 촉매 활성으로부터 생산성이 우수하면서도, 높은 1-헥센 및 1-옥텐 선택성으로 선형 알파-올레핀를 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
리간드 화합물
본 발명은 에틸렌 올리고머화 반응에 이용되는 촉매에 적용 가능한 리간드 화합물을 제공한다. 상기 리간드 화합물을 에틸렌 올리고머화 반응, 구체적으로 선형 알파-올레핀 형성용 촉매 조성물에 적용할 경우, 우수한 촉매 활성을 나타내면서도 선형 알파-올레핀에 대한 선택도가 높고, 특히, 기존의 PNP계 촉매와 비교했을 때, 동일한 반응 조건 하에서도 고형 폴리에틸렌 생성량이 적어 선형 알파-올레핀을 보다 효율적으로 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물이 배위된 유기 크롬 화합물은 에틸렌을 이용한 선형 알파-올레핀 제조에 활용될 수 있고, 에틸렌 조건 하의 반응에서 올리고머화 반응이 진행되어, 액상 형태의 알파-올레핀, 구체적으로는, 액상 형태의 1-헥센 또는 1-옥텐을 높은 선택도로 형성할 수 있다. 이는 에틸렌의 올리고머화 반응에서 금속 함유 고리 화합물(metallacycle)을 형성하는 전이상태를 통해 특정 길이의 알파-올레핀에 대한 선택성이 높아지기 때문이다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 디포스피노 아미닐 잔기(diphosphino aminyl moiety)를 포함하고, 상기 디포스피노 아미닐 잔기의 말단에 특정 치환기를 가지는 아릴이 연결되어 있어, 그 자체로 강한 전자 공여 그룹의 역할을 할 수 있는 형태를 가질 수 있다. 이러한 구조적 특징에 기인하여, 상기 리간드 화합물은 에틸렌의 올리고머화 촉매 시스템에 적용되어 높은 활성을 나타낼 수 있고, 특히 1-헥센, 1-옥텐 등에 대한 높은 선택성을 나타낼 수 있다. 이는 각각의 인접한 크롬 활성점 사이의 상호 작용에 의한 것으로 볼 수 있으며, 특히, 디포스피노 아미닐의 인(P) 원자에 특정 치환기가 치환된 아릴이 연결되는 경우, 디포스피노 아미닐에 포함된 인(P) 원자 및 질소(N) 원자에서 전자 밀도가 증가하게 되며 전체 리간드 화합물의 전기적, 입체적 성질이 변화하기 때문이다. 이에 따라, 리간드와 크롬 원자 사이의 결합에 변화가 생기게 되어, 촉매의 구조가 더 안정해질 수 있으며, 기존의 metallacycloheptane, 또는 metallacyclononane 형태에 비해, 전이상태의 에너지(활성화 에너지)를 변화시켜 보다 높은 활성과 선택성으로 알파-올레핀을 형성할 수 있게 되고, 폴리에틸렌 왁스(PE Wax)와 같은 분자량이 큰 고형 알파-올레핀 등의 부산물의 양을 더욱 감소시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 디포스피노 아미닐 잔기의 말단에 위치한 페닐이 메타(meta) 위치에 특정 탄소수의 알킬기 또는, 특정 탄소수의 알킬기로 치환된 실릴기를 치환기로 갖는 것을 특징으로 한다. 상기 페닐의 메타(meta) 위치에 치환된 치환기는 두 분자의 리간드 화합물이 크롬 원자에 결합되어 비활성종이 생성되는 것을 방지하며, 질소-인 결합의 회전 가능성을 낮추어 촉매에서 리간드 화합물이 해리되는 것을 막아주기 때문에, 안정성이 높고 활성과 선택성이 우수한 크롬 촉매가 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 인 원자 두 개가 결합되어 있는 질소 원자에 시클로알킬기 또는 페닐기와 같은 벌키한 치환기와 결합되어 있고, 질소에 결합된 벌키한 치환기는 질소와 인의 결합이 회전하는 것을 방지하여 촉매 안정성과 활성을 더욱 향상시킬 수 있다. 이 때, 질소 원자에 결합된 치환기의 입체적 성질에 따라 촉매의 활성, 안정성 및 선택성 등이 변화하게 된다. 질소 원자에 결합된 치환기의 입체 무리가 너무 높으면 리간드 합성 및 금속 착화합물의 형성이 어려워지고, 생성된 착화합물이 불안정해지는 문제가 있다. 또한, 질소 원자에 결합된 치환기의 입체 무리가 너무 높으면, 에틸렌 등과 같은 원료 물질의 접근이 어려워져 촉매의 활성이 저하되는 문제가 있다. 또한, 질소 원자에 결합된 치환기의 입체 무리가 너무 낮으면 질소 원자와 인 원자의 결합의 회전을 방지하지 못하며, 금속 중심 원자를 보호하지 못하여 촉매의 활성 및 안정성이 저하되는 원인이 된다. 즉, 질소 원자에 결합된 치환기의 입체 무리가 너무 높거나 낮을 경우, 촉매의 활성이 낮아지며, 안정성이 저하되어, 폴리에틸렌 왁스 등과 같은 부산물의 생성량이 증가하는 문제가 발생하게 된다. 따라서, 인 원자에 결합되어 있는 치환기에 대해 적정 수준의 입체 무리를 가지고 있는 질소 원자에 결합된 치환기의 선정은 매우 중요하다. 본 발명에 따른 리간드 화합물은 인 원자에 결합된 페닐기의 메타 위치에 치환기가 도입됨에 따라 P-N-P 작용기 주변의 입체 무리가 증가하게 되므로, 질소 원자에 결합된 치환기의 입체 무리가 너무 증가하지 않도록 화학식 1의 R5로 표시되는 치환기를 도입함으로써, 이를 포함하는 촉매 조성물을 이용하여 에틸렌의 올리고머화 반응 시 수율과 선택도를 향상시킬 수 있다. 특히, 화학식 1의 R5로 표시되는 치환기로서 2차 알킬기 형태의 치환기를 도입하는 경우, 효율이 더욱 향상되며, 1차 알킬기 형태의 치환기는 낮은 입체 무리를 보완하기 위하여 1번 탄소 또는 2번 탄소 위치에 페닐기 등과 같은 아릴기를 도입함으로써 적정한 입체 무리를 형성할 수 있어, 수율과 선택도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Figure PCTKR2023002968-appb-img-000021
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 탄소수 5 내지 20의 알킬기 또는 트리알킬실릴기이고, 트리알킬실릴기의 알킬기는 탄소수 1 내지 4의 알킬기이고, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명에서 "알킬기"는 직쇄형, 고리형 또는 분지형의 탄화수소 잔기를 의미할 수 있고, 구체적인 예로, 정의되는 탄소수에 따라 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, t-부틸기, n-펜틸기, 이소펜틸기 및 헥실기 등일 수 있다.
본 발명에서, "트리알킬실릴기"는 -SiR3로 표시되며, 각각의 R이 독립적으로 알킬기인 치환기를 의미하며, 트리알킬실릴기의 탄소수를 언급하는 경우에는 R의 탄소수를 모두 합한 값을 의미할 수 있다.
본 발명에서 "아릴"은 다른 언급이 없는 한 임의적으로 치환된 벤젠 고리를 지칭하거나, 또는 하나 이상의 임의적인 치환기를 융합시킴으로써 형성될 수 있는 고리 시스템을 지칭한다. 예시적인 임의적인 치환기는 치환된 탄소수 1 내지 2의 알킬기, 치환된 탄소수 2 내지 3의 알케닐기, 치환된 탄소수 2 내지 3의 알킨일기, 헤테로아릴기, 헤테로환형기, 아릴기, 임의적으로 1 내지 3개의 불소 치환기를 갖는 알콕시, 아릴옥시, 아르알콕시, 아실, 아로일, 헤테로아로일, 아실옥시, 아로일옥시, 헤테로아로일옥시, 설판일, 설핀일, 설폰일, 아미노설폰일, 설폰일아미노, 카복시아마이드, 아미노카보닐, 카복시, 옥소, 하이드록시, 머캅토, 아미노, 나이트로, 시아노, 할로겐 또는 우레이도를 포함한다. 이러한 고리 또는 고리 시스템은 임의적으로 하나 이상의 치환기를 갖는 아릴 고리(예컨대, 벤젠 고리), 탄소환 고리 또는 헤테로환형 고리에 임의적으로 융합될 수 있다. 비제한적으로 페닐, 나프틸, 테트라하이드로나프틸, 바이페닐, 인단일, 안트라실 또는 페난트릴 및 이들의 치환된 유도체를 포함할 수 있다.
