KR20230134435A - 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물 - Google Patents

리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물 Download PDF

Info

Publication number
KR20230134435A
KR20230134435A KR1020230028624A KR20230028624A KR20230134435A KR 20230134435 A KR20230134435 A KR 20230134435A KR 1020230028624 A KR1020230028624 A KR 1020230028624A KR 20230028624 A KR20230028624 A KR 20230028624A KR 20230134435 A KR20230134435 A KR 20230134435A
Authority
KR
South Korea
Prior art keywords
formula
carbon atoms
group
ligand compound
chromium
Prior art date
Application number
KR1020230028624A
Other languages
English (en)
Inventor
김석순
사석필
김태희
정승환
신은지
조연호
임원택
김희정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20230134435A publication Critical patent/KR20230134435A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/107Alkenes with six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

본 발명은 높은 촉매 활성을 나타내면서도, 높은 1-헥센 및 1-옥텐 선택성을 나타내어, 우수한 효율로 에틸렌 올리고머화를 실시할 수 있는 신규한 구조의 리간드 화합물, 유기 크롬 화합물, 상기 유기 크롬 화합물을 포함하는 촉매 조성물 및 이를 이용한 에틸렌의 올리고머화 방법에 관한 것이다.

Description

리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물{LIGAND COMPOUND, ORGANIC CHROMIUM COMPOUND AND CATALYST COMPOSITION COMPRISING THE SAME}
본 발명은 리간드 화합물, 유기 크롬 화합물, 상기 유기 크롬 화합물을 포함하는 촉매 조성물 및 이를 이용한 에틸렌 올리고머화 방법에 관한 것이다.
1-헥센, 1-옥텐 등과 같은 선형 알파-올레핀(Linear alpha-olefin)은 세정제, 윤활제, 가소제 등으로 사용되며, 특히 선형 저밀도 폴리에틸렌(LLDPE)의 제조시 폴리머의 밀도 조절을 위한 공단량체로 주로 사용되고 있다.
종래의 LLDPE(Linear Low-Density Polyethylene, 선형 저밀도 폴리에틸렌)의 제조 과정에는 에틸렌과 함께 폴리머 골격(polymer backbone)에 분지(branch)를 형성하여 밀도(density)를 조절하기 위하여 알파-올레핀, 예를 들어 1-헥센, 1-옥텐과 같은 공단량체와 공중합이 이루어지도록 하였다.
따라서, 공단량체의 함량이 높은 LLDPE의 제조를 위해서는 공단량체의 가격이 제조 비용의 큰 부분을 차지한다는 문제점이 있었다. 이러한 문제점을 해결하기 위하여 다양한 시도가 있어 왔다.
이러한 선형 알파-올레핀은 Shell Higher Olefin Process를 통해 주로 생산되었다. 그러나, 상기 방법은 Schultz-Flory 분포에 따라 다양한 길이의 알파-올레핀이 동시에 합성되기 때문에, 특정 알파-올레핀을 얻기 위해서는 별도의 분리 공정을 거쳐야 하는 번거로움이 있었다.
이러한 문제점을 해결하기 위해, 에틸렌의 삼량화 반응을 통해 1-헥센을 선택적으로 합성하거나, 에틸렌의 사량화 반응을 통해 1-옥텐을 선택적으로 합성하는 방법이 제안되었다. 그리고, 이러한 선택적인 에틸렌의 올리고머화를 가능케 하는 촉매 시스템에 대한 많은 연구가 이루어지고 있다.
US 5064802 B2
본 발명에서 해결하고자 하는 과제는 높은 촉매 활성을 나타내면서도, 높은 1-헥센 및 1-옥텐 선택성을 나타내어, 우수한 효율로 에틸렌 올리고머화를 실시할 수 있는 신규한 구조의 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 리간드 화합물, 유기 크롬 화합물, 촉매 조성물 및 에틸렌 올리고머화 방법을 제공한다.
(1) 본 발명은 하기 화학식 1로 표시되는 리간드 화합물을 제공한다.
[화학식 1]
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 탄소수 5 내지 20의 알킬기 또는 트리알킬실릴기이고, 트리알킬실릴기의 알킬기는 탄소수 1 내지 4의 알킬기이고, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(2) 본 발명은 상기 (1)에 있어서, R1 내지 R4는 각각 독립적으로 탄소수 8 내지 12의 알킬기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, R1 내지 R4는 각각 독립적으로 n-데실기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, R5는 탄소수 3 내지 5의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 5의 알킬기, 탄소수 5 내지 8의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 8의 시클로알킬기인 리간드 화합물을 제공한다.
(5) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 2로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 2]
상기 화학식 2에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(6) 본 발명은 상기 (5)에 있어서, 상기 화학식 2로 표시되는 리간드 화합물은 하기 화학식 2-1 내지 화학식 2-11로 표시되는 리간드 화합물로 이루어진 군으로부터 선택된 1종인 리간드 화합물을 제공한다.
[화학식 2-1]
[화학식 2-2]
[화학식 2-3]
[화학식 2-4]
[화학식 2-5]
[화학식 2-6]
[화학식 2-7]
[화학식 2-8]
[화학식 2-9]
[화학식 2-10]
[화학식 2-11]
(7) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 3으로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 3]
상기 화학식 3에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(8) 본 발명은 상기 (7)에 있어서, 상기 화학식 3으로 표시되는 리간드 화합물은 하기 화학식 3-1로 표시되는 리간드 화합물인 리간드 화합물을 제공한다.
[화학식 3-1]
(9) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 4로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 4]
상기 화학식 4에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
(10) 본 발명은 상기 (9)에 있어서, 상기 화학식 4로 표시되는 리간드 화합물은 하기 화학식 4-1 또는 화학식 4-2로 표시되는 리간드 화합물인 리간드 화합물을 제공한다.
[화학식 4-1]
[화학식 4-2]
(11) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 5로 표시되는 것인 리간드 화합물을 제공한다.
[화학식 5]
상기 화학식 5에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이고, n은 4 내지 14이다.
(12) 본 발명은 상기 (11)에 있어서, 상기 화학식 5로 표시되는 리간드 화합물은 하기 화학식 5-1로 표시되는 리간드 화합물인 리간드 화합물을 제공한다.
[화학식 5-1]
(13) 본 발명은 상기 (1) 내지 (12) 중 어느 하나에 따른 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬을 포함하는 유기 크롬 화합물을 제공한다.
(14) 본 발명은 상기 (13)에 있어서, 상기 화학식 1로 표시되는 리간드 화합물에서 N 및 두 개의 P 중 어느 하나 이상의 비공유 전자쌍이 크롬에 배위된 형태인 유기 크롬 화합물을 제공한다.
(15) 본 발명은 상기 (1) 내지 (12) 중 어느 하나에 따른 리간드 화합물, 크롬 및 조촉매를 포함하는 촉매 조성물을 제공한다.
(16) 본 발명은 상기 (15)에 있어서, 상기 크롬은 크롬 소스로부터 유래되고, 상기 크롬 소스는 크로뮴(III) 아세틸아세토네이트, 크로뮴(III) 클로라이드 테트라하이드로퓨란, 크로뮴(III) 2-에틸헥사노에이트, 크로뮴(III) 아세테이트, 크로뮴(III) 부티레이트, 크로뮴(III) 펜타노에이트, 크로뮴(III) 라우레이트, 크로뮴(III) 트리스(2,2,6,6-테트라메틸-3.5-헵테인디오네이트) 및 크로뮴(III) 스테아레이트로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 촉매 조성물을 제공한다.
(17) 본 발명은 상기 (15) 또는 (16)에 있어서, 상기 조촉매는 하기 화학식 6 내지 화학식 9로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 촉매 조성물을 제공한다.
[화학식 6]
-[Al(R13)-O]a-
상기 화학식 6에서, R13은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이고, a는 2 이상의 정수이다.
[화학식 7]
E(R14)3
상기 화학식 7에서, E는 알루미늄 또는 보론이고, R14는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이다.
[화학식 8]
[L-H]+[G(Y)4]-
[화학식 9]
[L]+[G(Y)4]-
상기 화학식 8 및 9에서, L은 중성 또는 양이온성 루이스 산이고, [L-H]+는 브뢴스테드 산이며, G는 13족 원소이며, Y는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고, 여기서, 알킬기 또는 아릴기가 치환되는 경우, 치환기는 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다.
(18) 본 발명은 상기 (15) 내지 (17) 중 어느 하나에 따른 촉매 조성물의 존재 하에, 에틸렌을 올리고머화하는 단계(S10)를 포함하는 선형 알파-올레핀 제조방법을 제공한다.
(19) 본 발명은 상기 (18)에 있어서, 상기 선형 알파-올레핀은 1-헥센, 1-옥텐 또는 이들의 혼합물인 선형 알파-올레핀 제조방법을 제공한다.
