WO2023176672A1 - 光学フィルムおよび視角制御システム - Google Patents

光学フィルムおよび視角制御システム Download PDF

Info

Publication number
WO2023176672A1
WO2023176672A1 PCT/JP2023/009002 JP2023009002W WO2023176672A1 WO 2023176672 A1 WO2023176672 A1 WO 2023176672A1 JP 2023009002 W JP2023009002 W JP 2023009002W WO 2023176672 A1 WO2023176672 A1 WO 2023176672A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
light
layer
mass
Prior art date
Application number
PCT/JP2023/009002
Other languages
English (en)
French (fr)
Inventor
英一郎 網中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023176672A1 publication Critical patent/WO2023176672A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical film and a viewing angle control system.
  • Patent Document 1 discloses that a retardation film has polarizing films on both sides, the polarizing film includes at least a polarizer, and the absorption axis of the polarizer is oriented substantially perpendicular to the plane of the polarizing film.
  • Patent Document 2 describes an optical film including a first anisotropic absorption layer, a first retardation layer, and a second anisotropic absorption layer in this order.
  • the present inventor studied a laminate (viewing angle control system) in which the optical films described in Patent Documents 1 and 2 and a polarizer having an absorption axis in the in-plane direction are laminated, and found that the normal of the laminate It has been revealed that when viewed from an angle tilted 25 degrees from the direction, there are cases where the transmittance from the direction (azimuth) where you want to block light increases, and there are cases where coloring is seen in the leaked light.
  • the present invention provides a structure in which the transmittance from the direction in which light is desired to be blocked is low when viewed from an angle inclined by 25 degrees from the normal direction of a stacked body in which polarizers having absorption axes in the in-plane direction are stacked, and
  • An object of the present invention is to provide an optical film and a viewing angle control system that can suppress coloring of leaked light.
  • the present inventors have discovered that by using an optical film having multiple specific light-absorbing anisotropic layers and an intermediate layer that satisfies a predetermined retardation, When viewed from an angle tilted 25 degrees from the normal direction of a stacked stack of polarizers with absorption axes facing inward, the transmittance from the direction you want to block light is low, and the coloring of leaked light is suppressed. They have discovered that it is possible to do this, and have completed the present invention. That is, the present inventor found that the above problem could be solved by the following configuration.
  • An optical film comprising a plurality of light-absorbing anisotropic layers containing a dichroic substance and at least one intermediate layer disposed between the plurality of light-absorbing anisotropic layers,
  • Each of the plurality of light absorption anisotropic layers has an absorption axis parallel to the thickness direction,
  • the thickness of each of the plurality of light absorption anisotropic layers is 3.0 ⁇ m or less
  • the total thickness of the plurality of light absorption anisotropic layers is 4.0 ⁇ m or more
  • the total value obtained by multiplying the ratio of the dichroic substance content to the mass of the light-absorbing anisotropic layer by the thickness of the light-absorbing anisotropic layer for multiple light-absorbing anisotropic layers is 1.
  • a viewing angle control system comprising the optical film according to any one of [1] to [3] and a polarizer having an absorption axis in the in-plane direction.
  • [5] It has a display element and the viewing angle control system according to [4], An image display device, wherein a viewing angle control system is disposed on at least one main surface of a display element.
  • [6] The image display device according to [5], wherein the plurality of light absorption anisotropic layers included in the viewing angle control system are all arranged closer to the viewing side than the polarizer included in the viewing angle control system.
  • the transmittance from the direction in which light is desired to be blocked is low, and It is possible to provide an optical film that can suppress coloring of leaked light, and a viewing angle control system.
  • FIG. 1 is a schematic diagram showing an example of a head-mounted display of the present invention.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a light guide plate for AR (Augmented Reality) glasses.
  • FIG. 1 is a schematic diagram showing a plan view of an evaluation system for a head-mounted display of the present invention.
  • each component may be a substance corresponding to each component, which may be used alone or in combination of two or more.
  • the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
  • (meth)acrylate is a notation representing “acrylate” or “methacrylate”
  • (meth)acrylic is a notation representing “acrylic” or “methacrylic”
  • (meth)acrylate is a notation representing "acrylic” or “methacrylic”
  • (Meth)acryloyl is a notation representing "acryloyl” or “methacryloyl.”
  • liquid crystal composition or “liquid crystal compound” includes a concept that no longer exhibits liquid crystallinity due to curing or the like.
  • angular relationships include the range of error allowed in the technical field to which the present invention belongs. Specifically, it means that the exact angle is within a range of less than ⁇ 10°, and the error from the exact angle is preferably within a range of ⁇ 5° or less, and within a range of ⁇ 3° or less. It is more preferable that
  • Re( ⁇ ) and Rth( ⁇ ) represent in-plane retardation and retardation in the thickness direction at wavelength ⁇ , respectively.
  • the wavelength ⁇ is 550 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) are values measured at wavelength ⁇ using AxoScan (manufactured by Axometrics).
  • AxoScan manufactured by Axometrics.
  • Re( ⁇ ) R0( ⁇ )
  • NAR-4T Abbe refractometer
  • 589 nm
  • DR-M2 multi-wavelength Abbe refractometer
  • the average refractive index values of the main optical films are illustrated below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), and polystyrene (1.59).
  • the substituent W used in this specification represents the following group.
  • Examples of the substituent W include a halogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 1 to 20 carbon atoms, and an alkylcarbonyl group having 1 to 10 carbon atoms.
  • alkyloxycarbonyl group having 1 to 10 carbon atoms alkylcarbonyloxy group having 1 to 10 carbon atoms, alkylamino group having 1 to 10 carbon atoms, alkylaminocarbonyl group, alkoxy group having 1 to 20 carbon atoms, 1 carbon number ⁇ 20 alkenyl groups, alkynyl groups with 1 to 20 carbon atoms, aryl groups with 1 to 20 carbon atoms, heterocyclic groups (can also be called heterocyclic groups), cyano groups, hydroxy groups, nitro groups, carboxy groups, Aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, Alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoyla
  • LW represents a single bond or a divalent linking group
  • SPW represents a divalent spacer group
  • Q represents Q1 or Q2 in the formula (LC) described below
  • * represents the bonding position.
  • the divalent spacer group represented by SPW includes a linear, branched or cyclic alkylene group having 1 to 50 carbon atoms, or a heterocyclic group having 1 to 20 carbon atoms.
  • the hydrogen atom of the above alkylene group and the hydrogen atom of the heterocyclic group are a halogen atom, a cyano group, -Z H , -OH, -OZ H , -COOH, -C(O)Z H , -C(O) OZ H , -OC(O)Z H , -OC(O)OZ H , -NZ H Z H ', -NZ H C(O)Z H ', -NZ H C(O)OZ H ', -C (O)NZ H Z H ', -OC(O)NZ H Z H ', -NZ H C(O)NZ H 'OZ H '', -SH, -SZ H , -C(S)Z H , It may be substituted with -C(O)SZ H , -SC(O)Z H (hereinafter also abbreviated as "SP-H").
  • Z H and Z H ' are an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group, -L-CL (L represents a single bond or a divalent linking group. Specific examples of the divalent linking group) is the same as LW and SPW described above.
  • CL represents a crosslinkable group, and examples include a group represented by Q1 or Q2 in the formula (LC) described below, and in formulas (P1) to (P30) described below.
  • the crosslinkable group represented by the following is preferable.
  • the optical film of the present invention is an optical film having a plurality of light-absorbing anisotropic layers containing a dichroic substance and at least one intermediate layer disposed between the plurality of light-absorbing anisotropic layers.
  • the plurality of light absorption anisotropic layers included in the optical film of the present invention all have absorption axes parallel to the thickness direction, and each has a thickness of 3.0 ⁇ m or less, and the total thickness is 4.0 ⁇ m. That's all.
  • the optical film of the present invention has a ratio of the dichroic substance content to the mass of the light absorption anisotropic layer (dichroic substance content/mass of the light absorption anisotropic layer) and light absorption anisotropy.
  • the total value (hereinafter also abbreviated as "total film thickness in terms of dichroic material") calculated by multiplying the value obtained by multiplying the thickness of the dichroic layer by the thickness of the dichroic layer is 1.10 ⁇ m or more.
  • the intermediate layer included in the optical film of the present invention is a layer having an in-plane retardation of 25 nm or less at a wavelength of 550 nm, and an absolute value of retardation in the thickness direction at a wavelength of 550 nm of 25 nm or less.
  • each layer is 3.0 ⁇ m or less, the total thickness is 4.0 ⁇ m or more, and the total film thickness in terms of dichroic substance is 1.10 ⁇ m or more, parallel to the thickness direction.
  • An optical film that has a plurality of light absorption anisotropic layers (hereinafter referred to as "specific light absorption anisotropic layers” in this paragraph) having a specific absorption axis and an intermediate layer that satisfies a predetermined retardation.
  • the plurality of light absorption anisotropic layers included in the optical film of the present invention have a thickness of each layer of 3.0 ⁇ m or less, a total thickness of 4.0 ⁇ m or more, and a total film thickness of 1.10 ⁇ m in terms of dichroic substance.
  • This is a light absorption anisotropic layer having an absorption axis parallel to the thickness direction.
  • the thickness of each layer of the light absorption anisotropic layer is preferably 1.0 to 3.0 ⁇ m, more preferably 2.0 to 3.0 ⁇ m.
  • the total thickness of the light absorption anisotropic layer is preferably 4.0 to 20.0 ⁇ m, more preferably 8.0 to 20.0 ⁇ m.
  • the total film thickness of the light-absorbing anisotropic layer in terms of dichroic substances is preferably 1.20 to 5.00 ⁇ m, more preferably 2.00 to 5.00 ⁇ m.
  • the thickness of the light absorption anisotropic layer is measured when a cross-sectional section sample is prepared using a microtome and an SEM image is observed using a scanning electron microscope (SEM). It refers to the average value of the thickness at any three points.
  • the reason why the transmittance is lower when viewed from a predetermined azimuth angle at an angle of 25 degrees from the normal direction of the laminate in which polarizers having absorption axes in the in-plane direction are stacked is that
  • the degree of orientation of each of the plurality of light absorption anisotropic layers is preferably 0.90 or more, more preferably 0.93 or more, and even more preferably 0.95 or more.
  • the degree of orientation of the light absorption anisotropic layer is calculated by the following method.
  • the transmittance of the light absorption anisotropic layer at a wavelength of 550 nm is measured using AxoScan (manufactured by Axometrics).
  • the polar angle which is the angle with respect to the normal direction of the light-absorbing anisotropic layer, was changed in 5° increments from 0 to 60°, and the transmittance at a wavelength of 550 nm at all azimuth angles at each polar angle was measured. Measure.
  • the transmittance at the azimuthal and polar angles with the highest transmittance is Tm(0), and in the azimuthal direction with the highest transmittance, from the polar angle with the highest transmittance, Furthermore, the transmittance at an angle where the polar angle is tilted by 40 degrees is Tm (40).
  • the absorbance is calculated from the obtained Tm(0) and Tm(40) using the following formula, and A(0) and A(40) are calculated.
  • A -log(Tm)
  • Tm represents transmittance
  • A absorbance
  • the light absorption anisotropic layer is preferably a light absorption anisotropic layer containing a dichroic substance, and is preferably a light absorption anisotropic layer containing a dichroic substance and a liquid crystal compound. More preferably, it is a layer in which the alignment state of the liquid crystal compound and the dichroic substance is fixed.
  • a light absorption anisotropic layer can be formed from a liquid crystal composition containing a liquid crystal compound and a dichroic substance.
  • the liquid crystal composition may contain an aligning agent, a solvent, a polymerization initiator, a polymerizable compound, an interface improver, and other additives. Each component will be explained below.
  • the liquid crystal composition contains a liquid crystal compound.
  • the dichroic substance can be oriented with a high degree of orientation while suppressing precipitation of the dichroic substance.
  • liquid crystal compounds contained in liquid crystal compositions can generally be classified into rod-like types and disc-like types based on their shapes.
  • the liquid crystal compound is preferably a liquid crystal compound that does not exhibit dichroism in the visible region. In the following description, "the degree of orientation of the light-absorbing anisotropic layer formed is higher" is also referred to as "the effect of the present invention is more excellent.”
  • liquid crystal compound both low-molecular liquid crystal compounds and high-molecular liquid crystal compounds can be used.
  • low-molecular liquid crystal compound refers to a liquid crystal compound that does not have repeating units in its chemical structure.
  • polymer liquid crystal compound refers to a liquid crystal compound having repeating units in its chemical structure.
  • the low-molecular liquid crystal compound include liquid crystal compounds described in JP-A No. 2013-228706.
  • the polymeric liquid crystal compound include thermotropic liquid crystalline polymers described in JP-A No. 2011-237513.
  • the polymeric liquid crystal compound may have a crosslinkable group (for example, an acryloyl group and a methacryloyl group) at the terminal.
  • the liquid crystal compound is preferably a rod-shaped liquid crystal compound, and more preferably a polymeric liquid crystal compound because the effects of the present invention are easily manifested.
  • the liquid crystal compounds may be used alone or in combination of two or more.
  • the liquid crystal compound preferably contains a polymeric liquid crystal compound, and particularly preferably contains both a polymeric liquid crystal compound and a low molecular weight liquid crystal compound, in order to obtain more excellent effects of the present invention.
  • the liquid crystal compound preferably includes a liquid crystal compound represented by formula (LC) or a polymer thereof.
  • the liquid crystal compound represented by formula (LC) or its polymer is a compound that exhibits liquid crystallinity.
  • the liquid crystallinity may be a nematic phase or a smectic phase, or may exhibit both a nematic phase and a smectic phase, and preferably exhibits at least a nematic phase.
  • the smectic phase may be a higher order smectic phase.
  • the higher-order smectic phases here include smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase, smectic L phase, Among them, smectic B phase, smectic F phase, and smectic I phase are preferable.
  • the smectic liquid crystal phase exhibited by the liquid crystal compound is one of these higher-order smectic liquid crystal phases, a light absorption anisotropic layer with a higher degree of orientational order can be produced.
  • a light absorption anisotropic layer made from a high-order smectic liquid crystal phase with a high degree of orientational order shows a Bragg peak derived from a higher-order structure such as a hexatic phase or a crystalline phase in X-ray diffraction measurements.
  • the above-mentioned Bragg peak is a peak derived from the plane periodic structure of molecular orientation, and according to the liquid crystal composition of the present invention, a light absorption anisotropic layer with a periodic interval of 3.0 to 5.0 ⁇ can be obtained. I can do it.
  • Q1 and Q2 each independently represent a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a C1 to 20 alkyl group.
  • R P is a hydrogen atom, a halogen atom, a linear, branched, or cyclic alkylene group having 1 to 10 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms.
  • an alkoxy group having 1 to 20 carbon atoms an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, a heterocyclic group (which can also be called a heterocyclic group) , cyano group, hydroxy group, nitro group, carboxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group) ), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocycl
  • Preferred embodiments of the crosslinkable group include radically polymerizable groups and cationically polymerizable groups.
  • examples of the radically polymerizable group include a vinyl group represented by the above formula (P-1), a butadiene group represented by the above formula (P-2), and a (meth)acrylic group represented by the above formula (P-4).
  • the cationically polymerizable group is a vinyl ether group represented by the above formula (P-18), an epoxy group represented by the above formula (P-19), or an oxetanyl group represented by the above formula (P-20). , is preferable.
  • S1 and S2 each independently represent a divalent spacer group, and a preferred embodiment of S1 and S2 is the same structure as SPW in formula (W1) above, so the explanation thereof is omitted. do.
  • MG represents a mesogenic group described later.
  • the mesogenic group represented by MG is a group representing the main skeleton of liquid crystal molecules that contributes to liquid crystal formation. Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state.
  • the mesogenic group represented by MG preferably contains 2 to 10 cyclic structures, more preferably 3 to 7 cyclic structures. Specific examples of the cyclic structure include aromatic hydrocarbon groups, heterocyclic groups, and alicyclic groups.
  • the mesogenic group represented by MG is the following formula (MG-A) or the following formula, from the viewpoint of expression of liquid crystallinity, adjustment of liquid crystal phase transition temperature, raw material availability and synthesis suitability, and the effects of the present invention.
  • a group represented by (MG-B) is preferred, and a group represented by formula (MG-B) is more preferred.
  • A1 is a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group. These groups may be substituted with a substituent such as the above-mentioned substituent W.
  • the divalent group represented by A1 is preferably a 4- to 15-membered ring. Further, the divalent group represented by A1 may be a monocyclic ring or a condensed ring group. * represents the bonding position with S1 or S2.
  • Examples of the divalent aromatic hydrocarbon group represented by A1 include phenylene group, naphthylene group, fluorene-diyl group, anthracene-diyl group, and tetracene-diyl group. From the viewpoint of properties and the like, phenylene groups and naphthylene groups are preferred.
  • the divalent heterocyclic group represented by A1 may be aromatic or non-aromatic, but from the viewpoint of further improving the degree of orientation, a divalent aromatic heterocyclic group is preferable.
  • Atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom, and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • divalent aromatic heterocyclic groups include pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), etc.
  • isoquinolylene group isoquinoline-diyl group
  • oxazole-diyl group isoquinoline-diyl group
  • thiazole-diyl group isoxadiazole-diyl group
  • benzothiazole-diyl group benzothiadiazole-diyl group
  • phthalimido-diyl group isoquinoline-diyl group
  • thienothiazole-diyl group isoxazole-diyl group
  • thiazole-diyl group isoxadiazole-diyl group
  • benzothiazole-diyl group isnzothiadiazole-diyl group
  • phthalimido-diyl group is thienothiazole-diyl group
  • thiazolothiazole-diyl group isothiophene-diyl group
  • D 1 represents -S-, -O-, or NR 11 -
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y 1 represents an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms
  • Z 1 , Z 2 , and Z 3 each independently represent a hydrogen atom or a carbon number
  • Aliphatic hydrocarbon group having 1 to 20 carbon atoms, alicyclic hydrocarbon group having 3 to 20 carbon atoms, monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, halogen atom, cyano group, nitro group, -NR 12 R 13 or -SR 12 , Z 1 and Z 2 may be combined with each other to form an aromatic ring or an aromatic heterocycle
  • R 12 and R 13 each independently represent a hydrogen atom or a carbon atom having 1 -6 alkyl group
  • J 1 and J 2 are each independently -O-
  • Jx and Jy may be combined to form a ring
  • D 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • Y 1 when Y 1 is an aromatic hydrocarbon group having 6 to 12 carbon atoms, it may be monocyclic or polycyclic. When Y 1 is an aromatic heterocyclic group having 3 to 12 carbon atoms, it may be monocyclic or polycyclic.
  • J 1 and J 2 when J 1 and J 2 represent -NR 21 -, as the substituent for R 21 , for example, the descriptions in paragraphs 0035 to 0045 of JP 2008-107767 A can be referred to, This content is incorporated herein.
  • R' represents a substituent, and for the substituent, for example, the descriptions in paragraphs [0035] to [0045] of JP-A No. 2008-107767 can be referred to, and -NZ A1 Z A2 (Z A1 and Z A2 are each independently , represents a hydrogen atom, an alkyl group or an aryl group) are preferred.
  • divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group, and carbon atoms include -O-, -Si(CH 3 ) 2 -, -N( Z)-(Z represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom), -C(O)-, -S-, -C It may be substituted with (S)-, -S(O)-, -SO 2 -, or a combination of two or more of these groups.
  • a1 represents an integer from 2 to 10.
  • a plurality of A1s may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group. Specific examples and preferred embodiments of A2 and A3 are the same as A1 in formula (MG-A), so their explanation will be omitted.
  • a2 represents an integer from 1 to 10, multiple A2's may be the same or different, and multiple LA1's may be the same or different. It is more preferable that a2 is 2 or more because the effect of the present invention is more excellent.
  • LA1 is a single bond or a divalent linking group.
  • LA1 is a divalent linking group
  • a2 is 2 or more
  • at least one of the plurality of LA1 is a divalent linking group.
  • the divalent linking group represented by LA1 is the same as LW, so its explanation will be omitted.
  • MG include the following structures, in which hydrogen atoms on aromatic hydrocarbon groups, heterocyclic groups, and alicyclic groups are substituted with the above-mentioned substituent W. Good too.
  • liquid crystal compound represented by formula (LC) is a low-molecular liquid crystal compound
  • preferred embodiments of the cyclic structure of the mesogenic group MG include a cyclohexylene group, a cyclopentylene group, a phenylene group, a naphthylene group, and a fluorene-diyl group.
  • Preferred embodiments of the substituent W having a mesogenic structure include a halogen atom, a halogenated alkyl group, a cyano group, a hydroxy group, a nitro group, a carboxy group, an alkoxy group having 1 to 10 carbon atoms, and an alkylcarbonyl group having 1 to 10 carbon atoms.
  • LW is Examples include a group in which SPW is a divalent spacer group, and Q is a crosslinkable group represented by (P1) to (P30) described above. Examples of the crosslinkable group include a vinyl group.
  • butadiene group (meth)acrylic group, (meth)acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group, vinyl ether group, epoxy group, oxetanyl group are preferred. .
  • a preferred embodiment of the divalent spacer groups S1 and S2 is the same as that of SPW above, and therefore the description thereof will be omitted.
  • the number of carbon atoms in the spacer group (the number of atoms when this carbon is replaced with "SP-C") is preferably 6 or more, more preferably 8 or more. .
  • liquid crystal compound represented by formula (LC) is a low-molecular liquid crystal compound
  • a plurality of low-molecular liquid crystal compounds may be used in combination, preferably 2 to 6 types are used together, and 2 to 4 types are used in combination. is even more preferable.
  • the solubility can be improved and the phase transition temperature of the liquid crystal composition can be adjusted.
  • low-molecular liquid crystal compounds include compounds represented by the following formulas (LC-1) to (LC-77), but the low-molecular liquid crystal compounds are not limited to these.
  • the polymeric liquid crystal compound is preferably a homopolymer or copolymer containing the repeating units described below, and may be any polymer such as a random polymer, block polymer, graft polymer, or star polymer.
  • the polymeric liquid crystal compound preferably contains a repeating unit represented by formula (1) (hereinafter also referred to as “repeat unit (1)").
  • PC1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • MG1 represents the mesogenic group MG in the above formula (LC).
  • T1 represents a terminal group.
  • Examples of the main chain of the repeating unit represented by PC1 include groups represented by formulas (P1-A) to (P1-D), among which the monomers used as raw materials are diverse and easy to handle. From this viewpoint, a group represented by the following formula (P1-A) is preferable.
  • R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, or a carbon number Represents 1 to 10 alkoxy groups.
  • the alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group). Further, the number of carbon atoms in the alkyl group is preferably 1 to 5.
  • the group represented by formula (P1-A) is preferably one unit of a partial structure of a poly(meth)acrylic ester obtained by polymerization of a (meth)acrylic ester.
  • the group represented by formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of the epoxy group of a compound having an epoxy group.
  • the group represented by formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of the oxetane group of a compound having an oxetane group.
  • the group represented by formula (P1-D) is preferably a siloxane unit of a polysiloxane obtained by polycondensation of a compound having at least one of an alkoxysilyl group and a silanol group.
  • examples of the compound having at least one of an alkoxysilyl group and a silanol group include a compound having a group represented by the formula SiR 14 (OR 15 ) 2 -.
  • R 14 has the same meaning as R 14 in (P1-D), and each of the plurality of R 15s independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the divalent linking group represented by L1 is the same divalent linking group as LW in the above formula (W1), and preferred embodiments include -C(O)O-, -OC(O)-, - Examples include O-, -S-, -C(O)NR 16 -, -NR 16 C(O)-, -S(O) 2 -, and -NR 16 R 17 -.
  • R 16 and R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent (eg, the above-mentioned substituent W).
  • the left-hand bond bonds with PC1 and the right-hand bond bonds with SP1.
  • L1 is preferably a group represented by -C(O)O- or -C(O)NR 16 -.
  • PC1 is a group represented by formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond.
  • the spacer group represented by SP1 represents the same group as S1 and S2 in the above formula (LC), and is selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure from the viewpoint of the degree of orientation. or a linear or branched alkylene group having 2 to 20 carbon atoms.
  • the above alkylene group is -O-, -S-, -O-CO-, -CO-O-, -O-CO-O-, -O-CNR- (R has 1 to 10 carbon atoms) represents an alkyl group) or -S(O) 2 -.
  • the spacer group represented by SP1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure, for reasons such as easy expression of liquid crystallinity and availability of raw materials. More preferably, it is a group containing a species structure.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *-(CH 2 -CH 2 O) n1 -*.
  • n1 represents an integer from 1 to 20, and * represents the bonding position with L1 or MG1.
  • n1 is preferably an integer of 2 to 10, more preferably 2 to 6, and most preferably 2 to 4, because the effects of the present invention are better.
  • the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH(CH 3 )-CH 2 O) n2 -*.
  • n2 represents an integer of 1 to 3, and * represents the bonding position with L1 or MG1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si(CH 3 ) 2 -O) n3 -*.
  • n3 represents an integer from 6 to 10
  • * represents the bonding position with L1 or MG1.
  • the fluorinated alkylene structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4 -*.
  • n4 represents an integer from 6 to 10 and * represents the bonding position with L1 or MG1.
  • the terminal group represented by T1 includes a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group, -SH, a carboxyl group, a boronic acid group, -SO 3 H, -PO 3 H 2 , -NR 11 R 12 ( R 11 and R 12 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or an aryl group), an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms; 10 alkoxy group, alkylthio group having 1 to 10 carbon atoms, alkoxycarbonyloxy group having 1 to 10 carbon atoms, acyloxy group having 1 to 10 carbon atoms, acylamino group having 1 to 10 carbon atoms, alkoxy having 1 to 10 carbon atoms Carbonyl group, alkoxycarbony
  • Examples of the crosslinkable group-containing group include the above-mentioned -L-CL.
  • L represents a single bond or a connecting group. Specific examples of the linking group are the same as those for LW and SPW described above.
  • CL represents a crosslinkable group, and examples thereof include the group represented by Q1 or Q2 described above, and groups represented by formulas (P1) to (P30) described above are preferred.
  • T1 may be a combination of two or more of these groups.
  • T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group because the effects of the present invention are more excellent.
  • the number of atoms in the main chain of T1 is preferably from 1 to 20, more preferably from 1 to 15, even more preferably from 1 to 10, particularly preferably from 1 to 7, because the effect of the present invention is more excellent.
  • the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the light absorption anisotropic layer is further improved.
  • the "main chain" in T1 means the longest molecular chain bonded to M1, and hydrogen atoms are not counted in the number of atoms in the main chain of T1. For example, when T1 is an n-butyl group, the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.
  • the content of the repeating unit (1) is preferably 40 to 100% by mass, more preferably 50 to 95% by mass, based on all repeating units (100% by mass) possessed by the polymeric liquid crystal compound.
  • the repeating unit (1) may be contained singly or in combination of two or more types in the polymeric liquid crystal compound. When two or more types of repeating units (1) are included, the content of repeating units (1) above means the total content of repeating units (1).
  • ) is 4 or more, and from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer, it is preferably 4.25 or more, and more preferably 4.5 or more. Further, the upper limit value of the difference is preferably 15 or less, more preferably 12 or less, and even more preferably 10 or less, from the viewpoint of adjusting the liquid crystal phase transition temperature and synthesis suitability.
  • the logP value is an index expressing the hydrophilicity and hydrophobicity of a chemical structure, and is sometimes called a hydrophilic-hydrophobic parameter. The logP value can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver.
  • logP 1 means the logP values of PC1, L1, and SP1.
  • LogP value of PC1, L1, and SP1 means the logP value of the structure that integrates PC1, L1, and SP1, and does not mean the sum of the logP values of PC1, L1, and SP1.
  • logP 1 is calculated by inputting a series of structural formulas from PC1 to SP1 in formula (1) into the above software.
  • the structure of the group represented by PC1 for example, the above formula (P1-A ) to formula (P1-D), etc.
  • the structure of a group that can become PC1 after polymerizing the monomer used to obtain the repeating unit represented by formula (1) Good too.
  • logP 1 may be lower than logP 2 or higher than logP 2 as long as the difference from logP 2 described above is 4 or more.
  • the logP value (logP 2 described above) of a general mesogenic group tends to be within the range of 4 to 6.
  • the value of logP 1 is preferably 1 or less, and more preferably 0 or less.
  • the value of logP 1 is preferably 8 or more, more preferably 9 or more.
  • the logP value of SP1 in the above formula (1) is 0.7 or less. is preferable, and 0.5 or less is more preferable.
  • the logP value of SP1 in the above formula (1) is 3. 7 or more is preferable, and 4.2 or more is more preferable.
  • structures having a logP value of 1 or less include, for example, an oxyethylene structure and an oxypropylene structure.
  • Examples of the structure having a logP value of 6 or more include a polysiloxane structure and a fluorinated alkylene structure.
  • the polymeric liquid crystal compound preferably contains a repeating unit having electron-donating and/or electron-withdrawing properties at the terminal. More specifically, a repeating unit (21) having a mesogenic group and an electron-withdrawing group having a ⁇ p value of greater than 0 present at its terminal, and a repeating unit (21) having a mesogenic group and an electron-withdrawing group having a ⁇ p value of 0 or less present at its terminal. It is more preferable to include a repeating unit (22) having a group.
  • the polymeric liquid crystal compound contains the repeating unit (21) and the repeating unit (22), compared to the case where it contains only either the above repeating unit (21) or the above repeating unit (22), this The degree of orientation of the light absorption anisotropic layer formed using this method is improved. Although the details of this reason are not clear, it is generally estimated as follows. In other words, the opposite dipole moments generated in the repeating unit (21) and the repeating unit (22) interact intermolecularly, and the interaction in the short axis direction of the mesogenic group becomes stronger, resulting in the formation of a liquid crystal. It is presumed that the alignment direction becomes more uniform, and as a result, the degree of order of the liquid crystal increases. This improves the orientation of the dichroic substance, so it is presumed that the degree of orientation of the formed light-absorbing anisotropic layer increases. Note that the above repeating units (21) and (22) may be repeating units represented by the above formula (1).
  • the repeating unit (21) has a mesogenic group and an electron-withdrawing group having a ⁇ p value of greater than 0, which is present at the end of the mesogenic group.
  • the electron-withdrawing group is located at the end of the mesogenic group and has a ⁇ p value of greater than 0.
  • Examples of the electron-withdrawing group (group having a ⁇ p value greater than 0) include a group represented by EWG in the formula (LCP-21) described below, and specific examples thereof are also the same.
  • the ⁇ p value of the electron-withdrawing group is preferably 0.3 or more, more preferably 0.4 or more, from the viewpoint of being larger than 0 and increasing the degree of orientation of the light-absorbing anisotropic layer.
  • the upper limit of the ⁇ p value of the electron-withdrawing group is preferably 1.2 or less, more preferably 1.0 or less, from the viewpoint of excellent alignment uniformity.
  • the ⁇ p value is Hammett's substituent constant ⁇ p value (also simply abbreviated as " ⁇ p value”), which numerically expresses the effect of a substituent on the acid dissociation equilibrium constant of substituted benzoic acid. This is a parameter indicating the strength of electron-withdrawing and electron-donating properties.
  • the Hammett substituent constant ⁇ p value in this specification means the substituent constant ⁇ when the substituent is located at the para position of benzoic acid.
  • the Hammett substituent constant ⁇ p value of each group in this specification the value described in the document "Hansch et al., Chemical Reviews, 1991, Vol, 91, No. 2, 165-195" is adopted.
  • Hammett's substituent constant ⁇ p value For groups for which Hammett's substituent constant ⁇ p value is not shown in the above literature, the pKa of benzoic acid is determined using the software "ACD/ChemSketch (ACD/Labs 8.00 Release Product Version: 8.08) Hammett's substituent constant ⁇ p value can be calculated based on the difference between pKa and pKa of the benzoic acid derivative having a substituent at the para position.
  • the repeating unit (21) is not particularly limited as long as it has a mesogenic group in the side chain and an electron-withdrawing group with a ⁇ p value larger than 0 present at the end of the mesogenic group, but it can be used in the light absorption anisotropic layer. It is preferable to use a repeating unit represented by the following formula (LCP-21) because the degree of orientation of the repeating unit becomes higher.
  • PC21 represents the main chain of the repeating unit, more specifically represents the same structure as PC1 in the above formula (1), and L21 represents a single bond or a divalent linking group.
  • SP21A and SP21B each independently represent a single bond or a spacer group, and a specific example of the spacer group is SP1 in the above formula (1).
  • MG21 represents a mesogenic structure, more specifically a mesogenic group MG in the above formula (LC), and EWG represents an electron-withdrawing group with a ⁇ p value greater than 0.
  • the spacer group represented by SP21A and SP21B represents a group similar to the above formulas S1 and S2, and has at least one structure selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure. or a linear or branched alkylene group having 2 to 20 carbon atoms.
  • the alkylene group may include -O-, -O-CO-, -CO-O-, or -O-CO-O-.
  • the spacer group represented by SP1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure, for reasons such as easy expression of liquid crystallinity and availability of raw materials.
  • it includes a species structure.
  • SP21B is preferably a single bond or a linear or branched alkylene group having 2 to 20 carbon atoms.
  • the alkylene group may include -O-, -O-CO-, -CO-O-, or -O-CO-O-.
  • the spacer group represented by SP21B is preferably a single bond because the degree of orientation of the light-absorbing anisotropic layer becomes higher.
  • repeating unit 21 preferably has a structure in which EWG, which is an electron-withdrawing group in formula (LCP-21), is directly connected to MG21, which is a mesogenic group in formula (LCP-21).
  • EWG represents an electron-withdrawing group with a ⁇ p value greater than 0.
  • Examples of electron-withdrawing groups with a ⁇ p value greater than 0 include ester groups (specifically, groups represented by *-C(O) ORE ), (meth)acryloyl groups, and (meth)acryloyloxy groups.
  • R E represents an alkyl group having 1 to 20 carbon atoms (preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms).
  • R F each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms).
  • EWG is a group represented by *-C(O)O- RE , a (meth)acryloyloxy group, a cyano group, or a nitro group, since the effects of the present invention are more effectively exhibited. , is preferable.
  • the content of the repeating unit (21) is determined from the viewpoint of uniformly aligning the polymeric liquid crystal compound and the dichroic substance while maintaining a high degree of orientation of the light-absorbing anisotropic layer. It is preferably 60% by mass or less, more preferably 50% by mass or less, particularly preferably 45% by mass or less, based on the unit (100% by mass).
  • the lower limit of the content of the repeating unit (21) is preferably 1% by mass or more based on all repeating units (100% by mass) possessed by the polymeric liquid crystal compound, in order to better exhibit the effects of the present invention. More preferably, the content is 3% by mass or more.
  • each repeating unit contained in the polymeric liquid crystal compound is calculated based on the amount (mass) of each monomer used to obtain each repeating unit.
  • the repeating unit (21) may be contained singly or in combination of two or more types in the polymeric liquid crystal compound.
  • the polymer liquid crystal compound contains two or more types of repeating units (21)
  • there are advantages such as improved solubility of the polymer liquid crystal compound in a solvent and easier adjustment of the liquid crystal phase transition temperature.
  • the total amount thereof is preferably within the above range.
  • a repeating unit (21) that does not contain a crosslinkable group in EWG and a repeating unit (21) that contains a polymerizable group in EWG may be used together. This further improves the curability of the light-absorbing anisotropic layer.
  • crosslinkable groups include vinyl group, butadiene group, (meth)acrylic group, (meth)acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group, and vinyl ether.
  • a group, an epoxy group, and an oxetanyl group are preferred.
  • the content of the repeating unit (21) containing a polymerizable group in the EWG should be adjusted to the total repeating unit (100 mass %), preferably 1 to 30% by mass.
  • repeating unit (21) An example of the repeating unit (21) is shown below, but the repeating unit (21) is not limited to the following repeating units.
  • the present inventors found that the electron-withdrawing property of the repeating unit (21) When the electron-withdrawing property of the group is strong (that is, when the ⁇ p value is large), if the content of the repeating unit (21) is lowered, the degree of orientation of the light-absorbing anisotropic layer will be higher; ) If the electron-withdrawing property of the electron-withdrawing group in I found it to be high. Although the details of this reason are not clear, it is generally estimated as follows.
  • the degree of orientation of the oriented layer becomes higher.
  • the ⁇ p value of the electron-withdrawing group (EWG in formula (LCP-21)) in the repeating unit (21) and the content ratio (based on mass) of the repeating unit (21) in the polymeric liquid crystal compound is preferably 0.020 to 0.150, more preferably 0.050 to 0.130, particularly preferably 0.055 to 0.125. If the product is within the above range, the degree of orientation of the light-absorbing anisotropic layer will be higher.
  • the repeating unit (22) has a mesogenic group and a group having a ⁇ p value of 0 or less, which is present at the end of the mesogenic group. Since the polymeric liquid crystal compound has the repeating unit (22), the polymeric liquid crystal compound and the dichroic substance can be uniformly aligned.
  • the mesogenic group is a group representing the main skeleton of a liquid crystal molecule that contributes to liquid crystal formation, and details are as explained below for MG in formula (LCP-22), and specific examples thereof are also the same.
  • the above group is located at the end of the mesogenic group and has a ⁇ p value of 0 or less.
  • the above groups include hydrogen atoms whose ⁇ p value is 0, and groups represented by T22 (electronic (donating group).
  • groups represented by T22 electroactive (donating group).
  • specific examples of groups (electron donating groups) with a ⁇ p value smaller than 0 are the same as T22 in formula (LCP-22) described below.
  • the ⁇ p value of the above group is 0 or less, and is preferably smaller than 0, more preferably -0.1 or less, and particularly preferably -0.2 or less, from the viewpoint of more excellent alignment uniformity.
  • the lower limit of the ⁇ p value of the above group is preferably -0.9 or more, more preferably -0.7 or more.
  • the repeating unit (22) is not particularly limited as long as it has a mesogenic group in the side chain and a group having a ⁇ p value of 0 or less that is present at the end of the mesogenic group, but the uniformity of the alignment of the liquid crystal is improved.
  • PCP-22 a repeating unit represented by the following formula (PCP-22), which does not correspond to the repeating unit represented by the above formula (LCP-21).
  • PC22 represents the main chain of the repeating unit, more specifically represents the same structure as PC1 in the above formula (1), and L22 represents a single bond or a divalent linking group.
  • SP22 represents a spacer group, more specifically represents the same structure as SP1 in the above formula (1)
  • MG22 represents the same structure as SP1 in the above formula (1).
  • It represents a mesogenic structure, more specifically a structure similar to the mesogenic group MG in the above formula (LC)