본 발명의 일 실시예에 따르면, R1 내지 R4는 각각 독립적으로 탄소수 8 내지 12의 알킬기, 트리프로필실릴기 또는 트리부틸실릴기일 수 있고, 구체적인 예로, R1 내지 R4는 각각 독립적으로 트리프로필실릴기, 트리부틸실릴기 또는 n-데실기일 수 있다. 즉, 상기 리간드 화합물은 디포스피노 아미닐 잔기의 말단에 위치한 페닐이 메타(meta) 위치에 탄소수 10의 알킬기, 또는 탄소수 3 또는 4의 알킬기로 치환된 실릴기를 치환기로 갖는 것일 수 있다.
본 발명의 일 실시예에 따르면, R5는 탄소수 3 내지 5의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 5의 알킬기, 탄소수 5 내지 8의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 8의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 8의 시클로알킬기인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
Figure PCTKR2023002968-appb-img-000022
상기 화학식 2에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 리간드 화합물은 하기 화학식 2-1 내지 화학식 2-11로 표시되는 리간드 화합물로 이루어진 군으로부터 선택된 1종일 수 있다.
[화학식 2-1]
Figure PCTKR2023002968-appb-img-000023
[화학식 2-2]
Figure PCTKR2023002968-appb-img-000024
[화학식 2-3]
Figure PCTKR2023002968-appb-img-000025
[화학식 2-4]
Figure PCTKR2023002968-appb-img-000026
[화학식 2-5]
Figure PCTKR2023002968-appb-img-000027
[화학식 2-6]
Figure PCTKR2023002968-appb-img-000028
[화학식 2-7]
Figure PCTKR2023002968-appb-img-000029
[화학식 2-8]
Figure PCTKR2023002968-appb-img-000030
[화학식 2-9]
Figure PCTKR2023002968-appb-img-000031
[화학식 2-10]
Figure PCTKR2023002968-appb-img-000032
[화학식 2-11]
Figure PCTKR2023002968-appb-img-000033
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 3으로 표시되는 것일 수 있다.
[화학식 3]
Figure PCTKR2023002968-appb-img-000034
상기 화학식 3에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명의 일 실시예에 따르면, 상기 화학식 3으로 표시되는 리간드 화합물은 하기 화학식 3-1로 표시되는 것일 수 있다.
[화학식 3-1]
Figure PCTKR2023002968-appb-img-000035
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 4로 표시되는 것일 수 있다.
[화학식 4]
Figure PCTKR2023002968-appb-img-000036
상기 화학식 4에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명의 일 실시예에 따르면, 상기 화학식 4로 표시되는 리간드 화합물은 하기 화학식 4-1 또는 화학식 4-2로 표시되는 것일 수 있다.
[화학식 4-1]
Figure PCTKR2023002968-appb-img-000037
[화학식 4-2]
Figure PCTKR2023002968-appb-img-000038
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 5로 표시되는 것일 수 있다.
[화학식 5]
Figure PCTKR2023002968-appb-img-000039
상기 화학식 5에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이고, n은 4 내지 14이다.
본 발명의 일 실시예에 따르면, 상기 화학식 5로 표시되는 리간드 화합물은 하기 화학식 5-1로 표시되는 것일 수 있다.
[화학식 5-1]
Figure PCTKR2023002968-appb-img-000040
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 상기 구체예 이외에도 앞서 기재한 조건을 만족하는 범위에서 다양한 조합으로 구현될 수 있으며, 화학식 1로 표시되는 화합물이라면 모두 본 발명의 리간드 화합물로서 적용 가능하다.
유기 크롬 화합물 및 촉매 조성물
본 발명은 상기 화학식 1로 표시되는 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬(Cr)을 포함하는 유기 크롬 화합물을 제공한다.
본 발명의 일 실시예에 따르면, 상기 유기 크롬 화합물은 상기 리간드 화합물의 크롬 착화합물(complex compound)로서, 크롬 소스의 크롬이 화학식 1로 표시되는 리간드 화합물에서 N 및 두 개의 P 중 어느 하나 이상의 비공유 전자쌍이 배위 결합을 이룬 형태를 가질 수 있다. 즉, 디포스피노 아미닐 잔기의 인 원자 또는 질소 원자가 크롬 원자에 비공유 전자쌍을 제공한 구조로서, 특히, 이 중 두 쌍의 비공유 전자쌍이 배위된 bidentated 상태가 바람직할 수 있다. 이러한 유기 크롬 화합물은 에틸렌의 올리고머화 반응용 촉매 시스템에 적용되어 우수한 촉매 활성과 1-헥센 또는 1-옥텐에 대한 높은 선택성을 나타낼 수 있다.
본 발명에서 "촉매 조성물"은 크롬 소스, 리간드 화합물 및 조촉매를 포함하는 3 성분, 또는 전이금속 화합물 및 조촉매의 2 성분이 동시에 또는 임의의 순서로 첨가되어 활성이 있는 촉매 조성물로 수득될 수 있는 상태의 것을 의미한다. 여기서, 촉매 조성물은 촉매 시스템으로도 지칭될 수 있고, 본 발명에서 촉매 조성물과 촉매 시스템은 동일한 의미를 나타낸다. 상기 촉매 조성물의 3 성분 또는 2 성분은 용매 및 단량체의 존재 또는 부존재 하에 첨가될 수 있으며, 담지 또는 비담지 상태로 사용될 수 있다.
본 발명은 상기 리간드 화합물, 크롬 및 조촉매를 포함하는 촉매 조성물을 제공한다. 상기 화학식 1로 표시되는 리간드 화합물과 크롬은 앞서 기재한 바와 같이, 배위되어 유기 크롬 화합물을 형성할 수 있다. 즉, 상기 촉매 시스템은 크롬, 상기 화학식 1로 표시되는 리간드 화합물 및 조촉매를 포함하는 3성분계 촉매 시스템이거나, 상기 유기 크롬 화합물 및 조촉매를 포함하는 2성분계 촉매 시스템일 수 있다. 구체적인 예로, 상기 촉매 조성물은 상기 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬을 포함하는 유기 크롬 화합물 및 조촉매를 포함하는 것일 수 있다. 또한, 상기 촉매 조성물은 상기 유기 크롬 화합물에 조촉매의 일부 성분이 결합된 크롬 화합물을 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 크롬은 크롬 소스로부터 유래된 것일 수 있고, 크롬 소스는 크롬의 산화 상태가 0 내지 6인 유기 또는 무기 크롬 화합물일 수 있다. 구체적인 예로, 상기 크롬 소스는 크롬 금속, 또는 임의의 유기 또는 무기 라디칼이 크롬에 결합된 화합물일 수 있다. 여기서, 상기 유기 라디칼은 라디칼 당 1 내지 20의 탄소 원자를 갖는 알킬, 알콕시, 에스테르, 케톤, 아미도, 카르복실레이트 라디칼 등일 수 있고, 상기 무기 라디칼은 할라이드, 황산염, 산화물 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 크롬 소스는 올레핀의 올리고머화에 높은 활성을 나타내고, 사용 및 입수가 쉬운 화합물로서, 크로뮴(III) 아세틸아세토네이트, 크로뮴(III) 클로라이드 테트라하이드로퓨란, 크로뮴(III) 2-에틸헥사노에이트, 크로뮴(III) 아세테이트, 크로뮴(III) 부티레이트, 크로뮴(III) 펜타노에이트, 크로뮴(III) 라우레이트, 크로뮴(III) 트리스(2,2,6,6-테트라메틸-3.5-헵테인디오네이트) 및 크로뮴(III) 스테아레이트로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.
본 발명의 일 실시예에 따르면, 상기 조촉매는 하기 화학식 6 내지 화학식 9로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 6]
-[Al(R13)-O]a-
상기 화학식 6에서, R13은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이고, a는 2 이상의 정수이다.
[화학식 7]
E(R14)3
상기 화학식 7에서, E는 알루미늄 또는 보론이고, R14는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이다.
