WO2023176259A1 - 絶縁膜形成用感光性樹脂組成物 - Google Patents

絶縁膜形成用感光性樹脂組成物 Download PDF

Info

Publication number
WO2023176259A1
WO2023176259A1 PCT/JP2023/005180 JP2023005180W WO2023176259A1 WO 2023176259 A1 WO2023176259 A1 WO 2023176259A1 JP 2023005180 W JP2023005180 W JP 2023005180W WO 2023176259 A1 WO2023176259 A1 WO 2023176259A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photosensitive resin
formula
insulating film
resin composition
Prior art date
Application number
PCT/JP2023/005180
Other languages
English (en)
French (fr)
Inventor
有輝 星野
崇洋 坂口
秀則 石井
貴文 遠藤
浩司 荻野
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023528273A priority Critical patent/JP7332076B1/ja
Priority to CN202380010276.5A priority patent/CN117099046A/zh
Priority to KR1020237023964A priority patent/KR102628683B1/ko
Priority to JP2023086262A priority patent/JP2023138499A/ja
Publication of WO2023176259A1 publication Critical patent/WO2023176259A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a photosensitive resin composition for forming an insulating film, an insulating film obtained from the composition, a photosensitive resist film using the composition, a method for producing a substrate with a cured relief pattern, and a semiconductor having a cured relief pattern. Regarding equipment.
  • polyimide resins which have excellent heat resistance, electrical properties, and mechanical properties, have been used as insulating materials for electronic components, and for passivation films, surface protection films, interlayer insulation films, etc. of semiconductor devices.
  • those provided in the form of photosensitive polyimide precursors can easily form a heat-resistant relief pattern coating by applying, exposing, developing, and curing the precursor to thermal imidization. be able to.
  • Such a photosensitive polyimide precursor has the characteristic that it enables a significant reduction in process steps compared to conventional non-photosensitive polyimide resins.
  • Patent Document 1 and Patent Document 2 propose a photosensitive resin composition containing a polyamic acid or polyimide using a diamine having a (meth)acryloyloxy group.
  • passivation films, surface protection films, interlayer insulating films, etc. of semiconductor devices are made thicker and have higher elastic modulus, stress increases and semiconductor wafers become more warped, causing problems during transportation and wafer fixation. may occur. Therefore, the development of polyimide resins with low residual stress is desired.
  • An example of a method for reducing residual stress in polyimide resin is to make the molecular chains of polyimide into a rigid skeleton in order to bring the coefficient of thermal expansion of polyimide closer to that of a silicon wafer (for example, Patent Document 3). .
  • the photosensitive resin used to obtain a cured relief pattern is a positive type, in which the photosensitive resin in the exposed area is dissolved in a developer through exposure and development, leaving the photosensitive resin in the unexposed area, and the photosensitive resin in the unexposed area.
  • positive type in which the photosensitive resin in the exposed area is dissolved in a developer through exposure and development, leaving the photosensitive resin in the unexposed area, and the photosensitive resin in the unexposed area.
  • negative type in which the photosensitive resin is dissolved in the developer, and the photosensitive resin in the exposed areas remains.
  • negative type is inferior in resolution to positive type, it is easy to thicken and form a film and has excellent reliability, and is used in the manufacture of semiconductor devices that require such characteristics.
  • an object of the present invention is to provide a photosensitive resin composition for forming an insulating film, which has a low dielectric loss tangent in the resulting insulating film, a short development time in organic solvent development, and low residual stress.
  • An object of the present invention is to provide an insulating film obtained from the invention, a photosensitive resist film using the composition, a method for producing a substrate with a cured relief pattern, and a semiconductor device having a cured relief pattern.
  • the present inventors have found that by incorporating a specific polymer into a photosensitive resin composition for forming an insulating film, the resulting insulating film can have a low dielectric loss tangent.
  • the present inventors have discovered that it is possible to obtain a photosensitive resin composition for forming an insulating film, which has a short development time in organic solvent development and has low residual stress, and has completed the present invention.
  • [1] Contains a polymer of at least one of polyimide, polyamic acid, and polyamic acid ester, and a solvent, The polymer has a photopolymerizable group, an aromatic group, and an alkyl group having 5 or more carbon atoms, A photosensitive resin composition for forming an insulating film.
  • the polyimide is the following polyimide (1)
  • the polyamic acid is the following polyamic acid (2)
  • the polyamic acid ester is the following polyamic acid ester (3)
  • Polyimide (1) A polyimide having structural units represented by the following formula (1-a), the following formula (1-b), and the following formula (1-c).
  • Polyamic acid (2) A polyamic acid having structural units represented by the following formula (2), the following formula (1-b), and the following formula (1-c).
  • Polyamic acid ester (3) at least one of the following polyamic acid esters (3a) to (3b).
  • Polyamic acid ester (3a) A polyamic acid ester having structural units represented by the following formula (3-a) and the following formula (1-b).
  • Polyamic acid ester (3b) A polyamic acid ester having structural units represented by the following formula (3-b), the following formula (1-b), and the following formula (1-c).
  • Ar 1 represents a tetravalent organic group.
  • X represents a divalent aromatic group having an alkyl group having 5 or more carbon atoms.
  • Y represents a divalent aromatic group having a photopolymerizable group.
  • Ar 2 represents a tetravalent organic group.
  • Ar 3 represents a tetravalent organic group, and L 1 and L 2 each independently represent a monovalent organic group having a photopolymerizable group.
  • Ar 4 represents a tetravalent organic group, and R 1 and R 2 each independently represent a monovalent organic group.
  • X v2 to X v5 each independently represent -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, - Represents NHCO-, -CON(CH 3 )-, -NH-, -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R v2 to R v5 each independently represent an alkyl group having 5 to 20 carbon atoms.
  • X a is a single bond, -O-, -NH-, -O-(CH 2 ) m -O- (m represents an integer from 1 to 6), -C( CH 3 ) 2 -, -CO-, -(CH 2 ) m - (m represents an integer from 1 to 6), -SO 2 -, -O-C(CH 3 ) 2 -, -CO-( CH 2 ) m - (m represents an integer from 1 to 6), -NH-(CH 2 ) m - (m represents an integer from 1 to 6), -SO 2 -(CH 2 ) m - (m represents an integer from 1 to 6), -CONH-(CH 2 ) m - (m represents an integer from 1 to 6), -CONH-(CH 2 ) m -NHCO- (m represents 1 ), -COO-(CH 2 ) m -OCO-(m represents an integer of 1 to 6),
  • X p1 and X p2 each independently represent -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, -NHCO-, -CON(CH 3 )-, -NH- , -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R 1a and R 1b each independently represent an alkyl group having 5 to 20 carbon atoms.
  • k1 and k2 each independently represent an integer from 0 to 2. In formulas (V-1) to (V-6), * represents a bond.
  • Y represents a divalent organic group represented by the following formula (9-a)
  • L 1 and L 2 each independently represent a monovalent organic group represented by the following formula (9-b)
  • V 1 represents a direct bond, ether bond, ester bond, amide bond, urethane bond, or urea bond
  • W 1 represents an oxygen atom or NH group
  • R 15 represents a direct bond, or represents an alkylene group having 2 to 6 carbon atoms which may be substituted with a hydroxyl group
  • R 16 represents a hydrogen atom or a methyl group
  • * represents a bond.
  • W 2 represents an oxygen atom or NH group
  • R 17 represents a direct bond or an alkylene group having 2 to 6 carbon atoms which may be substituted with a hydroxyl group
  • R 18 represents Represents a hydrogen atom or a methyl group
  • * represents a bond.
  • [5] The photosensitive resin composition for forming an insulating film according to [4], wherein V 1 in the formula (9-a) represents an ester bond, and W 1 represents an oxygen atom.
  • R 15 in the formula (9-a) represents a 1,2-ethylene group.
  • a photosensitive resist film comprising a base film, a photosensitive resin layer formed from the photosensitive resin composition for forming an insulating film according to any one of [1] to [9], and a cover film.
  • a method of manufacturing a substrate with a cured relief pattern comprising: [13] The method for manufacturing a substrate with a cured relief pattern according to [12], wherein the developer used in the development is an organic solvent.
  • a cured relief patterned substrate produced by the method described in [12] or [13].
  • a semiconductor device comprising a semiconductor element and a cured film provided above or below the semiconductor element, the cured film being a photosensitive material for forming an insulating film according to any one of [1] to [9].
  • a semiconductor device that is a cured relief pattern formed from a synthetic resin composition.
  • a photosensitive resin composition for forming an insulating film which has a low dielectric loss tangent, a short development time in organic solvent development, and low residual stress in the obtained insulating film, and an insulating film obtained from the composition.
  • a photosensitive resist film using the composition, a method for manufacturing a substrate with a cured relief pattern, and a semiconductor device having a cured relief pattern are obtained.
  • the photosensitive resin composition for forming an insulating film of the present invention contains at least a polymer and a solvent, and further contains other components as necessary.
  • the polymer is at least one of polyimide, polyamic acid, and polyamic acid ester.
  • the polymer may be referred to as a "specific polymer”.
  • Certain polymers have photopolymerizable groups.
  • Certain polymers have aromatic groups.
  • Certain polymers have alkyl groups containing 5 or more carbon atoms.
  • the photosensitive resin composition for forming an insulating film of the present invention is as follows.
  • a specific polymer has a photopolymerizable group
  • photosensitivity is imparted to a resin composition containing the specific polymer.
  • the specific polymer has an alkyl group having 5 or more carbon atoms and an aromatic group
  • the dielectric loss tangent of the insulating film becomes low.
  • the specific polymer has an alkyl group having 5 or more carbon atoms and an aromatic group
  • the development time in organic solvent development can be shortened.
  • a specific polymer has an alkyl group having 5 or more carbon atoms, residual stress can be reduced.
  • polyimide the following polyimide (1) is preferred.
  • polyamic acid the following polyamic acid (2) is preferable.
  • polyamic acid ester the following polyamic acid ester (3) is preferable.
  • Polyimide (1) is a polyimide having structural units represented by the following formula (1-a), the following formula (1-b), and the following formula (1-c).
  • the polyamic acid (2) is a polyamic acid having structural units represented by the following formula (2), the following formula (1-b), and the following formula (1-c).
  • the polyamic acid ester (3) is at least one of the following polyamic acid esters (3a) to (3b).
  • the polyamic acid ester (3a) is a polyamic acid ester having structural units represented by the following formula (3-a) and the following formula (1-b).
  • the polyamic acid ester (3b) is a polyamic acid ester having structural units represented by the following formula (3-b), the following formula (1-b), and the following formula (1-c).
  • Ar 1 represents a tetravalent organic group.
  • X represents a divalent aromatic group having an alkyl group having 5 or more carbon atoms.
  • Y represents a divalent aromatic group having a photopolymerizable group.
  • Ar 2 represents a tetravalent organic group.
  • Ar 3 represents a tetravalent organic group, and L 1 and L 2 each independently represent a monovalent organic group having a photopolymerizable group.
  • Ar 4 represents a tetravalent organic group, and R 1 and R 2 each independently represent a monovalent organic group.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent a tetravalent organic group.
  • the tetravalent organic group is not particularly limited, but a tetravalent organic group having two or more aromatic rings is preferable since the dielectric loss tangent of the insulating film is lowered.
  • the number of aromatic rings possessed by a tetravalent organic group having two or more aromatic rings is not particularly limited as long as it is two or more, but may be four or more, for example.
  • the upper limit of the number of aromatic rings is not particularly limited, but may be, for example, 8 or less, or 6 or less.
  • polycyclic aromatic rings formed by fused two or more aromatic rings such as naphthalene rings and anthracene rings, are counted as one aromatic ring. . Therefore, a naphthalene ring counts as one aromatic ring.
  • biphenyl rings are not fused rings and are therefore counted as two aromatic rings.
  • the perylene ring is regarded as a structure formed by bonding two naphthalene rings, and is counted as two aromatic rings. Examples of the aromatic ring include aromatic hydrocarbon rings and aromatic heterocycles.
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 preferably represent a tetravalent organic group represented by the following formula (4).
  • X 1 and X 2 are each independently a direct bond, ether bond (-O-), ester bond (-COO-), amide bond (-NHCO-), urethane bond (-NHCOO-) , represents a urea bond (-NHCONH-), a thioether bond (-S-) or a sulfonyl bond (-SO 2 -).
  • R a1 and R a2 each independently represent an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Z 1 represents a divalent organic group represented by the following formula (5-a), the following formula (5-b), the following formula (5-c), or the following formula (5-d).
  • n1 and n2 each independently represent an integer of 0 to 3.
  • the plurality of R a1s may be the same or different.
  • the plurality of R a2s may be the same or different.
  • * represents a bond.
  • Examples of the optionally substituted alkyl group having 1 to 6 carbon atoms for R a1 and R a2 in formula (4) include an alkyl group having 1 to 6 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
  • an alkyl group and an alkylene group may be linear, branched, or cyclic, unless the structure is specifically mentioned. It may be a combination of two or more of the following.
  • substituents on the optionally substituted alkyl group having 1 to 6 carbon atoms include a halogen atom, a hydroxy group, a mercapto group, a carboxy group, a cyano group, a formyl group, a haloformyl group, a sulfo group, an amino group, Examples include nitro group, nitroso group, oxo group, thioxy group, and alkoxy group having 1 to 6 carbon atoms.
  • “1 to 6 carbon atoms" in "optionally substituted alkyl group having 1 to 6 carbon atoms” refers to the number of carbon atoms in the "alkyl group” excluding substituents. Further, the number of substituents is not particularly limited.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms, m 1 is 0 to 4 represents an integer. When m 1 is 2 or more, R 3 may be the same or different.
  • Z 2 represents a direct bond or a divalent organic group represented by the following formula (6-a) or the following formula (6-b), and R 4 and R 5 are each independently represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms, and m 2 and m 3 each independently represent an integer of 0 to 4. represent.
  • R 4 may be the same or different.
  • R 5 may be the same or different.
  • R 6 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms
  • m 4 represents an alkoxy group having 0 to 6 carbon atoms. Represents an integer. When m 4 is 2 or more, R 6 may be the same or different.
  • Z 3 represents a direct bond or a divalent organic group represented by the following formula (6-a) or the following formula (6-b). * represents a bond. ]
  • R 7 and R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom.
  • R 9 and R 10 each independently represent an optionally substituted alkylene group having 1 to 6 carbon atoms or an optionally substituted arylene group having 6 to 12 carbon atoms. represent. * represents a bond.
  • Z 1 preferably represents a divalent organic group represented by formula (5-b).
  • Z 2 in formula (5-b) preferably represents a direct bond.
  • R 4 and R 5 in formula (5-b) preferably represent a methyl group.
  • Examples of the alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom in R 7 and R 8 include an alkyl group having 1 to 6 carbon atoms, and a halogenated alkyl group having 1 to 6 carbon atoms. Examples include. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group. Examples of the halogen atom in the halogenated alkyl group having 1 to 6 carbon atoms include fluorine atom, chlorine atom, bromine atom, and iodine atom. The halogenated alkyl group having 1 to 6 carbon atoms may be partially or completely halogenated.
  • Examples of the substituent in the optionally substituted alkylene group having 1 to 6 carbon atoms in R 9 and R 10 include a halogen atom, a hydroxy group, a mercapto group, a carboxy group, a cyano group, a formyl group, a haloformyl group, Examples include a sulfo group, an amino group, a nitro group, a nitroso group, an oxo group, a thioxy group, and an alkoxy group having 1 to 6 carbon atoms.
  • Examples of the optionally substituted alkylene group having 1 to 6 carbon atoms include an alkylene group having 1 to 6 carbon atoms and a halogenated alkylene group having 1 to 6 carbon atoms.
  • Examples of the alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, propylene group, and butylene group. Note that "1 to 6 carbon atoms" in "an optionally substituted alkylene group having 1 to 6 carbon atoms" refers to the number of carbon atoms in the "alkylene group” excluding substituents. Further, the number of substituents is not particularly limited.
  • substituents for the optionally substituted arylene group having 6 to 10 carbon atoms in R 9 and R 10 include a halogen atom, an optionally halogenated alkyl group having 1 to 6 carbon atoms, and a halogen atom.
  • substituents for the optionally substituted arylene group having 6 to 10 carbon atoms in R 9 and R 10 include a halogen atom, an optionally halogenated alkyl group having 1 to 6 carbon atoms, and a halogen atom.
  • Examples include alkoxy groups having 1 to 6 carbon atoms which may be Note that halogenation may be done partially or completely.
  • the arylene group include a phenylene group and a naphthylene group.
  • the "6 to 10 carbon atoms" in the "optionally substituted arylene group having 6 to 10 carbon atoms" refers to the number of carbon atoms in the "arylene group” excluding substituents. Further, the number of substituents is not
  • Examples of the divalent organic group represented by formula (6-a) include divalent organic groups represented by the following formula.
  • * represents a bond.
  • Examples of the divalent organic group represented by formula (6-b) include divalent organic groups represented by the following formula.
  • R 31 to R 33 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms optionally substituted with a halogen atom, or a carbon atom 1 to 6 optionally substituted with a halogen atom. represents an alkoxy group.
  • n31 represents an integer from 0 to 5.
  • n32 and n33 each independently represent an integer from 0 to 4.
  • the plurality of R 31s may be the same or different.
  • the plurality of R 32s may be the same or different.
  • the plurality of R 33s the plurality of R 33s may be the same or different.
  • * represents a bond.
  • alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom in R 31 to R 33 include, for example, an alkyl group having 1 to 6 carbon atoms, a halogen having 1 to 6 carbon atoms; Examples include alkyl groups. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group. Examples of the halogen atom in the halogenated alkyl group having 1 to 6 carbon atoms include fluorine atom, chlorine atom, bromine atom, and iodine atom.
  • the halogenated alkyl group having 1 to 6 carbon atoms may be partially or completely halogenated.
  • Specific examples of the alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom in R 31 to R 33 include an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom. The following are based on:
  • Examples of the tetravalent organic group having two or more aromatic rings include a tetravalent organic group represented by the following formula.
  • * represents a bond.
  • X represents a divalent aromatic group having an alkyl group having 5 or more carbon atoms.
  • the alkyl group having 5 or more carbon atoms may be directly bonded to the aromatic ring of the divalent aromatic group, or may be bonded via another linking group.
  • the number of carbon atoms in the alkyl group is not particularly limited as long as it is 5 or more, and may be, for example, 40 or less, 35 or less, or 30 or less.
  • the number of carbon atoms in the alkyl group is preferably 8 or more and 40 or less, more preferably 10 or more and 35 or less, particularly preferably 12 or more and 30 or less.
  • the alkyl group may be linear, branched, cyclic, or a combination of two or more of these.
  • X preferably represents a divalent aromatic group represented by any one of formulas (V-1) to (V-6).
  • V-1 X v1 represents -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R v1 has 5 carbon atoms ⁇ 20 alkyl groups.
  • X v2 to X v5 each independently represent -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, - Represents NHCO-, -CON(CH 3 )-, -NH-, -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R v2 to R v5 each independently represent an alkyl group having 5 to 20 carbon atoms.
  • X a is a single bond, -O-, -NH-, -O-(CH 2 ) m -O- (m represents an integer from 1 to 6), -C( CH 3 ) 2 -, -CO-, -(CH 2 ) m - (m represents an integer from 1 to 6), -SO 2 -, -O-C(CH 3 ) 2 -, -CO-( CH 2 ) m - (m represents an integer from 1 to 6), -NH-(CH 2 ) m - (m represents an integer from 1 to 6), -SO 2 -(CH 2 ) m - (m represents an integer from 1 to 6), -CONH-(CH 2 ) m - (m represents an integer from 1 to 6), -CONH-(CH 2 ) m -NHCO- (m represents 1 ), -COO-(CH 2 ) m -OCO-(m represents an integer of 1 to 6),
  • X p1 and X p2 each independently represent -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, -NHCO-, -CON(CH 3 )-, -NH- , -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R 1a and R 1b each independently represent an alkyl group having 5 to 20 carbon atoms.
  • k1 and k2 each independently represent an integer from 0 to 2. In formulas (V-1) to (V-6), * represents a bond. )
  • X v1 to X v5 preferably represent -O-.
  • X p1 and X p2 preferably represent -CH 2 -O-. It is preferable that X a represents a single bond.
  • Y represents a divalent aromatic group having a photopolymerizable group.
  • the photopolymerizable group include a radically polymerizable group, a cationic polymerizable group, and an anionic polymerizable group.
  • radically polymerizable groups are preferred.
  • the radically polymerizable group include an acryloyl group, a methacryloyl group, a propenyl ether group, a vinyl ether group, and a vinyl group.
  • Examples of the aromatic ring in the divalent aromatic group having a photopolymerizable group include a benzene ring, a naphthalene ring, an anthracene ring, and the like.
  • the divalent aromatic group having a photopolymerizable group is, for example, a residue obtained by removing two amino groups from an aromatic diamine compound having a photopolymerizable group.
  • a divalent organic group represented by the following formula (9-a) is preferable.
  • V 1 is a direct bond, ether bond (-O-), ester bond (-COO-), amide bond (-NHCO-), urethane bond (-NHCOO-), or urea bond (-NHCONH-)
  • W 1 represents an oxygen atom or NH group
  • R 15 represents a direct bond or an alkylene group having 2 to 6 carbon atoms which may be substituted with a hydroxyl group
  • R 16 represents hydrogen. It represents an atom or a methyl group
  • * represents a bond.
  • the two bonds in formula (9-a) are, for example, bonds that bond to a nitrogen atom.
  • examples of the alkylene group having 2 to 6 carbon atoms which may be substituted with a hydroxyl group include a 1,1-ethylene group, a 1,2-ethylene group, a 1,2-propylene group, a 1, 3-propylene group, 1,4-butylene group, 1,2-butylene group, 2,3-butylene group, 1,2-pentylene group, 2,4-pentylene group, 1,2-hexylene group, 1, 2-cyclopropylene group, 1,2-cyclobutylene group, 1,3-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, at least some of these hydrogen atoms are hydroxyl groups
  • Examples include alkylene groups substituted with (eg, 2-hydroxy-1,3-propylene group).
  • V 1 represents an ester bond (-COO-).
  • W 1 represents an oxygen atom.
  • R 15 represents a 1,2-ethylene group.
  • divalent organic group represented by formula (9-a) examples include divalent organic groups represented by the following formula.
  • * represents a bond. The two bonds are located, for example, at meta positions relative to the substituent having a photopolymerizable group.
  • L 1 and L 2 each independently represent a monovalent organic group having a photopolymerizable group.
  • the photopolymerizable group include a radically polymerizable group, a cationic polymerizable group, and an anionic polymerizable group.
  • radically polymerizable groups are preferred.
  • the radically polymerizable group include an acryloyl group, a methacryloyl group, a propenyl ether group, a vinyl ether group, and a vinyl group.
  • a monovalent organic group represented by the following formula (9-b) is preferable.
  • W 2 represents an oxygen atom or NH group
  • R 17 represents a direct bond or an alkylene group having 2 to 6 carbon atoms which may be substituted with a hydroxyl group
  • R 18 represents Represents a hydrogen atom or a methyl group
  • * represents a bond.
  • W 2 represents an oxygen atom.
  • R 17 represents a 1,2-ethylene group.
  • R 1 and R 2 each independently represent a monovalent organic group.
  • monovalent organic groups include alkyl groups having 1 to 30 carbon atoms.
  • the alkyl group having 1 to 30 carbon atoms include a linear alkyl group, a branched alkyl group, and an alicyclic alkyl group.
  • linear alkyl groups having 1 to 30 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group (amyl group), hexyl group, heptyl group, octyl group, nonyl group, and decyl group.
  • undecyl group dodecyl group (lauryl group), tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (palmityl group), heptadecyl group (margaryl group), octadecyl group (stearyl group), nonadecyl group, icosyl group (arakyl group), henicosyl group, docosyl group (behenyl group), tricosyl group, tetracosyl group (lignoseryl group), pentacosyl group, hexacosyl group, heptacyl group, and the like.
  • Examples of the branched alkyl group having 1 to 30 carbon atoms include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group, sec-isoamyl group, and isohexyl group.
  • neohexyl group 4-methylhexyl group, 5-methylhexyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, 2-ethylpentyl group, heptane-3-yl group, heptane-4-yl group, 4-methylhexan-2-yl group, 3-methylhexan-3-yl group, 2,3-dimethylpentan-2-yl group, 2,4-dimethylpentan-2-yl group yl group, 4,4-dimethylpentan-2-yl group, 6-methylheptyl group, 2-ethylhexyl group, octan-2-yl group, 6-methylheptan-2-yl group, 6-methyloctyl group, 3 , 5,5-trimethylhexyl group, nonan-4-yl group, 2,6-dimethylh
  • Examples of the alicyclic alkyl group having 1 to 30 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 4-tert-butylcyclohexyl group, 1,6-dimethylcyclohexyl group, and menthyl group.
  • cycloheptyl group, cyclooctyl group bicyclo[2.2.1]heptan-2-yl group, bornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclo[5.2.1.0 2 ,6 ]decane-4-yl group, tricyclo[5.2.1.0 2,6 ]decane-8-yl group, and cyclododecyl group.
  • the polyamic acid ester (3) may be the following polyamic acid ester (3c).
  • Polyamic acid ester (3c) A polyamic acid ester having structural units represented by the above formula (3-b), the following formula (3-c), and the above formula (1-b).
  • the tetravalent organic group in Ar 4 represents a tetravalent organic group having two or more aromatic rings.
  • Ar 5 represents a tetravalent organic group
  • L 3 and L 4 each independently represent a monovalent organic group having a photopolymerizable group.