  • T22 represents an electron-donating group having a Hammett substituent constant ⁇ p value of less than 0.
  • T22 represents an electron donating group with a ⁇ p value of less than 0.
  • the electron donating group having a ⁇ p value of less than 0 include a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkylamino group having 1 to 10 carbon atoms.
  • the "main chain" in T22 means the longest molecular chain bonded to MG22, and hydrogen atoms are not counted in the number of atoms in the main chain of T22. For example, when T22 is an n-butyl group, the number of atoms in the main chain is 4, and when T22 is a sec-butyl group, the number of atoms in the main chain is 3.
  • repeating unit (22) An example of the repeating unit (22) is shown below, but the repeating unit (22) is not limited to the following repeats.
  • the repeating unit (21) and the repeating unit (22) have a part of the structure in common. It is presumed that the more similar the structures of the repeating units are, the more uniformly the liquid crystals are aligned. This increases the degree of orientation of the light absorption anisotropic layer. Specifically, SP21A of formula (LCP-21) and SP22 of formula (LCP-22) should have the same structure, and SP22 of formula (LCP-22) should have the same structure, since the degree of orientation of the light absorption anisotropic layer is higher. 21) that MG21 of formula (LCP-22) has the same structure, and that L21 of formula (LCP-21) and L22 of formula (LCP-22) have the same structure. , it is preferable that at least one is satisfied, it is more preferable that two or more are satisfied, and it is especially preferable that all of them are satisfied.
  • the content of the repeating unit (22) is preferably 50% by mass or more, more preferably 55% by mass or more, based on the total repeating units (100% by mass) possessed by the polymeric liquid crystal compound, from the viewpoint of excellent alignment uniformity. It is preferably 60% by mass or more, particularly preferably 60% by mass or more.
  • the upper limit of the content of the repeating unit (22) is preferably 99% by mass or less, and 97% by mass or less, based on all repeating units (100% by mass) possessed by the polymeric liquid crystal compound, from the viewpoint of improving the degree of orientation. is more preferable.
  • the repeating unit (22) may be contained singly or in combination of two or more types in the polymeric liquid crystal compound.
  • the polymer liquid crystal compound contains two or more types of repeating units (22), there are advantages such as improved solubility of the polymer liquid crystal compound in a solvent and easier adjustment of the liquid crystal phase transition temperature.
  • the total amount thereof is preferably within the above range.
  • the polymeric liquid crystal compound can include a repeating unit (3) that does not contain a mesogen from the viewpoint of improving solubility in general-purpose solvents.
  • the mesogen-free repeating unit (3) is preferably a repeating unit with a molecular weight of 280 or less.
  • a polymeric liquid crystal compound contains a repeating unit (3) that does not have a mesogen in its molecular chain, it becomes easier for the solvent to enter the polymeric liquid crystal compound, improving its solubility. It is believed that the repeating unit (3) reduces the degree of orientation. However, because the molecular weight of the repeating unit is small, the orientation of the repeating unit (1), repeating unit (21), or repeating unit (22) containing the mesogenic group is difficult to be disturbed, and a decrease in the degree of orientation can be suppressed. Presumed.
  • the repeating unit (3) is preferably a repeating unit with a molecular weight of 280 or less.
  • the molecular weight of the repeating unit (3) does not mean the molecular weight of the monomer used to obtain the repeating unit (3), but the repeating unit (3) in a state incorporated into a polymeric liquid crystal compound by polymerization of the monomer. means the molecular weight of The molecular weight of the repeating unit (3) is 280 or less, preferably 180 or less, and more preferably 100 or less.
  • the lower limit of the molecular weight of the repeating unit (3) is usually 40 or more, more preferably 50 or more.
  • the molecular weight of the repeating unit (3) is 280 or less, a light absorption anisotropic layer with excellent solubility of the polymeric liquid crystal compound and a high degree of orientation can be obtained.
  • the molecular weight of the repeating unit (3) exceeds 280, the liquid crystal orientation of the repeating unit (1), repeating unit (21), or repeating unit (22) will be disturbed, resulting in a low degree of orientation. There are cases. Furthermore, since it becomes difficult for the solvent to enter the polymer liquid crystal compound, the solubility of the polymer liquid crystal compound may decrease.
  • repeating unit (3) examples include repeating units that do not contain crosslinkable groups (for example, ethylenically unsaturated groups) (hereinafter also referred to as “repeat units (3-1)”), and crosslinkable groups. (hereinafter also referred to as “repeat unit (3-2)").
  • crosslinkable groups for example, ethylenically unsaturated groups
  • repeating unit (3-2) crosslinkable groups
  • ⁇ Repeat unit (3-1) Specific examples of monomers used in the polymerization of the repeating unit (3-1) include acrylic acid [72.1], ⁇ -alkyl acrylic acids (for example, methacrylic acid [86.1], itaconic acid [130.1] ]), esters and amides derived therefrom (for example, N-i-propylacrylamide [113.2], N-n-butylacrylamide [127.2], Nt-butylacrylamide [127.2]) ], N,N-dimethylacrylamide [99.1], N-methylmethacrylamide [99.1], acrylamide [71.1], methacrylamide [85.1], diacetone acrylamide [169.2], acryloyl Morpholine [141.2], N-methylol acrylamide [101.1], N-methylol methacrylamide [115.1], methyl acrylate [86.0], ethyl acrylate [100.1], hydroxyethyl acrylate [116.
  • acrylic acid [72.1] for
  • vinyl acetate [86.1] esters derived from maleic acid or fumaric acid (e.g. dimethyl maleate [144.1], diethyl fumarate [172.2]), maleimides (e.g. N-phenylmaleimide [173.2]), maleic acid [116.1], fumaric acid [116] .1], p-styrenesulfonic acid [184.1], acrylonitrile [53.1], methacrylonitrile [67.1], dienes (e.g., butadiene [54.1], cyclopentadiene [66.1] , isoprene [68.1]), aromatic vinyl compounds (for example, styrene [104.2], p-chlorostyrene [138.6], t-butylstyrene [160.3], ⁇ -methylstyrene [118.
  • esters derived from maleic acid or fumaric acid e.g. dimethyl maleate [144.1], diethyl fumarate [17
  • N-vinylpyrrolidone [111.1], N-vinyloxazolidone [113.1], N-vinylsuccinimide [125.1], N-vinylformamide [71.1], N-vinyl-N -Methylformamide [85.1], N-vinylacetamide [85.1], N-vinyl-N-methylacetamide [99.1], 1-vinylimidazole [94.1], 4-vinylpyridine [105.
  • the numerical value in [ ] means the molecular weight of a monomer. The above monomers may be used alone or in combination of two or more.
  • acrylic acid acrylic acid, ⁇ -alkylacrylic acids, esters and amides derived therefrom, acrylonitrile, methacrylonitrile, and aromatic vinyl compounds are preferred.
  • monomers other than those listed above include Research Disclosure No. 1955 (July 1980) can be used.
  • repeating unit (3-1) Specific examples of the repeating unit (3-1) and their molecular weights are shown below, but the present invention is not limited to these specific examples.
  • ⁇ Repeat unit (3-2) In the repeating unit (3-2), specific examples of the crosslinkable group include the groups represented by P1 to P30 above, including vinyl group, butadiene group, (meth)acrylic group, (meth)acrylamide group, acetic acid group, etc. More preferred are a vinyl group, a fumaric acid ester group, a styryl group, a vinylpyrrolidone group, a maleic anhydride group, a maleimide group, a vinyl ether group, an epoxy group, and an oxetanyl group.
  • the repeating unit (3-2) is preferably a repeating unit represented by the following formula (3) from the viewpoint of easy polymerization.
  • PC32 represents the main chain of the repeating unit, more specifically represents the same structure as PC1 in the above formula (1)
  • L32 represents a single bond or a divalent linking group, More specifically, it represents the same structure as L1 in the above formula (1)
  • P32 represents a crosslinkable group represented by the above formulas (P1) to (P30).
  • repeating unit (3-2) and their weight average molecular weights (Mw) are shown below, the present invention is not limited to these specific examples.
  • the content of the repeating unit (3) is less than 14% by mass, preferably 7% by mass or less, and more preferably 5% by mass or less, based on all repeating units (100% by mass) possessed by the polymeric liquid crystal compound.
  • the lower limit of the content of the repeating unit (3) is preferably 2% by mass or more, more preferably 3% by mass or more, based on all repeating units (100% by mass) possessed by the polymeric liquid crystal compound.
  • the content of the repeating unit (3) is less than 14% by mass, the degree of orientation of the light-absorbing anisotropic layer is further improved.
  • the solubility of the polymeric liquid crystal compound is further improved.
  • the repeating unit (3) may be contained singly or in combination of two or more types in the polymeric liquid crystal compound. When two or more types of repeating units (3) are included, the total amount thereof is preferably within the above range.
  • the polymeric liquid crystal compound can contain a repeating unit (4) having a flexible structure with a long molecular chain (SP4 in formula (4) described below) in order to improve adhesion and surface uniformity.
  • SP4 in formula (4) described below
  • the reason for this is estimated as follows. In other words, by including such a flexible structure with long molecular chains, the molecular chains constituting the polymeric liquid crystal compound tend to become entangled with each other, leading to cohesive failure of the light-absorbing anisotropic layer (specifically, light Destruction of the absorption anisotropic layer itself) is suppressed. As a result, it is presumed that the adhesion between the light-absorbing anisotropic layer and the underlying layer (for example, the base material or alignment film) is improved.
  • the decrease in surface uniformity is thought to be caused by the low compatibility between the dichroic substance and the polymeric liquid crystal compound. That is, if the dichroic substance and the polymeric liquid crystal compound have insufficient compatibility, it is thought that surface defects (orientation defects) caused by the precipitated dichroic substance will occur.
  • the polymeric liquid crystal compound contains a flexible structure with long molecular chains, the precipitation of dichroic substances is suppressed and a light absorption anisotropic layer with excellent surface uniformity is obtained. Guessed.
  • excellent surface uniformity means that there are few alignment defects caused by a liquid crystal composition containing a polymeric liquid crystal compound being repelled on an underlying layer (for example, a base material or an alignment film).
  • the above repeating unit (4) is a repeating unit represented by the following formula (4).
  • PC4 represents the main chain of the repeating unit, more specifically represents the same structure as PC1 in the above formula (1)
  • L4 represents a single bond or a divalent linking group, More specifically, it represents the same structure as L1 in the above formula (1) (single bond is preferred)
  • SP4 represents an alkylene group having 10 or more atoms in the main chain
  • T4 represents a terminal group, and more Specifically, it represents the same structure as T1 in the above formula (1).
  • PC4 are the same as PC1 in formula (1), so the explanation thereof will be omitted.
  • SP4 represents an alkylene group having 10 or more atoms in the main chain.
  • it is substituted with a group.
  • R 21 to R 28 each independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the hydrogen atom contained in one or more -CH 2 - constituting the alkylene group represented by SP4 may be replaced by the above-mentioned "SP-H".
  • the number of atoms in the main chain of SP4 is 10 or more, preferably 15 or more, more preferably 19 or more, from the viewpoint of obtaining a light absorption anisotropic layer with better adhesion and at least one of surface uniformity.
  • the upper limit of the number of atoms in the main chain of SP2 is preferably 70 or less, more preferably 60 or less, particularly preferably 50 or less, from the viewpoint of obtaining an excellent light absorption anisotropic layer due to the degree of orientation.
  • the "main chain” in SP4 means the partial structure necessary to directly connect L4 and T4, and the "number of atoms in the main chain” refers to the number of atoms constituting the above partial structure. means.
  • the "main chain" in SP4 is a partial structure in which the number of atoms connecting L4 and T4 is the shortest.
  • the number of atoms in the main chain is 10
  • SP4 is a 4,6-dimethyldodecanyl group
  • the number of atoms in the main chain is 12.
  • the area inside the dotted rectangle corresponds to SP4
  • the number of atoms in the main chain of SP4 is 11. .
  • the alkylene group represented by SP4 may be linear or branched.
  • the number of carbon atoms in the alkylene group represented by SP4 is preferably 8 to 80, preferably 15 to 80, more preferably 25 to 70, and 25 to 60, since an excellent light absorption anisotropic layer can be obtained depending on the degree of orientation. Particularly preferred.
  • One or more -CH 2 - constituting the alkylene group represented by SP4 can be replaced by the above-mentioned "SP-C" because a light absorption anisotropic layer with excellent adhesion and surface uniformity can be obtained. It is preferable that In addition, when there are multiple -CH 2 - constituting the alkylene group represented by SP4, a light absorption anisotropic layer with excellent adhesion and surface uniformity can be obtained. More preferably, only "SP-C" is replaced by the above-mentioned "SP-C".
  • the hydrogen atom contained in one or more -CH 2 - constituting the alkylene group represented by SP4 may be replaced by the above-mentioned "SP-H".
  • SP-H the hydrogen atom contained in one or more -CH 2 - constituting the alkylene group represented by SP4
  • halogen atom may be replaced by Among "SP-H", halogen atom, cyano group, nitro group, hydroxy group, linear alkyl group having 1 to 10 carbon atoms, branched alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms It is preferably at least one group selected from the group consisting of halogenated alkyl groups, including hydroxy groups, linear alkyl groups having 1 to 10 carbon atoms, and branched alkyl groups having 1 to 10 carbon atoms. More preferably, at least one group selected from the group consisting of:
  • T4 represents the same terminal group as T1, and includes a hydrogen atom, a methyl group, a hydroxy group, a carboxy group, a sulfonic acid group, a phosphoric acid group, a boronic acid group, an amino group, a cyano group, a nitro group, A phenyl group that may have a substituent, -L-CL (L represents a single bond or a divalent linking group. Specific examples of the divalent linking group are the same as LW and SPW described above.
  • CL represents a crosslinkable group, examples include the group represented by Q1 or Q2, and preferably the crosslinkable groups represented by formulas (P1) to (P30).
  • the epoxy group may be an epoxycycloalkyl group, and the number of carbon atoms in the cycloalkyl group in the epoxycycloalkyl group is preferably 3 to 15, more preferably 5 to 12, from the viewpoint of achieving better effects of the present invention. , 6 (ie, when the epoxycycloalkyl group is an epoxycyclohexyl group) is particularly preferred.
  • substituents for the oxetanyl group include alkyl groups having 1 to 10 carbon atoms, and alkyl groups having 1 to 5 carbon atoms are preferable because they provide better effects of the present invention.
  • the alkyl group as a substituent of the oxetanyl group may be linear or branched, but is preferably linear in view of the better effects of the present invention.
  • substituent of the phenyl group include a boronic acid group, a sulfonic acid group, a vinyl group, and an amino group, and a boronic acid group is preferable since the effects of the present invention are more excellent.
  • repeating unit (4) examples include the following structures, but the present invention is not limited thereto.
  • n1 represents an integer of 2 or more
  • n2 represents an integer of 1 or more.
  • the content of the repeating unit (4) is preferably 2 to 20% by mass, more preferably 3 to 18% by mass, based on all repeating units (100% by mass) possessed by the polymeric liquid crystal compound.
  • the repeating unit (4) may be contained singly or in combination of two or more types in the polymeric liquid crystal compound. When two or more types of repeating units (4) are included, the content of repeating units (4) above means the total content of repeating units (4).
  • the polymeric liquid crystal compound can include a repeating unit (5) introduced by polymerizing a polyfunctional monomer.
  • the repeating unit (5) introduced by polymerizing this polyfunctional monomer is contained in an amount of 10% by mass or less.
  • the reason why the planar uniformity can be improved while suppressing the decrease in the degree of orientation by including the repeating unit (5) in an amount of 10% by mass or less is estimated as follows.
  • the repeating unit (5) is a unit that is introduced into the polymeric liquid crystal compound by polymerizing a polyfunctional monomer.
  • the polymer liquid crystal compound contains a polymer having a three-dimensional crosslinked structure formed by the repeating unit (5).
  • the content of the repeating unit (5) is small, the content of the polymer containing the repeating unit (5) is considered to be small. It is presumed that the presence of a small amount of polymer with a three-dimensional crosslinked structure suppresses the repellency of the liquid crystal composition, resulting in a light absorption anisotropic layer with excellent surface uniformity. Ru. Furthermore, it is presumed that because the content of the polymer was small, the effect of suppressing the decrease in the degree of orientation could be maintained.
  • the repeating unit (5) introduced by polymerizing the polyfunctional monomer is preferably a repeating unit represented by the following formula (5).
  • PC5A and PC5B represent the main chain of the repeating unit, and more specifically represent the same structure as PC1 in the above formula (1), and L5A and L5B represent a single bond or a divalent linking group.
  • L5A and L5B represent a single bond or a divalent linking group.
  • SP5A and SP5B represent a spacer group, more specifically a structure similar to SP1 in the above formula (1).
  • MG5A and MG5B represent a mesogenic structure, more specifically a structure similar to the mesogenic group MG in the above formula (LC), and a and b represent an integer of 0 or 1.
  • PC5A and PC5B may be the same group or different groups, but are preferably the same group from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • Both L5A and L5B may be a single bond, the same group, or different groups, but the point is that the degree of orientation of the light absorption anisotropic layer is further improved. Therefore, both are preferably a single bond or the same group, and more preferably the same group.
  • Both SP5A and SP5B may be a single bond, the same group, or different groups, but the point is that the degree of orientation of the light absorption anisotropic layer is further improved. Therefore, both are preferably a single bond or the same group, and more preferably the same group.
  • the same groups in formula (5) mean that the chemical structures are the same regardless of the direction in which each group is bonded.
  • SP5A is *-CH 2 -CH 2 -O-* *(* represents the binding position with L5A, ** represents the binding position with MG5A)
  • SP5B is *-O-CH 2 -CH 2 -** (* represents the binding position with MG5B). and ** represents the bonding position with L5B) are also the same group.
  • a and b are each independently an integer of 0 or 1, and are preferably 1 because the degree of orientation of the light absorption anisotropic layer is further improved. Although a and b may be the same or different, it is preferable that both a and b be 1 in order to further improve the degree of orientation of the light absorption anisotropic layer.
  • the sum of a and b is preferably 1 or 2 from the viewpoint of further improving the degree of orientation of the light-absorbing anisotropic layer (i.e., the repeating unit represented by formula (5) has a mesogenic group). ), 2 is more preferable.
  • the partial structure represented by -(MG5A) a -(MG5B) b - preferably has a cyclic structure since the degree of orientation of the light absorption anisotropic layer is further improved.
  • the number of annular structures in the partial structure represented by -(MG5A2) a -(MG5B) b - is preferably 2 or more, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer. -8 pieces are more preferable, 2-6 pieces are still more preferable, and 2-4 pieces are particularly preferable.
  • the mesogenic groups represented by MG5A and MG5B each independently preferably contain one or more cyclic structures, preferably 2 to 4, and preferably 2 to 4, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer. It is more preferable to contain three pieces, and it is particularly preferable to contain two pieces. Specific examples of the cyclic structure include aromatic hydrocarbon groups, heterocyclic groups, and alicyclic groups, and among these, aromatic hydrocarbon groups and alicyclic groups are preferred.
  • MG5A and MG5B may be the same group or different groups, but are preferably the same group from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the mesogenic group represented by MG5A and MG5B is selected from the viewpoints of expression of liquid crystallinity, adjustment of liquid crystal phase transition temperature, raw material availability and synthesis suitability, as well as the effects of the present invention.
  • it is a group MG.
  • PC5A and PC5B are the same group
  • L5A and L5B are both single bonds or the same group
  • SP5A and SP5B are both single bonds or the same group
  • MG5A and MG5B are preferably the same group. This further improves the degree of orientation of the light absorption anisotropic layer.
  • the content of the repeating unit (5) is preferably 10% by mass or less, more preferably 0.001 to 5% by mass, based on the content (100% by mass) of all repeating units possessed by the polymeric liquid crystal compound. More preferably .05 to 3% by weight.
  • the repeating unit (5) may be contained singly or in combination of two or more types in the polymeric liquid crystal compound. When two or more types of repeating units (5) are included, the total amount thereof is preferably within the above range.
  • the polymeric liquid crystal compound may be a star-shaped polymer.
  • the star-shaped polymer in the present invention means a polymer having three or more polymer chains extending from a core, and is specifically represented by the following formula (6).
  • the star-shaped polymer represented by formula (6) as a polymeric liquid crystal compound has high solubility (excellent solubility in solvents) and can form a light-absorbing anisotropic layer with a high degree of orientation.
  • nA represents an integer of 3 or more, preferably an integer of 4 or more.
  • the upper limit of nA is usually 12 or less, preferably 6 or less, although it is not limited thereto.
  • Each of the plurality of PIs independently represents a polymer chain containing any of the repeating units represented by the above formulas (1), (21), (22), (3), (4), and (5). However, at least one of the plurality of PIs represents a polymer chain containing a repeating unit represented by the above formula (1).
  • A represents an atomic group serving as the core of the star-shaped polymer.
  • A include paragraphs [0052] to [0058] of JP2011-074280, paragraphs [0017] to [0021] of JP2012-189847, and [0021] of JP2013-031986.
  • Examples include structures in which a hydrogen atom is removed from the thiol group of a polyfunctional thiol compound described in paragraphs [0012] to [0024] and paragraphs [0118] to [0142] of JP-A-2014-104631. In this case, A and PI are linked by a sulfide bond.
  • the number of thiol groups in the polyfunctional thiol compound from which A is derived is preferably 3 or more, more preferably 4 or more.
  • the upper limit of the number of thiol groups in the polyfunctional thiol compound is usually 12 or less, preferably 6 or less. Specific examples of polyfunctional thiol compounds are shown below.
  • the polymeric liquid crystal compound may be a thermotropic liquid crystal and a crystalline polymer from the viewpoint of improving the degree of orientation.
  • thermotropic liquid crystal is a liquid crystal that exhibits a transition to a liquid crystal phase due to temperature changes.
  • the specific compound is a thermotropic liquid crystal and may exhibit either a nematic phase or a smectic phase, but the degree of orientation of the light absorption anisotropic layer is higher and haze is more difficult to observe (haze For this reason, it is preferable to exhibit at least a nematic phase.
  • the temperature range in which the nematic phase is exhibited is preferably room temperature (23°C) to 450°C, since the degree of orientation of the light-absorbing anisotropic layer becomes higher and haze is less observed. From the viewpoint of manufacturing suitability, the temperature is more preferably 40°C to 400°C.
  • a crystalline polymer is a polymer that exhibits a transition to a crystalline layer due to temperature changes.
  • the crystalline polymer may exhibit glass transition in addition to transition to a crystalline layer.
  • Crystalline polymers have a higher degree of orientation in the light-absorbing anisotropic layer, and haze is less observable, so when heated they undergo a transition from a crystalline phase to a liquid crystalline phase (a glass transition occurs during the process). It is a polymeric liquid crystal compound (which may have a glass transition), or a polymeric liquid crystal compound which transitions to a crystalline phase (there may be a glass transition in the middle) when the temperature is lowered after it enters a liquid crystal state by heating. It is preferable.
  • the presence or absence of crystallinity of the polymeric liquid crystal compound is evaluated as follows. Two light-absorbing anisotropic layers of an optical microscope (ECLIPSE E600 POL manufactured by Nikon) are arranged perpendicularly to each other, and a sample stage is set between the two light-absorbing anisotropic layers. Then, a small amount of a polymeric liquid crystal compound is placed on a slide glass, and the slide glass is set on a hot stage placed on a sample stand. While observing the state of the sample, the temperature of the hot stage is raised to a temperature at which the polymer liquid crystal compound exhibits liquid crystallinity, and the polymer liquid crystal compound is brought into a liquid crystal state.
  • the temperature of the hot stage is gradually lowered to observe the behavior of the liquid crystal phase transition, and the temperature of the liquid crystal phase transition is recorded.
  • a polymeric liquid crystal compound exhibits a plurality of liquid crystal phases (for example, a nematic phase and a smectic phase)
  • all of their transition temperatures are also recorded.
  • DSC differential scanning calorimeter
  • the method for obtaining the crystalline polymer is not particularly limited, but as a specific example, a method using a polymeric liquid crystal compound containing the above repeating unit (1) is preferable, and in particular, a method using a polymeric liquid crystal compound containing the above repeating unit (1) is preferable. More preferred is a method using a preferred embodiment of the compound.
  • the crystallization temperature of the polymeric liquid crystal compound should be -50°C or more and less than 150°C, since the degree of orientation of the light absorption anisotropic layer becomes higher and haze is more difficult to observe.
  • the temperature is preferably 120°C or less, more preferably -20°C or more and less than 120°C, and particularly preferably 95°C or less.
  • the crystallization temperature of the polymeric liquid crystal compound is preferably less than 150° C. from the viewpoint of reducing haze. Note that the crystallization temperature is the temperature of the exothermic peak due to crystallization in the above-mentioned DSC.
  • the weight average molecular weight (Mw) of the polymeric liquid crystal compound is preferably from 1,000 to 500,000, more preferably from 2,000 to 300,000, from the standpoint of achieving better effects of the present invention. If the Mw of the polymer liquid crystal compound is within the above range, the polymer liquid crystal compound can be easily handled.
  • the weight average molecular weight (Mw) of the polymeric liquid crystal compound is preferably 10,000 or more, more preferably 10,000 to 300,000. Further, from the viewpoint of temperature latitude of the degree of orientation, the weight average molecular weight (Mw) of the polymeric liquid crystal compound is preferably less than 10,000, and preferably 2,000 or more and less than 10,000.
  • the weight average molecular weight and number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC).
  • the liquid crystallinity of the polymeric liquid crystal compound may be either nematic or smectic, but preferably exhibits at least nematic.
  • the temperature range in which the nematic phase is exhibited is preferably 0°C to 450°C, and from the viewpoint of handling and manufacturing suitability, it is preferably 30°C to 400°C.
  • the content of the liquid crystal compound is preferably 10 to 97% by mass, more preferably 40 to 95% by mass, based on the total solid content (100% by mass) of the liquid crystal composition, from the standpoint that the effects of the present invention are more excellent. More preferably 60 to 95% by mass.
  • the content of the polymeric liquid crystal compound is preferably 10 to 99% by mass, more preferably 30 to 95% by mass, based on the total mass (100 parts by mass) of the liquid crystal compound. , more preferably 40 to 90% by mass.
  • the content of the low-molecular liquid crystal compound is preferably 1 to 90% by mass, more preferably 5 to 70% by mass, based on the total mass (100 parts by mass) of the liquid crystal compound. , 10 to 60% by mass is more preferable.
  • the mass ratio of the content of the low molecular liquid crystal compound to the content of the polymer liquid crystal compound is From the standpoint of achieving better effects of the invention, the ratio is preferably 5/95 to 70/30, and more preferably 10/90 to 50/50.
  • the "solid content in the liquid crystal composition” refers to the components excluding the solvent, and specific examples of the solid content include the above-mentioned liquid crystal compound, dichroic substances, polymerization initiators, interface modifiers, etc. Can be mentioned.
  • the liquid crystal composition further contains a dichroic substance.
  • a dichroic substance refers to a dye whose absorbance differs depending on the direction.
  • the dichroic substance may or may not exhibit liquid crystallinity.
  • Dichroic substances are not particularly limited, and include visible light absorbing substances (dichroic dyes), luminescent substances (fluorescent substances, phosphorescent substances), ultraviolet absorbing substances, infrared absorbing substances, nonlinear optical substances, carbon nanotubes, and inorganic Examples include substances (for example, quantum rods), and conventionally known dichroic substances (dichroic dyes) can be used. Specifically, for example, paragraphs [0067] to [0071] of JP 2013-228706, paragraphs [0008] to [0026] of JP 2013-227532, and [0026] of JP 2013-209367.
  • a dichroic organic dye as the dichroic substance.
  • the dichroic organic dye is not particularly limited, but dichroic azo dye compounds are preferred, and dichroic azo dye compounds used in so-called coated polarizers are suitably used.
  • the dichroic azo dye compound is not particularly limited, and conventionally known dichroic azo dyes can be used.
  • the dichroic azo dye compound means a dye whose absorbance differs depending on the direction.
  • the dichroic azo dye compound may or may not exhibit liquid crystallinity.
  • the dichroic azo dye compound When the dichroic azo dye compound exhibits liquid crystallinity, it may exhibit either nematic or smectic properties.
  • the temperature range in which the liquid crystal phase is exhibited is preferably room temperature (approximately 20° C. to 28° C.) to 300° C., and more preferably 50° C. to 200° C. from the viewpoint of ease of handling and manufacturing suitability.
  • two or more types of dichroic substances may be used in combination, and for example, from the viewpoint of making the formed light absorption anisotropic layer closer to black, the substance has a maximum absorption wavelength in the wavelength range of 370 to 550 nm. It is preferable to use at least one dichroic substance and at least one dichroic substance having a maximum absorption wavelength in the wavelength range of 500 to 700 nm.
  • the content of the dichroic substance is not particularly limited, it is preferably 5% by mass or more based on the total solid mass of the liquid crystal composition because the degree of orientation of the light-absorbing anisotropic layer to be formed is increased. It is preferably 8% by mass or more, more preferably 10% by mass or more, and particularly preferably 10 to 30% by mass. In addition, when using a plurality of dichroic substances together, it is preferable that the total amount of the plurality of dichroic substances is within the above range.
  • the liquid crystal composition further contains an aligning agent.
  • the alignment agent include paragraphs [0042] to [0076] of PCT Publication No. 2013-543526, paragraphs [0089] to [0097] of PCT Publication No. 2016-523997, and [0089] to [0097] of PCT Publication No. 2020-076920. Examples include those described in paragraphs [0153] to [0170], and these may be used alone or in combination of two or more.
  • the alignment agent is preferably an onium compound represented by the following formula (B1) because the degree of alignment of the light absorption anisotropic layer to be formed is increased.
  • ring A represents a quaternary ammonium ion consisting of a nitrogen-containing heterocycle.
  • X represents an anion.
  • L 1 represents a divalent linking group.
  • L 2 represents a single bond or a divalent linking group.
  • Y 1 represents a divalent linking group having a 5-membered ring or a 6-membered ring as a partial structure.
  • Z represents a divalent linking group having an alkylene group having 2 to 20 carbon atoms as a partial structure.
  • P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
  • Ring A represents a quaternary ammonium ion consisting of a nitrogen-containing heterocycle.
  • ring A include a pyridine ring, a picoline ring, a 2,2'-bipyridyl ring, a 4,4'-bipyridyl ring, a 1,10-phenanthroline ring, a quinoline ring, an oxazole ring, a thiazole ring, an imidazole ring, and a pyrazine ring.
  • a triazole ring, a tetrazole ring, etc. and preferred are a quaternary imidazolium ion and a quaternary pyridinium ion.
  • X represents an anion.
  • halogen anions sulfonate ions, and hydroxide ions.
  • Particularly preferred are chlorine ion, bromide ion, iodine ion, methanesulfonate ion, vinylsulfonate ion, p-toluenesulfonate ion, and p-vinylbenzenesulfonate ion.
  • L 1 represents a divalent linking group.
  • L 1 include alkylene group, -O-, -S-, -CO-, -SO 2 -, -NRa- (where Ra is an alkyl group having 1 to 5 carbon atoms or a hydrogen atom). ), an alkenylene group, an alkynylene group, or a divalent linking group having 1 to 20 carbon atoms formed in combination with an alkynylene group or an arylene group.
  • L 1 is preferably -AL-, -O-AL-, -CO-O-AL-, -O-CO-AL- having 1 to 10 carbon atoms, -AL having 1 to 10 carbon atoms -, -O-AL- are more preferred, and -AL- and -O-AL- having 1 to 5 carbon atoms are most preferred.
  • AL represents an alkylene group.
  • L2 represents a single bond or a divalent linking group.
  • L 2 include alkylene group, -O-, -S-, -CO-, -SO 2 -, -NRa- (however, Ra is an alkyl group having 1 to 5 carbon atoms or a hydrogen atom).
  • an alkenylene group a divalent linking group having 1 to 10 carbon atoms consisting of a combination with an alkynylene group or an arylene group, a single bond, -O-, -O-CO-, -CO-O-, -O -AL-O-, -O-AL-O-CO-, -O-AL-CO-O-, -CO-O-AL-O-, -CO-O-AL-O-CO-, -CO -O-AL-CO-, -CO -O-AL-CO-, -O-CO-AL-O-, -O-CO-AL-O-, -O-CO-AL-O-CO-, -O-CO-AL-CO-, -O-CO-AL-CO-O-, and the like.
  • AL represents an alkylene group.
  • L2 is preferably a single bond, -AL-, -O-AL-, -NRa-AL-O-, having 1 to 10 carbon atoms; O-AL- and -NRa-AL-O- are more preferred, and -O-AL- and -NRa-AL-O-, which have a single bond and have 1 to 5 carbon atoms, are most preferred.
  • Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • Examples of Y 1 include a cyclohexyl ring, an aromatic ring or a heterocycle.
  • the aromatic ring include a benzene ring, an indene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, an anthracene ring, a biphenyl ring, and a pyrene ring, with benzene rings, biphenyl rings, and naphthalene rings being particularly preferred.
  • the heteroatoms constituting the heterocycle are preferably nitrogen atoms, oxygen atoms, and sulfur atoms, such as furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, and isothiazole ring.
  • the heterocycle is a 6-membered ring.
  • the divalent linking group represented by Y 1 having a 5- or 6-membered ring as a partial structure may further have a substituent (for example, the above-mentioned substituent W).
  • the divalent linking group represented by Y 1 is preferably a divalent linking group having two or more 5- or 6-membered rings, and preferably has a structure in which two or more rings are connected by a linking group. More preferred.
  • Z has an alkylene group having 2 to 20 carbon atoms as a partial structure, and represents a divalent linking group consisting of a combination with -O-, -S-, -CO-, -SO2-, and the alkylene group is It may have a substituent.
  • Examples of the divalent linking group include an alkyleneoxy group and a polyalkyleneoxy group.
  • the alkylene group represented by Z preferably has 2 to 16 carbon atoms, even more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • P1 and P2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated group.
  • Examples of the monovalent substituent having a polymerizable ethylenically unsaturated group include the following formulas (M-1) to (M-8). That is, the monovalent substituent having a polymerizable ethylenically unsaturated group may be a substituent consisting only of an ethenyl group, as in (M-8).
  • R represents a hydrogen atom or an alkyl group, preferably a hydrogen atom or a methyl group.
  • (M-1) to (M-8), (M-1), (M-2), and (M-8) are preferred, and (M-1) or (M-8) is more preferred.
  • (M-1) is preferable as P1.
  • P2 is preferably (M-1) or (M-8), and in compounds where ring A is a quaternary imidazolium ion, P2 is preferably (M-8) or (M-1).
  • P2 is (M-1).
  • Examples of the onium compound represented by the above formula (B1) include onium salts described in paragraphs 0052 to 0058 of JP-A No. 2012-208397, and onium salts described in paragraphs 0024 to 0055 of JP-A No. 2008-026730. salts and onium salts described in JP-A-2002-37777.
  • the alignment agent is preferably a boronic acid compound represented by the following formula (B2) because the degree of alignment of the light-absorbing anisotropic layer to be formed is increased.
  • R 1 and R 2 are each independently a hydrogen atom, an aliphatic hydrocarbon group that may have a substituent, an aryl group that may have a substituent, or a substituted Represents a heterocyclic group that may have a group.
  • R 3 represents a substituent.
  • the aliphatic hydrocarbon group represented by one embodiment of R 1 and R 2 includes a substituted or unsubstituted straight chain or branched alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, an iso-propyl group, etc.). ), substituted or unsubstituted cyclic alkyl groups having 3 to 20 carbon atoms (eg, cyclohexyl group, etc.), and alkenyl groups having 2 to 20 carbon atoms (eg, vinyl group, etc.).
  • a substituted or unsubstituted straight chain or branched alkyl group having 1 to 20 carbon atoms for example, a methyl group, an ethyl group, an iso-propyl group, etc.
  • substituted or unsubstituted cyclic alkyl groups having 3 to 20 carbon atoms eg, cyclohexyl group, etc.
  • the aryl group represented by one embodiment of R 1 and R 2 includes a substituted or unsubstituted phenyl group having 6 to 20 carbon atoms (e.g., phenyl group, tolyl group, etc.), a substituted or unsubstituted phenyl group having 10 to 20 carbon atoms, Examples include substituted naphthyl groups.
  • the heterocyclic group represented by one embodiment of R 1 and R 2 includes, for example, a substituted or unsubstituted 5- or 6-membered heterocyclic group containing at least one hetero atom (e.g., nitrogen atom, oxygen atom, sulfur atom, etc.).
  • R 1 and R 2 may be linked to each other to form a ring, for example, the isopropyl groups of R 1 and R 2 are linked to form 4,4,5,5-tetramethyl-1,3,2 - A dioxaborolane ring may be formed.
  • R 1 and R 2 are preferably a hydrogen atom, a linear or branched alkyl group having 1 to 3 carbon atoms, or an embodiment in which they are linked to form a ring, and a hydrogen atom is more preferred.
  • the substituent represented by R 3 is preferably a substituent containing a functional group capable of bonding to a (meth)acrylic group.
  • the functional group capable of bonding with a (meth)acrylic group include a vinyl group, an acrylate group, a methacrylate group, an acrylamide group, a styryl group, a vinyl ketone group, a butadiene group, a vinyl ether group, an oxiranyl group, an aziridinyl group, and an oxetane group.
  • a vinyl group, an acrylate group, a methacrylate group, a styryl group, an oxiranyl group, or an oxetane group are preferred, and a vinyl group, an acrylate group, an acrylamide group, or a styryl group is more preferred.
  • R 3 is preferably a substituted or unsubstituted aliphatic hydrocarbon group, aryl group, or heterocyclic group having a functional group capable of bonding to a (meth)acrylic group.
  • aliphatic hydrocarbon groups include substituted or unsubstituted linear or branched alkyl groups having 1 to 30 carbon atoms (for example, methyl group, ethyl group, iso-propyl group, n-propyl group, butyl group, pentyl group) , hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, hexadecyl group, octadecyl group, eicosyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, n
  • aryl group examples include substituted or unsubstituted phenyl groups having 6 to 50 carbon atoms (for example, phenyl group, tolyl group, styryl group, 4-benzoyloxyphenyl group, 4-phenoxycarbonylphenyl group, 4-biphenyl group, -(4-octyloxybenzoyloxy)phenoxycarbonylphenyl group, etc.), a substituted or unsubstituted naphthyl group having 10 to 50 carbon atoms (eg, an unsubstituted naphthyl group, etc.).
  • substituted or unsubstituted phenyl groups having 6 to 50 carbon atoms for example, phenyl group, tolyl group, styryl group, 4-benzoyloxyphenyl group, 4-phenoxycarbonylphenyl group, 4-biphenyl group, -(4-octyloxybenzoyloxy)phenoxycarbonylphen
  • heterocyclic groups include substituted or unsubstituted 5- or 6-membered ring groups containing at least one hetero atom (e.g., nitrogen atom, oxygen atom, sulfur atom, etc.), such as pyrrole, furan, Thiophene, pyrazole, imidazole, triazole, oxazole, isoxazole, oxadiazole, thiazole, thiadiazole, indole, carbazole, benzofuran, dibenzofuran, thianaphthene, dibenzothiophene, indazole benzimidazole, anthranil, benzisoxazole, benzoxazole, benzothiazole, Examples include groups such as purine, pyridine, pyridazine, pyrimidine, pyrazine, triazine, quinoline, acridine, isoquinoline, phthalazine, quinazoline, quinoxaline, naph
  • Examples of the boronic acid compound represented by the above formula (B2) include boronic acid compounds represented by the general formula (I) described in paragraphs 0023 to 0032 of JP-A No. 2008-225281.
  • the compound represented by the above formula (B2) the compounds exemplified below are also preferable.
  • the content of the alignment agent is 0.2 to 20 parts by mass based on a total of 100 parts by mass of the liquid crystal compound and dichroic substance contained in the liquid crystal composition.
  • the amount is preferably 1 to 10 parts by mass, and more preferably 1 to 10 parts by mass.
  • the liquid crystal composition preferably contains a solvent from the viewpoint of workability and the like.
  • the solvent include ketones (for example, acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, acetylacetone, etc.), ethers (for example, dioxane, tetrahydrofuran, tetrahydropyran, dioxolane, tetrahydrofurfuryl alcohol, cyclopentyl methyl ether, dibutyl ether, etc.), aliphatic hydrocarbons (e.g., hexane, etc.), alicyclic hydrocarbons (e.g., cyclohexane, etc.), aromatic hydrocarbons (e.g., benzene, toluene, xylene, tetralin, trimethylbenzene, etc.), halogenated carbons (e.g., dichloromethane, etc.,
  • cellosolves e.g., methyl cellosolve, ethyl cellosolve, and 1,2-dimethoxyethane, etc.