[화학식 8]
[L-H]+[G(Y)4]-
[화학식 9]
[L]+[G(Y)4]-
상기 화학식 8 및 9에서, L은 중성 또는 양이온성 루이스 산이고, [L-H]+는 브뢴스테드 산이며, G는 13족 원소이며, Y는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고, 여기서, 알킬기 또는 아릴기가 치환되는 경우, 치환기는 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물은 복수의 방법에 의해 제조될 수 있다. 구체적인 예로서, 첫 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 6 또는 화학식 7로 표시되는 화합물을 접촉시키는 단계를 포함하여 제조될 수 있다. 두 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 6 또는 화학식 7로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 첨가하는 단계를 포함하여 제조될 수 있다. 세 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 접촉시키는 단계를 포함하여 제조될 수 있다. 네 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 6 또는 화학식 7로 표시되는 화합물을 첨가하는 단계를 포함하여 제조될 수 있다. 다섯 번째로 상기 촉매 조성물은 상기 크롬 소스와 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 접촉시켜 반응물을 얻는 단계; 및 상기 반응물에 상기 리간드 화합물을 접촉시키는 단계를 포함하여 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물 제조방법들 중에서 첫 번째 방법 또는 세 번째 방법의 경우, 상기 유기 크롬 화합물 대비 상기 화학식 6 또는 화학식 7로 표시되는 화합물의 몰비는 각각 1:2 내지 5,000일 수 있고, 구체적인 예로 1:100 내지 3,000일 수 있으며, 더욱 구체적인 예로 1:300 내지 1,500일 수 있고, 이 범위 내에서 유기 크롬 화합물의 알킬화를 완전히 진행시켜, 촉매 조성물의 활성도를 향상시킬 수 있고, 잔류하는 알킬화제 사이의 부반응으로 인해, 알킬화된 유기 크롬 화합물의 활성화가 저하되는 것을 방지함과 동시에, 경제성과 제조된 선형 알파-올레핀의 순도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물 제조방법들 중에서 두 번째 방법의 경우, 상기 유기 크롬 화합물 대비 화학식 8 또는 화학식 9로 표시되는 화합물의 몰비는 1:1 내지 500일 수 있고, 구체적인 예로 1:1 내지 50일 수 있으며, 더욱 구체적인 예로 1:1 내지 1:25일 수 있고, 이 범위 내에서 활성화제의 양이 충분하여, 금속 화합물의 활성화가 완전히 이루어져 촉매 조성물의 활성도가 향상되고, 잔류하는 활성화제를 최소화하여 경제성과 제조된 선형 알파-올레핀의 순도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 6으로 표시되는 화합물은 알킬알루미녹산일 수 있고, 구체적인 예로, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등일 수 있으며, 더욱 구체적인 예로 메틸알루미녹산일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 7로 표시되는 화합물은 트리알킬 알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 디알킬 알루미늄 하이드라이드, 알킬 알루미늄 디하이드라이드, 트리알킬보론 등일 수 있다. 구체적인 예로, 상기 화학식 6으로 표시되는 화합물은 트리메틸 알루미늄, 트리에틸 알루미늄, 트리이소부틸 알루미늄, 트리프로필 알루미늄, 트리부틸 알루미늄, 트리이소프로필 알루미늄, 트리-s-부틸 알루미늄, 트리시클로펜틸 알루미늄, 트리펜틸 알루미늄, 트리이소펜틸 알루미늄, 트리헥실 알루미늄, 트리옥틸 알루미늄, 에틸디메틸 알루미늄, 메틸디에틸 알루미늄, 트리페닐 알루미늄, 트리-p-톨릴 알루미늄 등 트리알킬 알루미늄; 디에틸알루미늄 클로라이드(diethylaluminum chloride) 등 디알킬알루미늄 할라이드; 디에틸 알루미늄 하이드라이드, 디-n-프로필 알루미늄 하이드라이드, 디이소프로필 알루미늄 하이드라이드, 디-n-부틸 알루미늄 하이드라이드, 디부틸 알루미늄 하이드라이드, 디이소부틸 알루미늄 하이드라이드(DIBAH), 디-n-옥틸 알루미늄 하이드라이드, 디페닐 알루미늄 하이드라이드, 디-p-톨릴 알루미늄 하이드라이드, 디벤질 알루미늄 하이드라이드, 페닐에틸 알루미늄 하이드라이드, 페닐-n-프로필 알루미늄 하이드라이드, 페닐이소프로필 알루미늄 하이드라이드, 페닐-n-부틸 알루미늄 하이드라이드, 페닐이소부틸 알루미늄 하이드라이드, 페닐-n-옥틸 알루미늄 하이드라이드, p-톨릴에틸 알루미늄 하이드라이드, p-톨릴-n-프로필 알루미늄 하이드라이드, p-톨릴이소프로필 알루미늄 하이드라이드, p-톨릴-n-부틸 알루미늄 하이드라이드, p-톨릴이소부틸 알루미늄 하이드라이드, p-톨릴-n-옥틸 알루미늄 하이드라이드, 벤질에틸 알루미늄 하이드라이드, 벤질-n-프로필 알루미늄 하이드라이드, 벤질이소프로필 알루미늄 하이드라이드, 벤질-n-부틸 알루미늄 하이드라이드, 벤질이소부틸 알루미늄 하이드라이드 또는 벤질-n-옥틸 알루미늄 하이드라이드 등의 디알킬 알루미늄 하이드라이드; n-프로필 알루미늄 디하이드라이드, 이소프로필 알루미늄 디하이드라이드, n-부틸 알루미늄 디하이드라이드, 이소부틸 알루미늄 디하이드라이드, 또는 n-옥틸알루미늄 디하이드라이드 등 알킬 알루미늄 디하이드라이드; 트리메틸 보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등 트리알킬보론 등 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 8 또는 화학식 9로 표시되는 화합물은 트리메틸암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리부틸암모늄 테트라페닐보레이트, N,N-디메틸아닐리늄 테트라페닐보레이트, N,N-디에틸아닐리늄 테트라페닐보레이트, 트리메틸암모늄 테트라(p-톨릴)보레이트, 트리에틸암모늄 테트라(p-톨릴)보레이트, 트리프로필암모늄 테트라(p-톨릴)보레이트, 트리부틸암모늄 테트라(p-톨릴)보레이트, N,N-디메틸아닐리늄 테트라(p-톨릴)보레이트, N,N-디에틸아닐리늄 테트라(p-톨릴)보레이트, 트리메틸암모늄 테트라(o,p-디메틸페닐)보레이트, 트리에틸암모늄 테트라(o,p-디메틸페닐)보레이트, 트리프로필암모늄 테트라(o,p-디메틸페닐)보레이트, 트리부틸암모늄 테트라(o,p-디메틸페닐)보레이트, N,N-디메틸아닐리늄 테트라(o,p-디메틸페닐)보레이트, N,N-디에틸아닐리늄 테트라(o,p-디메틸페닐)보레이트, 트리메틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리프로필암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(p-트리플루오로메틸페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리부틸암모늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디옥타데실아닐리늄 테트라키스(펜타플루오로페닐) 보레이트, 트리메틸포스포늄 테트라페닐보레이트, 트리에틸포스포늄 테트라페닐보레이트, 트리프로필포스포늄 테트라페닐보레이트, 트리부틸포스포늄 테트라페닐보레이트, 트리메틸카보늄 테트라페닐보레이트, 트리에틸카보늄 테트라페닐보레이트, 트리프로필카보늄 테트라페닐보레이트, 트리부틸카보늄 테트라페닐보레이트, 트리메틸암모늄 테트라페닐알루미네이트, 트리에틸암모늄 테트라페닐알루미네이트, 트리프로필암모늄 테트라페닐알루미네이트, 트리부틸암모늄 테트라페닐알루미네이트, 트리메틸암모늄 테트라(p-톨릴)알루미네이트, 트리에틸암모늄 테트라(p-톨릴)알루미네이트, 트리프로필암모늄 테트라(p-톨릴)알루미네이트, 트리부틸암모늄 테트라(p-톨릴)알루미네이트 등 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물을 형성하는 성분들의 함량비는 촉매 활성과 선형 알파-올레펜에 대한 선택성 등을 고려하여 결정될 수 있다. 구체적인 예로, 상기 촉매 조성물이 3 성분계 촉매 조성물인 경우, 상기 리간드 화합물의 디포스피노 아미닐 잔기:크롬 소스:조촉매의 몰비는 약 1:1:1 내지 약 10:1:10,000, 또는 약 1:1:100 내지 5:1:3,000으로 조절될 수 있다. 또한, 상기 촉매 조성물이 2 성분계 촉매 조성물인 경우, 상기 유기 크롬 화합물의 디포스피노 아미닐 잔기:조촉매의 몰비는 1:1 내지 1:10,000, 또는 1:1 내지 1:5,000, 또는 1:1 내지 1:3,000으로 조절될 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물 제조 시, 반응 용매는 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매; 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물을 형성하는 성분들은, 동시에 또는 임의의 순서로 적절한 용매 및 단량체의 존재 또는 부존재 하에 첨가되어, 활성이 있는 촉매 조성물로 작용할 수 있다. 이 때, 적합한 용매로는 헵탄, 톨루엔, 시클로헥산, 메틸시클로헥산, 1-헥센, 1-옥텐, 디에틸에테르, 테트라히드로푸란, 아세토니트릴, 디클로로메탄, 클로로포름, 클로로벤젠, 메탄올, 아세톤 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기 크롬 화합물 및 조촉매는 담체에 담지된 형태로 이용할 수 있고, 이 때, 담체는 실리카 또는 알루미나일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물은 담체를 더 포함할 수 있다. 구체적인 예로, 상기 화학식 1로 표시되는 리간드 화합물은 담체에 담지된 형태로 에틸렌 올리고머화 반응에 적용될 수 있다. 상기 담체는 담지 촉매에 적용되는 금속, 금속 염 또는 금속 산화물 등일 수 있고, 구체적인 예로, 상기 담체는 실리카, 실리카-알루미나, 실리카-마그네시아 등일 수 있으며, Na2O, K2CO3, BaSO4, Mg(NO3)2 등과 같은 금속의 산화물, 탄산염, 황산염, 질삼염 성분을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물은 에틸렌의 3량화 또는 4량화 반응용으로 사용될 수 있으며, 앞서 기재한 바에 의해 높은 선택성으로, 1-헥센 또는 1-옥텐을 제조할 수 있다.