  • Examples of the monovalent organic group having a photopolymerizable group in L 3 and L 4 include the monovalent organic group having a photopolymerizable group exemplified in the explanation of L 1 and L 2 .
  • Ar 5 represents a tetravalent organic group.
  • the tetravalent organic group is not particularly limited, but includes, for example, a tetravalent organic group other than a tetravalent organic group having two or more aromatic rings. Examples of such a tetravalent organic group include a tetravalent organic group represented by the following formula. In the formula, * represents a bond.
  • the specific polymer may have a tetravalent organic group other than the tetravalent organic groups exemplified above.
  • a specific polymer may have divalent organic groups other than X and Y.
  • a divalent organic group for example, a divalent organic group having three or more aromatic rings is preferable, since a lower dielectric loss tangent can be obtained in the resulting insulating film.
  • the divalent organic group having three or more aromatic rings is, for example, a residue obtained by removing two amino groups from an aromatic diamine compound having three or more aromatic rings.
  • the number of aromatic rings in a divalent organic group having three or more aromatic rings is not particularly limited as long as it is three or more, but may be, for example, four or more.
  • the upper limit of the number of aromatic rings is not particularly limited, but may be, for example, 8 or less, or 6 or less.
  • the divalent organic group having three or more aromatic rings is not particularly limited, but is preferably a divalent organic group represented by the following formula (13).
  • X 21 and X 22 are each independently a direct bond, an ether bond (-O-), an ester bond (-COO-), an amide bond (-NHCO-), a urethane bond (-NHCOO-) , represents a urea bond (-NHCONH-), a thioether bond (-S-) or a sulfonyl bond (-SO 2 -).
  • R 21 and R 22 each independently represent an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Y 20 represents a divalent organic group represented by the above formula (5-a), the above formula (5-b) or the above formula (5-c).
  • n21 and n22 each independently represent an integer of 0 to 4.
  • the plurality of R 21s may be the same or different.
  • the plurality of R 22s may be the same or different.
  • * represents a bond.
  • Examples of the optionally substituted alkyl group having 1 to 6 carbon atoms in R 21 and R 22 in formula (13) include an alkyl group having 1 to 6 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
  • an alkyl group and an alkylene group may be linear, branched, or cyclic, unless the structure is specifically mentioned. It may be a combination of two or more of the following.
  • substituents on the optionally substituted alkyl group having 1 to 6 carbon atoms include a halogen atom, a hydroxy group, a mercapto group, a carboxy group, a cyano group, a formyl group, a haloformyl group, a sulfo group, an amino group, Examples include nitro group, nitroso group, oxo group, thioxy group, and alkoxy group having 1 to 6 carbon atoms.
  • “1 to 6 carbon atoms" in "optionally substituted alkyl group having 1 to 6 carbon atoms” refers to the number of carbon atoms in the "alkyl group” excluding substituents. Further, the number of substituents is not particularly limited.
  • Examples of the divalent organic group having three or more aromatic rings include a divalent organic group represented by the following formula.
  • * represents a bond.
  • divalent organic groups examples include divalent organic groups represented by the following formulas. These divalent organic groups are, for example, residues obtained by removing two amino groups from diamine. In the formula, * represents a bond.
  • Polyimide is, for example, an imidized product of polyamic acid, which is a reaction product of a diamine component and a tetracarboxylic acid derivative.
  • the imidization rate of polyimide does not need to be 100%.
  • the imidization rate of polyimide may be, for example, 90% or more, 95% or more, or 98% or more.
  • Polyamic acid is, for example, a reaction product of a diamine component and a tetracarboxylic acid derivative.
  • a polyamic acid ester is, for example, a reaction product of a diamine component and a tetracarboxylic acid diester.
  • tetracarboxylic acid derivatives examples include tetracarboxylic acids, tetracarboxylic diesters, tetracarboxylic dihalides, and tetracarboxylic dianhydrides.
  • the tetracarboxylic acid derivative preferably includes a tetracarboxylic acid derivative having two or more aromatic rings.
  • the tetravalent organic groups Ar 1 in formula (1-a), Ar 2 in formula (2), Ar 3 in formula (3-a), and Ar 4 in formula (3-b) are For example, it is preferably a residue obtained by removing a carboxyl group, a carboxylic acid ester group, or a carboxylic dianhydride group from a tetracarboxylic acid derivative having two or more aromatic rings.
  • a tetracarboxylic dianhydride represented by the following formula (4-Z) is preferable.
  • X 1 and X 2 each independently represent a direct bond, ether bond (-O-), ester bond (-COO-), amide bond (-NHCO-), urethane bond (-NHCOO-) -), a urea bond (-NHCONH-), a thioether bond (-S-), or a sulfonyl bond (-SO 2 -).
  • R a1 and R a2 each independently represent an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Z 1 represents a divalent organic group represented by the above formula (5-a), the above formula (5-b), the above formula (5-c) or the above formula (5-d).
  • n1 and n2 each independently represent an integer of 0 to 3.
  • the plurality of R a1s may be the same or different.
  • the plurality of R a2s may be the same or different.
  • the diamine component preferably includes an aromatic diamine compound having an alkyl group having 5 or more carbon atoms.
  • the diamine component preferably contains an aromatic diamine compound having a photopolymerizable group.
  • the divalent aromatic group having an alkyl group having 5 or more carbon atoms, which is X in formula (1-b), is, for example, two amino groups from an aromatic diamine compound having an alkyl group having 5 or more carbon atoms. This is the residue excluding .
  • the divalent aromatic group having a photopolymerizable group, which is Y in formula (1-c) is, for example, a residue obtained by removing two amino groups from an aromatic diamine compound having a photopolymerizable group.
  • diamine compounds represented by the following formulas (V-1a) to (V-6a) are preferred.
  • X v1 represents -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R v1 has 5 carbon atoms ⁇ 20 alkyl groups.
  • X v2 to X v5 each independently represent -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, - Represents NHCO-, -CON(CH 3 )-, -NH-, -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R v2 to R v5 each independently represent an alkyl group having 5 to 20 carbon atoms.
  • X a is a single bond, -O-, -NH-, -O-(CH 2 ) m -O- (m represents an integer from 1 to 6), -C( CH 3 ) 2 -, -CO-, -(CH 2 ) m - (m represents an integer from 1 to 6), -SO 2 -, -O-C(CH 3 ) 2 -, -CO-( CH 2 ) m - (m represents an integer from 1 to 6), -NH-(CH 2 ) m - (m represents an integer from 1 to 6), -SO 2 -(CH 2 ) m - (m represents an integer from 1 to 6), -CONH-(CH 2 ) m - (m represents an integer from 1 to 6), -CONH-(CH 2 ) m -NHCO- (m represents 1 ), -COO-(CH 2 ) m -OCO-(m represents an integer of 1 to 6
  • X p1 and X p2 each independently represent -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, -NHCO-, -CON(CH 3 )-, -NH- , -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R 1a and R 1b each independently represent an alkyl group having 5 to 20 carbon atoms.
  • k1 and k2 each independently represent an integer from 0 to 2.
  • aromatic diamine compounds having an alkyl group having 5 or more carbon atoms are illustrated below.
  • an aromatic diamine compound represented by the following formula (9-A) is preferable.
  • V 1 , W 1 , R 15 , and R 16 in formula (9-A) have the same meanings as V 1 , W 1 , R 15 , and R 16 in formula (9-a), respectively.
  • the ratio of the aromatic tetracarboxylic acid derivative having two or more aromatic rings to all the tetracarboxylic acid derivatives constituting the polyimide is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is 20 mol%. It is preferably from 100 mol% to 40 mol%, more preferably from 40 mol% to 100 mol%.
  • the ratio of the aromatic tetracarboxylic acid derivative having two or more aromatic rings to all the tetracarboxylic acid derivatives constituting the polyamic acid is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is 20 mol.
  • the ratio of the aromatic tetracarboxylic acid derivative having two or more aromatic rings to all the tetracarboxylic acid derivatives constituting the polyamic acid ester is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, 20
  • the amount is preferably from mol% to 100 mol%, more preferably from 40 mol% to 100 mol%.
  • the ratio of the aromatic diamine compound having an alkyl group having 5 or more carbon atoms to all the diamine components constituting the polyimide is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is 5 mol % to 80 mol %. %, more preferably 10 mol% to 70 mol%, particularly preferably 15 mol% to 65 mol%.
  • the ratio of the aromatic diamine compound having an alkyl group having 5 or more carbon atoms to the total diamine components constituting the polyamic acid is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, from 5 mol % to 80 mol %.
  • the amount is preferably mol %, more preferably 10 mol % to 70 mol %, and particularly preferably 15 mol % to 65 mol %.
  • the ratio of the aromatic diamine compound having an alkyl group having 5 or more carbon atoms to the total diamine components constituting the polyamic acid ester is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, from 5 mol% to It is preferably 80 mol%, more preferably 10 mol% to 70 mol%, particularly preferably 15 mol% to 65 mol%.
  • the ratio of the aromatic diamine compound having a photopolymerizable group to all the diamine components constituting the polyimide is not particularly limited, but from the viewpoint of obtaining sufficient photosensitivity, it is preferably 10 mol% to 90 mol%, and 15 mol%. % to 75 mol% is more preferable, and 20 mol% to 60 mol% is particularly preferable.
  • the ratio of the aromatic diamine compound having a photopolymerizable group to all the diamine components constituting the polyamic acid is not particularly limited, but from the viewpoint of obtaining sufficient photosensitivity, it is preferably 10 mol% to 90 mol%, and 15 More preferably mol% to 75 mol%, particularly preferably 20 mol% to 60 mol%.
  • the ratio of the aromatic diamine compound having a photopolymerizable group to the total diamine components constituting the polyamic acid ester is not particularly limited, but from the viewpoint of obtaining sufficient photosensitivity, it is preferably 10 mol% to 90 mol%, More preferably 15 mol% to 75 mol%, particularly preferably 20 mol% to 60 mol%.
  • Molar ratio of the aromatic diamine compound (A) having a photopolymerizable group and the aromatic diamine compound (B) having an alkyl group having 5 or more carbon atoms in polyimide, polyamic acid, and polyamic acid ester (A:B ) is not particularly limited, but is preferably from 3:1 to 0.3:1, more preferably from 2:1 to 0.5:1, particularly preferably from 1.5:1 to 0.5:1.
  • the content is preferably 30 mol% or more, more preferably 40 mol% or more, and particularly preferably 50 mol% or more.
  • the upper limit of the total molar ratio is not particularly limited, but the total molar ratio may be 100 mol% or less, or 90 mol% or less.
  • the ratio of the aromatic diamine compound having three or more aromatic rings to the total diamine components constituting the polyamic acid is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is 5 mol % to 60 mol %. %, more preferably 10 mol% to 55 mol%, particularly preferably 15 mol% to 50 mol%.
  • the weight average molecular weight of the specific polymer is not particularly limited, but the weight average molecular weight measured in terms of polyethylene oxide by gel permeation chromatography (hereinafter abbreviated as GPC) is 5,000 to 5,000. It is preferably 100,000, more preferably 7,000 to 50,000, even more preferably 10,000 to 50,000, and particularly preferably 10,000 to 40,000.
  • GPC gel permeation chromatography
  • the method for producing a specific polymer is not particularly limited, and includes, for example, a known method in which a diamine component and a tetracarboxylic acid derivative are reacted to obtain a polyamic acid, a polyamic acid ester, or a polyimide.
  • Polyamic acid, polyamic acid ester, and polyimide can be synthesized by a known method as described in WO2013/157586, for example.
  • polyamic acid or polyamic acid ester is carried out, for example, by reacting a diamine component and a tetracarboxylic acid derivative in a solvent (condensation polymerization).
  • solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropionamide, Examples include N,N-dimethylisobutyric acid amide, dimethyl sulfoxide, and 1,3-dimethyl-2-imidazolidinone. If the polymer has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] may be used. The solvents shown can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Furthermore, even a solvent that does not dissolve polyamic acid or polyamic acid ester may be mixed with the above solvent and used as long as the polyamic acid or polyamic acid ester does not precipitate.
  • the reaction can be carried out at any concentration, preferably 1% by mass to 50% by mass, more preferably 5% to 30% by mass. It is. It is also possible to carry out the reaction at a high concentration in the initial stage and then add a solvent.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative is preferably 0.8 to 1.2. As in normal polycondensation reactions, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid or polyamic acid ester produced.
  • thermal polymerization inhibitor When reacting the diamine component and the tetracarboxylic acid derivative, a thermal polymerization inhibitor may be added to the reaction system in order to avoid polymerization of the photopolymerizable group.
  • thermal polymerization inhibitors include hydroquinone, 4-methoxyphenol, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, and glycol ether.
  • the amount of the thermal polymerization inhibitor used is not particularly limited.
  • Polyimide is obtained by dehydrating and ring-closing the polyamic acid obtained in the above reaction.
  • methods for obtaining polyimide include thermal imidization, in which the polyamic acid solution obtained in the above reaction is directly heated, or chemical imidization, in which a catalyst is added to the polyamic acid solution.
  • the temperature for thermal imidization in a solution is 100° C. to 400° C., preferably 120° C. to 250° C., and it is preferable to carry out the reaction while removing water produced by the imidization reaction from the system.
  • the above chemical imidization is carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution obtained by the reaction, and stirring at -20°C to 250°C, preferably 0°C to 180°C. Can be done.
  • the amount of the basic catalyst is 0.1 to 30 moles, preferably 0.2 to 20 moles, of the amic acid group, and the amount of acid anhydride is 1 to 50 moles of the amic acid group. twice, preferably 1.5 times to 30 times by mole.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, triethylamine is preferred because it is less likely to produce polyisoimide as a by-product.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, etc. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed.
  • the imidization rate (ratio of repeating units to be closed to the total repeating units of the polyimide precursor, also referred to as ring closure rate) by chemical imidization can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time. can.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in a solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating.
  • Certain polymers may be end-capped.
  • the terminal-capping method is not particularly limited, and for example, conventionally known methods using monoamines or acid anhydrides can be used.
  • solvent contained in the photosensitive resin composition for forming an insulating film it is preferable to use an organic solvent from the viewpoint of solubility for a specific polymer. Specifically, N,N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylpropionamide, N,N-dimethylisobutyric acid amide.
  • dimethyl sulfoxide diethylene glycol dimethyl ether, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone, tetramethylurea, 1,3-dimethyl-2-imidazolinone, N-cyclohexyl-2-pyrrolidone, propylene glycol Monomethyl ether acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, methyl 2-hydroxyisobutyrate, ethyl lactate or the following formulas [D-1] to [D-3] ], and these solvents can be used alone or in combination of two or more.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • the solvent may be used in an amount ranging from 30 parts by mass to 1500 parts by mass, preferably 100 parts by mass, based on 100 parts by mass of the specific polymer. It can be used in a range of 1 part to 1000 parts by mass.
  • the photosensitive resin composition for forming an insulating film may further contain components other than the specific polymer and solvent.
  • Other components include, for example, a photoradical polymerization initiator (also referred to as a "photoradical initiator"), a crosslinking compound (also referred to as a "crosslinking agent”), a thermosetting agent, other resin components, fillers, and sensitizers.
  • adhesive aids thermal polymerization inhibitors, azole compounds, hindered phenol compounds, and the like.
  • the photoradical polymerization initiator is not particularly limited as long as it has absorption in the light source used during photocuring, but examples include tert-butylperoxy-iso-butyrate, 2,5-dimethyl-2,5-bis( benzoyldioxy)hexane, 1,4-bis[ ⁇ -(tert-butyldioxy)-iso-propoxy]benzene, di-tert-butylperoxide, 2,5-dimethyl-2,5-bis(tert-butyldioxy)hexene Hydroperoxide, ⁇ -(iso-propylphenyl)-iso-propyl hydroperoxide, tert-butyl hydroperoxide, 1,1-bis(tert-butyldioxy)-3,3,5-trimethylcyclohexane, butyl-4,4- Bis(tert-butyldioxy)valerate, cyclo
  • Radical photopolymerization initiators are available as commercial products, such as IRGACURE 651, 184, 2959, 127, 907, 369, 379EG, 819, 819DW, and IRGACURE. 1800, 1870, 784, OXE01, OXE02, OXE03, OXE04, 250, 1173, MBF, TPO, 4265, TPO (manufactured by BASF), KAYACURE [registered trademark] DETX-S, MBP, DMBI, EPA, OA (Nippon Kayaku Co., Ltd.), VICURE-10, 55 (manufactured by STAUFER Co.
  • photoradical polymerization initiators may be used alone or in combination of two or more.
  • the content of the photoradical polymerization initiator is not particularly limited, but is preferably 0.1 parts by mass to 20 parts by mass, and from the viewpoint of photosensitivity characteristics, 0.5 parts by mass to 15 parts by mass, based on 100 parts by mass of the specific polymer. Parts by mass are more preferred.
  • the photoradical polymerization initiator is contained in an amount of 0.1 parts by mass or more per 100 parts by mass of a specific polymer, the photosensitivity of the photosensitive resin composition for forming an insulating film is likely to improve; When the content is below, the thick film curability of the photosensitive resin composition for forming an insulating film is likely to be improved.
  • a photosensitive resin composition for forming an insulating film may optionally contain a monomer (crosslinking compound) having a photoradically polymerizable unsaturated bond.
  • a crosslinking compound a compound containing a polymerizable group that undergoes a radical polymerization reaction with a photoradical polymerization initiator is preferable, and examples thereof include (meth)acrylic compounds and maleimide compounds, but are not particularly limited to the following. do not have.
  • (Meth)acrylic compounds include diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, ethylene glycol or polyethylene glycol mono- or di(meth)acrylate, propylene glycol or polypropylene glycol mono- or di(meth)acrylate.
  • mono-, di- or tri(meth)acrylate of glycerol di(meth)acrylate of 1,4-butanediol, di(meth)acrylate of 1,6-hexanediol, di(meth)acrylate of 1,9-nonanediol acrylate, di(meth)acrylate of 1,10-decanediol, di(meth)acrylate of neopentyl glycol, cyclohexane di(meth)acrylate, di(meth)acrylate of cyclohexanedimethanol, di(meth)acrylate of tricyclodecane dimethanol, meth)acrylate, dioxane glycol di(meth)acrylate, bisphenol A mono- or di(meth)acrylate, bisphenol F di(meth)acrylate, hydrogenated bisphenol A di(meth)acrylate, benzene trimethacrylate, 9, 9-bis[4-(2-hydroxyethoxy)
  • maleimide compounds 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis(maleimido)hexane, N,N'-1,4-phenylenebismaleimide, N,N'-1,3-phenylene dimaleimide, 4,4'-bismaleimidodiphenylmethane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(2-maleimidoethyl)disulfide, 2, Examples include 2-bis[4-(4-maleimidophenoxy)phenyl]propane and 1,6'-bismaleimido-(2,2,4-trimethyl)hexane.
  • maleimide compounds include BMI-689, BMI-1500, BMI-1700, and BMI-3000 (all manufactured by Designer Molecules Inc.). Incidentally, these compounds may be used alone or in combination of two or more. Moreover, in this specification, (meth)acrylate means acrylate and methacrylate.
  • the content of the crosslinkable compound is not particularly limited, but is preferably 1 part by mass to 100 parts by mass, more preferably 1 part to 50 parts by mass, based on 100 parts by mass of the specific polymer.
  • thermosetting agent examples include hexamethoxymethylmelamine, tetramethoxymethylglycoluril, tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis(methoxymethyl)glycoluril, and 1,3,4,6-tetrakis( butoxymethyl)glycoluril, 1,3,4,6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea and 1, Examples include 1,3,3-tetrakis(methoxymethyl)urea.
  • the content of the thermosetting agent in the photosensitive resin composition for forming an insulating film is not particularly limited.
  • fillers include inorganic fillers, and specific examples include sols of silica, aluminum nitride, boron nitride, zirconia, alumina, and the like.
  • the content of filler in the photosensitive resin composition for forming an insulating film is not particularly limited.
  • the photosensitive resin composition for forming an insulating film may further contain a resin component other than the specific polymer.
  • resin components that can be contained in the photosensitive resin composition for forming an insulating film include polyimides other than specific polymers, polyoxazole, polyoxazole precursors, phenol resins, polyamides, epoxy resins, siloxane resins, and acrylics. Examples include resin.
  • the content of these resin components is not particularly limited, but is preferably in the range of 0.01 parts by mass to 20 parts by mass with respect to 100 parts by mass of the specific polymer.
  • a sensitizer can be optionally added to the photosensitive resin composition for forming an insulating film in order to improve photosensitivity.
  • the sensitizer include Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal) Cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamyl Denindanone, p-dimethylaminobenzylideneindanone, 2-(p-dimethylaminophenylbiphenylene)-benzothiazole, 2-(p-dimethylaminoph
  • the content of the sensitizer is not particularly limited, but is preferably 0.1 parts by mass to 25 parts by mass based on 100 parts by mass of the specific polymer.
  • an adhesion aid is optionally added to the photosensitive resin composition for forming an insulating film in order to improve the adhesion between the film formed using the photosensitive resin composition for forming an insulating film and the base material. Can be blended.
  • adhesive aids include ⁇ -aminopropyldimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, 3-(meth)acryloxypropyldimethoxymethylsilane, 3-(meth)acryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N-(3 -diethoxymethylsilylpropyl)succinimide, N-[3-(triethoxysilyl)propyl]phthalamic acid, benzophenone-3,3'-bis(N-[3-triethoxysilyl]propylamide)-4,4' -dicarboxylic acid, benzene
  • adhesion aids it is more preferable to use a silane coupling agent from the viewpoint of adhesive strength.
  • the content of the adhesive aid is not particularly limited, but is preferably in the range of 0.5 parts by mass to 25 parts by mass based on 100 parts by mass of the specific polymer.
  • thermal polymerization inhibitor may be optionally added in order to improve the stability of the viscosity and photosensitivity of the photosensitive resin composition for forming an insulating film especially when stored in a solution containing a solvent.
  • thermal polymerization inhibitors include hydroquinone, 4-methoxyphenol, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, and glycol ether.
  • the content of the thermal polymerization inhibitor is not particularly limited, but is preferably in the range of 0.005 parts by mass to 12 parts by mass based on 100 parts by mass of the specific polymer.
  • an azole compound when using a substrate made of copper or a copper alloy, an azole compound can be optionally added to the photosensitive resin composition for forming an insulating film in order to suppress discoloration of the substrate.
  • azole compounds include 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t-butyl -5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H-triazole, Hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphen
  • the content of the azole compound is not particularly limited, but it is preferably 0.1 parts by mass to 20 parts by mass, and from the viewpoint of photosensitivity characteristics, 0.5 parts by mass to 5 parts by mass, based on 100 parts by mass of the specific polymer. Parts by mass are more preferable.
  • the content of the azole compound based on 100 parts by mass of the specific polymer is 0.1 part by mass or more, when the photosensitive resin composition for forming an insulating film is formed on copper or copper alloy, copper or Discoloration of the surface of the copper alloy is suppressed, and on the other hand, when the amount is 20 parts by mass or less, the photosensitivity is excellent, which is preferable.
  • a hindered phenol compound can be optionally blended into the photosensitive resin composition for forming an insulating film in order to suppress discoloration on copper.
  • hindered phenol compounds include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3-(3,5-di-t-butyl -4-hydroxyphenyl)propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 4,4'-methylenebis(2,6-di-t-butylphenol), 4,4'-thio-bis(3-methyl-6-t-butylphenol), 4,4'-butylidene-bis(3-methyl-6-t-butylphenol), triethylene glycol-bis[3-(3 -t-butyl-5-methyl-4-hydroxyphenyl)
  • 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H )-trione is particularly preferred.
  • the content of the hindered phenol compound is not particularly limited, but it is preferably 0.1 parts by mass to 20 parts by mass, and 0.5 parts by mass from the viewpoint of photosensitivity characteristics, based on 100 parts by mass of the specific polymer. More preferably, the amount is 10 parts by mass.
  • the content of the hindered phenol compound is 0.1 parts by mass or more based on 100 parts by mass of the specific polymer, for example, when the photosensitive resin composition for forming an insulating film is formed on copper or copper alloy, copper Alternatively, discoloration and corrosion of the copper alloy are prevented, and on the other hand, when the amount is 20 parts by mass or less, the photosensitivity is excellent, which is preferable.
  • the photosensitive resin composition for forming an insulating film can be suitably used as a negative photosensitive resin composition for forming an insulating film for producing a cured relief pattern described below.
  • the insulating film of the present invention is a baked product of a coated film of the photosensitive resin composition for forming an insulating film of the present invention.
  • Application methods include methods conventionally used for applying photosensitive resin compositions for forming insulating films, such as methods using a spin coater, bar coater, blade coater, curtain coater, screen printer, etc., and spray coaters.
  • a method such as spray coating can be used.
  • Various methods can be selected as the method of baking when obtaining the baked product, such as using a hot plate, using an oven, or using a temperature rising type oven in which a temperature program can be set. Firing can be performed, for example, at 130° C. to 250° C. for 30 minutes to 5 hours.
  • Air may be used as the atmospheric gas during heat curing, and inert gases such as nitrogen and argon may also be used.
  • the thickness of the insulating film is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m.