  • cellosolve acetates e.g., sulfoxides (e.g., dimethyl sulfoxide, etc.), amides (e.g., dimethylformamide, etc.) and dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, etc.), and organic compounds such as heterocyclic compounds (e.g., pyridine, 2,6-lutidine, etc.) Examples include solvents and water. These solvents may be used alone or in combination of two or more.
  • the content of the solvent is preferably 60 to 99.5% by mass, and preferably 70 to 99% by mass, based on the total mass (100% by mass) of the liquid crystal composition. It is more preferable that the amount is 75 to 98% by mass.
  • the liquid crystal composition may contain a polymerization initiator.
  • the polymerization initiator is not particularly limited, but it is preferably a photosensitive compound, that is, a photopolymerization initiator.
  • a photopolymerization initiator various compounds can be used without particular limitation. Examples of photopolymerization initiators include ⁇ -carbonyl compounds (US Pat. Nos. 2,367,661 and 2,367,670), asiloin ether (US Pat. No. 2,448,828), and ⁇ -hydrocarbon-substituted aromatic acyloins. compound (US Pat. No. 2,722,512), polynuclear quinone compound (US Pat. No. 3,046,127 and US Pat. No.
  • photopolymerization initiators such as Irgacure-184, Irgacure-907, Irgacure-369, Irgacure-651, Irgacure-819, Irgacure-OXE-01 and Irgacure-01 manufactured by BASF. Examples include OXE-02.
  • the content of the polymerization initiator is preferably 0.01 to 30% by mass, and 0.1 to 15% by mass based on the total solid mass of the liquid crystal composition. More preferred.
  • the liquid crystal composition may contain a polymerizable compound.
  • the polymerizable compound include compounds containing acrylate (for example, (meth)acrylate monomers, etc.).
  • the content of the polymerizable compound is preferably 0.5 to 50% by mass, and 1.0 to 40% by mass based on the total solid mass of the liquid crystal composition. More preferred.
  • the liquid crystal composition may contain an interface modifier.
  • an interface modifier There are no particular restrictions on the interface improver, and a polymeric interface improver or a low-molecular interface improver can be used, and the compounds described in paragraphs [0253] to [0293] of JP 2011-237513 A may be used. I can do it.
  • the interface improver fluorine (meth)acrylate polymers described in JP-A No. 2007-272185, [0018] to [0043], etc. can also be used.
  • compounds described in paragraphs [0079] to [0102] of JP-A No. 2007-069471 and compounds represented by formula (4) described in JP-A No. 2013-047204 are used.
  • polymerizable liquid crystal compounds especially compounds described in paragraphs [0020] to [0032]
  • polymerizable liquid crystal compounds represented by formula (4) described in JP-A-2012-211306 especially compounds described in paragraphs [0020] to [0032]); ] to [0029]
  • a liquid crystal alignment promoter represented by formula (4) described in JP-A-2002-129162 particularly paragraphs [0076] to [0078] and paragraph [0082]) - [0084]
  • compounds represented by formulas (4), (II) and (III) described in JP-A No. 2005-099248 particularly in paragraphs [0092] to [0096]
  • the content of the interface improver is preferably 0.005 to 15% by mass, more preferably 0.01 to 5% by mass based on the total solid mass of the liquid crystal composition. Preferably, 0.015 to 3% by mass is more preferable.
  • the total amount of the multiple interface modifiers is preferably within the above range.
  • the thickness of the light absorption anisotropic layer is not particularly limited, but from the viewpoint of reducing size and weight, it is preferably 100 to 8000 nm, more preferably 300 to 5000 nm.
  • the method for forming the light-absorbing anisotropic layer is not particularly limited, and includes the step of applying the above-mentioned liquid crystal composition (hereinafter also referred to as "composition for forming a light-absorbing anisotropic layer") to form a coating film ( Examples include a method including, in this order, a step of orienting the liquid crystal component contained in the coating film (hereinafter also referred to as an "orientation step").
  • the liquid crystal component is a component that includes not only the above-mentioned liquid crystal compound but also a dichroic substance having liquid crystallinity when the above-mentioned dichroic substance has liquid crystallinity.
  • the light absorption anisotropic layer is not a layer fixed in a smectic phase liquid crystal state (that is, when a liquid crystal compound exhibiting smectic properties is not used as a liquid crystal compound contained in the liquid crystal composition), or when fine particles are If it does not contain it, from the viewpoint of adjusting the haze value, it is preferable to form it by the method for manufacturing a light absorption anisotropic layer of the present invention described below.
  • the coating film forming step is a step of applying a composition for forming a light-absorbing anisotropic layer to form a coating film.
  • a composition for forming a light-absorbing anisotropic layer By using a light-absorbing anisotropic layer-forming composition containing the above-mentioned solvent, or by heating the light-absorbing anisotropic layer-forming composition to form a liquid such as a melt, It becomes easier to apply the composition for forming a light-absorbing anisotropic layer.
  • the method for applying the composition for forming a light-absorbing anisotropic layer includes, for example, a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, and a reverse coating method.
  • Known methods include gravure coating method, die coating method, spray method, and inkjet method.
  • the alignment process is a process of aligning the liquid crystal component contained in the coating film. As a result, even if the dichroic material described above does not have liquid crystallinity, the dichroic material is oriented along the orientation of the liquid crystal compound, and a light-absorbing anisotropic layer is obtained.
  • the orientation process may include a drying process. Components such as solvents can be removed from the coating film by the drying process.
  • the drying treatment may be performed by leaving the coating film at room temperature for a predetermined period of time (for example, natural drying), or by heating and/or blowing air.
  • the liquid crystal component contained in the composition for forming a light-absorbing anisotropic layer may be oriented by the above-mentioned coating film forming step or drying treatment.
  • the composition for forming a light-absorbing anisotropic layer is prepared as a coating solution containing a solvent, by drying the coating film and removing the solvent from the coating film, the composition for forming a light-absorbing anisotropic layer can be formed.
  • a coating film ie, a light-absorbing anisotropic layer
  • the drying treatment is performed at a temperature equal to or higher than the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase, the heat treatment described below may not be performed.
  • the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase is preferably 10 to 250°C, more preferably 25 to 190°C, from the viewpoint of manufacturing suitability.
  • the transition temperature is 10° C. or higher, there is no need for cooling treatment or the like to lower the temperature to a temperature range in which a liquid crystal phase is exhibited, which is preferable.
  • the above transition temperature is 250°C or lower, high temperatures are not required even when the temperature range is higher than the temperature range in which the liquid crystal phase is exhibited, and the temperature is higher than that of the isotropic liquid state, which results in wasted thermal energy and damage to the substrate. This is preferable because deformation, alteration, etc. can be reduced.
  • the orientation step includes heat treatment.
  • the heat treatment is preferably performed at 10 to 250°C, more preferably from 25 to 190°C, from the viewpoint of manufacturing suitability.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • the orientation step may include a cooling treatment performed after the heat treatment.
  • the cooling treatment is a treatment in which the coated film after heating is cooled to about room temperature (20 to 25° C.). Thereby, the orientation of the liquid crystal component contained in the coating film can be fixed.
  • the cooling means is not particularly limited, and any known method can be used. Through the above steps, a light absorption anisotropic layer can be obtained. Note that, in this embodiment, drying treatment, heat treatment, and the like are mentioned as methods for aligning the liquid crystal component contained in the coating film, but the method is not limited to these, and any known alignment treatment can be used.
  • the method for forming the light-absorbing anisotropic layer may include a step of curing the light-absorbing anisotropic layer (hereinafter also referred to as "curing step") after the orientation step.
  • the curing step is performed by heating and/or light irradiation (exposure).
  • exposure it is preferable that the curing step is carried out by light irradiation.
  • Various light sources can be used for curing, including infrared rays, visible light, and ultraviolet rays, but ultraviolet rays are preferred.
  • ultraviolet rays may be irradiated while heating during curing, or ultraviolet rays may be irradiated through a filter that transmits only a specific wavelength.
  • the heating temperature during the exposure is preferably 25 to 140° C., although it depends on the transition temperature of the liquid crystal component contained in the liquid crystal film to the liquid crystal phase.
  • the exposure may be performed under a nitrogen atmosphere. When curing of the liquid crystal film progresses by radical polymerization, it is preferable to perform exposure under a nitrogen atmosphere because inhibition of polymerization by oxygen is reduced.
  • the intermediate layer included in the optical film of the present invention is a layer disposed between the plurality of light-absorbing anisotropic layers described above.
  • the term “intermediate layer” refers to all layers disposed between multiple light-absorbing anisotropic layers, but in the case of having three or more light-absorbing anisotropic layers, multiple light-absorbing anisotropic layers may be used.
  • a light-absorbing anisotropic layer disposed between anisotropic layers does not correspond to an intermediate layer.
  • the optical film of the present invention has a layer structure including, for example, a light absorption anisotropic layer A, an alignment layer X, a light absorption anisotropic layer B, an alignment layer Y, and a light absorption anisotropic layer C in this order.
  • the alignment layer X and the alignment layer Y correspond to the intermediate layer
  • the light absorption anisotropic layer B does not correspond to the intermediate layer.
  • the intermediate layer included in the optical film of the present invention is a layer having an in-plane retardation of 25 nm or less at a wavelength of 550 nm, and an absolute value of retardation in the thickness direction at a wavelength of 550 nm of 25 nm or less. Note that the above-mentioned regulations regarding retardation apply to all intermediate layers when there is a plurality of intermediate layers.
  • an intermediate layer examples include an alignment layer, a barrier layer, a refractive index adjusting layer, an adhesive layer, an adhesive layer, and a support.
  • the intermediate layer is preferably an alignment layer or a barrier layer.
  • the optional alignment layer, barrier layer, refractive index adjustment layer, adhesive layer, adhesive layer, and support that the optical film of the present invention may have will be explained below, but these may include the above-mentioned multiple layers.
  • a layer disposed between the light-absorbing anisotropic layers and satisfying the above-mentioned regulations regarding retardation corresponds to an intermediate layer.
  • the optical film of the present invention preferably has an alignment layer as an adjacent layer.
  • the alignment layer specifically includes layers such as polyvinyl alcohol and polyimide, which have been subjected to rubbing treatment or not; polyvinyl cinnamate and azo-based layers, which have been subjected to polarized light exposure treatment or not; A photo-alignment layer such as a dye; and the like.
  • the thickness of the alignment layer is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • the alignment layer may also be a layer that also serves as a barrier layer, which will be described later.
  • the optical film of the present invention has a barrier layer.
  • the barrier layer is also called a gas barrier layer (oxygen barrier layer), and has a function of protecting from gases such as oxygen in the atmosphere, moisture, or compounds contained in adjacent layers.
  • the barrier layer for example, paragraphs [0014] to [0054] of JP 2014-159124, paragraphs [0042] to [0075] of JP 2017-121721, and [0075] of JP 2017-115076. Reference can be made to paragraphs [0045] to [0054], paragraphs [0010] to [0061] of JP-A No. 2012-213938, and paragraphs [0021] to [0031] of JP-A No. 2005-169994.
  • the optical film of the present invention may have a refractive index adjusting layer from the viewpoint of suppressing the influence of internal reflection caused by the high refractive index of the light-absorbing anisotropic layer.
  • the refractive index adjusting layer is a layer disposed in contact with the light absorption anisotropic layer, and has an in-plane average refractive index of 1.55 or more and 1.70 or less at a wavelength of 550 nm.
  • it is a refractive index adjusting layer for performing so-called index matching.
  • the optical film of the present invention may have an adhesive layer.
  • the adhesive layer is preferably a transparent, optically isotropic adhesive similar to those used in conventional image display devices, and pressure-sensitive adhesives are usually used.
  • the adhesive layer contains a crosslinking agent (for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, etc.), and a tackifying agent.
  • a crosslinking agent for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, etc.
  • tackifying agent for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, etc.
  • Appropriate agents such as rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenolic resins, plasticizers, fillers, anti-aging agents, surfactants, ultraviolet absorbers, light stabilizers, antioxidants, etc. Additives may be added.
  • the optical film of the present invention may have an adhesive layer.
  • the adhesive layer develops adhesive properties through drying or reaction after bonding.
  • PVA adhesive polyvinyl alcohol adhesive
  • curable adhesives that develop adhesive properties through reaction include active energy ray curable adhesives such as (meth)acrylate adhesives and cationic polymerization curable adhesives.
  • (meth)acrylate means acrylate and/or methacrylate.
  • the curable component in the (meth)acrylate adhesive include a compound having a (meth)acryloyl group and a compound having a vinyl group.
  • cationic polymerization-curable adhesive compounds having an epoxy group or an oxetanyl group can also be used.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various commonly known curable epoxy compounds can be used.
  • Preferred epoxy compounds include compounds having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compounds), and compounds having at least two epoxy groups in the molecule and at least one of them. Examples include compounds formed between two adjacent carbon atoms constituting an alicyclic ring (alicyclic epoxy compound).
  • ultraviolet curable adhesives that are cured by ultraviolet irradiation are preferably used.
  • the optical film of the present invention may have a support.
  • the type of support is not particularly limited, and any known support can be used.
  • a transparent support is preferred.
  • the transparent support is intended to be a support having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
  • the support examples include glass substrates and polymer films.
  • Materials for the polymer film include cellulose polymers; acrylic polymers containing acrylic ester polymers such as polymethyl methacrylate and lactone ring-containing polymers; thermoplastic norbornene polymers; polycarbonate polymers; polyethylene terephthalate, and polyethylene ester polymers; Polyester polymers such as phthalates; Styrenic polymers such as polystyrene and acrylonitrile styrene copolymers; Polyolefin polymers such as polyethylene, polypropylene, and ethylene-propylene copolymers; Vinyl chloride polymers; Nylon, aromatic polyamides, etc.
  • Amide polymer Imide polymer; Sulfone polymer; Polyether sulfone polymer; Polyether ether ketone polymer; Polyphenylene sulfide polymer; Vinylidene chloride polymer; Vinyl alcohol polymer; Vinyl butyral polymer; Arylate polymer; Examples include oxymethylene polymers; epoxy polymers; and polymers obtained by mixing these polymers.
  • the support is preferably one that is removable.
  • the viewing angle control system of the present invention includes a polarizer having an absorption axis in the in-plane direction and the optical film of the present invention described above.
  • the polarizer included in the viewing angle control system of the present invention is not particularly limited as long as it has an absorption axis in the in-plane direction and has the function of converting light into a specific linearly polarized light, and a conventionally known polarizer can be used. can do.
  • a conventionally known polarizer can be used. can do.
  • the polarizer an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, etc. are used.
  • Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretched-type polarizers, and both are applicable.
  • a coating type polarizer a polarizer in which a dichroic organic dye is oriented using the orientation of a liquid crystal compound is preferable.
  • a stretching type polarizer a polarizer in which iodine or a dichroic dye is adsorbed to polyvinyl alcohol and stretched is preferable.
  • a polarizer produced by the following method is preferable.
  • Japanese Patent No. 5048120, Japanese Patent No. 5143918, Japanese Patent No. 5048120, No. 4,691,205, Japanese Patent No. 4,751,481, and Japanese Patent No. 4,751,486 can be cited, and known techniques related to these polarizers can also be preferably used.
  • polyvinyl alcohol resins (polymer containing -CH 2 -CHOH- as a repeating unit; particularly selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymers) are preferred because they are easily available and have an excellent degree of polarization. It is preferable that the polarizer includes at least one of the above.
  • the thickness of the polarizer is not particularly limited, but it is preferably 3 ⁇ m to 60 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and even more preferably 5 ⁇ m to 10 ⁇ m.
  • the above-described optical film of the present invention and the above-mentioned polarizer may be laminated via the above-mentioned adhesive layer or adhesive layer, or the above-mentioned alignment film and the above-mentioned
  • the light-absorbing anisotropic layer, the intermediate layer, and the light-absorbing anisotropic layer may be directly coated and laminated.
  • the image display device of the present invention includes a display element and the viewing angle control system of the present invention described above, and the viewing angle control system is arranged on at least one main surface of the display element. Further, the image display device of the present invention is an image display device in which the plurality of light-absorbing anisotropic layers included in the viewing angle control system are all arranged on the viewing side of the polarizer included in the viewing angle control system, that is, the image display device has a plurality of light absorption anisotropic layers included in the viewing angle control system.
  • the image display device preferably includes a light absorption anisotropic layer, an intermediate layer, a light absorption anisotropy layer, a polarizer, and a display element in this order from the side.
  • the display element used in the image display device of the present invention is not particularly limited, and includes, for example, a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as "EL") display panel, a plasma display panel, and the like.
  • a liquid crystal cell or an organic EL display panel is preferable.
  • the display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element, or an organic EL display device using an organic EL display panel as a display element.
  • Some image display devices are thin and can be molded into curved surfaces.
  • the optically anisotropic absorption film used in the present invention is thin and easy to bend, so it can be suitably applied to image display devices with curved display surfaces.
  • image display devices have a pixel density exceeding 250 ppi and are capable of high-definition display.
  • the optically anisotropic absorption film used in the present invention can be suitably applied to such high-definition image display devices without causing moiré.
  • liquid crystal display device As a liquid crystal display device which is an example of the display device of the present invention, an embodiment including the viewing angle control system of the present invention described above and a liquid crystal cell is preferably mentioned.
  • a specific configuration there is a configuration in which the viewing angle control system of the present invention is arranged on a front polarizing plate or a rear polarizing plate. In these configurations, it is possible to control the viewing angle in which light is blocked in the vertical direction or the horizontal direction. Furthermore, the viewing angle control system of the present invention may be placed on both the front polarizing plate and the rear polarizing plate. With this configuration, it is possible to control the viewing angle so that light is blocked in all directions and light is transmitted only in the front direction.
  • the liquid crystal cell constituting the liquid crystal display device will be described in detail below.
  • the liquid crystal cells used in the liquid crystal display device are VA (VERTICAL ALIGNMENT) mode, OCB (Opticaly Compensated Bend) mode, IPS (IN -Plane -Switching) mode, or TN (TWISTE (TWISTE) It is preferable to be in d Nematic) mode It is not limited to these.
  • VA VERTICAL ALIGNMENT
  • OCB Opticaly Compensated Bend
  • IPS IN -Plane -Switching
  • TN TWISTE
  • TN mode liquid crystal cells rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are further twisted at an angle of 60 to 120°.
  • TN mode liquid crystal cells are most commonly used as color TFT liquid crystal display devices, and are described in numerous documents.
  • VA mode liquid crystal cells In a VA mode liquid crystal cell, rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied.
  • VA mode liquid crystal cells include (1) narrowly defined VA mode liquid crystal cells in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when voltage is applied (Japanese Patent Application Laid-Open No. 2002-2002); In addition to (2) a multi-domain (MVA mode) liquid crystal cell (SID97, described in Digest of tech. Papers (Proceedings) 28 (1997) 845) in which the VA mode is multi-domained to expand the viewing angle.
  • MVA mode multi-domain liquid crystal cell
  • n-ASM mode Liquid crystal cell in a mode in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and twisted and multi-domain aligned when a voltage is applied
  • SURVIVAL mode liquid crystal cell presented at LCD International 98.
  • PVA Plasma Vertical Alignment
  • Optical Alignment optical alignment type
  • PSA Polymer-Sustained Alignment
  • the liquid crystal compound In an IPS mode liquid crystal cell, the liquid crystal compound is oriented substantially parallel to the substrate, and when an electric field parallel to the substrate surface is applied, the liquid crystal molecules respond in a planar manner. That is, the liquid crystal compound is oriented in-plane in a state where no electric field is applied.
  • a black display occurs when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are perpendicular to each other.
  • a method of using an optical compensatory sheet to reduce leakage light during black display in an oblique direction and improve the viewing angle is disclosed in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522.
  • an organic EL display device includes, for example, the above-described viewing angle control system of the present invention, a ⁇ /4 plate, and an organic EL display panel in this order from the viewing side. are preferably mentioned.
  • an organic EL display panel is a display panel constructed using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode).
  • the structure of the organic EL display panel is not particularly limited, and a known structure may be employed.
  • Image display device that can switch the viewing angle image display device that can switch the viewing angle
  • the optical film of the present invention can be used for the purpose of generating light with a narrow emission angle. For example, after generating light with a narrow emission angle using the optical film of the present invention, as described in JP-A-9-105907, the optical film is passed through an element that controls whether or not the light is diffused. You can change the viewing angle.
  • an inverted prism sheet from the viewing side, an inverted prism sheet, a first light guide plate that allows light to enter the inverted prism sheet at a relatively large incident angle (the light emitted from the inverted prism sheet is a narrow viewing angle), and an optical filter element that absorbs incident light from an oblique angle and enters the light with a narrow exit angle into the above-mentioned inverted prism sheet at a relatively small incident angle, and a second light guide plate (the second light guide plate).
  • the optical film of the present invention can be used as the optical filter element in a narrow viewing angle/wide viewing angle switching backlight system in which the emitted light has a narrow viewing angle.
  • the first light guide plate, the optical filter that absorbs obliquely incident light and emits the light at a narrow angle, and the second light guide plate are laminated in this order, and the first light guide plate and the second light guide plate are stacked in this order.
  • the optical filter of the present invention can also be used as the optical filter in a backlight system where the viewing angle is wide when the light is emitted from the first light guide plate, and the viewing angle is narrow when the light is emitted only from the second light guide plate.
  • a film can be used.
  • a phase difference modulation element such as a liquid crystal cell can be placed between the optical film of the present invention and the horizontally oriented polarizer to switch between narrow viewing angle and wide viewing angle.
  • the viewing angle will be narrow when the liquid crystal in the liquid crystal cell is vertically aligned, and the viewing angle will be wide if the liquid crystal in the liquid crystal cell is tilted. It is in angle mode, and the narrow viewing angle/wide viewing angle can be controlled by whether or not voltage is applied to the cell.
  • an IPS mode liquid crystal cell as the phase difference modulation cell.
  • the alignment direction of the liquid crystal cell when no voltage is applied is parallel or perpendicular to the absorption axis direction of the horizontally aligned polarizer, and by changing the alignment direction of the liquid crystal cell by applying a voltage, the viewing angle can be changed from a narrow viewing angle to a wide viewing angle. You can switch the viewing angle from corner to corner.
  • a TN mode liquid crystal cell as the phase difference modulation cell. It is preferable that the cell is capable of switching the orientation twist angle between 0° and 90° or between 0° and 270° by turning on and off a voltage.
  • the image display device of the present invention may be configured to be able to independently switch the viewing angles of a plurality of areas within the display screen.
  • optical device/head mounted display The optical film of the present invention can be used in an optical device (head mounted display) having a light guide plate on the surface of which a diffraction element is disposed.
  • FIG. 1 shows a schematic diagram of an example of a head mounted display of the present invention.
  • the head-mounted display 80 shown in FIG. 1 is an example of AR glasses, and includes a light guide plate 82, an incident diffraction element 90 and an output diffraction element 92 arranged on one surface of the light guide plate 82, and an optical filter 10. It has an image display element 86. Note that the light guide plate 82, the entrance diffraction element 90 and the exit diffraction element 92, and the optical filter 10 constitute the optical device of the present invention.
  • an incident diffraction element 90 is arranged on the surface (principal surface) on one end side of the light guide plate 82.
  • an output diffraction element 92 is arranged on the surface of the light guide plate 82 on the other end side.
  • the arrangement position of the incident diffraction element 90 corresponds to the incident position of the image light I 1 from the image display element 86 to the light guide plate 82 .
  • the arrangement position of the output diffraction element 92 corresponds to the output position of the image light I 1 from the light guide plate 82, that is, the observation position of the image light I 1 by the user.
  • the entrance diffraction element 90 and the exit diffraction element 92 are arranged on the same surface of the light guide plate 82.
  • the optical filter 10 is disposed on a surface of the light guide plate 82 opposite to the surface on which the output diffraction element 92 is arranged, facing the output diffraction element 92 of the light guide plate 82 . As shown in FIG. 1, the optical filter 10 has a similar shape to the output diffraction element 92.
  • the light guide plate 82 may be provided with an intermediate diffraction element 94 (see FIG. 2).
  • the arrangement position of each diffraction element is not limited to the end of the light guide plate, and various positions can be used depending on the shape of the light guide plate.
  • the image light I1 displayed by the image display element 86 is diffracted by the incident diffraction element 90, as shown by the arrow, and the light guide plate 82 and the air are separated.
  • the light enters the light guide plate 82 at an angle at which it is totally reflected at the interface.
  • the image light I 1 that has entered the light guide plate 82 is totally reflected on both surfaces of the light guide plate 82 , is guided through the light guide plate 82 , and is incident on the output diffraction element 92 .
  • the image light I 1 incident on the output diffraction element 92 is diffracted by the output diffraction element 92 in a direction perpendicular to the surface of the output diffraction element 92 .
  • the image light I1 diffracted by the output diffraction element 92 is output to a viewing position by the user outside the light guide plate 82, and is observed by the user. It is preferable that there is an air gap between the optical filter 10 and the light guide plate 82. If there is no air gap, the image light I 1 that has traveled through the light guide plate 82 enters the optical filter 10 , so the image light I 1 propagates through the optical filter 10 and reaches the opposite side of the optical filter 10 from the light guide plate 82 .
  • external light I0 that is, the background, which enters the head-mounted display 80 from the front direction, passes through the optical filter 10, enters the light guide plate 82, and passes through the output diffraction element 92. , reach the viewing position by the user.
  • external light that enters the head-mounted display 80 from the front direction is also referred to as front external light I0 .
  • the head-mounted display 80 allows the image displayed by the image display element 86 to enter one end of the light guide plate 82, propagate, and exit from the other end, so that the image displayed by the image display element 86 becomes the scene that the user actually sees. Display virtual images overlapping each other.
  • the shape of the optical filter 10 is not limited to the same shape as the diffraction element, and may be a different shape or size. However, in order to suitably block the external light incident on the diffraction element from an oblique direction, that is, the oblique external light I s , and to suppress unnecessary blocking of the background, that is, the front external light I 0 , the diffraction element and the optical filter are It is preferable that the shapes including the shapes are the same.
  • the light guide plate 82 is not particularly limited, and conventionally known light guide plates used in image display devices, such as light guide plates used in various AR glasses and light guide plates used in backlight units of liquid crystal display devices, can be used. be able to.
  • the image display element 86 is not limited, and various known image display elements (displays) used in various image display devices such as AR glasses can be used.
  • Examples of the image display element 86 include liquid crystal displays (including LCOS (Liquid Crystal On Silicon), etc.), organic electroluminescent displays, inorganic electroluminescent displays, DLP (Digital Light Processing), and MEMS (Micro-Electro-Mechanical Systems). ) type display, micro LED (Light-Emitting Diode) display, etc. are exemplified.
  • the image display element 86 may display a monochrome image, a two-color image, or a color image.
  • the optical device of the present invention covers the diffraction element and has an optical filter including the laminate of the present invention, preferably an optical filter including the laminate 14 and the polarizer 12 as shown in the illustrated example.
  • an optical filter 10 10 m
  • the optical device of the present invention has a high light transmittance in the front direction (front external light I 0 ) when used in a head-mounted display such as AR glasses. That is, the visibility of the background is excellent, and rainbow unevenness caused by external light (oblique external light I s ) entering from above the viewer's head (obliquely above and in front of the viewer's head) can be suppressed.
  • the optical device of the present invention it is possible to preferably suppress rainbow unevenness caused by external light that enters not only in front of the observer's head, but also diagonally in front of the observer's head (diagonally in front of the observer's head).
  • the angle between the absorption axis (direction of alignment of the liquid crystal compound) and the normal direction of the laminate 14 is 0 to 45°. That is, the laminate 14 has an absorption axis extending in the normal direction of the main surface of the laminate 14 and the main surface of the light guide plate 82 .
  • the polarizer 12 constituting the optical filter 10 is a polarizer having an absorption axis within its principal plane. That is, the polarizer has an absorption axis parallel to the main surface of the laminate 14 and the main surface of the light guide plate 82.
  • the optical filter includes the laminate 14 and the polarizer 12
  • alignment layer that also serves as barrier layer
  • the surface of cellulose acylate film 1 (TAC base material with a thickness of 40 ⁇ m; TG40, Fuji Film Co., Ltd.) as a support was saponified with an alkaline solution, and coating liquid 1 for forming an alignment layer was applied thereon using a wire bar.
  • the support on which the coating film was formed was dried with hot air at 60° C. for 60 seconds and then with hot air at 100° C. for 120 seconds to form an alignment layer (hereinafter abbreviated as “alignment layer/barrier layer”) that also served as a barrier layer. ) was formed.
  • the thickness of the alignment layer/barrier layer was 1 ⁇ m.
  • the following light-absorbing anisotropic layer forming composition P1 was continuously applied using a wire bar to form a coating layer P1.
  • the coating layer P1 was heated at 140° C. for 30 seconds, and the coating layer P1 was cooled to room temperature (23° C.).
  • the coating layer P1 was heated at 80° C. for 60 seconds and cooled to room temperature again.
  • the coating layer P1 is irradiated with a light-emitting diode (LED) lamp (center wavelength 365 nm) for 2 seconds at an illuminance of 200 mW/ cm2 , thereby forming a light-absorbing anisotropic layer on the alignment layer 1.
  • LED light-emitting diode
  • the film thickness of the coating layer P1 was 3 ⁇ m, and the degree of orientation of the light absorption anisotropic layer P1 at a wavelength of 550 nm was 0.96.
  • Dichroic substances D-1, D-2, D- with respect to the total mass of 5.015 parts by mass of solid content (other than organic solvents) of the composition P1 for forming a light-absorbing anisotropic layer The value obtained by multiplying the film thickness of coating layer P1 of 3 ⁇ m by the ratio of 1.18 parts by mass of the total mass of 3 was 1.42 ⁇ m.
  • ⁇ Preparation of PVA adhesive 1> For 100 parts by mass of polyvinyl alcohol resin containing acetoacetyl group (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%), 20 parts by mass of methylolmelamine was added to 30 parts by mass. An aqueous solution was prepared by dissolving it in pure water and adjusting the solid content concentration to 3.7% by mass under a temperature condition of .degree.
  • an acrylate polymer was prepared according to the following procedure.
  • a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer, and a stirring device 95 parts by mass of butyl acrylate and 5 parts by mass of acrylic acid were polymerized by solution polymerization to obtain an average molecular weight of 2 million and a molecular weight distribution (Mw/ An acrylate polymer (NA1) with Mn) of 3.0 was obtained.
  • an acrylate adhesive was prepared using the obtained acrylate polymer (NA1) with the following composition. These compositions were applied using a die coater to a separate film whose surface had been treated with a silicone release agent, dried for 1 minute in an environment of 90°C, and irradiated with ultraviolet (UV) light under the following conditions. Adhesive N1 (adhesive layer) was obtained. The composition and film thickness of the acrylate adhesive are shown below. ⁇ UV irradiation conditions> ⁇ Fusion electrodeless lamp H bulb ⁇ Illuminance 600mW/cm 2 , light intensity 150mJ/cm 2 - UV illuminance and light amount were measured using "UVPF-36" manufactured by Eye Graphics.
  • ⁇ Acrylate adhesive N1 film thickness: 5 ⁇ m, storage modulus: 2.6 MPa
  • ⁇ ⁇ Acrylate polymer (NA1) 100 parts by mass ⁇ The following (A) polyfunctional acrylate monomer 11.1 parts by mass ⁇ The following (B) Photopolymerization initiator 1.1 parts by mass ⁇ The following (C) Isocyanate crosslinking agent 1 .0 part by mass 0.2 part by mass of the following (D) silane coupling agent ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • B Photopolymerization initiator: 1:1 mass ratio mixture of benzophenone and 1-hydroxycyclohexylphenyl ketone, "Irgacure 500" manufactured by Ciba Specialty Chemicals.
  • Isocyanate crosslinking agent trimethylolpropane-modified tolylene diisocyanate (“Coronate L” manufactured by Nippon Polyurethane Co., Ltd.)
  • Silane coupling agent 3-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Comparative example 2 A viewing angle control system 2 of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the thickness of the coating layer P1 was changed to 6 ⁇ m.
  • Example 1 On the alignment layer/barrier layer 1 of the optical film 1 of Comparative Example 1, a light-absorbing anisotropic layer P1 and an alignment layer/barrier layer 1 were further formed to produce an optical film 3. Next, the polarizing plate 1 was bonded to the first side of the cellulose acylate film of the optical film 3 using an adhesive N1 to produce a viewing angle control system 3.
  • Example 2 The viewing angle control system 4 was prepared in the same manner as in Example 1, except that the light-absorbing anisotropic layer P1 (two layers) in Example 1 was changed to the light-absorbing anisotropic layer P2, both of which were formed by the following method. was created.
  • the following composition P2 for forming a light-absorbing anisotropic layer was continuously applied using a wire bar to form a coating layer P2.
  • the coating layer P2 was heated at 140° C. for 30 seconds, and the coating layer P2 was cooled to room temperature (23° C.).
  • the coating layer P2 was heated at 80° C. for 60 seconds and cooled again to room temperature.
  • the coating layer P2 was irradiated with an LED lamp (center wavelength 365 nm) for 2 seconds at an illuminance of 200 mW/cm 2 to produce a light-absorbing anisotropic layer P2 on the alignment layer 1.
  • the film thickness of the coating layer P2 was 3 ⁇ m, and the degree of orientation of the light absorption anisotropic layer P2 at a wavelength of 550 nm was 0.96.
  • Example 3 On the alignment layer/barrier layer 1 located on the air interface side of the optical film 3 of Example 1, a light-absorbing anisotropic layer P1 and an alignment layer/barrier layer 1 were further formed to produce an optical film 5. . Next, the polarizing plate 1 was bonded to the first side of the cellulose acylate film of the optical film 5 using an adhesive N1, thereby producing a viewing angle control system 5.
  • Example 4 On the alignment layer/barrier layer 1 located on the air interface side of the optical film 5 of Example 3, a light-absorbing anisotropic layer P1 and an alignment layer/barrier layer 1 were further formed to produce an optical film 6. . Next, the polarizing plate 1 was bonded to the first side of the cellulose acylate film of the optical film 6 using an adhesive N1, thereby producing a viewing angle control system 6.
  • Example 5 The same procedure as in Example 3 was performed except that the light-absorbing anisotropic layer P1 (3 layers) of the optical film 3 in Example 3 was changed to a light-absorbing anisotropic layer P5 formed by the following method. Control system 7 was created.
  • the following composition P5 for forming a light-absorbing anisotropic layer was continuously applied using a wire bar to form a coating layer P5.
  • the coating layer P5 was heated at 140° C. for 30 seconds, and the coating layer P5 was cooled to room temperature (23° C.).
  • the coating layer P5 was heated at 60° C. for 60 seconds and cooled to room temperature again.
  • the coating layer P5 was irradiated with an LED lamp (center wavelength 365 nm) for 2 seconds at an illuminance of 200 mW/cm 2 to form a light-absorbing anisotropic layer P5 on the alignment layer 1.
  • the film thickness of the coating layer P5 was 3 ⁇ m, and the degree of orientation of the light absorption anisotropic layer P5 at a wavelength of 550 nm was 0.90.
  • the viewing angle control systems produced in Examples 1 to 5 and Comparative Examples 1 to 4 were placed on the backlight of a D65 light source, with the normal direction of the viewing angle control film set to a polar angle of 0°, and polar angles from 0° to 88°.
  • the transmittance was measured at 1° intervals from azimuth angles of 0° to 359°. Note that the brightness of the D65 light source without the viewing angle control film was set as 100%, and the transmittance was calculated from the brightness with the viewing angle control system installed.
  • the value of the azimuth angle with the lowest transmittance at a polar angle of 25° within the plane of the viewing angle control film was defined as the transmittance at an angle of 25° in the light blocking direction.
  • the transmittance was measured at 25 points in total, 5 points at 10 mm intervals in the width direction and 5 points at 10 mm intervals in the longitudinal direction, and the difference between the maximum value and the minimum value was defined as the transmittance variation.
  • the color of transmitted light presence or absence of coloring
  • the color of transmitted light at an angle of 25 degrees in the light-shielding direction was visually observed.
  • each layer has a thickness of 3.0 ⁇ m or less, a total thickness of 4.0 ⁇ m or more, and a total dichroic substance equivalent film thickness of 1.10 ⁇ m or more, and has an absorption axis parallel to the thickness direction.
  • the film is tilted by 25° from the normal direction of the laminate in which polarizers having absorption axes in the in-plane direction are laminated. It was found that when viewed from a predetermined azimuth angle, the transmittance was low and coloring of leaked light could be suppressed (Examples 1 to 4).
  • Example 3 From a comparison between Example 3 and Example 5, it was found that the degree of orientation of the plurality of light absorption anisotropic layers was all 0.93 or more, and that polarizers having absorption axes in the in-plane direction were laminated. It was found that the transmittance was lower when viewed from a predetermined azimuth angle at an angle inclined by 25 degrees from the normal direction of the laminate.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度から視認した際に、遮光したい方向からの透過率が低くなり、かつ、漏れ光の着色を抑制することができる光学フィルム、および、視角制御システムを提供することを課題とする。本発明の光学フィルムは、二色性物質を含有する複数の光吸収異方性層と、複数の光吸収異方性層の間に配置される少なくとも1層の中間層とを有する光学フィルムであって、複数の光吸収異方性層が、いずれも厚み方向と平行な吸収軸を有し、複数の光吸収異方性層の厚みが、いずれも3.0μm以下であり、複数の光吸収異方性層の厚みの合計が4.0μm以上であり、光吸収異方性層の質量に対する二色性物質の含有量の比率と光吸収異方性層の厚みとを乗じて得られる値を複数の光吸収異方性層で算出した合計値が1.10μm以上であり、中間層が、波長550nmにおける面内レターデーションが25nm以下であり、かつ、波長550nmにおける厚み方向のレターデーションの絶対値が25nm以下である層である、光学フィルムである。