에틸렌 올리고머화 방법
본 발명은 상기 촉매 조성물의 존재 하에, 에틸렌을 올리고머화하는 단계(S10)를 포함하는 에틸렌 올리고머화 방법으로서 선형 알파-올레핀 제조방법을 제공한다.
본 발명에서 "올리고머화"는 올레핀이 소중합 되는 것을 의미한다. 중합되는 올레핀의 개수에 따라 삼량화(trimerization), 사량화(tetramerization)라고 불리며, 이를 총칭하여 다량화(multimerization)라고 한다. 특히 본 명세서에서는 에틸렌으로부터 LLDPE의 주요 공단량체인 1-헥센 및 1-옥텐을 선택적으로 제조하는 것을 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 반응은 에틸렌의 3량화 또는 4량화 반응일 수 있고, 이에 따른 반응 결과물로 1-헥센 또는 1-옥텐이 형성되어, 상기 선형 알파-올레핀은 1-헥센, 1-옥텐 또는 이들의 혼합물인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 방법은 에틸렌을 원료로 앞서 기재한 촉매 조성물과 통상적인 장치 및 접촉 기술을 적용하여 수행될 수 있다. 구체적인 예로, 상기 에틸렌의 올리고머화 반응은 불활성 용매의 존재 또는 부존재 하에, 균질 액상 반응, 또는 상기 촉매 조성물의 일부 또는 전부가 용해되지 않은 형태인 슬러리 반응, 또는 생성물인 알파-올레핀이 주 매질로 작용하는 벌크상 반응, 또는 가스상 반응으로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 반응은 불활성 용매 하에서 수행될 수 있다. 구체적인 예로, 상기 불활성 용매는 벤젠, 톨루엔, 크실렌, 큐멘, 클로로벤젠, 디클로로벤젠, 헵탄, 시클로헥산, 메틸시클로헥산, 메틸시클로펜탄, n-헥산, 1-헥센, 1-옥텐 및 2,2,4-트리메틸펜탄 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 반응은 0 ℃ 내지 200 ℃, 또는 0 ℃ 내지 150 ℃, 또는 30 ℃ 내지 100 ℃, 또는 50 ℃ 내지 100 ℃의 온도 하에서 수행될 수 있다. 또한, 상기 반응은 15 psig 내지 3000 psig, 또는 15 psig 내지 1500 psig, 또는 15 psig 내지 1,000 psig의 압력 하에서 수행될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
합성예 및 비교 합성예
합성예 1: 화학식 2-1로 표시되는 리간드 화합물의 합성
[화학식 2-1]
Figure PCTKR2023002968-appb-img-000041
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로펜틸 아민(cyclopentyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-1로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-1로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로펜틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cyclopentyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.23-7.17(m, 16H), 3.50(pent, 1H), 2.27-2.14(m, 2H), 1.77-1.63(m, 2H), 1.42-1.15(m, 24H), 1.00-0.86(m, 36H), 0.87-0.81(m, 4H), 0.79-0.67(m, 24H)
합성예 2: 화학식 2-2로 표시되는 리간드 화합물의 합성
[화학식 2-2]
Figure PCTKR2023002968-appb-img-000042
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로헥실 아민(cyclohexyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-2로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-2로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로헥실-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cyclopentyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.20-7.17(m, 16H), 3.52(pent, 1H), 2.29-2.15(m, 2H), 1.75-1.61(m, 4H), 1.40-1.15(m, 24H), 1.00-0.88(m, 36H), 0.86-0.80(m, 4H), 0.78-0.68(m, 24H)
합성예 3: 화학식 2-3으로 표시되는 리간드 화합물의 합성
[화학식 2-3]
Figure PCTKR2023002968-appb-img-000043
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로헵틸 아민(cycloheptyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-3으로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-3으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.15-7.16(m, 16H), 3.65(pent, 1H), 2.35-2.22(m, 2H), 1.94-1.86(m, 2H), 1.60-1.45(m, 4H), 1.44-1.15(m, 24H), 1.00-0.86(m, 36H), 0.85-0.79(m, 4H), 0.78-0.68(m, 24H)
합성예 4: 화학식 2-4로 표시되는 리간드 화합물의 합성
[화학식 2-4]
Figure PCTKR2023002968-appb-img-000044
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로옥틸 아민(cyclooctyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-4로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-4로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로옥틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cyclooctyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.10-7.15(m, 16H), 3.78(pent, 1H), 2.40-2.28(m, 2H), 1.94-1.86(m, 2H), 1.67-1.49(m, 4H), 1.48-1.15(m, 24H), 1.00-0.86(m, 36H), 0.85-0.79(m, 6H), 0.78-0.68(m, 24H)
합성예 5: 화학식 2-5로 표시되는 리간드 화합물의 합성
[화학식 2-5]
Figure PCTKR2023002968-appb-img-000045
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2,3-디히드로-1H-인덴-2-일 아민(2,3-dihydro-1H-inden-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-5로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-5로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(2,3-디히드로-1H-인덴-2-일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(2,3-dihydro-1H-inden-2-yl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.80-7.15(m, 16H), 7.10-6.90(m, 4H), 4.65(pent, 1H), 3.73-3.61(m, 2H), 2.75-2.67(m, 2H), 1.43-1.29(m, 24H), 1.01-0.92(m, 36H), 0.80-0.71(m, 24H)
합성예 6: 화학식 2-6으로 표시되는 리간드 화합물의 합성
[화학식 2-6]
Figure PCTKR2023002968-appb-img-000046
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 1,2,3,4-테트라히드로나프탈렌-2-일 아민(1,2,3,4-tetrahydronaphthalen-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-6으로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-6으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(1,2,3,4-테트라히드로나프탈렌-2-일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(1,2,3,4-tetrahydronaphthalen-2-yl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.10-7.15(m, 16H), 7.08-6.89(m, 4H), 3.86(pent, 1H), 3.42-3.29(m, 1H), 3.01-2.87(m, 3H), 1.69-1.50(m, 2H), 1.44-1.16(m, 24H), 0.99-0.85(m, 36H), 0.83-0.65(m, 24H)
합성예 7: 화학식 2-7로 표시되는 리간드 화합물의 합성
[화학식 2-7]
Figure PCTKR2023002968-appb-img-000047
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 이소프로필 아민(isopropyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-7로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-7로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-이소프로필-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-isopropyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.20-7.15(m, 16H), 3.45(pent, 1H), 1.67(d, 6H), 1.39-1.15(m, 24H), 1.01-0.89(m, 36H), 0.80-0.67(m, 24H)
합성예 8: 화학식 2-8로 표시되는 리간드 화합물의 합성
[화학식 2-8]
Figure PCTKR2023002968-appb-img-000048
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 3-메틸부탄-2-일 아민(3-methylbutan-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-8로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-8로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(3-메틸부탄-2-일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(3-methylbutan-2-yl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.10-7.20(m, 16H), 3.65-3.52(m, 1H), 1.82-1.70(m, 1H), 1.41-1.16(m, 24H), 1.07(d, 3H), 0.99-0.87(m, 36H), 0.80-0.69(m, 27H), 0.56(d, 3H)
합성예 9: 화학식 2-9로 표시되는 리간드 화합물의 합성
[화학식 2-9]
Figure PCTKR2023002968-appb-img-000049
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 벤질 아민(benzyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-9로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-9로 표시되는 리간드 화합물>
N-벤질-N-(비스(3-(트리프로필실릴)페닐)포스판일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-benzyl-N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.94-7.15(m, 16H), 7.12-6.85(m, 5H), 4.74(s, 2H), 1.39-1.15(m, 24H), 0.99-0.88(m, 36H), 0.80-0.68(m, 24H)
합성예 10: 화학식 2-10으로 표시되는 리간드 화합물의 합성
[화학식 2-10]
Figure PCTKR2023002968-appb-img-000050
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 페네틸 아민(phenethyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-10으로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-10으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-페네틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-phenethyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.18-7.14(m, 16H), 7.12-6.84(m, 5H), 3.48(t, 2H), 2.33(t, 2H), 1.40-1.14(m, 24H), 1.02-0.90(m, 36H), 0.81-0.67(m, 24H)
합성예 11: 화학식 2-11로 표시되는 리간드 화합물의 합성
[화학식 2-11]
Figure PCTKR2023002968-appb-img-000051
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 4-페닐시클로헥실아민(4-phenylcyclohexylamine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-11로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-11으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.15-7.18(m, 18H), 7.13-7.00(m, 3H), 3.64(pent, 1H), 2.88-2.72(m, 1H), 2.49(d, 1H), 2.46-2.34(m, 2H), 2.16(d, 1H), 1.87-1.74(m, 2H), 1.71-1.60(m, 1H), 1.58-1.49(m, 1H), 1.39-1.28(m, 24H), 0.99-0.90(m, 36H), 0.78-0.70(m, 24H)
합성예 12: 화학식 3-1로 표시되는 리간드 화합물의 합성
[화학식 3-1]
Figure PCTKR2023002968-appb-img-000052
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2,3-디히드로-1H-인덴-2-일 아민(2,3-dihydro-1H-inden-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 3-1로 표시되는 리간드 화합물을 수득하였다.