  • the photosensitive resin composition for forming an insulating film of the present invention can be used for a photosensitive resist film (so-called dry film resist).
  • the photosensitive resist film includes a base film, a photosensitive resin layer (photosensitive resin film) formed from the photosensitive resin composition for forming an insulating film of the present invention, and a cover film.
  • a photosensitive resin layer and a cover film are laminated in this order on a base film.
  • a photosensitive resist film is produced by coating a photosensitive resin composition for forming an insulating film on a base film, drying it to form a photosensitive resin layer, and then laminating a cover film on the photosensitive resin layer.
  • a photosensitive resin composition for forming an insulating film It can be manufactured by Application methods include methods conventionally used for applying photosensitive resin compositions for forming insulating films, such as methods using a spin coater, bar coater, blade coater, curtain coater, screen printer, etc., and spray coaters. A method such as spray coating can be used. Examples of the drying method include conditions at 20° C. to 200° C. for 1 minute to 1 hour.
  • the thickness of the resulting photosensitive resin layer is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m.
  • a known base film can be used, such as a thermoplastic resin film.
  • this thermoplastic resin include polyester such as polyethylene terephthalate.
  • the thickness of the base film is preferably 2 ⁇ m to 150 ⁇ m.
  • a known cover film can be used, such as a polyethylene film or a polypropylene film.
  • As the cover film a film whose adhesive strength with the photosensitive resin layer is smaller than that of the base film is preferable.
  • the thickness of the cover film is preferably 2 ⁇ m to 150 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, particularly preferably 5 ⁇ m to 50 ⁇ m.
  • the base film and the cover film may be made of the same film material, or may be made of different films.
  • the method for manufacturing a substrate with a cured relief pattern of the present invention includes: (1) a step of applying the photosensitive resin composition for forming an insulating film according to the present invention onto a substrate to form a photosensitive resin layer (photosensitive resin film) on the substrate; (2) a step of exposing the photosensitive resin layer; (3) developing the exposed photosensitive resin layer to form a relief pattern; (4) heat-treating the relief pattern to form a cured relief pattern.
  • a resin composition is applied onto a substrate and, if necessary, is then dried to form a photosensitive resin layer.
  • Application methods include methods conventionally used for applying photosensitive resin compositions for forming insulating films, such as methods using a spin coater, bar coater, blade coater, curtain coater, screen printer, etc., and spray coaters. A method such as spray coating can be used.
  • the coating film made of the photosensitive resin composition for forming an insulating film can be dried, and drying methods include, for example, air drying, heating drying with an oven or hot plate, vacuum drying, etc. It will be done. Specifically, when performing air drying or heat drying, drying can be performed at 20° C. to 200° C. for 1 minute to 1 hour. Through the above steps, a photosensitive resin layer can be formed on the substrate.
  • Step (2) Step of exposing the photosensitive resin layer the photosensitive resin layer formed in step (1) above is exposed to light using a photomask having a pattern or an exposure device such as a contact aligner, mirror projection, or stepper. Exposure is performed via a reticle or directly with an ultraviolet light source or the like. Examples of light sources used during exposure include G-line, H-line, I-line, Ghi-line broadband, and KrF excimer laser. The exposure amount is preferably 25 mJ/cm 2 to 2000 mJ/cm 2 .
  • a post-exposure bake (PEB) and/or a pre-development bake may be performed at any combination of temperature and time, if necessary.
  • the temperature is preferably 50°C to 200°C and the baking time is preferably 10 seconds to 600 seconds, but the baking conditions do not impede various properties of the photosensitive resin composition for forming an insulating film.
  • the range of baking conditions the temperature is preferably 50°C to 200°C and the baking time is preferably 10 seconds to 600 seconds, but the baking conditions do not impede various properties of the photosensitive resin composition for forming an insulating film.
  • Step of developing the exposed photosensitive resin layer to form a relief pattern the unexposed portions of the exposed photosensitive resin layer are developed and removed.
  • the developing method for developing the photosensitive resin layer after exposure may be any of conventionally known photoresist developing methods, such as a rotary spray method, a paddle method, and an immersion method involving ultrasonic treatment. You can select and use the following methods.
  • rinsing may be performed for the purpose of removing the developer.
  • post-development baking may be performed at any combination of temperature and time.
  • the developer used for development is preferably an organic solvent.
  • organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethylacetamide, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ⁇ - Acetyl- ⁇ -butyrolactone and the like are preferred.
  • two or more types of each solvent can also be used in combination, for example, several types.
  • the rinsing liquid used for rinsing is preferably an organic solvent that is miscible with the developer and has low solubility in the photosensitive resin composition for forming an insulating film.
  • Preferred examples of the rinsing liquid include methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate, toluene, and xylene.
  • two or more types of each solvent can also be used in combination, for example, several types.
  • Step of heating the relief pattern to form a cured relief pattern the relief pattern obtained by the above development is heated and converted into a cured relief pattern.
  • various methods can be selected, such as a method using a hot plate, a method using an oven, and a method using a heating type oven in which a temperature program can be set. Heating can be performed, for example, at 130° C. to 250° C. for 30 minutes to 5 hours. Air may be used as the atmospheric gas during heat curing, and inert gases such as nitrogen and argon may also be used.
  • the thickness of the cured relief pattern is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m.
  • a semiconductor device including a semiconductor element and a cured film provided above or below the semiconductor element is also provided.
  • the cured film is a cured relief pattern formed from the photosensitive resin composition for forming an insulating film of the present invention.
  • the cured relief pattern can be obtained, for example, by steps (1) to (4) in the method for manufacturing a substrate with a cured relief pattern described above.
  • the present invention can also be applied to a method of manufacturing a semiconductor device that uses a semiconductor element as a substrate and includes the above-described method of manufacturing a substrate with a cured relief pattern as part of the process.
  • a cured relief pattern is formed as a surface protective film, an interlayer insulating film, an insulating film for rewiring, a protective film for a flip-chip device, a protective film for a semiconductor device having a bump structure, etc. It can be manufactured by combining it with a method for manufacturing a semiconductor device.
  • a display device in an embodiment, includes a display element and a cured film provided on the top of the display element, the cured film being the above-mentioned cured relief pattern.
  • the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer in between.
  • the cured film may be used as a surface protection film, an insulating film, and a flattening film for TFT (Thin Film Transistor) liquid crystal display elements and color filter elements, protrusions for MVA (Multi-domain Vertical Alignment) type liquid crystal display devices, and Examples include partition walls for organic EL (Electro-Luminescence) device cathodes.
  • the photosensitive resin composition for forming an insulating film of the present invention can be applied to semiconductor devices such as those mentioned above, as well as interlayer insulating films of multilayer circuits, cover coats of flexible copper clad boards, solder resist films, liquid crystal alignment films, etc. It is also useful for applications such as
  • HFBAPP 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane
  • APC-14 4-tetradecyloxy-1,3-phenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • APC-16 4-hexadecyloxy-1,3-phenylenediamine (manufactured by Wakayama Seika Kogyo Co., Ltd.)
  • DAB-C18 4-octadecyloxy-1,3-phenylenediamine (manufactured by Wakayama Seika Kogyo Co., Ltd.)
  • TMPBP-TME 2,2',3,3',5,5'-hexamethyl-[1,1'-biphenyl]-4,4'-diylbis(1,3-dioxo-1,3-dihydroisobenzofuran -5-carboxylate) (manufactured by Honshu Chemical Industry Co., Ltd.)
  • the weight average molecular weights (Mw) shown in the following synthesis examples are the results of measurements by gel permeation chromatography (hereinafter abbreviated as GPC).
  • GPC gel permeation chromatography
  • HPC-8320GPC manufactured by Tosoh Corporation
  • the chemical imidization rates shown in the synthesis examples below are the results of measurements using a nuclear magnetic resonance apparatus (hereinafter abbreviated as NMR in the present specification).
  • NMR nuclear magnetic resonance apparatus
  • JNM-ECA500 manufactured by JEOL Ltd.
  • ⁇ Measurement temperature Room temperature
  • ⁇ Measurement solvent Deuterated tetrahydrofuran (THF-d8)
  • the chemical imidization rate uses a proton derived from a structure that does not change before and after imidization as a reference proton, and calculates the peak integrated value of this proton and the proton derived from the NH group of amic acid that appears around 9.5 ppm to 11.0 ppm. It was calculated using the following formula using the peak integrated value.
  • Chemical imidization rate (%) (1- ⁇ x/y) ⁇ 100
  • x is the integrated value of the proton peak derived from the NH group of amic acid
  • y is the integrated peak value of the standard proton
  • is one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). This is the ratio of the number of standard protons to the standard proton.
  • N-ethyl-2-pyrrolidone 18.21 g of acetic anhydride, and 3.01 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • 532.95 g of N-ethyl-2-pyrrolidone was added and dropped into methanol, and the resulting precipitate was filtered and dried under reduced pressure at 60° C. to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 25,770, and the chemical imidization rate by NMR (THF-d8) was 99%.
  • N-ethyl-2-pyrrolidone 168.65 g of N-ethyl-2-pyrrolidone, 16.89 g of acetic anhydride, and 2.79 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • 505.95 g of N-ethyl-2-pyrrolidone was added and dropped into methanol, and the resulting precipitate was filtered and dried under reduced pressure at 60° C. to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 32,863, and the chemical imidization rate by NMR (THF-d8) was 99%.
  • a polyamic acid solution was obtained by stirring at 50°C for 20 hours.
  • 168.10 g of N-ethyl-2-pyrrolidone, 17.88 g of acetic anhydride, and 2.95 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • 504.30 g of N-ethyl-2-pyrrolidone was added and dropped into methanol, and the resulting precipitate was filtered and dried under reduced pressure at 60° C. to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 28,569, and the chemical imidization rate by NMR (THF-d8) was 99%.
  • a polyamic acid solution was obtained by stirring at 50°C for 20 hours.
  • 163.97 g of N-ethyl-2-pyrrolidone, 18.21 g of acetic anhydride, and 3.01 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • 491.91 g of N-ethyl-2-pyrrolidone was added and dropped into methanol, and the resulting precipitate was filtered and dried under reduced pressure at 60° C. to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 32,929, and the chemical imidization rate by NMR (THF-d8) was 99%.
  • a polyamic acid solution was obtained by stirring at 50°C for 20 hours.
  • 167.58 g of N-ethyl-2-pyrrolidone, 18.21 g of acetic anhydride, and 3.01 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • 502.76 g of N-ethyl-2-pyrrolidone was added and dropped into methanol, and the resulting precipitate was filtered and dried under reduced pressure at 60° C. to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 30,568, and the chemical imidization rate by NMR (THF-d8) was 99%.
  • a polyamic acid solution was obtained by stirring at 50°C for 19 hours. Next, 150.00 g of N-ethyl-2-pyrrolidone, 16.34 g of acetic anhydride, and 2.79 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • the reaction solution was diluted by adding 192.86 g of N-ethyl-2-pyrrolidone, and this diluted solution was dropped into methanol. The resulting precipitate was filtered, washed with methanol, and then dried under reduced pressure at 60°C to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 22,930, and the chemical imidization rate by NMR (THF-d8) was 98%.
  • BPADA 7.40g 14.22mmol
  • TMPBP-TME 13.03g 21.07mmol
  • 6FDA 7.02g 15.80mmol
  • maleic anhydride 0.31g 3.16mmol
  • N-ethyl- 157.33 g of 2-pyrrolidone was added into the flask and stirred at 50° C. for 19 hours to obtain a polyamic acid solution.
  • 150.00 g of N-ethyl-2-pyrrolidone, 16.13 g of acetic anhydride, and 2.66 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • the reaction solution was diluted by adding 192.86 g of N-ethyl-2-pyrrolidone, and this diluted solution was dropped into methanol. The resulting precipitate was filtered, washed with methanol, and then dried under reduced pressure at 60°C to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 22,959, and the chemical imidization rate by NMR (THF-d8) was 100%.
  • BPADA 7.39g (14.21mmol), TMPBP-TME 13.02g (21.05mmol), 6FDA 7.01g (15.79mmol), itaconic anhydride 0.35g (3.16mmol) and N-ethyl 157.43 g of -2-pyrrolidone was added into the flask and stirred at 50°C for 19 hours to obtain a polyamic acid solution.
  • 150.00 g of N-ethyl-2-pyrrolidone, 16.12 g of acetic anhydride, and 2.66 g of triethylamine were added into the flask, and the mixture was stirred at 60° C. for 3 hours to perform chemical imidization.
  • the reaction solution was diluted by adding 192.86 g of N-ethyl-2-pyrrolidone, and this diluted solution was dropped into methanol. The resulting precipitate was filtered, washed with methanol, and then dried under reduced pressure at 60°C to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 26,102, and the chemical imidization rate by NMR (THF-d8) was 100%.
  • BPADA 7.37g (14.16mmol), TMPBP-TME 12.97g (20.97mmol), 6FDA 6.99g (15.73mmol), 5-norbornene-2,3-dicarboxylic anhydride 0.52g ( 3.15 mmol) and 157.78 g of N-ethyl-2-pyrrolidone were added into the flask and stirred at 50° C. for 19 hours to obtain a polyamic acid solution.
  • 150.00 g of N-ethyl-2-pyrrolidone, 16.06 g of acetic anhydride, and 2.65 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • the reaction solution was diluted by adding 192.86 g of N-ethyl-2-pyrrolidone, and this diluted solution was dropped into methanol. The resulting precipitate was filtered, washed with methanol, and then dried under reduced pressure at 60°C to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 26,096, and the chemical imidization rate by NMR (THF-d8) was 99%.
  • a polyamic acid solution was obtained by stirring at 50° C. for 19 hours.
  • 150.00 g of N-ethyl-2-pyrrolidone, 15.65 g of acetic anhydride, and 2.58 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • the reaction solution was diluted by adding 192.86 g of N-ethyl-2-pyrrolidone, and this diluted solution was dropped into methanol.
  • the resulting precipitate was filtered, washed with methanol, and then dried under reduced pressure at 60°C to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 29,575, and the chemical imidization rate by NMR (THF-d8) was 100%.
  • the reaction solution was diluted by adding 192.86 g of N-ethyl-2-pyrrolidone, and this diluted solution was dropped into methanol. The resulting precipitate was filtered, washed with methanol, and then dried under reduced pressure at 60°C to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 22,161, and the chemical imidization rate by NMR (THF-d8) was 100%.
  • a polyamic acid solution was obtained by stirring at 50°C for 19 hours. Next, 150.00 g of N-ethyl-2-pyrrolidone, 16.29 g of acetic anhydride, and 2.69 g of triethylamine were added into the flask, and chemical imidization was performed by stirring at 60° C. for 3 hours.
  • the reaction solution was diluted by adding 192.86 g of N-ethyl-2-pyrrolidone, and this diluted solution was dropped into methanol. The resulting precipitate was filtered, washed with methanol, and then dried under reduced pressure at 60°C to obtain polyimide powder.
  • the weight average molecular weight (Mw) by GPC was 23,237, and the chemical imidization rate by NMR (THF-d8) was 98%.
  • ⁇ NK ester A-DOD-N 1,10-decanediol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • ⁇ BMI-689 Maleimide compound represented by the formula (manufactured by Designer Molecules Inc.)
  • ⁇ CaA-BTZ 5-carboxybenzotriazole (manufactured by Sigma-Aldrich Japan G.K.)
  • ⁇ CBT-SG Mixture of 4-carboxybenzotriazole and 5-carboxybenzotriazole (manufactured by Johoku Chemical Industry Co., Ltd.)
  • ⁇ KBM-5103 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Example 1 5.81 g of polyimide (P-1) obtained in Synthesis Example 1, 0.58 g of NK ester A-DOD-N as a crosslinking agent, 0.12 g of IRGACURE [registered trademark] OXE01 as a photoradical initiator, CaA-BTZ 0 .17g, KBM-5103 0.11g, N-ethyl-2-pyrrolidone 3.96g, and cyclopentanone 9.24g were mixed and dissolved, and then filtered using a polypropylene filter with a pore size of 5 ⁇ m. A negative photosensitive resin composition for forming an insulating film was prepared.
  • Example 2 5.32 g of polyimide (P-2) obtained in Synthesis Example 2, 0.80 g of NK ester A-DOD-N as a crosslinking agent, 0.21 g of IRGACURE [registered trademark] OXE01 as a photoradical initiator, CaA-BTZ 0 After mixing and dissolving .16 g, KBM-5103 0.11 g, N-ethyl-2-pyrrolidone 7.02 g, ⁇ -butyrolactone 9.36 g, and cyclohexanone 7.02 g, a polypropylene filter with a pore size of 5 ⁇ m was used. By filtering the mixture, a negative photosensitive resin composition for forming an insulating film was prepared.
  • Example 3 7.66 g of polyimide (P-2) obtained in Synthesis Example 2, 1.15 g of NK ester A-DOD-N as a crosslinking agent, 0.31 g of IRGACURE [registered trademark] OXE01 as a photoradical initiator, CaA-BTZ 0 After mixing and dissolving .23 g, KBM-5103 0.15 g, N-ethyl-2-pyrrolidone 12.15 g, ⁇ -butyrolactone 16.20 g, and cyclohexanone 12.15 g, a polypropylene filter with a pore size of 5 ⁇ m was used. By filtering the mixture, a negative photosensitive resin composition for forming an insulating film was prepared.
  • Example 4 7.02 g of polyimide (P-3) obtained in Synthesis Example 3, 1.05 g of NK ester A-DOD-N as a crosslinking agent, 0.28 g of IRGACURE [registered trademark] OXE01 as a photoradical initiator, CaA-BTZ 0 After mixing and dissolving .21 g, KBM-5103 0.14 g, N-ethyl-2-pyrrolidone 6.39 g, ⁇ -butyrolactone 8.52 g, and cyclohexanone 6.39 g, a polypropylene filter with a pore size of 5 ⁇ m was used. By filtering the mixture, a negative photosensitive resin composition for forming an insulating film was prepared.
  • Example 5 10.08 g of polyimide (P-3) obtained in Synthesis Example 3, 1.51 g of NK ester A-DOD-N as a crosslinking agent, 0.40 g of IRGACURE [registered trademark] OXE01 as a photoradical initiator, and 0.0 g of CaA-BTZ. After mixing and dissolving .30 g, KBM-5103 0.20 g, N-ethyl-2-pyrrolidone 11.25 g, ⁇ -butyrolactone 15.00 g, and cyclohexanone 11.25 g, a polypropylene filter with a pore size of 5 ⁇ m was used. By filtering the mixture, a negative photosensitive resin composition for forming an insulating film was prepared.
  • Example 6 8.06 g of polyimide (P-4) obtained in Synthesis Example 4, 1.21 g of NK ester A-DOD-N as a crosslinking agent, 0.32 g of IRGACURE [registered trademark] OXE01 as a photoradical initiator, CaA-BTZ 0 After mixing and dissolving .24 g, KBM-5103 0.16 g, N-ethyl-2-pyrrolidone 9.00 g, ⁇ -butyrolactone 12.00 g, and cyclohexanone 9.00 g, a polypropylene filter with a pore size of 5 ⁇ m was used. By filtering the mixture, a negative photosensitive resin composition for forming an insulating film was prepared.
  • Example 7 8.06 g of polyimide (P-5) obtained in Synthesis Example 5, 1.21 g of NK ester A-DOD-N as a crosslinking agent, 0.32 g of IRGACURE [registered trademark] OXE01 as a photoradical initiator, CaA-BTZ 0 After mixing and dissolving .24 g, KBM-5103 0.16 g, N-ethyl-2-pyrrolidone 9.00 g, ⁇ -butyrolactone 12.00 g, and cyclohexanone 9.00 g, a polypropylene filter with a pore size of 5 ⁇ m was used. By filtering the mixture, a negative photosensitive resin composition for forming an insulating film was prepared.
  • Example 8 8.82 g of polyimide (P-6) obtained in Synthesis Example 6, 1.32 g of NK ester A-DOD-N and 0.88 g of BMI-689 as a crosslinking agent, IRGACURE [registered trademark] OXE01 0 as a photoradical initiator After mixing and dissolving .26 g, CBT-SG 0.13 g, KBM-5103 0.18 g, N-ethyl-2-pyrrolidone 8.52 g, ⁇ -butyrolactone 11.36 g, and cyclohexanone 8.52 g, the pore size A negative photosensitive resin composition for forming an insulating film was prepared by filtering using a 5 ⁇ m polypropylene filter.
  • Example 9 8.82 g of polyimide (P-7) obtained in Synthesis Example 7, 1.32 g of NK ester A-DOD-N and 0.88 g of BMI-689 as a crosslinking agent, IRGACURE [registered trademark] OXE01 0 as a photoradical initiator After mixing and dissolving .26g, CBT-SG 0.13g, KBM-5103 0.18g, N-ethyl-2-pyrrolidone 8.52g, ⁇ -butyrolactone 11.36g, and cyclohexanone 8.52g, the pore size A negative photosensitive resin composition for forming an insulating film was prepared by filtering using a 5 ⁇ m polypropylene filter.
  • Example 10 8.56 g of polyimide (P-7) obtained in Synthesis Example 7, 1.28 g of NK ester A-DOD-N and 0.86 g of BMI-689 as a crosslinking agent, ADEKA Arkles NCI-930 0 as a photoradical initiator .09g, IRGACURE [registered trademark] 819 0.51g, CBT-SG 0.13g, KBM-5103 0.17g, N-ethyl-2-pyrrolidone 8.52g, ⁇ -butyrolactone 11.36g, and cyclohexanone 8.52g After mixing and dissolving the mixture, the mixture was filtered using a polypropylene filter with a pore size of 5 ⁇ m to prepare a negative photosensitive resin composition for forming an insulating film.
  • Example 11 8.82 g of polyimide (P-8) obtained in Synthesis Example 8, 1.32 g of NK ester A-DOD-N and 0.88 g of BMI-689 as a crosslinking agent, IRGACURE [registered trademark] OXE01 0 as a photoradical initiator After mixing and dissolving .26g, CBT-SG 0.13g, KBM-5103 0.18g, N-ethyl-2-pyrrolidone 8.52g, ⁇ -butyrolactone 11.36g, and cyclohexanone 8.52g, the pore size A negative photosensitive resin composition for forming an insulating film was prepared by filtering using a 5 ⁇ m polypropylene filter.
  • Example 12 8.82 g of polyimide (P-9) obtained in Synthesis Example 9, 1.32 g of NK ester A-DOD-N and 0.88 g of BMI-689 as a crosslinking agent, IRGACURE [registered trademark] OXE01 0 as a photoradical initiator. After mixing and dissolving .26g, CBT-SG 0.13g, KBM-5103 0.18g, N-ethyl-2-pyrrolidone 8.52g, ⁇ -butyrolactone 11.36g, and cyclohexanone 8.52g, the pore size A negative photosensitive resin composition for forming an insulating film was prepared by filtering using a 5 ⁇ m polypropylene filter.
  • Example 13 9.23 g of polyimide (P-10) obtained in Synthesis Example 10, 1.38 g of NK ester A-DOD-N and 0.92 g of BMI-689 as a crosslinking agent, and ADEKA Arkles NCI-930 0 as a photoradical initiator. .09 g and IRGACURE [registered trademark] 819 0.55 g, CBT-SG 0.14 g, KBM-5103 0.18 g, N-ethyl-2-pyrrolidone 11.25 g, ⁇ -butyrolactone 15.00 g, and cyclohexanone 11.25 g. After mixing and dissolving the mixture, the mixture was filtered using a polypropylene filter with a pore size of 5 ⁇ m to prepare a negative photosensitive resin composition for forming an insulating film.
  • Example 14 7.97 g of polyimide (P-11) obtained in Synthesis Example 11, 1.20 g of NK ester A-DOD-N and 0.80 g of BMI-689 as a crosslinking agent, and ADEKA Arkles NCI-930 0 as a photoradical initiator.
  • Example 15 8.56 g of polyimide (P-12) obtained in Synthesis Example 12, 1.28 g of NK ester A-DOD-N and 0.86 g of BMI-689 as a crosslinking agent, and ADEKA Arkles NCI-930 0 as a photoradical initiator. .09 g and IRGACURE [registered trademark] 819 0.51 g, CBT-SG 0.13 g, KBM-5103 0.17 g, N-ethyl-2-pyrrolidone 8.52 g, ⁇ -butyrolactone 11.36 g, and cyclohexanone 8.52 g. After mixing and dissolving the mixture, the mixture was filtered using a polypropylene filter with a pore size of 5 ⁇ m to prepare a negative photosensitive resin composition for forming an insulating film.
  • Example 16 10.70 g of polyimide (P-13) obtained in Synthesis Example 13, 1.61 g of NK ester A-DOD-N and 1.07 g of BMI-689 as a crosslinking agent, ADEKA Arkles NCI-930 0 as a photoradical initiator .11 g and IRGACURE [registered trademark] 819 0.64 g, CBT-SG 0.16 g, KBM-5103 0.21 g, N-ethyl-2-pyrrolidone 10.65 g, ⁇ -butyrolactone 14.20 g, and cyclohexanone 10.65 g. After mixing and dissolving the mixture, the mixture was filtered using a polypropylene filter with a pore size of 5 ⁇ m to prepare a negative photosensitive resin composition for forming an insulating film.
  • a photosensitive resin film of about 25 ⁇ m was formed on the aluminum foil by spin coating the wafer and baking it on a hot plate at 115° C. for 270 seconds. The entire surface of the wafer was exposed to light at 500 mJ/cm 2 using an i-line aligner (PLA-501, manufactured by Canon Inc.) on the obtained photosensitive resin film, and then exposed to light in a high temperature clean oven (CLH-21CD (V)).
  • the dielectric loss tangent of the obtained film at 60 GHz was measured using a split cylinder resonator.
  • the measurement conditions for dielectric loss tangent are as follows.
  • ⁇ Measurement method Split cylinder resonator ⁇ Vector network analyzer: FieldFox N9926A (manufactured by Keysight Technologies, Inc.) ⁇ Resonator: CR-760 (manufactured by EM Lab Co., Ltd.) ⁇ Measurement frequency: Approximately 60GHz Table 1 shows the measurement results of the dielectric loss tangent of the film at 60 GHz.
  • spray development was performed using an automatic developing device (AD-1200, manufactured by Mikasa Co., Ltd.) using cyclopentanone as a developer, and spray rinsing was performed using propylene glycol monomethyl ether acetate (PGMEA) as a rinse solution.
  • the development time with cyclopentanone was set to be the time until the unexposed area (0 mJ/cm 2 ) was completely developed, and the rinsing time with PGMEA was set to 10 seconds.
  • Remaining film rate (%) [(film thickness of unexposed area) or (film thickness of exposed area)] / (film thickness immediately after film formation) x 100 That is, if the remaining film rate is 80%, it means that 80% of the film thickness immediately after film formation remains without being developed. Table 2 shows the measurement results of the development time and the residual film rate after development.
  • the photosensitive resin films obtained from the negative photosensitive resin compositions for forming insulating films of Example 3 and Examples 5 to 16 have high solubility in the developer, and the development time related to the development process is shortened. It is effective in reducing the amount of developer used.
  • the polyimide cured films obtained from the negative photosensitive resin compositions for forming insulating films of Examples 3 and 5 were different from those obtained from the negative photosensitive resin compositions for forming insulating films of Comparative Example 2. Since the residual stress is lower than that of the obtained polyimide cured film, the silicon wafer is less likely to warp and problems are less likely to occur during transportation or wafer fixation.
  • the negative photosensitive resin compositions for forming insulating films of Examples 1 to 16 not only enable the production of relief patterns in a short development time, but also have low dielectric loss tangents and low residual stress. It can be suitably used in the production of electronic materials that require excellent electrical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Insulating Films (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ポリイミド、ポリアミック酸、及びポリアミック酸エステルの少なくともいずれかの重合体と、溶媒とを含み、 前記重合体が、光重合性基、芳香族基及び炭素原子数5以上のアルキル基を有する、 絶縁膜形成用感光性樹脂組成物。

