WO2023174448A1 - 一种变压器套管局部放电监测芯片装置及方法 - Google Patents

一种变压器套管局部放电监测芯片装置及方法 Download PDF

Info

Publication number
WO2023174448A1
WO2023174448A1 PCT/CN2023/094261 CN2023094261W WO2023174448A1 WO 2023174448 A1 WO2023174448 A1 WO 2023174448A1 CN 2023094261 W CN2023094261 W CN 2023094261W WO 2023174448 A1 WO2023174448 A1 WO 2023174448A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial discharge
sip
frequency current
chip
signal
Prior art date
Application number
PCT/CN2023/094261
Other languages
English (en)
French (fr)
Inventor
陈孝信
邵先军
钱平
李晨
郑一鸣
詹江杨
何文林
穆海宝
陶慧斌
孙翔
刘浩军
Original Assignee
国网浙江省电力有限公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网浙江省电力有限公司电力科学研究院 filed Critical 国网浙江省电力有限公司电力科学研究院
Priority to US18/283,843 priority Critical patent/US20240168077A1/en
Publication of WO2023174448A1 publication Critical patent/WO2023174448A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/16Construction of testing vessels; Electrodes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the invention belongs to the field of transformers, and in particular relates to a transformer bushing partial discharge monitoring chip device and method.
  • the present invention provides a transformer bushing partial discharge monitoring chip device and a method, which are used to solve the following technical problems: the existing transformer bushing partial discharge monitoring device is large in size and has long wiring, and the collected signals have a long transmission distance and are easily lost during the transmission process. Due to electromagnetic interference, the accuracy of transformer bushing monitoring is low.
  • the present invention provides a transformer bushing partial discharge monitoring chip device, which includes a collection unit, a SIP digitization unit and a background processing terminal; the SIP digitization unit includes a wireless communication unit and a SIP chip;
  • the acquisition unit includes several sensor modules, which are respectively installed at the end screen of the three-phase casing of the transformer, and are used to collect partial discharge signals and power frequency current signals of the end screen of the transformer casing;
  • Each sensor module in the acquisition unit is connected to the SIP digitization unit through wires to send the collected partial discharge signals and power frequency current signals to the SIP digitization unit for digitization;
  • the SIP digitization unit is installed inside the transformer, and the length of the wire is determined according to the distance between the acquisition unit and the SIP digitization unit;
  • the SIP digital unit is fixedly installed under the base of the acquisition unit and is used to digitize the partial discharge signal and the power frequency current signal to obtain the partial discharge information of the transformer bushing;
  • the output end of the SIP digitization unit is connected to the input end of the background processing terminal, and is used to send the partial discharge information to the background processing terminal through the wireless communication unit for processing, so that the background processing terminal can
  • the above partial discharge information determines whether there is partial discharge in the transformer bushing.
  • the present invention can simultaneously collect partial discharge signals and power frequency current signals of the three-phase bushings of the transformer.
  • the transmission distance of the collected signals can be greatly reduced and the electromagnetic interference to the signals can be reduced, thereby improving the accuracy of signal logic calculations and improving the localization of the transformer bushing. Accuracy of discharge monitoring.
  • each sensor module includes a high-frequency current sensor and a power-frequency current sensor; the high-frequency current sensor is used to collect the partial discharge signal of the end screen of the transformer bushing; the power-frequency current sensor is used to collect The power frequency current signal of the end screen of the transformer bushing; the high frequency current sensor and the power frequency current sensor are sleeved on the same ground rod.
  • the invention encapsulates the power frequency current sensor and the high frequency current sensor in a sensor module to realize coupled measurement, so that the sensor module of the invention can simultaneously collect the partial discharge signal and the power frequency current signal of the end screen of the transformer bushing.
  • the sensor module is tightly crimped with the lead of the end screen of the transformer bushing through contact fingers; the contact fingers are connected to the ground rod for grounding the sensor module; the bottom of the sensor module Supported by a base; the SIP digital unit is fixedly installed under the base of the sensor module; the high-frequency current sensor and the power frequency current sensor are respectively connected to the SIP digital unit in order to collect the partial discharge signal And the power frequency current signal is sent to the SIP digital unit for digital processing to obtain the partial discharge information of the transformer.
  • the SIP chip includes one high-speed acquisition channel and four low-speed acquisition channels; the input end of the high-speed acquisition channel is connected to the high-frequency current sensor; the high-speed acquisition channel includes an instrumentation amplifier and a 125MHz high-speed A/ D digital-to-analog converter; the instrument amplifier is used to amplify the partial discharge signal, and the 125MHz high-speed A/D digital-to-analog converter is used to convert the partial discharge signal into a partial discharge digital signal for subsequent processing of the partial discharge signal.
  • the partial discharge digital signal is used for logical calculation;
  • the low-speed acquisition channel includes an instrumentation amplifier and a 2MHz low-speed A/D digital-to-analog converter; the input end of one of the low-speed acquisition channels is connected to the power frequency current sensor, and the instrumentation amplifier is used for Amplify the power frequency current signal, and the 125MHz high-speed A/D digital-to-analog converter is used to convert the power frequency current signal into a power frequency current digital signal, so that subsequent logical calculations can be performed on the power frequency current digital signal;
  • the input terminals of the other three low-speed acquisition channels are reserved interfaces for connecting other signal acquisition devices.
  • the present invention realizes the high-performance collection capability of the SIP chip by designing one high-speed collection channel and four low-speed collection channels; and by reserving expansion interfaces, it can facilitate subsequent application expansion of the SIP chip.
  • the SIP chip further includes an FPGA programmable logic device; the FPGA programmable logic device contains preset operation logic; the input terminal of the FPGA programmable logic device is connected to the high-speed acquisition channel and the low-speed acquisition channel. Acquisition channel connection for receiving the partial discharge digital signal and the power frequency current digital signal; and performing logical calculations on the partial discharge digital signal and the power frequency current digital signal according to the preset operation logic , obtain the partial discharge information of the transformer; and, send the partial discharge information to the background processing terminal through a wireless communication interface or an Ethernet interface.
  • the present invention adopts an FPGA chip with strong computing power to meet the demand of the present invention for the SIP chip to have high-performance computing power.
  • the SIP chip also includes a temperature and humidity micro sensor and a vibration micro sensor; the temperature and humidity micro sensor and the vibration micro sensor are integrated inside the SIP chip and are respectively connected to the FPGA programmable logic device for The temperature, humidity and vibration frequency inside the SIP chip are sensed and transmitted to the FPGA programmable logic device for logical calculation to obtain the temperature, humidity information and vibration frequency information inside the SIP chip, and then the temperature, humidity information and The vibration frequency information is sent to the background processing terminal to monitor the working status of the SIP chip.