<화학식 3-1로 표시되는 리간드 화합물>
N-(비스(3-(트리부틸실릴)페닐)포스판일)-N-(2,3-디히드로-1H-인덴-2-일)-1,1-비스(3-(트리부틸실릴)페닐)포스판아민)
N-(bis(3-(tributylsilyl)phenyl)phosphaneyl)-N-(2,3-dihydro-1H-inden-2-yl)-1,1-bis(3-(tributylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.83-7.17(m, 16H), 7.11-6.92(m, 4H), 4.59(pent, 1H), 3.68-3.57(m, 2H), 2.71-2.65(m, 2H), 1.39-1.27(m, 48H), 0.94-0.84(m, 36H), 0.83-0.75(m, 24H)
합성예 13: 화학식 4-1로 표시되는 리간드 화합물의 합성
[화학식 4-1]
Figure PCTKR2023002968-appb-img-000053
건조된 플라스크에 시클로헵틸아민(cycloheptylamine) 11 mmol(2.2 eq)과 디클로로메탄(dichloromethane) 10 ml를 질소 분위기 하에서 투입하고 교반을 시작하였다. 상기 플라스크에 클로로비스(3-(트리프로필실릴)페닐)포스판(chlorobis(3-(tripropylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 디클로로메탄(dichloromethane) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 중간체 화합물인 N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol을 수득하였다.
이어서, 건조된 플라스크에 상기 수득된 중간체 화합물인 N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol(1 eq)와 메틸 t-부틸 에테르(methyl tert-butyl ether) 13 ml를 질소 분위기 하에서 투입하고 -78 ℃ 냉각한 후, 교반을 시작하였다. 상기 플라스크에 n-부틸리튬(n-butyl lithium)이 헥산에 2.5 M로 용해된 용액 2.1 ml(5.25 mmol, 1.05 eq)를 천천히 투입하고, 1 시간 동안 교반시킨 후, 클로로비스(3-(트리부틸실릴)페닐)포스판(chlorobis(3-(tributylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 메틸 t-부틸 에테르(methyl tert-butyl ether) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 화학식 4-1로 표시되는 리간드 화합물 4 mmol(수율 80 %)을 수득하였다.
<화학식 4-1로 표시되는 리간드 화합물>
N-(비스(3-(트리부틸실릴)페닐)포스판일)-N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민
N-(bis(3-(tributylsilyl)phenyl)phosphaneyl)-N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine
1H NMR (500 MHz, C6D6): δ 8.16-7.15(m, 16H), 3.64(pent, 1H), 2.34-2.21(m, 2H), 1.93-1.85(m, 2H), 1.59-1.45(m, 4H), 1.43-1.15(m, 36H), 1.00-0.85(m, 36H), 0.85-0.79(m, 16H), 0.78-0.68(m, 12H)
합성예 14: 화학식 4-2로 표시되는 리간드 화합물의 합성
[화학식 4-2]
Figure PCTKR2023002968-appb-img-000054
건조된 플라스크에 4-페닐시클로헥실아민(4-phenylcyclohexylamine) 11 mmol(2.2 eq)과 디클로로메탄(dichloromethane) 10 ml를 질소 분위기 하에서 투입하고 교반을 시작하였다. 상기 플라스크에 클로로비스(3-(트리프로필실릴)페닐)포스판(chlorobis(3-(tripropylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 디클로로메탄(dichloromethane) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 중간체 화합물인 N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol을 수득하였다.
이어서, 건조된 플라스크에 상기 수득된 중간체 화합물인 N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol(1 eq)와 메틸 t-부틸 에테르(methyl tert-butyl ether) 13 ml를 질소 분위기 하에서 투입하고 -78 ℃ 냉각한 후, 교반을 시작하였다. 상기 플라스크에 n-부틸리튬(n-butyl lithium)이 헥산에 2.5 M로 용해된 용액 2.1 ml(5.25 mmol, 1.05 eq)를 천천히 투입하고, 1 시간 동안 교반시킨 후, 클로로비스(3-(트리부틸실릴)페닐)포스판(chlorobis(3-(tributylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 메틸 t-부틸 에테르(methyl tert-butyl ether) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 화학식 4-1로 표시되는 리간드 화합물 4 mmol(수율 80 %)을 수득하였다.
<화학식 4-2로 표시되는 리간드 화합물>
N-(비스(3-(트리부틸실릴)페닐)포스판일)-N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민
N-(bis(3-(tributylsilyl)phenyl)phosphaneyl)-N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine
1H NMR (500 MHz, C6D6): δ 8.14-7.17(m, 18H), 7.14-7.00(m, 3H), 3.61(pent, 1H), 2.87-2.72(m, 1H), 2.50(d, 1H), 2.47-2.33(m, 2H), 2.15(d, 1H), 1.88-1.75(m, 2H), 1.70-1.60(m, 1H), 1.59-1.49(m, 1H), 1.39-1.26(m, 36H), 0.99-0.87(m, 36H), 0.82-0.70(m, 24H)
합성예 15: 화학식 5-1로 표시되는 리간드 화합물의 합성
[화학식 5-1]
Figure PCTKR2023002968-appb-img-000055
Org. Chem. Front, 2015, 2, 536을 참고하여, 1,3-디브로모 벤젠(1,3-dibromo benzene) 20 mmol(1 eq)을 디에틸 에테르(diethyl ether)에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(1 eq)을 적하(dropwise)로 첨가하고, 1 시간 동안 교반하였다. 이후, 1-브로모데칸(1-bromodecane) 22 mmol(1.1 eq)을 첨가한 후, 상온으로 승온시키고 4 시간 동안 추가로 교반하였다. 이어서, 물을 첨가하여 퀜칭한 후, 디에틸 에테르(diethyl ether)로 추출하고, 브린(brine)으로 세척한 후, 황산 마그네슘(MgSO4)으로 건조하고, 진공에서 용매를 제거하였다. 이 후, 헥산을 이용하여 실리카 컬럼을 통해 3-(n-데실)페닐 브로마이드(3-(n-decyl)phenyl bromide)를 분리하였다.
3-(n-데실)페닐 브로마이드(3-(n-decyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2,3-디히드로-1H-인덴-2-일 아민(2,3-dihydro-1H-inden-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 5-1로 표시되는 리간드 화합물을 수득하였다.