Description

光学フィルムおよび視角制御システム
 本発明は、光学フィルムおよび視角制御システムに関する。
 光学フィルタとして、表面に垂直な方向(正面方向)からの光を透過し、表面に対して傾斜している斜め方向からの光を遮蔽する光学フィルムが用いられている。
 例えば、特許文献1には、位相差膜の両面に偏光膜を有してなり、偏光膜が少なくとも偏光子を含み、かつ偏光子の吸収軸が偏光膜面に対し略垂直に配向している光学フィルムが記載されている。
 また、特許文献2には、第1異方性吸収層、第1位相差層、および、第2異方性吸収層をこの順に含む光学フィルムが記載されている。
特開2008-165201号公報 国際公開第2019/054099号
 本発明者は、特許文献1および2に記載された光学フィルムと、面内方向に吸収軸を有する偏光子とを積層させた積層体(視角制御システム)について検討したところ、積層体の法線方向から25°傾いた角度から視認した際に、遮光したい方向(方位)からの透過率が高くなる場合や漏れ光に着色が見られる場合があることを明らかとした。
 そこで、本発明は、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度から視認した際に、遮光したい方向からの透過率が低くなり、かつ、漏れ光の着色を抑制することができる光学フィルム、および、視角制御システムを提供することを課題とする。
 本発明者は、上記課題を達成すべく鋭意検討した結果、特定の光吸収異方性層を複数層有し、かつ、所定のレターデーションを満たす中間層を有する光学フィルムを用いることにより、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度から視認した際に、遮光したい方向からの透過率が低くなり、かつ、漏れ光の着色を抑制することができることを見出し、本発明を完成させた。
 すなわち、本発明者は、以下の構成により上記課題を解決できることを見出した。
 [1] 二色性物質を含有する複数の光吸収異方性層と、複数の光吸収異方性層の間に配置される少なくとも1層の中間層とを有する光学フィルムであって、
 複数の光吸収異方性層が、いずれも厚み方向と平行な吸収軸を有し、
 複数の光吸収異方性層の厚みが、いずれも3.0μm以下であり、
 複数の光吸収異方性層の厚みの合計が4.0μm以上であり、
 光吸収異方性層の質量に対する二色性物質の含有量の比率と光吸収異方性層の厚みとを乗じて得られる値を複数の光吸収異方性層で算出した合計値が1.10μm以上であり、
 中間層が、波長550nmにおける面内レターデーションが25nm以下であり、かつ、波長550nmにおける厚み方向のレターデーションの絶対値が25nm以下である層である、光学フィルム。
 [2] 複数の光吸収異方性層の配向度が、いずれも0.93以上である、[1]に記載の光学フィルム。
 [3] 中間層が、配向層またはバリア層である、[1]または[2]に記載の光学フィルム。
 [4] [1]~[3]のいずれかに記載の光学フィルムと、面内方向に吸収軸を有する偏光子とを有する、視角制御システム。
 [5] 表示素子と、[4]に記載の視角制御システムを有し、
 視角制御システムが、表示素子の少なくとも一方の主面に配置されている、画像表示装置。
 [6] 視角制御システムが有する複数の光吸収異方性層が、いずれも視角制御システムが有する偏光子よりも視認側に配置されている、[5]に記載の画像表示装置。
 本発明によれば、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度から視認した際に、遮光したい方向からの透過率が低くなり、かつ、漏れ光の着色を抑制することができる光学フィルム、および、視角制御システムを提供できる。
本発明のヘッドマウントディスプレイの一例を示す模式図である。 AR(Augumented Reality:拡張現実)グラス用の導光板の構成の一例を示す模式図である。 本発明のヘッドマウントディスプレイの評価系の平面図を示す模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独で用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
 また、本明細書において、液晶性組成物、液晶性化合物とは、硬化などにより、もはや液晶性を示さなくなったものも概念として含まれる。
 また、本明細書において、角度の関係(例えば、「直交」、「平行」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。具体的には、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、±5°以下の範囲内であることが好ましく、±3°以下の範囲内であることがより好ましい。
 また、本明細書において、Re(λ)およびRth(λ)は、それぞれ、波長λにおける面内のレターデーションおよび厚み方向のレターデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)およびRth(λ)はAxoScan(Axometrics社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
 また、本明細書において、屈折率nx、ny、および、nzは、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルターとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、および、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、および、ポリスチレン(1.59)。
 本明細書で用いられる置換基Wは、以下の基を表す。
 置換基Wとしては、例えば、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のシクロアルキル基、炭素数1~10のアルキルカルボニル基、炭素数1~10のアルキルオキシカルボニル基、炭素数1~10のアルキルカルボニルオキシ基、炭素数1~10のアルキルアミノ基、アルキルアミノカルボニル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基などが挙げられる。
 なお、置換基の詳細については、特開2007-234651号公報の段落[0023]に記載される。
 また、置換基Wは、下記式(W1)で表される基であってもよい。
 式(W1)中、LWは単結合又は2価の連結基を表し、SPWは2価のスペーサー基を表し、Qは後述の式(LC)におけるQ1又はQ2を表し、*は結合位置を表す。
 LWが表す2価の連結基としては、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、又は、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、及び、-C(O)S-、などが挙げられる。LWは、これらの基を2つ以上組み合わせた基であってもよい(以下「L-C」とも省略する)。
 SPWが表す2価のスペーサー基としては、炭素数1~50の直鎖、分岐若しくは環状のアルキレン基、又は、炭素数1~20複素環基が挙げられる。
 上記アルキレン基、複素環基の炭素原子は、-O-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、又は、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-C(S)-、-S(O)-、-SO-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、及び、-C(O)S-、これらの基を2つ以上組み合わせた基で置換されていてもよい(以下「SP-C」とも省略する)。
 上記アルキレン基の水素原子、及び、複素環基の水素原子は、ハロゲン原子、シアノ基、-Z、-OH、-OZ、-COOH、-C(O)Z、-C(O)OZ、-OC(O)Z、-OC(O)OZ、-NZ’、-NZC(O)Z’、-NZC(O)OZ’、-C(O)NZ’、-OC(O)NZ’、-NZC(O)NZ’OZ’’、-SH、-SZ、-C(S)Z、-C(O)SZ、-SC(O)Z、で置換されていてもよい(以下、「SP-H」とも省略する)。ここで、Z、Z’は炭素数1~10のアルキル基、ハロゲン化アルキル基、-L-CL(Lは単結合又は2価の連結基を表す。2価の連結基の具体例は、上述したLW及びSPWと同じである。CLは架橋性基を表し、後述の式(LC)におけるQ1又はQ2で表される基が挙げられ、後述の式(P1)~(P30)で表される架橋性基が好ましい。)を表す。
[光学フィルム]
 本発明の光学フィルムは、二色性物質を含有する複数の光吸収異方性層と、複数の光吸収異方性層の間に配置される少なくとも1層の中間層とを有する光学フィルムである。
 また、本発明の光学フィルムが有する複数の光吸収異方性層は、いずれも厚み方向と平行な吸収軸を有し、いずれも厚みが3.0μm以下であり、厚みの合計が4.0μm以上である。
 また、本発明の光学フィルムは、光吸収異方性層の質量に対する二色性物質の含有量の比率(二色性物質の含有量/光吸収異方性層の質量)と光吸収異方性層の厚みとを乗じて得られる値を複数の光吸収異方性層で算出した合計値(以下、「二色性物質換算合計膜厚」とも略す。)が1.10μm以上である。
 また、本発明の光学フィルムが有する中間層は、波長550nmにおける面内レターデーションが25nm以下であり、かつ、波長550nmにおける厚み方向のレターデーションの絶対値が25nm以下である層である。
 本発明においては、上述した通り、各層の厚みが3.0μm以下であり、合計の厚みが4.0μm以上となり、二色性物質換算合計膜厚が1.10μm以上となる、厚み方向と平行な吸収軸を有する複数の光吸収異方性層(以下、本段落においては「特定光吸収異方性層」と略す。)を有し、所定のレターデーションを満たす中間層を有する光学フィルムを用いることにより、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度から視認した際に、遮光したい方向からの透過率が低くなり、かつ、漏れ光の着色を抑制することができる。
 これらの効果が発現する理由は、詳細には明らかではないが、本発明者は以下のように推測している。
 すなわち、特定光吸収異方性層を有することにより、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度で所定の方位から視認した際の遮光性が良好となったため、遮光したい方向からの透過率が低くなったと考えられる。また、特定光吸収異方性層を有することにより、単独の光吸収異方性層の膜厚を厚くした際の問題点(例えば、配向性の低下、面内での均一な光学特性の低下など)を解消することができる。
 また、所定のレターデーションを満たす中間層を有することにより、液晶化合物を用いた光学異方性層(位相差層)などの存在が排除されるため、漏れ光の着色を抑制することができたと考えられる。
 以下、本発明の光学フィルムが有する光吸収異方性層および中間層について詳細に説明する。
 〔光吸収異方性層〕
 本発明の光学フィルムが有する複数の光吸収異方性層は、各層の厚みが3.0μm以下であり、合計の厚みが4.0μm以上となり、二色性物質換算合計膜厚が1.10μm以上となる、厚み方向と平行な吸収軸を有する光吸収異方性層である。
 ここで、光吸収異方性層の各層の厚みは、1.0~3.0μmであることが好ましく、2.0~3.0μmであることがより好ましい。
 また、光吸収異方性層の合計の厚みは、4.0~20.0μmであることが好ましく、8.0~20.0μmであることがより好ましい。
 また、光吸収異方性層の二色性物質換算合計膜厚は、1.20~5.00μmであることが好ましく、2.00~5.00μmであることがより好ましい。
 なお、本明細書において、光吸収異方性層の厚みは、ミクロトームを用いて断面の切片サンプルを作製し、走査電子顕微鏡(Scanning Electron Microscope:SEM)によるSEM像を観察した際に測定される任意の3点の厚みの平均値をいう。
 本発明においては、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度で所定の方位角から視認した際に、透過率がより低くなる理由から、複数の光吸収異方性層の配向度が、いずれも0.90以上であることが好ましく、0.93以上であることがより好ましく、0.95以上であることが更に好ましい。
 ここで、光吸収異方性層の配向度は、以下の方法によって算出される。
 AxoScan(Axometrics社製)を用いて、波長550nmにおける光吸収異方性層の透過率を測定する。測定の際には、光吸収異方性層の法線方向に対する角度である極角を0~60°まで5°毎に変更しつつ、各極角における全方位角度での波長550nmにおける透過率を測定する。次に、表面反射の影響を除去した後、最も透過率の高い方位角および極角での透過率をTm(0)、最も透過率の高い方位角方向において、最も透過率の高い極角からさらに極角を40°傾けた角度での透過率をTm(40)とする。得られたTm(0)およびTm(40)から下記式により吸光度を算出し、A(0)およびA(40)を算出する。
 A=-log(Tm)
 ここで、Tmは透過率、Aは吸光度を表す。
 算出したA(0)およびA(40)より、下記式で定義された配向度Sを算出する。
 S=(4.6×A(40)-A(0))/(4.6×A(40)+2×A(0))
 本発明においては、光吸収異方性層は、二色性物質を含有する光吸収異方性層であることが好ましく、二色性物質および液晶化合物を含有する光吸収異方性層であることがより好ましく、液晶化合物および二色性物質の配向状態を固定化した層であることが更に好ましい。
 このような光吸収異方性層は、液晶性化合物と二色性物質とを含有する液晶組成物から形成することができる。
 また、液晶組成物は、配向剤、溶媒、重合開始剤、重合性化合物、界面改良剤、および、その他の添加剤を含有していてもよい。
 以下、各成分について説明する。
 <液晶化合物>
 液晶組成物は、液晶化合物を含有する。液晶化合物を含有することで、二色性物質の析出を抑止しながら、二色性物質を高い配向度で配向させることができる。
 また、液晶組成物に含まれる液晶化合物は、一般的に、その形状から棒状タイプと円盤状タイプに分類できる。
 また、液晶化合物は、可視領域で二色性を示さない液晶化合物が好ましい。
 なお、以下の説明において、「形成される光吸収異方性層の配向度がより高くなる」ことを「本発明の効果がより優れる」とも言う。
 液晶化合物としては、低分子液晶化合物及び高分子液晶化合物のいずれも用いることができる。
 ここで、「低分子液晶化合物」とは、化学構造中に繰り返し単位を有さない液晶化合物のことをいう。
 また、「高分子液晶化合物」とは、化学構造中に繰り返し単位を有する液晶化合物のことをいう。
 低分子液晶化合物としては、例えば、特開2013-228706号公報に記載されている液晶化合物が挙げられる。
 高分子液晶化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶化合物は、末端に架橋性基(例えば、アクリロイル基及びメタクリロイル基)を有していてもよい。
 液晶化合物は、本発明の効果が顕在化しやすい理由から、棒状液晶化合物であることが好ましく、高分子液晶化合物であることがより好ましい。
 液晶化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 液晶化合物は、本発明の効果がより優れる点から、高分子液晶化合物を含むことが好ましく、高分子液晶化合物及び低分子液晶化合物の両方を含むことが特に好ましい。
 液晶化合物は、式(LC)で表される液晶化合物又はその重合体を含むことが好ましい。式(LC)で表される液晶化合物又はその重合体は、液晶性を示す化合物である。液晶性は、ネマチック相であってもスメクチック相であってもよく、ネマチック相とスメクチック相の両方を示してもよく、少なくともネマチック相を示すことが好ましい。
 スメクチック相としては、高次スメクチック相であってもよい。ここでいう高次スメクチック相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相、スメクチックL相、であり、中でもスメクチックB相、スメクチックF相、スメクチックI相、であることが好ましい。
 液晶化合物が示すスメクチック液晶相がこれらの高次スメクチック液晶相であると、配向秩序度のより高い光吸収異方性層を作製できる。また、このように配向秩序度の高い高次スメクチック液晶相から作製した光吸収異方性層はX線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られるものである。上記ブラッグピークとは、分子配向の面周期構造に由来するピークであり、本発明の液晶組成物によれば、周期間隔が3.0~5.0Åである光吸収異方性層を得ることができる。
 式(LC)中、Q1及びQ2はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の直鎖、分岐又は環状のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、又は、下記式(P1)~(P-30)で表される架橋性基を表し、Q1及びQ2の少なくとも一方は、下記式で表される架橋性基であることが好ましい。
 式(P-1)~(P-30)中、Rは水素原子、ハロゲン原子、炭素数1~10の直鎖、分岐、又は環状のアルキレン基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル若しくはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル若しくはアリールスルフィニル基、アルキル若しくはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール若しくはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、又は、スルファト基(-OSO3H)、を表し、複数のRはそれぞれ同一であっても異なっていてもよい。
 架橋性基の好ましい態様としては、ラジカル重合性基、又はカチオン重合性基が挙げられる。ラジカル重合性基としては、上記式(P-1)で表されるビニル基、上記式(P-2)で表されるブタジエン基、上記式(P-4)で表される(メタ)アクリル基、上記式(P-5)で表される(メタ)アクリルアミド基、上記式(P-6)で表される酢酸ビニル基、上記式(P-7)で表されるフマル酸エステル基、上記式(P-8)で表されるスチリル基、上記式(P-9)で表されるビニルピロリドン基、上記式(P-11)で表される無水マレイン酸、又は、上記式(P-12)で表されるマレイミド基、が好ましい。カチオン重合性基としては、上記式(P-18)で表されるビニルエーテル基、上記式(P-19)で表されるエポキシ基、又は、上記式(P-20)で表されるオキセタニル基、が好ましい。
 式(LC)において、S1及びS2はそれぞれ独立に、2価のスペーサー基を表し、S1及びS2の好適態様は、上記式(W1)中のSPWと同じ構造が挙げられるため、その説明を省略する。
 式(LC)中、MGは後述するメソゲン基を表わす。MGが表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、及び、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
 MGが表すメソゲン基は、環状構造を2~10個含むのが好ましく、3~7個含むのがより好ましい。
 環状構造の具体例としては、芳香族炭化水素基、複素環基、及び脂環式基などが挙げられる。
 MGが表すメソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性及び合成適性という観点、並びに、本発明の効果がより優れるから、下記式(MG-A)又は下記式(MG-B)で表される基が好ましく、式(MG-B)で表される基がより好ましい。
 式(MG-A)中、A1は、芳香族炭化水素基、複素環基及び脂環式基からなる群より選択される2価の基である。これらの基は、上述の置換基Wなどの置換基で置換されていてもよい。
 A1で表される2価の基は、4~15員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、S1又はS2との結合位置を表す。
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基及びテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基、ナフチレン基が好ましい。
 A1が表す2価の複素環基としては、芳香族又は非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子及び酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、及び、チエノオキサゾール-ジイル基、下記の構造(II-1)~(II-4)などが挙げられる。
 式(II-1)~(II-4)中、Dは、-S-、-O-、又はNR11-を表し、R11は水素原子又は炭素数1~6のアルキル基を表し、Yは炭素数6~12の芳香族炭化水素基、又は、炭素数3~12の芳香族複素環基を表し、Z、Z、及びZはそれぞれ独立に、水素原子又は炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR1213又は-SR12を表し、Z及びZは、互いに結合して芳香環又は芳香族複素環を形成してもよく、R12及びR13は、それぞれ独立に水素原子又は炭素数1~6のアルキル基を表し、J及びJはそれぞれ独立に、-O-、-NR21-(R21は水素原子又は置換基を表す。)、-S-及びC(O)-からなる群から選択される基を表し、Eは水素原子又は置換基が結合していてもよい第14~16族の非金属原子を表し、Jxは芳香族炭化水素環及び芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、Jyは水素原子、置換基を有していてもよい炭素数1~6のアルキル基、又は、芳香族炭化水素環及び芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、Jx及びJyが有する芳香環は置換基を有していてもよく、JxとJyは結合して、環を形成していてもよく、Dは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 式(II-2)中、Yが炭素数6~12の芳香族炭化水素基である場合、単環でも多環でもよい。Yが炭素数3~12の芳香族複素環基である場合、単環でも多環でもよい。
 式(II-2)中、J及びJが、-NR21-を表す場合、R21の置換基としては、例えば特開2008-107767号公報の段落0035~0045の記載を参酌でき、この内容は本願明細書に組み込まれる。
 式(II-2)中、Eが、置換基が結合していてもよい第14~16族の非金属原子である場合、=O、=S、=NR’、=C(R’)R’が好ましい。R’は置換基を表し、置換基としては例えば特開2008-107767号公報の段落[0035]~[0045]の記載を参酌でき、-NZA1A2(ZA1及びZA2はそれぞれ独立に、水素原子、アルキル基又はアリール基を表す。)が好ましい。
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基及びシクロへキシレン基などが挙げられ、炭素原子は、-O-、-Si(CH-、-N(Z)-(Zは、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、又は、ハロゲン原子を表す。)、-C(O)-、-S-、-C(S)-、-S(O)-、及び-SO-、これらの基を2つ以上組み合わせた基によって置換されていてもよい。
 式(MG-A)中、a1は2~10の整数を表す。複数のA1は同一でも異なっていてもよい。
 式(MG-B)中、A2及びA3はそれぞれ独立に、芳香族炭化水素基、複素環基及び脂環式基からなる群より選択される2価の基である。A2及びA3の具体例及び好適態様は、式(MG-A)のA1と同様であるので、その説明を省略する。
 式(MG-B)中、a2は1~10の整数を表し、複数のA2は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上であることがより好ましい。
 式(MG-B)中、LA1は、単結合又は2価の連結基である。ただし、a2が1である場合、LA1は2価の連結基であり、a2が2以上である場合、複数のLA1のうち少なくとも1つが2価の連結基である。
 式(MG-B)中、LA1が表す2価の連結基としては、LWと同様のため、その説明を省略する。
 MGの具体例としては、例えば以下の構造が挙げられ、以下の構造中、芳香族炭化水素基、複素環基及び脂環式基上の水素原子は、上述の置換基Wで置換されていてもよい。
 <低分子液晶化合物>
 式(LC)で表される液晶化合物が低分子液晶化合物の場合、メソゲン基MGの環状構造の好ましい態様としては、シクロへキシレン基、シクロペンチレン基、フェニレン基、ナフチレン基、フルオレン-ジイル基、ピリジン-ジイル基、ピリダジン-ジイル基、チオフェン-ジイル基、オキサゾール-ジイル基、チアゾール-ジイル基、チエノチオフェン-ジイル基、等が挙げられ、環状構造の個数は、2~10個が好ましく、3~7個が更に好ましい。
 メソゲン構造の置換基Wの好ましい態様としては、ハロゲン原子、ハロゲン化アルキル基、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルカルボニル基、炭素数1~10のアルキルオキシカルボニル基、炭素数1~10のアルキルカルボニルオキシ基、アミノ基、炭素数1~10のアルキルアミノ基、アルキルアミノカルボニル基、上述の式(W1)においてLWが単結合であり、SPWが2価のスペーサー基であり、Qが上述の(P1)~(P30)で表される架橋性基である基、などが挙げられ、架橋性基としては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、オキセタニル基、が好ましい。
 2価のスペーサー基S1及びS2の好ましい態様としては、上記SPWと同様のため、その説明を省略する。
 スメクチック性を示す低分子液晶化合物を用いる場合、スペーサー基の炭素数(この炭素を「SP-C」で置き変えた場合はその原子数)は、炭素数6以上が好ましく、8以上が更に好ましい。
 式(LC)で表される液晶化合物が低分子液晶化合物の場合、複数の低分子液晶化合物を併用してもよく、2~6種を併用するのが好ましく、2~4種を併用することが更に好ましい。低分子液晶化合物を併用することで、溶解性の向上や液晶組成物の相転移温度を調整することができる。
 低分子液晶化合物の具体例としては、以下の式(LC-1)~(LC-77)で表される化合物が挙げられるが、低分子液晶化合物はこれらに限定されるものではない。