  • the present invention realizes the monitoring of the internal state of the chip by adding a temperature and humidity sensor and a vibration sensor in the chip.
  • the FPGA programmable logic device, the temperature and humidity micro sensor and the vibration micro sensor are integrated on the upper layer of the SIP chip; the high-speed acquisition channel and the low-speed acquisition channel are integrated on the SIP chip.
  • the lower layer of the SIP chip; the upper layer of the SIP chip and the lower layer of the SIP chip are isolated by an LTCC (low temperature co-fired ceramic) substrate to avoid mutual interference between analog signals and digital signals; the devices on the upper layer of the SIP chip and the SIP chip
  • the lower device is connected to the LTCC substrate through flip-chip packaging to reduce lead inductance and improve the heat dissipation capability of the SIP chip.
  • the invention encapsulates the analog signal device and the digital signal device in the upper and lower layers of the SIP chip respectively, and isolates them through the LTCC substrate to avoid interference between the analog signal and the digital signal.
  • the SIP chip further includes an LTCC carrier chip; a plurality of capacitors and a plurality of resistors are mounted on the surface of the LTCC carrier chip; and connections of the plurality of capacitors and the plurality of resistors are arranged inside the LTCC carrier chip. wire; the LTCC carrier chip is fixed on the LTCC substrate by bonding; the connection terminals of the plurality of capacitors and the plurality of resistors are drawn out from the edge of the LTCC carrier chip and are bonded with the Each device in the SIP chip is connected to reduce the size and volume of the SIP chip and improve the integration level of the SIP chip.
  • the size of the SIP chip is 50mm ⁇ 50mm to meet the miniaturization needs of the transformer bushing partial discharge monitoring chip device.
  • the present invention also provides a method for monitoring partial discharge of a transformer bushing.
  • the method includes the acquisition unit collecting the partial discharge signal and the power frequency current signal of the end screen of the transformer bushing, and collecting the collected partial discharge signal and the power frequency current signal.
  • the current signal is sent to the SIP digitization unit for digitization;
  • the SIP digitization unit includes a wireless communication unit and a SIP chip;
  • the SIP chip includes one high-speed acquisition channel and four low-speed acquisition channels; the input end of the high-speed acquisition channel is connected to the high-frequency current sensor; the high-speed acquisition channel includes an instrument amplifier and a 125MHz high-speed A/D digital-to-analog conversion
  • the instrument amplifier is used to amplify the partial discharge signal
  • the 125MHz high-speed A/D digital-to-analog converter is used to convert the partial discharge signal into a partial discharge digital signal for subsequent processing of the partial discharge digital signal.
  • the low-speed acquisition channel includes an instrument amplifier and a 2MHz low-speed A/D digital-to-analog converter; the input end of one of the low-speed acquisition channels is connected to the power frequency current sensor, and the instrument amplifier is used to convert the power Frequency current signal amplification, the 125MHz high-speed A/D digital-to-analog converter is used to convert the power frequency current signal into a power frequency current digital signal for subsequent logical calculation of the power frequency current digital signal; the other three low-speed The input end of the acquisition channel is a reserved interface for connecting other signal acquisition devices;
  • the SIP digitization unit digitizes the partial discharge signal and the power frequency current signal to obtain the partial discharge information of the transformer, and sends the partial discharge information to the background processing terminal through the wireless communication unit for processing, so that The background processing terminal determines whether there is partial discharge in the transformer bushing based on the partial discharge information.
  • the present invention can realize the simultaneous collection of partial discharge signals and power frequency current signals of the three-phase bushing of the transformer.
  • the collection unit and the digital unit By integrating the collection unit and the digital unit in an integrated design and connecting them with only short wires, it can It greatly reduces the transmission distance of the collected signals and reduces the electromagnetic interference to the signals, thereby improving the accuracy of signal logic calculation and improving the accuracy of partial discharge monitoring of transformer bushings.
  • Figure 1 is a schematic structural diagram of a transformer bushing partial discharge monitoring chip device provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the installation position of a transformer bushing partial discharge monitoring chip device provided by an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of a collection unit and a SIP digitization unit provided by an embodiment of the present invention
  • Figure 4 is a schematic diagram of the internal circuit of a SIP chip provided by an embodiment of the present invention.
  • Figure 5 is a schematic diagram of the packaging connection of a SIP chip provided by an embodiment of the present invention.
  • Figure 6 is an upper-layer layout diagram of a SIP chip provided by an embodiment of the present invention.
  • Figure 7 is a lower-layer layout diagram of a SIP chip provided by an embodiment of the present invention.
  • Embodiments of the present invention provide a transformer bushing partial discharge monitoring chip device and method.
  • the technical solution proposed by the embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
  • FIG 1 is a schematic structural diagram of a transformer bushing partial discharge monitoring chip device provided by an embodiment of the present invention.
  • the transformer bushing partial discharge monitoring chip device 100 includes a collection unit 110, a SIP digitization unit 120 and a backend Processing terminal 140.
  • the acquisition unit 110 includes sensor module 1, sensor module 2 and sensor module 3, which are respectively installed at the end screen of the three-phase bushing of the transformer.
  • Each sensor module in the acquisition unit 110 is connected to the SIP digital unit 120 through a short wire, and is used to collect the partial discharge signal and the power frequency current signal of the transformer bushing end screen.
  • the acquisition unit 110 and the SIP digitization unit 120 are designed to be integrated.
  • the SIP digitization unit 120 is fixedly installed under the base of the acquisition unit 110.
  • the analog signals collected by the sensor module can be transmitted to the SIP digitization unit 120 through short wires for processing. Since it is digitally digitized, the analog signal suffers very little interference.
  • the SIP digitizing unit 120 is used to digitize the partial discharge signal and the power frequency current signal to obtain the partial discharge information of the transformer.
  • the output end of the SIP digitization unit 120 is connected to the input end of the background processing terminal 140, and is used to send the partial discharge information to the background processing terminal 140 for further processing through the wireless communication unit 130.
  • FIG 2 is a schematic diagram of the installation position of a transformer bushing partial discharge monitoring chip device provided by an embodiment of the present invention.
  • sensor modules 1, 2, and 3 are respectively fixedly installed at the end of the A-phase bushing 6 of the transformer 5.
  • Each sensor module is connected to the SIP digital unit 120 through wires.