<화학식 5-1로 표시되는 리간드 화합물>
N-(비스(3-데실페닐)포스판일)-1,1-비스(3-데실페닐)-N-(2,3-디히드로-1H-인덴-2-일)포스판아민)
N-(bis(3-decylphenyl)phosphaneyl)-1,1-bis(3-decylphenyl)-N-(2,3-dihydro-1H-inden-2-yl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.76-7.12(m, 16H), 7.07-6.89(m, 4H), 4.49(pent, 1H), 3.67-3.55(m, 2H), 2.69-2.60(m, 2H), 2.43-2.28(t, 24H), 1.43-1.19(m, 192H), 0.98-0.85(t, 36H)
비교 합성예 1: 화학식 10으로 표시되는 리간드 화합물의 합성
[화학식 10]
Figure PCTKR2023002968-appb-img-000056
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 6-운데칸아민(6-undecanamine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 9로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 2: 화학식 11로 표시되는 리간드 화합물의 합성
[화학식 11]
Figure PCTKR2023002968-appb-img-000057
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 4,4'-메틸렌비스(시클로헥산-1-아민)(4,4'-methylenebis(cyclohexan-1-amine)) 0.5 mmol(0.5 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 10으로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 3: 화학식 12로 표시되는 리간드 화합물의 합성
[화학식 12]
Figure PCTKR2023002968-appb-img-000058
ChemCatChem 2019, 11, 4351을 참조하여, 4-(트리이소프로필실릴)페닐 브로마이드(4-(triisopropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 이소프로필 아민(isopropyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 11로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 4: 화학식 13으로 표시되는 리간드 화합물의 합성
[화학식 13]
Figure PCTKR2023002968-appb-img-000059
3-(디메틸옥틸실릴)페닐 브로마이드(3-(dimethyloctylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 이소프로필 아민(isopropyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 12로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 5: 화학식 14로 표시되는 리간드 화합물의 합성
[화학식 14]
Figure PCTKR2023002968-appb-img-000060
1-브로모-3,4-디메틸벤젠(1-bromo-3,4-dimethylbenzene) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2-이소프로필시클로헥실 아민(2-isopropylcyclohexyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 13으로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 6: 화학식 15로 표시되는 리간드 화합물의 합성
[화학식 15]
Figure PCTKR2023002968-appb-img-000061
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로도데실 아민(cyclododecyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 14로 표시되는 리간드 화합물을 수득하였다.
실시예 및 비교예
실시예 1-1
아르곤 가스 분위기 하에서, 크로뮴(III) 아세틸아세토네이트(Cr(acac)3) 17.5 mg(0.05 mmol)과 상기 합성예 1에 따른 화학식 2-1로 표시되는 리간드 화합물 0.5 mmol을 플라스크에 담은 후, 메틸시클로헥산 100 ml를 투입하고 교반하여 5 mM(Cr 기준)의 촉매 용액을 준비하였다.
600 ml 용량의 Parr 반응기를 준비하여 120 ℃로 2 시간 동안 진공을 잡은 후, 내부를 아르곤으로 치환하고 온도를 80 ℃로 내렸다. 그 후, 메틸시클로헥산 180 ml 및 2 ml의 MMAO(isoheptane solution, Al/Cr=600)를 주입하고, 상기 촉매 용액 2 ml(1.0 μmol Cr)을 주입하였다. 2분 동안 1,000 rpm으로 교반한 후, 30 bar로 맞춰진 에틸렌 라인의 벨브를 열어 반응기 안을 에틸렌으로 채운 다음 1,000 rpm 으로 60 분 동안 교반하였다. 에틸렌 라인 벨브를 잠그고, 반응기를 드라이 아이스/아세톤 bath를 이용하여 0 ℃로 식힌 후, 미반응 에틸렌을 천천히 vent한 후 0.5 ml의 노네인(GC internal standard)을 넣어주었다. 10 초 동안 교반한 다음, 반응기의 액체 부분을 2 ml 취하여 물로 퀜칭하고, 얻어진 유기 부분을 PTFE 시린지 필터로 여과하여 GC-FID 샘플을 만들었다. 그리고 액체 생성물(liquid product)의 distribution을 GC 분석하였다(Agilent社 6890N, Alltech AT-5 (30 m Х 0.32 mm ID Х 0.25 μm; series no. 12446)). 또한 남은 반응액에 ethanol/HCl(10 vol% of aqueous 12M HCl solution) 400 ml를 넣어 교반하고 필터하여 고체 생성물의 양을 분석하였다. 수득한 폴리머는 80 ℃ 진공 오븐에서 밤새 건조하였다.
실시예 2-1 내지 15-1 및 비교예 1-1 내지 6-1
촉매 종류를 하기 표 1과 같이 변경한 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 실시하였다.
구분 리간드 화합물 조촉매 크롬 소스
실시예 1-1 합성예 1(화학식 2-1) MMAO Cr(acac)3
실시예 2-1 합성예 2(화학식 2-2) MMAO Cr(acac)3
실시예 3-1 합성예 3(화학식 2-3) MMAO Cr(acac)3
실시예 4-1 합성예 4(화학식 2-4) MMAO Cr(acac)3
실시예 5-1 합성예 5(화학식 2-5) MMAO Cr(acac)3
실시예 6-1 합성예 6(화학식 2-6) MMAO Cr(acac)3
실시예 7-1 합성예 7(화학식 2-7) MMAO Cr(acac)3
실시예 8-1 합성예 8(화학식 2-8) MMAO Cr(acac)3
실시예 9-1 합성예 9(화학식 2-9) MMAO Cr(acac)3
실시예 10-1 합성예 10(화학식 2-10) MMAO Cr(acac)3
실시예 11-1 합성예 11(화학식 2-11) MMAO Cr(acac)3
실시예 12-1 합성예 12(화학식 3-1) MMAO Cr(acac)3
실시예 13-1 합성예 13(화학식 4-1) MMAO Cr(acac)3
실시예 14-1 합성예 14(화학식 4-2) MMAO Cr(acac)3
실시예 15-1 합성예 15(화학식 5-1) MMAO Cr(acac)3
비교예 1-1 비교 합성예 1(화학식 10) MMAO Cr(acac)3
비교예 2-1 비교 합성예 2(화학식 11) MMAO Cr(acac)3
비교예 3-1 비교 합성예 3(화학식 12) MMAO Cr(acac)3
비교예 4-1 비교 합성예 4(화학식 13) MMAO Cr(acac)3
비교예 5-1 비교 합성예 5(화학식 14) MMAO Cr(acac)3
비교예 6-1 비교 합성예 6(화학식 15) MMAO Cr(acac)3
실시예 1-2
아르곤 가스 분위기 하에서, 크로뮴(III) 클로라이드 테트라하이드로퓨란(Cr(THF)3Cl3) 0.5 mmol, 상기 합성예 1에 따른 화학식 2-1로 표시되는 리간드 화합물 0.5 mmol 및 조촉매로 N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트(AB) 0.5 mmol을 플라스크에 담은 후, 디클로로메탄 30 ml를 투입하고 1 시간 동안 교반한 후, 진공으로 용매를 제거하였다. 이후, 메틸시클로헥산에 용해하여 여과한 후, 다시 진공으로 용매를 제거하고, 메틸시클로헥산에 용해시켜 0.15 mM(Cr 기준)의 촉매 용액을 준비하였다.
600 ml 용량의 Parr 반응기를 준비하여 120 ℃로 2 시간 동안 진공을 잡은 후, 내부를 아르곤으로 치환하고 온도를 70 ℃로 내렸다. 그 후, 메틸시클로헥산 180 ml 및 2 ml의 활성화제로 디이소부틸 알루미늄 하이드라이드 725 μmol을 주입하고, 상기 촉매 용액 5 ml(0.75 μmol Cr)을 주입하였다. 2분 동안 1,000 rpm으로 교반한 후, 40 bar로 맞춰진 에틸렌 라인의 벨브를 열어 반응기 안을 에틸렌으로 채운 다음 1,000 rpm 으로 60 분 동안 교반하였다. 에틸렌 라인 벨브를 잠그고, 반응기를 드라이 아이스/아세톤 bath를 이용하여 0 ℃로 식힌 후, 미반응 에틸렌을 천천히 vent한 후 0.5 ml의 노네인(GC internal standard)을 넣어주었다. 10 초 동안 교반한 다음, 반응기의 액체 부분을 2 ml 취하여 물로 퀜칭하고, 얻어진 유기 부분을 PTFE 시린지 필터로 여과하여 GC-FID 샘플을 만들었다. 그리고 액체 생성물(liquid product)의 distribution을 GC 분석하였다(Agilent社 6890N, Alltech AT-5 (30 m Х 0.32 mm ID Х 0.25 μm; series no. 12446)). 또한 남은 반응액에 ethanol/HCl(10 vol% of aqueous 12M HCl solution) 400 ml를 넣어 교반하고 필터하여 고체 생성물의 양을 분석하였다. 수득한 폴리머는 80 ℃ 진공 오븐에서 밤새 건조하였다.
실시예 2-2 내지 15-2 및 비교예 1-2 내지 6-2
촉매 종류를 하기 표 2와 같이 변경한 것을 제외하고는, 상기 실시예 1-2와 동일한 방법으로 실시하였다.
