WO2023106104A1 - 感光性樹脂組成物 - Google Patents

感光性樹脂組成物 Download PDF

Info

Publication number
WO2023106104A1
WO2023106104A1 PCT/JP2022/043301 JP2022043301W WO2023106104A1 WO 2023106104 A1 WO2023106104 A1 WO 2023106104A1 JP 2022043301 W JP2022043301 W JP 2022043301W WO 2023106104 A1 WO2023106104 A1 WO 2023106104A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
group
resin composition
carbon atoms
film
Prior art date
Application number
PCT/JP2022/043301
Other languages
English (en)
French (fr)
Inventor
貴文 遠藤
秀則 石井
崇洋 坂口
浩司 荻野
有輝 星野
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023106104A1 publication Critical patent/WO2023106104A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers

Definitions

  • the present invention relates to a photosensitive resin composition, a resin film obtained from the composition, a photosensitive resist film using the composition, a method for manufacturing a substrate with a cured relief pattern, and a semiconductor device having a cured relief pattern.
  • polyimide resin which has excellent heat resistance, electrical properties, and mechanical properties, has been used as an insulating material for electronic parts, and as a passivation film, surface protective film, interlayer insulating film, etc. for semiconductor devices.
  • these polyimide resins those provided in the form of a photosensitive polyimide precursor easily form a heat-resistant relief pattern film by thermal imidization treatment by applying, exposing, developing, and curing the precursor. be able to.
  • Such a photosensitive polyimide precursor has the feature of enabling a significant process reduction compared to conventional non-photosensitive polyimide resins.
  • Patent Literature 1 and Patent Literature 2 propose a photosensitive resin composition containing polyamic acid or polyimide using a diamine having a (meth)acryloyloxy group. Further, in Patent Document 3, as a photosensitive resin composition capable of obtaining sufficient developability and capable of forming a thick film with good resolution, (A) a main chain having 5 to 20 carbon atoms and a polyamic acid having an ethylenically unsaturated group in the diamine residue, (B) a photopolymerizable compound, and (C) a photopolymerization initiator.
  • A a main chain having 5 to 20 carbon atoms and a polyamic acid having an ethylenically unsaturated group in the diamine residue
  • B a photopolymerizable compound
  • C a photopolymerization initiator.
  • JP-A-2000-347404 Japanese translation of PCT publication No. 2012-516927 JP 2009-251451 A
  • the photosensitive resin used to obtain the hardened relief pattern is divided into two types: the positive type, in which the photosensitive resin in the exposed areas is dissolved in the developer by exposure and development, leaving the photosensitive resin in the unexposed areas, and the photosensitive resin in the unexposed areas. is dissolved in the developer and the photosensitive resin in the exposed areas remains.
  • the negative type is inferior to the positive type in resolution, but is easy to form a thick film or a film, and is excellent in reliability.
  • the resulting cured film has a low dielectric loss tangent, excellent dimensional stability and thermomechanical properties, excellent storage stability, and a photosensitive resin composition with a short development time in organic solvent development even when it contains polyimide. is required.
  • the photosensitive resin compositions described in Patent Documents 1 to 3 do not satisfy all of these characteristics.
  • the object of the present invention is to provide a cured film having a low dielectric loss tangent, excellent dimensional stability and thermomechanical properties, excellent storage stability, and even when containing polyimide, in organic solvent development
  • a photosensitive resin composition having a short development time a resin film obtained from the composition, a photosensitive resist film using the composition, a method for producing a substrate with a cured relief pattern, and a semiconductor device having a cured relief pattern. That's what it is.
  • the photosensitive resin composition contains a divalent aromatic group having a photopolymerizable group and a divalent aromatic group having 10 to 60 carbon atoms.
  • the resulting cured film has a low dielectric loss tangent, excellent dimensional stability and thermomechanical properties, excellent storage stability, and even if it contains a polyimide, it is an organic
  • the inventors have found that a photosensitive resin composition with a short development time in solvent development can be obtained, and have completed the present invention.
  • a photosensitive resin composition comprising a polyimide having a divalent aromatic group having a photopolymerizable group and a divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms, and a solvent.
  • the polyimide is an imidized product of polyamic acid
  • the polyamic acid is a reaction product of a diamine component and a tetracarboxylic acid derivative
  • the diamine component comprises an aromatic diamine compound having a photopolymerizable group and an aliphatic diamine compound having 10 to 60 carbon atoms
  • the photosensitive resin composition according to [1].
  • the aromatic diamine compound having a photopolymerizable group is represented by the following formula (1-a)
  • the aliphatic diamine compound having 10 to 60 carbon atoms is represented by the following formula (1-b)
  • X represents a direct bond, an ether bond, an ester bond, an amide bond, a urethane bond, or a urea bond
  • Y represents an oxygen atom or an NH group
  • R 1 represents a direct bond or a hydroxyl group.
  • R 1 represents an alkylene group having 2 to 6 carbon atoms which may be substituted with
  • R 2 represents a hydrogen atom or a methyl group.
  • R 3 and R 4 each independently represent an alkylene group having 5 to 20 carbon atoms or an alkenylene group having 5 to 20 carbon atoms, and Z is a direct bond, or the following formula ( 2-a) or a divalent organic group represented by the following formula (2-b).
  • R 5 represents an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms
  • m represents an integer of 0 to 4. When m is 2 or more, R5 may be the same or different.
  • R 6 represents an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, and n represents an integer of 0 to 4. When n is 2 or more, R6 may be the same or different. * represents a bond.
  • [4] The photosensitive resin composition according to [3], wherein X in formula (1-a) represents an ester bond, and Y represents an oxygen atom.
  • [5] The photosensitive resin composition according to [3] or [4], wherein R 1 in formula (1-a) represents a 1,2-ethylene group.
  • the photosensitive resin composition according to [3], wherein the aliphatic diamine compound represented by formula (1-b) is a dimer aliphatic diamine.
  • the resin film according to [12] which is an insulating film.
  • a photosensitive resist film comprising a substrate film, a photosensitive resin layer formed from the photosensitive resin composition according to any one of [1] to [11], and a cover film.
  • a method of manufacturing a cured relief patterned substrate comprising: [16] The method for producing a cured relief patterned substrate according to [15], wherein the developer used for the development is an organic solvent. [17] A substrate with a cured relief pattern produced by the method of [15] or [16]. [18] A semiconductor device comprising a semiconductor element and a cured film provided above or below the semiconductor element, wherein the cured film is the photosensitive resin composition according to any one of [1] to [11].
  • the resulting cured film has a low dielectric loss tangent, is excellent in dimensional stability and thermomechanical properties, is excellent in storage stability, and has a short development time in organic solvent development even when it contains polyimide.
  • a resin composition, a resin film obtained from the composition, a photosensitive resist film using the composition, a method for producing a substrate with a cured relief pattern, and a semiconductor device having a cured relief pattern are obtained.
  • the photosensitive resin composition of the present invention contains at least polyimide and a solvent, and further contains other components as necessary.
  • Polyimide has a divalent aromatic group with a photopolymerizable group.
  • Polyimide has a divalent aliphatic hydrocarbon group with 10 to 60 carbon atoms.
  • the present inventors consider the reason why the effect of the present invention is exhibited by the photosensitive resin composition of the present invention as follows. Since the polyimide has a divalent aromatic group having a photopolymerizable group, photosensitivity is imparted to the resin composition containing the polyimide. When the polyimide has a divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms, the cured film has a low dielectric loss tangent. When the polyimide has a divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms, the development time in organic solvent development can be shortened. When the photosensitive resin composition contains polyimide, the obtained cured film has excellent dimensional stability. It also has excellent thermomechanical properties (high Tg and low coefficient of linear expansion). When the photosensitive resin composition contains polyimide, the storage stability of the photosensitive resin composition is excellent.
  • Polyimide is, for example, an imidized polyamic acid.
  • Polyamic acids are, for example, reaction products of diamine components and tetracarboxylic acid derivatives.
  • the imidization rate of polyimide does not need to be 100%.
  • the imidization rate of polyimide may be, for example, 90% or more, 95% or more, or 98% or more.
  • photopolymerizable groups include radically polymerizable groups, cationic polymerizable groups, and anionically polymerizable groups. Among these, a radically polymerizable group is preferred. Examples of radically polymerizable groups include acryloyl groups, methacryloyl groups, propenyl ether groups, vinyl ether groups, and vinyl groups.
  • Examples of the aromatic ring in the divalent aromatic group having a photopolymerizable group include benzene ring, naphthalene ring, and anthracene ring.
  • a divalent aromatic group having a photopolymerizable group is, for example, a residue obtained by removing two amino groups from a diamine.
  • a divalent organic group represented by the following formula (1-A) is preferred.
  • X is a direct bond, an ether bond (-O-), an ester bond (-COO-), an amide bond (-NHCO-), a urethane bond (-NHCOO-), or a urea bond ( —NHCONH—)
  • Y represents an oxygen atom or an NH group
  • R 1 represents a direct bond or an alkylene group having 2 to 6 carbon atoms which may be substituted with a hydroxyl group
  • R 2 represents a hydrogen atom or represents a methyl group. * represents a bond.
  • the two bonds in formula (1-A) are, for example, bonds that bond to a nitrogen atom.
  • the alkylene group having 2 to 6 carbon atoms which may be substituted with a hydroxyl group includes, for example, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1, 3-propylene group, 1,4-butylene group, 1,2-butylene group, 2,3-butylene group, 1,2-pentylene group, 2,4-pentylene group, 1,2-hexylene group, 1, 2-cyclopropylene group, 1,2-cyclobutylene group, 1,3-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, at least part of these hydrogen atoms are hydroxyl groups and an alkylene group substituted with (eg, 2-hydroxy-1,3-propylene group).
  • X preferably represents an ester bond (--COO--).
  • Y preferably represents an oxygen atom.
  • R 1 preferably represents a 1,2-ethylene group.
  • divalent organic group represented by formula (1-A) examples include divalent organic groups represented by the following formulas.
  • * represents a bond.
  • the two bonds are, for example, positioned meta to the substituent having a photopolymerizable group.
  • the divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group.
  • the number of unsaturated groups in the unsaturated aliphatic hydrocarbon group is not particularly limited, and may be one or two or more.
  • the divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms preferably has an aliphatic hydrocarbon ring from the viewpoint of favorably obtaining the effects of the present invention.
  • the aliphatic hydrocarbon ring may be a saturated aliphatic hydrocarbon ring or an unsaturated aliphatic hydrocarbon ring.
  • the number of unsaturated groups in the unsaturated aliphatic hydrocarbon ring is not particularly limited, and may be one or two or more.
  • the number of membered rings of the aliphatic hydrocarbon ring is not particularly limited, and may be, for example, a 4-membered ring, a 5-membered ring, a 6-membered ring, or a 7-membered ring.
  • the aliphatic hydrocarbon ring may be a crosslinked structure like norbornene.
  • the number of aliphatic hydrocarbon rings in the divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms is not particularly limited, and may be one or two or more.
  • the number of carbon atoms in the divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms is preferably 20 to 60, more preferably 24 to 48, more preferably 28 to 44, from the viewpoint of suitably obtaining the effects of the present invention. Even more preferred, 32-40 is particularly preferred.
  • a divalent organic group represented by the following formula (1-B) is preferable from the viewpoint of suitably obtaining the effects of the present invention.
  • R 3 and R 4 each independently represent an alkylene group having 5 to 20 carbon atoms or an alkenylene group having 5 to 20 carbon atoms, and Z is a direct bond, or the following formula ( 2-a) or a divalent organic group represented by the following formula (2-b). * represents a bond.
  • the two bonds in formula (1-B) are, for example, bonds that bond to a nitrogen atom.
  • R 5 represents an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms
  • m represents an integer of 0 to 4.
  • R5 may be the same or different.
  • R 6 represents an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms
  • n represents an integer of 0 to 4.
  • R6 may be the same or different.
  • * represents a bond.
  • the divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms is a residue obtained by removing two amino groups from an aliphatic diamine compound having 10 to 60 carbon atoms, from the viewpoint of suitably obtaining the effects of the present invention. and more preferably a residue obtained by removing two amino groups from a dimer aliphatic diamine.
  • Dimeric fatty acid diamines are described, for example, in Japanese Patent No. 6306586.
  • Dimeric aliphatic diamines include, for example, the following diamines.
  • the dashed line means a carbon-carbon single bond or a carbon-carbon double bond.
  • dimer fatty acid diamines include Versamin 551 (manufactured by BASF Japan Ltd.), Versamin 552 (manufactured by BASF Japan Ltd.; hydrogenated product of Versamin 551), PRIAMINE [registered trademark] 1075, and PRIAMINE [registered trademark]. 1074 (all manufactured by Croda Japan Co., Ltd.).
  • Polyimide preferably has a tetravalent organic group having three or more aromatic rings in order to obtain a cured film having a lower dielectric loss tangent and a higher tensile elongation.
  • a tetravalent organic group having three or more aromatic rings is, for example, a residue obtained by removing a carboxyl group, a carboxylic acid ester group, or a carboxylic acid dianhydride group from a tetracarboxylic acid derivative.
  • a tetravalent organic group having three or more aromatic rings is, for example, a residue obtained by removing two acid anhydride groups from a tetracarboxylic dianhydride.
  • the number of aromatic rings in the tetravalent organic group having 3 or more aromatic rings is not particularly limited as long as it is 3 or more, but may be 4 or more, for example.
  • the upper limit of the number of aromatic rings is not particularly limited, but may be, for example, 8 or less, or 6 or less.
  • Aromatic rings include aromatic hydrocarbon rings, aromatic heterocycles, and the like.
  • a tetravalent organic group represented by the following formula (2-A) is preferable.
  • X 1 and X 2 are each independently a direct bond, an ether bond (-O-), an ester bond (-COO-), an amide bond (-NHCO-), a urethane bond (-NHCOO -), urea bond (-NHCONH-), thioether bond (-S-) or sulfonyl bond (-SO 2 -).
  • R a1 and R a2 each independently represent an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Z 1 represents a divalent organic group represented by the following formula (3-a), (3-b) or (3-c) below.
  • n1 and n2 each independently represent an integer of 0 to 3; When there are multiple R a1 s , the multiple R a1s may be the same or different. When R a2 is plural, the plural R a2 may be the same or different. * represents a bond. ]
  • alkyl groups having 1 to 6 carbon atoms in R a1 and R a2 in formula (2-A) include alkyl groups having 1 to 6 carbon atoms.
  • alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group.
  • alkyl groups and alkylene groups may be linear, branched, or cyclic, unless otherwise specified for their structure.
  • substituents on the optionally substituted alkyl group having 1 to 6 carbon atoms include a halogen atom, a hydroxy group, a mercapto group, a carboxy group, a cyano group, a formyl group, a haloformyl group, a sulfo group, an amino group, nitro group, nitroso group, oxo group, thioxy group, alkoxy group having 1 to 6 carbon atoms, and the like.
  • the "1 to 6 carbon atoms" of the "optionally substituted alkyl group having 1 to 6 carbon atoms" refers to the number of carbon atoms in the "alkyl group” excluding substituents. Also, the number of substituents is not particularly limited.
  • R a3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and m 1 represents 0 to 4 represents an integer of When m1 is 2 or more, R a3 may be the same or different.
  • Z 2 represents a direct bond or a divalent organic group represented by formula (4-a) or (4-b) below
  • R a4 and R a5 are each independent represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms
  • m 2 and m 3 are each independently an integer of 0 to 4. show.
  • R a4 may be the same or different.
  • R a5 may be the same or different.
  • R a6 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms; represents an integer. When m4 is 2 or more, R a6 may be the same or different. * represents a bond.
  • R 7 and R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom.
  • R 9 and R 10 are each independently an optionally substituted alkylene group having 1 to 6 carbon atoms or an optionally substituted arylene group having 6 to 12 carbon atoms. show. * represents a bond.
  • R 7 and R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom.
  • R 9 and R 10 are each independently an optionally substituted alkylene group having 1 to 6 carbon atoms or an optionally substituted arylene
  • alkyl groups having 1 to 6 carbon atoms which may be substituted with halogen atoms for R 7 and R 8 include alkyl groups having 1 to 6 carbon atoms and halogenated alkyl groups having 1 to 6 carbon atoms. etc.
  • alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group.
  • the halogen atom in the halogenated alkyl group having 1 to 6 carbon atoms include fluorine atom, chlorine atom, bromine atom and iodine atom.
  • a halogenated alkyl group having 1 to 6 carbon atoms may be partially or completely halogenated.
  • substituents on the optionally substituted alkylene group having 1 to 6 carbon atoms in R 9 and R 10 include a halogen atom, a hydroxy group, a mercapto group, a carboxy group, a cyano group, a formyl group, a haloformyl group, sulfo group, amino group, nitro group, nitroso group, oxo group, thioxy group, alkoxy group having 1 to 6 carbon atoms, and the like.
  • the optionally substituted alkylene group having 1 to 6 carbon atoms includes, for example, an alkylene group having 1 to 6 carbon atoms and a halogenated alkylene group having 1 to 6 carbon atoms.
  • alkylene group having 1 to 6 carbon atoms examples include methylene group, ethylene group, propylene group and butylene group.
  • the "1 to 6 carbon atoms" of the "optionally substituted alkylene group having 1 to 6 carbon atoms” refers to the number of carbon atoms in the "alkylene group” excluding substituents. Also, the number of substituents is not particularly limited.
  • substituents on the optionally substituted arylene group having 6 to 10 carbon atoms in R 9 and R 10 include a halogen atom, an optionally halogenated alkyl group having 1 to 6 carbon atoms, halogen and an alkoxy group having 1 to 6 carbon atoms which may be substituted. Halogenation may be partially or wholly.
  • the arylene group includes, for example, a phenylene group and a naphthylene group.
  • the "6 to 10 carbon atoms" of the "optionally substituted arylene group having 6 to 10 carbon atoms" refers to the number of carbon atoms in the "arylene group” excluding substituents. Also, the number of substituents is not particularly limited.
  • Examples of the divalent organic group represented by formula (4-a) include divalent organic groups represented by the following formulas.
  • * represents a bond.
  • Examples of the divalent organic group represented by formula (4-b) include divalent organic groups represented by the following formulas.
  • R 13 to R 15 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom, or an optionally substituted halogen atom and having 1 to 6 carbon atoms. represents an alkoxy group.
  • n13 represents an integer of 0-5.
  • n14 and n15 each independently represent an integer of 0 to 4;
  • R 13 is plural, the plural R 13 may be the same or different.
  • R 14 is plural, the plural R 14 may be the same or different.
  • R 15 is plural, the plural R 15 may be the same or different.
  • * represents a bond.
  • alkyl groups having 1 to 6 carbon atoms which may be substituted with halogen atoms for R 13 to R 15 include alkyl groups having 1 to 6 carbon atoms and halogen having 1 to 6 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group.
  • the halogen atom in the halogenated alkyl group having 1 to 6 carbon atoms include fluorine atom, chlorine atom, bromine atom and iodine atom.
  • a halogenated alkyl group having 1 to 6 carbon atoms may be partially or completely halogenated.
  • alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom for R 13 to R 15 include an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom. based on.
  • Examples of tetravalent organic groups having three or more aromatic rings include tetravalent organic groups represented by the following formulas.
  • * represents a bond.
  • the polyimide preferably has a divalent organic group having three or more aromatic rings in order to obtain a cured film having a lower dielectric loss tangent and a higher tensile elongation.
  • the divalent organic group having three or more aromatic rings here refers to an organic group different from the above divalent aromatic group having a photopolymerizable group.
  • a divalent organic group having three or more aromatic rings is, for example, a residue obtained by removing two amino groups from a diamine.
  • the number of aromatic rings in the divalent organic group having 3 or more aromatic rings is not particularly limited as long as it is 3 or more, but may be 4 or more, for example.
  • the upper limit of the number of aromatic rings is not particularly limited, it may be, for example, 8 or less, or 6 or less.
  • the divalent organic group having three or more aromatic rings is not particularly limited, it is preferably a divalent organic group represented by the following formula (13).
  • X 21 and X 22 are each independently a direct bond, an ether bond (-O-), an ester bond (-COO-), an amide bond (-NHCO-), a urethane bond (-NHCOO-) , represents a urea bond (-NHCONH-), a thioether bond (-S-) or a sulfonyl bond (-SO 2 -).
  • R 21 and R 22 each independently represent an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Y 20 represents a divalent organic group represented by formula (3-a), formula (3-b) or formula (3-c) above.
  • n21 and n22 each independently represent an integer of 0 to 4; When R 21 is plural, the plural R 21 may be the same or different. When R 22 is plural, the plural R 22 may be the same or different. * represents a bond. ]
  • R 21 and R 22 include the substituted alkyl groups exemplified in the description of R a1 and R a2 in formula (2-A). Examples include a good alkyl group having 1 to 6 carbon atoms.
  • the "1 to 6 carbon atoms" of the "optionally substituted alkyl group having 1 to 6 carbon atoms" refers to the number of carbon atoms in the "alkyl group” excluding substituents. Also, the number of substituents is not particularly limited.