본 발명의 리간드 화합물을 포함하는 유기 크롬 화합물 및 촉매 조성물을 이용하여 에틸렌 올리고머화를 실시하는 경우, 높은 촉매 활성으로부터 생산성이 우수하면서도, 높은 1-헥센 및 1-옥텐 선택성으로 선형 알파-올레핀를 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
리간드 화합물
본 발명은 에틸렌 올리고머화 반응에 이용되는 촉매에 적용 가능한 리간드 화합물을 제공한다. 상기 리간드 화합물을 에틸렌 올리고머화 반응, 구체적으로 선형 알파-올레핀 형성용 촉매 조성물에 적용할 경우, 우수한 촉매 활성을 나타내면서도 선형 알파-올레핀에 대한 선택도가 높고, 특히, 기존의 PNP계 촉매와 비교했을 때, 동일한 반응 조건 하에서도 고형 폴리에틸렌 생성량이 적어 선형 알파-올레핀을 보다 효율적으로 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물이 배위된 유기 크롬 화합물은 에틸렌을 이용한 선형 알파-올레핀 제조에 활용될 수 있고, 에틸렌 조건 하의 반응에서 올리고머화 반응이 진행되어, 액상 형태의 알파-올레핀, 구체적으로는, 액상 형태의 1-헥센 또는 1-옥텐을 높은 선택도로 형성할 수 있다. 이는 에틸렌의 올리고머화 반응에서 금속 함유 고리 화합물(metallacycle)을 형성하는 전이상태를 통해 특정 길이의 알파-올레핀에 대한 선택성이 높아지기 때문이다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 디포스피노 아미닐 잔기(diphosphino aminyl moiety)를 포함하고, 상기 디포스피노 아미닐 잔기의 말단에 특정 치환기를 가지는 아릴이 연결되어 있어, 그 자체로 강한 전자 공여 그룹의 역할을 할 수 있는 형태를 가질 수 있다. 이러한 구조적 특징에 기인하여, 상기 리간드 화합물은 에틸렌의 올리고머화 촉매 시스템에 적용되어 높은 활성을 나타낼 수 있고, 특히 1-헥센, 1-옥텐 등에 대한 높은 선택성을 나타낼 수 있다. 이는 각각의 인접한 크롬 활성점 사이의 상호 작용에 의한 것으로 볼 수 있으며, 특히, 디포스피노 아미닐의 인(P) 원자에 특정 치환기가 치환된 아릴이 연결되는 경우, 디포스피노 아미닐에 포함된 인(P) 원자 및 질소(N) 원자에서 전자 밀도가 증가하게 되며 전체 리간드 화합물의 전기적, 입체적 성질이 변화하기 때문이다. 이에 따라, 리간드와 크롬 원자 사이의 결합에 변화가 생기게 되어, 촉매의 구조가 더 안정해질 수 있으며, 기존의 metallacycloheptane, 또는 metallacyclononane 형태에 비해, 전이상태의 에너지(활성화 에너지)를 변화시켜 보다 높은 활성과 선택성으로 알파-올레핀을 형성할 수 있게 되고, 폴리에틸렌 왁스(PE Wax)와 같은 분자량이 큰 고형 알파-올레핀 등의 부산물의 양을 더욱 감소시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 디포스피노 아미닐 잔기의 말단에 위치한 페닐이 메타(meta) 위치에 특정 탄소수의 알킬기 또는, 특정 탄소수의 알킬기로 치환된 실릴기를 치환기로 갖는 것을 특징으로 한다. 상기 페닐의 메타(meta) 위치에 치환된 치환기는 두 분자의 리간드 화합물이 크롬 원자에 결합되어 비활성종이 생성되는 것을 방지하며, 질소-인 결합의 회전 가능성을 낮추어 촉매에서 리간드 화합물이 해리되는 것을 막아주기 때문에, 안정성이 높고 활성과 선택성이 우수한 크롬 촉매가 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 인 원자 두 개가 결합되어 있는 질소 원자에 시클로알킬기 또는 페닐기와 같은 벌키한 치환기와 결합되어 있고, 질소에 결합된 벌키한 치환기는 질소와 인의 결합이 회전하는 것을 방지하여 촉매 안정성과 활성을 더욱 향상시킬 수 있다. 이 때, 질소 원자에 결합된 치환기의 입체적 성질에 따라 촉매의 활성, 안정성 및 선택성 등이 변화하게 된다. 질소 원자에 결합된 치환기의 입체 무리가 너무 높으면 리간드 합성 및 금속 착화합물의 형성이 어려워지고, 생성된 착화합물이 불안정해지는 문제가 있다. 또한, 질소 원자에 결합된 치환기의 입체 무리가 너무 높으면, 에틸렌 등과 같은 원료 물질의 접근이 어려워져 촉매의 활성이 저하되는 문제가 있다. 또한, 질소 원자에 결합된 치환기의 입체 무리가 너무 낮으면 질소 원자와 인 원자의 결합의 회전을 방지하지 못하며, 금속 중심 원자를 보호하지 못하여 촉매의 활성 및 안정성이 저하되는 원인이 된다. 즉, 질소 원자에 결합된 치환기의 입체 무리가 너무 높거나 낮을 경우, 촉매의 활성이 낮아지며, 안정성이 저하되어, 폴리에틸렌 왁스 등과 같은 부산물의 생성량이 증가하는 문제가 발생하게 된다. 따라서, 인 원자에 결합되어 있는 치환기에 대해 적정 수준의 입체 무리를 가지고 있는 질소 원자에 결합된 치환기의 선정은 매우 중요하다. 본 발명에 따른 리간드 화합물은 인 원자에 결합된 페닐기의 메타 위치에 치환기가 도입됨에 따라 P-N-P 작용기 주변의 입체 무리가 증가하게 되므로, 질소 원자에 결합된 치환기의 입체 무리가 너무 증가하지 않도록 화학식 1의 R5로 표시되는 치환기를 도입함으로써, 이를 포함하는 촉매 조성물을 이용하여 에틸렌의 올리고머화 반응 시 수율과 선택도를 향상시킬 수 있다. 특히, 화학식 1의 R5로 표시되는 치환기로서 2차 알킬기 형태의 치환기를 도입하는 경우, 효율이 더욱 향상되며, 1차 알킬기 형태의 치환기는 낮은 입체 무리를 보완하기 위하여 1번 탄소 또는 2번 탄소 위치에 페닐기 등과 같은 아릴기를 도입함으로써 적정한 입체 무리를 형성할 수 있어, 수율과 선택도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 탄소수 5 내지 20의 알킬기 또는 트리알킬실릴기이고, 트리알킬실릴기의 알킬기는 탄소수 1 내지 4의 알킬기이고, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명에서 "알킬기"는 직쇄형, 고리형 또는 분지형의 탄화수소 잔기를 의미할 수 있고, 구체적인 예로, 정의되는 탄소수에 따라 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, t-부틸기, n-펜틸기, 이소펜틸기 및 헥실기 등일 수 있다.
본 발명에서, "트리알킬실릴기"는 -SiR3로 표시되며, 각각의 R이 독립적으로 알킬기인 치환기를 의미하며, 트리알킬실릴기의 탄소수를 언급하는 경우에는 R의 탄소수를 모두 합한 값을 의미할 수 있다.
본 발명에서 "아릴"은 다른 언급이 없는 한 임의적으로 치환된 벤젠 고리를 지칭하거나, 또는 하나 이상의 임의적인 치환기를 융합시킴으로써 형성될 수 있는 고리 시스템을 지칭한다. 예시적인 임의적인 치환기는 치환된 탄소수 1 내지 2의 알킬기, 치환된 탄소수 2 내지 3의 알케닐기, 치환된 탄소수 2 내지 3의 알킨일기, 헤테로아릴기, 헤테로환형기, 아릴기, 임의적으로 1 내지 3개의 불소 치환기를 갖는 알콕시, 아릴옥시, 아르알콕시, 아실, 아로일, 헤테로아로일, 아실옥시, 아로일옥시, 헤테로아로일옥시, 설판일, 설핀일, 설폰일, 아미노설폰일, 설폰일아미노, 카복시아마이드, 아미노카보닐, 카복시, 옥소, 하이드록시, 머캅토, 아미노, 나이트로, 시아노, 할로겐 또는 우레이도를 포함한다. 이러한 고리 또는 고리 시스템은 임의적으로 하나 이상의 치환기를 갖는 아릴 고리(예컨대, 벤젠 고리), 탄소환 고리 또는 헤테로환형 고리에 임의적으로 융합될 수 있다. 비제한적으로 페닐, 나프틸, 테트라하이드로나프틸, 바이페닐, 인단일, 안트라실 또는 페난트릴 및 이들의 치환된 유도체를 포함할 수 있다.
본 발명의 일 실시예에 따르면, R1 내지 R4는 각각 독립적으로 탄소수 8 내지 12의 알킬기, 트리프로필실릴기 또는 트리부틸실릴기일 수 있고, 구체적인 예로, R1 내지 R4는 각각 독립적으로 트리프로필실릴기, 트리부틸실릴기 또는 n-데실기일 수 있다. 즉, 상기 리간드 화합물은 디포스피노 아미닐 잔기의 말단에 위치한 페닐이 메타(meta) 위치에 탄소수 10의 알킬기, 또는 탄소수 3 또는 4의 알킬기로 치환된 실릴기를 치환기로 갖는 것일 수 있다.
본 발명의 일 실시예에 따르면, R5는 탄소수 3 내지 5의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 5의 알킬기, 탄소수 5 내지 8의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 8의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 8의 시클로알킬기인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
상기 화학식 2에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 리간드 화합물은 하기 화학식 2-1 내지 화학식 2-11로 표시되는 리간드 화합물로 이루어진 군으로부터 선택된 1종일 수 있다.
[화학식 2-1]
[화학식 2-2]
[화학식 2-3]
[화학식 2-4]
[화학식 2-5]
[화학식 2-6]
[화학식 2-7]
[화학식 2-8]
[화학식 2-9]
[화학식 2-10]
[화학식 2-11]
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 3으로 표시되는 것일 수 있다.
[화학식 3]
상기 화학식 3에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명의 일 실시예에 따르면, 상기 화학식 3으로 표시되는 리간드 화합물은 하기 화학식 3-1로 표시되는 것일 수 있다.
[화학식 3-1]
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 4로 표시되는 것일 수 있다.
[화학식 4]
상기 화학식 4에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
본 발명의 일 실시예에 따르면, 상기 화학식 4로 표시되는 리간드 화합물은 하기 화학식 4-1 또는 화학식 4-2로 표시되는 것일 수 있다.
[화학식 4-1]
[화학식 4-2]
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 5로 표시되는 것일 수 있다.
[화학식 5]
상기 화학식 5에서, R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이고, n은 4 내지 14이다.
본 발명의 일 실시예에 따르면, 상기 화학식 5로 표시되는 리간드 화합물은 하기 화학식 5-1로 표시되는 것일 수 있다.
[화학식 5-1]
본 발명의 일 실시예에 따르면, 상기 리간드 화합물은 상기 구체예 이외에도 앞서 기재한 조건을 만족하는 범위에서 다양한 조합으로 구현될 수 있으며, 화학식 1로 표시되는 화합물이라면 모두 본 발명의 리간드 화합물로서 적용 가능하다.
유기 크롬 화합물 및 촉매 조성물
본 발명은 상기 화학식 1로 표시되는 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬(Cr)을 포함하는 유기 크롬 화합물을 제공한다.