Description

絶縁膜形成用感光性樹脂組成物
 本発明は、絶縁膜形成用感光性樹脂組成物、該組成物から得られる絶縁膜、該組成物を用いた感光性レジストフィルム、硬化レリーフパターン付き基板の製造方法、及び硬化レリーフパターンを有する半導体装置に関する。
 従来、電子部品の絶縁材料、及び半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂が用いられている。このポリイミド樹脂の中でも、感光性ポリイミド前駆体の形態で供されるものは、該前駆体の塗布、露光、現像、及びキュアによる熱イミド化処理によって、耐熱性のレリーフパターン被膜を容易に形成することができる。このような感光性ポリイミド前駆体は、従来の非感光型ポリイミド樹脂と比較して、大幅な工程短縮を可能にするという特徴を有している。
 特許文献1及び特許文献2には、(メタ)アクリロイルオキシ基を有するジアミンを用いたポリアミック酸又はポリイミドを含有する感光性樹脂組成物が提案されている。
 また、半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等を厚膜化及び高弾性率化することによって応力が増大し、半導体ウェハの反りが大きくなって、搬送やウェハ固定の際に不具合が生じる場合がある。そのため、残留応力が低いポリイミド樹脂の開発が望まれている。ポリイミド樹脂の残留応力を低減する方法として、例えば、ポリイミドの熱膨張係数をシリコンウェハの熱膨張係数に近づけるために、ポリイミドの分子鎖を剛直な骨格にする方法(例えば特許文献3)が挙げられる。
特開2000-347404号公報 特表2012-516927号公報 特開平5-295115号公報
 近年、半導体装置では、大容量の情報を高速で伝送・処理する必要から、電気信号の高周波化が進んでいる。高周波の電気信号は減衰しやすいため、伝送損失を低くする必要がある。そのため、半導体装置に用いられる絶縁膜には低い誘電正接が求められる。
 また、硬化レリーフパターンを形成する際には、現像液による現像が行われるが、一般的にアルカリ水溶液現像液又は有機溶媒現像液が用いられる。硬化レリーフパターンを得るための感光性樹脂は、露光、現像により、露光部の感光性樹脂が現像液に溶解し、未露光部の感光性樹脂が残るポジ型と、未露光部の感光性樹脂が現像液に溶解し、露光部の感光性樹脂が残るネガ型とに分けられる。特に、ネガ型はポジ型よりも解像性には劣るが、厚膜化やフィルム化が容易で信頼性に優れており、そのような特徴を必要とする半導体装置の製造で用いられる。他方、ポリイミドを含有するネガ型感光性樹脂の場合、有機溶媒現像における現像時間が長いという問題がある。また、ネガ型感光性樹脂で特に厚膜化する場合、半導体ウェハの反りを小さくするために、残留応力が低い方が望ましい。
 したがって、得られる絶縁膜において低い誘電正接を有し、有機溶媒現像における現像時間が短く、更に残留応力が低い絶縁膜形成用感光性樹脂組成物が求められている。
 しかし、特許文献1乃至特許文献3に記載の感光性樹脂組成物は、それら特性の全てが満足できるものではない。
 本発明の目的は、上記事情に鑑み、得られる絶縁膜において低い誘電正接を有し、有機溶媒現像における現像時間が短く、更に残留応力が低い絶縁膜形成用感光性樹脂組成物、該組成物から得られる絶縁膜、該組成物を用いた感光性レジストフィルム、硬化レリーフパターン付き基板の製造方法、並びに硬化レリーフパターンを有する半導体装置を提供することにある。
 本発明者らは、上記の課題を達成すべく鋭意検討を重ねた結果、絶縁膜形成用感光性樹脂組成物に、特定の重合体を含有させることで、得られる絶縁膜において低い誘電正接を有し、有機溶媒現像における現像時間が短く、更に残留応力が低い絶縁膜形成用感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。
 [1] ポリイミド、ポリアミック酸、及びポリアミック酸エステルの少なくともいずれかの重合体と、溶媒とを含み、
 前記重合体が、光重合性基、芳香族基及び炭素原子数5以上のアルキル基を有する、
 絶縁膜形成用感光性樹脂組成物。
 [2] 前記ポリイミドが、以下のポリイミド(1)であり、
 前記ポリアミック酸が、以下のポリアミック酸(2)であり、
 前記ポリアミック酸エステルが、以下のポリアミック酸エステル(3)である、
[1]に記載の絶縁膜形成用感光性樹脂組成物。
 ポリイミド(1):下記式(1-a)、下記式(1-b)及び下記式(1-c)で表される構造単位を有するポリイミド。
 ポリアミック酸(2):下記式(2)、下記式(1-b)、及び下記式(1-c)で表される構造単位を有するポリアミック酸。
 ポリアミック酸エステル(3):以下のポリアミック酸エステル(3a)~(3b)の少なくともいずれか。
  ポリアミック酸エステル(3a):下記式(3-a)、及び下記式(1-b)で表される構造単位を有するポリアミック酸エステル。
  ポリアミック酸エステル(3b):下記式(3-b)、下記式(1-b)、及び下記式(1-c)で表される構造単位を有するポリアミック酸エステル。
Figure JPOXMLDOC01-appb-C000007
[式(1-a)中、Arは4価の有機基を表す。
 式(1-b)中、Xは炭素原子数5以上のアルキル基を有する2価の芳香族基を表す。
 式(1-c)中、Yは光重合性基を有する2価の芳香族基を表す。]
Figure JPOXMLDOC01-appb-C000008
[式(2)中、Arは4価の有機基を表す。]
Figure JPOXMLDOC01-appb-C000009
[式(3-a)中、Arは4価の有機基を表し、L、及びLはそれぞれ独立して光重合性基を有する1価の有機基を表す。
 式(3-b)中、Arは4価の有機基を表し、R、及びRはそれぞれ独立して1価の有機基を表す。]
 [3] 前記式(1-b)中、Xが下記式(V-1)~(V-6)のいずれかで表される2価の有機基を表す[2]に記載の絶縁膜形成用感光性樹脂組成物。
(式(V-1)中、Xv1は、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv1は、炭素原子数5~20のアルキル基を表す。
 式(V-2)~(V-5)中、Xv2~Xv5は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv2~Rv5は、それぞれ独立に、炭素原子数5~20のアルキル基を表す。
 式(V-6)中、Xは、単結合、-O-、-NH-、-O-(CH-O-(mは1~6の整数を表す。)、-C(CH-、-CO-、-(CH-(mは1~6の整数を表す。)、-SO-、-O-C(CH-、-CO-(CH-(mは1~6の整数を表す。)、-NH-(CH-(mは1~6の整数を表す。)、-SO-(CH-(mは1~6の整数を表す。)、-CONH-(CH-(mは1~6の整数を表す。)、-CONH-(CH-NHCO-(mは1~6の整数を表す。)、-COO-(CH-OCO-(mは1~6の整数を表す。)、-CONH-、-NH-(CH-NH-(mは1~6の整数を表す。)、又は-SO-(CH-SO-(mは1~6の整数を表す。)を表す。Xp1及びXp2は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。R1a及びR1bは、それぞれ独立に、炭素原子数5~20のアルキル基を表す。k1及びk2は、それぞれ独立に、0~2の整数を表す。
 式(V-1)~(V-6)中、*は結合手を表す。)
 [4] 前記式(1-c)中、Yが下記式(9-a)で表される2価の有機基を表し、
 前記式(3-a)中、L及びLがそれぞれ独立して下記式(9-b)で表される1価の有機基を表す、
 [2]又は[3]に記載の絶縁膜形成用感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000011
[式(9-a)中、Vは直接結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、又はウレア結合を表し、Wは酸素原子又はNH基を表し、R15は直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、R16は水素原子又はメチル基を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000012
[式(9-b)中、Wは酸素原子又はNH基を表し、R17は直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、R18は水素原子又はメチル基を表し、*は結合手を表す。]
 [5] 前記式(9-a)におけるVがエステル結合を表し、さらにWが酸素原子を表す[4]に記載の絶縁膜形成用感光性樹脂組成物。
 [6] 前記式(9-a)におけるR15が1,2-エチレン基を表す[4]又は[5]に記載の絶縁膜形成用感光性樹脂組成物。
 [7] さらに光ラジカル重合開始剤を含む[1]から[6]のいずれかに記載の絶縁膜形成用感光性樹脂組成物。
 [8] さらに架橋性化合物を含む[1]から[7]のいずれかに記載の絶縁膜形成用感光性樹脂組成物。
 [9] ネガ型感光性樹脂組成物である[1]から[8]のいずれかに記載の絶縁膜形成用感光性樹脂組成物。
 [10] [1]から[9]のいずれかに記載の絶縁膜形成用感光性樹脂組成物の塗布膜の焼成物である絶縁膜。
 [11] 基材フィルムと、[1]から[9]のいずれかに記載の絶縁膜形成用感光性樹脂組成物から形成される感光性樹脂層と、カバーフィルムとを有する感光性レジストフィルム。
 [12] (1)[1]から[9]のいずれかに記載の絶縁膜形成用感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程と、
 (2)該感光性樹脂層を露光する工程と、
 (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
 (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と、
を含む、硬化レリーフパターン付き基板の製造方法。
 [13] 前記現像に用いられる現像液が有機溶媒である[12]に記載の硬化レリーフパターン付き基板の製造方法。
 [14] [12]又は[13]に記載の方法により製造された硬化レリーフパターン付き基板。
 [15] 半導体素子と該半導体素子の上部又は下部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は[1]から[9]のいずれかに記載の絶縁膜形成用感光性樹脂組成物から形成される硬化レリーフパターンである半導体装置。
 本発明によれば、得られる絶縁膜において低い誘電正接を有し、有機溶媒現像における現像時間が短く、更に残留応力が低い絶縁膜形成用感光性樹脂組成物、該組成物から得られる絶縁膜、該組成物を用いた感光性レジストフィルム、硬化レリーフパターン付き基板の製造方法、並びに硬化レリーフパターンを有する半導体装置が得られる。
(絶縁膜形成用感光性樹脂組成物)
 本発明の絶縁膜形成用感光性樹脂組成物は、重合体と溶媒とを少なくとも含み、更に必要に応じてその他の成分を含む。
<重合体>
 重合体は、ポリイミド、ポリアミック酸、及びポリアミック酸エステルの少なくともいずれかである。以下、当該重合体を「特定の重合体」と称することがある。
 特定の重合体は、光重合性基を有する。
 特定の重合体は、芳香族基を有する。
 特定の重合体は、炭素原子数5以上のアルキル基を有する。
 本発明者らは、本発明の絶縁膜形成用感光性樹脂組成物によって本発明の効果が奏する理由を、以下のように考えている。
 特定の重合体が光重合性基を有することにより、特定の重合体を含む樹脂組成物に感光性が付与される。
 特定の重合体が炭素原子数5以上のアルキル基及び芳香族基を有することにより、絶縁膜の誘電正接が低くなる。
 特定の重合体が炭素原子数5以上のアルキル基及び芳香族基を有することにより、有機溶媒現像における現像時間を短くできる。
 特定の重合体が炭素原子数5以上のアルキル基を有することにより、残留応力を低くできる。
 ポリイミドとしては、以下のポリイミド(1)が好ましい。
 ポリアミック酸としては、以下のポリアミック酸(2)が好ましい。
 ポリアミック酸エステルとしては、以下のポリアミック酸エステル(3)が好ましい。
 ポリイミド(1)は、下記式(1-a)、下記式(1-b)及び下記式(1-c)で表される構造単位を有するポリイミドである。
 ポリアミック酸(2)は、下記式(2)、下記式(1-b)、及び下記式(1-c)で表される構造単位を有するポリアミック酸である。
 ポリアミック酸エステル(3)は、以下のポリアミック酸エステル(3a)~(3b)の少なくともいずれかである。
 ポリアミック酸エステル(3a)は、下記式(3-a)、及び下記式(1-b)で表される構造単位を有するポリアミック酸エステルである。
 ポリアミック酸エステル(3b)は、下記式(3-b)、下記式(1-b)、及び下記式(1-c)で表される構造単位を有するポリアミック酸エステルである。
Figure JPOXMLDOC01-appb-C000013
[式(1-a)中、Arは4価の有機基を表す。
 式(1-b)中、Xは炭素原子数5以上のアルキル基を有する2価の芳香族基を表す。
 式(1-c)中、Yは光重合性基を有する2価の芳香族基を表す。]
Figure JPOXMLDOC01-appb-C000014
[式(2)中、Arは4価の有機基を表す。]
Figure JPOXMLDOC01-appb-C000015
[式(3-a)中、Arは4価の有機基を表し、L、及びLはそれぞれ独立して光重合性基を有する1価の有機基を表す。
 式(3-b)中、Arは4価の有機基を表し、R、及びRはそれぞれ独立して1価の有機基を表す。]
<<Ar、Ar、Ar、及びAr>>
 Ar、Ar、Ar、及びArは、それぞれ独立して、4価の有機基を表す。
 4価の有機基としては、特に制限されないが、2つ以上の芳香族環を有する4価の有機基であることが、絶縁膜の誘電正接がより低くなる点で好ましい。
 2つ以上の芳香族環を有する4価の有機基が有する芳香族環の数としては、2つ以上であれば、特に限定されないが、例えば、4つ以上であってもよい。芳香族環の数の上限値としては、特に限定されないが、例えば、8つ以下であってもよいし、6つ以下であってもよい。
 「2つ以上の芳香族環」における芳香族環の数え方に関し、ナフタレン環、アントラセン環のような2以上の芳香族環が縮合してなる多環芳香族環は1つの芳香族環として数える。そのため、ナフタレン環は1つの芳香族環として数える。他方、ビフェニル環は縮合環ではないため2つの芳香族環として数える。そして、ペリレン環は、2つのナフタレン環が結合してなる構造とみなし、2つの芳香族環として数える。
 芳香族環としては、芳香族炭化水素環、芳香族複素環などが挙げられる。
 Ar、Ar、Ar、及びArとしては、本発明の効果を好適に得る観点から、下記式(4)で表される4価の有機基を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000016
[式(4)中、X及びXはそれぞれ独立に直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、ウレア結合(-NHCONH-)、チオエーテル結合(-S-)又はスルホニル結合(-SO-)を表す。
 Ra1及びRa2はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキル基を表す。
 Zは下記式(5-a)、下記式(5-b)、下記式(5-c)又は下記式(5-d)で表される2価の有機基を表す。
 n1及びn2はそれぞれ独立に0~3の整数を表す。
 Ra1が複数の場合、複数のRa1は同じでもよいし異なっていてもよい。Ra2が複数の場合、複数のRa2は同じでもよいし異なっていてもよい。
 *は結合手を表す。]
 式(4)中のRa1及びRa2における置換されていてもよい炭素原子数1~6のアルキル基としては、例えば、炭素原子数1~6のアルキル基が挙げられる。炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。本明細書において、アルキル基、アルキレン基は、その構造について特に言及されていない限り、直鎖状であってもよいし、分岐状であってもよいし、環状であってもよいし、これらの2以上の組み合わせであってもよい。
 置換されていてもよい炭素原子数1~6のアルキル基における置換基としては、例えば、ハロゲン原子、ヒドロキシ基、メルカプト基、カルボキシ基、シアノ基、ホルミル基、ハロホルミル基、スルホ基、アミノ基、ニトロ基、ニトロソ基、オキソ基、チオキシ基、炭素原子数1~6のアルコキシ基などが挙げられる。
 なお、「置換されていてもよい炭素原子数1~6のアルキル基」の「炭素原子数1~6」とは、置換基を除く「アルキル基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
Figure JPOXMLDOC01-appb-C000017
[式(5-a)中、Rは炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルコキシ基を表し、mは0~4の整数を表す。mが2以上の時、Rは同じであってもよいし、異なっていてもよい。
 式(5-b)中、Zは直接結合、又は下記式(6-a)若しくは下記式(6-b)で表される2価の有機基を表し、R及びRはそれぞれ独立して炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルコキシ基を表し、m及びmはそれぞれ独立して0~4の整数を表す。mが2以上の時、Rは同じであってもよいし、異なっていてもよい。mが2以上の時、Rは同じであってもよいし、異なっていてもよい。
 式(5-c)中、Rは炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルコキシ基を表し、mは0~6の整数を表す。mが2以上の時、Rは同じであってもよいし、異なっていてもよい。
 式(5-d)中、Zは直接結合、又は下記式(6-a)若しくは下記式(6-b)で表される2価の有機基を表す。
 *は結合手を表す。]
Figure JPOXMLDOC01-appb-C000018
[式(6-a)中、R、及びRはそれぞれ独立に水素原子、又はハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基を表す。
 式(6-b)中、R、及びR10はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキレン基又は置換されていてもよい炭素原子数6~12のアリーレン基を表す。
 *は結合手を表す。]
 Zは、本発明の効果を好適に得る観点から、式(5-b)で表される2価の有機基を表すことが好ましい。
 本発明の効果を好適に得る観点から、式(5-b)において、Zは直接結合を表すことが好ましい。
 本発明の効果を好適に得る観点から、式(5-b)において、R及びRはメチル基を表すことが好ましい。
 R及びRにおけるハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基としては、例えば、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基などが挙げられる。
 炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 炭素原子数1~6のハロゲン化アルキル基におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素原子数1~6のハロゲン化アルキル基におけるハロゲン化は、一部であってもよいし、全部であってもよい。
 R及びR10における置換されていてもよい炭素原子数1~6のアルキレン基における置換基としては、例えば、ハロゲン原子、ヒドロキシ基、メルカプト基、カルボキシ基、シアノ基、ホルミル基、ハロホルミル基、スルホ基、アミノ基、ニトロ基、ニトロソ基、オキソ基、チオキシ基、炭素原子数1~6のアルコキシ基などが挙げられる。
 置換されていてもよい炭素原子数1~6のアルキレン基としては、例えば、炭素原子数1~6のアルキレン基、炭素原子数1~6のハロゲン化アルキレン基などが挙げられる。炭素原子数1~6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。
 なお、「置換されていてもよい炭素原子数1~6のアルキレン基」の「炭素原子数1~6」とは、置換基を除く「アルキレン基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
 R及びR10における置換されていてもよい炭素原子数6~10のアリーレン基における置換基としては、例えば、ハロゲン原子、ハロゲン化されていてもよい炭素原子数1~6のアルキル基、ハロゲン化されていてもよい炭素原子数1~6のアルコキシ基などが挙げられる。なお、ハロゲン化は、一部であってもよいし、全部であってもよい。
 アリーレン基としては、例えば、フェニレン基、ナフチレン基等が挙げられる。
 なお、「置換されていてもよい炭素原子数6~10のアリーレン基」の「炭素原子数6~10」とは、置換基を除く「アリーレン基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
 式(6-a)で表される2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式中、*は結合手を表す。
 式(6-b)で表される2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 式中、R31~R33はそれぞれ独立にハロゲン原子、ハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基、又はハロゲン原子で置換されていてもよい炭素原子数1~6のアルコキシ基を表す。n31は、0~5の整数を表す。n32及びn33はそれぞれ独立に0~4の整数を表す。R31が複数の場合、複数のR31は同じでもよいし異なっていてもよい。R32が複数の場合、複数のR32は同じでもよいし異なっていてもよい。R33が複数の場合、複数のR33は同じでもよいし異なっていてもよい。*は結合手を表す。
 R31~R33におけるハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基の具体例としては、例えば、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基が挙げられる。
 炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 炭素原子数1~6のハロゲン化アルキル基におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素原子数1~6のハロゲン化アルキル基におけるハロゲン化は、一部であってもよいし、全部であってもよい。
 R31~R33におけるハロゲン原子で置換されていてもよい炭素原子数1~6のアルコキシ基の具体例としては、ハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基をアルコキシ基にしたものが挙げられる。
 2つ以上の芳香族環を有する4価の有機基としては、例えば、以下の式で表される4価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式中、*は結合手を表す。
<<X>>
 Xは、炭素原子数5以上のアルキル基を有する2価の芳香族基を表す。炭素原子数5以上のアルキル基は、当該2価の芳香族基の芳香族環に直結していてもよいし、他の連結基を介して結合していてもよい。
 アルキル基の炭素原子数としては、5以上であれば特に制限されず、例えば、40以下であってもよいし、35以下であってもよいし、30以下であってもよい。
 アルキル基の炭素原子数は、8以上40以下が好ましく、10以上35以下がより好ましく、12以上30以下が特に好ましい。
 アルキル基は、直鎖状であってもよいし、分岐状であってもよいし、環状であってもよいし、これらの2種以上の組み合わせであってもよい。
 Xとしては、本発明の効果を好適に得る観点から、式(V-1)~(V-6)のいずれかで表される2価の芳香族基を表すことが好ましい。
(式(V-1)中、Xv1は、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv1は、炭素原子数5~20のアルキル基を表す。
 式(V-2)~(V-5)中、Xv2~Xv5は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv2~Rv5は、それぞれ独立に、炭素原子数5~20のアルキル基を表す。
 式(V-6)中、Xは、単結合、-O-、-NH-、-O-(CH-O-(mは1~6の整数を表す。)、-C(CH-、-CO-、-(CH-(mは1~6の整数を表す。)、-SO-、-O-C(CH-、-CO-(CH-(mは1~6の整数を表す。)、-NH-(CH-(mは1~6の整数を表す。)、-SO-(CH-(mは1~6の整数を表す。)、-CONH-(CH-(mは1~6の整数を表す。)、-CONH-(CH-NHCO-(mは1~6の整数を表す。)、-COO-(CH-OCO-(mは1~6の整数を表す。)、-CONH-、-NH-(CH-NH-(mは1~6の整数を表す。)、又は-SO-(CH-SO-(mは1~6の整数を表す。)を表す。Xp1及びXp2は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。R1a及びR1bは、それぞれ独立に、炭素原子数5~20のアルキル基を表す。k1及びk2は、それぞれ独立に、0~2の整数を表す。
 式(V-1)~(V-6)中、*は結合手を表す。)
 Xv1~Xv5としては、-O-を表すことが好ましい。
 Xp1及びXp2としては、-CH-O-を表すことが好ましい。
 Xとしては、単結合を表すことが好ましい。
<<Y>>
 Yは、光重合性基を有する2価の芳香族基を表す。
 光重合性基としては、例えば、ラジカル重合性基、カチオン重合性基、アニオン重合性基が挙げられる。これらの中でも、ラジカル重合性基が好ましい。
 ラジカル重合性基としては、例えば、アクリロイル基、メタクリロイル基、プロペニルエーテル基、ビニルエーテル基、ビニル基などが挙げられる。
 光重合性基を有する2価の芳香族基における芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環などが挙げられる。
 光重合性基を有する2価の芳香族基は、例えば、光重合性基を有する芳香族ジアミン化合物から2つのアミノ基を除いた残基である。
 光重合性基を有する2価の芳香族基としては、下記式(9-a)で表される2価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000024
[式(9-a)中、Vは直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、又はウレア結合(-NHCONH-)を表し、Wは酸素原子又はNH基を表し、R15は直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、R16は水素原子又はメチル基を表し、*は結合手を表す。]
 式(9-a)における2つの結合手は、例えば、窒素原子に結合する結合手である。
 本明細書において、水酸基で置換されていてもよい炭素原子数2~6のアルキレン基としては、例えば、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、2,3-ブチレン基、1,2-ペンチレン基、2,4-ペンチレン基、1,2-へキシレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基、これらの水素原子の少なくとも一部が水酸基で置換されたアルキレン基(例えば、2-ヒドロキシ-1,3-プロピレン基)などが挙げられる。
 Vはエステル結合(-COO-)を表すことが好ましい。
 Wは酸素原子を表すことが好ましい。
 R15は1,2-エチレン基を表すことが好ましい。