  • divalent organic groups having three or more aromatic rings examples include divalent organic groups represented by the following formulas.
  • * represents a bond.
  • Polyimide may have other organic groups.
  • Other organic groups include, for example, divalent organic groups other than the above and tetravalent organic groups other than the above.
  • divalent organic groups other than the above include divalent organic groups represented by the following formulas. These divalent organic groups are, for example, residues obtained by removing two amino groups from diamine. In the formula, * represents a bond.
  • tetravalent organic groups other than the above include tetravalent organic groups represented by the following formulas. These tetravalent organic groups are, for example, residues obtained by removing a carboxyl group, a carboxylic acid ester group, or a carboxylic acid dianhydride group from a tetracarboxylic acid derivative. These tetravalent organic groups are, for example, residues obtained by removing two acid anhydride groups from tetracarboxylic dianhydride. In the formula, * represents a bond.
  • the diamine component preferably contains an aromatic diamine compound having a photopolymerizable group.
  • the diamine component preferably contains an aliphatic diamine compound having 10 to 60 carbon atoms.
  • a divalent aromatic group having a photopolymerizable group is derived from, for example, an aromatic diamine compound having a photopolymerizable group.
  • the divalent aliphatic hydrocarbon group having 10 to 60 carbon atoms is derived from, for example, an aliphatic diamine compound having 10 to 60 carbon atoms.
  • aromatic diamine compound having a photopolymerizable group the two amino groups may be bonded to one aromatic ring, or when having two or more aromatic rings, each of the two aromatic rings may be combined with Aromatic rings include aromatic hydrocarbon rings, aromatic heterocycles, and the like.
  • aromatic diamine compound may have an aromatic ring to which no amino group is bonded.
  • a diamine compound represented by the following formula (1-a) is preferable from the viewpoint of suitably obtaining the effects of the present invention.
  • X represents a direct bond, an ether bond, an ester bond, an amide bond, a urethane bond, or a urea bond
  • Y represents an oxygen atom or an NH group
  • R 1 represents a direct bond or a hydroxyl group.
  • R 2 represents a hydrogen atom or a methyl group.
  • X preferably represents an ester bond (--COO--).
  • Y preferably represents an oxygen atom.
  • R 1 preferably represents a 1,2-ethylene group.
  • Examples of the diamine compound represented by formula (1-a) include the following diamine compounds.
  • the two bonds are positioned meta to the substituent having a photopolymerizable group, for example.
  • the ratio of the aromatic diamine compound having a photopolymerizable group to the total diamine component constituting the polyamic acid is not particularly limited, but is preferably 10 mol % to 90 mol % from the viewpoint of obtaining sufficient photosensitivity. mol % to 75 mol % is more preferred, and 20 mol % to 60 mol % is particularly preferred.
  • the aliphatic hydrocarbon group in the divalent aliphatic diamine compound having 10 to 60 carbon atoms may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group.
  • the number of unsaturated groups in the unsaturated aliphatic hydrocarbon group is not particularly limited, and may be one or two or more.
  • the divalent aliphatic diamine compound having 10 to 60 carbon atoms preferably has an aliphatic hydrocarbon ring.
  • the aliphatic hydrocarbon ring may be a saturated aliphatic hydrocarbon ring or an unsaturated aliphatic hydrocarbon ring.
  • the number of unsaturated groups in the unsaturated aliphatic hydrocarbon ring is not particularly limited, and may be one or two or more.
  • the number of membered rings of the aliphatic hydrocarbon ring is not particularly limited, and may be, for example, a 4-membered ring, a 5-membered ring, a 6-membered ring, or a 7-membered ring. It may be a membered ring or an 8-membered ring.
  • the aliphatic hydrocarbon ring may be a crosslinked structure like norbornene.
  • the number of aliphatic hydrocarbon rings in the divalent aliphatic diamine compound having 10 to 60 carbon atoms is not particularly limited, and may be one or two or more.
  • the number of carbon atoms in the divalent aliphatic diamine compound having 10 to 60 carbon atoms is preferably 20 to 60, more preferably 24 to 48, even more preferably 28 to 44, from the viewpoint of suitably obtaining the effects of the present invention. is more preferred, and 32 to 40 are particularly preferred.
  • an aliphatic diamine compound represented by the following formula (1-b) is preferable from the viewpoint of suitably obtaining the effects of the present invention.
  • R 3 and R 4 each independently represent an alkylene group having 5 to 20 carbon atoms or an alkenylene group having 5 to 20 carbon atoms, and Z is a direct bond, or the above formula ( 2-a) or a divalent organic group represented by formula (2-b) above.
  • aliphatic diamine compound having 10 to 60 carbon atoms a dimer aliphatic diamine is preferable from the viewpoint of suitably obtaining the effects of the present invention. Details of the dimeric aliphatic diamine are given above.
  • the ratio of the aliphatic diamine compound having 10 to 60 carbon atoms to the total diamine component constituting the polyamic acid is not particularly limited, but from the viewpoint of suitably obtaining the effect of the present invention, it is 5 mol % to 80 mol %.
  • 10 mol % to 70 mol % is more preferable, and 15 mol % to 60 mol % is particularly preferable.
  • the molar ratio (A:B) of the aromatic diamine compound (A) having a photopolymerizable group and the aliphatic diamine compound (B) having 10 to 60 carbon atoms in the polyamic acid is not particularly limited, but 5 :1 to 0.3:1 is preferred, 4:1 to 0.5:1 is more preferred, and 3:1 to 0.6:1 is particularly preferred.
  • the total molar ratio of the aromatic diamine compound having a photopolymerizable group and the aliphatic diamine compound having 10 to 60 carbon atoms with respect to all the diamine components constituting the polyamic acid is not particularly limited, but the effects of the present invention. is preferably 30 mol % or more, more preferably 40 mol % or more, and particularly preferably 50 mol % or more, from the viewpoint of suitably obtaining the
  • the upper limit of the total molar ratio is not particularly limited, but the total molar ratio may be 100 mol % or less, or may be 90 mol % or less.
  • the diamine component preferably contains an aromatic diamine compound having three or more aromatic rings in order to obtain a cured film having a lower dielectric loss tangent and a higher tensile elongation.
  • the aromatic diamine compound having three or more aromatic rings here refers to a diamine compound different from the divalent aromatic diamine compound having a photopolymerizable group.
  • the number of aromatic rings in the aromatic diamine compound having 3 or more aromatic rings is not particularly limited as long as it is 3 or more, but may be 4 or more, for example.
  • the upper limit of the number of aromatic rings is not particularly limited, it may be, for example, 8 or less, or 6 or less.
  • Examples of aromatic diamine compounds having three or more aromatic rings include diamine compounds represented by the following formula (13-1).
  • X 21 and X 22 are each independently a direct bond, an ether bond (-O-), an ester bond (-COO-), an amide bond (-NHCO-), a urethane bond (-NHCOO -), urea bond (-NHCONH-), thioether bond (-S-) or sulfonyl bond (-SO 2 -).
  • R 21 and R 22 each independently represent an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Y 20 represents a divalent organic group represented by the formula (3-a), the formula (3-b) or the formula (3-c).
  • n21 and n22 each independently represents an integer of 0 to 4; When R 21 is plural, the plural R 21 may be the same or different. When R 22 is plural, the plural R 22 may be the same or different.
  • the ratio of the aromatic diamine compound having three or more aromatic rings to the total diamine component constituting the polyamic acid is not particularly limited, but from the viewpoint of suitably obtaining the effects of the invention, it is 5 mol % to 60 mol %. is preferred, 10 mol % to 55 mol % is more preferred, and 15 mol % to 50 mol % is particularly preferred.
  • the tetracarboxylic acid derivative preferably contains a tetracarboxylic acid derivative having three or more aromatic rings from the viewpoint of obtaining a cured film having a low dielectric loss tangent and a high tensile elongation.
  • tetracarboxylic acid derivative in the "tetracarboxylic acid derivative having three or more aromatic rings" examples include tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester di Halides may be mentioned, and tetracarboxylic dianhydrides are particularly preferred.
  • the number of aromatic rings in the tetracarboxylic acid derivative having 3 or more aromatic rings is not particularly limited as long as it is 3 or more, but may be 4 or more, for example.
  • the upper limit of the number of aromatic rings is not particularly limited, but may be, for example, 8 or less, or 6 or less.
  • the tetracarboxylic acid derivative having three or more aromatic rings is preferably a tetracarboxylic acid derivative that gives polyimide a tetravalent organic group having three or more aromatic rings as described above.
  • a tetracarboxylic dianhydride that provides a tetravalent organic group having an aromatic ring is more preferred. Examples of such tetracarboxylic dianhydrides include tetracarboxylic dianhydrides represented by the following formula (2-A-1).
  • X 1 and X 2 are each independently a direct bond, an ether bond (-O-), an ester bond (-COO-), an amide bond (-NHCO-), a urethane bond ( -NHCOO-), urea bond (-NHCONH-), thioether bond (-S-) or sulfonyl bond (-SO 2 -).
  • R a1 and R a2 each independently represent an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Z 1 represents a divalent organic group represented by formula (3-a), formula (3-b) or formula (3-c).
  • n1 and n2 each independently represent an integer of 0 to 3; When there are multiple R a1 s , the multiple R a1s may be the same or different. When R a2 is plural, the plural R a2 may be the same or different. ]
  • the ratio of the aromatic tetracarboxylic acid derivative having three or more aromatic rings to the total tetracarboxylic acid derivative constituting the polyamic acid is not particularly limited, but from the viewpoint of suitably obtaining the effect of the present invention, it is 20 mol. % to 100 mol %, more preferably 50 mol % to 100 mol %.
  • the weight average molecular weight of the polyimide is not particularly limited, but the weight average molecular weight measured in terms of polyethylene oxide by gel permeation chromatography (hereinafter abbreviated as GPC in this specification) is 5,000 to 100,000. is preferred, 7,000 to 50,000 is more preferred, 10,000 to 50,000 is even more preferred, and 10,000 to 40,000 is particularly preferred.
  • GPC gel permeation chromatography
  • Polyimide is obtained, for example, by imidating polyamic acid.
  • a polyamic acid is obtained, for example, by reacting a diamine component containing an aromatic diamine compound having a photopolymerizable group and an aliphatic diamine compound having 10 to 60 carbon atoms with a tetracarboxylic acid derivative.
  • the method for producing polyamic acid or polyimide is not particularly limited, and includes, for example, a known method in which a diamine component and a tetracarboxylic acid derivative are reacted to obtain polyamic acid or polyimide.
  • Polyamic acid and polyimide can be synthesized by a known method as described in WO2013/157586, for example.
  • a polyamic acid is produced by, for example, reacting (condensation polymerization) a diamine component containing an aromatic diamine compound having a photopolymerizable group and an aliphatic diamine compound having 10 to 60 carbon atoms with a tetracarboxylic acid derivative in a solvent. It is done by
  • solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropionamide, N,N-dimethylisobutyric acid amide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • the polymer has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] Any of the indicated solvents can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • -3 represents an alkyl group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Furthermore, even a solvent that does not dissolve the polyamic acid may be mixed with the above solvent and used as long as the polyamic acid does not precipitate.
  • the reaction can be carried out at any concentration, preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. is.
  • the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
  • thermal polymerization inhibitor When reacting the diamine component and the tetracarboxylic acid derivative, a thermal polymerization inhibitor may be added to the reaction system in order to avoid polymerization of the photopolymerizable group.
  • thermal polymerization inhibitors include hydroquinone, 4-methoxyphenol, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, and glycol ether.
  • thermal polymerization inhibitor to be used is not particularly limited.
  • Polyimide is obtained by dehydrating and ring-closing the polyamic acid obtained by the above reaction.
  • Methods for obtaining polyimide include thermal imidization in which the polyamic acid solution obtained by the above reaction is heated as it is, and chemical imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature for thermal imidization in a solution is 100° C. to 400° C., preferably 120° C. to 250° C. It is preferable to perform the imidization reaction while removing water produced by the imidization reaction from the system.
  • the chemical imidization is carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution obtained by the reaction and stirring at -20°C to 250°C, preferably 0°C to 180°C. can be done.
  • the amount of the basic catalyst is 0.1 to 30 times the moles of the amic acid groups, preferably 0.2 to 20 times the moles, and the amount of the acid anhydride is 1 to 50 times the moles of the amic acid groups. times, preferably 1.5- to 30-fold.
  • Examples of basic catalysts include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, triethylamine is preferred because polyisoimide as a by-product is less likely to form.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the rate of imidization by chemical imidization (ratio of repeating units to be ring-closed to all repeating units of the polyimide precursor, also referred to as rate of ring closure) can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time. can.
  • the reaction solution may be put into a solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated by putting it into a solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • the polyamic acid or polyimide may be end-capped.
  • a method for terminal blocking is not particularly limited, and for example, a conventionally known method using a monoamine or an acid anhydride can be used.
  • solvent contained in the photosensitive resin composition it is preferable to use an organic solvent from the viewpoint of solubility in polyimide.
  • an organic solvent from the viewpoint of solubility in polyimide.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • -3 represents an alkyl group having 1 to 4 carbon atoms.
  • the solvent is, for example, in the range of 30 parts by mass to 1500 parts by mass, preferably in the range of 100 parts by mass to 1000 parts by mass with respect to 100 parts by mass of the polyimide. can be used in
  • the photosensitive resin composition may further contain components other than the polyimide and the solvent.
  • Other components include, for example, photoradical polymerization initiators (also referred to as “photoradical initiators”), crosslinkable compounds (also referred to as “crosslinkers”), thermosetting agents, other resin components, fillers, and sensitizers. , adhesion promoters, thermal polymerization inhibitors, azole compounds, hindered phenol compounds, and the like.
  • the photoradical polymerization initiator is not particularly limited as long as it is a compound that absorbs the light source used for photocuring. benzoyldioxy)hexane, 1,4-bis[ ⁇ -(tert-butyldioxy)-iso-propoxy]benzene, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis(tert-butyldioxy)hexene Hydroperoxide, ⁇ -(iso-propylphenyl)-iso-propyl hydroperoxide, tert-butyl hydroperoxide, 1,1-bis(tert-butyldioxy)-3,3,5-trimethylcyclohexane, butyl-4,4- Bis(tert-butyldioxy)valerate, cyclohexanone peroxide, 2,2′,5,5′-tetra(tert-butylperoxycarbonyl)benz
  • Radical photopolymerization initiators are commercially available, for example, IRGACURE [registered trademark] 651, 184, 2959, 127, 907, 369, 379EG, 819, 819DW, 1800, 1870, 784, OXE01, OXE02, OXE03, OXE04, 250, 1173, MBF, TPO, 4265, TPO (manufactured by BASF), KAYACURE [registered trademark] DETX-S, MBP, DMBI, EPA, OA (manufactured by Nippon Kayaku Co., Ltd.), VICURE-10, 55 (manufactured by STAUFFER Co.
  • IRGACURE registered trademark
  • the content of the photoradical polymerization initiator is not particularly limited, but is preferably 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide, and from the viewpoint of photosensitivity characteristics, 0.5 parts by mass to 15 parts by mass. more preferred.
  • the photoradical polymerization initiator contains 0.1 parts by mass or more with respect to 100 parts by mass of the polyimide, the photosensitivity of the photosensitive resin composition tends to be improved, while when it contains 20 parts by mass or less, It is easy to improve the thick-film curability of the photosensitive resin composition.
  • a monomer having a photoradical polymerizable unsaturated bond (a crosslinkable compound) can be arbitrarily included in the photosensitive resin composition.
  • a crosslinkable compound a compound containing a polymerizable group that undergoes a radical polymerization reaction with a photoradical polymerization initiator is preferable, and examples thereof include (meth)acrylic compounds and maleimide compounds, but are not particularly limited to the following. do not have.
  • (Meth)acrylic compounds include diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, ethylene glycol or polyethylene glycol mono- or di(meth)acrylate, propylene glycol or polypropylene glycol mono- or di(meth)acrylate.
  • maleimide compounds include 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis(maleimido)hexane, N,N'-1,4-phenylenebismaleimide, N,N'-1,3-phenylenedimaleimide, 4,4'-bismaleimidodiphenylmethane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(2-maleimidoethyl)disulfide, 2, 2-bis[4-(4-maleimidophenoxy)phenyl]propane, 1,6'-bismaleimido-(2,2,4-trimethyl)hexane and the like can be mentioned.
  • maleimide compounds include BMI-689, BMI-1500, BMI-1700, and BMI-3000 (manufactured by Designer Molecules Inc.). In addition, these compounds may be used individually or may be used in combination of 2 or more types.
  • (meth)acrylate means acrylate and methacrylate.
  • the content of the crosslinkable compound is not particularly limited, it is preferably 1 to 100 parts by mass, more preferably 1 to 50 parts by mass, based on 100 parts by mass of the polyimide.
  • heat curing agent examples include hexamethoxymethylmelamine, tetramethoxymethylglycoluril, tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis ( butoxymethyl)glycoluril, 1,3,4,6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea and 1, 1,3,3-tetrakis(methoxymethyl)urea and the like.
  • the content of the thermosetting agent in the photosensitive resin composition is not particularly limited.
  • fillers include inorganic fillers, and specific examples include sols of silica, aluminum nitride, boron nitride, zirconia, alumina, and the like.
  • the content of the filler in the photosensitive resin composition is not particularly limited.
  • the photosensitive resin composition may further contain a resin component other than polyimide.
  • resin components that can be contained in the photosensitive resin composition include polyoxazoles, polyoxazole precursors, phenol resins, polyamides, epoxy resins, siloxane resins, and acrylic resins.
  • the content of these resin components is not particularly limited, it is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of polyimide.
  • the photosensitive resin composition may optionally contain a sensitizer to improve photosensitivity.
  • Sensitizers include, for example, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal) Cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamyl denindanone, p-dimethylaminobenzylideneindanone, 2-(p-dimethylaminophenylbiphenylene)-benzothiazole, 2-(p-dimethylaminophenylvinylene)benzo
  • the content of the sensitizer is not particularly limited, it is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of polyimide.
  • an adhesion promoter can optionally be added to the photosensitive resin composition in order to improve the adhesion between the film formed using the photosensitive resin composition and the substrate.
  • adhesion promoters include ⁇ -aminopropyldimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, 3-(meth)acryloxypropyldimethoxymethylsilane, 3-(meth)acryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N-(3 -diethoxymethylsilylpropyl)succinimide, N-[3-(triethoxysilyl)
  • adhesion aids it is more preferable to use a silane coupling agent in terms of adhesion.
  • the content of the adhesion aid is not particularly limited, but is preferably in the range of 0.5 parts by mass to 25 parts by mass with respect to 100 parts by mass of polyimide.
  • thermal polymerization inhibitor can be arbitrarily blended in order to improve the stability of the viscosity and photosensitivity of the photosensitive resin composition, particularly during storage in the state of a solution containing a solvent.
  • thermal polymerization inhibitors include hydroquinone, 4-methoxyphenol, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, and glycol ether.
  • diaminetetraacetic acid 2,6-di-tert-butyl-p-cresol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5-( N-ethyl-N-sulfopropylamino)phenol, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N(1-naphthyl)hydroxylamine ammonium salt and the like are used.
  • the content of the thermal polymerization inhibitor is not particularly limited, but is preferably in the range of 0.005 parts by mass to 12 parts by mass with respect to 100 parts by mass of polyimide.
  • Azole compound when using a substrate made of copper or a copper alloy, an azole compound can optionally be added to the photosensitive resin composition in order to suppress discoloration of the substrate.
  • Azole compounds include, for example, 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t-butyl -5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H-triazole, Hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-
  • tolyltriazole 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 4-carboxy-1H-benzotriazole and 5-carboxy-1H-benzotriazole.
  • these azole compounds may be used singly or as a mixture of two or more.
  • the content of the azole compound is not particularly limited, but it is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polyimide, and from the viewpoint of photosensitivity characteristics, 0.5 to 5 parts by mass. It is more preferable to have When the content of the azole compound with respect to 100 parts by mass of polyimide is 0.1 parts by mass or more, discoloration of the copper or copper alloy surface is suppressed when the photosensitive resin composition is formed on copper or copper alloy. On the other hand, when it is 20 parts by mass or less, it is preferable because the photosensitivity is excellent.
  • a hindered phenolic compound can optionally be incorporated into the photosensitive resin composition to inhibit discoloration on copper.
  • Hindered phenol compounds include, for example, 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3-(3,5-di-t-butyl -4-hydroxyphenyl)propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 4,4′-methylenebis(2,6-di-t-butylphenol), 4,4′-thio-bis(3-methyl-6-t-butylphenol), 4,4′-butylidene-bis(3-methyl-6-t-butylphenol), triethylene glycol-bis[3-(3 -t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6