본 발명의 일 실시예에 따르면, 상기 유기 크롬 화합물은 상기 리간드 화합물의 크롬 착화합물(complex compound)로서, 크롬 소스의 크롬이 화학식 1로 표시되는 리간드 화합물에서 N 및 두 개의 P 중 어느 하나 이상의 비공유 전자쌍이 배위 결합을 이룬 형태를 가질 수 있다. 즉, 디포스피노 아미닐 잔기의 인 원자 또는 질소 원자가 크롬 원자에 비공유 전자쌍을 제공한 구조로서, 특히, 이 중 두 쌍의 비공유 전자쌍이 배위된 bidentated 상태가 바람직할 수 있다. 이러한 유기 크롬 화합물은 에틸렌의 올리고머화 반응용 촉매 시스템에 적용되어 우수한 촉매 활성과 1-헥센 또는 1-옥텐에 대한 높은 선택성을 나타낼 수 있다.
본 발명에서 "촉매 조성물"은 크롬 소스, 리간드 화합물 및 조촉매를 포함하는 3 성분, 또는 전이금속 화합물 및 조촉매의 2 성분이 동시에 또는 임의의 순서로 첨가되어 활성이 있는 촉매 조성물로 수득될 수 있는 상태의 것을 의미한다. 여기서, 촉매 조성물은 촉매 시스템으로도 지칭될 수 있고, 본 발명에서 촉매 조성물과 촉매 시스템은 동일한 의미를 나타낸다. 상기 촉매 조성물의 3 성분 또는 2 성분은 용매 및 단량체의 존재 또는 부존재 하에 첨가될 수 있으며, 담지 또는 비담지 상태로 사용될 수 있다.
본 발명은 상기 리간드 화합물, 크롬 및 조촉매를 포함하는 촉매 조성물을 제공한다. 상기 화학식 1로 표시되는 리간드 화합물과 크롬은 앞서 기재한 바와 같이, 배위되어 유기 크롬 화합물을 형성할 수 있다. 즉, 상기 촉매 시스템은 크롬, 상기 화학식 1로 표시되는 리간드 화합물 및 조촉매를 포함하는 3성분계 촉매 시스템이거나, 상기 유기 크롬 화합물 및 조촉매를 포함하는 2성분계 촉매 시스템일 수 있다. 구체적인 예로, 상기 촉매 조성물은 상기 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬을 포함하는 유기 크롬 화합물 및 조촉매를 포함하는 것일 수 있다. 또한, 상기 촉매 조성물은 상기 유기 크롬 화합물에 조촉매의 일부 성분이 결합된 크롬 화합물을 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 크롬은 크롬 소스로부터 유래된 것일 수 있고, 크롬 소스는 크롬의 산화 상태가 0 내지 6인 유기 또는 무기 크롬 화합물일 수 있다. 구체적인 예로, 상기 크롬 소스는 크롬 금속, 또는 임의의 유기 또는 무기 라디칼이 크롬에 결합된 화합물일 수 있다. 여기서, 상기 유기 라디칼은 라디칼 당 1 내지 20의 탄소 원자를 갖는 알킬, 알콕시, 에스테르, 케톤, 아미도, 카르복실레이트 라디칼 등일 수 있고, 상기 무기 라디칼은 할라이드, 황산염, 산화물 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 크롬 소스는 올레핀의 올리고머화에 높은 활성을 나타내고, 사용 및 입수가 쉬운 화합물로서, 크로뮴(III) 아세틸아세토네이트, 크로뮴(III) 클로라이드 테트라하이드로퓨란, 크로뮴(III) 2-에틸헥사노에이트, 크로뮴(III) 아세테이트, 크로뮴(III) 부티레이트, 크로뮴(III) 펜타노에이트, 크로뮴(III) 라우레이트, 크로뮴(III) 트리스(2,2,6,6-테트라메틸-3.5-헵테인디오네이트) 및 크로뮴(III) 스테아레이트로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.
본 발명의 일 실시예에 따르면, 상기 조촉매는 하기 화학식 6 내지 화학식 9로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 6]
-[Al(R13)-O]a-
상기 화학식 6에서, R13은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이고, a는 2 이상의 정수이다.
[화학식 7]
E(R14)3
상기 화학식 7에서, E는 알루미늄 또는 보론이고, R14는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이다.
[화학식 8]
[L-H]+[G(Y)4]-
[화학식 9]
[L]+[G(Y)4]-
상기 화학식 8 및 9에서, L은 중성 또는 양이온성 루이스 산이고, [L-H]+는 브뢴스테드 산이며, G는 13족 원소이며, Y는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고, 여기서, 알킬기 또는 아릴기가 치환되는 경우, 치환기는 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물은 복수의 방법에 의해 제조될 수 있다. 구체적인 예로서, 첫 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 6 또는 화학식 7로 표시되는 화합물을 접촉시키는 단계를 포함하여 제조될 수 있다. 두 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 6 또는 화학식 7로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 첨가하는 단계를 포함하여 제조될 수 있다. 세 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 접촉시키는 단계를 포함하여 제조될 수 있다. 네 번째로 상기 촉매 조성물은 상기 유기 크롬 화합물과 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 6 또는 화학식 7로 표시되는 화합물을 첨가하는 단계를 포함하여 제조될 수 있다. 다섯 번째로 상기 촉매 조성물은 상기 크롬 소스와 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 접촉시켜 반응물을 얻는 단계; 및 상기 반응물에 상기 리간드 화합물을 접촉시키는 단계를 포함하여 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물 제조방법들 중에서 첫 번째 방법 또는 세 번째 방법의 경우, 상기 유기 크롬 화합물 대비 상기 화학식 6 또는 화학식 7로 표시되는 화합물의 몰비는 각각 1:2 내지 5,000일 수 있고, 구체적인 예로 1:100 내지 3,000일 수 있으며, 더욱 구체적인 예로 1:300 내지 1,500일 수 있고, 이 범위 내에서 유기 크롬 화합물의 알킬화를 완전히 진행시켜, 촉매 조성물의 활성도를 향상시킬 수 있고, 잔류하는 알킬화제 사이의 부반응으로 인해, 알킬화된 유기 크롬 화합물의 활성화가 저하되는 것을 방지함과 동시에, 경제성과 제조된 선형 알파-올레핀의 순도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물 제조방법들 중에서 두 번째 방법의 경우, 상기 유기 크롬 화합물 대비 화학식 8 또는 화학식 9로 표시되는 화합물의 몰비는 1:1 내지 500일 수 있고, 구체적인 예로 1:1 내지 50일 수 있으며, 더욱 구체적인 예로 1:1 내지 1:25일 수 있고, 이 범위 내에서 활성화제의 양이 충분하여, 금속 화합물의 활성화가 완전히 이루어져 촉매 조성물의 활성도가 향상되고, 잔류하는 활성화제를 최소화하여 경제성과 제조된 선형 알파-올레핀의 순도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 6으로 표시되는 화합물은 알킬알루미녹산일 수 있고, 구체적인 예로, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등일 수 있으며, 더욱 구체적인 예로 메틸알루미녹산일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 7로 표시되는 화합물은 트리알킬 알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 디알킬 알루미늄 하이드라이드, 알킬 알루미늄 디하이드라이드, 트리알킬보론 등일 수 있다. 구체적인 예로, 상기 화학식 6으로 표시되는 화합물은 트리메틸 알루미늄, 트리에틸 알루미늄, 트리이소부틸 알루미늄, 트리프로필 알루미늄, 트리부틸 알루미늄, 트리이소프로필 알루미늄, 트리-s-부틸 알루미늄, 트리시클로펜틸 알루미늄, 트리펜틸 알루미늄, 트리이소펜틸 알루미늄, 트리헥실 알루미늄, 트리옥틸 알루미늄, 에틸디메틸 알루미늄, 메틸디에틸 알루미늄, 트리페닐 알루미늄, 트리-p-톨릴 알루미늄 등 트리알킬 알루미늄; 디에틸알루미늄 클로라이드(diethylaluminum chloride) 등 디알킬알루미늄 할라이드; 디에틸 알루미늄 하이드라이드, 디-n-프로필 알루미늄 하이드라이드, 디이소프로필 알루미늄 하이드라이드, 디-n-부틸 알루미늄 하이드라이드, 디부틸 알루미늄 하이드라이드, 디이소부틸 알루미늄 하이드라이드(DIBAH), 디-n-옥틸 알루미늄 하이드라이드, 디페닐 알루미늄 하이드라이드, 디-p-톨릴 알루미늄 하이드라이드, 디벤질 알루미늄 하이드라이드, 페닐에틸 알루미늄 하이드라이드, 페닐-n-프로필 알루미늄 하이드라이드, 페닐이소프로필 알루미늄 하이드라이드, 페닐-n-부틸 알루미늄 하이드라이드, 페닐이소부틸 알루미늄 하이드라이드, 페닐-n-옥틸 알루미늄 하이드라이드, p-톨릴에틸 알루미늄 하이드라이드, p-톨릴-n-프로필 알루미늄 하이드라이드, p-톨릴이소프로필 알루미늄 하이드라이드, p-톨릴-n-부틸 알루미늄 하이드라이드, p-톨릴이소부틸 알루미늄 하이드라이드, p-톨릴-n-옥틸 알루미늄 하이드라이드, 벤질에틸 알루미늄 하이드라이드, 벤질-n-프로필 알루미늄 하이드라이드, 벤질이소프로필 알루미늄 하이드라이드, 벤질-n-부틸 알루미늄 하이드라이드, 벤질이소부틸 알루미늄 하이드라이드 또는 벤질-n-옥틸 알루미늄 하이드라이드 등의 디알킬 알루미늄 하이드라이드; n-프로필 알루미늄 디하이드라이드, 이소프로필 알루미늄 디하이드라이드, n-부틸 알루미늄 디하이드라이드, 이소부틸 알루미늄 디하이드라이드, 또는 n-옥틸알루미늄 디하이드라이드 등 알킬 알루미늄 디하이드라이드; 트리메틸 보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등 트리알킬보론 등 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 8 또는 화학식 9로 표시되는 화합물은 트리메틸암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리부틸암모늄 테트라페닐보레이트, N,N-디메틸아닐리늄 테트라페닐보레이트, N,N-디에틸아닐리늄 테트라페닐보레이트, 트리메틸암모늄 테트라(p-톨릴)보레이트, 트리에틸암모늄 테트라(p-톨릴)보레이트, 트리프로필암모늄 테트라(p-톨릴)보레이트, 트리부틸암모늄 테트라(p-톨릴)보레이트, N,N-디메틸아닐리늄 테트라(p-톨릴)보레이트, N,N-디에틸아닐리늄 테트라(p-톨릴)보레이트, 트리메틸암모늄 테트라(o,p-디메틸페닐)보레이트, 트리에틸암모늄 테트라(o,p-디메틸페닐)보레이트, 트리프로필암모늄 테트라(o,p-디메틸페닐)보레이트, 트리부틸암모늄 테트라(o,p-디메틸페닐)보레이트, N,N-디메틸아닐리늄 테트라(o,p-디메틸페닐)보레이트, N,N-디에틸아닐리늄 테트라(o,p-디메틸페닐)보레이트, 트리메틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리프로필암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(p-트리플루오로메틸페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리부틸암모늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디옥타데실아닐리늄 테트라키스(펜타플루오로페닐) 보레이트, 트리메틸포스포늄 테트라페닐보레이트, 트리에틸포스포늄 테트라페닐보레이트, 트리프로필포스포늄 테트라페닐보레이트, 트리부틸포스포늄 테트라페닐보레이트, 트리메틸카보늄 테트라페닐보레이트, 트리에틸카보늄 테트라페닐보레이트, 트리프로필카보늄 테트라페닐보레이트, 트리부틸카보늄 테트라페닐보레이트, 트리메틸암모늄 테트라페닐알루미네이트, 트리에틸암모늄 테트라페닐알루미네이트, 트리프로필암모늄 테트라페닐알루미네이트, 트리부틸암모늄 테트라페닐알루미네이트, 트리메틸암모늄 테트라(p-톨릴)알루미네이트, 트리에틸암모늄 테트라(p-톨릴)알루미네이트, 트리프로필암모늄 테트라(p-톨릴)알루미네이트, 트리부틸암모늄 테트라(p-톨릴)알루미네이트 등 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물을 형성하는 성분들의 함량비는 촉매 활성과 선형 알파-올레펜에 대한 선택성 등을 고려하여 결정될 수 있다. 