구분 리간드 화합물 조촉매 크롬 소스
실시예 1-2 합성예 1(화학식 2-1) AB Cr(THF)3Cl3
실시예 2-2 합성예 2(화학식 2-2) AB Cr(THF)3Cl3
실시예 3-2 합성예 3(화학식 2-3) AB Cr(THF)3Cl3
실시예 4-2 합성예 4(화학식 2-4) AB Cr(THF)3Cl3
실시예 5-2 합성예 5(화학식 2-5) AB Cr(THF)3Cl3
실시예 6-2 합성예 6(화학식 2-6) AB Cr(THF)3Cl3
실시예 7-2 합성예 7(화학식 2-7) AB Cr(THF)3Cl3
실시예 8-2 합성예 8(화학식 2-8) AB Cr(THF)3Cl3
실시예 9-2 합성예 9(화학식 2-9) AB Cr(THF)3Cl3
실시예 10-2 합성예 10(화학식 2-10) AB Cr(THF)3Cl3
실시예 11-2 합성예 11(화학식 2-11) AB Cr(THF)3Cl3
실시예 12-2 합성예 12(화학식 3-1) AB Cr(THF)3Cl3
실시예 13-2 합성예 13(화학식 4-1) AB Cr(THF)3Cl3
실시예 14-2 합성예 14(화학식 4-2) AB Cr(THF)3Cl3
실시예 15-2 합성예 15(화학식 5-1) AB Cr(THF)3Cl3
비교예 1-2 비교 합성예 1(화학식 10) AB Cr(THF)3Cl3
비교예 2-2 비교 합성예 2(화학식 11) AB Cr(THF)3Cl3
비교예 3-2 비교 합성예 3(화학식 12) AB Cr(THF)3Cl3
비교예 4-2 비교 합성예 4(화학식 13) AB Cr(THF)3Cl3
비교예 5-2 비교 합성예 5(화학식 14) AB Cr(THF)3Cl3
비교예 6-2 비교 합성예 6(화학식 15) AB Cr(THF)3Cl3
실험예
상기 실시예 및 비교예에 따른 에틸렌 올리고머화 반응의 결과를 하기 표 3 및 표 4에 나타내었다.
* 촉매 활성(ton/mol·Cr/hr): 수득한 액체 생성물 및 고체 생성물의 중량(ton)을 합한 생성물 총 중량(ton) 값으로부터, 촉매 활성을 계산하였다.
* 1-C6 및 1-C8 선택도(중량%): 액체 생성물의 distribution을 GC로 분석한 결과로부터 1-헥센(1-C6) 및 1-옥텐(1-C8)의 함유량을 계산하여, 생성물 총 중량 기준 1-헥센 또는 1-옥텐의 중량%를 계산하였다.
* Solid(중량%): 생성물 총 중량 기준 고체 생성물의 중량%를 계산하였다. 이는 용매에 용해되지 않은 불용성 고체로서 탄소수 약 40 이상의 폴리에틸렌이 생성된 정도를 나타내는 것이다.
구분 촉매 활성 1-C6 및 1-C8 선택도 Solid
1-C6 1-C8 Total
(ton/mol·Cr/hr) (wt%) (wt%) (wt%) (wt%)
실시예 1-1 324 33.7 51.6 85.3 0.56
실시예 2-1 394 38.4 47.6 86.0 0.61
실시예 3-1 435 35.4 54.9 90.3 0.42
실시예 4-1 329 39.1 48.7 87.8 0.52
실시예 5-1 354 35.6 52.2 87.8 0.48
실시예 6-1 385 37.9 49.0 86.9 0.46
실시예 7-1 378 38.1 57.5 85.6 0.51
실시예 8-1 341 39.3 46.8 86.5 0.53
실시예 9-1 244 27.5 51.6 79.1 0.63
실시예 10-1 239 26.8 58.0 84.8 0.60
실시예 11-1 385 38.1 48.0 86.1 0.49
실시예 12-1 367 35.8 54.2 90.0 0.49
실시예 13-1 451 35.2 55.4 90.6 0.45
실시예 14-1 388 37.9 47.8 85.7 0.41
실시예 15-1 260 34.0 50.4 84.4 0.46
비교예 1-1 213 37.2 51.0 88.2 0.88
비교예 2-1 35 35.4 53.1 88.5 1.09
비교예 3-1 156 32.8 54.1 86.9 0.76
비교예 4-1 225 37.1 50.9 88.0 0.81
비교예 5-1 210 40.1 48.2 88.7 0.50
비교예 6-1 227 37.4 51.1 88.5 0.75
구분 촉매 활성 1-C6 및 1-C8 선택도 Solid
1-C6 1-C8 Total
(ton/mol·Cr/hr) (wt%) (wt%) (wt%) (wt%)
실시예 1-2 135 27.8 59.9 87.7 0.58
실시예 2-2 185 23.5 61.0 84.5 0.65
실시예 3-2 201 26.1 62.9 89.0 0.47
실시예 4-2 118 32.9 57.0 89.9 0.69
실시예 5-2 157 26.6 62.0 88.6 0.52
실시예 6-2 188 25.4 60.7 86.1 0.56
실시예 7-2 179 24.1 62.1 86.2 0.50
실시예 8-2 151 32.5 57.2 89.7 0.45
실시예 9-2 110 18.6 64.0 82.6 0.67
실시예 10-2 103 17.9 65.1 83.0 0.61
실시예 11-2 157 23.1 60.9 84.0 0.41
실시예 12-2 185 25.8 62.5 88.3 0.60
실시예 13-2 197 25.8 62.5 88.3 0.45
실시예 14-2 163 22.7 60.5 83.2 0.37
실시예 15-2 121 24.5 60.6 85.1 0.59
비교예 1-2 79 29.0 56.2 85.2 1.16
비교예 2-2 7 29.7 55.7 85.4 1.60
비교예 3-2 58 25.8 60.3 86.1 1.10
비교예 4-2 67 29.0 54.5 83.5 1.26
비교예 5-2 0 - - - -
비교예 6-2 70 28.4 56.9 85.3 0.81
상기 표 3 및 4에 나타낸 바와 같이, 본 발명에 따른 리간드 화합물을 포함하는 촉매 조성물을 이용하여 에틸렌 올리고머화 반응을 실시하는 경우, 디포스피노 아미닐 잔기의 말단에 위치한 페닐이 메타 위치에 특정 탄소수의 알킬기 또는, 특정 탄소수의 알킬로 치환된 실릴기를 치환기로 갖는 것에 더하여, 질소 원자에 치환된 치환기로부터 P-N-P 작용기 주변의 입체 무리를 조절하여 촉매 활성, 선택성 및 안정성이 모두 향상된 것을 확인할 수 있었다.
이와 같은 결과로부터, 본 발명의 리간드 화합물을 포함하는 유기 크롬 화합물 및 촉매 조성물을 이용하여 에틸렌 올리고머화를 실시하는 경우, 높은 촉매 활성으로부터 생산성이 우수하면서도, 높은 1-헥센 및 1-옥텐 선택성으로 선형 알파-올레핀를 제조할 수 있는 것을 확인할 수 있었다.

Claims (19)

  1. 하기 화학식 1로 표시되는 리간드 화합물:
    [화학식 1]
    Figure PCTKR2023002968-appb-img-000062
    상기 화학식 1에서,
    R1 내지 R4는 각각 독립적으로 탄소수 5 내지 20의 알킬기 또는 트리알킬실릴기이고, 트리알킬실릴기의 알킬기는 탄소수 1 내지 4의 알킬기이고,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  2. 제1항에 있어서,
    R1 내지 R4는 각각 독립적으로 탄소수 8 내지 12의 알킬기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물.
  3. 제1항에 있어서,
    R1 내지 R4는 각각 독립적으로 n-데실기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물.
  4. 제1항에 있어서,
    R5는 탄소수 3 내지 5의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 5의 알킬기, 탄소수 5 내지 8의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 8의 시클로알킬기인 리간드 화합물.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 2로 표시되는 것인 리간드 화합물:
    [화학식 2]
    Figure PCTKR2023002968-appb-img-000063
    상기 화학식 2에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  6. 제5항에 있어서,
    상기 화학식 2로 표시되는 리간드 화합물은 하기 화학식 2-1 내지 화학식 2-11로 표시되는 리간드 화합물로 이루어진 군으로부터 선택된 1종인 리간드 화합물:
    [화학식 2-1]
    Figure PCTKR2023002968-appb-img-000064
    [화학식 2-2]
    Figure PCTKR2023002968-appb-img-000065
    [화학식 2-3]
    Figure PCTKR2023002968-appb-img-000066
    [화학식 2-4]
    Figure PCTKR2023002968-appb-img-000067
    [화학식 2-5]
    Figure PCTKR2023002968-appb-img-000068
    [화학식 2-6]
    Figure PCTKR2023002968-appb-img-000069
    [화학식 2-7]
    Figure PCTKR2023002968-appb-img-000070
    [화학식 2-8]
    Figure PCTKR2023002968-appb-img-000071
    [화학식 2-9]
    Figure PCTKR2023002968-appb-img-000072
    [화학식 2-10]
    Figure PCTKR2023002968-appb-img-000073
    [화학식 2-11]
    Figure PCTKR2023002968-appb-img-000074
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 3으로 표시되는 것인 리간드 화합물:
    [화학식 3]
    Figure PCTKR2023002968-appb-img-000075
    상기 화학식 3에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  8. 제7항에 있어서,
    상기 화학식 3으로 표시되는 리간드 화합물은 하기 화학식 3-1로 표시되는 리간드 화합물인 리간드 화합물:
    [화학식 3-1]
    Figure PCTKR2023002968-appb-img-000076
  9. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 4로 표시되는 것인 리간드 화합물:
    [화학식 4]
    Figure PCTKR2023002968-appb-img-000077
    상기 화학식 4에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  10. 제9항에 있어서,
    상기 화학식 4로 표시되는 리간드 화합물은 하기 화학식 4-1 또는 화학식 4-2로 표시되는 리간드 화합물인 리간드 화합물:
    [화학식 4-1]
    Figure PCTKR2023002968-appb-img-000078
    [화학식 4-2]
    Figure PCTKR2023002968-appb-img-000079
  11. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 5로 표시되는 것인 리간드 화합물:
    [화학식 5]
    Figure PCTKR2023002968-appb-img-000080
    상기 화학식 5에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이고,
    n은 4 내지 14이다.