  • 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H )-trione is particularly preferred.
  • the content of the hindered phenol compound is not particularly limited, but it is preferably 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide, and from the viewpoint of photosensitivity characteristics, 0.5 parts by mass to 10 parts by mass. Part is more preferred.
  • the content of the hindered phenol compound with respect to 100 parts by mass of polyimide is 0.1 parts by mass or more, for example, when the photosensitive resin composition is formed on copper or copper alloy, discoloration and corrosion of copper or copper alloy On the other hand, when it is 20 parts by mass or less, the photosensitivity is excellent, which is preferable.
  • the photosensitive resin composition can be suitably used as a negative photosensitive resin composition for producing a cured relief pattern, which will be described later.
  • the resin film of the present invention is a baked product of the coating film of the photosensitive resin composition of the present invention.
  • a method conventionally used for coating a photosensitive resin composition for example, a method of coating with a spin coater, a bar coater, a blade coater, a curtain coater, a screen printer, etc., or a method of spray coating with a spray coater. method etc. can be used.
  • a baking method for obtaining a baked product various methods can be selected such as, for example, using a hot plate, using an oven, and using a heating oven in which a temperature program can be set. Firing can be performed, for example, at 130° C. to 250° C. for 30 minutes to 5 hours.
  • Air may be used as the atmospheric gas during heat curing, or an inert gas such as nitrogen or argon may be used.
  • the thickness of the resin film is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m.
  • the resin film is, for example, an insulating film.
  • the photosensitive resin composition of the present invention can be used for photosensitive resist films (so-called dry film resists).
  • the photosensitive resist film has a base film, a photosensitive resin layer (photosensitive resin film) formed from the photosensitive resin composition of the present invention, and a cover film.
  • a photosensitive resin layer and a cover film are laminated in this order on a base film.
  • a photosensitive resist film is produced, for example, by coating a base film with a photosensitive resin composition, drying it to form a photosensitive resin layer, and then laminating a cover film on the photosensitive resin layer.
  • a method conventionally used for coating a photosensitive resin composition for example, a method of coating with a spin coater, a bar coater, a blade coater, a curtain coater, a screen printer, etc., or a method of spray coating with a spray coater. method etc. can be used.
  • the drying method includes, for example, conditions of 20° C. to 200° C. for 1 minute to 1 hour.
  • the thickness of the resulting photosensitive resin layer is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m.
  • a known base film can be used, and for example, a thermoplastic resin film or the like is used.
  • the thermoplastic resin include polyester such as polyethylene terephthalate.
  • the thickness of the base film is preferably 2 ⁇ m to 150 ⁇ m.
  • a known cover film can be used, for example, a polyethylene film, a polypropylene film, or the like. As the cover film, it is preferable to use a film having a weaker adhesion to the photosensitive resin layer than the base film.
  • the thickness of the cover film is preferably 2 ⁇ m to 150 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, particularly preferably 5 ⁇ m to 50 ⁇ m.
  • the base film and the cover film may be made of the same film material, or may be made of different films.
  • the method for producing a cured relief patterned substrate of the present invention comprises: (1) a step of applying the photosensitive resin composition according to the present invention onto a substrate to form a photosensitive resin layer (photosensitive resin film) on the substrate; (2) exposing the photosensitive resin layer; (3) developing the exposed photosensitive resin layer to form a relief pattern; (4) heat-treating the relief pattern to form a cured relief pattern.
  • the photosensitive resin composition according to the present invention is applied onto the substrate. Then, if necessary, it is dried to form a photosensitive resin layer.
  • a method conventionally used for coating a photosensitive resin composition for example, a method of coating with a spin coater, a bar coater, a blade coater, a curtain coater, a screen printer, etc., or a method of spray coating with a spray coater. method etc. can be used.
  • the coating film made of the photosensitive resin composition can be dried, and drying methods include, for example, air drying, heat drying using an oven or hot plate, vacuum drying, and the like. Specifically, when air drying or heat drying is performed, drying can be performed at 20° C. to 200° C. for 1 minute to 1 hour. As described above, a photosensitive resin layer can be formed on the substrate.
  • Step of exposing the photosensitive resin layer the photosensitive resin layer formed in the above step (1) is exposed using an exposure device such as a contact aligner, mirror projection, stepper, or the like, using a photomask or a patterned photomask. It is exposed to an ultraviolet light source or the like through a reticle or directly.
  • Light sources used for exposure include, for example, g-line, h-line, i-line, ghi-line broadband, and KrF excimer laser.
  • the exposure amount is desirably 25 mJ/cm 2 to 2000 mJ/cm 2 .
  • post-exposure baking PEB
  • pre-development baking may be performed at any combination of temperature and time, if necessary.
  • the temperature is preferably 50° C. to 200° C.
  • the time is preferably 10 seconds to 600 seconds. is not limited to
  • Step of developing the exposed photosensitive resin layer to form a relief pattern the unexposed portion of the exposed photosensitive resin layer is removed by development.
  • a developing method for developing the photosensitive resin layer after exposure any of conventionally known photoresist developing methods such as a rotary spray method, a paddle method, an immersion method accompanied by ultrasonic treatment, and the like can be used. method can be selected and used.
  • rinsing may be performed for the purpose of removing the developer.
  • post-development baking may be performed at any combination of temperature and time, if necessary. Organic solvents are preferred as the developer used for development.
  • organic solvents examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethylacetamide, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ⁇ - Acetyl- ⁇ -butyrolactone and the like are preferred.
  • two or more kinds of each solvent can be used, for example, several kinds can be used in combination.
  • the rinsing liquid used for rinsing an organic solvent that is miscible with the developer and has low solubility in the photosensitive resin composition is preferable.
  • Preferred examples of the rinse liquid include methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate, toluene, and xylene.
  • two or more kinds of each solvent can be used, for example, several kinds can be used in combination.
  • Step of Heating Relief Pattern to Form Hardened Relief Pattern the relief pattern obtained by the development is heated and converted into a hardened relief pattern.
  • various methods can be selected, for example, using a hot plate, using an oven, or using a heating oven capable of setting a temperature program. Heating can be performed, for example, at 130° C. to 250° C. for 30 minutes to 5 hours. Air may be used as the atmospheric gas during heat curing, or an inert gas such as nitrogen or argon may be used.
  • the thickness of the cured relief pattern is not particularly limited, it is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m.
  • Embodiments also provide a semiconductor device comprising a semiconductor element and a cured film provided over or under the semiconductor element.
  • a cured film is a cured relief pattern formed from the photosensitive resin composition of the present invention.
  • the cured relief pattern can be obtained, for example, by steps (1) to (4) in the method for producing a substrate with a cured relief pattern described above.
  • the present invention can also be applied to a method of manufacturing a semiconductor device using a semiconductor element as a substrate and including the above-described method of manufacturing a substrate with a cured relief pattern as part of the steps.
  • the semiconductor device of the present invention forms a cured relief pattern as a surface protective film, an interlayer insulating film, a rewiring insulating film, a protective film for a flip chip device, a protective film for a semiconductor device having a bump structure, or the like. It can be manufactured by combining with a manufacturing method of a semiconductor device.
  • a display device comprising a display element and a cured film provided on top of the display element, wherein the cured film is the cured relief pattern described above.
  • the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer interposed therebetween.
  • the cured film includes a surface protective film, an insulating film, and a flattening film for TFT (Thin Film Transistor) liquid crystal display elements and color filter elements, projections for MVA (Multi-domain Vertical Alignment) type liquid crystal display devices, and A partition wall for an organic EL (Electro-Luminescence) element cathode can be mentioned.
  • the photosensitive resin composition of the present invention in addition to application to the semiconductor device as described above, is also used for applications such as interlayer insulating films of multilayer circuits, cover coats for flexible copper-clad plates, solder resist films, and liquid crystal alignment films. Useful.
  • HFBAPP 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane
  • BPF-AN 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene (manufactured by JFE Chemical Co., Ltd.)
  • PRIAMINE [registered trademark] 1075: dimer diamine (manufactured by Croda Japan Co., Ltd., dimer diamine content: 97% by mass or more)
  • BPF-PA 9,9-bis[4-(3,4-dicarboxyphenoxy)phenyl]fluorene dianhydride (manufactured by JFE Chemical Co., Ltd.)
  • BPAFDA 5-[4-[2-[4-[(1,3-dioxo-2-benzofuran-5-yl)oxy]phenyl]-1,1,1,3,3,3-hexafluoropropane- 2-yl]phenoxy]-2-benzofuran-1,3-dione (from Jiangsu Laurel Pharmaceutical Co., Ltd.)
  • TMPBP-TME 2,2′,3,3′,5,5′-hexamethyl-[1,1′-biphenyl]-4,4′-diylbis(1,3-dioxo-1,3-dihydroisobenzofuran -5-carboxylate) (manufactured by Honshu Chemical Industry Co., Ltd.)
  • H-BPDA dodecahydro-5,5'-bi-2-benzofuran-1,1'3,3'-tetrone (manufactured by WeiHai Newera Kesence New Materials)
  • the weight-average molecular weight (Mw) shown in the synthesis examples below is the result of measurement by gel permeation chromatography (hereinafter abbreviated as GPC in this specification).
  • GPC gel permeation chromatography
  • HPC-8320GPC manufactured by Tosoh Corporation
  • the chemical imidization rates shown in the synthesis examples below are the results of measurement by a nuclear magnetic resonance spectrometer (hereinafter abbreviated as NMR in this specification).
  • NMR nuclear magnetic resonance spectrometer
  • JNM-ECA500 manufactured by JEOL Ltd.
  • ⁇ Measurement temperature room temperature
  • ⁇ Measurement solvent deuterated dimethyl sulfoxide (DMSO-d6) or deuterated tetrahydrofuran (THF-d8)
  • DMSO-d6 deuterated dimethyl sulfoxide
  • THF-d8 deuterated tetrahydrofuran
  • the chemical imidization rate is based on the proton derived from the structure that does not change before and after imidization, and the peak integrated value of this proton and the proton derived from the NH group of the amic acid appearing around 9.5 ppm to 11.0 ppm. It was calculated by the following formula using the peak integrated value.
  • Chemical imidization rate (%) (1- ⁇ x/y) x 100
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). is the number ratio of reference protons to
  • BEM-S 1.91 g (7.22 mmol), BAPP 2.79 g (6.81 mmol), PRIAMINE [registered trademark] 1075 (amine value: 210 mg KOH / g) 3.31 g (6.19 mmol), and N- 32.03 g of ethyl-2-pyrrolidone was added to the flask and stirred at room temperature for 65 hours to obtain a polyamic acid solution.
  • 100.00 g of N-ethyl-2-pyrrolidone, 6.31 g of acetic anhydride, and 1.04 g of triethylamine were added to the flask and stirred at 60° C. for 3 hours to effect chemical imidization.
  • BPADA 6.69 g (12.86 mmol), TMPBP-TME 14.20 g (22.96 mmol), 6FDA 4.08 g (9.18 mmol), maleic anhydride 0.23 g (2.30 mmol) and N-ethyl- 141.50 g of 2-pyrrolidone was added to the flask and stirred at 50° C. for 23 hours to obtain a polyamic acid solution.
  • 150.11 g of N-ethyl-2-pyrrolidone, 14.06 g of acetic anhydride, and 2.32 g of triethylamine were added to the flask and stirred at 60° C. for 3 hours for chemical imidization.
  • BPADA 7.12 g (13.68 mmol), TMPBP-TME 12.09 g (19.54 mmol), H-BPDA 4.49 g (14.65 mmol), maleic anhydride 0.24 g (2.44 mmol) and N- 134.26 g of ethyl-2-pyrrolidone was added to the flask and stirred at 50° C. for 23 hours to obtain a polyamic acid solution.
  • 150.12 g of N-ethyl-2-pyrrolidone, 14.96 g of acetic anhydride, and 2.47 g of triethylamine were added to the flask and stirred at 60° C. for 3 hours for chemical imidization.
  • NK ester A-DOD-N 1,10-decanediol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • IRGACURE [registered trademark] OXE01 1,2-octanedione, 1-[4-(phenylthio)phenyl-, 2-(O-benzoyloxime)] (manufactured by BASF Japan Ltd.)
  • KBM-5103 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Example 1 Polyimide (P-1) 14.71 g obtained in Synthesis Example 1, NK ester A-DOD-N 2.94 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.74 g as a photoradical initiator, IRGANOX [registered trademark ] 0.22 g of 3114, 0.29 g of KBM-5103, 18.27 g of N,N-dimethylisobutyric acid amide, and 7.83 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 2 Polyimide (P-2) 13.87 g obtained in Synthesis Example 2, NK ester A-DOD-N 2.77 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.42 g as a photoradical initiator, IRGANOX [registered trademark ] 0.21 g of 3114, 0.28 g of KBM-5103, 19.22 g of N,N-dimethylisobutyric acid amide, and 8.24 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 3 Polyimide (P-3) 14.23 g obtained in Synthesis Example 3, NK ester A-DOD-N 2.85 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.43 g as a photoradical initiator, IRGANOX [registered trademark ] 0.21 g of 3114, 0.28 g of KBM-5103, 18.90 g of N-ethyl-2-pyrrolidone, and 8.10 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 5 5.05 g of the polyimide (P-5) obtained in Synthesis Example 5, NK ester A-DOD-N 1.01 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.25 g as a photoradical initiator, IRGANOX [registered trademark ] 0.08 g of 3114, 0.10 g of KBM-5103, 6.56 g of N-ethyl-2-pyrrolidone, and 2.81 g of cyclopentanone were mixed and dissolved, and then filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 6 Polyimide obtained in Synthesis Example 6 (P-6) 21.1 g, NK ester A-DOD-N 4.21 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.42 g as a photoradical initiator, 5-carboxy- After mixing and dissolving 0.63 g of 1H-benzotriazole, 0.42 g of KBM-5103, 27.4 g of N-ethyl-2-pyrrolidone, and 11.7 g of cyclopentanone, a polypropylene filter with a pore size of 5 ⁇ m was used. A negative photosensitive resin composition was prepared by filtering with a filter.
  • Example 7 Polyimide obtained in Synthesis Example 7 (P-7) 21.7 g, NK ester A-DOD-N 4.34 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.43 g as a photoradical initiator, 5-carboxy- After mixing and dissolving 0.65 g of 1H-benzotriazole, 0.43 g of KBM-5103, 27.0 g of N-ethyl-2-pyrrolidone, and 11.6 g of cyclopentanone, a polypropylene filter with a pore size of 5 ⁇ m was used. A negative photosensitive resin composition was prepared by filtering with a filter.
  • Example 8 Polyimide obtained in Synthesis Example 8 (P-8) 21.9 g, NK ester A-DOD-N 4.38 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.44 g as a photoradical initiator, 5-carboxy- After mixing and dissolving 0.66 g of 1H-benzotriazole, 0.44 g of KBM-5103, 25.0 g of N-ethyl-2-pyrrolidone, and 10.7 g of cyclopentanone, a polypropylene filter with a pore size of 5 ⁇ m was used. A negative photosensitive resin composition was prepared by filtering with a filter.
  • Example 9 Polyimide obtained in Synthesis Example 9 (P-9) 13.8 g, NK ester A-DOD-N 2.76 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.69 g as a photoradical initiator, IRGANOX [registered trademark ] 0.21 g of 3114, 0.28 g of KBM-5103, 18.0 g of N-ethyl-2-pyrrolidone, and 7.69 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 11 Polyimide (P-11) 14.23 g obtained in Synthesis Example 11, NK ester A-DOD-N 2.85 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.43 g as a photoradical initiator, IRGANOX [registered trademark ] 0.21 g of 3114, 0.28 g of KBM-5103, 18.90 g of N-ethyl-2-pyrrolidone, and 8.10 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 12 Polyimide (P-12) 13.87 g obtained in Synthesis Example 12, NK ester A-DOD-N 2.77 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.42 g as a photoradical initiator, IRGANOX [registered trademark ] 0.21 g of 3114, 0.28 g of KBM-5103, 19.22 g of N,N-dimethylisobutyric acid amide, and 8.24 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 13 Polyimide obtained in Synthesis Example 13 (P-13) 13.87 g, NK ester A-DOD-N 2.77 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.42 g as a photoradical initiator, IRGANOX [registered trademark ] 0.21 g of 3114, 0.28 g of KBM-5103, 19.22 g of N,N-dimethylisobutyric acid amide, and 8.24 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 14 Polyimide (P-14) 13.52 g obtained in Synthesis Example 14, NK ester A-DOD-N 2.70 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.41 g as a photoradical initiator, IRGANOX [registered trademark ] 0.20 g of 3114, 0.27 g of KBM-5103, 19.53 g of N,N-dimethylisobutyric acid amide, and 8.37 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 15 Polyimide (P-15) 9.96 g obtained in Synthesis Example 15, NK ester A-DOD-N 1.99 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.30 g as a photoradical initiator, IRGANOX [registered trademark ] 0.15 g of 3114, 0.20 g of KBM-5103, 22.68 g of N-ethyl-2-pyrrolidone, and 9.72 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 16 Polyimide obtained in Synthesis Example 16 (P-16) 10.76 g, NK ester A-DOD-N 2.15 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.22 g as a photoradical initiator, IRGANOX [registered trademark ] 0.16 g of 3114, 0.22 g of KBM-5103, 22.05 g of N-ethyl-2-pyrrolidone, and 9.45 g of cyclopentanone were mixed and dissolved, and filtered using a polypropylene filter with a pore size of 5 ⁇ m. By doing so, a negative photosensitive resin composition was prepared.
  • Example 17 Polyimide obtained in Synthesis Example 16 (P-16) 12.05 g, NK ester A-DOD-N 2.41 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.24 g as a photoradical initiator, 5-carboxy- After mixing and dissolving 0.36 g of 1H-benzotriazole, 0.24 g of KBM-5103, 20.79 g of N-ethyl-2-pyrrolidone, and 8.91 g of cyclopentanone, a polypropylene filter with a pore size of 5 ⁇ m was used. A negative photosensitive resin composition was prepared by filtering with a filter.
  • Example 18 Polyimide obtained in Synthesis Example 17 (P-20) 9.80 g, NK ester A-DOD-N 1.47 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.39 g as a photoradical initiator, 5-carboxy- After mixing and dissolving 0.15 g of 1H-benzotriazole, 0.20 g of KBM-5103, 8.40 g of N-ethyl-2-pyrrolidone, 11.20 g of ⁇ -butyrolactone and 8.40 g of cyclohexanone, polypropylene having a pore size of 5 ⁇ m was prepared. A negative photosensitive resin composition was prepared by filtering using a filter manufactured by the company.
  • Example 19 Polyimide obtained in Synthesis Example 18 (P-21) 9.80 g, NK ester A-DOD-N 1.47 g as a cross-linking agent, IRGACURE [registered trademark] OXE01 0.39 g as a photoradical initiator, 5-carboxy- After mixing and dissolving 0.15 g of 1H-benzotriazole, 0.20 g of KBM-5103, 8.40 g of N-ethyl-2-pyrrolidone, 11.20 g of ⁇ -butyrolactone and 8.40 g of cyclohexanone, polypropylene having a pore size of 5 ⁇ m was prepared. A negative photosensitive resin composition was prepared by filtering using a filter manufactured by the company.
  • Remaining film ratio (%) [(film thickness of unexposed portion) or (film thickness of exposed portion)]/(film thickness immediately after film formation) x 100
  • Remaining film thickness (%) [(film thickness of unexposed portion) or (film thickness of exposed portion)]/(film thickness immediately after film formation) x 100
  • the residual film ratio is 80%, it means that 80% of the film thickness immediately after film formation remains without being developed.
  • Table 1 shows the measurement results of the development time and post-development residual film ratio.
  • the dielectric loss tangent measurement conditions are as follows.
  • ⁇ Measurement method Split cylinder resonator ⁇ Vector network analyzer: FieldFox N9926A (manufactured by Keysight Technologies Inc.) ⁇ Resonator: CR-760 (manufactured by EM Lab Co., Ltd.) ⁇ Measurement frequency: about 60 GHz Table 2 shows the measurement results of the dielectric loss tangent of the film at 60 GHz.
  • the films obtained from the negative photosensitive resin compositions of Examples 1 to 19 had a higher dielectric loss tangent at 60 GHz than the film obtained from the negative photosensitive resin composition of Comparative Example 2. showed a low value.
  • film shrinkage rate (%) [1-(film thickness after firing)/(film thickness before firing)] x 100 That is, if the film shrinkage rate is 10%, it means that the film thickness before firing decreased (shrinked) by 10% due to the firing. Table 3 shows the measurement results of development time and film shrinkage.
  • the negative photosensitive resin compositions prepared in Examples 1 to 19 and Comparative Example 3 were spin-coated on an aluminum wafer with a thickness of 100 nm, and baked on a hot plate at 115 ° C. for 270 seconds to obtain a film on the aluminum wafer.
  • a photosensitive resin film of about 25 ⁇ m was formed on the substrate.
  • an i-line aligner PLA-501, manufactured by Canon Inc.
  • the entire surface of the wafer was exposed to light at 500 mJ/cm 2 , and then placed in a high-temperature clean oven (CLH-21CD(V).
  • Tg glass transition temperature
  • CTE linear thermal expansion coefficient
  • TMA Thermomechanical analyzer
  • TMA4000SA manufactured by Netch Japan Co., Ltd.
  • Sample size 20 mm ⁇ 5 mm
  • Temperaturerature increase rate 5°C/min
  • Nitrogen Table 3 shows the measurement results of Tg and CTE of the film.
  • the resin films obtained from the negative photosensitive resin compositions of Examples 1 to 4 and Examples 10 to 19 were obtained from the negative photosensitive resin composition of Comparative Example 3.
  • the films obtained from the negative photosensitive resin compositions of Examples 1 to 19 have smaller film shrinkage in the baking process than the resin films obtained from the negative photosensitive resin compositions of Comparative Example 3. showed a higher Tg and a lower CTE than the other films.
  • Electromagnetic rotary EMS viscometer EMS-1000 (manufactured by Kyoto Electronics Industry Co., Ltd.)
  • ⁇ Spherical probe 4.7 mm aluminum
  • Table 4 shows the results of the storage stability test. It can be said that the larger the change in viscosity, the worse the storage stability of the negative photosensitive resin composition. The absolute value of the viscosity change rate was rated as "good” when it was less than 1%, “slightly poor” when it was between 1% and 10%, and “poor” when it exceeded 10%.
  • the negative photosensitive resin composition of Example 3 has a smaller change in viscosity than the negative photosensitive resin composition of Comparative Example 3 and has high storage stability. That is, the negative photosensitive resin compositions of Examples 1 to 19 not only allow formation of a relief pattern, but also have excellent storage stability, low dielectric loss tangent, and film shrinkage (volume change) during firing. ) and has a high Tg and a low CTE at the same time, it can be suitably used for the production of electronic materials that require excellent electrical and mechanical properties.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)