 式(9-a)で表される2価の有機基としては、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 式中、*は結合手を表す。2つの結合手は、例えば、光重合性基を有する置換基に対してメタ位に位置する。
<<L、及びL>>
 L、及びLは、それぞれ独立して、光重合性基を有する1価の有機基を表す。
 光重合性基としては、例えば、ラジカル重合性基、カチオン重合性基、アニオン重合性基が挙げられる。これらの中でも、ラジカル重合性基が好ましい。
 ラジカル重合性基としては、例えば、アクリロイル基、メタクリロイル基、プロペニルエーテル基、ビニルエーテル基、ビニル基などが挙げられる。
 光重合性基を有する1価の有機基としては、下記式(9-b)で表される1価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000026
[式(9-b)中、Wは酸素原子又はNH基を表し、R17は直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、R18は水素原子又はメチル基を表し、*は結合手を表す。]
 Wは酸素原子を表すことが好ましい。
 R17は1,2-エチレン基を表すことが好ましい。
<<R、及びR>>
 R、及びRは、それぞれ独立して、1価の有機基を表す。
 1価の有機基としては、例えば、炭素原子数1~30のアルキル基が挙げられる。
 炭素原子数1~30のアルキル基としては、直鎖状アルキル基、分岐鎖状アルキル基、脂環式アルキル基などが挙げられる。
 炭素原子数1~30の直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基(アミル基)、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基(マルガリル基)、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基(アラキル基)、ヘンイコシル基、ドコシル基(ベヘニル基)、トリコシル基、テトラコシル基(リグノセリル基)、ペンタコシル基、ヘキサコシル基、ヘプタコシル基などが挙げられる。
 炭素原子数1~30の分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、sec-イソアミル基、イソヘキシル基、ネオへキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、2-エチルペンチル基、ヘプタン-3-イル基、ヘプタン-4-イル基、4-メチルヘキサン-2-イル基、3-メチルヘキサン-3-イル基、2,3-ジメチルペンタン-2-イル基、2,4-ジメチルペンタン-2-イル基、4,4-ジメチルペンタン-2-イル基、6-メチルヘプチル基、2-エチルヘキシル基、オクタン-2-イル基、6-メチルヘプタン-2-イル基、6-メチルオクチル基、3,5,5-トリメチルヘキシル基、ノナン-4-イル基、2,6-ジメチルヘプタン-3-イル基、3,6-ジメチルヘプタン-3-イル基、3-エチルヘプタン-3-イル基、3,7-ジメチルオクチル基、8-メチルノニル基、3-メチルノナン-3-イル基、4-エチルオクタン-4-イル基、9-メチルデシル基、ウンデカン-5-イル基、3-エチルノナン-3-イル基、5-エチルノナン-5-イル基、2,2,4,5,5-ペンタメチルヘキサン-4-イル基、10-メチルウンデシル基、11-メチルドデシル基、トリデカン-6-イル基、トリデカン-7-イル基、7-エチルウンデカン-2-イル基、3-エチルウンデカン-3-イル基、5-エチルウンデカン-5-イル基、12-メチルトリデシル基、13-メチルテトラデシル基、ペンタデカン-7-イル基、ペンタデカン-8-イル基、14-メチルペンタデシル基、15-メチルヘキサデシル基、ヘプタデカン-8-イル基、ヘプタデカン-9-イル基、3,13-ジメチルペンタデカン-7-イル基、2,2,4,8,10,10-ヘキサメチルウンデカン-5-イル基、16-メチルヘプタデシル基、17-メチルオクタデシル基、ノナデカン-9-イル基、ノナデカン-10-イル基、2,6,10,14-テトラメチルペンタデカン-7-イル基、18-メチルノナデシル基、19-メチルイコシル基、ヘンイコサン-10-イル基、20-メチルヘンイコシル基、21-メチルドコシル基、トリコサン-11-イル基、22-メチルトリコシル基、23-メチルテトラコシル基、ペンタコサン-12-イル基、ペンタコサン-13-イル基、2,22-ジメチルトリコサン-11-イル基、3,21-ジメチルトリコサン-11-イル基、9,15-ジメチルトリコサン-11-イル基、24-メチルペンタコシル基、25-メチルヘキサコシル基、ヘプタコサン-13-イル基などが挙げられる。
 炭素原子数1~30の脂環式アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、4-tert-ブチルシクロヘキシル基、1,6-ジメチルシクロヘキシル基、メンチル基、シクロヘプチル基、シクロオクチル基、ビシクロ[2.2.1]ヘプタン-2-イル基、ボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロ[5.2.1.02,6]デカン-4-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、シクロドデシル基などが挙げられる。
 ポリアミック酸エステル(3)は、以下のポリアミック酸エステル(3c)であってもよい。
  ポリアミック酸エステル(3c):上記式(3-b)、下記式(3-c)、及び上記式(1-b)で表される構造単位を有するポリアミック酸エステル。ただし、式(3-b)において、Arにおける4価の有機基は、2つ以上の芳香族環を有する4価の有機基を表す。
Figure JPOXMLDOC01-appb-C000027
[式(3-c)中、Arは4価の有機基を表し、L、及びLはそれぞれ独立して光重合性基を有する1価の有機基を表す。]
 L、及びLにおける光重合性基を有する1価の有機基としては、例えば、L、及びLの説明で例示した光重合性基を有する1価の有機基が挙げられる。
<<Ar>>
 Arは、4価の有機基を表す。
 4価の有機基としては、特に限定されないが、例えば、2つ以上の芳香族環を有する4価の有機基以外の4価の有機基が挙げられる。そのような4価の有機基としては、例えば、以下の式で表される4価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 式中、*は結合手を表す。
<<その他の4価の有機基>>
 特定の重合体は、これまでに例示した4価の有機基以外の4価の有機基を有していてもよい。
<<その他の2価の有機基>>
 特定の重合体は、X、及びY以外の2価の有機基を有していてもよい。そのような2価の有機基としては、例えば、得られる絶縁膜において、より低い誘電正接が得られる点から、3つ以上の芳香族環を有する2価の有機基が好ましい。3つ以上の芳香族環を有する2価の有機基は、例えば、3つ以上の芳香族環を有する芳香族ジアミン化合物から2つのアミノ基を除いた残基である。
 3つ以上の芳香族環を有する2価の有機基における芳香族環の数としては、3つ以上であれば、特に限定されないが、例えば、4つ以上であってもよい。芳香族環の数の上限値としては、特に限定されないが、例えば、8つ以下であってもよいし、6つ以下であってもよい。
 3つ以上の芳香族環を有する2価の有機基としては、特に限定されないが、好ましくは下記式(13)で表される2価の有機基である。
Figure JPOXMLDOC01-appb-C000030
[式(13)中、X21及びX22はそれぞれ独立に直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、ウレア結合(-NHCONH-)、チオエーテル結合(-S-)又はスルホニル結合(-SO-)を表す。
 R21及びR22はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキル基を表す。
 Y20は上記式(5-a)、上記式(5-b)又は上記式(5-c)で表される2価の有機基を表す。
 n21及びn22はそれぞれ独立に0~4の整数を表す。
 R21が複数の場合、複数のR21は同じでもよいし異なっていてもよい。R22が複数の場合、複数のR22は同じでもよいし異なっていてもよい。
 *は結合手を表す。]
 式(13)中のR21及びR22における置換されていてもよい炭素原子数1~6のアルキル基としては、例えば、炭素原子数1~6のアルキル基が挙げられる。炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。本明細書において、アルキル基、アルキレン基は、その構造について特に言及されていない限り、直鎖状であってもよいし、分岐状であってもよいし、環状であってもよいし、これらの2以上の組み合わせであってもよい。
 置換されていてもよい炭素原子数1~6のアルキル基における置換基としては、例えば、ハロゲン原子、ヒドロキシ基、メルカプト基、カルボキシ基、シアノ基、ホルミル基、ハロホルミル基、スルホ基、アミノ基、ニトロ基、ニトロソ基、オキソ基、チオキシ基、炭素原子数1~6のアルコキシ基などが挙げられる。
 なお、「置換されていてもよい炭素原子数1~6のアルキル基」の「炭素原子数1~6」とは、置換基を除く「アルキル基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
 3つ以上の芳香族環を有する2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 式中、*は結合手を表す。
 その他の2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。これらの2価の有機基は、例えば、ジアミンから2つのアミノ基を除いた残基である。
Figure JPOXMLDOC01-appb-C000033
 式中、*は結合手を表す。
 ポリイミドは、例えば、ジアミン成分とテトラカルボン酸誘導体との反応生成物であるポリアミック酸のイミド化物である。
 ポリイミドのイミド化率は100%である必要はない。ポリイミドのイミド化率は、例えば90%以上であってもよいし、95%以上であってもよいし、98%以上であってもよい。
 ポリアミック酸は、例えば、ジアミン成分とテトラカルボン酸誘導体との反応生成物である。
 ポリアミック酸エステルは、例えば、ジアミン成分とテトラカルボン酸ジエステルとの反応生成物である。
 ここで、テトラカルボン酸誘導体としては、テトラカルボン酸、テトラカルボン酸ジエステル、テトラカルボン酸ジハロゲン化物、テトラカルボン酸二無水物などが挙げられる。
 テトラカルボン酸誘導体は、2つ以上の芳香族環を有するテトラカルボン酸誘導体を含むことが好ましい。
 式(1-a)中のAr、式(2)中のAr、式(3-a)中のAr、及び式(3-b)中のArである4価の有機基は、例えば、2つ以上の芳香族環を有するテトラカルボン酸誘導体からカルボキシル基、カルボン酸エステル基、又はカルボン酸二無水物基を除いた残基であることが好ましい。
 2つ以上の芳香族環を有するテトラカルボン酸誘導体としては、以下の式(4-Z)で表されるテトラカルボン酸二無水物が好ましい。
Figure JPOXMLDOC01-appb-C000034
[式(4-Z)中、X及びXはそれぞれ独立に直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、ウレア結合(-NHCONH-)、チオエーテル結合(-S-)又はスルホニル結合(-SO-)を表す。
 Ra1及びRa2はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキル基を表す。
 Zは上記式(5-a)、上記式(5-b)、上記式(5-c)又は上記式(5-d)で表される2価の有機基を表す。
 n1及びn2はそれぞれ独立に0~3の整数を表す。
 Ra1が複数の場合、複数のRa1は同じでもよいし異なっていてもよい。Ra2が複数の場合、複数のRa2は同じでもよいし異なっていてもよい。]
 ジアミン成分は、炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物を含むことが好ましい。
 ジアミン成分は、光重合性基を有する芳香族ジアミン化合物を含むことが好ましい。
 式(1-b)中のXである炭素原子数5以上のアルキル基を有する2価の芳香族基は、例えば、炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物から2つのアミノ基を除いた残基である。
 式(1-c)中のYである光重合性基を有する2価の芳香族基は、例えば、光重合性基を有する芳香族ジアミン化合物から2つのアミノ基を除いた残基である。
 炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物としては、下記式(V-1a)~(V-6a)で表されるジアミン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000035
(式(V-1a)中、Xv1は、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv1は、炭素原子数5~20のアルキル基を表す。
 式(V-2a)~(V-5a)中、Xv2~Xv5は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv2~Rv5は、それぞれ独立に、炭素原子数5~20のアルキル基を表す。
 式(V-6a)中、Xは、単結合、-O-、-NH-、-O-(CH-O-(mは1~6の整数を表す。)、-C(CH-、-CO-、-(CH-(mは1~6の整数を表す。)、-SO-、-O-C(CH-、-CO-(CH-(mは1~6の整数を表す。)、-NH-(CH-(mは1~6の整数を表す。)、-SO-(CH-(mは1~6の整数を表す。)、-CONH-(CH-(mは1~6の整数を表す。)、-CONH-(CH-NHCO-(mは1~6の整数を表す。)、-COO-(CH-OCO-(mは1~6の整数を表す。)、-CONH-、-NH-(CH-NH-(mは1~6の整数を表す。)、又は-SO-(CH-SO-(mは1~6の整数を表す。)を表す。Xp1及びXp2は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。R1a及びR1bは、それぞれ独立に、炭素原子数5~20のアルキル基を表す。k1及びk2は、それぞれ独立に、0~2の整数を表す。)
 炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物の具体例を以下に例示する。
Figure JPOXMLDOC01-appb-C000036
 光重合性基を有する芳香族ジアミン化合物としては、下記式(9-A)で表される芳香族ジアミン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000037
(式(9-A)中のV、W、R15、及びR16は、式(9-a)中のV、W、R15、及びR16とそれぞれ同義である。)
 ポリイミドを構成する全テトラカルボン酸誘導体に対する、2つ以上の芳香族環を有する芳香族テトラカルボン酸誘導体の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、20モル%~100モル%が好ましく、40モル%~100モル%がより好ましい。
 ポリアミック酸を構成する全テトラカルボン酸誘導体に対する、2つ以上の芳香族環を有する芳香族テトラカルボン酸誘導体の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、20モル%~100モル%が好ましく、40モル%~100モル%がより好ましい。
 ポリアミック酸エステルを構成する全テトラカルボン酸誘導体に対する、2つ以上の芳香族環を有する芳香族テトラカルボン酸誘導体の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、20モル%~100モル%が好ましく、40モル%~100モル%がより好ましい。
 ポリイミドを構成する全ジアミン成分に対する、炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、5モル%~80モル%が好ましく、10モル%~70モル%がより好ましく、15モル%~65モル%が特に好ましい。
 ポリアミック酸を構成する全ジアミン成分に対する、炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、5モル%~80モル%が好ましく、10モル%~70モル%がより好ましく、15モル%~65モル%が特に好ましい。
 ポリアミック酸エステルを構成する全ジアミン成分に対する、炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、5モル%~80モル%が好ましく、10モル%~70モル%がより好ましく、15モル%~65モル%が特に好ましい。
 ポリイミドを構成する全ジアミン成分に対する、光重合性基を有する芳香族ジアミン化合物の割合としては、特に限定されないが、十分な感光性を得る観点から、10モル%~90モル%が好ましく、15モル%~75モル%がより好ましく、20モル%~60モル%が特に好ましい。
 ポリアミック酸を構成する全ジアミン成分に対する、光重合性基を有する芳香族ジアミン化合物の割合としては、特に限定されないが、十分な感光性を得る観点から、10モル%~90モル%が好ましく、15モル%~75モル%がより好ましく、20モル%~60モル%が特に好ましい。
 ポリアミック酸エステルを構成する全ジアミン成分に対する、光重合性基を有する芳香族ジアミン化合物の割合としては、特に限定されないが、十分な感光性を得る観点から、10モル%~90モル%が好ましく、15モル%~75モル%がより好ましく、20モル%~60モル%が特に好ましい。
 ポリイミド、ポリアミック酸、及びポリアミック酸エステルにおける、光重合性基を有する芳香族ジアミン化合物(A)と炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物(B)とのモル割合(A:B)としては、特に制限されないが、3:1~0.3:1が好ましく、2:1~0.5:1がより好ましく、1.5:1~0.5:1が特に好ましい。
 ポリイミド、ポリアミック酸、及びポリアミック酸エステルを構成する全ジアミン成分に対する、光重合性基を有する芳香族ジアミン化合物と炭素原子数5以上のアルキル基を有する芳香族ジアミン化合物との合計のモル割合としては、特に限定されないが、本発明の効果を好適に得る観点から、30モル%以上が好ましく、40モル%以上がより好ましく、50モル%以上が特に好ましい。合計のモル割合の上限値としては、特に制限されないが、合計のモル割合は、100モル%以下であってもよいし、90モル%以下であってもよい。
 ポリアミック酸を構成する全ジアミン成分に対する、3つ以上の芳香族環を有する芳香族ジアミン化合物の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、5モル%~60モル%が好ましく、10モル%~55モル%がより好ましく、15モル%~50モル%が特に好ましい。
 特定の重合体の重量平均分子量としては、特に限定されないが、ゲルパーミエーションクロマトグラフィー(以下、本明細書ではGPCと略称する)によるポリエチレンオキシド換算で測定される重量平均分子量は、5,000~100,000が好ましく、7,000~50,000がより好ましく、10,000~50,000が更に好ましく、10,000~40,000が特に好ましい。
<<特定の重合体の製造方法>>
 特定の重合体の製造方法としては、特に限定されず、例えば、ジアミン成分とテトラカルボン酸誘導体とを反応させてポリアミック酸、ポリアミック酸エステル又はポリイミドを得る公知の方法が挙げられる。ポリアミック酸、ポリアミック酸エステル及びポリイミドは、例えば、WO2013/157586号公報に記載されるような公知の方法で合成出来る。
 ポリアミック酸又はポリアミック酸エステルの製造は、例えば、ジアミン成分とテトラカルボン酸誘導体とを溶媒中で(縮重合)反応させることにより行われる。
 上記溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルイソ酪酸アミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000038
(式[D-1]中、Dは炭素原子数1~3のアルキル基を示し、式[D-2]中、Dは炭素原子数1~3のアルキル基を示し、式[D-3]中、Dは炭素原子数1~4のアルキル基を表す。)
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸又はポリアミック酸エステルを溶解しない溶媒であっても、ポリアミック酸又はポリアミック酸エステルが析出しない範囲で、上記溶媒に混合して使用してもよい。
 ジアミン成分とテトラカルボン酸誘導体とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
 反応においては、ジアミン成分の合計モル数とテトラカルボン酸誘導体の合計モル数の比は0.8~1.2であることが好ましい。通常の縮重合反応同様、このモル比が1.0に近いほど生成するポリアミック酸又はポリアミック酸エステルの分子量は大きくなる。
 ジアミン成分とテトラカルボン酸誘導体とを反応させる際には、光重合性基の重合を避けるために、熱重合禁止剤を反応系に添加してもよい。
 熱重合禁止剤としては、例えば、ヒドロキノン、4-メトキシフェノール、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-クレゾール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が挙げられる。
 熱重合禁止剤の使用量としては、特に限定されない。
 ポリイミドは、上記反応で得られたポリアミック酸を脱水閉環して得られる。
 ポリイミドを得る方法としては、上記反応で得られたポリアミック酸の溶液をそのまま加熱する熱イミド化、又はポリアミック酸の溶液に触媒を添加する化学イミド化が挙げられる。溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 上記化学イミド化は、反応で得られたポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.1モル倍~30モル倍、好ましくは0.2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは1.5モル倍~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、なかでも、トリエチルアミンは副生成物であるポリイソイミドが生成しにくいので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、なかでも、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。化学イミド化によるイミド化率(ポリイミド前駆体の有する全繰り返し単位に対する閉環される繰り返し単位の割合、閉環率ともいう。)は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 上記イミド化の反応溶液から、生成したイミド化物を回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
 特定の重合体は、末端封止がされていてもよい。末端封止の方法としては、特に制限されず、例えば、モノアミン又は酸無水物を用いた従来公知の方法を用いることができる。
<溶媒>
 絶縁膜形成用感光性樹脂組成物に含有される溶媒としては、特定の重合体に対する溶解性の点から、有機溶媒を用いることが好ましい。具体的には、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルイソ酪酸アミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、テトラメチル尿素、1,3-ジメチル-2-イミダゾリノン、N-シクロヘキシル-2-ピロリドン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、2-ヒドロキシイソ酪酸メチル、乳酸エチル又は下記の式[D-1]~式[D-3]で示される溶媒等が挙げられ、これらは単独又は2種以上の組合せで用いることができる。
Figure JPOXMLDOC01-appb-C000039
(式[D-1]中、Dは炭素原子数1~3のアルキル基を示し、式[D-2]中、Dは炭素原子数1~3のアルキル基を示し、式[D-3]中、Dは炭素原子数1~4のアルキル基を表す。)
 溶媒は、絶縁膜形成用感光性樹脂組成物の所望の塗布膜厚及び粘度に応じて、特定の重合体100質量部に対し、例えば、30質量部~1500質量部の範囲、好ましくは100質量部~1000質量部の範囲で用いることができる。
<その他の成分>
 実施の形態では、絶縁膜形成用感光性樹脂組成物は、特定の重合体及び溶媒以外のその他の成分をさらに含有していてもよい。その他の成分としては、例えば、光ラジカル重合開始剤(「光ラジカル開始剤」ともいう)、架橋性化合物(「架橋剤」ともいう)、熱硬化剤、その他の樹脂成分、フィラー、増感剤、接着助剤、熱重合禁止剤、アゾール化合物、ヒンダードフェノール化合物などが挙げられる。
<<光ラジカル重合開始剤>>
 光ラジカル重合開始剤としては、光硬化時に使用する光源に吸収をもつ化合物であれば特に限定されないが、例えば、tert-ブチルペルオキシ-iso-ブチレート、2,5-ジメチル-2,5-ビス(ベンゾイルジオキシ)ヘキサン、1,4-ビス[α-(tert-ブチルジオキシ)-iso-プロポキシ]ベンゼン、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ビス(tert-ブチルジオキシ)ヘキセンヒドロペルオキシド、α-(iso-プロピルフェニル)-iso-プロピルヒドロペルオキシド、tert-ブチルヒドロペルオキシド、1,1-ビス(tert-ブチルジオキシ)-3,3,5-トリメチルシクロヘキサン、ブチル-4,4-ビス(tert-ブチルジオキシ)バレレート、シクロヘキサノンペルオキシド、2,2’,5,5’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-アミルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(tert-ブチルペルオキシカルボニル)-4,4’-ジカルボキシベンゾフェノン、tert-ブチルペルオキシベンゾエート、ジ-tert-ブチルジペルオキシイソフタレート等の有機過酸化物;9,10-アントラキノン、1-クロロアントラキノン、2-クロロアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、α-メチルベンゾイン、α-フェニルベンゾイン等のベンゾイン誘導体;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-{4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル}-フェニル]-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン等のアルキルフェノン系化合物;ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のアシルホスフィンオキサイド系化合物;2-(O-ベンゾイルオキシム)-1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン、1-(O-アセチルオキシム)-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン等のオキシムエステル系化合物が挙げられる。i線硬化性の観点から、オキシムエステル系化合物が特に好ましい。