 <高分子液晶化合物>
 高分子液晶化合物は、後述する繰り返し単位を含むホモポリマー又はコポリマーであることが好ましく、ランダムポリマー、ブロックポリマー、グラフトポリマー、スターポリマーなど、いずれのポリマーであってもよい。
 (繰り返し単位(1))
 高分子液晶化合物は、式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」ともいう。)を含むことが好ましい。
 式(1)中、PC1は繰り返し単位の主鎖を表し、L1は単結合又は2価の連結基を表し、SP1はスペーサー基を表し、MG1は上述の式(LC)におけるメソゲン基MGを表し、T1は末端基を表す。
 PC1が表す繰り返し単位の主鎖としては、例えば、式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性及び取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。
 式(P1-A)~(P1-D)において、「*」は、式(1)におけるL1との結合位置を表す。式(P1-A)~(P1-D)において、R11、R12、R13、R14はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基又は炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖又は分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
 式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
 式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
 式(P1-D)で表される基は、アルコキシシリル基及びシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基及びシラノール基の少なくとも一方の基を有する化合物としては、式SiR14(OR15-で表される基を有する化合物が挙げられる。式中、R14は、(P1-D)におけるR14と同義であり、複数のR15はそれぞれ独立に、水素原子又は炭素数1~10のアルキル基を表す。
 L1が表す2価の連結基は、上述の式(W1)におけるLWと同様の2価の連結基であり、好ましい態様としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR16-、-NR16C(O)-、-S(O)-、及び、-NR1617-などが挙げられる。式中、R16及びR17はそれぞれ独立に、水素原子、置換基(例えば、上述の置換基W)を有していてもよい炭素数1~6のアルキル基を表わす。2価の連結基の具体例において、左側の結合手がPC1と結合し、右側の結合手がSP1と結合する。
 PC1が式(P1-A)で表される基である場合には、L1は-C(O)O-又は-C(O)NR16-で表される基が好ましい。
 PC1が式(P1-B)~(P1-D)で表される基である場合には、L1は単結合が好ましい。
 SP1が表すスペーサー基は、上述の式(LC)におけるS1及びS2と同じ基を表わし、配向度の観点から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基、又は、炭素数2~20の直鎖又は分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-S-、-O-CO-、-CO-O-、-O-CO-O-、-O-CNR-(Rは、炭素数1~10のアルキル基を表す。)、又は、-S(O)-、を含んでいてもよい。
 SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基であることがより好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*はL1又はMG1との結合位置を表す。n1は、本発明の効果がより優れる理由から、2~10の整数であることが好ましく、2~6の整数がより好ましく、2~4であることが最も好ましい。
 また、SP1が表すオキシプロピレン構造は、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1又はMG1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1又はMG1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1又はMG1との結合位置を表す。
 T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、-SH、カルボキシル基、ボロン酸基、-SOH、-PO、-NR1112(R11及びR12はそれぞれ独立に水素原子又は置換又は非置換の炭素数1~10のアルキル基、シクロアルキル基、又はアリール基を表わす)、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニル基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、及び、炭素数1~10のウレイド基、架橋性基含有基などが挙げられる。
 上記架橋性基含有基としては、例えば、上述の-L-CLが挙げられる。Lは単結合又は連結基を表す。連結基の具体例は上述したLW及びSPWと同じである。CLは架橋性基を表し、上述のQ1又はQ2で表される基が挙げられ、上述の式(P1)~(P30)で表される基が好ましい。また、T1は、これらの基を2つ以上組み合わせた基であってもよい。
 T1は、本発明の効果がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましく、メトキシ基が更に好ましい。これらの末端基は、これらの基、又は、特開2010-244038号公報に記載の重合性基によって、更に置換されていてもよい。
 T1の主鎖の原子数は、本発明の効果がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10が更に好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
 繰り返し単位(1)の含有量は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、40~100質量%が好ましく、50~95質量%がより好ましい。繰り返し単位(1)の含有量が40質量%以上であれば、良好な配向性により優れた光吸収異方性層が得られる。また、繰り返し単位(1)の含有量が100質量%以下であれば、良好な配向性により優れた光吸収異方性層が得られる。
 繰り返し単位(1)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(1)が2種以上含まれる場合、上記繰り返し単位(1)の含有量は、繰り返し単位(1)の含有量の合計を意味する。
 (logP値)
 式(1)において、PC1、L1及びSP1のlogP値(以下、「logP」ともいう。)と、MG1のlogP値(以下、「logP」ともいう。)との差(|logP-logP|)が4以上であり、光吸収異方性層の配向度がより向上する観点から、4.25以上が好ましく、4.5以上がより好ましい。
 また、上記差の上限値は、液晶相転移温度の調整及び合成適性という観点から、15以下が好ましく、12以下がより好ましく、10以下が更に好ましい。
 ここで、logP値は、化学構造の親水性及び疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw Ultra又はHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
 上記logPは、上述したように、PC1、L1及びSP1のlogP値を意味する。「PC1、L1及びSP1のlogP値」とは、PC1、L1及びSP1を一体とした構造のlogP値を意味しており、PC1、L1及びSP1のそれぞれのlogP値を合計したものではない、具体的には、logPは、式(1)におけるPC1~SP1までの一連の構造式を上記ソフトウェアに入力することで算出される。
 ただし、logPの算出にあたって、PC1~SP1までの一連の構造式のうち、PC1で表される基の部分に関しては、PC1で表される基そのものの構造(例えば、上述した式(P1-A)~式(P1-D)など)を用いてもよいし、式(1)で表される繰り返し単位を得るために使用する単量体を重合した後にPC1になりうる基の構造を用いてもよい。
 ここで、後者(PC1になりうる基)の具体例は、次の通りである。PC1が(メタ)アクリル酸エステルの重合によって得られる場合には、CH=C(R)-で表される基(Rは、水素原子又はメチル基を表す。)である。また、PC1がエチレングリコールの重合によって得られる場合にはエチレングリコールであり、PC1がプロピレングリコールの重合により得られる場合にはプロピレングリコールである。また、PC1がシラノールの重縮合により得られる場合にはシラノール(式Si(R(OH)で表される化合物。複数のRはそれぞれ独立に、水素原子又はアルキル基を表す。ただし、複数のRの少なくとも1つはアルキル基を表す。)である。
 logPは、上述したlogPとの差が4以上であれば、logPよりも低くてもよいし、logPよりも高くてもよい。
 ここで、一般的なメソゲン基のlogP値(上述したlogP)は、4~6の範囲内になる傾向がある。このとき、logPがlogPよりも低い場合には、logPの値は、1以下が好ましく、0以下がより好ましい。一方で、logPがlogPよりも高い場合には、logPの値は、8以上が好ましく、9以上がより好ましい。
 上記式(1)におけるPC1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも低い場合には、上記式(1)におけるSP1のlogP値は、0.7以下が好ましく、0.5以下がより好ましい。一方、上記式(1)におけるPC1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも高い場合には、上記式(1)におけるSP1のlogP値は、3.7以上が好ましく、4.2以上がより好ましい。
 なお、logP値が1以下の構造としては、例えば、オキシエチレン構造及びオキシプロピレン構造などが挙げられる。logP値が6以上の構造としては、ポリシロキサン構造及びフッ化アルキレン構造などが挙げられる。
 (繰り返し単位(21)及び(22))
 配向度を向上させる観点から、高分子液晶化合物は、末端に電子供与性及び/又は電子吸引性を有する繰り返し単位を含むことが好ましい。より具体的には、メソゲン基とこれの末端に存在するσp値が0より大きい電子吸引性基とを有する繰り返し単位(21)と、メソゲン基とこれの末端に存在するσp値が0以下の基とを有する繰り返し単位(22)と、を含むことがより好ましい。このように、高分子液晶化合物が繰り返し単位(21)と繰り返し単位(22)を含む場合、上記繰り返し単位(21)又は上記繰り返し単位(22)のいずれかのみを含む場合と比べて、これを用いて形成される光吸収異方性層の配向度が向上する。この理由の詳細は明らかではないが、概ね以下のように推定している。
 すなわち、繰り返し単位(21)と繰り返し単位(22)に発生する逆向きの双極子モーメントが、分子間相互作用をすることによって、メソゲン基の短軸方向への相互作用が強くなって、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなると考えられる。これにより、二色性物質の配向性も良好になるので、形成される光吸収異方性層の配向度が高くなると推測される。
 なお上記繰り返し単位(21)及び(22)は、上記式(1)で表される繰り返し単位であってもよい。
 繰り返し単位(21)は、メソゲン基と、上記メソゲン基の末端に存在するσp値が0より大きい電子吸引性基と、を有する。
 上記電子吸引性基は、メソゲン基の末端に位置しており、σp値が0より大きい基である。電子吸引性基(σp値が0よりも大きい基)としては、後述の式(LCP-21)におけるEWGで表される基が挙げられ、その具体例も同様である。
 上記電子吸引性基のσp値は、0よりも大きく、光吸収異方性層の配向度がより高くなる点から、0.3以上が好ましく、0.4以上がより好ましい。上記電子吸引性基のσp値の上限値は、配向の均一性が優れる点から、1.2以下が好ましく、1.0以下がより好ましい。
 σp値とは、ハメットの置換基定数σp値(単に「σp値」とも略記する)であり、置換安息香酸の酸解離平衡定数における置換基の効果を数値で表したものであり、置換基の電子吸引性及び電子供与性の強度を示すパラメータである。本明細書におけるハメットの置換基定数σp値は、置換基が安息香酸のパラ位に位置する場合の置換基定数σを意味する。
 本明細書における各基のハメットの置換基定数σp値は、文献「Hansch et al., Chemical Reviews, 1991, Vol, 91, No. 2, 165-195」に記載された値を採用する。なお、上記文献にハメットの置換基定数σp値が示されていない基については、ソフトウェア「ACD/ChemSketch(ACD/Labs 8.00 Release Product Version:8.08)」を用いて、安息香酸のpKaと、パラ位に置換基を有する安息香酸誘導体のpKaとの差に基づいて、ハメットの置換基定数σp値を算出できる。
 繰り返し単位(21)は、側鎖にメソゲン基と上記メソゲン基の末端に存在するσp値が0より大きい電子吸引性基とを有していれば、特に限定されないが、光吸収異方性層の配向度がより高くなる点から、下記式(LCP-21)で表される繰り返し単位であることが好ましい。
 式(LCP-21)中、PC21は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L21は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP21A及びSP21Bはそれぞれ独立に単結合又はスペーサー基を表し、スペーサー基の具体例は上記式(1)中のSP1と同様の構造を表し、MG21はメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGを表し、EWGはσp値が0より大きい電子吸引性基を表す。
 SP21A及びSP21Bが表わすスペーサー基は、上記式S1及びS2と同様の基を表わし、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基、又は、炭素数2~20の直鎖又は分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-O-CO-、-CO-O-、又は-O-CO-O-を含んでいてもよい。
 SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 SP21Bは、単結合、又は、炭素数2~20の直鎖若しくは分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-O-CO-、-CO-O-、又は-O-CO-O-を含んでいてもよい。
 これらの中でも、SP21Bが表すスペーサー基は、光吸収異方性層の配向度がより高くなる点から、単結合が好ましい。換言すれば、繰り返し単位21は、式(LCP-21)における電子吸引性基であるEWGが、式(LCP-21)におけるメソゲン基であるMG21に直結する構造を有するのが好ましい。このように、電子吸引性基がメソゲン基に直結していると、高分子液晶化合物中に適度な双極子モーメントによる分子間相互作用がより効果的に働くことで、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなり、配向度がより高くなると考えられる。
 EWGは、σp値が0より大きい電子吸引性基を表す。σp値が0より大きい電子吸引性基としては、エステル基(具体的には、*-C(O)O-Rで表される基)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、カルボキシ基、シアノ基、ニトロ基、スルホ基、-S(O)(O)-OR、-S(O)(O)-R、-O-S(O)(O)-R、アシル基(具体的には、*-C(O)Rで表される基)、アシルオキシ基(具体的には、*-OC(O)Rで表される基)、イソシアネート基(-N=C(O))、*-C(O)N(R、ハロゲン原子、並びに、これらの基で置換されたアルキル基(炭素数1~20が好ましい。)が挙げられる。上記各基において、*はSP21Bとの結合位置を表す。Rは、炭素数1~20(好ましくは炭素数1~4、より好ましくは炭素数1~2)のアルキル基を表す。Rはそれぞれ独立に、水素原子又は炭素数1~20(好ましくは炭素数1~4、より好ましくは炭素数1~2)のアルキル基を表す。
 上記基の中でも、EWGは、本発明の効果がより発揮される点から、*-C(O)O-Rで表される基、(メタ)アクリロイルオキシ基、又は、シアノ基、ニトロ基、が好ましい。
 繰り返し単位(21)の含有量は、光吸収異方性層の高い配向度を維持しつつ、高分子液晶化合物及び二色性物質を均一に配向できる点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、60質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下が特に好ましい。
 繰り返し単位(21)の含有量の下限値は、本発明の効果がより発揮される点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、1質量%以上が好ましく、3質量%以上がより好ましい。
 本発明において、高分子液晶化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
 繰り返し単位(21)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶化合物が繰り返し単位(21)を2種以上含むと、高分子液晶化合物の溶媒に対する溶解性が向上すること、及び、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(21)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 繰り返し単位(21)を2種以上含む場合には、EWGに架橋性基を含まない繰り返し単位(21)と、EWGに重合性基を含む繰り返し単位(21)と、を併用してもよい。これにより、光吸収異方性層の硬化性がより向上する。なお、架橋性基としては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、オキセタニル基、が好ましい。
 この場合、光吸収異方性層の硬化性と配向度のバランスの点から、EWGに重合性基を含む繰り返し単位(21)の含有量が、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、1~30質量%であることが好ましい。
 以下において、繰り返し単位(21)の一例を示すが、繰り返し単位(21)は、以下の繰り返し単位に限定されるものではない。
 本発明者らは、繰り返し単位(21)及び繰り返し単位(22)について、組成(含有割合)並びに末端基の電子供与性及び電子吸引性について鋭意検討した結果、繰り返し単位(21)の電子吸引性基の電子吸引性が強い場合(すなわち、σp値が大きい場合)には、繰り返し単位(21)の含有割合を低くすれば光吸収異方性層の配向度がより高くなり、繰り返し単位(21)の電子吸引性基の電子吸引性が弱い場合(すなわち、σp値が0に近い場合)には、繰り返し単位(21)の含有割合を高くすれば光吸収異方性層の配向度がより高くなることを見出した。
 この理由の詳細は明らかではないが、概ね以下のように推定している。すなわち、高分子液晶化合物中に適度な双極子モーメントによる分子間相互作用が働くことで、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなり、光吸収異方性層の配向度がより高くなると考えられる。
 具体的には、繰り返し単位(21)における上記電子吸引性基(式(LCP-21)においてはEWG)のσp値と、高分子液晶化合物中の繰り返し単位(21)の含有割合(質量基準)と、の積は、0.020~0.150が好ましく、0.050~0.130がより好ましく、0.055~0.125が特に好ましい。上記積が上記範囲内であれば、光吸収異方性層の配向度がより高くなる。
 繰り返し単位(22)は、メソゲン基と上記メソゲン基の末端に存在するσp値が0以下の基とを有する。高分子液晶化合物が繰り返し単位(22)を有することで、高分子液晶化合物及び二色性物質を均一に配向できる。
 メソゲン基は、液晶形成に寄与する液晶分子の主要骨格を示す基であり、詳細は後述の式(LCP-22)におけるMGで説明する通りであり、その具体例も同様である。
 上記基は、メソゲン基の末端に位置しており、σp値が0以下の基である。上記基(σp値が0以下である基)としては、σp値が0である水素原子、及び、σp値が0よりも小さい後述の式(LCP-22)におけるT22で表される基(電子供与性基)が挙げられる。上記基のうち、σp値が0よりも小さい基(電子供与性基)の具体例は、後述の式(LCP-22)におけるT22と同様である。
 上記基のσp値は、0以下であり、配向の均一性がより優れる点から、0よりも小さいことが好ましく、-0.1以下がより好ましく、-0.2以下が特に好ましい。上記基のσp値の下限値は、-0.9以上が好ましく、-0.7以上がより好ましい。
 繰り返し単位(22)は、側鎖にメソゲン基と上記メソゲン基の末端に存在するσp値が0以下である基とを有していれば、特に限定されないが、液晶の配向の均一性がより高くなる点から、上記式(LCP-21)で表される繰り返し単位に該当せず、下記式(PCP-22)で表される繰り返し単位であることが好ましい。
 式(LCP-22)中、PC22は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L22は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP22はスペーサー基を表し、より具体的には上記式(1)中のSP1と同様の構造を表し、MG22はメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGと同様の構造を表し、T22はハメットの置換基定数σp値が0より小さい電子供与性基を表す。
 T22は、σp値が0より小さい電子供与性基を表す。σp値が0より小さい電子供与性基としては、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、及び、炭素数1~10のアルキルアミノ基などが挙げられる。
 T22の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T22おける「主鎖」とは、MG22と結合する最も長い分子鎖を意味し、水素原子はT22の主鎖の原子数にカウントしない。例えば、T22がn-ブチル基である場合には主鎖の原子数は4であり、T22がsec-ブチル基である場合の主鎖の原子数は3である。
 以下において、繰り返し単位(22)の一例を示すが、繰り返し単位(22)は、以下の繰り返し単に限定されるものではない。
 繰り返し単位(21)と繰り返し単位(22)は、構造の一部が共通しているのが好ましい。繰り返し単位同士の構造が類似しているほど、液晶が均一に整列すると推察される。これにより、光吸収異方性層の配向度がより高くなる。
 具体的には、光吸収異方性層の配向度がより高くなる点から、式(LCP-21)のSP21Aと式(LCP-22)のSP22とが同一構造であること、式(LCP-21)のMG21と式(LCP-22)のMG22とが同一構造であること、及び、式(LCP-21)のL21と式(LCP-22)のL22とが同一構造であること、のうち、少なくとも1つを満たすことが好ましく、2つ以上を満たすことがより好ましく、全てを満たすことが特に好ましい。
 繰り返し単位(22)の含有量は、配向の均一性が優れる点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が特に好ましい。
 繰り返し単位(22)の含有量の上限値は、配向度が向上する点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、99質量%以下が好ましく、97質量%以下がより好ましい。
 繰り返し単位(22)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶化合物が繰り返し単位(22)を2種以上含むと、高分子液晶化合物の溶媒に対する溶解性が向上すること、及び、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(22)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 (繰り返し単位(3))
 高分子液晶化合物は、汎用溶媒に対する溶解性を向上させる観点から、メソゲンを含有しない繰り返し単位(3)を含むことができる。特に配向度の低下を抑えながら溶解性を向上させるためには、このメソゲンを含有しない繰り返し単位(3)として、分子量280以下の繰り返し単位であることが好ましい。このように、メソゲンを含有しない分子量280以下の繰り返し単位を含むことで配向度の低下を抑えながら溶解性を向上させられる理由としては以下のように推定している。
 すなわち、高分子液晶化合物がその分子鎖中にメソゲンを持たない繰り返し単位(3)を含むことで、高分子液晶化合物中に溶媒が入り込みやすくなるために溶解性は向上するが、非メソゲン性の繰り返し単位(3)は配向度を低下させると考えられる。しかしながら、上記繰り返し単位の分子量が小さいことで、上記メソゲン基を含む繰り返し単位(1)、繰り返し単位(21)又は繰り返し単位(22)の配向が乱されにくく、配向度の低下を抑えられる、と推定される。
 上記繰り返し単位(3)は、分子量280以下の繰り返し単位であることが好ましい。
 繰り返し単位(3)の分子量とは、繰り返し単位(3)を得るために使用するモノマーの分子量を意味するのではなく、モノマーの重合によって高分子液晶化合物に組み込まれた状態における繰り返し単位(3)の分子量を意味する。
 繰り返し単位(3)の分子量は、280以下であり、180以下が好ましく、100以下がより好ましい。繰り返し単位(3)の分子量の下限値は、通常、40以上であり、50以上がより好ましい。繰り返し単位(3)の分子量が280以下であれば、高分子液晶化合物の溶解性に優れ、かつ、高い配向度の光吸収異方性層が得られる。
 一方で、繰り返し単位(3)の分子量が280を超えると、上記繰り返し単位(1)、繰り返し単位(21)又は繰り返し単位(22)の部分の液晶配向を乱してしまい、配向度が低くなる場合がある。また、高分子液晶化合物中に溶媒が入り込みにくくなるので、高分子液晶化合物の溶解性が低下する場合がある。
 繰り返し単位(3)の具体例としては、架橋性基(例えば、エチレン性不飽和基)を含まない繰り返し単位(以下、「繰り返し単位(3-1)」ともいう。)、及び、架橋性基を含む繰り返し単位(以下、「繰り返し単位(3-2)」ともいう。)が挙げられる。
・繰り返し単位(3-1)
 繰り返し単位(3-1)の重合に使用されるモノマーの具体例としては、アクリル酸[72.1]、α-アルキルアクリル酸類(例えば、メタクリル酸[86.1]、イタコン酸[130.1])、それらから誘導されるエステル類及びアミド類(例えば、N-i-プロピルアクリルアミド[113.2]、N-n-ブチルアクリルアミド[127.2]、N-t-ブチルアクリルアミド[127.2]、N,N-ジメチルアクリルアミド[99.1]、N-メチルメタクリルアミド[99.1]、アクリルアミド[71.1]、メタクリルアミド[85.1]、ジアセトンアクリルアミド[169.2]、アクリロイルモルホリン[141.2]、N-メチロールアクリルアミド[101.1]、N-メチロールメタクリルアミド[115.1]、メチルアクリレート[86.0]、エチルアクリレート[100.1]、ヒドロキシエチルアクリレート[116.1]、n-プロピルアクリレート[114.1]、i-プロピルアクリレート[114.2]、2-ヒドロキシプロピルアクリレート[130.1]、2-メチル-2-ニトロプロピルアクリレート[173.2]、n-ブチルアクリレート[128.2]、i-ブチルアクリレート[128.2]、t-ブチルアクリレート[128.2]、t-ペンチルアクリレート[142.2]、2-メトキシエチルアクリレート[130.1]、2-エトキシエチルアクリレート[144.2]、2-エトキシエトキシエチルアクリレート[188.2]、2,2,2-トリフルオロエチルアクリレート[154.1]、2,2-ジメチルブチルアクリレート[156.2]、3-メトキシブチルアクリレート[158.2]、エチルカルビトールアクリレート[188.2]、フェノキシエチルアクリレート[192.2]、n-ペンチルアクリレート[142.2]、n-ヘキシルアクリレート[156.2]、シクロヘキシルアクリレート[154.2]、シクロペンチルアクリレート[140.2]、ベンジルアクリレート[162.2]、n-オクチルアクリレート[184.3]、2-エチルヘキシルアクリレート[184.3]、4-メチル-2-プロピルペンチルアクリレート[198.3]、メチルメタクリレート[100.1]、2,2,2-トリフルオロエチルメタクリレート[168.1]、ヒドロキシエチルメタクリレート[130.1]、2-ヒドロキシプロピルメタクリレート[144.2]、n-ブチルメタクリレート[142.2]、i-ブチルメタクリレート[142.2]、sec-ブチルメタクリレート[142.2]、n-オクチルメタクリレート[198.3]、2-エチルヘキシルメタクリレート[198.3]、2-メトキシエチルメタクリレート[144.2]、2-エトキシエチルメタクリレート[158.2]、ベンジルメタクリレート[176.2]、2-ノルボルニルメチルメタクリレート[194.3]、5-ノルボルネン-2-イルメチルメタクリレート[194.3]、ジメチルアミノエチルメタクリレート[157.2])、ビニルエステル類(例えば、酢酸ビニル[86.1])、マレイン酸又はフマル酸から誘導されるエステル類(例えば、マレイン酸ジメチル[144.1]、フマル酸ジエチル[172.2])、マレイミド類(例えば、N-フェニルマレイミド[173.2])、マレイン酸[116.1]、フマル酸[116.1]、p-スチレンスルホン酸[184.1]、アクリロニトリル[53.1]、メタクリロニトリル[67.1]、ジエン類(例えば、ブタジエン[54.1]、シクロペンタジエン[66.1]、イソプレン[68.1])、芳香族ビニル化合物(例えば、スチレン[104.2]、p-クロルスチレン[138.6]、t-ブチルスチレン[160.3]、α-メチルスチレン[118.2])、N-ビニルピロリドン[111.1]、N-ビニルオキサゾリドン[113.1]、N-ビニルサクシンイミド[125.1]、N-ビニルホルムアミド[71.1]、N-ビニル-N-メチルホルムアミド[85.1]、N-ビニルアセトアミド[85.1]、N-ビニル-N-メチルアセトアミド[99.1]、1-ビニルイミダゾール[94.1]、4-ビニルピリジン[105.2]、ビニルスルホン酸[108.1]、ビニルスルホン酸ナトリウム[130.2]、アリルスルホン酸ナトリウム[144.1]、メタリルスルホン酸ナトリウム[158.2]、ビニリデンクロライド[96.9]、ビニルアルキルエーテル類(例えば、メチルビニルエーテル[58.1])、エチレン[28.0]、プロピレン[42.1]、1-ブテン[56.1]、並びに、イソブテン[56.1]が挙げられる。なお、[ ]内の数値は、モノマーの分子量を意味する。
 上記モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 上記モノマーの中でも、アクリル酸、α-アルキルアクリル酸類、それらから誘導されるエステル類及びアミド類、アクリロニトリル、メタクリロニトリル、並びに、芳香族ビニル化合物が好ましい。
 上記以外のモノマーとしては、例えば、リサーチディスクロージャーNo.1955(1980年、7月)に記載の化合物を使用できる。
 以下において、繰り返し単位(3-1)の具体例及びその分子量を示すが、本発明はこれらの具体例に限定されるものではない。
・繰り返し単位(3-2)
 繰り返し単位(3-2)において、架橋性基の具体例としては、上記P1~P30で表される基が挙げられ、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、オキセタニル基、がより好ましい。
 繰り返し単位(3-2)は、重合が容易である点から、下記式(3)で表される繰り返し単位であることが好ましい。
 上記式(3)中、PC32は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L32は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、P32は上記式(P1)~(P30)で表される架橋性基、を表わす。
 以下において、繰り返し単位(3-2)の具体例及びその重量平均分子量(Mw)を示すが、本発明はこれらの具体例に限定されるものではない。
 繰り返し単位(3)の含有量は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、14質量%未満であり、7質量%以下が好ましく、5質量%以下がより好ましい。繰り返し単位(3)の含有量の下限値は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、2質量%以上が好ましく、3質量%以上がより好ましい。繰り返し単位(3)の含有量が14質量%未満であれば、光吸収異方性層の配向度がより向上する。繰り返し単位(3)の含有量が2質量%以上であれば、高分子液晶化合物の溶解性がより向上する。
 繰り返し単位(3)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(3)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 (繰り返し単位(4))
 高分子液晶化合物は、密着性や面状均一性を向上させる点から、分子鎖の長い柔軟な構造(後述の式(4)のSP4)をもつ繰り返し単位(4)を含むことができる。この理由については以下のように推定している。
 すなわち、このような分子鎖の長い柔軟な構造を含むことで、高分子液晶化合物を構成する分子鎖同士の絡まりが生じやすくなり、光吸収異方性層の凝集破壊(具体的には、光吸収異方性層自体が破壊すること)が抑制される。その結果、光吸収異方性層と、下地層(例えば、基材又は配向膜)との密着性が向上すると推測される。また、面状均一性の低下は、二色性物質と高分子液晶化合物との相溶性が低いために生じると考えられる。すなわち、二色性物質と高分子液晶化合物は相溶性が不十分であると、析出する二色性物質を核とする面状不良(配向欠陥)が発生すると考えられる。これに対して、高分子液晶化合物が分子鎖の長い柔軟な構造を含むことで、二色性物質の析出が抑制されて、面状均一性に優れた光吸収異方性層が得られたと推測される。ここで、面状均一性に優れるとは、高分子液晶化合物を含む液晶組成物が下地層(例えば、基材又は配向膜)上ではじかれて生じる配向欠陥が少ないことを意味する。
 上記繰り返し単位(4)は、下記式(4)で表される繰り返し単位である。
 上記式(4)中、PC4は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L4は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し(単結合が好ましい)、SP4は主鎖の原子数が10以上のアルキレン基を表し、T4は末端基を表わし、より具体的には上記式(1)中のT1と同様の構造を表す。
 PC4の具体例及び好適態様は、式(1)のPC1と同様であるので、その説明を省略する。
 L4としては、本発明の効果がより発揮される点から、単結合が好ましい。
 式(4)中、SP4は、主鎖の原子数が10以上のアルキレン基を表す。ただし、SP4が表すアルキレン基を構成する1個以上の-CH-は、上述の「SP-C」より置き換えられていてもよく、特に、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-及びS(=O)-からなる群より選択される少なくとも1種の基で置き換えられていることが好ましい。ただし、R21~R28はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基又は炭素数1~10の直鎖若しくは分岐のアルキル基を表す。また、SP4が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、上述の「SP-H」により置き換えられていてもよい。
 SP4の主鎖の原子数は、10以上であり、密着性及び面状均一性の少なくとも一方がより優れた光吸収異方性層が得られる点から、15以上が好ましく、19以上がより好ましい。また、SP2の主鎖の原子数の上限は、配向度により優れた光吸収異方性層が得られる点から、70以下が好ましく、60以下がより好ましく、50以下が特に好ましい。
 ここで、SP4における「主鎖」とは、L4とT4とを直接連結するために必要な部分構造を意味し、「主鎖の原子数」とは、上記部分構造を構成する原子の個数を意味する。換言すれば、SP4における「主鎖」は、L4とT4を連結する原子の数が最短になる部分構造である。例えば、SP4が3,7-ジメチルデカニル基である場合の主鎖の原子数は10であり、SP4が4,6-ジメチルドデカニル基の場合の主鎖の原子数は12である。また、下記式(4-1)においては、点線の四角形で表す枠内がSP4に相当し、SP4の主鎖の原子数(点線の丸で囲った原子の合計数に相当)は11である。
 SP4が表すアルキレン基は、直鎖状であっても分岐状であってもよい。
 SP4が表すアルキレン基の炭素数は、配向度により優れた光吸収異方性層が得られる点から、8~80が好ましく、15~80が好ましく、25~70がより好ましく、25~60が特に好ましい。
 SP4が表すアルキレン基を構成する1個以上の-CH-は、密着性及び面状均一性により優れた光吸収異方性層が得られる点から、上述の「SP-C」によって置き換えられているのが好ましい。
 また、SP4が表すアルキレン基を構成する-CH-が複数ある場合、密着性及び面状均一性により優れた光吸収異方性層が得られる点から、複数の-CH-の一部のみが上述の「SP-C」によって置き換えられていることがより好ましい。
 「SP-C」のうち、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-及びS(=O)-からなる群より選択される少なくとも1種の基が好ましく、密着性及び面状均一性により優れた光吸収異方性層が得られる点から、-O-、-N(R21)-、-C(=O)-及びS(=O)-からなる群より選択される少なくとも1種の基が更に好ましく、-O-、-N(R21)-及びC(=O)-からなる群より選択される少なくとも1種の基が特に好ましい。
 特に、SP4は、アルキレン基を構成する1個以上の-CH-が-O-によって置き換えられたオキシアルキレン構造、アルキレン基を構成する1個以上の-CH-CH-が-O-及びC(=O)-によって置き換えられたエステル構造、並びに、アルキレン基を構成する1個以上の-CH-CH-CH-が-O-、-C(=O)-及びNH-によって置き換えられたウレタン結合からなる群より選択される少なくとも1つを含む基であるのが好ましい。