Abstract

光重合性基を有する2価の芳香族基及び炭素原子数10~60の2価の脂肪族炭化水素基を有するポリイミドと溶媒とを含む感光性樹脂組成物。

Description

感光性樹脂組成物
 本発明は、感光性樹脂組成物、該組成物から得られる樹脂膜、該組成物を用いた感光性レジストフィルム、硬化レリーフパターン付き基板の製造方法、及び硬化レリーフパターンを有する半導体装置に関する。
 従来、電子部品の絶縁材料、及び半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂が用いられている。このポリイミド樹脂の中でも、感光性ポリイミド前駆体の形態で供されるものは、該前駆体の塗布、露光、現像、及びキュアによる熱イミド化処理によって、耐熱性のレリーフパターン被膜を容易に形成することができる。このような感光性ポリイミド前駆体は、従来の非感光型ポリイミド樹脂と比較して、大幅な工程短縮を可能にするという特徴を有している。
 特許文献1及び特許文献2には、(メタ)アクリロイルオキシ基を有するジアミンを用いたポリアミック酸又はポリイミドを含有する感光性樹脂組成物が提案されている。
 また、特許文献3には、十分な現像性を得ることができると共に、厚膜で解像度よく像形成を行うことが可能な感光性樹脂組成物として、(A)主鎖に炭素数5~20のアルキレン基を有しかつジアミン残基にエチレン性不飽和基を有するポリアミック酸と、(B)光重合性化合物と、(C)光重合開始剤とを含む感光性樹脂組成物が提案されている。
特開2000-347404号公報 特表2012-516927号公報 特開2009-251451号公報
 近年、半導体装置では、大容量の情報を高速で伝送・処理する必要から、電気信号の高周波化が進んでいる。高周波の電気信号は減衰しやすいため、伝送損失を低くする必要がある。そのため、半導体装置に用いられる樹脂には低い誘電正接が求められる。
 また、硬化レリーフパターンを形成する際には、現像液による現像が行われるが、一般的にアルカリ水溶液現像液又は有機溶媒現像液が用いられる。硬化レリーフパターンを得るための感光性樹脂は、露光、現像により、露光部の感光性樹脂が現像液に溶解し、未露光部の感光性樹脂が残るポジ型と、未露光部の感光性樹脂が現像液に溶解し、露光部の感光性樹脂が残るネガ型とに分けられる。特に、ネガ型はポジ型よりも解像性には劣るが、厚膜化やフィルム化が容易で信頼性に優れており、そのような特徴を必要とする半導体装置の製造で用いられる。しかしながら、従来のポリアミック酸を含有するネガ型感光性樹脂では、レリーフパターンから硬化レリーフパターンを形成する際に硬化膜の収縮が起こるため、寸法安定性が低いという問題がある。また、熱機械特性の向上も求められている。更に、ポリアミック酸を含有するネガ型感光性樹脂では、保存安定性が低いという問題がある。他方、ポリイミドを含有するネガ型感光性樹脂の場合、有機溶媒現像における現像時間が長いという問題がある。
 したがって、得られる硬化膜において低い誘電正接を有しつつ寸法安定性及び熱機械特性にも優れ、更に保存安定性に優れかつポリイミドを含む場合でも有機溶媒現像における現像時間が短い感光性樹脂組成物が求められている。
 しかし、特許文献1~特許文献3に記載の感光性樹脂組成物は、それら特性の全てが満足できるものではない。
 本発明の目的は、上記事情に鑑み、得られる硬化膜において低い誘電正接を有しつつ寸法安定性及び熱機械特性にも優れ、更に保存安定性に優れかつポリイミドを含む場合でも有機溶媒現像における現像時間が短い感光性樹脂組成物、該組成物から得られる樹脂膜、該組成物を用いた感光性レジストフィルム、硬化レリーフパターン付き基板の製造方法、並びに硬化レリーフパターンを有する半導体装置を提供することにある。
 本発明者らは、上記の課題を達成すべく鋭意検討を重ねた結果、感光性樹脂組成物に、光重合性基を有する2価の芳香族基及び炭素原子数10~60の2価の脂肪族炭化水素基を有するポリイミドを含有させることで、得られる硬化膜において低い誘電正接を有しつつ寸法安定性及び熱機械特性にも優れ、更に保存安定性に優れかつポリイミドを含む場合でも有機溶媒現像における現像時間が短い感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。
 [1] 光重合性基を有する2価の芳香族基及び炭素原子数10~60の2価の脂肪族炭化水素基を有するポリイミドと溶媒とを含む感光性樹脂組成物。
 [2] 前記ポリイミドが、ポリアミック酸のイミド化物であり、
 前記ポリアミック酸が、ジアミン成分とテトラカルボン酸誘導体との反応生成物であり、
 前記ジアミン成分が、光重合性基を有する芳香族ジアミン化合物及び炭素原子数10~60の脂肪族ジアミン化合物を含む、
 [1]に記載の感光性樹脂組成物。
 [3] 前記光重合性基を有する芳香族ジアミン化合物が、下記式(1-a)で表され、
 前記炭素原子数10~60の脂肪族ジアミン化合物が、下記式(1-b)で表される、
 [2]に記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
[式(1-a)中、Xは直接結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、又はウレア結合を表し、Yは酸素原子又はNH基を表し、Rは直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、Rは水素原子又はメチル基を表す。]
Figure JPOXMLDOC01-appb-C000005
[式(1-b)中、R、及びRはそれぞれ独立に炭素原子数5~20のアルキレン基又は炭素原子数5~20のアルケニレン基を表し、Zは直接結合、又は下記式(2-a)若しくは下記式(2-b)で表される2価の有機基を表す。]
Figure JPOXMLDOC01-appb-C000006
[式(2-a)中、Rは炭素原子数1~20のアルキル基又は炭素原子数2~20のアルケニル基を表し、mは0~4の整数を表す。mが2以上の時、Rは同じであってもよいし、異なっていてもよい。
 式(2-b)中、Rは炭素原子数1~20のアルキル基又は炭素原子数2~20のアルケニル基を表し、nは0~4の整数を表す。nが2以上の時、Rは同じであってもよいし、異なっていてもよい。
 *は結合手を表す。]
 [4] 前記式(1-a)におけるXがエステル結合を表し、さらにYが酸素原子を表す[3]に記載の感光性樹脂組成物。
 [5] 前記式(1-a)におけるRが1,2-エチレン基を表す[3]又は[4]に記載の感光性樹脂組成物。
 [6] 前記式(1-b)で表される脂肪族ジアミン化合物がダイマー脂肪族ジアミンである[3]に記載の感光性樹脂組成物。
 [7] 前記テトラカルボン酸誘導体がテトラカルボン酸二無水物である[2]から[6]のいずれかに記載の感光性樹脂組成物。
 [8] さらに光ラジカル重合開始剤を含む[1]から[7]のいずれかに記載の感光性樹脂組成物。
 [9] さらに架橋性化合物を含む[1]から[8]のいずれかに記載の感光性樹脂組成物。
 [10] 絶縁膜形成用である[1]から[9]のいずれかに記載の感光性樹脂組成物。
 [11] ネガ型感光性樹脂組成物である[1]から[10]のいずれかに記載の感光性樹脂組成物。
 [12] 請求項1から11のいずれかに記載の感光性樹脂組成物の塗布膜の焼成物である樹脂膜。
 [13] 絶縁膜である[12]に記載の樹脂膜。
 [14] 基材フィルムと、[1]から[11]のいずれかに記載の感光性樹脂組成物から形成される感光性樹脂層と、カバーフィルムとを有する感光性レジストフィルム。
 [15] (1)[1]から[11]のいずれかに記載の感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程と、
 (2)該感光性樹脂層を露光する工程と、
 (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
 (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と、
を含む、硬化レリーフパターン付き基板の製造方法。
 [16] 前記現像に用いられる現像液が有機溶媒である[15]に記載の硬化レリーフパターン付き基板の製造方法。
 [17] [15]又は[16]に記載の方法により製造された硬化レリーフパターン付き基板。
 [18] 半導体素子と該半導体素子の上部又は下部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は[1]から[11]のいずれかに記載の感光性樹脂組成物から形成される硬化レリーフパターンである半導体装置。
 本発明によれば、得られる硬化膜において低い誘電正接を有しつつ寸法安定性及び熱機械特性にも優れ、更に保存安定性に優れかつポリイミドを含む場合でも有機溶媒現像における現像時間が短い感光性樹脂組成物、該組成物から得られる樹脂膜、該組成物を用いた感光性レジストフィルム、硬化レリーフパターン付き基板の製造方法、並びに硬化レリーフパターンを有する半導体装置が得られる。
(感光性樹脂組成物)
 本発明の感光性樹脂組成物は、ポリイミドと溶媒とを少なくとも含み、更に必要に応じてその他の成分を含む。
<ポリイミド>
 ポリイミドは、光重合性基を有する2価の芳香族基を有する。
 ポリイミドは、炭素原子数10~60の2価の脂肪族炭化水素基を有する。
 本発明者らは、本発明の感光性樹脂組成物によって本発明の効果が奏する理由を、以下のように考えている。
 ポリイミドが光重合性基を有する2価の芳香族基を有することにより、ポリイミドを含む樹脂組成物に感光性が付与される。
 ポリイミドが炭素原子数10~60の2価の脂肪族炭化水素基を有することにより、硬化膜の誘電正接が低くなる。
 ポリイミドが炭素原子数10~60の2価の脂肪族炭化水素基を有することにより、有機溶媒現像における現像時間を短くできる。
 感光性樹脂組成物がポリイミドを含有することにより、得られる硬化膜において寸法安定性が優れる。また、熱機械特性が優れる(高いTg及び低い線膨張係数)。
 感光性樹脂組成物がポリイミドを含有することにより、感光性樹脂組成物の保存安定性が優れる。
 ポリイミドは、例えば、ポリアミック酸のイミド化物である。
 ポリアミック酸は、例えば、ジアミン成分とテトラカルボン酸誘導体との反応生成物である。
 ポリイミドのイミド化率は100%である必要はない。ポリイミドのイミド化率は、例えば90%以上であってよいし、95%以上であってよいし、98%以上であってよい。
<<光重合性基を有する2価の芳香族基>>
 光重合性基としては、例えば、ラジカル重合性基、カチオン重合性基、アニオン重合性基が挙げられる。これらの中でも、ラジカル重合性基が好ましい。
 ラジカル重合性基としては、例えば、アクリロイル基、メタクリロイル基、プロペニルエーテル基、ビニルエーテル基、ビニル基などが挙げられる。
 光重合性基を有する2価の芳香族基における芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環などが挙げられる。
 光重合性基を有する2価の芳香族基は、例えば、ジアミンから2つのアミノ基を除いた残基である。
 光重合性基を有する2価の芳香族基としては、下記式(1-A)で表される2価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000007
[式(1-A)中、Xは直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、又はウレア結合(-NHCONH-)を表し、Yは酸素原子又はNH基を表し、Rは直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、Rは水素原子又はメチル基を表す。*は結合手を表す。]
 式(1-A)における2つの結合手は、例えば、窒素原子に結合する結合手である。
 本明細書において、水酸基で置換されていてもよい炭素原子数2~6のアルキレン基としては、例えば、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、2,3-ブチレン基、1,2-ペンチレン基、2,4-ペンチレン基、1,2-へキシレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基、これらの水素原子の少なくとも一部が水酸基で置換されたアルキレン基(例えば、2-ヒドロキシ-1,3-プロピレン基)などが挙げられる。
 Xはエステル結合(-COO-)を表すことが好ましい。
 Yは酸素原子を表すことが好ましい。
 Rは1,2-エチレン基を表すことが好ましい。
 式(1-A)で表される2価の有機基としては、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式中、*は結合手を表す。2つの結合手は、例えば、光重合性基を有する置換基に対してメタ位に位置する。
<<炭素原子数10~60の2価の脂肪族炭化水素基>>
 炭素原子数10~60の2価の脂肪族炭化水素基としては、飽和脂肪族炭化水素基であってもよいし、不飽和脂肪族炭化水素基であってもよい。不飽和脂肪族炭化水素基における不飽和基の数としては、特に限定されず、1つであってもよいし、2つ以上であってもよい。
 炭素原子数10~60の2価の脂肪族炭化水素基は、本発明の効果を好適に得る観点から、脂肪族炭化水素環を有することが好ましい。
 脂肪族炭化水素環は、飽和脂肪族炭化水素環であってもよいし、不飽和脂肪族炭化水素環であってもよい。不飽和脂肪族炭化水素環における不飽和基の数としては、特に限定されず、1つであってもよいし、2つ以上であってもよい。
 脂肪族炭化水素環の員環数としては、特に制限されず、例えば、4員環であってもよいし、5員環であってもよいし、6員環であってもよいし、7員環であってもよいし、8員環であってもよい。また、脂肪族炭化水素環は、ノルボルネンのように架橋構造であってもよい。
 炭素原子数10~60の2価の脂肪族炭化水素基における脂肪族炭化水素環の数としては、特に限定されず、1つであってもよいし、2つ以上であってもよい。
 炭素原子数10~60の2価の脂肪族炭化水素基の炭素原子数としては、本発明の効果を好適に得る観点から、20~60が好ましく、24~48がより好ましく、28~44が更により好ましく、32~40が特に好ましい。
 炭素原子数10~60の2価の脂肪族炭化水素基としては、本発明の効果を好適に得る観点から、下記式(1-B)で表される2価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000009
[式(1-B)中、R、及びRはそれぞれ独立に炭素原子数5~20のアルキレン基又は炭素原子数5~20のアルケニレン基を表し、Zは直接結合、又は下記式(2-a)若しくは下記式(2-b)で表される2価の有機基を表す。*は結合手を表す。]
 式(1-B)における2つの結合手は、例えば、窒素原子に結合する結合手である。
Figure JPOXMLDOC01-appb-C000010
[式(2-a)中、Rは炭素原子数1~20のアルキル基又は炭素原子数2~20のアルケニル基を表し、mは0~4の整数を表す。mが2以上の時、Rは同じであってもよいし、異なっていてもよい。
 式(2-b)中、Rは炭素原子数1~20のアルキル基又は炭素原子数2~20のアルケニル基を表し、nは0~4の整数を表す。nが2以上の時、Rは同じであってもよいし、異なっていてもよい。
 *は結合手を表す。]
 炭素原子数10~60の2価の脂肪族炭化水素基としては、本発明の効果を好適に得る観点から、炭素原子数10~60の脂肪族ジアミン化合物から2つのアミノ基を除いた残基であることが好ましく、ダイマー脂肪族ジアミンから2つのアミノ基を除いた残基であることがより好ましい。ダイマー脂肪酸ジアミンについては、例えば特許第6306586号明細書に記載されている。
 ダイマー脂肪族ジアミンとしては、例えば、以下のジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式中、m+n=6~17が好ましく、p+q=8~19が好ましく、破線部は炭素-炭素単結合又は炭素-炭素二重結合を意味する。
 ダイマー脂肪酸ジアミンの市販品としては、バーサミン551(BASFジャパン(株)製)、バーサミン552(BASFジャパン(株)製;バーサミン551の水添物)、PRIAMINE[登録商標]1075、PRIAMINE[登録商標]1074(いずれもクローダジャパン(株)製)などが挙げられる。
<<3つ以上の芳香族環を有する4価の有機基>>
 得られる硬化膜において、より低い誘電正接及びより高い引張伸度が得られる点から、ポリイミドは3つ以上の芳香族環を有する4価の有機基を有することが好ましい。
 3つ以上の芳香族環を有する4価の有機基は、例えば、テトラカルボン酸誘導体からカルボキシル基、カルボン酸エステル基、又はカルボン酸二無水物基を除いた残基である。3つ以上の芳香族環を有する4価の有機基は、例えば、テトラカルボン酸二無水物から2つの酸無水物基を除いた残基である。
 3つ以上の芳香族環を有する4価の有機基における芳香族環の数としては、3つ以上であれば、特に限定されないが、例えば、4つ以上であってもよい。芳香族環の数の上限値としては、特に限定されないが、例えば、8つ以下であってもよいし、6つ以下であってもよい。
 「3つ以上の芳香族環」における芳香族環の数え方に関し、ナフタレン環、アントラセン環のような2以上の芳香族環が縮合してなる多環芳香族環は1つの芳香族環として数える。そのため、ナフタレン環は1つの芳香族環として数える。他方、ビフェニル環は縮合環ではないため2つの芳香族環として数える。そして、ペリレン環は、2つの芳香族環として数える。
 芳香族環としては、芳香族炭化水素環、芳香族複素環などが挙げられる。
 3つ以上の芳香族環を有する4価の有機基としては、下記式(2-A)で表される4価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000012
[式(2-A)中、X及びXはそれぞれ独立に直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、ウレア結合(-NHCONH-)、チオエーテル結合(-S-)又はスルホニル結合(-SO-)を表す。
 Ra1及びRa2はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキル基を表す。
 Zは下記式(3-a)、下記式(3-b)又は下記式(3-c)で表される2価の有機基を表す。
 n1及びn2はそれぞれ独立に0~3の整数を表す。
 Ra1が複数の場合、複数のRa1は同じでもよいし異なっていてもよい。Ra2が複数の場合、複数のRa2は同じでもよいし異なっていてもよい。
 *は結合手を表す。]
 式(2-A)中のRa1及びRa2における置換されていてもよい炭素原子数1~6のアルキル基としては、例えば、炭素原子数1~6のアルキル基が挙げられる。炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。本明細書において、アルキル基、アルキレン基は、その構造について特に言及されていない限り、直鎖状であってもよいし、分岐状であってもよいし、環状であってもよいし、これらの2以上の組み合わせであってもよい。
 置換されていてもよい炭素原子数1~6のアルキル基における置換基としては、例えば、ハロゲン原子、ヒドロキシ基、メルカプト基、カルボキシ基、シアノ基、ホルミル基、ハロホルミル基、スルホ基、アミノ基、ニトロ基、ニトロソ基、オキソ基、チオキシ基、炭素原子数1~6のアルコキシ基などが挙げられる。
 なお、「置換されていてもよい炭素原子数1~6のアルキル基」の「炭素原子数1~6」とは、置換基を除く「アルキル基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
Figure JPOXMLDOC01-appb-C000013
[式(3-a)中、Ra3は炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルコキシ基を表し、mは0~4の整数を表す。mが2以上の時、Ra3は同じであってもよいし、異なっていてもよい。
 式(3-b)中、Zは直接結合、又は下記式(4-a)若しくは下記式(4-b)で表される2価の有機基を表し、Ra4及びRa5はそれぞれ独立して炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルコキシ基を表し、m及びmはそれぞれ独立して0~4の整数を表す。mが2以上の時、Ra4は同じであってもよいし、異なっていてもよい。mが2以上の時、Ra5は同じであってもよいし、異なっていてもよい。
 式(3-c)中、Ra6は炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルコキシ基を表し、mは0~6の整数を表す。mが2以上の時、Ra6は同じであってもよいし、異なっていてもよい。
 *は結合手を表す。]
Figure JPOXMLDOC01-appb-C000014
[式(4-a)中、R、及びRはそれぞれ独立に水素原子、又はハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基を表す。
 式(4-b)中、R、及びR10はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキレン基又は置換されていてもよい炭素原子数6~12のアリーレン基を表す。
 *は結合手を表す。]
 R及びRにおけるハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基としては、例えば、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基などが挙げられる。
 炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 炭素原子数1~6のハロゲン化アルキル基におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素原子数1~6のハロゲン化アルキル基におけるハロゲン化は、一部であってもよいし、全部であってもよい。
 R及びR10における置換されていてもよい炭素原子数1~6のアルキレン基における置換基としては、例えば、ハロゲン原子、ヒドロキシ基、メルカプト基、カルボキシ基、シアノ基、ホルミル基、ハロホルミル基、スルホ基、アミノ基、ニトロ基、ニトロソ基、オキソ基、チオキシ基、炭素原子数1~6のアルコキシ基などが挙げられる。
 置換されていてもよい炭素原子数1~6のアルキレン基としては、例えば、炭素原子数1~6のアルキレン基、炭素原子数1~6のハロゲン化アルキレン基などが挙げられる。炭素原子数1~6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。
 なお、「置換されていてもよい炭素原子数1~6のアルキレン基」の「炭素原子数1~6」とは、置換基を除く「アルキレン基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
 R及びR10における置換されていてもよい炭素原子数6~10のアリーレン基における置換基としては、例えば、ハロゲン原子、ハロゲン化されていてもよい炭素原子数1~6のアルキル基、ハロゲン化されていてもよい炭素原子数1~6のアルコキシ基などが挙げられる。なお、ハロゲン化は、一部であってもよいし、全部であってもよい。
 アリーレン基としては、例えば、フェニレン基、ナフチレン基等が挙げられる。
 なお、「置換されていてもよい炭素原子数6~10のアリーレン基」の「炭素原子数6~10」とは、置換基を除く「アリーレン基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
 式(4-a)で表される2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 式中、*は結合手を表す。
 式(4-b)で表される2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式中、R13~R15はそれぞれ独立にハロゲン原子、ハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基、又はハロゲン原子で置換されていてもよい炭素原子数1~6のアルコキシ基を表す。n13は、0~5の整数を表す。n14及びn15はそれぞれ独立に0~4の整数を表す。R13が複数の場合、複数のR13は同じでもよいし異なっていてもよい。R14が複数の場合、複数のR14は同じでもよいし異なっていてもよい。R15が複数の場合、複数のR15は同じでもよいし異なっていてもよい。*は結合手を表す。
 R13~R15におけるハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基の具体例としては、例えば、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基が挙げられる。
 炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 炭素原子数1~6のハロゲン化アルキル基におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素原子数1~6のハロゲン化アルキル基におけるハロゲン化は、一部であってもよいし、全部であってもよい。
 R13~R15におけるハロゲン原子で置換されていてもよい炭素原子数1~6のアルコキシ基の具体例としては、ハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基をアルコキシ基にしたものが挙げられる。
 3つ以上の芳香族環を有する4価の有機基としては、例えば、以下の式で表される4価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式中、*は結合手を表す。
<<3つ以上の芳香族環を有する2価の有機基>>
 得られる硬化膜において、より低い誘電正接及びより高い引張伸度が得られる点から、ポリイミドは3つ以上の芳香族環を有する2価の有機基を有することが好ましい。なお、ここでの3つ以上の芳香族環を有する2価の有機基は、上記の光重合性基を有する2価の芳香族基とは異なる有機基を指す。
 3つ以上の芳香族環を有する2価の有機基は、例えば、ジアミンから2つのアミノ基を除いた残基である。
 3つ以上の芳香族環を有する2価の有機基における芳香族環の数としては、3つ以上であれば、特に限定されないが、例えば、4つ以上であってもよい。芳香族環の数の上限値としては、特に限定されないが、例えば、8つ以下であってよいし、6つ以下であってもよい。
 3つ以上の芳香族環を有する2価の有機基としては、特に限定されないが、好ましくは下記式(13)で表される2価の有機基である。
Figure JPOXMLDOC01-appb-C000019
[式(13)中、X21及びX22はそれぞれ独立に直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、ウレア結合(-NHCONH-)、チオエーテル結合(-S-)又はスルホニル結合(-SO-)を表す。
 R21及びR22はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキル基を表す。
 Y20は上記式(3-a)、上記式(3-b)又は上記式(3-c)で表される2価の有機基を表す。
 n21及びn22はそれぞれ独立に0~4の整数を表す。
 R21が複数の場合、複数のR21は同じでもよいし異なっていてもよい。R22が複数の場合、複数のR22は同じでもよいし異なっていてもよい。
 *は結合手を表す。]
 R21及びR22における置換されていてもよい炭素原子数1~6のアルキル基の具体例としては、式(2-A)中のRa1及びRa2の説明において例示した置換されていてもよい炭素原子数1~6のアルキル基が挙げられる。
 なお、「置換されていてもよい炭素原子数1~6のアルキル基」の「炭素原子数1~6」とは、置換基を除く「アルキル基」の炭素原子数を指す。また、置換基の数としては特に限定されない。
 3つ以上の芳香族環を有する2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 式中、*は結合手を表す。
<<その他の有機基>>
 ポリイミドは、その他の有機基を有していてもよい。その他の有機基としては、例えば、上記以外の2価の有機基、上記以外の4価の有機基などが挙げられる。
 上記以外の2価の有機基としては、例えば、以下の式で表される2価の有機基が挙げられる。これらの2価の有機基は、例えば、ジアミンから2つのアミノ基を除いた残基である。
Figure JPOXMLDOC01-appb-C000022
 式中、*は結合手を表す。
 上記以外の4価の有機基としては、例えば、以下の式で表される4価の有機基が挙げられる。これらの4価の有機基は、例えば、テトラカルボン酸誘導体からカルボキシル基、カルボン酸エステル基、又はカルボン酸二無水物基を除いた残基である。これらの4価の有機基は、例えば、テトラカルボン酸二無水物から2つの酸無水物基を除いた残基である。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 式中、*は結合手を表す。
<<ジアミン成分>>
 ジアミン成分は、光重合性基を有する芳香族ジアミン化合物を含むことが好ましい。
 ジアミン成分は、炭素原子数10~60の脂肪族ジアミン化合物を含むことが好ましい。
 光重合性基を有する2価の芳香族基は、例えば、光重合性基を有する芳香族ジアミン化合物に由来する。
 炭素原子数10~60の2価の脂肪族炭化水素基は、例えば、炭素原子数10~60の脂肪族ジアミン化合物に由来する。
<<<光重合性基を有する芳香族ジアミン化合物>>>
 光重合性基を有する芳香族ジアミン化合物において、2つのアミノ基は、1つの芳香族環に結合していてもよいし、芳香族環を2つ以上有する場合には2つの芳香族環のそれぞれに結合してもよい。芳香族環としては、芳香族炭化水素環、芳香族複素環などが挙げられる。