  • the SIP digital unit 120 is installed inside the transformer, specifically located under the base of the sensor module. Since the sensor module and the SIP digitization unit 120 are both installed on the transformer and are very close together, the length of the wires between them depends on the distance between them. Therefore, the sensor module and the SIP digitization unit 120 can be connected through shorter wires. In order to digitize the collected transformer partial discharge signal and power frequency current signal in situ, the wiring length is greatly reduced, the electromagnetic interference received during the signal transmission in the wire is reduced, and the accuracy of subsequent signal analysis and calculation is improved.
  • the length of the wire is determined by the distance between the sensor module and the SIP digital unit, and the value is not fixed.
  • each sensor module is composed of a high-frequency current sensor and a power-frequency current sensor.
  • the high-frequency current sensor is used to collect the partial discharge signal at the end screen of the transformer bushing
  • the power frequency current sensor is used to collect the power frequency current signal at the end screen of the transformer bushing. Therefore, the sensor module in the present invention can simultaneously collect the partial discharge signal and the power frequency current signal of the end screen of the transformer bushing.
  • sensors such as vibration sensors
  • other types of sensors such as vibration sensors, can be integrated into the sensor module to expand the signal collection types of the collection unit.
  • Figure 3 is a schematic structural diagram of a collection unit and a SIP digitization unit provided by an embodiment of the present invention. As shown in Figure 3, short wires connect the two left and right dotted line frame parts. The part in the left dotted line frame is the collection unit 110, and the right part is the collection unit 110. The part within the side dotted line box is the SIP digitization unit 120.
  • the high-frequency current sensor 11 and the power frequency current sensor 12 are sleeved on the same ground rod 13 to achieve coupled measurement.
  • the contact fingers 14 of the two sensors are tightly crimped with the leads of the last screen of the transformer bushing, so as to collect the partial discharge signal and power frequency current signal of the last screen of the transformer bushing through the contact fingers 14 .
  • the contact finger 14 is connected to the ground rod 13, the ground rod is connected to the housing of the sensor module, and the housing of the sensor module is grounded, thereby achieving reliable grounding of the two sensors.
  • the high-frequency current sensor and the power-frequency current sensor are respectively connected to the SIP digitization unit 120 through short wires, so that the collected partial discharge signals and power-frequency current signals are sent to the SIP digitization unit 120 for on-site digitization.
  • the SIP digitization unit 120 includes a SIP chip. Since the SIP digital unit 120 in the present invention needs to simultaneously measure the power frequency current signal and the partial discharge signal, this requires the SIP chip to have both high-performance acquisition capabilities and computing capabilities. Therefore, the SIP chip designed by the present invention includes one high-speed collection channel and four low-speed collection channels.
  • the high-speed acquisition channel includes an instrumentation amplifier and a 125MHz high-speed A/D digital-to-analog converter.
  • the input end of the high-speed acquisition channel is connected to the output end of the high-frequency current sensor, and is used to amplify the partial discharge signal collected by the high-frequency current sensor and convert it into a partial discharge digital signal.
  • Each of the four low-speed acquisition channels includes an instrumentation amplifier and a 2MHz low-speed A/D digital-to-analog converter.
  • the input end of one of the low-speed acquisition channels is connected to the output end of the power frequency current sensor, which is used to amplify the power frequency current signal collected by the power frequency current sensor and convert it into a power frequency current digital signal.
  • the input terminals of the three low-speed acquisition channels are reserved interfaces, which can be used to connect other signal acquisition devices to facilitate the subsequent application expansion of SIP chips.
  • Figure 4 is a schematic diagram of the internal circuit of a SIP chip provided by an embodiment of the present invention.
  • the instrumentation amplifier and the 125MHz high-speed A/D converter corresponding to the partial discharge signal are high-speed acquisition channels.
  • the instrument amplifier and 2MHz A/D converter corresponding to the power frequency current signal are one of the low-speed acquisition channels.
  • the remaining three low-speed acquisition channels can be connected to acquisition equipment such as ultrasonic sensors and vibration sensors to collect ultrasonic signals and vibration signals at the end screen of the transformer bushing. wait.
  • the SIP chip also includes: FPGA programmable logic device.
  • the FPGA programmable logic device contains preset operation logic set in advance. The input end of the FPGA programmable logic device is connected to the high-speed acquisition channel and the low-speed acquisition channel for receiving partial discharge. digital signals, power frequency current digital signals and signals collected by other signal acquisition equipment; then perform logical calculations on the partial discharge digital signals, power frequency current digital signals and signals collected by other signal acquisition equipment according to the preset operation logic, and then calculate the The results are sent to the background processing terminal through the wireless communication interface or Ethernet interface.
  • the SIP chip also includes: temperature and humidity micro sensors and vibration micro sensors. Temperature and humidity micro sensors and vibration micro sensors are integrated inside the SIP chip and are connected to the FPGA programmable logic device. They are used to sense the temperature, humidity and vibration frequency inside the SIP chip, and transmit them to the FPGA programmable logic device for logical calculation to achieve Monitor the internal status of the chip.
  • chip connection technology is divided into two methods: wire bonding and flip chip.
  • Wire bonding is the connection between the chip and the substrate, and the chips are connected by metal filaments.
  • Flip chip is the direct connection of the chip bumps to the substrate.
  • the present invention adopts a flip chip packaging method to directly press the core components of the SIP chip with the substrate. On the one hand, it can reduce the lead inductance and improve the high-frequency performance; on the other hand, it can improve The heat dissipation capability of the SIP chip.
  • FIG. 5 is a schematic diagram of the packaging connection of a SIP chip provided by an embodiment of the present invention. As shown in Figure 5, the present invention uses a flip chip packaging method to directly press the core components of the SIP chip to the LTCC substrate 17.
  • the size of the FPGA chip 15 used in the present invention is 18 mm ⁇ 12 mm.
  • the diameter of the bumps is 90 ⁇ m, and the center spacing of the bumps is 200 ⁇ m.
  • the present invention adopts a digital-analog separation packaging method, specifically: when packaging the SIP chip, a three-dimensional hierarchical structure design is adopted, the FPGA chip, memory, etc. are placed on the upper layer, and the instrument amplifier (PGA ) and the A/D digital-to-analog converter (ADC) are placed on the lower layer, and the ground shielding layer is buried through the LTCC substrate to achieve isolation of the upper and lower cavities and reduce the interference of analog signals and digital signals.