구체적인 예로, 상기 촉매 조성물이 3 성분계 촉매 조성물인 경우, 상기 리간드 화합물의 디포스피노 아미닐 잔기:크롬 소스:조촉매의 몰비는 약 1:1:1 내지 약 10:1:10,000, 또는 약 1:1:100 내지 5:1:3,000으로 조절될 수 있다. 또한, 상기 촉매 조성물이 2 성분계 촉매 조성물인 경우, 상기 유기 크롬 화합물의 디포스피노 아미닐 잔기:조촉매의 몰비는 1:1 내지 1:10,000, 또는 1:1 내지 1:5,000, 또는 1:1 내지 1:3,000으로 조절될 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물 제조 시, 반응 용매는 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매; 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물을 형성하는 성분들은, 동시에 또는 임의의 순서로 적절한 용매 및 단량체의 존재 또는 부존재 하에 첨가되어, 활성이 있는 촉매 조성물로 작용할 수 있다. 이 때, 적합한 용매로는 헵탄, 톨루엔, 시클로헥산, 메틸시클로헥산, 1-헥센, 1-옥텐, 디에틸에테르, 테트라히드로푸란, 아세토니트릴, 디클로로메탄, 클로로포름, 클로로벤젠, 메탄올, 아세톤 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기 크롬 화합물 및 조촉매는 담체에 담지된 형태로 이용할 수 있고, 이 때, 담체는 실리카 또는 알루미나일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물은 담체를 더 포함할 수 있다. 구체적인 예로, 상기 화학식 1로 표시되는 리간드 화합물은 담체에 담지된 형태로 에틸렌 올리고머화 반응에 적용될 수 있다. 상기 담체는 담지 촉매에 적용되는 금속, 금속 염 또는 금속 산화물 등일 수 있고, 구체적인 예로, 상기 담체는 실리카, 실리카-알루미나, 실리카-마그네시아 등일 수 있으며, Na2O, K2CO3, BaSO4, Mg(NO3)2 등과 같은 금속의 산화물, 탄산염, 황산염, 질삼염 성분을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물은 에틸렌의 3량화 또는 4량화 반응용으로 사용될 수 있으며, 앞서 기재한 바에 의해 높은 선택성으로, 1-헥센 또는 1-옥텐을 제조할 수 있다.
에틸렌 올리고머화 방법
본 발명은 상기 촉매 조성물의 존재 하에, 에틸렌을 올리고머화하는 단계(S10)를 포함하는 에틸렌 올리고머화 방법으로서 선형 알파-올레핀 제조방법을 제공한다.
본 발명에서 "올리고머화"는 올레핀이 소중합 되는 것을 의미한다. 중합되는 올레핀의 개수에 따라 삼량화(trimerization), 사량화(tetramerization)라고 불리며, 이를 총칭하여 다량화(multimerization)라고 한다. 특히 본 명세서에서는 에틸렌으로부터 LLDPE의 주요 공단량체인 1-헥센 및 1-옥텐을 선택적으로 제조하는 것을 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 반응은 에틸렌의 3량화 또는 4량화 반응일 수 있고, 이에 따른 반응 결과물로 1-헥센 또는 1-옥텐이 형성되어, 상기 선형 알파-올레핀은 1-헥센, 1-옥텐 또는 이들의 혼합물인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 방법은 에틸렌을 원료로 앞서 기재한 촉매 조성물과 통상적인 장치 및 접촉 기술을 적용하여 수행될 수 있다. 구체적인 예로, 상기 에틸렌의 올리고머화 반응은 불활성 용매의 존재 또는 부존재 하에, 균질 액상 반응, 또는 상기 촉매 조성물의 일부 또는 전부가 용해되지 않은 형태인 슬러리 반응, 또는 생성물인 알파-올레핀이 주 매질로 작용하는 벌크상 반응, 또는 가스상 반응으로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 반응은 불활성 용매 하에서 수행될 수 있다. 구체적인 예로, 상기 불활성 용매는 벤젠, 톨루엔, 크실렌, 큐멘, 클로로벤젠, 디클로로벤젠, 헵탄, 시클로헥산, 메틸시클로헥산, 메틸시클로펜탄, n-헥산, 1-헥센, 1-옥텐 및 2,2,4-트리메틸펜탄 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에틸렌의 올리고머화 반응은 0 ℃ 내지 200 ℃, 또는 0 ℃ 내지 150 ℃, 또는 30 ℃ 내지 100 ℃, 또는 50 ℃ 내지 100 ℃의 온도 하에서 수행될 수 있다. 또한, 상기 반응은 15 psig 내지 3000 psig, 또는 15 psig 내지 1500 psig, 또는 15 psig 내지 1,000 psig의 압력 하에서 수행될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
합성예 및 비교 합성예
합성예 1: 화학식 2-1로 표시되는 리간드 화합물의 합성
[화학식 2-1]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로펜틸 아민(cyclopentyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-1로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-1로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로펜틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cyclopentyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.23-7.17(m, 16H), 3.50(pent, 1H), 2.27-2.14(m, 2H), 1.77-1.63(m, 2H), 1.42-1.15(m, 24H), 1.00-0.86(m, 36H), 0.87-0.81(m, 4H), 0.79-0.67(m, 24H)
합성예 2: 화학식 2-2로 표시되는 리간드 화합물의 합성
[화학식 2-2]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로헥실 아민(cyclohexyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-2로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-2로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로헥실-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cyclopentyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.20-7.17(m, 16H), 3.52(pent, 1H), 2.29-2.15(m, 2H), 1.75-1.61(m, 4H), 1.40-1.15(m, 24H), 1.00-0.88(m, 36H), 0.86-0.80(m, 4H), 0.78-0.68(m, 24H)
합성예 3: 화학식 2-3으로 표시되는 리간드 화합물의 합성
[화학식 2-3]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로헵틸 아민(cycloheptyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-3으로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-3으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.15-7.16(m, 16H), 3.65(pent, 1H), 2.35-2.22(m, 2H), 1.94-1.86(m, 2H), 1.60-1.45(m, 4H), 1.44-1.15(m, 24H), 1.00-0.86(m, 36H), 0.85-0.79(m, 4H), 0.78-0.68(m, 24H)
합성예 4: 화학식 2-4로 표시되는 리간드 화합물의 합성
[화학식 2-4]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로옥틸 아민(cyclooctyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-4로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-4로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-시클로옥틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-cyclooctyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.10-7.15(m, 16H), 3.78(pent, 1H), 2.40-2.28(m, 2H), 1.94-1.86(m, 2H), 1.67-1.49(m, 4H), 1.48-1.15(m, 24H), 1.00-0.86(m, 36H), 0.85-0.79(m, 6H), 0.78-0.68(m, 24H)
합성예 5: 화학식 2-5로 표시되는 리간드 화합물의 합성
[화학식 2-5]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2,3-디히드로-1H-인덴-2-일 아민(2,3-dihydro-1H-inden-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-5로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-5로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(2,3-디히드로-1H-인덴-2-일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(2,3-dihydro-1H-inden-2-yl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.80-7.15(m, 16H), 7.10-6.90(m, 4H), 4.65(pent, 1H), 3.73-3.61(m, 2H), 2.75-2.67(m, 2H), 1.43-1.29(m, 24H), 1.01-0.92(m, 36H), 0.80-0.71(m, 24H)