 なお、芳香族ジアミン化合物は、アミノ基が結合していない芳香族環を有していてもよい。
 光重合性基を有する芳香族ジアミン化合物としては、本発明の効果を好適に得る観点から、下記式(1-a)で表されるジアミン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000025
[式(1-a)中、Xは直接結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、又はウレア結合を表し、Yは酸素原子又はNH基を表し、Rは直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、Rは水素原子又はメチル基を表す。]
 Xはエステル結合(-COO-)を表すことが好ましい。
 Yは酸素原子を表すことが好ましい。
 Rは1,2-エチレン基を表すことが好ましい。
 式(1-a)で表されるジアミン化合物としては、以下のジアミン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式中、2つの結合手は、例えば、光重合性基を有する置換基に対してメタ位に位置する。
 ポリアミック酸を構成する全ジアミン成分に対する、光重合性基を有する芳香族ジアミン化合物の割合としては、特に限定されないが、十分な感光性を得る観点から、10モル%~90モル%が好ましく、15モル%~75モル%がより好ましく、20モル%~60モル%が特に好ましい。
<<<炭素原子数10~60の脂肪族ジアミン化合物>>>
 炭素原子数10~60の2価の脂肪族ジアミン化合物における脂肪族炭化水素基としては、飽和脂肪族炭化水素基であってもよいし、不飽和脂肪族炭化水素基であってもよい。不飽和脂肪族炭化水素基における不飽和基の数としては、特に限定されず、1つであってもよいし、2つ以上であってもよい。
 炭素原子数10~60の2価の脂肪族ジアミン化合物は、脂肪族炭化水素環を有することが好ましい。
 脂肪族炭化水素環は、飽和脂肪族炭化水素環であってもよいし、不飽和脂肪族炭化水素環であってもよい。不飽和脂肪族炭化水素環における不飽和基の数としては、特に限定されず、1つであってもよいし、2つ以上であってもよい。
 脂肪族炭化水素環の員環数としては、特に制限されず、例えば、4員環であってもよいし、5員環であってもよいし、6員環であってもよいし、7員環であってもよいし、8員環であってもよい。また、脂肪族炭化水素環は、ノルボルネンのように架橋構造であってもよい。
 炭素原子数10~60の2価の脂肪族ジアミン化合物における脂肪族炭化水素環の数としては、特に限定されず、1つであってもよいし、2つ以上であってもよい。
 炭素原子数10~60の2価の脂肪族ジアミン化合物の炭素原子数としては、本発明の効果を好適に得る観点から、20~60が好ましく、24~48がより好ましく、28~44が更により好ましく、32~40が特に好ましい。
 炭素原子数10~60の2価の脂肪族ジアミン化合物としては、本発明の効果を好適に得る観点から、下記式(1-b)で表される脂肪族ジアミン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000027
[式(1-b)中、R、及びRはそれぞれ独立に炭素原子数5~20のアルキレン基又は炭素原子数5~20のアルケニレン基を表し、Zは直接結合、又は上記式(2-a)若しくは上記式(2-b)で表される2価の有機基を表す。]
 炭素原子数10~60の脂肪族ジアミン化合物としては、本発明の効果を好適に得る観点から、ダイマー脂肪族ジアミンが好ましい。
 ダイマー脂肪族ジアミンの詳細は前述のとおりである。
 ポリアミック酸を構成する全ジアミン成分に対する、炭素原子数10~60の脂肪族ジアミン化合物の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、5モル%~80モル%が好ましく、10モル%~70モル%がより好ましく、15モル%~60モル%が特に好ましい。
 ポリアミック酸における、光重合性基を有する芳香族ジアミン化合物(A)と炭素原子数10~60の脂肪族ジアミン化合物(B)とのモル割合(A:B)としては、特に制限されないが、5:1~0.3:1が好ましく、4:1~0.5:1がより好ましく、3:1~0.6:1が特に好ましい。
 ポリアミック酸を構成する全ジアミン成分に対する、光重合性基を有する芳香族ジアミン化合物と炭素原子数10~60の脂肪族ジアミン化合物との合計のモル割合としては、特に限定されないが、本発明の効果を好適に得る観点から、30モル%以上が好ましく、40モル%以上がより好ましく、50モル%以上が特に好ましい。合計のモル割合の上限値としては、特に制限されないが、合計のモル割合は、100モル%以下であってもよいし、90モル%以下であってもよい。
<<<3つ以上の芳香族環を有する芳香族ジアミン化合物>>>
 得られる硬化膜において、より低い誘電正接及びより高い引張伸度が得られる点から、ジアミン成分は3つ以上の芳香族環を有する芳香族ジアミン化合物を含むことが好ましい。なお、ここでの3つ以上の芳香族環を有する芳香族ジアミン化合物は、上記の光重合性基を有する2価の芳香族ジアミン化合物とは異なるジアミン化合物を指す。
 3つ以上の芳香族環を有する芳香族ジアミン化合物における芳香族環の数としては、3つ以上であれば、特に限定されないが、例えば、4つ以上であってもよい。芳香族環の数の上限値としては、特に限定されないが、例えば、8つ以下であってよいし、6つ以下であってもよい。
 3つ以上の芳香族環を有する芳香族ジアミン化合物としては、例えば、下記式(13-1)で表されるジアミン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000028
[式(13-1)中、X21及びX22はそれぞれ独立に直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、ウレア結合(-NHCONH-)、チオエーテル結合(-S-)又はスルホニル結合(-SO-)を表す。
 R21及びR22はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキル基を表す。
 Y20は上記式(3-a)、上記式(3-b)又は上記式(3-c)で表される2価の有機基を表す。
 n21及びn22はそれぞれ独立に0~4の整数を表す。
 R21が複数の場合、複数のR21は同じでもよいし異なっていてもよい。R22が複数の場合、複数のR22は同じでもよいし異なっていてもよい。]
 ポリアミック酸を構成する全ジアミン成分に対する、3つ以上の芳香族環を有する芳香族ジアミン化合物の割合としては、特に限定されないが、発明の効果を好適に得る観点から、5モル%~60モル%が好ましく、10モル%~55モル%がより好ましく、15モル%~50モル%が特に好ましい。
<<テトラカルボン酸誘導体>>
 テトラカルボン酸誘導体は、得られる硬化膜において、低い誘電正接及び高い引張伸度が得られる点から、3つ以上の芳香族環を有するテトラカルボン酸誘導体を含むことが好ましい。
 「3つ以上の芳香族環を有するテトラカルボン酸誘導体」におけるテトラカルボン酸誘導体としては、例えば、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、及びテトラカルボン酸ジアルキルエステルジハライドが挙げられるが、特に、テトラカルボン酸二無水物が好ましい。
 3つ以上の芳香族環を有するテトラカルボン酸誘導体における芳香族環の数としては、3つ以上であれば、特に限定されないが、例えば、4つ以上であってもよい。芳香族環の数の上限値としては、特に限定されないが、例えば、8つ以下であってもよいし、6つ以下であってもよい。
 3つ以上の芳香族環を有するテトラカルボン酸誘導体としては、ポリイミドに、前述の3つ以上の芳香族環を有する4価の有機基を与えるテトラカルボン酸誘導体が好ましく、前述の3つ以上の芳香族環を有する4価の有機基を与えるテトラカルボン酸二無水物がより好ましい。そのようなテトラカルボン酸二無水物は、例えば、下記式(2-A-1)で表されるテトラカルボン酸二無水物が挙げられる。
Figure JPOXMLDOC01-appb-C000029
[式(2-A-1)中、X及びXはそれぞれ独立に直接結合、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-NHCO-)、ウレタン結合(-NHCOO-)、ウレア結合(-NHCONH-)、チオエーテル結合(-S-)又はスルホニル結合(-SO-)を表す。
 Ra1及びRa2はそれぞれ独立に置換されていてもよい炭素原子数1~6のアルキル基を表す。
 Zは上記式(3-a)、上記式(3-b)又は上記式(3-c)で表される2価の有機基を表す。
 n1及びn2はそれぞれ独立に0~3の整数を表す。
 Ra1が複数の場合、複数のRa1は同じでもよいし異なっていてもよい。Ra2が複数の場合、複数のRa2は同じでもよいし異なっていてもよい。]
 ポリアミック酸を構成する全テトラカルボン酸誘導体に対する、3つ以上の芳香族環を有する芳香族テトラカルボン酸誘導体の割合としては、特に限定されないが、本発明の効果を好適に得る観点から、20モル%~100モル%が好ましく、50モル%~100モル%がより好ましい。
 ポリイミドの重量平均分子量としては、特に限定されないが、ゲルパーミエーションクロマトグラフィー(以下、本明細書ではGPCと略称する)によるポリエチレンオキシド換算で測定される重量平均分子量は、5,000~100,000が好ましく、7,000~50,000がより好ましく、10,000~50,000が更に好ましく、10,000~40,000が特に好ましい。
<<ポリイミドの製造方法>>
 ポリイミドは、例えば、ポリアミック酸をイミド化して得られる。
 ポリアミック酸は、例えば、光重合性基を有する芳香族ジアミン化合物及び炭素原子数10~60の脂肪族ジアミン化合物を含むジアミン成分とテトラカルボン酸誘導体とを反応させて得られる。
 ポリアミック酸又はポリイミドの製造方法としては、特に限定されず、例えば、ジアミン成分とテトラカルボン酸誘導体とを反応させてポリアミック酸、又はポリイミドを得る公知の方法が挙げられる。ポリアミック酸、及びポリイミドは、例えば、WO2013/157586号公報に記載されるような公知の方法で合成出来る。
 ポリアミック酸の製造は、例えば、光重合性基を有する芳香族ジアミン化合物及び炭素原子数10~60の脂肪族ジアミン化合物を含むジアミン成分とテトラカルボン酸誘導体とを溶媒中で(縮重合)反応させることにより行われる。
 上記溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルイソ酪酸アミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000030
(式[D-1]中、Dは炭素原子数1~3のアルキル基を示し、式[D-2]中、Dは炭素原子数1~3のアルキル基を示し、式[D-3]中、Dは炭素原子数1~4のアルキル基を表す。)
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解しない溶媒であっても、ポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。
 ジアミン成分とテトラカルボン酸誘導体とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
 反応においては、ジアミン成分の合計モル数とテトラカルボン酸誘導体の合計モル数の比は0.8~1.2であることが好ましい。通常の縮重合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
 ジアミン成分とテトラカルボン酸誘導体とを反応させる際には、光重合性基の重合を避けるために、熱重合禁止剤を反応系に添加してもよい。
 熱重合禁止剤としては、例えば、ヒドロキノン、4-メトキシフェノール、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-クレゾール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が挙げられる。
 熱重合禁止剤の使用量としては、特に限定されない。
 ポリイミドは、上記反応で得られたポリアミック酸を脱水閉環して得られる。
 ポリイミドを得る方法としては、上記反応で得られたポリアミック酸の溶液をそのまま加熱する熱イミド化、又はポリアミック酸の溶液に触媒を添加する化学イミド化が挙げられる。溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 上記化学イミド化は、反応で得られたポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.1モル倍~30モル倍、好ましくは0.2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは1.5モル倍~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、なかでも、トリエチルアミンは副生成物であるポリイソイミドが生成しにくいので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、なかでも、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。化学イミド化によるイミド化率(ポリイミド前駆体の有する全繰り返し単位に対する閉環される繰り返し単位の割合、閉環率ともいう。)は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 上記イミド化の反応溶液から、生成したイミド化物を回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
 ポリアミック酸又はポリイミドは、末端封止がされていてもよい。末端封止の方法としては、特に制限されず、例えば、モノアミン又は酸無水物を用いた従来公知の方法を用いることができる。
<溶媒>
 感光性樹脂組成物に含有される溶媒としては、ポリイミドに対する溶解性の点から、有機溶媒を用いることが好ましい。具体的には、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルイソ酪酸アミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、テトラメチル尿素、1,3-ジメチル-2-イミダゾリノン、N-シクロヘキシル-2-ピロリドン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、2-ヒドロキシイソ酪酸メチル、乳酸エチル又は下記の式[D-1]~式[D-3]で示される溶媒等が挙げられ、これらは単独又は2種以上の組合せで用いることができる。
Figure JPOXMLDOC01-appb-C000031
(式[D-1]中、Dは炭素原子数1~3のアルキル基を示し、式[D-2]中、Dは炭素原子数1~3のアルキル基を示し、式[D-3]中、Dは炭素原子数1~4のアルキル基を表す。)
 溶媒は、感光性樹脂組成物の所望の塗布膜厚及び粘度に応じて、ポリイミド100質量部に対し、例えば、30質量部~1500質量部の範囲、好ましくは100質量部~1000質量部の範囲で用いることができる。
<その他の成分>
 実施の形態では、感光性樹脂組成物は、ポリイミド及び溶媒以外のその他の成分をさらに含有していてもよい。その他の成分としては、例えば、光ラジカル重合開始剤(「光ラジカル開始剤」ともいう)、架橋性化合物(「架橋剤」ともいう)、熱硬化剤、その他の樹脂成分、フィラー、増感剤、接着助剤、熱重合禁止剤、アゾール化合物、ヒンダードフェノール化合物などが挙げられる。
<<光ラジカル重合開始剤>>
 光ラジカル重合開始剤としては、光硬化時に使用する光源に吸収をもつ化合物であれば特に限定されないが、例えば、tert-ブチルペルオキシ-iso-ブチレート、2,5-ジメチル-2,5-ビス(ベンゾイルジオキシ)ヘキサン、1,4-ビス[α-(tert-ブチルジオキシ)-iso-プロポキシ]ベンゼン、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ビス(tert-ブチルジオキシ)ヘキセンヒドロペルオキシド、α-(iso-プロピルフェニル)-iso-プロピルヒドロペルオキシド、tert-ブチルヒドロペルオキシド、1,1-ビス(tert-ブチルジオキシ)-3,3,5-トリメチルシクロヘキサン、ブチル-4,4-ビス(tert-ブチルジオキシ)バレレート、シクロヘキサノンペルオキシド、2,2’,5,5’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-アミルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(tert-ブチルペルオキシカルボニル)-4,4’-ジカルボキシベンゾフェノン、tert-ブチルペルオキシベンゾエート、ジ-tert-ブチルジペルオキシイソフタレート等の有機過酸化物;9,10-アントラキノン、1-クロロアントラキノン、2-クロロアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン等のキノン類;ベンゾインメチル、ベンゾインエチルエーテル、α-メチルベンゾイン、α-フェニルベンゾイン等のベンゾイン誘導体;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-{4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル}-フェニル]-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン等のアルキルフェノン系化合物;ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のアシルホスフィンオキサイド系化合物;2-(O-ベンゾイルオキシム)-1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン、1-(O-アセチルオキシム)-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン等のオキシムエステル系化合物が挙げられる。
 光ラジカル重合開始剤は、市販品として入手が可能であり、例えば、IRGACURE[登録商標]651、同184、同2959、同127、同907、同369、同379EG、同819、同819DW、同1800、同1870、同784、同OXE01、同OXE02、同OXE03、同OXE04、同250、同1173、同MBF、同TPO、同4265、同TPO(以上、BASF社製)、KAYACURE[登録商標]DETX-S、同MBP、同DMBI、同EPA、同OA(以上、日本化薬株式会社製)、VICURE-10、同55(以上、STAUFFER Co.LTD製)、ESACURE KIP150、同TZT、同1001、同KTO46、同KB1、同KL200、同KS300、同EB3、トリアジン-PMS、トリアジンA、トリアジンB(以上、日本シイベルヘグナー株式会社製)、アデカオプトマーN-1717、同N-1414、同N-1606、アデカアークルズN-1919T、同NCI-831E、同NCI-930、同NCI-730(以上、株式会社ADEKA製)が挙げられる。
 これらの光ラジカル重合開始剤は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 光ラジカル重合開始剤の含有量は、特に限定されないが、ポリイミド100質量部に対し、0.1質量部~20質量部が好ましく、光感度特性の観点から0.5質量部~15質量部がより好ましい。光ラジカル重合開始剤をポリイミド100質量部に対し0.1質量部以上含有する場合には、感光性樹脂組成物の光感度が向上しやすく、一方で、20質量部以下含有する場合には、感光性樹脂組成物の厚膜硬化性が改善しやすい。
<<架橋性化合物>>
 実施の形態では、レリーフパターンの解像性を向上させるために、光ラジカル重合性の不飽和結合を有するモノマー(架橋性化合物)を任意に感光性樹脂組成物に含有させることができる。
 このような架橋性化合物としては、光ラジカル重合開始剤によりラジカル重合反応する重合性基を含む化合物が好ましく、(メタ)アクリル化合物やマレイミド化合物を挙げることができるが、特に以下に限定するものではない。(メタ)アクリル化合物としては、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、エチレングリコール又はポリエチレングリコールモノ又はジ(メタ)アクリレート、プロピレングリコール又はポリプロピレングリコールのモノ又はジ(メタ)アクリレート、グリセロールのモノ、ジ又はトリ(メタ)アクリレート、1,4-ブタンジオールのジ(メタ)アクリレート、1,6-ヘキサンジオールのジ(メタ)アクリレート、1,9-ノナンジオールのジ(メタ)アクリレート、1,10-デカンジオールのジ(メタ)アクリレート、ネオペンチルグリコールのジ(メタ)アクリレート、シクロヘキサンジ(メタ)アクリレート、シクロヘキサンジメタノールのジ(メタ)アクリレート、トリシクロデカンジメタノールのジ(メタ)アクリレート、ジオキサングリコールのジ(メタ)アクリレート、ビスフェノールAのモノ又はジ(メタ)アクリレート、ビスフェノールFのジ(メタ)アクリレート、水添ビスフェノールAのジ(メタ)アクリレート、ベンゼントリメタクリレート、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンのジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート、イソボルニル(メタ)アクリレート、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、トリメチロールプロパントリ(メタ)アクリレート、グリセロールのジ又はトリ(メタ)アクリレート、ペンタエリスリトールのジ、トリ、又はテトラ(メタ)アクリレート、並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物、2-イソシアネートエチル(メタ)アクリレート又はイソシアネート含有(メタ)アクリレート、及びこれらにメチルエチルケトンオキシム、ε-カプロラクタム、γ-カプロラクタム、3,5-ジメチルピラゾール、マロン酸ジエチル、エタノール、イソプロパノール、n-ブタノール、1-メトキシ-2-プロパノール等のブロック剤を付加した化合物を挙げることができる。また、マレイミド化合物としては、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,4-フェニレンビスマレイミド、N,N’-1,3-フェニレンジマレイミド、4,4’-ビスマレイミドジフェニルメタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(2-マレイミドエチル)ジスルフィド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等を挙げることができる。マレイミド化合物の市販品としては、BMI-689、BMI-1500、BMI-1700、BMI-3000(以上、Designer Molecules Inc.製)等を挙げることができる。尚、これらの化合物は単独で使用しても、2種類以上を組み合わせて使用してもよい。本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを意味する。
 架橋性化合物の含有量は、特に限定されないが、ポリイミド100質量部に対し、好ましくは1質量部~100質量部であり、より好ましくは1質量部~50質量部である。
<<熱硬化剤>>
 熱硬化剤としては、例えば、ヘキサメトキシメチルメラミン、テトラメトキシメチルグリコールウリル、テトラメトキシメチルベンゾグアナミン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素などが挙げられる。
 感光性樹脂組成物における熱硬化剤の含有量は、特に限定されない。
<<フィラー>>
 フィラーとしては、例えば無機フィラーが挙げられ、具体的にはシリカ、窒化アルミニウム、窒化ボロン、ジルコニア、アルミナなどのゾルが挙げられる。
 感光性樹脂組成物にけるフィラーの含有量は、特に限定されない。
<<その他の樹脂成分>>
 実施の形態では、感光性樹脂組成物は、ポリイミド以外の樹脂成分をさらに含有してもよい。感光性樹脂組成物に含有させることができる樹脂成分としては、例えば、ポリオキサゾール、ポリオキサゾール前駆体、フェノール樹脂、ポリアミド、エポキシ樹脂、シロキサン樹脂、アクリル樹脂等が挙げられる。
 これらの樹脂成分の含有量は、特に限定されないが、ポリイミド100質量部に対して、好ましくは0.01質量部~20質量部の範囲である。
<<増感剤>>
 実施の形態では、感光性樹脂組成物には、光感度を向上させるために増感剤を任意に配合することができる。
 増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン等が挙げられる。
 これらは単独で、又は複数の組合せで用いることができる。
 増感剤の含有量は、特に限定されないが、ポリイミド100質量部に対し、0.1質量部~25質量部であることが好ましい。
<<接着助剤>>
 実施の形態では、感光性樹脂組成物を用いて形成される膜と基材との接着性を向上させるために、接着助剤を任意に感光性樹脂組成物に配合することができる。
 接着助剤としては、例えば、γ-アミノプロピルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルジメトキシメチルシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-〔3-(トリエトキシシリル)プロピル〕フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン等のシランカップリング剤、及びアルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤等が挙げられる。
 これらの接着助剤のうちでは、接着力の点からシランカップリング剤を用いることがより好ましい。
 接着助剤の含有量は、特に限定されないが、ポリイミド100質量部に対し、0.5質量部~25質量部の範囲が好ましい。
<<熱重合禁止剤>>
 実施の形態では、特に溶媒を含む溶液の状態での保存時の感光性樹脂組成物の粘度及び光感度の安定性を向上させるために、熱重合禁止剤を任意に配合することができる。
 熱重合禁止剤としては、例えば、ヒドロキノン、4-メトキシフェノール、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-クレゾール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が用いられる。
 熱重合禁止剤の含有量としては、特に限定されないが、ポリイミド100質量部に対し、0.005質量部~12質量部の範囲が好ましい。
<<アゾール化合物>>
 例えば、銅又は銅合金から成る基板を用いる場合には、基板変色を抑制するためにアゾール化合物を任意に感光性樹脂組成物に配合することができる。
 アゾール化合物としては、例えば、1H-トリアゾール、5-メチル-1H-トリアゾール、5-エチル-1H-トリアゾール、4,5-ジメチル-1H-トリアゾール、5-フェニル-1H-トリアゾール、4-t-ブチル-5-フェニル-1H-トリアゾール、5-ヒドロキシフェニル-1H-トリアゾール、フェニルトリアゾール、p-エトキシフェニルトリアゾール、5-フェニル-1-(2-ジメチルアミノエチル)トリアゾール、5-ベンジル-1H-トリアゾール、ヒドロキシフェニルトリアゾール、1,5-ジメチルトリアゾール、4,5-ジエチル-1H-トリアゾール、1H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α―ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、1-メチル-1H-テトラゾール等が挙げられる。特に好ましくは、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、及び5-カルボキシ-1H-ベンゾトリアゾールが挙げられる。
 また、これらのアゾール化合物は、1種で用いても2種以上の混合物で用いてもよい。
 アゾール化合物の含有量は、特に限定されないが、ポリイミド100質量部に対し、0.1質量部~20質量部であることが好ましく、光感度特性の観点から0.5質量部~5質量部であることがより好ましい。アゾール化合物のポリイミド100質量部に対する含有量が0.1質量部以上である場合には、感光性樹脂組成物を銅又は銅合金の上に形成したときに、銅又は銅合金表面の変色が抑制され、一方、20質量部以下である場合には、光感度に優れるため好ましい。
<<ヒンダードフェノール化合物>>
 実施の形態では、銅上の変色を抑制するためにヒンダードフェノール化合物を任意に感光性樹脂組成物に配合することができる。
 ヒンダードフェノール化合物としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、N,N’ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5‐エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられるが、これに限定されるものではない。
 これらの中でも、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオンが特に好ましい。