  • PGA instrument amplifier
  • ADC digital-to-analog converter
  • on-chip sensors such as FPGA programmable logic devices, temperature and humidity micro sensors, and vibration micro sensors are integrated on the upper layer of the SIP chip, and high-speed acquisition channels and low-speed acquisition channels are integrated on the lower layer of the SIP chip.
  • Figure 6-7 is a layout diagram of the upper and lower layers of a SIP chip provided by the embodiment of the present invention. As shown in Figure 6-7, the lower layer integrates the five acquisition channels of the SIP chip, and the upper layer integrates the FPGA chip, memory, and on-chip Sensors, power supplies, communication modules and other devices. The upper and lower layers of the SIP chip are isolated by a low-temperature co-fired ceramic LTCC substrate.
  • the present invention uses an LTCC substrate instead of a conventional FR-4 epoxy substrate because the through-hole design and wiring diameter of the LTCC substrate are significantly smaller than that of the FR-4 epoxy substrate, so higher density integration can be achieved and the cost of the device can be reduced. size.
  • the thermal conductivity of the LTCC substrate is much higher than that of the FR-4 epoxy substrate, which can improve the heat dissipation capacity of the chip and improve the reliability of the system.
  • the dielectric constant of the LTCC substrate is greater than that of the FR-4 epoxy substrate, and the power-ground plane capacitor of the LTCC substrate can have a higher capacitance, which is beneficial to the stability of the power supply and signal integrity.
  • the signal processing microsystem in the SIP chip of the present invention includes analog and digital hybrid circuits, a large number of passive components such as resistors and capacitors are also required. If existing packaged devices are used, a large amount of substrate space will be occupied, making it impossible to miniaturize the SIP chip.
  • One method is to use embedded resistors and capacitors in the LTCC substrate, but the accuracy of the embedded resistors and capacitors cannot meet the design requirements of the present invention. Therefore, the present invention proposes a new system integration solution: capacitors and resistors are surface-mounted on the surface of the LTCC carrier chip, and then wired inside the LTCC carrier chip, and the electrical connection ends of the resistors and capacitors are led out to the edge of the carrier chip.
  • the LTCC carrier chip is fixed to the LTCC substrate by bonding, and the resistors and capacitors on the LTCC carrier chip are connected to each device in the SIP chip by bonding with gold wire bonding wires 18 ( Figure 5) to achieve Electrical interconnection.
  • This method can significantly reduce the size and volume of the device and improve the integration of the system.
  • the size of the SIP chip designed and packaged through the above method is 50mm ⁇ 50mm, with a high-speed sampling rate of 125MHz and a bandwidth of 50MHz.
  • the core FPGA chip realizes fast algorithm processing and provides a powerful digital processing chip for the monitoring system.
  • the integrated design of the SIP chip and sensor module in the present invention, as well as the multi-sensor integrated design of the sensor module, realize the miniaturization of partial discharge signal and power frequency current signal acquisition and processing hardware, and avoid the problem of excessive signal transmission distance. The resulting electromagnetic interference improves the accuracy of transformer bushing monitoring.