합성예 6: 화학식 2-6으로 표시되는 리간드 화합물의 합성
[화학식 2-6]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 1,2,3,4-테트라히드로나프탈렌-2-일 아민(1,2,3,4-tetrahydronaphthalen-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-6으로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-6으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(1,2,3,4-테트라히드로나프탈렌-2-일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(1,2,3,4-tetrahydronaphthalen-2-yl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.10-7.15(m, 16H), 7.08-6.89(m, 4H), 3.86(pent, 1H), 3.42-3.29(m, 1H), 3.01-2.87(m, 3H), 1.69-1.50(m, 2H), 1.44-1.16(m, 24H), 0.99-0.85(m, 36H), 0.83-0.65(m, 24H)
합성예 7: 화학식 2-7로 표시되는 리간드 화합물의 합성
[화학식 2-7]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 이소프로필 아민(isopropyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-7로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-7로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-이소프로필-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-isopropyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.20-7.15(m, 16H), 3.45(pent, 1H), 1.67(d, 6H), 1.39-1.15(m, 24H), 1.01-0.89(m, 36H), 0.80-0.67(m, 24H)
합성예 8: 화학식 2-8로 표시되는 리간드 화합물의 합성
[화학식 2-8]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 3-메틸부탄-2-일 아민(3-methylbutan-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-8로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-8로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(3-메틸부탄-2-일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(3-methylbutan-2-yl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.10-7.20(m, 16H), 3.65-3.52(m, 1H), 1.82-1.70(m, 1H), 1.41-1.16(m, 24H), 1.07(d, 3H), 0.99-0.87(m, 36H), 0.80-0.69(m, 27H), 0.56(d, 3H)
합성예 9: 화학식 2-9로 표시되는 리간드 화합물의 합성
[화학식 2-9]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 벤질 아민(benzyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-9로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-9로 표시되는 리간드 화합물>
N-벤질-N-(비스(3-(트리프로필실릴)페닐)포스판일)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-benzyl-N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.94-7.15(m, 16H), 7.12-6.85(m, 5H), 4.74(s, 2H), 1.39-1.15(m, 24H), 0.99-0.88(m, 36H), 0.80-0.68(m, 24H)
합성예 10: 화학식 2-10으로 표시되는 리간드 화합물의 합성
[화학식 2-10]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 페네틸 아민(phenethyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-10으로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-10으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-페네틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-phenethyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.18-7.14(m, 16H), 7.12-6.84(m, 5H), 3.48(t, 2H), 2.33(t, 2H), 1.40-1.14(m, 24H), 1.02-0.90(m, 36H), 0.81-0.67(m, 24H)
합성예 11: 화학식 2-11로 표시되는 리간드 화합물의 합성
[화학식 2-11]
3-(트리프로필실릴)페닐 브로마이드(3-(tripropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 4-페닐시클로헥실아민(4-phenylcyclohexylamine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 2-11로 표시되는 리간드 화합물을 수득하였다.
<화학식 2-11으로 표시되는 리간드 화합물>
N-(비스(3-(트리프로필실릴)페닐)포스판일)-N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민)
N-(bis(3-(tripropylsilyl)phenyl)phosphaneyl)-N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 8.15-7.18(m, 18H), 7.13-7.00(m, 3H), 3.64(pent, 1H), 2.88-2.72(m, 1H), 2.49(d, 1H), 2.46-2.34(m, 2H), 2.16(d, 1H), 1.87-1.74(m, 2H), 1.71-1.60(m, 1H), 1.58-1.49(m, 1H), 1.39-1.28(m, 24H), 0.99-0.90(m, 36H), 0.78-0.70(m, 24H)
합성예 12: 화학식 3-1로 표시되는 리간드 화합물의 합성
[화학식 3-1]
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2,3-디히드로-1H-인덴-2-일 아민(2,3-dihydro-1H-inden-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 3-1로 표시되는 리간드 화합물을 수득하였다.
<화학식 3-1로 표시되는 리간드 화합물>
N-(비스(3-(트리부틸실릴)페닐)포스판일)-N-(2,3-디히드로-1H-인덴-2-일)-1,1-비스(3-(트리부틸실릴)페닐)포스판아민)
N-(bis(3-(tributylsilyl)phenyl)phosphaneyl)-N-(2,3-dihydro-1H-inden-2-yl)-1,1-bis(3-(tributylsilyl)phenyl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.83-7.17(m, 16H), 7.11-6.92(m, 4H), 4.59(pent, 1H), 3.68-3.57(m, 2H), 2.71-2.65(m, 2H), 1.39-1.27(m, 48H), 0.94-0.84(m, 36H), 0.83-0.75(m, 24H)
합성예 13: 화학식 4-1로 표시되는 리간드 화합물의 합성
[화학식 4-1]
건조된 플라스크에 시클로헵틸아민(cycloheptylamine) 11 mmol(2.2 eq)과 디클로로메탄(dichloromethane) 10 ml를 질소 분위기 하에서 투입하고 교반을 시작하였다. 상기 플라스크에 클로로비스(3-(트리프로필실릴)페닐)포스판(chlorobis(3-(tripropylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 디클로로메탄(dichloromethane) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 중간체 화합물인 N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol을 수득하였다.
이어서, 건조된 플라스크에 상기 수득된 중간체 화합물인 N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol(1 eq)와 메틸 t-부틸 에테르(methyl tert-butyl ether) 13 ml를 질소 분위기 하에서 투입하고 -78 ℃ 냉각한 후, 교반을 시작하였다. 상기 플라스크에 n-부틸리튬(n-butyl lithium)이 헥산에 2.5 M로 용해된 용액 2.1 ml(5.25 mmol, 1.05 eq)를 천천히 투입하고, 1 시간 동안 교반시킨 후, 클로로비스(3-(트리부틸실릴)페닐)포스판(chlorobis(3-(tributylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 메틸 t-부틸 에테르(methyl tert-butyl ether) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 화학식 4-1로 표시되는 리간드 화합물 4 mmol(수율 80 %)을 수득하였다.
<화학식 4-1로 표시되는 리간드 화합물>
N-(비스(3-(트리부틸실릴)페닐)포스판일)-N-시클로헵틸-1,1-비스(3-(트리프로필실릴)페닐)포스판아민
N-(bis(3-(tributylsilyl)phenyl)phosphaneyl)-N-cycloheptyl-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine
1H NMR (500 MHz, C6D6): δ 8.16-7.15(m, 16H), 3.64(pent, 1H), 2.34-2.21(m, 2H), 1.93-1.85(m, 2H), 1.59-1.45(m, 4H), 1.43-1.15(m, 36H), 1.00-0.85(m, 36H), 0.85-0.79(m, 16H), 0.78-0.68(m, 12H)