 光ラジカル重合開始剤は、市販品として入手が可能であり、例えば、IRGACURE[登録商標]651、同184、同2959、同127、同907、同369、同379EG、同819、同819DW、同1800、同1870、同784、同OXE01、同OXE02、同OXE03、同OXE04、同250、同1173、同MBF、同TPO、同4265、同TPO(以上、BASF社製)、KAYACURE[登録商標]DETX-S、同MBP、同DMBI、同EPA、同OA(以上、日本化薬(株)))、VICURE-10、同55(以上、STAUFFER Co.LTD製)、ESACURE KIP150、同TZT、同1001、同KTO46、同KB1、同KL200、同KS300、同EB3、トリアジン-PMS、トリアジンA、トリアジンB(以上、日本シイベルヘグナー(株))、アデカオプトマーN-1717、同N-1414、同N-1606、アデカアークルズN-1919T、同NCI-831E、同NCI-930、同NCI-730(以上、(株)ADEKA製)が挙げられる。
 これらの光ラジカル重合開始剤は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 光ラジカル重合開始剤の含有量は、特に限定されないが、特定の重合体100質量部に対し、0.1質量部~20質量部が好ましく、光感度特性の観点から0.5質量部~15質量部がより好ましい。光ラジカル重合開始剤を特定の重合体100質量部に対し0.1質量部以上含有する場合には、絶縁膜形成用感光性樹脂組成物の光感度が向上しやすく、一方で、20質量部以下含有する場合には、絶縁膜形成用感光性樹脂組成物の厚膜硬化性が改善しやすい。
<<架橋性化合物>>
 実施の形態では、レリーフパターンの解像性を向上させるために、光ラジカル重合性の不飽和結合を有するモノマー(架橋性化合物)を任意に絶縁膜形成用感光性樹脂組成物に含有させることができる。
 このような架橋性化合物としては、光ラジカル重合開始剤によりラジカル重合反応する重合性基を含む化合物が好ましく、(メタ)アクリル化合物やマレイミド化合物を挙げることができるが、特に以下に限定するものではない。(メタ)アクリル化合物としては、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、エチレングリコール又はポリエチレングリコールモノ又はジ(メタ)アクリレート、プロピレングリコール又はポリプロピレングリコールのモノ又はジ(メタ)アクリレート、グリセロールのモノ、ジ又はトリ(メタ)アクリレート、1,4-ブタンジオールのジ(メタ)アクリレート、1,6-ヘキサンジオールのジ(メタ)アクリレート、1,9-ノナンジオールのジ(メタ)アクリレート、1,10-デカンジオールのジ(メタ)アクリレート、ネオペンチルグリコールのジ(メタ)アクリレート、シクロヘキサンジ(メタ)アクリレート、シクロヘキサンジメタノールのジ(メタ)アクリレート、トリシクロデカンジメタノールのジ(メタ)アクリレート、ジオキサングリコールのジ(メタ)アクリレート、ビスフェノールAのモノ又はジ(メタ)アクリレート、ビスフェノールFのジ(メタ)アクリレート、水添ビスフェノールAのジ(メタ)アクリレート、ベンゼントリメタクリレート、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンのジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート、イソボルニル(メタ)アクリレート、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、トリメチロールプロパントリ(メタ)アクリレート、グリセロールのジ又はトリ(メタ)アクリレート、ペンタエリスリトールのジ、トリ、又はテトラ(メタ)アクリレート、並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物、2-イソシアネートエチル(メタ)アクリレート又はイソシアネート含有(メタ)アクリレート、及びこれらにメチルエチルケトンオキシム、ε-カプロラクタム、γ-カプロラクタム、3,5-ジメチルピラゾール、マロン酸ジエチル、エタノール、イソプロパノール、n-ブタノール、1-メトキシ-2-プロパノール等のブロック剤を付加した化合物を挙げることができる。また、マレイミド化合物としては、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,4-フェニレンビスマレイミド、N,N’-1,3-フェニレンジマレイミド、4,4’-ビスマレイミドジフェニルメタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(2-マレイミドエチル)ジスルフィド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等を挙げることができる。マレイミド化合物の市販品としては、BMI-689、BMI-1500、BMI-1700、BMI-3000(以上、Designer Molecules Inc.製)等を挙げることができる。尚、これらの化合物は単独で使用しても、2種類以上を組み合わせて使用してもよい。また、本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを意味する。
 架橋性化合物の含有量は、特に限定されないが、特定の重合体100質量部に対し、好ましくは1質量部~100質量部であり、より好ましくは1質量部~50質量部である。
<<熱硬化剤>>
 熱硬化剤としては、例えば、ヘキサメトキシメチルメラミン、テトラメトキシメチルグリコールウリル、テトラメトキシメチルベンゾグアナミン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素などが挙げられる。
 絶縁膜形成用感光性樹脂組成物における熱硬化剤の含有量は、特に限定されない。
<<フィラー>>
 フィラーとしては、例えば無機フィラーが挙げられ、具体的にはシリカ、窒化アルミニウム、窒化ボロン、ジルコニア、アルミナなどのゾルが挙げられる。
 絶縁膜形成用感光性樹脂組成物にけるフィラーの含有量は、特に限定されない。
<<その他の樹脂成分>>
 実施の形態では、絶縁膜形成用感光性樹脂組成物は、特定の重合体以外の樹脂成分をさらに含有してもよい。絶縁膜形成用感光性樹脂組成物に含有させることができる樹脂成分としては、例えば、特定の重合体以外のポリイミド、ポリオキサゾール、ポリオキサゾール前駆体、フェノール樹脂、ポリアミド、エポキシ樹脂、シロキサン樹脂、アクリル樹脂等が挙げられる。
 これらの樹脂成分の含有量は、特に限定されないが、特定の重合体100質量部に対して、好ましくは0.01質量部~20質量部の範囲である。
<<増感剤>>
 実施の形態では、絶縁膜形成用感光性樹脂組成物には、光感度を向上させるために増感剤を任意に配合することができる。
 増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン等が挙げられる。
 これらは単独で、又は複数の組合せで用いることができる。
 増感剤の含有量は、特に限定されないが、特定の重合体100質量部に対し、0.1質量部~25質量部であることが好ましい。
<<接着助剤>>
 実施の形態では、絶縁膜形成用感光性樹脂組成物を用いて形成される膜と基材との接着性を向上させるために、接着助剤を任意に絶縁膜形成用感光性樹脂組成物に配合することができる。
 接着助剤としては、例えば、γ-アミノプロピルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルジメトキシメチルシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-〔3-(トリエトキシシリル)プロピル〕フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン等のシランカップリング剤、及びアルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤等が挙げられる。
 これらの接着助剤のうちでは、接着力の点からシランカップリング剤を用いることがより好ましい。
 接着助剤の含有量は、特に限定されないが、特定の重合体100質量部に対し、0.5質量部~25質量部の範囲が好ましい。
<<熱重合禁止剤>>
 実施の形態では、特に溶媒を含む溶液の状態での保存時の絶縁膜形成用感光性樹脂組成物の粘度及び光感度の安定性を向上させるために、熱重合禁止剤を任意に配合することができる。
 熱重合禁止剤としては、例えば、ヒドロキノン、4-メトキシフェノール、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-クレゾール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が用いられる。
 熱重合禁止剤の含有量としては、特に限定されないが、特定の重合体100質量部に対し、0.005質量部~12質量部の範囲が好ましい。
<<アゾール化合物>>
 例えば、銅又は銅合金から成る基板を用いる場合には、基板変色を抑制するためにアゾール化合物を任意に絶縁膜形成用感光性樹脂組成物に配合することができる。
 アゾール化合物としては、例えば、1H-トリアゾール、5-メチル-1H-トリアゾール、5-エチル-1H-トリアゾール、4,5-ジメチル-1H-トリアゾール、5-フェニル-1H-トリアゾール、4-t-ブチル-5-フェニル-1H-トリアゾール、5-ヒドロキシフェニル-1H-トリアゾール、フェニルトリアゾール、p-エトキシフェニルトリアゾール、5-フェニル-1-(2-ジメチルアミノエチル)トリアゾール、5-ベンジル-1H-トリアゾール、ヒドロキシフェニルトリアゾール、1,5-ジメチルトリアゾール、4,5-ジエチル-1H-トリアゾール、1H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α―ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、1-メチル-1H-テトラゾール等が挙げられる。特に好ましくは、4-カルボキシ-1H-ベンゾトリアゾール及び5-カルボキシ-1H-ベンゾトリアゾールが挙げられる。
 また、これらのアゾール化合物は、1種で用いても2種以上の混合物で用いてもよい。
 アゾール化合物の含有量は、特に限定されないが、特定の重合体100質量部に対し、0.1質量部~20質量部であることが好ましく、光感度特性の観点から0.5質量部~5質量部であることがより好ましい。アゾール化合物の特定の重合体100質量部に対する含有量が0.1質量部以上である場合には、絶縁膜形成用感光性樹脂組成物を銅又は銅合金の上に形成したときに、銅又は銅合金表面の変色が抑制され、一方、20質量部以下である場合には、光感度に優れるため好ましい。
<<ヒンダードフェノール化合物>>
 実施の形態では、銅上の変色を抑制するためにヒンダードフェノール化合物を任意に絶縁膜形成用感光性樹脂組成物に配合することができる。
 ヒンダードフェノール化合物としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、N,N’ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5‐エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられるが、これに限定されるものではない。
 これらの中でも、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオンが特に好ましい。
 ヒンダードフェノール化合物の含有量は、特に限定されないが、特定の重合体100質量部に対し、0.1質量部~20質量部であることが好ましく、光感度特性の観点から0.5質量部~10質量部であることがより好ましい。ヒンダードフェノール化合物の特定の重合体100質量部に対する含有量が0.1質量部以上である場合、例えば銅又は銅合金の上に絶縁膜形成用感光性樹脂組成物を形成した場合に、銅又は銅合金の変色・腐食が防止され、一方、20質量部以下である場合には光感度に優れるため好ましい。
 絶縁膜形成用感光性樹脂組成物は、後述する硬化レリーフパターンの製造のための絶縁膜形成用ネガ型感光性樹脂組成物として好適に用いることができる。
(絶縁膜)
 本発明の絶縁膜は、本発明の絶縁膜形成用感光性樹脂組成物の塗布膜の焼成物である。
 塗布方法としては、従来から絶縁膜形成用感光性樹脂組成物の塗布に用いられている方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
 焼成物を得る際の焼成の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。焼成は、例えば、130℃~250℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
 絶縁膜の厚みとしては、特に限定されないが、1μm~100μmが好ましく、2μm~50μmがより好ましい。
(感光性レジストフィルム)
 本発明の絶縁膜形成用感光性樹脂組成物は、感光性レジストフィルム(所謂、ドライフィルムレジスト)に用いることができる。
 感光性レジストフィルムは、基材フィルムと、本発明の絶縁膜形成用感光性樹脂組成物から形成される感光性樹脂層(感光性樹脂膜)と、カバーフィルムとを有する。
 通常、基材フィルム上に、感光性樹脂層と、カバーフィルムとがこの順で積層されている。
 感光性レジストフィルムは、例えば、基材フィルム上に、絶縁膜形成用感光性樹脂組成物を塗布し、乾燥させて感光性樹脂層を形成した後、その感光性樹脂層上にカバーフィルムを積層することにより製造できる。
 塗布方法としては、従来から絶縁膜形成用感光性樹脂組成物の塗布に用いられている方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
 乾燥の方法としては、例えば、20℃~200℃で1分~1時間の条件が挙げられる。
 得られる感光性樹脂層の厚みとしては、特に限定されないが、1μm~100μmが好ましく、2μm~50μmがより好ましい。
 基材フィルムには、公知のものを使用でき、例えば熱可塑性樹脂フィルム等が用いられる。この熱可塑性樹脂としては、例えばポリエチレンテレフタレート等のポリエステルが挙げられる。基材フィルムの厚みは、2μm~150μmが好ましい。
 カバーフィルムには、公知のものを使用でき、例えばポリエチレンフィルム、ポリプロピレンフィルム等が用いられる。カバーフィルムとしては、感光性樹脂層との接着力が基材フィルムよりも小さいフィルムが好ましい。カバーフィルムの厚みは、2μm~150μmが好ましく、2μm~100μmがより好ましく、5μm~50μmが特に好ましい。
 基材フィルムとカバーフィルムとは、同一のフィルム材料であってもよいし、異なるフィルムを用いてもよい。
(硬化レリーフパターン付き基板の製造方法)
 本発明の硬化レリーフパターン付き基板の製造方法は、
 (1)本発明に係る絶縁膜形成用感光性樹脂組成物を基板上に塗布して、感光性樹脂層(感光性樹脂膜)を該基板上に形成する工程と、
 (2)該感光性樹脂層を露光する工程と、
 (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
 (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
を含む。
 以下、各工程について説明する。
 (1)本発明に係る絶縁膜形成用感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程
 本工程では、本発明に係る絶縁膜形成用感光性樹脂組成物を基板上に塗布し、必要に応じて、その後に乾燥させて、感光性樹脂層を形成する。塗布方法としては、従来から絶縁膜形成用感光性樹脂組成物の塗布に用いられている方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
 必要に応じて、絶縁膜形成用感光性樹脂組成物から成る塗膜を乾燥させることができ、そして乾燥方法としては、例えば、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。具体的には、風乾又は加熱乾燥を行う場合、20℃~200℃で1分~1時間の条件で乾燥を行うことができる。以上により基板上に感光性樹脂層を形成できる。
(2)感光性樹脂層を露光する工程
 本工程では、上記(1)工程で形成した感光性樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク又はレチクルを介して又は直接に、紫外線光源等により露光する。
 露光の際に使用される光源としては、例えば、g線、h線、i線、ghi線ブロードバンド、及びKrFエキシマレーザーが挙げられる。露光量は25mJ/cm~2000mJ/cmが望ましい。
 この後、光感度の向上等の目的で、必要に応じて、任意の温度及び時間の組合せによる露光後ベーク(PEB)及び/又は現像前ベークを施してもよい。ベーク条件の範囲は、温度は50℃~200℃であることが好ましく、時間は10秒~600秒であることが好ましいが、絶縁膜形成用感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限らない。
(3)露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程
 本工程では、露光後の感光性樹脂層のうち未露光部を現像除去する。露光(照射)後の感光性樹脂層を現像する現像方法としては、従来知られているフォトレジストの現像方法、例えば、回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、現像液を除去する目的でリンスを施してもよい。さらに、レリーフパターンの形状を調整する等の目的で、必要に応じて、任意の温度及び時間の組合せによる現像後ベークを施してもよい。
 現像に使用される現像液としては、有機溶媒が好ましい。有機溶媒としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン等が好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。
 リンスに使用されるリンス液としては、現像液と混和し、絶縁膜形成用感光性樹脂組成物に対して溶解性が低い有機溶媒が好ましい。リンス液としては、例えば、メタノール、エタノール、イソプロピルアルコール、乳酸エチル、プロピレングリコールメチルエーテルアセテート、トルエン、キシレン等が好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。
(4)レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程
 本工程では、上記現像により得られたレリーフパターンを加熱して硬化レリーフパターンに変換する。加熱硬化の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、例えば、130℃~250℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
 硬化レリーフパターンの厚みとしては、特に限定されないが、1μm~100μmが好ましく、2μm~50μmがより好ましい。
(半導体装置)
 実施の形態では、半導体素子と該半導体素子の上部又は下部に設けられた硬化膜とを備える半導体装置も提供される。硬化膜は、本発明の絶縁膜形成用感光性樹脂組成物から形成される硬化レリーフパターンである。硬化レリーフパターンは、例えば、上述した硬化レリーフパターン付き基板の製造方法における工程(1)~(4)により得ることができる。
 また、本発明は、基板として半導体素子を用い、上述した硬化レリーフパターン付き基板の製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本発明の半導体装置は、硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。
(表示体装置)
 実施の形態では、表示体素子と該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は上述の硬化レリーフパターンである表示体装置が提供される。ここで、当該硬化レリーフパターンは、当該表示体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、TFT(Thin Film Transistor)液晶表示素子及びカラーフィルター素子の表面保護膜、絶縁膜、及び平坦化膜、MVA(Multi-domain Vertical Alignment)型液晶表示装置用の突起、並びに有機EL(Electro-Luminescence)素子陰極用の隔壁を挙げることができる。
 本発明の絶縁膜形成用感光性樹脂組成物は、上記のような半導体装置への適用の他、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、及び液晶配向膜等の用途にも有用である。
 次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
 下記合成例及び比較合成例に示す化合物は下記に示すものである。
 BEM-S:3,5-ジアミノ安息香酸2-(メタクリロイルオキシ)エチル(三星化学工業(株)製)
Figure JPOXMLDOC01-appb-C000040
 BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
Figure JPOXMLDOC01-appb-C000041
 HFBAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン
Figure JPOXMLDOC01-appb-C000042
 APC-14:4-テトラデシルオキシ-1,3-フェニレンジアミン(東京化成工業(株)製)
Figure JPOXMLDOC01-appb-C000043
 APC-16:4-ヘキサデシルオキシ-1,3-フェニレンジアミン(和歌山精化工業(株)製)
Figure JPOXMLDOC01-appb-C000044
 DAB-C18:4-オクタデシルオキシ-1,3-フェニレンジアミン(和歌山精化工業(株)製)
Figure JPOXMLDOC01-appb-C000045
 BPADA:4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物
Figure JPOXMLDOC01-appb-C000046
 TMPBP-TME:2,2’,3,3’,5,5’-ヘキサメチル-[1,1’-ビフェニル]-4,4’-ジイルビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキシレート)(本州化学工業(株)製)
Figure JPOXMLDOC01-appb-C000047
 6FDA:4,4’-[ペルフルオロ(プロパン-2,2-ジイル)]ジ無水フタル酸(ダイキン工業(株)製)
Figure JPOXMLDOC01-appb-C000048
 下記合成例に示す重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(以下、本明細書ではGPCと略称する)による測定結果である。測定には、GPC装置(HLC-8320GPC(東ソー(株)製))を用い、測定条件は以下の通りである。
 ・カラム:Shodex〔登録商標〕KD-805/Shodex〔登録商標〕KD-803(昭和電工(株)製)
 ・カラム温度:50℃
 ・流量:1mL/分
 ・溶離液:N,N-ジメチルホルムアミド(DMF)、臭化リチウム一水和物(30mM)/リン酸(30mM)/テトラヒドロフラン(1%)
 ・標準試料:ポリエチレンオキシド
 下記合成例に示す化学イミド化率は、核磁気共鳴装置(以下、本明細書ではNMRと略称する)による測定結果である。測定には、NMR装置(JNM-ECA500)(日本電子(株)製)を用い、測定条件は下記の通りである。
 ・測定温度:室温
 ・測定溶媒:重水素化テトラヒドロフラン(THF-d8)
 尚、化学イミド化率はイミド化前後で変化しない構造に由来するプロトンを基準プロトンとし、このプロトンのピーク積算値と、9.5ppm~11.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって算出した。
 化学イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<合成例1> ポリイミド(P-1)の合成
 4口フラスコにBEM-S 5.50g(20.81mmol)、DAB-C18 14.56g(38.65mmol)、及びN-エチル-2-ピロリドン 211.43gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 14.86g(28.54mmol)、TMPBP-TME 18.39g(29.73mmol)、及びN-エチル-2-ピロリドン 90.61gをフラスコ内に加え、50℃で20時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 177.65g、無水酢酸 18.21g、及びトリエチルアミン 3.01gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。次にN-エチル-2-ピロリドン 532.95gを加え、メタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は25,770であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例2> ポリイミド(P-2)の合成
 4口フラスコにBEM-S 5.10g(19.30mmol)、DAB-C18 10.38g(27.57mmol)、HFBAPP 4.29g(8.27mmol)及びN-エチル-2-ピロリドン 200.71gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 13.78g(26.47mmol)、TMPBP-TME 17.05g(27.57mmol)、及びN-エチル-2-ピロリドン 86.02gをフラスコ内に加え、50℃で20時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 168.65g、無水酢酸 16.89g、及びトリエチルアミン 2.79gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。次にN-エチル-2-ピロリドン 505.95gを加え、メタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は32,863であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例3> ポリイミド(P-3)の合成
 4口フラスコにBEM-S 5.40g(20.43mmol)、DAB-C18 14.29g(37.95mmol)、及びN-エチル-2-ピロリドン 200.02gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 8.51g(16.35mmol)、TMPBP-TME 14.45g(23.35mmol)、6FDA 7.78g(17.51mmol)及びN-エチル-2-ピロリドン 85.72gをフラスコ内に加え、50℃で20時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 168.10g、無水酢酸 17.88g、及びトリエチルアミン 2.95gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。次にN-エチル-2-ピロリドン 504.30gを加え、メタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は28,569であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例4> ポリイミド(P-4)の合成