 ヒンダードフェノール化合物の含有量は、特に限定されないが、ポリイミド100質量部に対し、0.1質量部~20質量部であることが好ましく、光感度特性の観点から0.5質量部~10質量部であることがより好ましい。ヒンダードフェノール化合物のポリイミド100質量部に対する含有量が0.1質量部以上である場合、例えば銅又は銅合金の上に感光性樹脂組成物を形成した場合に、銅又は銅合金の変色・腐食が防止され、一方、20質量部以下である場合には光感度に優れるため好ましい。
 感光性樹脂組成物は、後述する硬化レリーフパターンの製造のためのネガ型感光性樹脂組成物として好適に用いることができる。
(樹脂膜)
 本発明の樹脂膜は、本発明の感光性樹脂組成物の塗布膜の焼成物である。
 塗布方法としては、従来から感光性樹脂組成物の塗布に用いられている方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
 焼成物を得る際の焼成の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。焼成は、例えば、130℃~250℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
 樹脂膜の厚みとしては、特に限定されないが、1μm~100μmが好ましく、2μm~50μmがより好ましい。
 樹脂膜は、例えば、絶縁膜である。
(感光性レジストフィルム)
 本発明の感光性樹脂組成物は、感光性レジストフィルム(所謂、ドライフィルムレジスト)に用いることができる。
 感光性レジストフィルムは、基材フィルムと、本発明の感光性樹脂組成物から形成される感光性樹脂層(感光性樹脂膜)と、カバーフィルムとを有する。
 通常、基材フィルム上に、感光性樹脂層と、カバーフィルムとがこの順で積層されている。
 感光性レジストフィルムは、例えば、基材フィルム上に、感光性樹脂組成物を塗布し、乾燥させて感光性樹脂層を形成した後、その感光性樹脂層上にカバーフィルムを積層することにより製造できる。
 塗布方法としては、従来から感光性樹脂組成物の塗布に用いられている方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
 乾燥の方法としては、例えば、20℃~200℃で1分~1時間の条件が挙げられる。
 得られる感光性樹脂層の厚みとしては、特に限定されないが、1μm~100μmが好ましく、2μm~50μmがより好ましい。
 基材フィルムには、公知のものを使用でき、例えば熱可塑性樹脂フィルム等が用いられる。この熱可塑性樹脂としては、例えばポリエチレンテレフタレート等のポリエステルが挙げられる。基材フィルムの厚みは、2μm~150μmが好ましい。
 カバーフィルムには、公知のものを使用でき、例えばポリエチレンフィルム、ポリプロピレンフィルム等が用いられる。カバーフィルムとしては、感光性樹脂層との接着力が基材フィルムよりも小さいフィルムが好ましい。カバーフィルムの厚みは、2μm~150μmが好ましく、2μm~100μmがより好ましく、5μm~50μmが特に好ましい。
 基材フィルムとカバーフィルムとは、同一のフィルム材料であってもよいし、異なるフィルムを用いてもよい。
(硬化レリーフパターン付き基板の製造方法)
 本発明の硬化レリーフパターン付き基板の製造方法は、
 (1)本発明に係る感光性樹脂組成物を基板上に塗布して、感光性樹脂層(感光性樹脂膜)を該基板上に形成する工程と、
 (2)該感光性樹脂層を露光する工程と、
 (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
 (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
を含む。
 以下、各工程について説明する。
 (1)本発明に係る感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程
 本工程では、本発明に係る感光性樹脂組成物を基板上に塗布し、必要に応じて、その後に乾燥させて、感光性樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられている方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
 必要に応じて、感光性樹脂組成物から成る塗膜を乾燥させることができ、そして乾燥方法としては、例えば、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。具体的には、風乾又は加熱乾燥を行う場合、20℃~200℃で1分~1時間の条件で乾燥を行うことができる。以上により基板上に感光性樹脂層を形成できる。
(2)感光性樹脂層を露光する工程
 本工程では、上記(1)工程で形成した感光性樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク又はレチクルを介して又は直接に、紫外線光源等により露光する。
 露光の際に使用される光源としては、例えば、g線、h線、i線、ghi線ブロードバンド、及びKrFエキシマレーザーが挙げられる。露光量は25mJ/cm~2000mJ/cmが望ましい。
 この後、光感度の向上等の目的で、必要に応じて、任意の温度及び時間の組合せによる露光後ベーク(PEB)及び/又は現像前ベークを施してもよい。ベーク条件の範囲は、温度は50℃~200℃であることが好ましく、時間は10秒~600秒であることが好ましいが、感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限らない。
(3)露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程
 本工程では、露光後の感光性樹脂層のうち未露光部を現像除去する。露光(照射)後の感光性樹脂層を現像する現像方法としては、従来知られているフォトレジストの現像方法、例えば、回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、現像液を除去する目的でリンスを施してもよい。さらに、レリーフパターンの形状を調整する等の目的で、必要に応じて、任意の温度及び時間の組合せによる現像後ベークを施してもよい。
 現像に使用される現像液としては、有機溶媒が好ましい。有機溶媒としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン等が好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。
 リンスに使用されるリンス液としては、現像液と混和し、感光性樹脂組成物に対して溶解性が低い有機溶媒が好ましい。リンス液としては、例えば、メタノール、エタノール、イソプロピルアルコール、乳酸エチル、プロピレングリコールメチルエーテルアセテート、トルエン、キシレン等が好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。
(4)レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程
 本工程では、上記現像により得られたレリーフパターンを加熱して硬化レリーフパターンに変換する。加熱硬化の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、例えば、130℃~250℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
 硬化レリーフパターンの厚みとしては、特に限定されないが、1μm~100μmが好ましく、2μm~50μmがより好ましい。
(半導体装置)
 実施の形態では、半導体素子と該半導体素子の上部又は下部に設けられた硬化膜とを備える半導体装置も提供される。硬化膜は、本発明の感光性樹脂組成物から形成される硬化レリーフパターンである。硬化レリーフパターンは、例えば、上述した硬化レリーフパターン付き基板の製造方法における工程(1)~(4)により得ることができる。
 また、本発明は、基板として半導体素子を用い、上述した硬化レリーフパターン付き基板の製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本発明の半導体装置は、硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。
(表示体装置)
 実施の形態では、表示体素子と該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は上述の硬化レリーフパターンである表示体装置が提供される。ここで、当該硬化レリーフパターンは、当該表示体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、TFT(Thin Film Transistor)液晶表示素子及びカラーフィルター素子の表面保護膜、絶縁膜、及び平坦化膜、MVA(Multi-domain Vertical Alignment)型液晶表示装置用の突起、並びに有機EL(Electro-Luminescence)素子陰極用の隔壁を挙げることができる。
 本発明の感光性樹脂組成物は、上記のような半導体装置への適用の他、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、及び液晶配向膜等の用途にも有用である。
 次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
 下記合成例及び比較合成例に示す化合物は下記に示すものである。
 BEM-S:3,5-ジアミノ安息香酸2-(メタクリロイルオキシ)エチル(三星化学工業(株)製)
Figure JPOXMLDOC01-appb-C000032
 HFBAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン
Figure JPOXMLDOC01-appb-C000033
 BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
Figure JPOXMLDOC01-appb-C000034
 BPF-AN:9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン(JFEケミカル(株)製)
Figure JPOXMLDOC01-appb-C000035
 PRIAMINE[登録商標]1075:ダイマージアミン(クローダジャパン(株)製、ダイマージアミン含有量:97質量%以上)
 6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
Figure JPOXMLDOC01-appb-C000036
 BPADA:4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物
Figure JPOXMLDOC01-appb-C000037
 BPF-PA:9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二酸無水物(JFEケミカル(株)製)
Figure JPOXMLDOC01-appb-C000038
 BPAFDA:5-[4-[2-[4-[(1,3-ジオキソ-2-ベンゾフラン-5-イル)オキシ]フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル]フェノキシ]-2-ベンゾフラン-1,3-ジオン(Jiangsu Laurel Pharmaceutical Co., Ltd製)
Figure JPOXMLDOC01-appb-C000039
 TMPBP-TME:2,2’,3,3’,5,5’-ヘキサメチル-[1,1’-ビフェニル]-4,4’-ジイルビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキシレート)(本州化学工業(株)製)
Figure JPOXMLDOC01-appb-C000040
 H-BPDA:ドデカヒドロ-5,5’-ビ-2-ベンゾフラン-1,1’3,3’-テトロン(WeiHai Newera Kesence New Materials社製)
Figure JPOXMLDOC01-appb-C000041
 下記合成例に示す重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(以下、本明細書ではGPCと略称する)による測定結果である。測定には、GPC装置(HLC-8320GPC(東ソー(株)製))を用い、測定条件は以下の通りである。
 ・カラム:Shodex〔登録商標〕KD-805/Shodex〔登録商標〕KD-803(昭和電工(株)製)
 ・カラム温度:50℃
 ・流量:1mL/分
 ・溶離液:N,N-ジメチルホルムアミド(DMF)、臭化リチウム一水和物(30mM)/リン酸(30mM)/テトラヒドロフラン(1%)
 ・標準試料:ポリエチレンオキシド
 下記合成例に示す化学イミド化率は、核磁気共鳴装置(以下、本明細書ではNMRと略称する)による測定結果である。測定には、NMR装置(JNM-ECA500)(日本電子(株)製)を用い、測定条件は下記の通りである。
 ・測定温度:室温
 ・測定溶媒:重水素化ジメチルスルホキシド(DMSO-d6)または重水素化テトラヒドロフラン(THF-d8)
 尚、化学イミド化率はイミド化前後で変化しない構造に由来するプロトンを基準プロトンとし、このプロトンのピーク積算値と、9.5ppm~11.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって算出した。
 化学イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<合成例1> ポリイミド(P-1)の合成
 4口フラスコにBEM-S 4.15g(15.69mmol)、HFBAPP 4.03g(7.84mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)4.19g(7.84mmol)、及びN-エチル-2-ピロリドン 41.05gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.51g(14.43mmol)、BPF-PA 10.08g(15.69mmol)、及びN-エチル-2-ピロリドン 28.95gをフラスコ内に加え、室温で39時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸 9.61g、及びトリエチルアミン 1.59gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 100.00gを加えて希釈し、この希釈溶液をメタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は14,836であり、NMR(DMSO-d6)による化学イミド化率は96%であった。
<合成例2> ポリイミド(P-2)の合成
 4口フラスコにBPADA 24.21g(46.52mmol)、BPF-PA 29.89g(46.52mmol)、及びN-エチル-2-ピロリドン 216.43gを加え、空気下、室温で撹拌して懸濁させた。さらに、BEM-S 12.29g(46.52mmol)、HFBAPP 8.68g(16.75mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)14.92g(27.91mmol)、及びN-エチル-2-ピロリドン 143.57gをフラスコ内に加え、室温で40時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 450.00g、無水酢酸 28.49g、及びトリエチルアミン 4.71gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この反応溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は27,389であり、NMR(DMSO-d6)による化学イミド化率は100%であった。
<合成例3> ポリイミド(P-3)の合成
 4口フラスコにBEM-S 4.10g(15.51mmol)、HFBAPP 3.22g(6.20mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)4.97g(9.30mmol)、及びN-エチル-2-ピロリドン 41.33gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.75g(14.89mmol)、BPF-PA 9.97g(15.51mmol)、及びN-エチル-2-ピロリドン 28.67gをフラスコ内に加え、室温で47時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸 9.50g、及びトリエチルアミン 1.57gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 75.00gを加えて希釈した後、この希釈溶液をメタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は18,667であり、NMR(DMSO-d6)による化学イミド化率は99%であった。
<合成例4> ポリイミド(P-4)の合成
4口フラスコにBEM-S 4.14g(15.66mmol)、HFBAPP 2.44g(4.70mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)5.86g(10.96mmol)、及びN-エチル-2-ピロリドン 40.99gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.50g(14.41mmol)、BPF-PA 10.07g(15.66mmol)、及びN-エチル-2-ピロリドン 29.01gをフラスコ内に加え、室温で39時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸9.59g、及びトリエチルアミン 1.58gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 100.00gを加えて希釈した後、この希釈溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は14,195であり、NMR(DMSO-d6)による化学イミド化率は96%であった。
<合成例5> ポリイミド(P-5)の合成
 4口フラスコにBEM-S 7.92g(30.0mmol)、HFBAPP 6.22g(12.0mmol)、PRIAMINE[登録商標]1075(アミン価:206mgKOH/g)9.81g(18.0mmol)、及びN-エチル-2-ピロリドン 85.4gを加え、空気下、室温で撹拌して溶解させた。さらに、6FDA 13.3g(30.0mmol)、BPADA 15.0g(28.8mmol)、及びN-エチル-2-ピロリドン 36.6gをフラスコ内に加え、50℃で18時間撹拌することでポリアミック酸溶液を得た。次に、このポリアミック酸溶液 160g、N-エチル-2-ピロリドン 319g、無水酢酸 16.8g、及びトリエチルアミン 2.78gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この希釈溶液をメタノール中に滴下し、生じた沈殿物をろ過後、80℃で減圧乾燥することでポリイミド粉末を得た。NMR(THF-d8)による化学イミド化率は98%であった。
<合成例6> ポリイミド(P-6)の合成
 4口フラスコにBEM-S 7.93g(30.0mmol)、HFBAPP 6.22g(12.0mmol)、PRIAMINE[登録商標]1075(アミン価:206mgKOH/g)9.80g(18.0mmol)、及びN-エチル-2-ピロリドン 149gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 21.2g(40.8mmol)、6FDA 8.00g(18.0mmol)、及びN-エチル-2-ピロリドン 63.8gをフラスコ内に加え、50℃で13.5時間撹拌することでポリアミック酸溶液を得た。次に、このポリアミック酸溶液 242g、N-エチル-2-ピロリドン 242g、無水酢酸 16.7g、及びトリエチルアミン 2.76gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この希釈溶液をメタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。NMR(THF-d8)による化学イミド化率は98%であった。
<合成例7> ポリイミド(P-7)の合成
 4口フラスコにBEM-S 7.93g(30.0mmol)、BPF-AN 4.79g(9.00mmol)、PRIAMINE[登録商標]1075(アミン価:206mgKOH/g)11.4g(21.0mmol)、及びN-エチル-2-ピロリドン 150gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 21.2g(40.8mmol)、6FDA 8.00g(18.0mmol)、及びN-エチル-2-ピロリドン 64.1gをフラスコ内に加え、50℃で13.5時間撹拌することでポリアミック酸溶液を得た。次に、このポリアミック酸溶液 243g、N-エチル-2-ピロリドン 243g、無水酢酸 16.7g、及びトリエチルアミン 2.76gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この希釈溶液をメタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。NMR(THF-d8)による化学イミド化率は98%であった。
<合成例8> ポリイミド(P-8)の合成
 4口フラスコにBEM-S 7.93g(30.0mmol)、BPF-AN 4.79g(9.00mmol)、PRIAMINE[登録商標]1075(アミン価:206mgKOH/g)11.4g(21.0mmol)、及びN-エチル-2-ピロリドン 156gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 11.9g(22.8mmol)、BPF-PA 11.6g(18.0mmol)、6FDA 8.00g(18.0mmol)、及びN-エチル-2-ピロリドン 66.7gをフラスコ内に加え、50℃で13.5時間撹拌することでポリアミック酸溶液を得た。次に、このポリアミック酸溶液 245g、N-エチル-2-ピロリドン 245g、無水酢酸 16.2g、及びトリエチルアミン 2.67gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この希釈溶液をメタノール中に滴下し、生じた沈殿物をろ過後、60℃で減圧乾燥することでポリイミド粉末を得た。NMR(THF-d8)による化学イミド化率は97%であった。
<合成例9> ポリイミド(P-9)の合成
 4口フラスコにBEM-S 6.61g(25.0mmol)、HFBAPP 5.18g(10.0mmol)、PRIAMINE[登録商標]1075(アミン価:206mgKOH/g)8.17g(15.0mmol)、及びN-エチル-2-ピロリドン 82.9gを加え、空気下、室温で撹拌して溶解させた。さらに、BPAFDA 30.8g(49.0mmol)、及びN-エチル-2-ピロリドン 35.5gをフラスコ内に加え、50℃で14時間撹拌することでポリアミック酸溶液を得た。次に、このポリアミック酸溶液 155g、N-エチル-2-ピロリドン 311g、無水酢酸 14.1g、及びトリエチルアミン 2.32gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この希釈溶液をメタノール中に滴下し、生じた沈殿物をろ過後、80℃で減圧乾燥することでポリイミド粉末を得た。NMR(THF-d8)による化学イミド化率は98%であった。
<合成例10> ポリイミド(P-10)の合成
 4口フラスコにBPADA 23.42g(44.99mmol)、BPF-PA 28.91g(44.99mmol)、及びN-エチル-2-ピロリドン 209.30gを加え、空気下、室温で撹拌して懸濁させた。さらに、BEM-S 8.32g(31.49mmol)、HFBAPP 14.93g(28.79mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)14.42g(26.99mmol)、及びN-エチル-2-ピロリドン 150.70gをフラスコ内に加え、室温で65時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 450.00g、無水酢酸 27.55g、及びトリエチルアミン 4.55gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この反応溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は24,269であり、NMR(DMSO-d6)による化学イミド化率は100%であった。
<合成例11> ポリイミド(P-11)の合成
 4口フラスコにBEM-S 8.28g(31.33mmol)、HFBAPP 16.24g(31.33mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)14.35g(26.85mmol)、及びN-エチル-2-ピロリドン 204.50gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 22.36g(42.97mmol)、BPF-PA 28.76g(44.76mmol)、及びN-エチル-2-ピロリドン 155.50gをフラスコ内に加え、室温で44時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 450.00g、無水酢酸 27.41g、及びトリエチルアミン 4.53gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この反応溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は15,063であり、NMR(DMSO-d6)による化学イミド化率は98%であった。
<合成例12> ポリイミド(P-12)の合成
 4口フラスコにBPF-PA 24.10g(37.51mmol)、及びN-エチル-2-ピロリドン 96.41gを加え、空気下、室温で撹拌して懸濁させた。さらに、BEM-S 3.47g(13.13mmol)、HFBAPP 6.42g(12.38mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)6.01g(11.25mmol)、及びN-エチル-2-ピロリドン 63.59gをフラスコ内に加え、室温で65時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 200.00g、無水酢酸 11.48g、及びトリエチルアミン 1.90gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この反応溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は20,413であり、NMR(DMSO-d6)による化学イミド化率は100%であった。
<合成例13> ポリイミド(P-13)の合成
 4口フラスコにBPADA 10.10g(19.40mmol)、BPF-PA 12.47g(19.40mmol)、及びN-エチル-2-ピロリドン 90.26gを加え、空気下、室温で撹拌して懸濁させた。さらに、BEM-S 2.56g(9.70mmol)、HFBAPP 8.65g(16.68mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)6.22g(11.64mmol)、及びN-エチル-2-ピロリドン 69.74gをフラスコ内に加え、室温で65時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 200.00g、無水酢酸 11.88g、及びトリエチルアミン 1.96gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この反応溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は23,694であり、NMR(DMSO-d6)による化学イミド化率は100%であった。
<合成例14> ポリイミド(P-14)の合成
 4口フラスコにBPADA 5.37g(10.31mmol)、BPF-PA 6.63g(10.31mmol)、及びN-エチル-2-ピロリドン 47.97gを加え、空気下、室温で撹拌して懸濁させた。さらに、BEM-S 1.91g(7.22mmol)、BAPP 2.79g(6.81mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)3.31g(6.19mmol)、及びN-エチル-2-ピロリドン 32.03gをフラスコ内に加え、室温で65時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸 6.31g、及びトリエチルアミン 1.04gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この反応溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は19,215であり、NMR(DMSO-d6)による化学イミド化率は100%であった。
<合成例15> ポリイミド(P-15)の合成