  • the complete process of monitoring the transformer bushing signal through a transformer bushing partial discharge monitoring chip device is: the three sensor modules in the acquisition unit 110 respectively collect the transformer A-phase bushing, B-phase bushing, and C-phase.
  • the partial discharge signal and power frequency current signal of the casing end screen are then transmitted to the SIP digitization unit 120 through wires.
  • the partial discharge signal is transmitted to the high-speed acquisition channel in the SIP chip. After being amplified by the instrument amplifier, it is converted into a digital signal through a high-speed A/D converter, and then input into the FPGA programmable logic device for calculation.
  • the power frequency current signal is transmitted to a low-speed acquisition channel in the SIP chip.
  • FPGA programmable logic device After being amplified by the instrument amplifier, it is converted into a digital signal through a low-speed A/D converter and is also input into the FPGA programmable logic device for calculation.
  • the FPGA programmable logic device sends the calculation results to the background processing terminal through the Ethernet port or wireless communication interface in the chip for further processing, thus completing the signal collection and digital processing of the transformer bushing end screen.
  • FPGA programmable logic devices can also temporarily store calculation results in large-capacity memory within the chip.
  • embodiments of the present invention also provide a method for monitoring partial discharge of a transformer bushing.
  • the method includes: the acquisition unit collects the partial discharge signal and the power frequency current signal of the end screen of the transformer bushing, and combines the collected partial discharge signal and the power frequency current signal.
  • the frequency current signal is sent to the SIP digital unit for digitization; the SIP digital unit digitizes the partial discharge signal and the power frequency current signal to obtain the partial discharge information of the transformer, and sends the partial discharge information to the background processing terminal through the wireless communication unit for processing , so that the background processing terminal determines whether there is partial discharge in the transformer bushing based on the partial discharge information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种变压器套管局部放电监测芯片装置及方法,属于变压器技术领域,用于解决现有变压器套管监测装置体积大,布线长,会对采集的信号产生干扰,测试精度低的问题。本发明的采集单元包括三个传感器模块,分别安装于变压器三相套管末屏的末屏处,用于采集变压器套管末屏的局部放电信号以及工频电流信号;每个传感器模块均通过导线与SIP数字化单元连接;SIP数字化单元固定安装于采集单元的底座下方,用于对局部放电信号以及工频电流信号进行数字化处理;SIP数字化单元的输出端与后台处理终端的输入端连接。本发明可以大大降低采集的信号的传输距离,减少对信号的电磁干扰,从而提升信号逻辑计算的精度,提高变压器套管局部放电监测的准确率。

Description

一种变压器套管局部放电监测芯片装置及方法 技术领域
本发明属于变压器领域,尤其涉及一种变压器套管局部放电监测芯片装置及方法。
背景技术
大型油浸式电力变压器是电网的关键核心设备且数量众多,其健康状态直接关系到电网的安全稳定运行。随着电压等级增加,由套管导致的变压器故障比例逐渐增加,国内外针对于套管的事故诱因、检测技术和诊断分析技术开展了大量的研究,发现套管事故的主要原因和油纸绝缘的受潮、过热、局部放电密切相关。为了提前发现设备故障,套管监测成为必不可少的技术手段。
变压器套管在运行中常出现的故障类型包括套管受潮或局部放电等故障,因此需要在套管末屏安装局部放电和泄漏电流传感器以监测套管运行状态。由于局部放电等采集通常需要高性能采集和数据处理单元,导致了板卡设备尺寸大、结构复杂,通常安装在变压器旁边的汇控柜中,通过10~20米的同轴电缆和套管末屏传感器连接。尽管有电缆屏蔽措施,微弱的信号仍然极易受到现场电磁干扰,显著降低变压器套管信号测试的精度,从而直接影响变压器套管故障监测的准确性。
发明内容
本发明提供一种变压器套管局部放电监测芯片装置及方法,用于解决如下技术问题:现有变压器套管局部放电监测装置体积大、布线长,采集的信号传输距离远,在传输过程中易被电磁干扰,导致变压器套管监测准确率低。