 4口フラスコにBEM-S 5.50g(20.81mmol)、APC-14 12.39g(38.65mmol)、及びN-エチル-2-ピロリドン 195.12gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.92g(17.84mmol)、TMPBP-TME 14.71g(23.78mmol)、6FDA 8.67g(16.65mmol)及びN-エチル-2-ピロリドン 83.62gをフラスコ内に加え、50℃で20時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 163.97g、無水酢酸 18.21g、及びトリエチルアミン 3.01gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。次にN-エチル-2-ピロリドン 491.91gを加え、メタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は32,929であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例5> ポリイミド(P-5)の合成
 4口フラスコにBEM-S 5.50g(20.81mmol)、APC-16 13.47g(38.65mmol)、及びN-エチル-2-ピロリドン 199.43gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.92g(17.84mmol)、TMPBP-TME 14.71g(23.78mmol)、6FDA 8.67g(16.65mmol)及びN-エチル-2-ピロリドン 85.47gをフラスコ内に加え、50℃で20時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 167.58g、無水酢酸 18.21g、及びトリエチルアミン 3.01gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。次にN-エチル-2-ピロリドン 502.76gを加え、メタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は30,568であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例6> ポリイミド(P-6)の合成
 4口フラスコにBEM-S 7.05g(26.68mmol)、BAPP 4.38g(10.67mmol)、DAB-C18 6.03g(16.01mmol)、及びN-エチル-2-ピロリドン 98.95gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.22g(13.87mmol)、TMPBP-TME 13.20g(21.35mmol)、6FDA 7.11g(16.01mmol)及びN-エチル-2-ピロリドン 156.05gをフラスコ内に加え、50℃で19時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 16.34g、及びトリエチルアミン 2.79gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は22,930であり、NMR(THF-d8)による化学イミド化率は98%であった。
<合成例7> ポリイミド(P-7)の合成
 4口フラスコにBEM-S 6.96g(26.34mmol)、BAPP 4.32g(10.53mmol)、DAB-C18 5.95g(15.80mmol)、及びN-エチル-2-ピロリドン 97.67gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.40g(14.22mmol)、TMPBP-TME 13.03g(21.07mmol)、6FDA 7.02g(15.80mmol)、無水マレイン酸 0.31g(3.16mmol)及びN-エチル-2-ピロリドン 157.33gをフラスコ内に加え、50℃で19時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 16.13g、及びトリエチルアミン 2.66gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は22,959であり、NMR(THF-d8)による化学イミド化率は100%であった。
<合成例8> ポリイミド(P-8)の合成
 4口フラスコにBEM-S 6.95g(26.31mmol)、BAPP 4.32g(10.52mmol)、DAB-C18 5.95g(15.79mmol)、及びN-エチル-2-ピロリドン 97.57gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.39g(14.21mmol)、TMPBP-TME 13.02g(21.05mmol)、6FDA 7.01g(15.79mmol)、イタコン酸無水物 0.35g(3.16mmol)及びN-エチル-2-ピロリドン 157.43gをフラスコ内に加え、50℃で19時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 16.12g、及びトリエチルアミン 2.66gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は26,102であり、NMR(THF-d8)による化学イミド化率は100%であった。
<合成例9> ポリイミド(P-9)の合成
 4口フラスコにBEM-S 6.93g(26.21mmol)、BAPP 4.30g(10.49mmol)、DAB-C18 5.92g(15.73mmol)、及びN-エチル-2-ピロリドン 97.22gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.37g(14.16mmol)、TMPBP-TME 12.97g(20.97mmol)、6FDA 6.99g(15.73mmol)、5-ノルボルネン-2,3-ジカルボン酸無水物 0.52g(3.15mmol)及びN-エチル-2-ピロリドン 157.78gをフラスコ内に加え、50℃で19時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 16.06g、及びトリエチルアミン 2.65gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は26,096であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例10> ポリイミド(P-10)の合成
 4口フラスコにBEM-S 6.80g(25.72mmol)、BAPP 4.22g(10.29mmol)、DAB-C18 5.81g(15.43mmol)、及びN-エチル-2-ピロリドン 95.37gを加え、空気下、室温で撹拌して溶解させた。さらに、TMPBP-TME 21.32g(34.46mmol)、6FDA 6.85g(15.43mmol)及びN-エチル-2-ピロリドン 159.63gをフラスコ内に加え、50℃で22時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 15.75g、及びトリエチルアミン 2.60gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は33,309であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例11> ポリイミド(P-11)の合成
 4口フラスコにBEM-S 6.75g(25.54mmol)、BAPP 4.19g(10.22mmol)、DAB-C18 5.77g(15.33mmol)、及びN-エチル-2-ピロリドン 94.73gを加え、空気下、室温で撹拌して溶解させた。さらに、TMPBP-TME 21.17g(34.23mmol)、6FDA 6.81g(15.33mmol)、無水マレイン酸 0.30g(3.07mmol)及びN-エチル-2-ピロリドン 160.27gをフラスコ内に加え、50℃で19時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 15.65g、及びトリエチルアミン 2.58gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は29,575であり、NMR(THF-d8)による化学イミド化率は100%であった。
<合成例12> ポリイミド(P-12)の合成
 4口フラスコにBEM-S 10.09g(38.18mmol)、DAB-C18 6.16g(16.36mmol)、及びN-エチル-2-ピロリドン 92.09gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.66g(14.73mmol)、TMPBP-TME 13.49g(21.82mmol)、6FDA 7.27g(16.36mmol)、無水マレイン酸 0.32g(3.27mmol)及びN-エチル-2-ピロリドン 162.91gをフラスコ内に加え、50℃で19時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 16.70g、及びトリエチルアミン 2.76gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は22,161であり、NMR(THF-d8)による化学イミド化率は100%であった。
<合成例13> ポリイミド(P-13)の合成
 4口フラスコにBEM-S 8.43g(38.18mmol)、BAPP 5.46g(13.30mmol)、DAB-C18 3.01g(7.98mmol)、及びN-エチル-2-ピロリドン 95.76gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 6.92g(13.30mmol)、TMPBP-TME 16.45g(26.60mmol)、6FDA 4.73g(10.64mmol)及びN-エチル-2-ピロリドン 159.24gをフラスコ内に加え、50℃で19時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.00g、無水酢酸 16.29g、及びトリエチルアミン 2.69gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 192.86gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をろ過し、メタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は23,237であり、NMR(THF-d8)による化学イミド化率は98%であった。
<比較合成例1> ポリイミド(P-14)の合成
 4口フラスコにBEM-S 2.81g(10.62mmol)、HFBAPP 10.23g(19.72mmol)、及びN-エチル-2-ピロリドン 96.15gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.58g(14.57mmol)、TMPBP-TME 9.39g(15.17mmol)、及びN-エチル-2-ピロリドン 73.85gをフラスコ内に加え、室温で39時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸 9.29g、及びトリエチルアミン 1.54gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 128.57gを加えて希釈し、この希釈溶液をメタノール中に滴下した。生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は44,173であり、NMR(THF-d8)による化学イミド化率は99%であった。
 実施例及び比較例に示す化合物は下記に示すものである。
 ・NKエステル A-DOD-N:1,10-デカンジオールジアクリレート(新中村化学工業(株)製)
 ・BMI-689:式で表されるマレイミド化合物(Designer Molecules Inc.製)
Figure JPOXMLDOC01-appb-C000049
 ・CaA-BTZ:5-カルボキシベンゾトリアゾール(Sigma-Aldrich Japan G.K.社製)
 ・CBT-SG:4-カルボキシベンゾトリアゾール及び5-カルボキシベンゾトリアゾールの混合物(城北化学工業(株)製)
 ・KBM-5103:3-アクリロキシプロピルトリメトキシシラン(信越化学工業(株)製)
<実施例1>
 合成例1で得られたポリイミド(P-1)5.81g、架橋剤としてNKエステル A-DOD-N 0.58g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.12g、CaA-BTZ 0.17g、KBM-5103 0.11g、N-エチル-2-ピロリドン 3.96g、及びシクロペンタノン 9.24gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例2>
 合成例2で得られたポリイミド(P-2)5.32g、架橋剤としてNKエステル A-DOD-N 0.80g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.21g、CaA-BTZ 0.16g、KBM-5103 0.11g、N-エチル-2-ピロリドン 7.02g、γ-ブチロラクトン 9.36g、及びシクロヘキサノン 7.02gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例3>
 合成例2で得られたポリイミド(P-2)7.66g、架橋剤としてNKエステル A-DOD-N 1.15g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.31g、CaA-BTZ 0.23g、KBM-5103 0.15g、N-エチル-2-ピロリドン 12.15g、γ-ブチロラクトン 16.20g、及びシクロヘキサノン 12.15gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例4>
 合成例3で得られたポリイミド(P-3)7.02g、架橋剤としてNKエステル A-DOD-N 1.05g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.28g、CaA-BTZ 0.21g、KBM-5103 0.14g、N-エチル-2-ピロリドン 6.39g、γ-ブチロラクトン 8.52g、及びシクロヘキサノン 6.39gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例5>
 合成例3で得られたポリイミド(P-3)10.08g、架橋剤としてNKエステル A-DOD-N 1.51g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.40g、CaA-BTZ 0.30g、KBM-5103 0.20g、N-エチル-2-ピロリドン 11.25g、γ-ブチロラクトン 15.00g、及びシクロヘキサノン 11.25gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例6>
 合成例4で得られたポリイミド(P-4)8.06g、架橋剤としてNKエステル A-DOD-N 1.21g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.32g、CaA-BTZ 0.24g、KBM-5103 0.16g、N-エチル-2-ピロリドン 9.00g、γ-ブチロラクトン 12.00g、及びシクロヘキサノン 9.00gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例7>
 合成例5で得られたポリイミド(P-5)8.06g、架橋剤としてNKエステル A-DOD-N 1.21g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.32g、CaA-BTZ 0.24g、KBM-5103 0.16g、N-エチル-2-ピロリドン 9.00g、γ-ブチロラクトン 12.00g、及びシクロヘキサノン 9.00gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例8>
 合成例6で得られたポリイミド(P-6)8.82g、架橋剤としてNKエステル A-DOD-N 1.32g及びBMI-689 0.88g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.26g、CBT-SG 0.13g、KBM-5103 0.18g、N-エチル-2-ピロリドン 8.52g、γ-ブチロラクトン 11.36g、並びにシクロヘキサノン 8.52gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例9>
 合成例7で得られたポリイミド(P-7)8.82g、架橋剤としてNKエステル A-DOD-N 1.32g及びBMI-689 0.88g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.26g、CBT-SG 0.13g、KBM-5103 0.18g、N-エチル-2-ピロリドン 8.52g、γ-ブチロラクトン 11.36g、並びにシクロヘキサノン 8.52gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例10>
 合成例7で得られたポリイミド(P-7)8.56g、架橋剤としてNKエステル A-DOD-N 1.28g及びBMI-689 0.86g、光ラジカル開始剤としてアデカアークルズNCI-930 0.09g、IRGACURE[登録商標]819 0.51g、CBT-SG 0.13g、KBM-5103 0.17g、N-エチル-2-ピロリドン 8.52g、γ-ブチロラクトン 11.36g、並びにシクロヘキサノン 8.52gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例11>
 合成例8で得られたポリイミド(P-8)8.82g、架橋剤としてNKエステル A-DOD-N 1.32g及びBMI-689 0.88g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.26g、CBT-SG 0.13g、KBM-5103 0.18g、N-エチル-2-ピロリドン 8.52g、γ-ブチロラクトン 11.36g、並びにシクロヘキサノン 8.52gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例12>
 合成例9で得られたポリイミド(P-9)8.82g、架橋剤としてNKエステル A-DOD-N 1.32g及びBMI-689 0.88g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.26g、CBT-SG 0.13g、KBM-5103 0.18g、N-エチル-2-ピロリドン 8.52g、γ-ブチロラクトン 11.36g、並びにシクロヘキサノン 8.52gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例13>
 合成例10で得られたポリイミド(P-10)9.23g、架橋剤としてNKエステル A-DOD-N 1.38g及びBMI-689 0.92g、光ラジカル開始剤としてアデカアークルズNCI-930 0.09g及びIRGACURE[登録商標]819 0.55g、CBT-SG 0.14g、KBM-5103 0.18g、N-エチル-2-ピロリドン 11.25g、γ-ブチロラクトン 15.00g、並びにシクロヘキサノン 11.25gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例14>
 合成例11で得られたポリイミド(P-11)7.97g、架橋剤としてNKエステル A-DOD-N 1.20g及びBMI-689 0.80g、光ラジカル開始剤としてアデカアークルズNCI-930 0.08g及びIRGACURE[登録商標]819 0.48g、CBT-SG 0.12g、KBM-5103 0.16g、N-エチル-2-ピロリドン 8.76g、γ-ブチロラクトン 11.68g、並びにシクロヘキサノン 8.76gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例15>
 合成例12で得られたポリイミド(P-12)8.56g、架橋剤としてNKエステル A-DOD-N 1.28g及びBMI-689 0.86g、光ラジカル開始剤としてアデカアークルズNCI-930 0.09g及びIRGACURE[登録商標]819 0.51g、CBT-SG 0.13g、KBM-5103 0.17g、N-エチル-2-ピロリドン 8.52g、γ-ブチロラクトン 11.36g、並びにシクロヘキサノン 8.52gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<実施例16>
 合成例13で得られたポリイミド(P-13)10.70g、架橋剤としてNKエステル A-DOD-N 1.61g及びBMI-689 1.07g、光ラジカル開始剤としてアデカアークルズNCI-930 0.11g及びIRGACURE[登録商標]819 0.64g、CBT-SG 0.16g、KBM-5103 0.21g、N-エチル-2-ピロリドン 10.65g、γ-ブチロラクトン 14.20g、並びにシクロヘキサノン 10.65gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<比較例1>
 比較合成例1で得られたポリイミド(P-14)10.00g、架橋剤としてNKエステル A-DOD-N 1.50g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.40g、CaA-BTZ 0.30g、KBM-5103 0.20g、N-エチル-2-ピロリドン 12.45g、γ-ブチロラクトン 16.61g、及びシクロペンタノン 12.45gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、絶縁膜形成用ネガ型感光性樹脂組成物を調製した。
<比較例2>
 比較例1で得られた絶縁膜形成用ネガ型感光性樹脂組成物 32.89gに、N-エチル-2-ピロリドン 4.32g、γ-ブチロラクトン 5.76g、及びシクロペンタノン 4.32gを混合して希釈した。
〔電気特性評価〕
 実施例1、実施例2、実施例4、実施例6乃至実施例16及び比較例1で調製した絶縁膜形成用ネガ型感光性樹脂組成物を20μm厚のアルミニウム箔を被覆させた4インチシリコンウェハ上にスピンコートし、ホットプレート上で115℃、270秒間焼成することで、アルミニウム箔上に約25μmの感光性樹脂膜を形成した。得られた感光性樹脂膜上にi線アライナー(PLA-501、キヤノン(株)製)を用いて、ウェハ上に500mJ/cmで全面露光した後、高温クリーンオーブン(CLH-21CD(V)-S、光洋サーモシステム(株))を用いて、窒素雰囲気中、230℃、2時間焼成した。さらに、焼成したアルミニウム箔を6N塩酸に浸漬し、アルミニウム箔を溶解させることで、フィルムを得た。得られたフィルムの60GHzにおける誘電正接を、スプリットシリンダー共振器を用いて測定した。誘電正接の測定条件は以下の通りである。
 ・測定方法:スプリットシリンダー共振器
 ・ベクトルネットワークアナライザー:FieldFox N9926A(キーサイト・テクノロジーズ(株)製)
 ・共振器:CR-760(EMラボ(株)製)
 ・測定周波数:約60GHz
 フィルムの60GHzにおける誘電正接の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000050
 表1の結果から、実施例1、実施例2、実施例4、実施例6乃至実施例16の絶縁膜形成用ネガ型感光性樹脂組成物から得られたフィルムは、比較例1の絶縁膜形成用ネガ型感光性樹脂組成物から得られたフィルムよりも60GHzにおける誘電正接が低い値を示した。
〔感光性評価〕
 実施例3、実施例5乃至実施例16、及び比較例2で調製した絶縁膜形成用ネガ型感光性樹脂組成物を8インチシリコンウェハ上にスピンコーター(CLEAN TRACK ACT-8、東京エレクトロン(株)製)を用いて塗布後、115℃、270秒間焼成することで、ウェハ上に膜厚約6.5μmの感光性樹脂膜を形成した。得られた感光性樹脂膜上にi線ステッパー(NSR-2205i12D、ニコン(株)製)を用いて7mm角の露光パターン(露光量:300mJ/cm)を作成した。露光後、自動現像装置(AD-1200、ミカサ(株)製)を用い、現像液としてシクロペンタノンでスプレー現像し、リンス液としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)でスプレーリンスした。尚、シクロペンタノンによる現像時間は未露光部(0mJ/cm)が完全に現像されるまでの時間とし、PGMEAによるリンス時間は10秒間とした。成膜直後の膜厚と未露光部及び露光部(300mJ/cm)における現像後の膜厚を干渉膜厚計(ラムダエースVM-2110、SCREEN(株)製)を用いて測定することによって、露光部において現像されずに残存した膜厚の割合(残膜率(%))を以下の式によって算出した。
 残膜率(%)=[(未露光部の膜厚)または(露光部の膜厚)]/(成膜直後の膜厚)×100
 すなわち、残膜率が80%であれば、現像後の膜厚は成膜直後の膜厚の80%が現像されずに残存していることを意味している。現像時間及び現像後残膜率の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000051
 表2の結果から、実施例3、実施例5乃至実施例16、及び比較例2の絶縁膜形成用ネガ型感光性樹脂組成物は、現像後に未露光部の感光性樹脂膜は全て現像され、露光部の感光性樹脂膜は殆ど現像されなかった。さらに、比較例2の絶縁膜形成用ネガ型感光性樹脂組成物から得られた感光性樹脂膜は、実施例3及び実施例5乃至実施例16の絶縁膜形成用ネガ型感光性樹脂組成物から得られた感光性樹脂膜と比較してシクロペンタノンによる現像時間が長かった。すなわち、実施例3及び実施例5乃至実施例16の絶縁膜形成用ネガ型感光性樹脂組成物から得られた感光性樹脂膜は現像液に対する溶解性が高く、現像工程に係る現像時間の短縮や使用する現像液の削減に有効である。
〔残留応力評価〕
 実施例3、実施例5、及び比較例2で調製した絶縁膜形成用ネガ型感光性樹脂組成物を、厚さ724μmの新品8インチシリコンウェハに対して、スピンコーター(CLEAN TRACK ACT-8、東京エレクトロン(株)製)を用いて塗布後、115℃、270秒間焼成することで、ウェハ上に膜厚約6.5μmの感光性樹脂膜を形成した。
 次に、i線ステッパー(NSR-2205i12D、ニコン(株)製)を用いて500mJ/cmで全面露光した。次いで高温クリーンオーブン(CLH-21CD(V)-S、光洋サーモシステム(株))を用いて窒素雰囲気中、230℃、2時間焼成して、ポリイミド硬化膜を得た。得られたポリイミド膜の残留応力を室温下、薄膜応力測定装置(FLX-3300-T:ケーエルエー・テンコール(株)製)を用いて測定した。
 残留応力を測定した結果を表3に示す。得られた測定値が25MPa以下を「良好」、30MPa以上を「不良」とした。
Figure JPOXMLDOC01-appb-T000052
 表3の結果から、実施例3及び実施例5の絶縁膜形成用ネガ型感光性樹脂組成物から得られたポリイミド硬化膜は、比較例2の絶縁膜形成用ネガ型感光性樹脂組成物から得られたポリイミド硬化膜よりも残留応力が小さいため、シリコンウェハが反りにくく、搬送やウェハ固定の際の不具合が生じにくい。
 すなわち、実施例1乃至実施例16の絶縁膜形成用ネガ型感光性樹脂組成物は短い現像時間でレリーフパターンの作製が可能であるだけでなく、誘電正接が低く、さらに残留応力が小さいため、優れた電気特性を必要とする電子材料の製造に好適に用いることができる。