합성예 14: 화학식 4-2로 표시되는 리간드 화합물의 합성
[화학식 4-2]
건조된 플라스크에 4-페닐시클로헥실아민(4-phenylcyclohexylamine) 11 mmol(2.2 eq)과 디클로로메탄(dichloromethane) 10 ml를 질소 분위기 하에서 투입하고 교반을 시작하였다. 상기 플라스크에 클로로비스(3-(트리프로필실릴)페닐)포스판(chlorobis(3-(tripropylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 디클로로메탄(dichloromethane) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 중간체 화합물인 N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol을 수득하였다.
이어서, 건조된 플라스크에 상기 수득된 중간체 화합물인 N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민(N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine) 5 mmol(1 eq)와 메틸 t-부틸 에테르(methyl tert-butyl ether) 13 ml를 질소 분위기 하에서 투입하고 -78 ℃ 냉각한 후, 교반을 시작하였다. 상기 플라스크에 n-부틸리튬(n-butyl lithium)이 헥산에 2.5 M로 용해된 용액 2.1 ml(5.25 mmol, 1.05 eq)를 천천히 투입하고, 1 시간 동안 교반시킨 후, 클로로비스(3-(트리부틸실릴)페닐)포스판(chlorobis(3-(tributylsilyl)phenyl)phosphane) 5 mmol(1 eq)을 메틸 t-부틸 에테르(methyl tert-butyl ether) 10 ml에 묽힌 상태로 천천히 투입하였다. 반응물을 4 시간 동안 교반시키고, 1H NMR을 통해 전환(conversion)을 확인하였다. 반응이 종료된 후, 필터를 통해 침전된 고체를 제거하고, 용매를 감압하여 제거하고, 컬럼 크로마토그래피를 통해 화학식 4-1로 표시되는 리간드 화합물 4 mmol(수율 80 %)을 수득하였다.
<화학식 4-2로 표시되는 리간드 화합물>
N-(비스(3-(트리부틸실릴)페닐)포스판일)-N-(4-페닐시클로헥실)-1,1-비스(3-(트리프로필실릴)페닐)포스판아민
N-(bis(3-(tributylsilyl)phenyl)phosphaneyl)-N-(4-phenylcyclohexyl)-1,1-bis(3-(tripropylsilyl)phenyl)phosphanamine
1H NMR (500 MHz, C6D6): δ 8.14-7.17(m, 18H), 7.14-7.00(m, 3H), 3.61(pent, 1H), 2.87-2.72(m, 1H), 2.50(d, 1H), 2.47-2.33(m, 2H), 2.15(d, 1H), 1.88-1.75(m, 2H), 1.70-1.60(m, 1H), 1.59-1.49(m, 1H), 1.39-1.26(m, 36H), 0.99-0.87(m, 36H), 0.82-0.70(m, 24H)
합성예 15: 화학식 5-1로 표시되는 리간드 화합물의 합성
[화학식 5-1]
Org. Chem. Front, 2015, 2, 536을 참고하여, 1,3-디브로모 벤젠(1,3-dibromo benzene) 20 mmol(1 eq)을 디에틸 에테르(diethyl ether)에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(1 eq)을 적하(dropwise)로 첨가하고, 1 시간 동안 교반하였다. 이후, 1-브로모데칸(1-bromodecane) 22 mmol(1.1 eq)을 첨가한 후, 상온으로 승온시키고 4 시간 동안 추가로 교반하였다. 이어서, 물을 첨가하여 ??칭한 후, 디에틸 에테르(diethyl ether)로 추출하고, 브린(brine)으로 세척한 후, 황산 마그네슘(MgSO4)으로 건조하고, 진공에서 용매를 제거하였다. 이 후, 헥산을 이용하여 실리카 컬럼을 통해 3-(n-데실)페닐 브로마이드(3-(n-decyl)phenyl bromide)를 분리하였다.
3-(n-데실)페닐 브로마이드(3-(n-decyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2,3-디히드로-1H-인덴-2-일 아민(2,3-dihydro-1H-inden-2-yl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 5-1로 표시되는 리간드 화합물을 수득하였다.
<화학식 5-1로 표시되는 리간드 화합물>
N-(비스(3-데실페닐)포스판일)-1,1-비스(3-데실페닐)-N-(2,3-디히드로-1H-인덴-2-일)포스판아민)
N-(bis(3-decylphenyl)phosphaneyl)-1,1-bis(3-decylphenyl)-N-(2,3-dihydro-1H-inden-2-yl)phosphanamine)
1H NMR (500 MHz, C6D6): δ 7.76-7.12(m, 16H), 7.07-6.89(m, 4H), 4.49(pent, 1H), 3.67-3.55(m, 2H), 2.69-2.60(m, 2H), 2.43-2.28(t, 24H), 1.43-1.19(m, 192H), 0.98-0.85(t, 36H)
비교 합성예 1: 화학식 10으로 표시되는 리간드 화합물의 합성
[화학식 10]
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 6-운데칸아민(6-undecanamine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 9로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 2: 화학식 11로 표시되는 리간드 화합물의 합성
[화학식 11]
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 4,4'-메틸렌비스(시클로헥산-1-아민)(4,4'-methylenebis(cyclohexan-1-amine)) 0.5 mmol(0.5 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 10으로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 3: 화학식 12로 표시되는 리간드 화합물의 합성
[화학식 12]
ChemCatChem 2019, 11, 4351을 참조하여, 4-(트리이소프로필실릴)페닐 브로마이드(4-(triisopropylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 이소프로필 아민(isopropyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 11로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 4: 화학식 13으로 표시되는 리간드 화합물의 합성
[화학식 13]
3-(디메틸옥틸실릴)페닐 브로마이드(3-(dimethyloctylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 이소프로필 아민(isopropyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 12로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 5: 화학식 14로 표시되는 리간드 화합물의 합성
[화학식 14]
1-브로모-3,4-디메틸벤젠(1-bromo-3,4-dimethylbenzene) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 2-이소프로필시클로헥실 아민(2-isopropylcyclohexyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 13으로 표시되는 리간드 화합물을 수득하였다.
비교 합성예 6: 화학식 15로 표시되는 리간드 화합물의 합성
[화학식 15]
3-(트리부틸실릴)페닐 브로마이드(3-(tributylsilyl)phenyl bromide) 20 mmol(2 eq)을 테트라히드로퓨란 20 ml에 용해시킨 후, -78 ℃로 냉각시켰다. 온도를 유지하면서 n-부틸리튬(n-butyl lithium) 20 mmol(2 eq)을 적하(dropwise)로 첨가하고, 3 시간 동안 교반하였다. 이후, 테트라히드로퓨란 10 ml에 용해된 디클로로(디에틸아미노)포스핀(dichloro(diethylamino)phosphine 10 mmol(1 eq)을 적하(dripwise)로 첨가한 후, 상온으로 승온시키고 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 추가적인 정제 과정 없이 수득된 중간체를 헥산(hexane) 30 ml에 용해시킨 후, HCl(in ether, 2 eq)을 첨가하였다. 15 분 간 교반한 후, 여과하고, 여과액은 진공 상에서 건조하여 수득된 중간체 2.1 mmol(2.1 eq)을 디클로로메탄(dichloromethane) 3.8 ml에 용해시킨 후, 트리에틸아민(triethyl amine) 3 mmol(3 eq)을 첨가하였다. 이 후, 디클로로메탄(dichloromethane) 3.8 ml에 용해된 시클로도데실 아민(cyclododecyl amine) 1 mmol(1 eq)을 반응계에 천천히 첨가한 후, 상온에서 밤새(overnight) 교반하였다. 이 후, 진공을 이용하여 용매를 제거하고, 헥산(hexane) 7.6 ml에 용해시킨 후, 실리카 상단에 로딩하고, 1 부피%의 트리에틸아민(triethyl amine)이 첨가된 헥산을 이용하여 실리카 여과를 수행한 후, 얻어진 용액을 농축시켜, 화학식 14로 표시되는 리간드 화합물을 수득하였다.
실시예 및 비교예
실시예 1-1
아르곤 가스 분위기 하에서, 크로뮴(III) 아세틸아세토네이트(Cr(acac)3) 17.5 mg(0.05 mmol)과 상기 합성예 1에 따른 화학식 2-1로 표시되는 리간드 화합물 0.5 mmol을 플라스크에 담은 후, 메틸시클로헥산 100 ml를 투입하고 교반하여 5 mM(Cr 기준)의 촉매 용액을 준비하였다.
600 ml 용량의 Parr 반응기를 준비하여 120 ℃로 2 시간 동안 진공을 잡은 후, 내부를 아르곤으로 치환하고 온도를 80 ℃로 내렸다. 그 후, 메틸시클로헥산 180 ml 및 2 ml의 MMAO(isoheptane solution, Al/Cr=600)를 주입하고, 상기 촉매 용액 2 ml(1.0 μmol Cr)을 주입하였다. 2분 동안 1,000 rpm으로 교반한 후, 30 bar로 맞춰진 에틸렌 라인의 벨브를 열어 반응기 안을 에틸렌으로 채운 다음 1,000 rpm 으로 60 분 동안 교반하였다. 에틸렌 라인 벨브를 잠그고, 반응기를 드라이 아이스/아세톤 bath를 이용하여 0 ℃로 식힌 후, 미반응 에틸렌을 천천히 vent한 후 0.5 ml의 노네인(GC internal standard)을 넣어주었다. 10 초 동안 교반한 다음, 반응기의 액체 부분을 2 ml 취하여 물로 ??칭하고, 얻어진 유기 부분을 PTFE 시린지 필터로 여과하여 GC-FID 샘플을 만들었다. 그리고 액체 생성물(liquid product)의 distribution을 GC 분석하였다(Agilent社 6890N, Alltech AT-5 (30 m Х 0.32 mm ID Х 0.25 μm; series no. 12446)). 또한 남은 반응액에 ethanol/HCl(10 vol% of aqueous 12M HCl solution) 400 ml를 넣어 교반하고 필터하여 고체 생성물의 양을 분석하였다. 수득한 폴리머는 80 ℃ 진공 오븐에서 밤새 건조하였다.