一方面,本发明提供了一种变压器套管局部放电监测芯片装置,其包括采集单元、SIP数字化单元和后台处理终端;所述SIP数字化单元包括无线通信单元和SIP芯片;
所述采集单元包括若干传感器模块,分别安装于变压器三相套管的末屏处,用于采集变压器套管末屏的局部放电信号以及工频电流信号;
所述采集单元中的每个传感器模块均通过导线与所述SIP数字化单元连接,以将采集的局部放电信号以及工频电流信号发送到所述SIP数字化单元进行数字化;
所述SIP数字化单元安装于变压器内部,所述导线的长度根据所述采集单元与所述SIP数字化单元之间的距离确定;
所述SIP数字化单元固定安装于所述采集单元的底座下方,用于对所述局部放电信号以及工频电流信号进行数字化处理,得到所述变压器套管的局部放电信息;
所述SIP数字化单元的输出端与所述后台处理终端的输入端连接,用于将所述局部放电信息通过所述无线通信单元发送到所述后台处理终端进行处理,以使后台处理终端根据所述局部放电信息确定变压器套管是否有局部放电。
本发明通过在变压器三相套管的末屏处分别安装传感器模块,可实现同时采集变压器三相套管的局部放电信号和工频电流信号。通过将采集单元和数字化单元进行一体化设计,仅用较短的导线连接,可以大大降低采集的信号的传输距离,减少对信号的电磁干扰,从而提升信号逻辑计算的精度,提高变压器套管局部放电监测的准确率。
进一步地,每个传感器模块包括一个高频电流传感器以及一个工频电流传感器;所述高频电流传感器用于采集所述变压器套管末屏的局部放电信号;所述工频电流传感器用于采集所述变压器套管末屏的工频电流信号;所述高频电流传感器与所述工频电流传感器套接在同一根接地杆上。
本发明将工频电流传感器和高频电流传感器封装在一个传感器模块中,实现耦合式测量,从而使本发明的传感器模块可以同时采集变压器套管末屏的局部放电信号和工频电流信号。
进一步地,所述传感器模块通过触指与所述变压器套管末屏的引线紧密压接;所述触指与所述接地杆相连,用于将所述传感器模块接地;所述传感器模块的底部通过底座支撑;所述SIP数字化单元固定安装于所述传感器模块的底座下方;所述高频电流传感器以及所述工频电流传感器分别与所述SIP数字化单元连接,以便将采集到的局部放电信号以及工频电流信号发送到所述SIP数字化单元进行数字化处理,得到所述变压器的局部放电信息。
更进一步地,所述SIP芯片包括一路高速采集通道以及四路低速采集通道;所述高速采集通道的输入端与所述高频电流传感器连接;所述高速采集通道包括仪表放大器以及125MHz高速A/D数模转换器;所述仪表放大器用于将所述局部放电信号放大,所述125MHz高速A/D数模转换器用于将所述局部放电信号转换为局部放电数字信号,以便后续对所述局部放电数字信号进行逻辑计算;所述低速采集通道包括仪表放大器以及2MHz低速A/D数模转换器;其中一路低速采集通道的输入端与所述工频电流传感器连接,所述仪表放大器用于将所述工频电流信号放大,所述125MHz高速A/D数模转换器用于将所述工频电流信号转换为工频电流数字信号,以便后续对所述工频电流数字信号进行逻辑计算;另外三路低速采集通道的输入端为预留接口,用于连接其他信号采集设备。
本发明通过设计一路高速采集通道和四路低速采集通道,实现了SIP芯片的高性能的采集能力;并且通过预留扩展接口,可以方便后续SIP芯片的应用拓展。
再进一步地,所述SIP芯片还包括FPGA可编程逻辑器件;所述FPGA可编程逻辑器件中包含预设运算逻辑;所述FPGA可编程逻辑器件的输入端与所述高速采集通道以及所述低速采集通道连接,用于接收所述局部放电数字信号以及所述工频电流数字信号;以及,根据所述预设运算逻辑,对所述局部放电数字信号以及所述工频电流数字信号进行逻辑计算,得到所述变压器的局部放电信息;以及,将所述局部放电信息通过无线通信接口或以太网接口发送到所述后台处理终端。
本发明通过采用计算能力强的FPGA芯片,以满足本发明对于SIP芯片需要具备高性能计算能力的需求。
再进一步地,所述SIP芯片还包括温湿度微型传感器以及振动微型传感器;所述温湿度微型传感器以及振动微型传感器集成于所述SIP芯片内部,分别与所述FPGA可编程逻辑器件连接,用于感知所述SIP芯片内部的温湿度以及振动频率,并传输到所述FPGA可编程逻辑器件进行逻辑计算,得到所述SIP芯片内部的温湿度信息以及振动频率信息,进而将所述温湿度信息以及振动频率信息发送到后台处理终端,对所述SIP芯片的工作状态进行监控。
本发明通过在片内增设温湿度传感器和振动传感器,实现对芯片内部状态的监控。
再进一步地,所述FPGA可编程逻辑器件、所述温湿度微型传感器以及所述振动微型传感器集成在所述SIP芯片的上层;所述高速采集通道以及所述低速采集通道集成在所述SIP芯片的下层;所述SIP芯片的上层与SIP芯片的下层之间通过LTCC(低温共烧陶瓷)基板进行隔离,以避免模拟信号与数字信号之间相互干扰;所述SIP芯片上层的器件与SIP芯片下层的器件通过倒装封装方式与所述LTCC基板连接,以减小引线电感,提升SIP芯片的散热能力。
本发明将模拟信号器件和数字信号器件分别封装在SIP芯片的上下层,并通过LTCC基板进行隔离,避免了模拟信号和数字信号之间的干扰。
再进一步地,所述SIP芯片中还包括LTCC载片;所述LTCC载片的表面表贴有若干电容以及若干电阻;所述LTCC载片的内部布设所述若干电容以及所述若干电阻的连接线;所述LTCC载片通过粘接的方式固定在所述LTCC基板上;所述若干电容以及若干电阻的连接端在所述LTCC载片的边缘引出,并通过金丝键合的方式与所述SIP芯片中的各器件连接,以降低SIP芯片的尺寸和体积,提高SIP芯片的集成度。
再进一步地,所述SIP芯片的尺寸为50mm×50mm,以满足变压器套管局部放电监测芯片装置的小型化需求。
另一方面,本发明还提供了一种变压器套管局部放电监测方法,该方法包括采集单元采集变压器套管末屏的局部放电信号以及工频电流信号,并将采集的局部放电信号以及工频电流信号发送到SIP数字化单元进行数字化;所述SIP数字化单元包括无线通信单元和SIP芯片;
所述SIP芯片包括一路高速采集通道以及四路低速采集通道;所述高速采集通道的输入端与所述高频电流传感器连接;所述高速采集通道包括仪表放大器以及125MHz高速A/D数模转换器;所述仪表放大器用于将所述局部放电信号放大,所述125MHz高速A/D数模转换器用于将所述局部放电信号转换为局部放电数字信号,以便后续对所述局部放电数字信号进行逻辑计算;所述低速采集通道包括仪表放大器以及2MHz低速A/D数模转换器;其中一路低速采集通道的输入端与所述工频电流传感器连接,所述仪表放大器用于将所述工频电流信号放大,所述125MHz高速A/D数模转换器用于将所述工频电流信号转换为工频电流数字信号,以便后续对所述工频电流数字信号进行逻辑计算;另外三路低速采集通道的输入端为预留接口,用于连接其他信号采集设备;
所述SIP数字化单元对所述局部放电信号以及工频电流信号进行数字化处理,得到变压器的局部放电信息,并将所述局部放电信息通过所述无线通信单元发送到后台处理终端进行处理,以使后台处理终端根据所述局部放电信息确定变压器套管是否有局部放电。
本发明具有的有益效果如下:本发明可实现同时采集变压器三相套管的局部放电信号和工频电流信号,通过将采集单元和数字化单元进行一体化设计,仅用较短的导线连接,可以大大降低采集的信号的传输距离,减少对信号的电磁干扰,从而提升信号逻辑计算的精度,提高变压器套管局部放电监测的准确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例提供的一种变压器套管局部放电监测芯片装置结构示意图;
图2为本发明实施例提供的一种变压器套管局部放电监测芯片装置安装位置示意图;
图3为本发明实施例提供的一种采集单元以及SIP数字化单元的结构示意图;
图4为本发明实施例提供的一种SIP芯片的内部电路示意图;
图5为本发明实施例提供的一种SIP芯片的封装连接示意图;
图6为本发明实施例提供的一种SIP芯片的上层布局图;
图7为本发明实施例提供的一种SIP芯片的下层布局图。