Claims (15)

  1.  ポリイミド、ポリアミック酸、及びポリアミック酸エステルの少なくともいずれかの重合体と、溶媒とを含み、
     前記重合体が、光重合性基、芳香族基及び炭素原子数5以上のアルキル基を有する、
     絶縁膜形成用感光性樹脂組成物。
  2.  前記ポリイミドが、以下のポリイミド(1)であり、
     前記ポリアミック酸が、以下のポリアミック酸(2)であり、
     前記ポリアミック酸エステルが、以下のポリアミック酸エステル(3)である、
    請求項1に記載の絶縁膜形成用感光性樹脂組成物。
     ポリイミド(1):下記式(1-a)、下記式(1-b)及び下記式(1-c)で表される構造単位を有するポリイミド。
     ポリアミック酸(2):下記式(2)、下記式(1-b)、及び下記式(1-c)で表される構造単位を有するポリアミック酸。
     ポリアミック酸エステル(3):以下のポリアミック酸エステル(3a)~(3b)の少なくともいずれか。
      ポリアミック酸エステル(3a):下記式(3-a)、及び下記式(1-b)で表される構造単位を有するポリアミック酸エステル。
      ポリアミック酸エステル(3b):下記式(3-b)、下記式(1-b)、及び下記式(1-c)で表される構造単位を有するポリアミック酸エステル。
    Figure JPOXMLDOC01-appb-C000001
    [式(1-a)中、Arは4価の有機基を表す。
     式(1-b)中、Xは炭素原子数5以上のアルキル基を有する2価の芳香族基を表す。
     式(1-c)中、Yは光重合性基を有する2価の芳香族基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Arは4価の有機基を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3-a)中、Arは4価の有機基を表し、L、及びLはそれぞれ独立して光重合性基を有する1価の有機基を表す。
     式(3-b)中、Arは4価の有機基を表し、R、及びRはそれぞれ独立して1価の有機基を表す。]
  3.  前記式(1-b)中、Xが下記式(V-1)~(V-6)のいずれかで表される2価の有機基を表す請求項2に記載の絶縁膜形成用感光性樹脂組成物。
    (式(V-1)中、Xv1は、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv1は、炭素原子数5~20のアルキル基を表す。
     式(V-2)~(V-5)中、Xv2~Xv5は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Rv2~Rv5は、それぞれ独立に、炭素原子数5~20のアルキル基を表す。
     式(V-6)中、Xは、単結合、-O-、-NH-、-O-(CH-O-(mは1~6の整数を表す。)、-C(CH-、-CO-、-(CH-(mは1~6の整数を表す。)、-SO-、-O-C(CH-、-CO-(CH-(mは1~6の整数を表す。)、-NH-(CH-(mは1~6の整数を表す。)、-SO-(CH-(mは1~6の整数を表す。)、-CONH-(CH-(mは1~6の整数を表す。)、-CONH-(CH-NHCO-(mは1~6の整数を表す。)、-COO-(CH-OCO-(mは1~6の整数を表す。)、-CONH-、-NH-(CH-NH-(mは1~6の整数を表す。)、又は-SO-(CH-SO-(mは1~6の整数を表す。)を表す。Xp1及びXp2は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。R1a及びR1bは、それぞれ独立に、炭素原子数5~20のアルキル基を表す。k1及びk2は、それぞれ独立に、0~2の整数を表す。
     式(V-1)~(V-6)中、*は結合手を表す。)
  4.  前記式(1-c)中、Yが下記式(9-a)で表される2価の有機基を表し、
     前記式(3-a)中、L及びLがそれぞれ独立して下記式(9-b)で表される1価の有機基を表す、
     請求項2に記載の絶縁膜形成用感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式(9-a)中、Vは直接結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、又はウレア結合を表し、Wは酸素原子又はNH基を表し、R15は直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、R16は水素原子又はメチル基を表し、*は結合手を表す。]
    Figure JPOXMLDOC01-appb-C000006
    [式(9-b)中、Wは酸素原子又はNH基を表し、R17は直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、R18は水素原子又はメチル基を表し、*は結合手を表す。]
  5.  前記式(9-a)におけるVがエステル結合を表し、さらにWが酸素原子を表す請求項4に記載の絶縁膜形成用感光性樹脂組成物。
  6.  前記式(9-a)におけるR15が1,2-エチレン基を表す請求項4に記載の絶縁膜形成用感光性樹脂組成物。
  7.  さらに光ラジカル重合開始剤を含む請求項1に記載の絶縁膜形成用感光性樹脂組成物。
  8.  さらに架橋性化合物を含む請求項1に記載の絶縁膜形成用感光性樹脂組成物。
  9.  ネガ型感光性樹脂組成物である請求項1に記載の絶縁膜形成用感光性樹脂組成物。
  10.  請求項1から9のいずれかに記載の絶縁膜形成用感光性樹脂組成物の塗布膜の焼成物である絶縁膜。
  11.  基材フィルムと、請求項1から9のいずれかに記載の絶縁膜形成用感光性樹脂組成物から形成される感光性樹脂層と、カバーフィルムとを有する感光性レジストフィルム。
  12.  (1)請求項1から9のいずれかに記載の絶縁膜形成用感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程と、
     (2)該感光性樹脂層を露光する工程と、
     (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
     (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と、
    を含む、硬化レリーフパターン付き基板の製造方法。
  13.  前記現像に用いられる現像液が有機溶媒である請求項12に記載の硬化レリーフパターン付き基板の製造方法。
  14.  請求項12に記載の方法により製造された硬化レリーフパターン付き基板。
  15.  半導体素子と該半導体素子の上部又は下部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は請求項1から9のいずれかに記載の絶縁膜形成用感光性樹脂組成物から形成される硬化レリーフパターンである半導体装置。

     
PCT/JP2023/005180 2022-03-18 2023-02-15 絶縁膜形成用感光性樹脂組成物 WO2023176259A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023528273A JP7332076B1 (ja) 2022-03-18 2023-02-15 絶縁膜形成用感光性樹脂組成物
CN202380010276.5A CN117099046A (zh) 2022-03-18 2023-02-15 绝缘膜形成用感光性树脂组合物
KR1020237023964A KR102628683B1 (ko) 2022-03-18 2023-02-15 절연막 형성용 감광성 수지 조성물
JP2023086262A JP2023138499A (ja) 2022-03-18 2023-05-25 絶縁膜形成用感光性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-043595 2022-03-18
JP2022043595 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176259A1 true WO2023176259A1 (ja) 2023-09-21

Family

ID=88022905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005180 WO2023176259A1 (ja) 2022-03-18 2023-02-15 絶縁膜形成用感光性樹脂組成物

Country Status (2)

Country Link
TW (2) TW202413490A (ja)
WO (1) WO2023176259A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083880A (ja) * 2011-12-28 2017-05-18 日産化学工業株式会社 重合性化合物
JP2018028694A (ja) * 2012-12-12 2018-02-22 日産化学工業株式会社 組成物及び樹脂皮膜
JP2021047425A (ja) * 2015-04-21 2021-03-25 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 感光性ポリイミド組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083880A (ja) * 2011-12-28 2017-05-18 日産化学工業株式会社 重合性化合物
JP2018028694A (ja) * 2012-12-12 2018-02-22 日産化学工業株式会社 組成物及び樹脂皮膜
JP2021047425A (ja) * 2015-04-21 2021-03-25 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 感光性ポリイミド組成物

Also Published As

Publication number Publication date
TW202413490A (zh) 2024-04-01
TWI827467B (zh) 2023-12-21
TW202344569A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
JP7131557B2 (ja) 感光性樹脂組成物
JP5415861B2 (ja) 感光性樹脂組成物、パターン形成方法、及び半導体装置
WO2023106104A1 (ja) 感光性樹脂組成物
WO2022202098A1 (ja) 感光性樹脂組成物
WO2019139028A1 (ja) 絶縁膜用樹脂組成物
JPWO2020080206A1 (ja) ポリアミック酸エステル樹脂組成物
JP7533717B2 (ja) 感光性絶縁膜組成物
JP7331860B2 (ja) 感光性絶縁膜組成物
JP7332076B1 (ja) 絶縁膜形成用感光性樹脂組成物
WO2023176259A1 (ja) 絶縁膜形成用感光性樹脂組成物
WO2021117586A1 (ja) 感光性絶縁膜形成組成物
WO2023106108A1 (ja) 感光性樹脂組成物
WO2023106101A1 (ja) 樹脂組成物
WO2021070232A1 (ja) ポリイミド前駆体、樹脂組成物、感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2023127745A (ja) 感光性樹脂組成物
JP2019066754A (ja) ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023528273

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202380010276.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770219

Country of ref document: EP

Kind code of ref document: A1