실시예 2-1 내지 15-1 및 비교예 1-1 내지 6-1
촉매 종류를 하기 표 1과 같이 변경한 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 실시하였다.
구분 리간드 화합물 조촉매 크롬 소스
실시예 1-1 합성예 1(화학식 2-1) MMAO Cr(acac)3
실시예 2-1 합성예 2(화학식 2-2) MMAO Cr(acac)3
실시예 3-1 합성예 3(화학식 2-3) MMAO Cr(acac)3
실시예 4-1 합성예 4(화학식 2-4) MMAO Cr(acac)3
실시예 5-1 합성예 5(화학식 2-5) MMAO Cr(acac)3
실시예 6-1 합성예 6(화학식 2-6) MMAO Cr(acac)3
실시예 7-1 합성예 7(화학식 2-7) MMAO Cr(acac)3
실시예 8-1 합성예 8(화학식 2-8) MMAO Cr(acac)3
실시예 9-1 합성예 9(화학식 2-9) MMAO Cr(acac)3
실시예 10-1 합성예 10(화학식 2-10) MMAO Cr(acac)3
실시예 11-1 합성예 11(화학식 2-11) MMAO Cr(acac)3
실시예 12-1 합성예 12(화학식 3-1) MMAO Cr(acac)3
실시예 13-1 합성예 13(화학식 4-1) MMAO Cr(acac)3
실시예 14-1 합성예 14(화학식 4-2) MMAO Cr(acac)3
실시예 15-1 합성예 15(화학식 5-1) MMAO Cr(acac)3
비교예 1-1 비교 합성예 1(화학식 10) MMAO Cr(acac)3
비교예 2-1 비교 합성예 2(화학식 11) MMAO Cr(acac)3
비교예 3-1 비교 합성예 3(화학식 12) MMAO Cr(acac)3
비교예 4-1 비교 합성예 4(화학식 13) MMAO Cr(acac)3
비교예 5-1 비교 합성예 5(화학식 14) MMAO Cr(acac)3
비교예 6-1 비교 합성예 6(화학식 15) MMAO Cr(acac)3
실시예 1-2
아르곤 가스 분위기 하에서, 크로뮴(III) 클로라이드 테트라하이드로퓨란(Cr(THF)3Cl3) 0.5 mmol, 상기 합성예 1에 따른 화학식 2-1로 표시되는 리간드 화합물 0.5 mmol 및 조촉매로 N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트(AB) 0.5 mmol을 플라스크에 담은 후, 디클로로메탄 30 ml를 투입하고 1 시간 동안 교반한 후, 진공으로 용매를 제거하였다. 이후, 메틸시클로헥산에 용해하여 여과한 후, 다시 진공으로 용매를 제거하고, 메틸시클로헥산에 용해시켜 0.15 mM(Cr 기준)의 촉매 용액을 준비하였다.
600 ml 용량의 Parr 반응기를 준비하여 120 ℃로 2 시간 동안 진공을 잡은 후, 내부를 아르곤으로 치환하고 온도를 70 ℃로 내렸다. 그 후, 메틸시클로헥산 180 ml 및 2 ml의 활성화제로 디이소부틸 알루미늄 하이드라이드 725 μmol을 주입하고, 상기 촉매 용액 5 ml(0.75 μmol Cr)을 주입하였다. 2분 동안 1,000 rpm으로 교반한 후, 40 bar로 맞춰진 에틸렌 라인의 벨브를 열어 반응기 안을 에틸렌으로 채운 다음 1,000 rpm 으로 60 분 동안 교반하였다. 에틸렌 라인 벨브를 잠그고, 반응기를 드라이 아이스/아세톤 bath를 이용하여 0 ℃로 식힌 후, 미반응 에틸렌을 천천히 vent한 후 0.5 ml의 노네인(GC internal standard)을 넣어주었다. 10 초 동안 교반한 다음, 반응기의 액체 부분을 2 ml 취하여 물로 ??칭하고, 얻어진 유기 부분을 PTFE 시린지 필터로 여과하여 GC-FID 샘플을 만들었다. 그리고 액체 생성물(liquid product)의 distribution을 GC 분석하였다(Agilent社 6890N, Alltech AT-5 (30 m Х 0.32 mm ID Х 0.25 μm; series no. 12446)). 또한 남은 반응액에 ethanol/HCl(10 vol% of aqueous 12M HCl solution) 400 ml를 넣어 교반하고 필터하여 고체 생성물의 양을 분석하였다. 수득한 폴리머는 80 ℃ 진공 오븐에서 밤새 건조하였다.
실시예 2-2 내지 15-2 및 비교예 1-2 내지 6-2
촉매 종류를 하기 표 2와 같이 변경한 것을 제외하고는, 상기 실시예 1-2와 동일한 방법으로 실시하였다.
구분 리간드 화합물 조촉매 크롬 소스
실시예 1-2 합성예 1(화학식 2-1) AB Cr(THF)3Cl3
실시예 2-2 합성예 2(화학식 2-2) AB Cr(THF)3Cl3
실시예 3-2 합성예 3(화학식 2-3) AB Cr(THF)3Cl3
실시예 4-2 합성예 4(화학식 2-4) AB Cr(THF)3Cl3
실시예 5-2 합성예 5(화학식 2-5) AB Cr(THF)3Cl3
실시예 6-2 합성예 6(화학식 2-6) AB Cr(THF)3Cl3
실시예 7-2 합성예 7(화학식 2-7) AB Cr(THF)3Cl3
실시예 8-2 합성예 8(화학식 2-8) AB Cr(THF)3Cl3
실시예 9-2 합성예 9(화학식 2-9) AB Cr(THF)3Cl3
실시예 10-2 합성예 10(화학식 2-10) AB Cr(THF)3Cl3
실시예 11-2 합성예 11(화학식 2-11) AB Cr(THF)3Cl3
실시예 12-2 합성예 12(화학식 3-1) AB Cr(THF)3Cl3
실시예 13-2 합성예 13(화학식 4-1) AB Cr(THF)3Cl3
실시예 14-2 합성예 14(화학식 4-2) AB Cr(THF)3Cl3
실시예 15-2 합성예 15(화학식 5-1) AB Cr(THF)3Cl3
비교예 1-2 비교 합성예 1(화학식 10) AB Cr(THF)3Cl3
비교예 2-2 비교 합성예 2(화학식 11) AB Cr(THF)3Cl3
비교예 3-2 비교 합성예 3(화학식 12) AB Cr(THF)3Cl3
비교예 4-2 비교 합성예 4(화학식 13) AB Cr(THF)3Cl3
비교예 5-2 비교 합성예 5(화학식 14) AB Cr(THF)3Cl3
비교예 6-2 비교 합성예 6(화학식 15) AB Cr(THF)3Cl3
실험예
상기 실시예 및 비교예에 따른 에틸렌 올리고머화 반응의 결과를 하기 표 3 및 표 4에 나타내었다.
* 촉매 활성(ton/mol·Cr/hr): 수득한 액체 생성물 및 고체 생성물의 중량(ton)을 합한 생성물 총 중량(ton) 값으로부터, 촉매 활성을 계산하였다.
* 1-C6 및 1-C8 선택도(중량%): 액체 생성물의 distribution을 GC로 분석한 결과로부터 1-헥센(1-C6) 및 1-옥텐(1-C8)의 함유량을 계산하여, 생성물 총 중량 기준 1-헥센 또는 1-옥텐의 중량%를 계산하였다.
* Solid(중량%): 생성물 총 중량 기준 고체 생성물의 중량%를 계산하였다. 이는 용매에 용해되지 않은 불용성 고체로서 탄소수 약 40 이상의 폴리에틸렌이 생성된 정도를 나타내는 것이다.
구분 촉매 활성 1-C6 및 1-C8 선택도 Solid
1-C6 1-C8 Total
(ton/mol·Cr/hr) (wt%) (wt%) (wt%) (wt%)
실시예 1-1 324 33.7 51.6 85.3 0.56
실시예 2-1 394 38.4 47.6 86.0 0.61
실시예 3-1 435 35.4 54.9 90.3 0.42
실시예 4-1 329 39.1 48.7 87.8 0.52
실시예 5-1 354 35.6 52.2 87.8 0.48
실시예 6-1 385 37.9 49.0 86.9 0.46
실시예 7-1 378 38.1 57.5 85.6 0.51
실시예 8-1 341 39.3 46.8 86.5 0.53
실시예 9-1 244 27.5 51.6 79.1 0.63
실시예 10-1 239 26.8 58.0 84.8 0.60
실시예 11-1 385 38.1 48.0 86.1 0.49
실시예 12-1 367 35.8 54.2 90.0 0.49
실시예 13-1 451 35.2 55.4 90.6 0.45
실시예 14-1 388 37.9 47.8 85.7 0.41
실시예 15-1 260 34.0 50.4 84.4 0.46
비교예 1-1 213 37.2 51.0 88.2 0.88
비교예 2-1 35 35.4 53.1 88.5 1.09
비교예 3-1 156 32.8 54.1 86.9 0.76
비교예 4-1 225 37.1 50.9 88.0 0.81
비교예 5-1 210 40.1 48.2 88.7 0.50
비교예 6-1 227 37.4 51.1 88.5 0.75
구분 촉매 활성 1-C6 및 1-C8 선택도 Solid
1-C6 1-C8 Total
(ton/mol·Cr/hr) (wt%) (wt%) (wt%) (wt%)
실시예 1-2 135 27.8 59.9 87.7 0.58
실시예 2-2 185 23.5 61.0 84.5 0.65
실시예 3-2 201 26.1 62.9 89.0 0.47
실시예 4-2 118 32.9 57.0 89.9 0.69
실시예 5-2 157 26.6 62.0 88.6 0.52
실시예 6-2 188 25.4 60.7 86.1 0.56
실시예 7-2 179 24.1 62.1 86.2 0.50
실시예 8-2 151 32.5 57.2 89.7 0.45
실시예 9-2 110 18.6 64.0 82.6 0.67
실시예 10-2 103 17.9 65.1 83.0 0.61
실시예 11-2 157 23.1 60.9 84.0 0.41
실시예 12-2 185 25.8 62.5 88.3 0.60
실시예 13-2 197 25.8 62.5 88.3 0.45
실시예 14-2 163 22.7 60.5 83.2 0.37
실시예 15-2 121 24.5 60.6 85.1 0.59
비교예 1-2 79 29.0 56.2 85.2 1.16
비교예 2-2 7 29.7 55.7 85.4 1.60
비교예 3-2 58 25.8 60.3 86.1 1.10
비교예 4-2 67 29.0 54.5 83.5 1.26
비교예 5-2 0 - - - -
비교예 6-2 70 28.4 56.9 85.3 0.81
상기 표 3 및 4에 나타낸 바와 같이, 본 발명에 따른 리간드 화합물을 포함하는 촉매 조성물을 이용하여 에틸렌 올리고머화 반응을 실시하는 경우, 디포스피노 아미닐 잔기의 말단에 위치한 페닐이 메타 위치에 특정 탄소수의 알킬기 또는, 특정 탄소수의 알킬로 치환된 실릴기를 치환기로 갖는 것에 더하여, 질소 원자에 치환된 치환기로부터 P-N-P 작용기 주변의 입체 무리를 조절하여 촉매 활성, 선택성 및 안정성이 모두 향상된 것을 확인할 수 있었다.
이와 같은 결과로부터, 본 발명의 리간드 화합물을 포함하는 유기 크롬 화합물 및 촉매 조성물을 이용하여 에틸렌 올리고머화를 실시하는 경우, 높은 촉매 활성으로부터 생산성이 우수하면서도, 높은 1-헥센 및 1-옥텐 선택성으로 선형 알파-올레핀를 제조할 수 있는 것을 확인할 수 있었다.