 SP4が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、前述の「SP-H」によって置き換えられていてもよい。この場合、-CH-に含まれる水素原子の1個以上が「SP-H」に置き換えられていればよい。すなわち、-CH-に含まれる水素原子の1個のみが「SP-H」によって置き換えられていてもよいし、-CH-に含まれる水素原子の全て(2個)が「SP-H」によって置き換えられていてもよい。
 「SP-H」のうち、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基及び炭素数1~10の分岐状のアルキル基、炭素数1~10ハロゲン化アルキル基からなる群より選択される少なくとも1種の基であることが好ましく、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基及び炭素数1~10の分岐状のアルキル基からなる群より選択される少なくとも1種の基が更に好ましい。
 T4は、上述したように、T1と同様の末端基を表し、水素原子、メチル基、ヒドロキシ基、カルボキシ基、スルホン酸基、リン酸基、ボロン酸基、アミノ基、シアノ基、ニトロ基、置換基を有していてもよいフェニル基、-L-CL(Lは単結合又は2価の連結基を表す。2価の連結基の具体例は上述したLW及びSPWと同じである。CLは架橋性基を表し、上記Q1又はQ2で表される基が挙げられ、式(P1)~(P30)で表される架橋性基が好ましい。)であることが好ましく、上記CLとしては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、又は、オキセタニル基、が好ましい。
 エポキシ基は、エポキシシクロアルキル基であってもよく、エポキシシクロアルキル基におけるシクロアルキル基部分の炭素数は、本発明の効果がより優れる点から、3~15が好ましく、5~12がより好ましく、6(すなわち、エポキシシクロアルキル基がエポキシシクロヘキシル基である場合)が特に好ましい。
 オキセタニル基の置換基としては、炭素数1~10のアルキル基が挙げられ、本発明の効果がより優れる点から、炭素1~5のアルキル基が好ましい。オキセタニル基の置換基としてのアルキル基は、直鎖状であっても分岐状であってもよいが、本発明の効果がより優れる点から直鎖状であることが好ましい。
 フェニル基の置換基としては、ボロン酸基、スルホン酸基、ビニル基、及び、アミノ基が挙げられ、本発明の効果がより優れる点から、ボロン酸基が好ましい。
 繰り返し単位(4)の具体例としては、例えば以下の構造が挙げられるが、本発明はこれらに限定されるものではない。なお、下記具体例において、n1は2以上の整数を表し、n2は1以上の整数を表す。
 繰り返し単位(4)の含有量は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、2~20質量%が好ましく、3~18質量%がより好ましい。繰り返し単位(4)の含有量が2質量%以上であれば、密着性により優れた光吸収異方性層が得られる。また、繰り返し単位(4)の含有量が20質量%以下であれば、面状均一性により優れた光吸収異方性層が得られる。
 繰り返し単位(4)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(4)が2種以上含まれる場合、上記繰り返し単位(4)の含有量は、繰り返し単位(4)の含有量の合計を意味する。
 (繰り返し単位(5))
 高分子液晶化合物は、面状均一性の観点から、多官能モノマーを重合して導入される繰り返し単位(5)を含むことができる。特に配向度の低下を抑えながら面状均一性を向上させるためには、この多官能モノマーを重合して導入される繰り返し単位(5)を10質量%以下含むことが好ましい。このように、繰り返し単位(5)を10質量%以下含むことで配向度の低下を抑えながら面状均一性を向上させられる理由としては以下のように推定している。
 繰り返し単位(5)は、多官能モノマーを重合して、高分子液晶化合物に導入される単位である。そのため、高分子液晶化合物には、繰り返し単位(5)によって3次元架橋構造を形成した高分子量体が含まれていると考えられる。ここで、繰り返し単位(5)の含有量は少ないため、繰り返し単位(5)を含む高分子量体の含有率はわずかであると考えられる。
 このように3次元架橋構造を形成した高分子量体が僅かに存在することで、液晶組成物のはじきが抑制されて、面状均一性に優れた光吸収異方性層が得られたと推測される。
 また、高分子量体の含有量が僅かであるため、配向度の低下を抑えられるという効果が維持できたと推測される。
 上記多官能モノマーを重合して導入される繰り返し単位(5)は、下記式(5)で表される繰り返し単位であることが好ましい。
 式(5)中、PC5A及びPC5Bは繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L5A及びL5Bは単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP5A及びSP5Bはスペーサー基を表し、より具体的には上記式(1)中のSP1と同様の構造を表し、MG5A及びMG5Bはメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGと同様の構造を表し、a及びbは0又は1の整数を表す。
 PC5A及びPC5Bは、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、同一の基であるのが好ましい。
 L5A及びL5Bは、いずれも単結合であってもよいし、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、いずれも単結合又は同一の基であるのが好ましく、同一の基であるのがより好ましい。
 SP5A及びSP5Bは、いずれも単結合であってもよいし、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、いずれも単結合又は同一の基であるのが好ましく、同一の基であるのがより好ましい。
 ここで、式(5)における同一の基とは、各基が結合する向きを問わずに化学構造が同一であるという意味であり、例えば、SP5Aが*-CH-CH-O-**(*はL5Aとの結合位置を表し、**はMG5Aとの結合位置を表す。)であり、SP5Bが*-O-CH-CH-**(*はMG5Bとの結合位置を表し、**はL5Bとの結合位置を表す。)である場合も、同一の基である。
 a及びbはそれぞれ独立に、0又は1の整数であり、光吸収異方性層の配向度がより向上する点から、1であるのが好ましい。
 a及びbは、同一であっても、異なっていてもよいが、光吸収異方性層の配向度がより向上する点から、いずれも1であるのが好ましい。
 a及びbの合計は、光吸収異方性層の配向度がより向上する点から、1又は2であるのが好ましく(すなわち、式(5)で表される繰り返し単位がメソゲン基を有すること)、2であるのがより好ましい。
 -(MG5A)-(MG5B)-で表される部分構造は、光吸収異方性層の配向度がより向上する点から、環状構造を有するのが好ましい。この場合、光吸収異方性層の配向度がより向上する点から、-(MG5A2)-(MG5B)-で表される部分構造における環状構造の個数は、2個以上が好ましく、2~8個がより好ましく、2~6個が更に好ましく、2~4個が特に好ましい。
 MG5A及びMG5Bが表すメソゲン基はそれぞれ独立に、光吸収異方性層の配向度がより向上する点から、環状構造を1個以上含むのが好ましく、2~4個含むのが好ましく、2~3個含むのがより好ましく、2個含むのが特に好ましい。
 環状構造の具体例としては、芳香族炭化水素基、複素環基、及び脂環式基が挙げられ、これらの中でも芳香族炭化水素基及び脂環式基が好ましい。
 MG5A及びMG5Bは、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、同一の基であるのが好ましい。
 MG5A及びMG5Bが表すメソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性及び合成適性という観点、並びに、本発明の効果がより優れるから、上記式(LC)中のメソゲン基MGであることが好ましい。
 特に、繰り返し単位(5)は、PC5AとPC5Bが同一の基であり、L5AとL5Bがいずれも単結合又は同一の基であり、SP5AとSP5Bがいずれも単結合又は同一の基であり、MG5AとMG5Bが同一の基であるのが好ましい。これにより、光吸収異方性層の配向度がより向上する。
 繰り返し単位(5)の含有量は、高分子液晶化合物が有する全繰り返し単位の含有量(100質量%)に対して、10質量%以下が好ましく、0.001~5質量%がより好ましく、0.05~3質量%が更に好ましい。
 繰り返し単位(5)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(5)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 (星型ポリマー)
 高分子液晶化合物は、星型ポリマーであってもよい。本発明における星型ポリマーとは、核を起点として延びるポリマー鎖を3つ以上有するポリマーを意味し、具体的には、下記式(6)で表される。
 高分子液晶化合物として式(6)で表される星型ポリマーは、高溶解性(溶媒に対する溶解性が優れること)でありながら、配向度の高い光吸収異方性層を形成できる。
 式(6)中、nは、3以上の整数を表し、4以上の整数が好ましい。nの上限値は、これに限定されないが、通常12以下であり、6以下が好ましい。
 複数のPIはそれぞれ独立に、上記式(1)、(21)、(22)、(3)、(4)、(5)で表される繰り返し単位のいずれかを含むポリマー鎖を表す。ただし、複数のPIのうちの少なくとも1つは、上記式(1)で表される繰り返し単位を含むポリマー鎖を表す。
 Aは、星型ポリマーの核となる原子団を表す。Aの具体例としては、特開2011-074280号公報の[0052]~[0058]段落、特開2012-189847号公報の[0017]~[0021]段落、特開2013-031986号公報の[0012]~[0024]段落、特開2014-104631号公報の[0118]~[0142]段落等に記載の多官能チオール化合物のチオール基から水素原子を取り除いた構造が挙げられる。この場合、AとPIは、スルフィド結合によって結合される。
 Aの由来となる上記多官能チオール化合物のチオール基の数は、3つ以上が好ましく、4以上がより好ましい。多官能チオール化合物のチオール基の数の上限値は、通常12以下であり、6以下が好ましい。
 多官能チオール化合物の具体例を以下に示す。
 高分子液晶化合物は、配向度を向上させる観点から、サーモトロピック性液晶、かつ、結晶性高分子であってもよい。
 (サーモトロピック性液晶)
 サーモトロピック性液晶とは、温度変化によって液晶相への転移を示す液晶である。
 特定化合物は、サーモトロピック性液晶であり、ネマチック相及びスメクチック相のいずれを示してもよいが、光吸収異方性層の配向度がより高くなり、且つ、ヘイズがより観察され難くなる(ヘイズがより良好になる)理由から、少なくともネマチック相を示すことが好ましい。
 ネマチック相を示す温度範囲は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、室温(23℃)~450℃であることが好ましく、取り扱いや製造適性の観点から、40℃~400℃であることがより好ましい。
 (結晶性高分子)
 結晶性高分子とは、温度変化によって結晶層への転移を示す高分子である。結晶性高分子は結晶層への転移の他にガラス転移を示すものであってもよい。
 結晶性高分子は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、加熱した時に結晶相から液晶相への転移を持つ(途中にガラス転移があってもよい)高分子液晶化合物、又は、加熱により液晶状態した後で温度を下降させた時に結晶相への転移(途中にガラス転移があってもよい)を持つ高分子液晶化合物であることが好ましい。
 なお、高分子液晶化合物の結晶性の有無は以下のように評価する。
 光学顕微鏡(Nikon社製ECLIPSE E600 POL)の二枚の光吸収異方性層を互いに直交するように配置し、二枚の光吸収異方性層の間にサンプル台をセットする。そして、高分子液晶化合物をスライドガラスに少量乗せ、サンプル台上に置いたホットステージ上にスライドガラスをセットする。サンプルの状態を観察しながら、高分子液晶化合物が液晶性を示す温度までホットステージの温度を上げ、高分子液晶化合物を液晶状態にする。高分子液晶化合物が液晶状態になった後、ホットステージの温度を徐々に降下させながら液晶相転移の挙動を観察し、液晶相転移の温度を記録する。なお、高分子液晶化合物が複数の液晶相(例えばネマチック相とスメクチック相)を示す場合、その転移温度も全て記録する。
 次に、高分子液晶化合物のサンプル約5mgをアルミパンに入れて蓋をし、示差走査熱量計(DSC)にセットする(リファレンスとして空のアルミパンを使用)。上記で測定した高分子液晶化合物が液晶相を示す温度まで加熱し、その後、温度を1分保持する。その後、10℃/分の速度で降温させながら、熱量測定を行う。得られた熱量のスペクトルから発熱ピークを確認する。
 その結果、液晶相転移の温度以外の温度で発熱ピークが観測された場合は、その発熱ピークが結晶化によるピークであり、高分子液晶化合物は結晶性を有すると言える。
 一方、液晶相転移の温度以外の温度で発熱ピークが観測されなかった場合は、高分子液晶化合物は結晶性を有さないと言える。
 結晶性高分子を得る方法は特に制限されないが、具体例としては、上記繰り返し単位(1)を含む高分子液晶化合物を用いる方法が好ましく、なかでも、上記繰り返し単位(1)を含む高分子液晶化合物における好適な態様を用いる方法がより好ましい。
・結晶化温度
 高分子液晶化合物の結晶化温度は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、-50℃以上150℃未満であることが好ましく、なかでも120℃以下であることがより好ましく、-20℃以上120℃未満であることが更に好ましく、なかでも95℃以下であることが特に好ましい。上記高分子液晶化合物の結晶化温度は、ヘイズを減らす観点から、150℃未満であることが好ましい。
 なお、結晶化温度は、上述したDSCにおける結晶化による発熱ピークの温度である。
 (分子量)
 高分子液晶化合物の重量平均分子量(Mw)は、本発明の効果がより優れる点から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶化合物のMwが上記範囲内にあれば、高分子液晶化合物の取り扱いが容易になる。
 特に、塗布時のクラック抑制の観点から、高分子液晶化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
 また、配向度の温度ラチチュードの観点から、高分子液晶化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
 ここで、本発明における重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):N-メチルピロリドン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35mL/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
 高分子液晶化合物の液晶性は、ネマチック性及びスメクチック性のいずれを示してもよいが、少なくともネマチック性を示すことが好ましい。
 ネマチック相を示す温度範囲は、0℃~450℃であることが好ましく、取り扱いや製造適性の観点から、30℃~400℃であることが好ましい。
 <含有量>
 液晶化合物の含有量は、液晶組成物の全固形分(100質量%)に対して、本発明の効果がより優れる点から、10~97質量%が好ましく、40~95質量%がより好ましく、60~95質量%が更に好ましい。
 液晶化合物が高分子液晶化合物を含む場合、高分子液晶化合物の含有量は、液晶化合物の全質量(100質量部)に対して、10~99質量%が好ましく、30~95質量%がより好ましく、40~90質量%が更に好ましい。
 液晶化合物が低分子液晶化合物を含む場合、低分子液晶化合物の含有量は、液晶化合物の全質量(100質量部)に対して、1~90質量%が好ましく、5~70質量%がより好ましく、10~60質量%が更に好ましい。
 液晶化合物が高分子液晶化合物及び低分子液晶化合物の両方を含む場合、高分子液晶化合物の含有量に対する低分子液晶化合物の含有量の質量比(低分子液晶化合物/高分子液晶化合物)は、本発明の効果がより優れる点から、5/95~70/30が好ましく、10/90~50/50がより好ましい。
 ここで、「液晶組成物における固形分」とは、溶媒を除いた成分をいい、固形分の具体例としては、上記液晶化合物及び後述する二色性物質、重合開始剤、界面改良剤などが挙げられる。
 <二色性物質>
 液晶組成物は、更に二色性物質を含有する。
 本発明において、二色性物質とは、方向によって吸光度が異なる色素を意味する。二色性物質は、液晶性を示してもよいし、液晶性を示さなくてもよい。
 二色性物質は、特に限定されず、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば量子ロッド)などが挙げられ、従来公知の二色性物質(二色性色素)を使用することができる。
 具体的には、例えば、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-14883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-37353号公報の[0051]~[0065]段落、特開2012-63387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、特開2016-006502号公報の[0005]~[0051]段落、特開2018-053167号公報[0014]~[0032]段落、特開2020-11716号公報の[0014]~[0033]段落、国際公開第2016/060173号公報の[0005]~[0041]段落、国際公開2016/136561号公報の[0008]~[0062]段落、国際公開第2017/154835号の[0014]~[0033]段落、国際公開第2017/154695号の[0014]~[0033]段落、国際公開第2017/195833号の[0013]~[0037]段落、国際公開第2018/164252号の[0014]~[0034]段落、国際公開第2018/186503号の[0021]~[0030]段落、国際公開第2019/189345号の[0043]~[0063]段落、国際公開第2019/225468号の[0043]~[0085]段落、国際公開第2020/004106号の[0050]~[0074]段落、国際公開第2021/044843号の[0015]~[0038]段落などに記載されたものが挙げられる。
 本発明においては、二色性物質として、二色性有機色素を用いることが好ましい。
 二色性有機色素は、特に限定されないが、二色性アゾ色素化合物が好ましく、いわゆる塗布型偏光子に用いられる二色性アゾ色素化合物が好適に用いられる。
 二色性アゾ色素化合物は、特に限定されず、従来公知の二色性アゾ色素を使用することができる。
 ここで、二色性アゾ色素化合物とは、方向によって吸光度が異なる色素を意味する。
 二色性アゾ色素化合物は、液晶性を示してもよいし、液晶性を示さなくてもよい。
 二色性アゾ色素化合物が液晶性を示す場合には、ネマチック性またはスメクチック性のいずれを示してもよい。液晶相を示す温度範囲は、室温(約20℃~28℃)~300℃が好ましく、取扱い性および製造適性の観点から、50℃~200℃であることがより好ましい。
 本発明においては、2種以上の二色性物質を併用してもよく、例えば、形成される光吸収異方性層を黒色に近づける観点から、波長370~550nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質と、波長500~700nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質とを併用することが好ましい。
 二色性物質の含有量は特に限定されないが、形成される光吸収異方性層の配向度が高くなる理由から、液晶組成物の全固形分質量に対して5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、10~30質量%であることが特に好ましい。なお、二色性物質を複数併用する場合は、複数の二色性物質の合計量が上述の範囲にあることが好ましい。
 <配向剤>
 液晶組成物は、更に配向剤を含有していることが好ましい。
 配向剤としては、例えば、特表2013-543526号公報の[0042]~[0076]段落、特表2016-523997号公報の[0089]~[0097]段落、特開2020-076920号公報の[0153]~[0170]段落などに記載されたものが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 本発明においては、形成される光吸収異方性層の配向度が高くなる理由から、上記配向剤が、下記式(B1)で表されるオニウム化合物であることが好ましい。
 上記式(B1)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。
 また、Xは、アニオンを表す。
 また、Lは、2価の連結基を表す。
 また、Lは、単結合、または、2価の連結基を表す。
 また、Yは、5員環または6員環を部分構造として有する2価の連結基を表す。
 また、Zは、炭素数2~20のアルキレン基を部分構造として有する2価の連結基を表す。
 また、PおよびPは、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
 環Aは含窒素複素環からなる第4級アンモニウムイオンを表す。環Aの例としては、ピリジン環、ピコリン環、2,2’-ビピリジル環、4,4’-ビピリジル環、1,10-フェナントロリン環、キノリン環、オキサゾール環、チアゾール環、イミダゾール環、ピラジン環、トリアゾール環、テトラゾール環などが挙げられ、好ましくは第4級イミダゾリウムイオン、及び第4級ピリジニウムイオンである。
 Xは、アニオンを表す。Xの例としては、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンなど)、スルホネートイオン(例えば、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、メチル硫酸イオン、ビニルスルホン酸イオン、アリルスルホン酸イオン、p-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン、p-ビニルベンゼンスルホン酸イオン、1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオンなど)、硫酸イオン、炭酸イオン、硝酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロほう酸イオン、ピクリン酸イオン、酢酸イオン、安息香酸イオン、p-ビニル安息香酸イオン、ギ酸イオン、トリフルオロ酢酸イオン、リン酸イオン(例えば、ヘキサフルオロリン酸イオン)、水酸化物イオンなどが挙げられる。好ましくは、ハロゲン陰イオン、スルホネートイオン、水酸化物イオンである。また、特に塩素イオン、臭素イオン、ヨウ素イオン、メタンスルホン酸イオン、ビニルスルホン酸イオン、p-トルエンスルホン酸イオン、p-ビニルベンゼンスルホン酸イオンが好ましい。
 Lは、二価の連結基を表す。Lの例としては、アルキレン基、-O-、-S-、-CO-、-SO-、-NRa-(但し、Raは炭素原子数が1~5のアルキル基又は水素原子である)、アルケニレン基、アルキニレン基またはアリーレン基との組み合わせからなる炭素原子数が1~20の二価の連結基が挙げられる。Lは、炭素原子数が1~10の-AL-、-O-AL-、-CO-O-AL-、-O-CO-AL-が好ましく、炭素原子数が1~10の-AL-、-O-AL-がさらに好ましく、炭素原子数が1~5の-AL-、-O-AL-が最も好ましい。なお、ALはアルキレン基を表す。
 L2は、単結合又は二価の連結基を表す。Lの例としては、アルキレン基、-O-、-S-、-CO-、-SO-、-NRa-(但し、Raは炭素原子数が1~5のアルキル基又は水素原子である)、アルケニレン基、アルキニレン基またはアリーレン基との組み合わせからなる炭素原子数が1~10の二価の連結基、単結合、-O-、-O-CO-、-CO-O-、-O-AL-O-、-O-AL-O-CO-、-O-AL-CO-O-、-CO-O-AL-O-、-CO-O-AL-O-CO-、-CO-O-AL-CO-O-、-O-CO-AL-O-、-O-CO-AL-O-CO-、-O-CO-AL-CO-O-などが挙げられる。なお、ALはアルキレン基を表す。L2は、単結合、炭素原子数が1~10の-AL-、-O-AL-、-NRa-AL-O-が好ましく、単結合、炭素原子数が1~5の-AL-、-O-AL-、-NRa-AL-O-がさらに好ましく、単結合、炭素原子数が1~5の-O-AL-、-NRa-AL-O-が最も好ましい。
 Yは、5又は6員環を部分構造として有する2価の連結基を表す。Yの例としては、シクロヘキシル環、芳香族環または複素環などが挙げられる。芳香族環としては、例えば、ベンゼン環、インデン環、ナフタレン環、フルオレン環、フェナントレン環、アントラセン環、ビフェニル環、ピレン環などが挙げられ、ベンゼン環、ビフェニル環、ナフタレン環が特に好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましく、例えば、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環などが挙げられる。複素環は6員環であることが好ましい。Yで表される5又は6員環を部分構造として有する2価の連結基はさらに置換基(例えば、上述した置換基W)を有していてもよい。
 Yで表される2価の連結基は、5又は6員環を2以上有する2価の連結基であるのが好ましく、2以上の環が、連結基で連結された構造を有するのがより好ましい。連結基の例については、L1及びL2が表す連結基の例や-C≡C-、-CH=CH-、-CH=N-、-N=CH-、-N=N-などが挙げられる。
 Zは、炭素原子数2~20のアルキレン基を部分構造として有し、-O-、-S-、-CO-、-SO2-との組み合わせからなる2価の連結基を表し、アルキレン基は置換基を有していてもよい。上記2価の連結基の例としては、アルキレンオキシ基、ポリアルキレンオキシ基が挙げられる。Zが表すアルキレン基の炭素原子数は、2~16であるのがより好ましく、2~12であるのがさらに好ましく、2~8であるのが特に好ましい。
 P1及びP2は、それぞれ独立に重合性エチレン性不飽和基を有する一価の置換基を表す。上記重合性エチレン性不飽和基を有する一価の置換基の例としては、下記の式(M-1)~(M-8)が挙げられる。即ち、重合性エチレン性不飽和基を有する一価の置換基は、(M-8)のように、エテニル基のみからなる置換基であってもよい。
 式(M-3)、(M-4)中、Rは水素原子またはアルキル基を表し、水素原子またはメチル基が好ましい。上記式(M-1)~(M-8)の中、(M-1)、(M-2)、(M-8)が好ましく、(M-1)又は(M-8)がより好ましい。特に、P1としては(M-1)が好ましい。またP2としては、(M-1)又は(M-8)が好ましく、環Aが第4級イミダゾリウムイオンである化合物では、P2は(M-8)又は(M-1)であるのが好ましく、及び環Aが第4級ピリジニウムイオンである化合物では、P2は(M-1)であるのが好ましい。
 上記式(B1)で表されるオニウム化合物としては、特開2012-208397号公報の段落0052~0058号公報に記載のオニウム塩、特開2008-026730号公報の段落0024~0055に記載のオニウム塩、および、特開2002-37777号公報に記載のオニウム塩が挙げられる。
 本発明においては、形成される光吸収異方性層の配向度が高くなる理由から、上記配向剤が、下記式(B2)で表されるボロン酸化合物であることが好ましい。
 上記(B2)中、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基、または、置換基を有していてもよいヘテロ環基を表す。
 また、Rは、置換基を表す。
 RおよびRの一態様が表す脂肪族炭化水素基としては、炭素数1~20の置換もしくは無置換の直鎖もしくは分岐のアルキル基(例えば、メチル基、エチル基、iso-プロピル基等)、炭素数3~20の置換もしくは無置換の環状アルキル基(例えば、シクロヘキシル基等)、炭素数2~20のアルケニル基(例えば、ビニル基等)が挙げられる。
 また、RおよびRの一態様が表すアリール基としては、炭素数6~20の置換もしくは無置換のフェニル基(例えば、フェニル基、トリル基など)、炭素数10~20の置換もしくは無置換のナフチル基等が挙げられる。
 また、RおよびRの一態様が表すヘテロ環基としては、例えば、少なくとも一つのヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子等)を含む、置換もしくは無置換の5員もしくは6員環の基が挙げられ、具体的には、ピリジル基、イミダゾリル基、フリル基、ピペリジル基、モルホリノ基等が挙げられる。
 RおよびRは、互いに連結して環を形成しても良く、例えば、R及びRのイソプロピル基が連結して、4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン環を形成しても良い。
 RおよびRは、水素原子、炭素数1~3の直鎖または分岐のアルキル基、および、それらが連結して環を形成した態様が好ましく、水素原子がより好ましい。
 Rが表す置換基としては、(メタ)アクリル基と結合し得る官能基を含む置換基であることが好ましい。
 ここで、(メタ)アクリル基と結合し得る官能基としては、例えば、ビニル基、アクリレート基、メタクリレート基、アクリルアミド基、スチリル基、ビニルケトン基、ブタジエン基、ビニルエーテル基、オキシラニル基、アジリジニル基、オキセタン基等が挙げられ、中でも、ビニル基、アクリレート基、メタクリレート基、スチリル基、オキシラニル基又はオキセタン基が好ましく、ビニル基、アクリレート基、アクリルアミド基、又はスチリル基がより好ましい。
 Rとしては、(メタ)アクリル基と結合し得る官能基を有する、置換もしくは無置換の、脂肪族炭化水素基、アリール基又はヘテロ環基であるのが好ましい。
 脂肪族炭化水素基としては、炭素数1~30の置換もしくは無置換の直鎖もしくは分岐のアルキル基(例えば、メチル基、エチル基、iso-プロピル基、n-プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-メチルヘキシル基等)、炭素数3~20の置換もしくは無置換の環状アルキル基(例えば、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-ノルボルニル基等)、炭素数2~20のアルケニル基(例えば、ビニル基ビ、1-プロペニル基、1-ブテニル基、1-メチル-1-プロペニル基等)が挙げられる。
 アリール基としては、炭素数6~50の置換もしくは無置換のフェニル基(例えば、フェニル基、トリル基、スチリル基、4-ベンゾイルオキシフェニル基、4-フェノキシカルボニルフェニル基、4-ビフェニル基、4-(4-オクチルオキシベンゾイルオキシ)フェノキシカルボニルフェニル基等)、炭素数10~50の置換もしくは無置換のナフチル基等(例えば、無置換ナフチル基等)が挙げられる。
 ヘテロ環基としては例えば、少なくとも一つのヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子等)を含む、置換もしくは無置換の5員もしくは6員環の基であり、例えば、ピロール、フラン、チオフェン、ピラゾール、イミダゾール、トリアゾール、オキサゾール、イソオキサゾール、オキサジアゾール、チアゾール、チアジアゾール、インドール、カルバゾール、ベンゾフラン、ジベンゾフラン、チアナフテン、ジベンゾチオフェン、インダゾールベンズイミダゾール、アントラニル、ベンズイソオキサゾール、ベンズオキサゾール、ベンゾチアゾール、プリン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、キノリン、アクリジン、イソキノリン、フタラジン、キナゾリン、キノキザリン、ナフチリジン、フェナントロリン、プテリジン、モルホリン、ピペリジン等の基が挙げられる。
 上記式(B2)で表されるボロン酸化合物としては、例えば、特開2008-225281号公報の段落0023~0032に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
 上記式(B2)で表される化合物としては、以下に例示する化合物も好ましい。
 液晶組成物が配向剤を含有する場合、配向剤の含有量は、液晶組成物に含まれる液晶化合物と二色性物質との合計100質量部に対して、0.2~20質量部であることが好ましく、1~10質量部であることがより好ましい。
 <溶媒>
 液晶組成物は、作業性等の観点から、溶媒を含有していることが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、アセチルアセトンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジオキソラン、テトラヒドロフルフリルアルコール、シクロペンチルメチルエーテル、ジブチルエーテルなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、テトラリン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン(クロロホルム)、ジクロロエタン、ジクロロベンゼン、1,1,2,2、-テトラクロロエタン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、炭酸ジエチル、アセト酢酸エチル、酢酸n-ペンチル、安息香酸エチル、安息香酸ベンジル、ブチルカルビトールアセテート、ジエチレングリコールモノエチルエーテルアセテート、酢酸イソアミルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール、フルフリルアルコール、2-エチルヘキサノール、オクタノール、ベンジルアルコール、エタノールアミン、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルなど)、フェノール類(例えば、フェノール、クレゾールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、および、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、および、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなど)、および、ヘテロ環化合物(例えば、ピリジン、2,6-ルチジンなど)などの有機溶媒、並びに、水が挙げられる。
 これらの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 液晶組成物が溶媒を含有する場合、溶媒の含有量は、液晶組成物の全質量(100質量%)に対して、60~99.5質量%であることが好ましく、70~99質量%であることがより好ましく、75~98質量%であることが特に好ましい。
 <重合開始剤>
 液晶組成物は、重合開始剤を含有していてもよい。
 重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
 光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-27384明細書[0065])、および、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報および特開平10-29997号公報)などが挙げられる。
 このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア-184、イルガキュア-907、イルガキュア-369、イルガキュア-651、イルガキュア-819、イルガキュア-OXE-01およびイルガキュア-OXE-02等が挙げられる。
 液晶組成物が重合開始剤を含有する場合、重合開始剤の含有量は、液晶組成物の全固形分質量に対して、0.01~30質量%が好ましく、0.1~15質量%がより好ましい。
 <重合性化合物>
 液晶組成物は、重合性化合物を含有していてもよい。
 重合性化合物としては、アクリレートを含む化合物(例えば、(メタ)アクリレートモノマーなど)が挙げられる。
 液晶組成物が重合性化合物を含有する場合、重合性化合物の含有量は、液晶組成物の全固形分質量に対して、0.5~50質量%が好ましく、1.0~40質量%がより好ましい。
 <界面改良剤>
 液晶組成物は、界面改良剤を含有していてもよい。
 界面改良剤としては特に制限はなく、高分子系界面改良剤、低分子系界面改良剤を使用でき、特開2011-237513号公報の[0253]~[0293]段落に記載の化合物を用いることができる。
 また、界面改良剤としては、特開2007-272185号公報の[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマーも用いることができる。
 また、界面改良剤としては、特開2007-069471号公報の段落[0079]~[0102]の記載に記載された化合物、特開2013-047204号公報に記載された式(4)で表される重合性液晶化合物(特に段落[0020]~[0032]に記載された化合物)、特開2012-211306号公報に記載された式(4)で表される重合性液晶化合物(特に段落[0022]~[0029]に記載された化合物)、特開2002-129162号公報に記載された式(4)で表される液晶配向促進剤(特に段落[0076]~[0078]及び段落[0082]~[0084]に記載された化合物)、特開2005-099248号公報に記載された式(4)、(II)および(III)で表される化合物(特に段落[0092]~[0096]に記載された化合物)、特許第4385997号の[0013]~[0059]段落に記載の化合物、特許第5034200号の[0018]~[0044]段落に記載の化合物、特許第4895088号の[0019]~[0038]段落に記載された化合物も用いることができる。
 界面改良剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 液晶組成物が界面改良剤を含有する場合、界面改良剤の含有量は、液晶組成物の全固形分質量に対して0.005~15質量%が好ましく、0.01~5質量%がより好ましく、0.015~3質量%が更に好ましい。界面改良剤を複数併用する場合は、複数の界面改良剤の合計量が上述の範囲にあることが好ましい。
 光吸収異方性層の厚さは、特に限定されないが、小型軽量化の観点から、100~8000nmであることが好ましく、300~5000nmであることがより好ましい。
 <光吸収異方性層の形成方法>
 光吸収異方性層の形成方法は特に限定されず、上述した液晶組成物(以下、「光吸収異方性層形成用組成物」ともいう。)を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、塗布膜に含まれる液晶性成分を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に含む方法が挙げられる。
 なお、液晶性成分とは、上述した液晶化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