 4口フラスコにBPF-PA 6.09g(9.48mmol)、TMPBP-TME 5.87g(9.48mmol)、及びN-エチル-2-ピロリドン 47.84gを加え、空気下、室温で撹拌して懸濁させた。さらに、BEM-S 1.75g(6.64mmol)、HFBAPP 3.24g(6.26mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)3.04g(5.69mmol)、及びN-エチル-2-ピロリドン 32.16gをフラスコ内に加え、室温で65時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸 5.81g、及びトリエチルアミン 0.96gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。この反応溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は20,047であり、NMR(THF-d8)による化学イミド化率は100%であった。
<合成例16> ポリイミド(P-16)の合成
 4口フラスコにBEM-S 9.31g(35.23mmol)、HFBAPP 18.27g(35.23mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)16.14g(30.20mmol)、及びN-エチル-2-ピロリドン 318.94gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 25.15g(48.32mmol)、TMPBP-TME 31.13g(50.33mmol)、及びN-エチル-2-ピロリドン 247.72gをフラスコ内に加え、室温で66時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 333.33g、無水酢酸 30.82g、及びトリエチルアミン 5.09gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 428.57gを加えて希釈した後、この希釈溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は28,492であり、NMR(THF-d8)による化学イミド化率は99%であった。
<合成例17> ポリイミド(P-20)の合成
 4口フラスコにBEM-S 4.25g(16.07mmol)、HFBAPP 7.86g(15.15mmol)、PRIAMINE[登録商標]1075(アミン価:208mgKOH/g)7.93g(14.69mmol)、及びN-エチル-2-ピロリドン 113.50gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 6.69g(12.86mmol)、TMPBP-TME 14.20g(22.96mmol)、6FDA 4.08g(9.18mmol)、無水マレイン酸 0.23g(2.30mmol)及びN-エチル-2-ピロリドン 141.50gをフラスコ内に加え、50℃で23時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.11g、無水酢酸 14.06g、及びトリエチルアミン 2.32gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 193.00gを加えて希釈した後、この希釈溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は19,467であり、NMR(THF-d8)による化学イミド化率は100%であった。
<合成例18> ポリイミド(P-21)の合成
 4口フラスコにBEM-S 4.50g(17.10mmol)、HFBAPP 8.36g(16.12mmol)、PRIAMINE[登録商標]1075(アミン価:208mgKOH/g)8.43g(15.63mmol)、及びN-エチル-2-ピロリドン 120.74gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.12g(13.68mmol)、TMPBP-TME 12.09g(19.54mmol)、H-BPDA 4.49g(14.65mmol)、無水マレイン酸 0.24g(2.44mmol)及びN-エチル-2-ピロリドン 134.26gをフラスコ内に加え、50℃で23時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 150.12g、無水酢酸 14.96g、及びトリエチルアミン 2.47gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 193.01gを加えて希釈した後、この希釈溶液をメタノール中に滴下し、生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は15,662であり、NMR(THF-d8)による化学イミド化率は100%であった。
<比較合成例1> ポリイミド(P-17)の合成
 4口フラスコにHFBAPP 7.09g(13.67mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)7.30g(13.67mmol)、及びN-エチル-2-ピロリドン 88.46gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 6.83g(13.12mmol)、BPF-PA 8.78g(13.67mmol)、及びN-エチル-2-ピロリドン 81.54gをフラスコ内に加え、室温で47時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸8.37g、及びトリエチルアミン 1.38gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 75.00gを加えて希釈した後、この希釈溶液をメタノール中に滴下した。生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は14,434であり、NMR(THF-d8)による化学イミド化率は99%であった。
<比較合成例2> ポリイミド(P-18)の合成
 4口フラスコにBEM-S 4.12g(15.58mmol)、HFBAPP 8.08g(15.58mmol)、及びN-エチル-2-ピロリドン 100.88gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.79g(14.96mmol)、BPF-PA 10.01g(15.58mmol)、及びN-エチル-2-ピロリドン 69.12gをフラスコ内に加え、室温で47時間撹拌することでポリアミック酸溶液を得た。次に、N-エチル-2-ピロリドン 100.00g、無水酢酸 9.55g、及びトリエチルアミン 1.58gをフラスコ内に加え、60℃で3時間撹拌することで化学イミド化を行った。反応溶液にN-エチル-2-ピロリドン 75.00gを加えて希釈した後、この希釈溶液をメタノール中に滴下した。生じた沈殿物をメタノールで洗浄後、60℃で減圧乾燥することでポリイミド粉末を得た。GPCによる重量平均分子量(Mw)は28,158であり、NMR(THF-d8)による化学イミド化率は98%であった。
<比較合成例3> ポリアミック酸(P-19)の合成
 4口フラスコにBEM-S 4.10g(15.51mmol)、HFBAPP 3.22g(6.20mmol)、PRIAMINE[登録商標]1075(アミン価:210mgKOH/g)4.97g(9.30mmol)、及びN-エチル-2-ピロリドン 41.33gを加え、空気下、室温で撹拌して溶解させた。さらに、BPADA 7.75g(14.89mmol)、BPF-PA 9.97g(15.51mmol)、及びN-エチル-2-ピロリドン 28.67gをフラスコ内に加え、室温で47時間撹拌することでポリアミック酸溶液を得た。GPCによる重量平均分子量(Mw)は21,368であった。
 実施例及び比較例に示す化合物は下記に示すものである。
 ・NKエステル A-DOD-N:1,10-デカンジオールジアクリレート(新中村化学工業(株)製)
 ・IRGACURE[登録商標]OXE01:1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)](BASFジャパン(株)製)
 ・IRGANOX[登録商標]3114:(1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(BASFジャパン(株)製)
 ・KBM-5103:3-アクリロキシプロピルトリメトキシシラン(信越化学工業(株)製)
<実施例1>
 合成例1で得られたポリイミド(P-1)14.71g、架橋剤としてNKエステル A-DOD-N 2.94g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.74g、IRGANOX[登録商標]3114 0.22g、KBM-5103 0.29g、N,N-ジメチルイソ酪酸アミド 18.27g、及びシクロペンタノン 7.83gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例2>
 合成例2で得られたポリイミド(P-2)13.87g、架橋剤としてNKエステル A-DOD-N 2.77g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.42g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N,N-ジメチルイソ酪酸アミド 19.22g、及びシクロペンタノン 8.24gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例3>
 合成例3で得られたポリイミド(P-3)14.23g、架橋剤としてNKエステル A-DOD-N 2.85g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.43g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N-エチル-2-ピロリドン 18.90g、及びシクロペンタノン 8.10gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例4>
 合成例4で得られたポリイミド(P-4)14.71g、架橋剤としてNKエステル A-DOD-N 2.94g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.74g、IRGANOX[登録商標]3114 0.22g、KBM-5103 0.29g、N,N-ジメチルイソ酪酸アミド 18.27g、及びシクロペンタノン 7.83gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例5>
 合成例5で得られたポリイミド(P-5)5.05g、架橋剤としてNKエステル A-DOD-N 1.01g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.25g、IRGANOX[登録商標]3114 0.08g、KBM-5103 0.10g、N-エチル-2-ピロリドン 6.56g、及びシクロペンタノン 2.81gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例6>
 合成例6で得られたポリイミド(P-6)21.1g、架橋剤としてNKエステル A-DOD-N 4.21g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.42g、5-カルボキシ-1H-ベンゾトリアゾール 0.63g、KBM-5103 0.42g、N-エチル-2-ピロリドン 27.4g、及びシクロペンタノン 11.7gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例7>
 合成例7で得られたポリイミド(P-7)21.7g、架橋剤としてNKエステル A-DOD-N 4.34g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.43g、5-カルボキシ-1H-ベンゾトリアゾール 0.65g、KBM-5103 0.43g、N-エチル-2-ピロリドン 27.0g、及びシクロペンタノン 11.6gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例8>
 合成例8で得られたポリイミド(P-8)21.9g、架橋剤としてNKエステル A-DOD-N 4.38g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.44g、5-カルボキシ-1H-ベンゾトリアゾール 0.66g、KBM-5103 0.44g、N-エチル-2-ピロリドン 25.0g、及びシクロペンタノン 10.7gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例9>
 合成例9で得られたポリイミド(P-9)13.8g、架橋剤としてNKエステル A-DOD-N 2.76g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.69g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N-エチル-2-ピロリドン 18.0g、及びシクロペンタノン 7.69gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例10>
 合成例10で得られたポリイミド(P-10)13.87g、架橋剤としてNKエステル A-DOD-N 2.77g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.42g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N,N-ジメチルイソ酪酸アミド 19.22g、及びシクロペンタノン 8.24gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例11>
 合成例11で得られたポリイミド(P-11)14.23g、架橋剤としてNKエステル A-DOD-N 2.85g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.43g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N-エチル-2-ピロリドン 18.90g、及びシクロペンタノン 8.10gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例12>
 合成例12で得られたポリイミド(P-12)13.87g、架橋剤としてNKエステル A-DOD-N 2.77g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.42g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N,N-ジメチルイソ酪酸アミド 19.22g、及びシクロペンタノン 8.24gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例13>
 合成例13で得られたポリイミド(P-13)13.87g、架橋剤としてNKエステル A-DOD-N 2.77g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.42g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N,N-ジメチルイソ酪酸アミド 19.22g、及びシクロペンタノン 8.24gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例14>
 合成例14で得られたポリイミド(P-14)13.52g、架橋剤としてNKエステル A-DOD-N 2.70g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.41g、IRGANOX[登録商標]3114 0.20g、KBM-5103 0.27g、N,N-ジメチルイソ酪酸アミド 19.53g、及びシクロペンタノン 8.37gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例15>
 合成例15で得られたポリイミド(P-15)9.96g、架橋剤としてNKエステル A-DOD-N 1.99g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.30g、IRGANOX[登録商標]3114 0.15g、KBM-5103 0.20g、N-エチル-2-ピロリドン 22.68g、及びシクロペンタノン 9.72gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例16>
 合成例16で得られたポリイミド(P-16)10.76g、架橋剤としてNKエステル A-DOD-N 2.15g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.22g、IRGANOX[登録商標]3114 0.16g、KBM-5103 0.22g、N-エチル-2-ピロリドン 22.05g、及びシクロペンタノン 9.45gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例17>
 合成例16で得られたポリイミド(P-16)12.05g、架橋剤としてNKエステル A-DOD-N 2.41g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.24g、5-カルボキシ-1H-ベンゾトリアゾール 0.36g、KBM-5103 0.24g、N-エチル-2-ピロリドン 20.79g、及びシクロペンタノン 8.91gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例18>
 合成例17で得られたポリイミド(P-20)9.80g、架橋剤としてNKエステル A-DOD-N 1.47g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.39g、5-カルボキシ-1H-ベンゾトリアゾール 0.15g、KBM-5103 0.20g、N-エチル-2-ピロリドン 8.40g、γ-ブチロラクトン 11.20g及びシクロヘキサノン 8.40gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<実施例19>
 合成例18で得られたポリイミド(P-21)9.80g、架橋剤としてNKエステル A-DOD-N 1.47g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.39g、5-カルボキシ-1H-ベンゾトリアゾール 0.15g、KBM-5103 0.20g、N-エチル-2-ピロリドン 8.40g、γ-ブチロラクトン 11.20g及びシクロヘキサノン 8.40gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<比較例1>
 比較合成例1で得られたポリイミド(P-17)14.23g、架橋剤としてNKエステル A-DOD-N 2.85g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.43g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N-エチル-2-ピロリドン 18.90g、及びシクロペンタノン 8.10gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、樹脂組成物を調製した。
<比較例2>
 比較合成例2で得られたポリイミド(P-18)14.23g、架橋剤としてNKエステル A-DOD-N 2.85g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.43g、IRGANOX[登録商標]3114 0.21g、KBM-5103 0.28g、N-エチル-2-ピロリドン 18.90g、及びシクロペンタノン 8.10gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
<比較例3>
 比較合成例3で得られたポリアミック酸(P-19)を含む溶液(固形分濃度:30質量%)32.02g、架橋剤としてNKエステル A-DOD-N 1.92g、光ラジカル開始剤としてIRGACURE[登録商標]OXE01 0.29g、IRGANOX[登録商標]3114 0.14g、KBM-5103 0.19g、N-エチル-2-ピロリドン 0.58g、及びシクロペンタノン 9.86gを混合して溶解させた後、孔径5μmのポリプロピレン製フィルターを用いてろ過することで、ネガ型感光性樹脂組成物を調製した。
〔感光性評価〕
 実施例1乃至実施例19、及び比較例2で調製したネガ型感光性樹脂組成物、並びに比較例1で調製した樹脂組成物を8インチシリコンウェハ上にスピンコーター(CLEAN TRACK ACT-8、東京エレクトロン(株)製)を用いて塗布後、115℃、270秒間焼成することで、ウェハ上に膜厚約25μmの感光性樹脂膜又は樹脂膜を形成した。得られた感光性樹脂膜又は樹脂膜上にi線ステッパー(NSR-2205i12D、ニコン(株)製)を用いて7mm角の露光パターン(露光量:300mJ/cm)を作成した。露光後、自動現像装置(AD-1200、ミカサ(株)製)を用い、現像液としてシクロペンタノンでスプレー現像し、リンス液としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)でスプレーリンスした。尚、シクロペンタノンによる現像時間は未露光部(0mJ/cm)が完全に現像されるまでの時間とし、PGMEAによるリンス時間は10秒間とした。成膜直後の膜厚と未露光部及び露光部(300mJ/cm)における現像後の膜厚を干渉膜厚計(ラムダエースVM-2110、SCREEN(株)製)を用いて測定することによって、露光部において現像されずに残存した膜厚の割合(残膜率(%))を以下の式によって算出した。
 残膜率(%)=[(未露光部の膜厚)または(露光部の膜厚)]/(成膜直後の膜厚)×100
 すなわち、残膜率が80%であれば、現像後の膜厚は成膜直後の膜厚の80%が現像されずに残存していることを意味している。現像時間及び現像後残膜率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000042
 表1の結果から、実施例1乃至実施例19のネガ型感光性樹脂組成物は、現像後に未露光部の感光性樹脂膜は全て現像され、露光部の感光性樹脂膜は殆ど現像されなかった。一方、比較例1の樹脂組成物は、現像後に露光部の樹脂膜も全て現像された。比較例1では露光部と未露光部で明瞭な溶解コントラストが得られておらず、シクロペンタノンのような有機溶媒を用いて現像を行うレリーフパターン作成プロセス用のネガ型感光性樹脂組成物として不適当である。
 さらに、比較例2のネガ型感光性樹脂組成物から得られた感光性樹脂膜は、実施例1乃至実施例19のネガ型感光性樹脂組成物から得られた感光性樹脂膜と比較してシクロペンタノンによる現像時間が長かった。すなわち、実施例1乃至実施例19のネガ型感光性樹脂組成物から得られた感光性樹脂膜は現像液に対する溶解性が高く、現像工程に係る現像時間の短縮や使用する現像液の削減に有効である。
〔電気特性評価〕
 実施例1乃至実施例19及び比較例2で調製したネガ型感光性樹脂組成物を20μm厚のアルミニウム箔を被覆させた4インチシリコンウェハ上にスピンコートし、ホットプレート上で115℃、270秒間焼成することで、アルミニウム箔上に約25μmの感光性樹脂膜を形成した。得られた感光性樹脂膜上にi線アライナー(PLA-501、キヤノン(株)製)を用いて、ウェハ上に500mJ/cmで全面露光した後、高温クリーンオーブン(CLH-21CD(V)-S、光洋サーモシステム(株))を用いて、窒素雰囲気中、230℃、2時間焼成した。さらに、焼成したアルミニウム箔を6N塩酸に浸漬し、アルミニウム箔を溶解させることで、フィルムを得た。得られたフィルムを乾燥させ、60GHzにおける誘電正接を、スプリットシリンダー共振器を用いて測定した。誘電正接の測定条件は以下の通りである。
 ・測定方法:スプリットシリンダー共振器
 ・ベクトルネットワークアナライザー:FieldFox N9926A(キーサイト・テクノロジーズ(株)製)
 ・共振器:CR-760(EMラボ(株)製)
 ・測定周波数:約60GHz
 フィルムの60GHzにおける誘電正接の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000043
 表2の結果から、実施例1乃至実施例19のネガ型感光性樹脂組成物から得られたフィルムは、比較例2のネガ型感光性樹脂組成物から得られたフィルムよりも60GHzにおける誘電正接が低い値を示した。
〔膜収縮評価〕
 実施例1乃至実施例4、実施例10乃至実施例19及び比較例3で調製したネガ型感光性樹脂組成物を8インチシリコンウェハ上にスピンコーター(CLEAN TRACK ACT-8、東京エレクトロン(株)製)を用いて塗布後、115℃、270秒間焼成することで、ウェハ上に膜厚約25μmの感光性樹脂膜を形成した。得られた感光性樹脂膜上にi線ステッパー(NSR-2205i12D、ニコン(株)製)を用いて7mm角の露光パターン(露光量:300mJ/cm)を作成した。露光後、自動現像装置(AD-1200、ミカサ(株)製)を用い、現像液としてシクロペンタノンでスプレー現像し、リンス液としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)でスプレーリンスした。尚、シクロペンタノンによる現像時間は未露光部が完全に現像されるまでの時間とし、PGMEAによるリンス時間は10秒間とした。次に、高温クリーンオーブン(CLH-21CD(V)-S、光洋サーモシステム(株))を用いて、窒素雰囲気中、230℃、2時間焼成した。露光部(300mJ/cm)における焼成前後の膜厚を干渉膜厚計(ラムダエースVM-2110、SCREEN(株)製)を用いて測定することによって、窒素雰囲気中、230℃、2時間の焼成工程によって減少(収縮)した膜厚の割合(膜収縮率(%))を以下の式によって算出した。
 膜収縮率(%)=[1-(焼成後の膜厚)/(焼成前の膜厚)]×100
 すなわち、膜収縮率が10%であれば、焼成前後によって焼成前の膜厚の10%が減少(収縮)したことを意味している。現像時間と膜収縮率の測定結果を表3に示す。
〔熱機械特性評価〕
 実施例1乃至実施例19及び比較例3で調製したネガ型感光性樹脂組成物を100nm厚のアルミニウムウェハ上にスピンコートし、ホットプレート上で115℃、270秒間焼成することで、アルミニウムウェハ上に約25μmの感光性樹脂膜を形成した。得られた感光性樹脂膜上にi線アライナー(PLA-501、キヤノン(株)製)を用いて、ウェハ上に500mJ/cmで全面露光した後、高温クリーンオーブン(CLH-21CD(V)-S、光洋サーモシステム(株))を用いて、窒素雰囲気中、230℃、2時間焼成した。さらに、ダイシングソー(DAD323、(株)ディスコ製)を用いて、感光性樹脂膜を幅5mm間隔でカットした後、このアルミニウムウェハを6N塩酸に浸漬し、アルミニウムを溶解させることで、幅5mmのフィルムを得た。次に、熱機械分析装置(TMA)を用いて、得られたフィルムのガラス転移温度(Tg)及び線熱膨張係数(CTE)を測定した。Tg及びCTEの測定条件は以下の通りである。
 ・熱機械分析装置(TMA):TMA4000SA(ネッチ・ジャパン(株)製)
 ・試料寸法:20mm×5mm
 ・測定温度領域:室温~300℃
 ・昇温速度:5℃/分
 ・測定雰囲気:窒素
 フィルムのTg及びCTEの測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000044
 表3の結果から、実施例1乃至実施例4及び実施例10乃至実施例19のネガ型感光性樹脂組成物から得られた樹脂膜は、比較例3のネガ型感光性樹脂組成物から得られた樹脂膜よりも焼成工程における膜収縮が小さく、実施例1乃至実施例19のネガ型感光性樹脂組成物から得られたフィルムは、比較例3のネガ型感光性樹脂組成物から得られたフィルムよりも高いTgと低いCTEを示した。
〔保存安定性試験〕
 実施例3及び比較例3で調製した直後のネガ型感光性樹脂組成物を電磁回転式EMS粘度計によって組成物の粘度を測定し、3週間、室温で保管した後、同様の手法により、粘度を再度測定することで、経時変化によって生じる粘度変化の度合い(粘度変化率(%))を以下の式によって算出した。
 粘度変化率(%)=[1-(室温、3週間保管後の粘度)/(調製直後の粘度)]×100
 粘度の測定条件は以下の通りである。
 ・電磁回転式EMS粘度計:EMS-1000(京都電子工業(株)製)
 ・測定温度:25℃
 ・球状プローブ:4.7mmアルミニウム
 ・回転数:1000rpm
 保存安定性試験の結果を表4に示す。粘度変化が大きい程、ネガ型感光性樹脂組成物の保存安定性が悪いと言える。尚、粘度変化率の絶対値が1%未満の場合を「良好」、1%~10%の場合を「やや不良」、10%を超える場合を「不良」とした。
Figure JPOXMLDOC01-appb-T000045
 表4の結果から、実施例3のネガ型感光性樹脂組成物は、比較例3のネガ型感光性樹脂組成物よりも粘度変化が小さく、高い保存安定性を有していると言える。
 すなわち、実施例1乃至実施例19のネガ型感光性樹脂組成物はレリーフパターンの作成が可能であるだけでなく、保存安定性に優れ、誘電正接が低く、さらに焼成時の膜収縮(体積変化)を抑制でき、高Tgと低CTEを同時に有するため、優れた電気特性や機械特性を必要とする電子材料の製造に好適に用いることができる。