实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本说明书实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例提供一种变压器套管局部放电监测芯片装置及方法,下面通过附图对本发明实施例提出的技术方案进行详细的说明。
首先,图1为本发明实施例提供的一种变压器套管局部放电监测芯片装置结构示意图,如图1所示,变压器套管局部放电监测芯片装置100包括采集单元110、SIP数字化单元120以及后台处理终端140。
其中,采集单元110包括传感器模块1、传感器模块2以及传感器模块3,分别安装于变压器三相套管的末屏处。采集单元110中的每个传感器模块均通过较短的导线与SIP数字化单元120连接,用于采集变压器套管末屏的局部放电信号以及工频电流信号。
具体地,采集单元110与SIP数字化单元120一体化设计,SIP数字化单元120固定安装于采集单元110的底座下方,传感器模块采集的模拟信号可以通过较短的导线传输到SIP数字化单元120中进行就地数字化,模拟信号受到的干扰很小。SIP数字化单元120用于对局部放电信号以及工频电流信号进行数字化处理,得到变压器的局部放电信息。SIP数字化单元120的输出端与后台处理终端140的输入端连接,用于将局部放电信息通过无线通信单元130发送到后台处理终端140进行进一步处理。
图2为本发明实施例提供的一种变压器套管局部放电监测芯片装置安装位置示意图,如图2所示,传感器模块1、2、3分别固定安装在变压器5的A相套管6的末屏处、B相套管7的末屏处以及C相套管8的末屏处。每个传感器模块的底部有底座4,用于支撑传感器模块的重量,保证传感器模块和变压器套管末屏连接受力均匀,避免传感器模块的重量对变压器套管造成损坏。
每个传感器模块通过导线与SIP数字化单元120连接,SIP数字化单元120安装在变压器内部,具体位于传感器模块的底座下方。由于传感器模块与SIP数字化单元120都安装在变压器上,位置很近,所以它们之间导线的长度取决于它们之间的距离,因此可以通过较短的导线连接传感器模块和SIP数字化单元120,实现了将采集的变压器局部放电信号以及工频电流信号进行就地数字化,大大减少了布线长度,降低了信号在导线中传输过程中收到的电磁干扰,提高了信号后续分析计算的准确度。
需要说明的是,导线的长度由传感器模块和SIP数字化单元之间的距离决定,数值并不固定。
进一步地,每个传感器模块由一个高频电流传感器和一个工频电流传感器构成。高频电流传感器用于采集变压器套管末屏的局部放电信号,工频电流传感器用于采集变压器套管末屏的工频电流信号。从而使本发明中的传感器模块可以同时采集变压器套管末屏的局部放电信号和工频电流信号。
可选地,传感器模块中还可以集成其他类型的传感器,如振动传感器等,以扩展采集单元的信号采集类型。
图3为本发明实施例提供的一种采集单元以及SIP数字化单元的结构示意图,如图3所示,短导线连接左右两个虚线框部分,左侧虚线框内的部分为采集单元110,右侧虚线框内的部分为SIP数字化单元120。
如图3所示,高频电流传感器11与工频电流传感器12套接在同一根接地杆13上,实现耦合式测量。两个传感器的触指14分别与变压器套管末屏的引线紧密压接,以通过触指14采集变压器套管末屏的局部放电信号和工频电流信号。触指14与接地杆13相连,接地杆与传感器模块的外壳相连,传感器模块的外壳接地,从而实现两个传感器的可靠接地。
高频电流传感器以及工频电流传感器分别通过短导线与SIP数字化单元120连接,以便将采集到的局部放电信号以及工频电流信号发送到SIP数字化单元120进行就地数字化。
具体地,SIP数字化单元120包括SIP芯片。由于本发明中的SIP数字化单元120需要同时实现工频电流信号和局部放电信号的测量,这就需要SIP芯片同时具备高性能的采集能力和计算能力。因此,本发明设计的SIP芯片包括一路高速采集通道以及四路低速采集通道。
具体地,高速采集通道包括一个仪表放大器和一个125MHz高速A/D数模转换器。高速采集通道的输入端与高频电流传感器的输出端连接,用于将高频电流传感器采集的局部放电信号放大后转换为局部放电数字信号。
四路低速采集通道中的每个低速采集通道包括一个仪表放大器和一个2MHz低速A/D数模转换器。其中一路低速采集通道的输入端与工频电流传感器的输出端连接,用于将工频电流传感器采集的工频电流信号放大后转换为工频电流数字信号。另外三路低速采集通道的输入端为预留接口,可用于连接其他信号采集设备,方便后续SIP芯片的应用拓展。
在一个实施例中,图4为本发明实施例提供的一种SIP芯片的内部电路示意图,如图4所示,局部放电信号对应的仪表放大器和125MHz高速A/D转换器为高速采集通道,工频电流信号对应的仪表放大器和2MHzA/D转换器为其中一路低速采集通道,其余三个低速采集通道可以接超声波传感器、振动传感器等采集设备,采集变压器套管末屏的超声信号、振动信号等。
SIP芯片还包括:FPGA可编程逻辑器件,FPGA可编程逻辑器件中包含提前设置好的预设运算逻辑,FPGA可编程逻辑器件的输入端与高速采集通道以及低速采集通道连接,用于接收局部放电数字信号、工频电流数字信号以及其他信号采集设备采集的信号;然后根据预设运算逻辑,对局部放电数字信号、工频电流数字信号以及其他信号采集设备采集的信号进行逻辑计算,然后将计算结果通过无线通信接口或以太网接口发送到后台处理终端。
SIP芯片还包括:温湿度微型传感器以及振动微型传感器。温湿度微型传感器以及振动微型传感器集成于SIP芯片内部,均与FPGA可编程逻辑器件连接,用于感知SIP芯片内部的温湿度以及振动频率,并传输到FPGA可编程逻辑器件进行逻辑计算,以实现对芯片内部状态的监控。
通常芯片连接技术分为引线键合和倒装芯片两种方法。引线键合就是芯片和基板、芯片之间连接利用金属细丝连接,倒装芯片就是将芯片凸点直接连接到基板上。为了减小引线电感,提升芯片的散热能力,本发明采用倒装芯片封装方法,将SIP芯片的核心部件直接和基板压接,一方面能够减少引线电感,提升高频性能,另一方面可以提升SIP芯片的散热能力。
图5为本发明实施例提供的一种SIP芯片的封装连接示意图,如图5所示,本发明通过倒装封装芯片方法,将SIP芯片的核心部件直接和LTCC基板17压接。
优选地,本发明中使用的FPGA芯片15尺寸为18mm×12mm,器件底部有3618个倒装封装凸点16,均匀分布在芯片的底部,凸点直径为90μm,凸点的中心间距为200μm。
为了避免模拟信号和数字信号之间产生干扰,本发明采用数模分离封装方法,具体为:在封装SIP芯片时,采用三维分层结构设计,FPGA芯片、存储器等放置在上层,仪表放大器(PGA)和A/D数模转换器(ADC)则放置在下层,并通过LTCC基板掩埋接地屏蔽层,实现上下腔体隔离,减少模拟信号和数字信号的干扰。
在一个实施例中,FPGA可编程逻辑器件、温湿度微型传感器以及振动微型传感器等片内传感器均集成在SIP芯片的上层,高速采集通道以及低速采集通道集成在SIP芯片的下层。图6-7为本发明实施例提供的一种SIP芯片的上下层布局图,如图6-7所示,下层集成了SIP芯片的五个采集通道,上层集成了FPGA芯片、存储器、片内传感器、电源、通信模块等器件。SIP芯片的上层与下层之间通过低温共烧陶瓷LTCC基板进行隔离。
本发明选用LTCC基板,而没有采用常规的FR-4环氧基板,是因为LTCC基板的通孔设计和走线直径显著小于FR-4环氧基板,因此可以实现更高密度集成,降低器件的尺寸。此外,LTCC基板的导热系数要远高于FR-4环氧基板,可以提升芯片的散热能力,提升系统的可靠性。最后,LTCC基板的介电常数大于FR-4环氧基板的介电常数,LTCC基板的电源-地平面电容可以有更高的电容量,有利于电源的稳定和信号完整性。
由于本发明中的SIP芯片中的信号处理微系统包含了模拟和数字混合电路,因此还需要使用大量的电阻电容等无源器件。如果采用现有的封装好的器件,则会占用大量基板空间,无法实现SIP芯片的小型化。一种方法是利用LTCC基板内埋电阻电容,但内埋的电阻和电容精度无法满足本发明的设计要求。因此本发明提出一种新型的系统集成方案:在LTCC载片的表面进行电容和电阻的表贴,然后在LTCC载片的内部布线,将电阻、电容的电连接端引出到载片的边缘,最后将 LTCC 载片通过粘接的方式固定到LTCC 基板上,并通过金丝键合线18(图5)键合的方式将LTCC载片上电阻、电容与与SIP芯片中的各器件连接,实现电互联。该方法可以显著降低器件的尺寸和体积,提高系统的集成度。