 また、光吸収異方性層が、スメクチック相の液晶状態で固定化された層でない場合(すなわち、液晶組成物に含まれる液晶化合物としてスメクチック性を示す液晶化合物を用いない場合)や、微粒子を含有していない場合には、ヘイズ値を調整する観点から、後述する本発明の光吸収異方性層の製造方法により形成されることが好ましい。
 (塗布膜形成工程)
 塗布膜形成工程は、光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程である。
 上述した溶媒を含有する光吸収異方性層形成用組成物を用いたり、光吸収異方性層形成用組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、光吸収異方性層形成用組成物を塗布することが容易になる。
 光吸収異方性層形成用組成物の塗布方法としては、具体的には、例えば、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
 (配向工程)
 配向工程は、塗布膜に含まれる液晶性成分を配向させる工程である。これにより、上述した二色性物質が液晶性を有していない場合でも、液晶化合物の配向に沿って二色性部物質が配向し、光吸収異方性層が得られる。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
 ここで、光吸収異方性層形成用組成物に含まれる液晶性成分は、上述した塗布膜形成工程または乾燥処理によって、配向する場合がある。例えば、光吸収異方性層形成用組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、光吸収異方性を持つ塗布膜(すなわち、光吸収異方性層)が得られる。
 乾燥処理が塗布膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
 塗布膜に含まれる液晶性成分の液晶相への転移温度は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。上記転移温度が10℃以上であると、液晶相を呈する温度範囲にまで温度を下げるための冷却処理等が必要とならず、好ましい。また、上記転移温度が250℃以下であると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にする場合にも高温を要さず、熱エネルギーの浪費、ならびに、基板の変形および変質等を低減できるため、好ましい。
 配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる液晶性成分を配向させることができるため、加熱処理後の塗布膜を光吸収異方性層として好適に使用できる。
 加熱処理は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含まれる液晶性成分の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
 以上の工程によって、光吸収異方性層を得ることができる。
 なお、本態様では、塗布膜に含まれる液晶性成分を配向する方法として、乾燥処理および加熱処理などを挙げているが、これに限定されず、公知の配向処理によって実施できる。
 (他の工程)
 光吸収異方性層の形成方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
 硬化工程は、例えば、光吸収異方性層が架橋性基(重合性基)を有している場合には、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光源は、赤外線、可視光または紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
 露光が加熱しながら行われる場合、露光時の加熱温度は、液晶膜に含まれる液晶性成分の液晶相への転移温度にもよるが、25~140℃であることが好ましい。
 また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって液晶膜の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
 〔中間層〕
 本発明の光学フィルムが有する中間層は、上述した複数の光吸収異方性層の間に配置される層である。
 ここで、中間層とは、複数の光吸収異方性層の間に配置されるすべての層のことをいうが、光吸収異方性層を3層以上有する場合には、複数の光吸収異方性層の間に配置される光吸収異方性層は中間層に該当しない。すなわち、本発明の光学フィルムが、例えば、光吸収異方性層A、配向層X、光吸収異方性層B、配向層Yおよび光吸収異方性層Cをこの順に有する層構成である場合、配向層Xおよび配向層Yが中間層に該当し、光吸収異方性層Bは中間層には該当しない。
 また、本発明の光学フィルムが有する中間層は、波長550nmにおける面内レターデーションが25nm以下であり、かつ、波長550nmにおける厚み方向のレターデーションの絶対値が25nm以下である層である。なお、上記レターデーションに関する規定は、中間層を複数有する場合には、いずれの中間層にも該当する規定である。
 このような中間層としては、例えば、配向層、バリア層、屈折率調整層、粘着層、接着層、支持体などが挙げられる。
 これらのうち、中間層としては、配向層またはバリア層であることが好ましい。
 なお、以下に、本発明の光学フィルムが有していてもよい任意の配向層、バリア層、屈折率調整層、粘着層、接着層および支持体について説明するが、これらは、上述した複数の光吸収異方性層の間に配置され、上記レターデーションに関する規定を満たすものについては、中間層に該当するものである。
 〔配向層〕
 本発明の光学フィルムは、上述した光吸収異方性層が液晶組成物を用いて形成された層である場合、隣接層として、配向層を有していることが好ましい。
 ここで、配向層としては、具体的には、ラビング処理が施してある又は施していない、ポリビニルアルコールおよびポリイミドなどの層;偏光露光処理が施してある又は施してない、ポリビニルシンナメートおよびアゾ系染料などの光配向層;などが挙げられる。
 また、配向層の厚みは、0.01~10μmであることが好ましく、0.01~1μmであることがより好ましい。
 また、配向層は、後述するバリア層を兼ねた層であってもよい。
 〔バリア層(酸素遮断層)〕
 本発明の光学フィルムは、バリア層を有していることが好ましい。
 ここで、バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素等のガス、水分、または、隣接する層に含まれる化合物等から保護する機能を有する。
 バリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、特開2005-169994号公報の[0021]~[0031]段落の記載を参照できる。
 〔屈折率調整層〕
 本発明の光学フィルムは、光吸収異方性層の高屈折率に起因する内部反射の影響を抑制する観点から、屈折率調整層を有していてもよい。
 屈折率調整層は、光吸収異方性層に接するように配置される層であり、波長550nmにおける面内平均屈折率が1.55以上1.70以下である。いわゆるインデックスマッチングを行うための屈折率調整層であることが好ましい。
 〔粘着層〕
 本発明の光学フィルムは、粘着層を有していてもよい。
 粘着層は、通常の画像表示装置に使用されるものと同様の透明で光学的に等方性の接着剤であることが好ましく、通常は感圧型接着剤が使用される。
 粘着層には、母材(粘着剤)、導電性粒子、及び必要に応じて用いられる熱膨張性粒子の他に、架橋剤(例えば、イソシアネート系架橋剤、エポキシ系架橋剤など)、粘着付与剤(例えば、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂、油溶性フェノール樹脂など)、可塑剤、充填剤、老化防止剤、界面活性剤、紫外線吸収剤、光安定剤、酸化防止剤等の適宜な添加剤を配合してもよい。
 〔接着層〕
 本発明の光学フィルムは、接着層を有していてもよい。
 接着層は、貼り合わせた後の乾燥や反応により接着性を発現する。
 ポリビニルアルコール系接着剤(PVA系接着剤)は、乾燥により接着性が発現し、材料どうしを接着することが可能となる。
 反応により接着性を発現する硬化型接着剤の具体例としては、(メタ)アクリレート系接着剤のような活性エネルギー線硬化型接着剤やカチオン重合硬化型接着剤が挙げられる。なお、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。(メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。また、カチオン重合硬化型接着剤としては、エポキシ基やオキセタニル基を有する化合物も使用することができる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。
 中でも、加熱変形耐性の観点から、紫外線照射で硬化する紫外線硬化型接着剤が好ましく用いられる。
 〔支持体〕
 本発明の光学フィルムは、支持体を有していてもよい。
 支持体の種類は特に制限されず、公知の支持体が使用できる。特に、透明支持体であることが好ましい。なお、透明支持体とは、可視光の透過率が60%以上である支持体を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。
 支持体としては、例えば、ガラス基板およびポリマーフィルムが挙げられる。
 ポリマーフィルムの材料としては、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体などのアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、および、ポリエチレンナフタレートなどのポリエステル系ポリマー;ポリスチレン、アクリロニトリルスチレン共重合体などのスチレン系ポリマー;ポリエチレン、ポリプロピレン、および、エチレン・プロピレン共重合体などのポリオレフィン系ポリマー;塩化ビニル系ポリマー;ナイロン、芳香族ポリアミドなどのアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 また、支持体は、剥離可能なものが好ましい。
[視角制御システム]
 本発明の視角制御システムは、面内方向に吸収軸を有する偏光子と、上述した本発明の光学フィルムとを有する。
 〔偏光子〕
 本発明の視角制御システムが有する偏光子は、面内方向に吸収軸を有し、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の偏光子を利用することができる。
 偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できる。塗布型偏光子としては、液晶化合物の配向を利用して二色性有機色素を配向させた偏光子が好ましく、延伸型偏光子としては、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も好ましく利用することができる。
 なかでも、入手が容易で偏光度に優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子であることが好ましい。
 本発明においては、偏光子の厚みは特に限定されないが、3μm~60μmであるのが好ましく、5μm~20μmであるのがより好ましく、5μm~10μmであるのが更に好ましい。
 本発明の視角制御システムは、上述した本発明の光学フィルムと上記偏光子とを、上述した粘着層または接着層を介して積層してもよいし、上記偏光子上に、上記配向膜、上記光吸収異方性層、上記中間層および上記光吸収異方性層を直接塗工して積層してもよい。
[画像表示装置]
 本発明の画像表示装置は、表示素子と、上述した本発明の視角制御システムを有し、視角制御システムが表示素子の少なくとも一方の主面に配置されている画像表示装置である。
 また、本発明の画像表示装置は、視角制御システムが有する複数の光吸収異方性層が、いずれも視角制御システムが有する偏光子よりも視認側に配置されている画像表示装置、すなわち、視認側から、光吸収異方性層、中間層、光吸収異方性層、偏光子および表示素子をこの順で有する画像表示装置であることが好ましい。
 本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネルなどが挙げられる。
 これらのうち、液晶セルまたは有機EL表示パネルであるのが好ましい。すなわち、本発明の表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましい。
 画像表示装置の中には、薄型で、曲面に成形することが可能なものがある。本発明で用いる光学異方性吸収膜は、薄く、折り曲げが容易であるため、表示面が曲面である画像表示装置に対しても好適に適用することができる。
 また、画像表示装置の中には、画素密度が250ppiを超え、高精細な表示が可能なものもある。本発明で用いる光学異方性吸収膜は、このような高精細な画像表示装置に対しても、モアレを生じることなく、好適に適用することができる。
 〔液晶表示装置〕
 本発明の表示装置の一例である液晶表示装置としては、上述した本発明の視角制御システムと、液晶セルと、を有する態様が好ましく挙げられる。
 具体的な構成としては、本発明の視角制御システムをフロント側偏光板もしくはリア側偏光板に配置する構成がある。これら構成においては、上下方向もしくは左右方向が遮光される視野角制御が可能となる。
 また、フロント側偏光板およびリア側偏光板の両偏光板上に本発明の視角制御システムを配置してもよい。このような構成にすることで、全方位が遮光され、正面方向のみ光が透過する視野角制御が可能となる。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、またはTN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、液晶化合物が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。即ち電界無印加状態で、液晶化合物が面内に配向している。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
 〔有機EL表示装置〕
 本発明の表示装置の一例である有機EL表示装置としては、例えば、視認側から、上述した本発明の視角制御システムと、λ/4板と、有機EL表示パネルと、をこの順で有する態様が好適に挙げられる。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
[視野角切り替え可能な画像表示装置(視野角を切り替えることが可能な画像表示装置)]
 本発明の光学フィルムを用いることで、光の射出角度を狭くすることが可能となる。視野角切り替え可能な画像表示装置は、様々な方式が知られているが、狭い射出角度の光を生成する目的で、本発明の光学フィルムを用いることができる。
 例えば、本発明の光学フィルムを用いて狭い射出角度の光を生成した後、特開平9-105907号公報に記載のように、光の拡散有無を制御する素子を通過させ、狭視野角/広視野角を切り替えできる。
 または、特開2017-098246号公報に記載のように、視認側から、逆プリズムシート、比較的大きな入射角度で上記逆プリズムシートへ光を入射する第一導光板(逆プリズムシートからの出射光は狭視野角)、斜めからの入射光を吸収し狭い射出角度の光を比較的小さな入射角度で上記逆プリズムシートへ光を入射する光フィルター素子と第二導光板(逆プリズムシートからの出射光は狭視野角)からなる狭視野角/広視野角切り替えバックライトシステムにおいて、上記光フィルター素子として、本発明の光学フィルムを用いることができる。
 また、視認側から、第一導光板、斜めからの入射光を吸収し狭い角度で光を出射する光学フィルター、第二導光板の順に積層し、かつ、第一導光板と第二導光板のうち、第一導光板から光が出射する場合は広視野角となり、第二導光板のみから光が出射する場合は狭視野角となるバックライトシステムにおいても、上記光学フィルターとして、本発明の光学フィルムを用いることができる。
 また、本発明の光学フィルムと水平配向偏光子の間に、液晶セルなどの位相差変調素子を配置して、狭視野角/広視野角の切り替えを行うこともできる。例えば、位相差変調セルとしてVAモード、ECBモードの液晶セルを使用すると、液晶セル中の液晶が垂直配向している状態においては狭視野角になり、液晶セル中の液晶が傾斜配向すると広視野角モードとなり、セルの電圧印可有無で狭視野角/広視野角を制御できる。
 また、位相差変調セルとして、IPSモードの液晶セルを使用も考えられる。電圧無印可時の液晶セルの配向方向と、水平配向偏光子の吸収軸方向は平行または垂直方向になるようにし、電圧印可によって液晶セルの配向方向を変化させることで、狭視野角から広視野角へと視野角を切り替えることができる。
 さらに、位相差変調セルとして、TNモードの液晶セルの使用も考えられる。電圧のONおよびOFFにより、配向のねじれ角度(ツイスト角度)を0°と90°または0°と270°に切り替えることできるセルであることが好ましい。
 加えて、本発明の画像表示装置は、表示画面内の複数の領域の視野角を独立してスイッチングすることができる態様であってもよい。
[光学装置/ヘッドマウントディスプレイ]
 本発明の光学フィルムは、回折素子が表面に配置された導光板を有する光学装置(ヘッドマウントディスプレイ)に用いることができる。
 図1に、本発明のヘッドマウントディスプレイの一例の模式図を示す。
 図1に示すヘッドマウントディスプレイ80は、一例としてARグラスであって、導光板82と、導光板82の一方の表面に配置された入射回折素子90および出射回折素子92と、光学フィルター10と、画像表示素子86と、を有する。なお、導光板82、入射回折素子90および出射回折素子92、ならびに、光学フィルター10は、本発明の光学装置を構成する。
 図1に示すように、導光板82の一方の端部側の表面(主面)には入射回折素子90が配置されている。また、導光板82の他方の端部側の表面には出射回折素子92が配置されている。
 入射回折素子90の配置位置は、画像表示素子86から導光板82への映像光Iの入射位置に対応する。他方、出射回折素子92の配置位置は、導光板82からの映像光Iの出射位置、すなわち使用者による映像光Iの観察位置に対応する。また、入射回折素子90および出射回折素子92は、導光板82の同じ表面に配置されている。
 また、光学フィルター10は、導光板82の出射回折素子92に対面して、導光板82の出射回折素子92が配置される面とは反対側の面に配置されている。
図1に示すように、光学フィルター10は、出射回折素子92と同様の形状を有する。
 なお、導光板82には、中間回折素子94が設けられてもよい(図2参照)。
 また、各回折素子の配置位置は、導光板の端部には制限はされず、導光板の形状等に応じて、各種の位置が利用可能である。
 このような構成のヘッドマウントディスプレイ80(ARグラス)において、画像表示素子86が表示した映像光Iは、矢印で示すように、入射回折素子90に回折されて、導光板82と空気との界面で全反射される角度で、導光板82内に入射する。
 導光板82内に入射した映像光Iは、導光板82の両表面で全反射されて導光板82内を導光され、出射回折素子92に入射する。
 出射回折素子92に入射した映像光Iは、出射回折素子92によって、出射回折素子92の表面に垂直な方向へ回折される。
 出射回折素子92で回折された映像光Iは、導光板82の外部の使用者による観察位置に出射し、使用者によって観察される。
 光学フィルター10と導光板82との間には、エアギャップを有することが好ましい。エアギャップがない場合、導光板82内を進んだ映像光Iが光学フィルター10入射するため、映像光Iが、光学フィルター10中を伝搬し光学フィルター10の導光板82とは反対側の面で全反射し再び光学フィルター10中を伝搬する際に、吸収により減衰する。光学フィルター10と導光板82との間にエアギャップを設けることで、導光板から光学フィルターへの映像光Iが入射されず、上記問題を解決することができる。
 また、図1に示すように、正面方向からヘッドマウントディスプレイ80に入射する外光Iすなわち背景は、光学フィルター10を透過して、導光板82に入射し、出射回折素子92を透過して、使用者による観察位置に到達する。以下の説明では、正面方向からヘッドマウントディスプレイ80に入射する外光を、正面外光Iともいう。
 これにより、ヘッドマウントディスプレイ80は、画像表示素子86が表示した映像を、導光板82の一端に入射して伝播し、他端から出射することにより、使用者が実際に見ている光景に、仮想の映像を重ねて表示する。
 なお、光学フィルター10の形状は、回折素子の形状と同じに制限はされず、異なる形状であってもよく、また、サイズも異なってもよい。しかしながら、回折素子に斜め方向から入射外光すなわち斜め外光Iを好適に遮光し、かつ、背景すなわち正面外光Iの不要な遮光を抑制するために、回折素子および光学フィルターは、サイズも含めて、同じ形状であるのが好ましい。
 導光板82としては特に限定はなく、各種のARグラスで用いられる導光板、液晶表示装置のバックライトユニットで用いられる導光板など、画像表示装置等で用いられている従来公知の導光板を用いることができる。
 画像表示素子86には、制限はなく、ARグラス等の各種の画像表示装置に用いられる公知の画像表示素子(ディスプレイ)が、各種、利用可能である。
 画像表示素子86としては、一例として、液晶ディスプレイ(LCOS(Liquid Crystal On Silicon)等を含む)、有機エレクトロルミネッセンスディスプレイ、無機エレクトロルミネッセンスディスプレイ、DLP(Digital Light Processing)、MEMS(Micro-Electro-Mechanical Systems)型ディスプレイ、および、マイクロLED(Light-Emitting Diode)ディスプレイ等が例示される。
 なお、画像表示素子86は、モノクロ画像を表示するものでも、二色画像を表示するものでも、カラー画像を表示するものでもよい。
 本発明の光学装置では、回折素子を覆って、本発明の積層体を含む光学フィルター、好ましくは、図示例のように、積層体14および偏光子12を含む光学フィルターを有する。
 本発明の光学装置は、このような光学フィルター10(10m)を有することにより、ARグラス等のヘッドマウントディスプレイに利用した際に、正面方向(正面外光I)の光透過率は高く、すなわち背景の視認性に優れ、かつ、観察者の前方頭上(頭上斜め上方前方)から入射する外光(斜め外光I)に起因する虹ムラを抑制できる。さらに、本発明の光学装置によれば、好ましくは、観察者の頭上前方のみならず、観察者の斜め前方頭上(頭上斜め方位前方)から入射する外光に起因する虹ムラも抑制できる。
 本発明の光学装置において、光学フィルター10を構成する積層体14は、吸収軸(液晶化合物の配向方向)と、積層体14の法線方向とのなす角度が0~45°である。すなわち、積層体14は、積層体14の主面および導光板82の主面の法線方向に延在する吸収軸を有する。
 他方、光学フィルター10を構成する偏光子12は、吸収軸を主面内に有する偏光子である。すなわち、偏光子は、積層体14の主面および導光板82の主面と平行な吸収軸を有する。
 なお、本発明においては、光学フィルターが積層体14と偏光子12とを有する場合には、耐光性向上の観点で、積層体14を導光板82側にするのが好ましい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容及び処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[比較例1]
 〔バリア層を兼ねた配向層の形成〕
 支持体としてのセルロースアシレートフィルム1(厚み40μmのTAC基材;TG40 富士フイルム社)の表面をアルカリ液で鹸化し、その上に配向層形成用塗布液1をワイヤーバーで塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、バリア層を兼ねた配向層(以下、「配向層/バリア層」と略す。)を形成した。配向層/バリア層の膜厚は1μmであった。
―――――――――――――――――――――――――――――――――
(配向層形成用塗布液1)
―――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール          3.80質量部
・開始剤Irg2959               0.20質量部
・水                          70質量部
・メタノール                      30質量部
―――――――――――――――――――――――――――――――――
 変性ポリビニルアルコール
 〔光吸収異方性層P1の形成〕
 支持体上に形成された配向層/バリア層上に、下記の光吸収異方性層形成用組成物P1をワイヤーバーで連続的に塗布し、塗布層P1を形成した。
 次いで、塗布層P1を140℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
 次いで、塗布層P1を80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、塗布層P1に対して、発光ダイオード(LED)灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、配向層1上に光吸収異方性層P1を作製した。
 塗布層P1の膜厚は3μm、光吸収異方性層P1の波長550nmにおける配向度は、0.96であった。
 光吸収異方性層形成用組成物P1の組成物のうち、固形分(有機溶剤以外のもの)の合計質量5.015質量部に対する、二色性物質D-1、D-2、D-3の合計質量1.18質量部の比率を、塗布層P1の膜厚3μmに乗じた数値は、1.42μmであった。
―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P1の組成
―――――――――――――――――――――――――――――――――
・下記二色性物質D-1               0.40質量部
・下記二色性物質D-2               0.15質量部
・下記二色性物質D-3               0.63質量部
・下記高分子液晶化合物P-1            3.65質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  0.040質量部
・下記化合物E-1                0.060質量部
・下記化合物E-2                0.060質量部
・下記界面活性剤F-1              0.010質量部
・下記界面活性剤F-2              0.015質量部
・シクロペンタノン                47.00質量部
・テトラヒドロフラン               47.00質量部
・ベンジルアルコール                1.00質量部
―――――――――――――――――――――――――――――――――
 二色性物質D-1
 二色性物質D-2
 二色性物質D-3
 高分子液晶化合物P-1
 化合物E-1
 化合物E-2
 界面活性剤F-1
 界面活性剤F-2
 〔配向層/バリア層の形成〕
 光吸収異方性層P1の表面をコロナ処理した後、上記配向層形成用塗布液1をワイヤーバーで連続的に塗布した。その後、100℃の温風で2分間乾燥することにより、光吸収異方性層P1上に厚み1.0μmのポリビニルアルコール(PVA)からなる、配向層/バリア層1を形成し、光学フィルム1を作製した。
 〔偏光板の作製〕
 平均重合度2400、鹸化度99.9モル%の膜厚30μmのPVAフィルムを、25℃の温水中に120秒間浸漬し膨潤させた。次いで、ヨウ素/ヨウ化カリウム(重量比=2/3)の濃度0.6重量%の水溶液に浸漬し、2.1倍に延伸させながらPVAフィルムを染色した。その後、55℃のホウ酸エステル水溶液中で、トータルの延伸倍率が5.5倍となるように延伸を行い、水洗、乾燥を施し、偏光子を作製した。偏光子の厚みは8μmであった。
 上記の偏光子の両面に、鹸化処理したセルロースアシレートフィルム(厚み40μmのTAC基材;TG40 富士フイルム社)を、下記のPVA接着剤1を用いて貼合し、偏光板1を作製した。
 <PVA接着剤1の調製>
 アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100質量部に対し、メチロールメラミン20質量部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7質量%に調整した水溶液を調製した。
 〔視角制御システムの作製〕
 上記で作製した光学フィルム1の支持体側と偏光板1の偏光子側とを、以下の粘着剤N1で貼合し、視角制御システム1を作製した。
 <粘着剤N1の作製>
 次に、以下の手順に従い、アクリレート系重合体を調製した。
 冷却管、窒素導入管、温度計及び攪拌装置を備えた反応容器に、アクリル酸ブチル95質量部、アクリル酸5質量部を溶液重合法により重合させて、平均分子量200万、分子量分布(Mw/Mn)3.0のアクリレート系重合体(NA1)を得た。
 次に得られたアクリレート系重合体(NA1)用いて、以下の組成で、アクリレート系粘着剤を作製した。これらの組成物を、シリコーン系剥離剤で表面処理したセパレートフィルムにダイコーターを用いて塗布し90℃の環境下で1分間乾燥させ、紫外線(UV)を下記条件で照射して、下記アクリレート系粘着剤N1(粘着層)を得た。アクリレート系粘着剤の組成と膜厚を以下に示す。
 <UV照射条件>
 ・フュージョン社無電極ランプ Hバルブ
 ・照度600mW/cm、光量150mJ/cm
 ・UV照度及び光量は、アイグラフィックス製「UVPF-36」を用いて測定した。
―――――――――――――――――――――――――――――――――
アクリレート系粘着剤N1(膜厚:5μm,貯蔵弾性率:2.6MPa)
―――――――――――――――――――――――――――――――――
・アクリレート系重合体(NA1)           100質量部
・下記(A)多官能アクリレート系モノマー      11.1質量部
・下記(B)光重合開始剤               1.1質量部
・下記(C)イソシアネート系架橋剤          1.0質量部
・下記(D)シランカップリング剤           0.2質量部
―――――――――――――――――――――――――――――――――
 (A)多官能アクリレート系モノマー:トリス(アクリロイロキシエチル)イソシアヌレート、分子量=423、3官能型(東亞合成社製、商品名「アロニックスM-315」)
 (B)光重合開始剤:ベンゾフェノンと1-ヒドロキシシクロヘキシルフェニルケトンとの質量比1:1の混合物、チバ・スペシャルティ・ケミカルズ社製「イルガキュアー500」
 (C)イソシアネート系架橋剤:トリメチロールプロパン変性トリレンジイソシアネート(日本ポリウレタン社製「コロネートL」)
 (D)シランカップリング剤:3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製「KBM-403」)
[比較例2]
 塗布層P1の膜厚を6μmに変更した以外は、比較例1と同様にして、比較例2の視角制御システム2を作製した。
[実施例1]
 比較例1の光学フィルム1の配向層/バリア層1の上に、更に、光吸収異方性層P1および配向層/バリア層1を形成し、光学フィルム3を作製した。
 次いで、光学フィルム3のセルロースアシレートフィルム1面側に、偏光板1を、粘着剤N1で貼合し、視角制御システム3を作製した。
[実施例2]
 実施例1の光吸収異方性層P1(2層)を、いずれも以下の方法で形成した光吸収異方性層P2に変更した以外は、実施例1と同様にして、視角制御システム4を作製した。
 〔光吸収異方性層P2の形成〕
 配向層/バリア層上に、下記の光吸収異方性層形成用組成物P2をワイヤーバーで連続的に塗布し、塗布層P2を形成した。
 次いで、塗布層P2を140℃で30秒間加熱し、塗布層P2を室温(23℃)になるまで冷却した。
 次いで、塗布層P2を80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、塗布層P2に対して、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、配向層1上に光吸収異方性層P2を作製した。
 塗布層P2の膜厚は3μm、光吸収異方性層P2の波長550nmにおける配向度は、0.96であった。
―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P2の組成
―――――――――――――――――――――――――――――――――
・上記二色性物質D-1               0.60質量部
・上記二色性物質D-2              0.225質量部
・上記二色性物質D-3              0.945質量部
・上記高分子液晶化合物P-1            3.06質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  0.040質量部
・上記化合物E-1                0.060質量部
・上記化合物E-2                0.060質量部
・上記界面活性剤F-1              0.010質量部
・上記界面活性剤F-2              0.015質量部
・シクロペンタノン                47.00質量部
・テトラヒドロフラン               47.00質量部
・ベンジルアルコール                1.00質量部
―――――――――――――――――――――――――――――――――
[実施例3]
 実施例1の光学フィルム3の空気界面側に位置する配向層/バリア層1の上に、更に、光吸収異方性層P1および配向層/バリア層1を形成し、光学フィルム5を作製した。
 次いで、光学フィルム5のセルロースアシレートフィルム1面側に、偏光板1を、粘着剤N1で貼合し、視角制御システム5を作製した。
[実施例4]
 実施例3の光学フィルム5の空気界面側に位置する配向層/バリア層1の上に、更に、光吸収異方性層P1および配向層兼バリア層1を形成し、光学フィルム6を作製した。
 次いで、光学フィルム6のセルロースアシレートフィルム1面側に、偏光板1を、粘着剤N1で貼合し、視角制御システム6を作製した。
[実施例5]
 実施例3の光学フィルム3の光吸収異方性層P1(3層)を、いずれも以下の方法で形成した光吸収異方性層P5に変更した以外は、実施例3と同様にし、視角制御システム7を作製した。
 〔光吸収異方性層P5の形成〕
 配向層/バリア層上に、下記の光吸収異方性層形成用組成物P5をワイヤーバーで連続的に塗布し、塗布層P5を形成した。
 次いで、塗布層P5を140℃で30秒間加熱し、塗布層P5を室温(23℃)になるまで冷却した。
 次いで、塗布層P5を60℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、塗布層P5に対して、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、配向層1上に光吸収異方性層P5を作製した。
 塗布層P5の膜厚は3μm、光吸収異方性層P5の波長550nmにおける配向度は、0.90であった。
―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P5の組成
―――――――――――――――――――――――――――――――――
・上記二色性物質D-1               0.40質量部
・上記二色性物質D-2               0.15質量部
・上記二色性物質D-3               0.63質量部
・上記高分子液晶化合物P-1            3.65質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  0.040質量部
・上記化合物E-1                0.060質量部
・上記化合物E-2                0.060質量部
・上記界面活性剤F-1              0.010質量部
・上記界面活性剤F-2              0.015質量部
・シクロペンタノン                47.00質量部
・テトラヒドロフラン               47.00質量部
・ベンジルアルコール                1.00質量部
―――――――――――――――――――――――――――――――――
[比較例3]
 特許文献1(特開2008-165201)の段落[0137]~[0140]に記載された実施例1と同様の方法で、視角制御システム8を作製した。
[比較例4]
 特許文献2(国際公開第2019/054099号)の段落[0110]~[0125]に記載された実施例1と同様の方法で、視角制御システム9を作製した。
 実施例1~5および比較例1~4で作製した視角制御システムについて、各光吸収異方性層の厚みおよび配向度、配向層/バリア層のレターデーション値、光吸収異方性層の合計厚み、二色性物質換算合計膜厚、配向度、ならびに、後述する評価結果を下記表1に示す。
[評価]
 実施例1~5および比較例1~4で作製した視角制御システムを、D65光源のバックライト上に載せ、視角制御フィルムの法線方向を極角0°とし、極角0°~88°までを1°間隔で、方位角0°~359°までは1°間隔で、透過率の測定を行った。なお、視角制御フィルムを載せない状態のD65光源の輝度を100%とし、視角制御システムを載せた状態の輝度から、透過率を算出した。
 視角制御フィルムの面内で、極角25°において、最も透過率が低い方位角の値を、遮光方向の斜め25度透過率とした。
 また、幅方向で10mm間隔で5点、長手方向で10mm間隔で5点の合計25点の透過率を測定し、最大値と最小値の差を、透過率バラツキとした。
 また、遮光方向の斜め25度での透過光の色味(着色の有無)を目視で観察した。
Figure JPOXMLDOC01-appb-T000047
 表1に示す結果から、光吸収異方性層の厚みの合計が4.0μm未満であり、二色性物質換算合計膜厚が1.10μm未満であると、遮光方向の斜め25度透過率が高くなることが分かった(比較例1)。
 また、厚みが3.0μm以下の光吸収異方性層を複数有しない場合には、遮光方向の斜め25度透過率が高くなることが分かった(比較例2)。
 また、二色性物質換算合計膜厚が1.10μm未満であり、複数の光吸収異方性層の間に位相差層を有している場合には、遮光方向の斜め25度透過率が高くなり、漏れ光に着色が生じることが分かった(比較例3)。
 また、複数の光吸収異方性層の間に位相差層を有している場合には、漏れ光に着色が生じることが分かった(比較例4)。
 一方、各層の厚みが3.0μm以下であり、合計の厚みが4.0μm以上となり、二色性物質換算合計膜厚が1.10μm以上となる、厚み方向と平行な吸収軸を有する複数の光吸収異方性層を有し、所定のレターデーションを満たす中間層を有する光学フィルムを用いると、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度で所定の方位角から視認した際に、透過率が低くなり、かつ、漏れ光の着色を抑制することができることが分かった(実施例1~4)。
 また、実施例3と実施例5との対比から、複数の光吸収異方性層の配向度が、いずれも0.93以上であること、面内方向に吸収軸を有する偏光子を積層させた積層体の法線方向から25°傾いた角度で所定の方位角から視認した際に、透過率がより低くなることが分かった。
 10 光学フィルター
 12 偏光子
 14 積層体
 80 ヘッドマウントディスプレイ
 82 導光板
 90 入射回折素子
 92 出射回折素子
 94 中間回折素子
 I 正面外光
 I 映像光
 I 斜め外光