Claims (19)

  1. 하기 화학식 1로 표시되는 리간드 화합물:
    [화학식 1]

    상기 화학식 1에서,
    R1 내지 R4는 각각 독립적으로 탄소수 5 내지 20의 알킬기 또는 트리알킬실릴기이고, 트리알킬실릴기의 알킬기는 탄소수 1 내지 4의 알킬기이고,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  2. 제1항에 있어서,
    R1 내지 R4는 각각 독립적으로 탄소수 8 내지 12의 알킬기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물.
  3. 제1항에 있어서,
    R1 내지 R4는 각각 독립적으로 n-데실기, 트리프로필실릴기 또는 트리부틸실릴기인 리간드 화합물.
  4. 제1항에 있어서,
    R5는 탄소수 3 내지 5의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 5의 알킬기, 탄소수 5 내지 8의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 8의 시클로알킬기인 리간드 화합물.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 2로 표시되는 것인 리간드 화합물:
    [화학식 2]

    상기 화학식 2에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  6. 제5항에 있어서,
    상기 화학식 2로 표시되는 리간드 화합물은 하기 화학식 2-1 내지 화학식 2-11로 표시되는 리간드 화합물로 이루어진 군으로부터 선택된 1종인 리간드 화합물:
    [화학식 2-1]

    [화학식 2-2]

    [화학식 2-3]

    [화학식 2-4]

    [화학식 2-5]

    [화학식 2-6]

    [화학식 2-7]

    [화학식 2-8]

    [화학식 2-9]

    [화학식 2-10]

    [화학식 2-11]
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 3으로 표시되는 것인 리간드 화합물:
    [화학식 3]

    상기 화학식 3에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  8. 제7항에 있어서,
    상기 화학식 3으로 표시되는 리간드 화합물은 하기 화학식 3-1로 표시되는 리간드 화합물인 리간드 화합물:
    [화학식 3-1]
    .
  9. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 4로 표시되는 것인 리간드 화합물:
    [화학식 4]

    상기 화학식 4에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이다.
  10. 제9항에 있어서,
    상기 화학식 4로 표시되는 리간드 화합물은 하기 화학식 4-1 또는 화학식 4-2로 표시되는 리간드 화합물인 리간드 화합물:
    [화학식 4-1]

    [화학식 4-2]
  11. 제1항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물은 하기 화학식 5로 표시되는 것인 리간드 화합물:
    [화학식 5]

    상기 화학식 5에서,
    R5는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기로 치환된 탄소수 5 내지 10의 시클로알킬기 또는 탄소수 6 내지 10의 아릴기와 융합된 탄소수 5 내지 10의 시클로알킬기이고,
    n은 4 내지 14이다.
  12. 제11항에 있어서,
    상기 화학식 5로 표시되는 리간드 화합물은 하기 화학식 5-1로 표시되는 리간드 화합물인 리간드 화합물:
    [화학식 5-1]
    .
  13. 제1항에 따른 리간드 화합물 및 상기 리간드 화합물에 배위된 크롬을 포함하는 유기 크롬 화합물.
  14. 제11항에 있어서,
    상기 화학식 1로 표시되는 리간드 화합물에서 N 및 두 개의 P 중 어느 하나 이상의 비공유 전자쌍이 크롬에 배위된 형태인 유기 크롬 화합물.
  15. 제1항에 따른 리간드 화합물, 크롬 및 조촉매를 포함하는 촉매 조성물.
  16. 제15항에 있어서,
    상기 크롬은 크롬 소스로부터 유래되고,
    상기 크롬 소스는 크로뮴(III) 아세틸아세토네이트, 크로뮴(III) 클로라이드 테트라하이드로퓨란, 크로뮴(III) 2-에틸헥사노에이트, 크로뮴(III) 아세테이트, 크로뮴(III) 부티레이트, 크로뮴(III) 펜타노에이트, 크로뮴(III) 라우레이트, 크로뮴(III) 트리스(2,2,6,6-테트라메틸-3.5-헵테인디오네이트) 및 크로뮴(III) 스테아레이트로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 촉매 조성물.
  17. 제15항에 있어서,
    상기 조촉매는 하기 화학식 6 내지 화학식 9로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 촉매 조성물:
    [화학식 6]
    -[Al(R13)-O]a-
    상기 화학식 6에서,
    R13은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이고,
    a는 2 이상의 정수이며,
    [화학식 7]
    E(R14)3
    상기 화학식 7에서,
    E는 알루미늄 또는 보론이고,
    R14는 각각 독립적으로 수소, 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 또는 할로겐기로 치환된 탄소수 1 내지 20의 히드로카빌기이며,
    [화학식 8]
    [L-H]+[G(Y)4]-
    [화학식 9]
    [L]+[G(Y)4]-
    상기 화학식 8 및 화학식 9에서,
    L은 중성 또는 양이온성 루이스 산이고,
    [L-H]+는 브뢴스테드 산이며,
    G는 13족 원소이며,
    Y는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고, 여기서, 알킬기 또는 아릴기가 치환되는 경우, 치환기는 할로겐기, 탄소수 1 내지 20의 히드로카빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다.
  18. 제15항에 따른 촉매 조성물의 존재 하에, 에틸렌을 올리고머화하는 단계(S10)를 포함하는 선형 알파-올레핀 제조방법.
  19. 제18항에 있어서,
    상기 선형 알파-올레핀은 1-헥센, 1-옥텐 또는 이들의 혼합물인 선형 알파-올레핀 제조방법.
KR1020230028624A 2022-03-14 2023-03-03 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물 KR20230134435A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220031616 2022-03-14
KR20220031616 2022-03-14

Publications (1)

Publication Number Publication Date
KR20230134435A true KR20230134435A (ko) 2023-09-21

Family

ID=88023935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230028624A KR20230134435A (ko) 2022-03-14 2023-03-03 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물

Country Status (2)

Country Link
KR (1) KR20230134435A (ko)
WO (1) WO2023177129A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050100600A (ko) * 2002-12-20 2005-10-19 사솔 테크날러지 (프로프라이어터리) 리미티드 올레핀의 사량체화
US20120172645A1 (en) * 2010-12-29 2012-07-05 Chevron Phillips Chemical Company Lp Olefin Oligomerization catalysts and Methods of Making and Using Same
WO2015072810A1 (ko) * 2013-11-18 2015-05-21 주식회사 엘지화학 리간드 화합물, 올레핀 올리고머화용 촉매계, 및 이를 이용한 올레핀 올리고머화 방법
KR101757835B1 (ko) * 2015-06-12 2017-07-13 주식회사 엘지화학 리간드 화합물, 유기 크롬 화합물, 올레핀 올리고머화용 촉매 시스템, 및 이를 이용한 올레핀의 올리고머화 방법
CN105754019B (zh) * 2016-03-01 2018-06-05 中国石油化工股份有限公司 一种原位共聚制备长支链宽/双峰聚乙烯的催化剂组合物及使用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds

Also Published As

Publication number Publication date
WO2023177129A1 (ko) 2023-09-21

Similar Documents

Publication Publication Date Title
EP2308815B1 (en) Chain growth reaction process
US20040116758A1 (en) Catalyst systems for ethylene oligomerisation to linear alpha olefins
KR20160099450A (ko) 올레핀 올리고머화 방법
US10392451B2 (en) Ligand compound, organic chromium compound, catalyst system for olefin oligomerization, and method for oligomerizing olefins using the same thereof
JP2016521691A (ja) リガンド化合物、オレフィンオリゴマー化用触媒系、およびこれを用いたオレフィンオリゴマー化方法
US20120130086A1 (en) Highly Active and Selective Ethylene Oligomerization Catalyst and Method of Preparing Hexene or Octene Using the Same
KR20220036234A (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 시스템
JP6427205B2 (ja) リガンド化合物、有機クロム化合物、オレフィンオリゴマー化用触媒システム、およびこれを用いたオレフィンのオリゴマー化方法
CN109476779B (zh) 乙烯的低聚
JP2018500277A (ja) リガンド化合物、有機クロム化合物、オレフィンオリゴマー化触媒システム、およびこれを用いたオレフィンのオリゴマー化方法
EP3907004B1 (en) Halogen-containing compound and use thereof, catalyst composition, and ethylene oligomerization, trimerization and tetramerization methods
KR20230134435A (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물
KR102037501B1 (ko) 에틸렌 올리고머의 연속 제조 방법
CN108137625B (zh) 配体化合物、有机铬化合物、用于烯烃低聚的催化剂体系及使用其使烯烃低聚的方法
US20230331753A1 (en) Ligand Compound, Organochromium Compound and Catalyst System Comprising the Same
US11826743B2 (en) Halogen-containing compound and use thereof as catalyst ligand in ethylene oligomerization
CN111434667B (zh) 含氟化合物及用途和乙烯齐聚催化剂组合物及乙烯齐聚方法和乙烯三聚方法和乙烯四聚方法
KR20230134434A (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물
KR100493926B1 (ko) 에틸렌 소량화 반응용 촉매 조성물과 소량화 반응 방법
KR20240044070A (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 조성물
CN111196824A (zh) 一种蒽骨架磷氮配位双金属化合物的制备及其乙烯选择性齐聚催化
CN115043866B (zh) 一种有机铝氢试剂的合成方法和应用
KR20220162021A (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 시스템
CN113583053B (zh) 一种金属络合物、乙烯齐聚用催化剂及其应用
EP4332129A1 (en) Branched olefin polymer, preparation method therefor and use thereof

Legal Events

Date Code Title Description
A201 Request for examination