 

Claims (18)

  1.  光重合性基を有する2価の芳香族基及び炭素原子数10~60の2価の脂肪族炭化水素基を有するポリイミドと溶媒とを含む感光性樹脂組成物。
  2.  前記ポリイミドが、ポリアミック酸のイミド化物であり、
     前記ポリアミック酸が、ジアミン成分とテトラカルボン酸誘導体との反応生成物であり、
     前記ジアミン成分が、光重合性基を有する芳香族ジアミン化合物及び炭素原子数10~60の脂肪族ジアミン化合物を含む、
     請求項1に記載の感光性樹脂組成物。
  3.  前記光重合性基を有する芳香族ジアミン化合物が、下記式(1-a)で表され、
     前記炭素原子数10~60の脂肪族ジアミン化合物が、下記式(1-b)で表される、
     請求項2に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1-a)中、Xは直接結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、又はウレア結合を表し、Yは酸素原子又はNH基を表し、Rは直接結合、又は水酸基で置換されていてもよい炭素原子数2~6のアルキレン基を表し、Rは水素原子又はメチル基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(1-b)中、R、及びRはそれぞれ独立に炭素原子数5~20のアルキレン基又は炭素原子数5~20のアルケニレン基を表し、Zは直接結合、又は下記式(2-a)若しくは下記式(2-b)で表される2価の有機基を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式(2-a)中、Rは炭素原子数1~20のアルキル基又は炭素原子数2~20のアルケニル基を表し、mは0~4の整数を表す。mが2以上の時、Rは同じであってもよいし、異なっていてもよい。
     式(2-b)中、Rは炭素原子数1~20のアルキル基又は炭素原子数2~20のアルケニル基を表し、nは0~4の整数を表す。nが2以上の時、Rは同じであってもよいし、異なっていてもよい。
     *は結合手を表す。]
  4.  前記式(1-a)におけるXがエステル結合を表し、さらにYが酸素原子を表す請求項3に記載の感光性樹脂組成物。
  5.  前記式(1-a)におけるRが1,2-エチレン基を表す請求項3に記載の感光性樹脂組成物。
  6.  前記式(1-b)で表される脂肪族ジアミン化合物がダイマー脂肪族ジアミンである請求項3に記載の感光性樹脂組成物。
  7.  前記テトラカルボン酸誘導体がテトラカルボン酸二無水物である請求項2に記載の感光性樹脂組成物。
  8.  さらに光ラジカル重合開始剤を含む請求項1に記載の感光性樹脂組成物。
  9.  さらに架橋性化合物を含む請求項1に記載の感光性樹脂組成物。
  10.  絶縁膜形成用である請求項1に記載の感光性樹脂組成物。
  11.  ネガ型感光性樹脂組成物である請求項1に記載の感光性樹脂組成物。
  12.  請求項1から11のいずれかに記載の感光性樹脂組成物の塗布膜の焼成物である樹脂膜。
  13.  絶縁膜である請求項12に記載の樹脂膜。
  14.  基材フィルムと、請求項1から11のいずれかに記載の感光性樹脂組成物から形成される感光性樹脂層と、カバーフィルムとを有する感光性レジストフィルム。
  15.  (1)請求項1から11のいずれかに記載の感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程と、
     (2)該感光性樹脂層を露光する工程と、
     (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
     (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と、
    を含む、硬化レリーフパターン付き基板の製造方法。
  16.  前記現像に用いられる現像液が有機溶媒である請求項15に記載の硬化レリーフパターン付き基板の製造方法。
  17.  請求項15に記載の方法により製造された硬化レリーフパターン付き基板。
  18.  半導体素子と該半導体素子の上部又は下部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は請求項1から11のいずれかに記載の感光性樹脂組成物から形成される硬化レリーフパターンである半導体装置。

     
PCT/JP2022/043301 2021-12-09 2022-11-24 感光性樹脂組成物 WO2023106104A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021199984 2021-12-09
JP2021-199984 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023106104A1 true WO2023106104A1 (ja) 2023-06-15

Family

ID=86730415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043301 WO2023106104A1 (ja) 2021-12-09 2022-11-24 感光性樹脂組成物

Country Status (2)

Country Link
TW (1) TW202332993A (ja)
WO (1) WO2023106104A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101358A1 (ja) * 2022-11-08 2024-05-16 株式会社レゾナック 感光性樹脂組成物、硬化物、及び半導体素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074197A1 (ja) * 2008-12-25 2010-07-01 味の素株式会社 感光性樹脂組成物
WO2017056595A1 (ja) * 2015-09-28 2017-04-06 富士フイルム株式会社 ネガ型感光性樹脂組成物、ネガ型平版印刷版原版、及び、平版印刷版の作製方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074197A1 (ja) * 2008-12-25 2010-07-01 味の素株式会社 感光性樹脂組成物
WO2017056595A1 (ja) * 2015-09-28 2017-04-06 富士フイルム株式会社 ネガ型感光性樹脂組成物、ネガ型平版印刷版原版、及び、平版印刷版の作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101358A1 (ja) * 2022-11-08 2024-05-16 株式会社レゾナック 感光性樹脂組成物、硬化物、及び半導体素子

Also Published As

Publication number Publication date
TW202332993A (zh) 2023-08-16

Similar Documents

Publication Publication Date Title
JP7131557B2 (ja) 感光性樹脂組成物
TWI491987B (zh) A negative photosensitive resin composition, a hardened embossed pattern, and a semiconductor device
JP5415861B2 (ja) 感光性樹脂組成物、パターン形成方法、及び半導体装置
JP6935982B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
WO2022202098A1 (ja) 感光性樹脂組成物
WO2020031240A1 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2023106104A1 (ja) 感光性樹脂組成物
JPWO2020080206A1 (ja) ポリアミック酸エステル樹脂組成物
JP7331860B2 (ja) 感光性絶縁膜組成物
JP2023156304A (ja) 感光性絶縁膜組成物
JP7332076B1 (ja) 絶縁膜形成用感光性樹脂組成物
JP5290686B2 (ja) 感光性樹脂組成物
TWI827467B (zh) 絕緣膜形成用感光性樹脂組成物
WO2023106108A1 (ja) 感光性樹脂組成物
WO2021070232A1 (ja) ポリイミド前駆体、樹脂組成物、感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2021117586A1 (ja) 感光性絶縁膜形成組成物
JP2023127745A (ja) 感光性樹脂組成物
WO2023106101A1 (ja) 樹脂組成物
JP7471480B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
WO2024090486A1 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
KR20110065889A (ko) 포지티브형 감광성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566217

Country of ref document: JP