Claims (6)

  1.  二色性物質を含有する複数の光吸収異方性層と、前記複数の光吸収異方性層の間に配置される少なくとも1層の中間層とを有する光学フィルムであって、
     前記複数の光吸収異方性層が、いずれも厚み方向と平行な吸収軸を有し、
     前記複数の光吸収異方性層の厚みが、いずれも3.0μm以下であり、
     前記複数の光吸収異方性層の厚みの合計が4.0μm以上であり、
     光吸収異方性層の質量に対する二色性物質の含有量の比率と光吸収異方性層の厚みとを乗じて得られる値を前記複数の光吸収異方性層で算出した合計値が1.10μm以上であり、
     前記中間層が、波長550nmにおける面内レターデーションが25nm以下であり、かつ、波長550nmにおける厚み方向のレターデーションの絶対値が25nm以下である層である、光学フィルム。
  2.  前記複数の光吸収異方性層の配向度が、いずれも0.93以上である、請求項1に記載の光学フィルム。
  3.  前記中間層が、配向層またはバリア層である、請求項1または2に記載の光学フィルム。
  4.  請求項1または2に記載の光学フィルムと、面内方向に吸収軸を有する偏光子とを有する、視角制御システム。
  5.  表示素子と、請求項4に記載の視角制御システムを有し、
     前記視角制御システムが、前記表示素子の少なくとも一方の主面に配置されている、画像表示装置。
  6.  前記視角制御システムが有する複数の光吸収異方性層が、いずれも前記視角制御システムが有する偏光子よりも視認側に配置されている、請求項5に記載の画像表示装置。
PCT/JP2023/009002 2022-03-15 2023-03-09 光学フィルムおよび視角制御システム WO2023176672A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039885 2022-03-15
JP2022-039885 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176672A1 true WO2023176672A1 (ja) 2023-09-21

Family

ID=88023269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009002 WO2023176672A1 (ja) 2022-03-15 2023-03-09 光学フィルムおよび視角制御システム

Country Status (1)

Country Link
WO (1) WO2023176672A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199656A1 (ja) * 2016-05-20 2017-11-23 富士フイルム株式会社 光学装置および表示装置
WO2018003380A1 (ja) * 2016-06-30 2018-01-04 富士フイルム株式会社 光学装置および表示装置
WO2021054099A1 (ja) * 2019-09-20 2021-03-25 富士フイルム株式会社 光学フィルタ、光学装置、および、ヘッドマウントディスプレイ
WO2021187379A1 (ja) * 2020-03-19 2021-09-23 富士フイルム株式会社 液晶表示装置
WO2021210359A1 (ja) * 2020-04-14 2021-10-21 富士フイルム株式会社 光学積層体、画像表示装置及びガラス複合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199656A1 (ja) * 2016-05-20 2017-11-23 富士フイルム株式会社 光学装置および表示装置
WO2018003380A1 (ja) * 2016-06-30 2018-01-04 富士フイルム株式会社 光学装置および表示装置
WO2021054099A1 (ja) * 2019-09-20 2021-03-25 富士フイルム株式会社 光学フィルタ、光学装置、および、ヘッドマウントディスプレイ
WO2021187379A1 (ja) * 2020-03-19 2021-09-23 富士フイルム株式会社 液晶表示装置
WO2021210359A1 (ja) * 2020-04-14 2021-10-21 富士フイルム株式会社 光学積層体、画像表示装置及びガラス複合体

Similar Documents

Publication Publication Date Title
KR102242224B1 (ko) 편광 소자, 원편광판 및 화상 표시 장치
JP7428785B2 (ja) 液晶表示装置
US12117680B2 (en) Optical film, viewing angle control system, and image display device
US20230035147A1 (en) Optical laminate, viewing angle control system, image display device
JP2024026152A (ja) 光吸収異方性層、積層体、光学フィルム、画像表示装置、バックライトモジュール
US20230314854A1 (en) Light absorption anisotropic film, viewing angle control system, and image display device
JP2024103795A (ja) 光学フィルム、光学積層体および画像表示装置
US20240142685A1 (en) Optical film, manufacturing method of light absorption anisotropic layer, and image display device
JP7553552B2 (ja) 視角制御システムおよび画像表示装置
JP7377833B2 (ja) 光学要素および表示装置
WO2019225468A1 (ja) 偏光子および画像表示装置
JP7367036B2 (ja) 組成物、偏光子層、積層体、および画像表示装置
US20230417971A1 (en) Light absorption anisotropic film, viewing angle control system, and image display device
JP7457739B2 (ja) 偏光素子、円偏光板および画像表示装置
WO2023176672A1 (ja) 光学フィルムおよび視角制御システム
WO2021153510A1 (ja) 液晶組成物、光吸収異方性膜、積層体および画像表示装置
WO2023054087A1 (ja) 円偏光板および自発光型表示装置
WO2022239685A1 (ja) 光吸収異方性層、光学フィルム、視野角制御システムおよび画像表示装置
JP7454695B2 (ja) 光配向膜用組成物、光配向膜および光学積層体
WO2022181414A1 (ja) 積層体、映り込み防止システム、および、画像表示装置
CN118829915A (zh) 光学膜及视角控制系统
WO2023053995A1 (ja) 光吸収異方性層、光学フィルム、視野角制御システムおよび画像表示装置
JP2023004859A (ja) 光学積層体、視野角制御システム及び画像表示装置
JP7376721B2 (ja) 液晶組成物、光学異方性層、積層体及び画像表示装置
WO2022215751A1 (ja) 光吸収異方性層、積層体、表示装置、赤外光照射装置及び赤外光センシング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507828

Country of ref document: JP

Kind code of ref document: A