  12. 제11항에 있어서,
    상기 화학식 5로 표시되는 리간드 화합물은 하기 화학식 5-1로 표시되는 리간드 화합물인 리간드 화합물:
    [화학식 5-1]
    Figure PCTKR2023002968-appb-img-000081
  13. 제1항에 따른 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬을 포함하는 유기 크롬 화합물.
  14. 제11항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물에서 N 및 두 개의 P 중 어느 하나 이상의 비공유 전자쌍이 크롬에 배위된 형태인 유기 크롬 화합물.
  15. 제1항에 따른 리간드 화합물, 크롬 및 조촉매를 포함하는 촉매 조성물.
  16. 제15항에 있어서,
    상기 크롬은 크롬 소스로부터 유래되고,
    상기 크롬 소스는 크로뮴(III) 아세틸아세토네이트, 크로뮴(III) 클로라이드 테트라하이드로퓨란, 크로뮴(III) 2-에틸헥사노에이트, 크로뮴(III) 아세테이트, 크로뮴(III) 부티레이트, 크로뮴(III) 펜타노에이트, 크로뮴(III) 라우레이트, 크로뮴(III) 트리스(2,2,6,6-테트라메틸-3.5-헵테인디오네이트) 및 크로뮴(III) 스테아레이트로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 촉매 조성물.
  17. 제15항에 있어서,
    상기 조촉매는 하기 화학식 6 내지 화학식 9로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 촉매 조성물:
    [화학식 6]
    -[Al(R13)-O]a-
    상기 화학식 6에서,
    R13은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이고,
    a는 2 이상의 정수이며,
    [화학식 7]
    E(R14)3
    상기 화학식 7에서,
    E는 알루미늄 또는 보론이고,
    R14는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이며,
    [화학식 8]
    [L-H]+[G(Y)4]-
    [화학식 9]
    [L]+[G(Y)4]-
    상기 화학식 8 및 화학식 9에서,
    L은 중성 또는 양이온성 루이스 산이고,
    [L-H]+는 브뢴스테드 산이며,
    G는 13족 원소이며,
    Y는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고, 여기서, 알킬기 또는 아릴기가 치환되는 경우, 치환기는 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다.
  18. 제15항에 따른 촉매 조성물의 존재 하에, 에틸렌을 올리고머화하는 단계(S10)를 포함하는 선형 알파-올레핀 제조방법.
  19. 제18항에 있어서,
    상기 선형 알파-올레핀은 1-헥센, 1-옥텐 또는 이들의 혼합물인 선형 알파-올레핀 제조방법.
PCT/KR2023/002968 2022-03-14 2023-03-03 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물 WO2023177129A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220031616 2022-03-14
KR10-2022-0031616 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023177129A1 true WO2023177129A1 (ko) 2023-09-21

Family

ID=88023935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002968 WO2023177129A1 (ko) 2022-03-14 2023-03-03 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물

Country Status (2)

Country Link
KR (1) KR20230134435A (ko)
WO (1) WO2023177129A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060002742A (ko) * 2002-12-20 2006-01-09 사솔 테크날러지 (프로프라이어터리) 리미티드 올레핀의 사량체화
KR20130142151A (ko) * 2010-12-29 2013-12-27 셰브론 필립스 케미컬 컴퍼니 엘피 올레핀 올리고머화 촉매 및 제조 및 사용방법
KR20150058048A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 리간드 화합물, 올레핀 올리고머화용 촉매계, 및 이를 이용한 올레핀 올리고머화 방법
CN105754019A (zh) * 2016-03-01 2016-07-13 中国石油化工股份有限公司 一种原位共聚制备长支链宽/双峰聚乙烯的催化剂组合物及使用方法
KR20160146482A (ko) * 2015-06-12 2016-12-21 주식회사 엘지화학 리간드 화합물, 유기 크롬 화합물, 올레핀 올리고머화용 촉매 시스템, 및 이를 이용한 올레핀의 올리고머화 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060002742A (ko) * 2002-12-20 2006-01-09 사솔 테크날러지 (프로프라이어터리) 리미티드 올레핀의 사량체화
KR20130142151A (ko) * 2010-12-29 2013-12-27 셰브론 필립스 케미컬 컴퍼니 엘피 올레핀 올리고머화 촉매 및 제조 및 사용방법
KR20150058048A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 리간드 화합물, 올레핀 올리고머화용 촉매계, 및 이를 이용한 올레핀 올리고머화 방법
KR20160146482A (ko) * 2015-06-12 2016-12-21 주식회사 엘지화학 리간드 화합물, 유기 크롬 화합물, 올레핀 올리고머화용 촉매 시스템, 및 이를 이용한 올레핀의 올리고머화 방법
CN105754019A (zh) * 2016-03-01 2016-07-13 中国石油化工股份有限公司 一种原位共聚制备长支链宽/双峰聚乙烯的催化剂组合物及使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAE HEE KIM, HYUN MO LEE, HEE SOO PARK, SUNG DONG KIM, SU JIN KWON, ATSUSHI TAHARA, HIDEO NAGASHIMA, BUN YEOUL LEE: "MAO-free and extremely active catalytic system for ethylene tetramerization : MAO-free ethylene tetramerization catalyst", APPLIED ORGANOMETALLIC CHEMISTRY, LONGMAN GROUP UK, LTD., HOBOKEN, USA, vol. 33, no. 4, 1 April 2019 (2019-04-01), Hoboken, USA, pages e4829, XP055662584, ISSN: 0268-2605, DOI: 10.1002/aoc.4829 *

Also Published As

Publication number Publication date
KR20230134435A (ko) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2016072783A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019235799A1 (ko) 비스포스핀 리간드 화합물, 크롬 화합물, 에틸렌 올리고머화 촉매 시스템, 및 에틸렌 올리고머 제조 방법
WO2018182174A1 (ko) 폴리올레핀-폴리스티렌계 다중블록 공중합체, 이를 제조하기 위한 유기 아연 화합물 및 폴리올레핀-폴리스티렌계 다중블록 공중합체 제조 방법
WO2018088820A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020184887A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2015133805A1 (ko) 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법
WO2020251264A1 (ko) 프로필렌-에틸렌 랜덤 공중합체
WO2023177129A1 (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물
WO2020184888A1 (ko) 전이 금속 화합물, 촉매 조성물 및 이를 이용한 폴리프로필렌의 제조 방법
WO2021210948A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2022060108A1 (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 시스템
WO2022173280A1 (ko) 환형올레핀계 단량체 중합용 이민계 리간드 함유 착체 촉매 및 이를 이용한 환형올레핀계 중합체의 제조방법
WO2018106028A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2019088377A1 (ko) 두 고리 구조를 갖는 포스포라미다이트 유도체, 이의 제조방법 및 그 용도
WO2020218874A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2023177130A1 (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2012153991A2 (ko) 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법
WO2024071940A1 (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물
WO2020251265A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
WO2017135638A1 (ko) 설폰아미드기 또는 아미드기를 포함하는 올레핀 복분해 반응용 전이금속 착물 및 이의 응용
WO2021162304A1 (ko) 음이온 중합 개시제, 음이온 중합 개시제 조성물 및 이의 제조방법
WO2023055205A1 (ko) 다중블록 공중합체 및 이의 제조방법
WO2021086027A1 (ko) 메탈로센 담지 촉매의 제조방법 및 메탈로센 담지 촉매
WO2021251766A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23771008

Country of ref document: EP

Kind code of ref document: A1