通过上述方法设计并封装的SIP芯片的尺寸为50mm×50mm,具备125MHz高速采样率和50MHz带宽,核心FPGA芯片实现算法快速处理,为监测系统提供了功能强大的数字化处理芯片。本发明中的SIP芯片和传感器模块的一体化设计,以及传感器模块的多传感器集成设计,实现了局部放电信号和工频电流信号采集及处理硬件的小型化,避免了由于信号传输距离过长而造成的电磁干扰,提高了变压器套管监测的准确率。
通过本发明提供的一种变压器套管局部放电监测芯片装置进行变压器套管信号监测的完整流程为:采集单元110中的三个传感器模块分别采集变压器A相套管、B相套管、C相套管末屏的局部放电信号以及工频电流信号,然后通过导线将信号传输到SIP数字化单元120。局部放电信号传输到SIP芯片中的高速采集通道,经过仪表放大器放大后,通过高速A/D转换器转换为数字信号,然后输入到FPGA可编程逻辑器件中进行计算。工频电流信号传输到SIP芯片中的一路低速采集通道,经过仪表放大器放大后,通过低速A/D转换器转换为数字信号,同样输入到FPGA可编程逻辑器件中进行计算。FPGA可编程逻辑器件将计算结果通过芯片中的以太网口或无线通信接口发送到后台处理终端进行进一步处理,从而完成了变压器套管末屏的信号采集及数字化处理。FPGA可编程逻辑器件还可以将计算结果暂存在芯片内的大容量存储器中。
另外,本发明实施例还提供了一种变压器套管局部放电监测方法,该方法包括:采集单元采集变压器套管末屏的局部放电信号以及工频电流信号,并将采集的局部放电信号以及工频电流信号发送到SIP数字化单元进行数字化;SIP数字化单元对局部放电信号以及工频电流信号进行数字化处理,得到变压器的局部放电信息,并将局部放电信息通过无线通信单元发送到后台处理终端进行处理,以使后台处理终端根据局部放电信息确定变压器套管是否有局部放电。
本发明中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于装置实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述对本发明特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明的实施例可以有各种更改和变化。凡在本发明实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种变压器套管局部放电监测芯片装置,其特征在于,包括采集单元、SIP数字化单元和后台处理终端;所述SIP数字化单元包括无线通信单元和SIP芯片;所述SIP数字化单元包括无线通信单元和SIP芯片;
    所述采集单元包括若干传感器模块,分别安装于变压器三相套管的末屏处,用于采集变压器套管末屏的局部放电信号以及工频电流信号;
    所述采集单元中的每个传感器模块均通过导线与所述SIP数字化单元连接,以将采集的局部放电信号以及工频电流信号发送到所述SIP数字化单元进行数字化;
    所述SIP数字化单元安装于变压器内部,所述导线的长度根据所述采集单元与所述SIP数字化单元之间的距离确定;
    所述SIP数字化单元固定安装于所述采集单元的底座下方,用于对所述局部放电信号以及工频电流信号进行数字化处理,得到所述变压器套管的局部放电信息;
    所述SIP数字化单元的输出端与所述后台处理终端的输入端连接,用于将所述局部放电信息通过所述无线通信单元发送到所述后台处理终端进行处理,以使后台处理终端根据所述局部放电信息确定变压器套管是否有局部放电。
  2. 根据权利要求1所述的一种变压器套管局部放电监测芯片装置,其特征在于,
    每个传感器模块包括一个高频电流传感器以及一个工频电流传感器;
    所述高频电流传感器用于采集所述变压器套管末屏的局部放电信号;
    所述工频电流传感器用于采集所述变压器套管末屏的工频电流信号;
    所述高频电流传感器与所述工频电流传感器套接在同一根接地杆上。
  3. 根据权利要求2所述的一种变压器套管局部放电监测芯片装置,其特征在于,
    所述传感器模块通过触指与所述变压器套管末屏的引线紧密压接;
    所述触指与所述接地杆相连,用于将所述传感器模块接地;
    所述传感器模块的底部通过底座支撑;
    所述SIP数字化单元固定安装于所述传感器模块的底座下方;
    所述高频电流传感器以及所述工频电流传感器分别与所述SIP数字化单元连接,以便将采集到的局部放电信号以及工频电流信号发送到所述SIP数字化单元进行数字化处理,得到所述变压器的局部放电信息。
  4. 根据权利要求3所述的一种变压器套管局部放电监测芯片装置,其特征在于,所述SIP芯片包括一路高速采集通道以及四路低速采集通道;
    所述高速采集通道的输入端与所述高频电流传感器连接;
    所述高速采集通道包括仪表放大器以及125MHz高速A/D数模转换器;所述仪表放大器用于将所述局部放电信号放大,所述125MHz高速A/D数模转换器用于将所述局部放电信号转换为局部放电数字信号,以便后续对所述局部放电数字信号进行逻辑计算;
    所述低速采集通道包括仪表放大器以及2MHz低速A/D数模转换器;其中一路低速采集通道的输入端与所述工频电流传感器连接,所述仪表放大器用于将所述工频电流信号放大,所述125MHz高速A/D数模转换器用于将所述工频电流信号转换为工频电流数字信号,以便后续对所述工频电流数字信号进行逻辑计算;
    另外三路低速采集通道的输入端为预留接口,用于连接其他信号采集设备。
  5. 根据权利要求4所述的一种变压器套管局部放电监测芯片装置,其特征在于,所述SIP芯片还包括FPGA可编程逻辑器件;
    所述FPGA可编程逻辑器件中包含预设运算逻辑;
    所述FPGA可编程逻辑器件的输入端与所述高速采集通道以及所述低速采集通道连接,用于接收所述局部放电数字信号以及所述工频电流数字信号;以及,
    根据所述预设运算逻辑,对所述局部放电数字信号以及所述工频电流数字信号进行逻辑计算,得到所述变压器的局部放电信息;以及,
    将所述局部放电信息通过无线通信接口或以太网接口发送到所述后台处理终端。
  6. 根据权利要求5所述的一种变压器套管局部放电监测芯片装置,其特征在于,所述SIP芯片还包括温湿度微型传感器以及振动微型传感器;
    所述温湿度微型传感器以及振动微型传感器集成于所述SIP芯片内部,分别与所述FPGA可编程逻辑器件连接,用于感知所述SIP芯片内部的温湿度以及振动频率,并传输到所述FPGA可编程逻辑器件进行逻辑计算,得到所述SIP芯片内部的温湿度信息以及振动频率信息,进而将所述温湿度信息以及振动频率信息发送到后台处理终端,对所述SIP芯片的工作状态进行监控。
  7. 根据权利要求6所述的一种变压器套管局部放电监测芯片装置,其特征在于,
    所述FPGA可编程逻辑器件、所述温湿度微型传感器以及所述振动微型传感器集成在所述SIP芯片的上层;
    所述高速采集通道以及所述低速采集通道集成在所述SIP芯片的下层;
    所述SIP芯片的上层与SIP芯片的下层之间通过LTCC基板进行隔离,以避免模拟信号与数字信号之间相互干扰;
    所述SIP芯片上层的器件与SIP芯片下层的器件通过倒装封装方式与所述LTCC基板连接,以减小引线电感,提升SIP芯片的散热能力。
  8. 根据权利要求7所述的一种变压器套管局部放电监测芯片装置,其特征在于,所述SIP芯片中还包括LTCC载片;
    所述LTCC载片的表面表贴有若干电容以及若干电阻;
    所述LTCC载片的内部布设所述若干电容以及所述若干电阻的连接线;
    所述LTCC载片通过粘接的方式固定在所述LTCC基板上;
    所述若干电容以及若干电阻的连接端在所述LTCC载片的边缘引出,并通过金丝键合的方式与所述SIP芯片中的各器件连接,以降低SIP芯片的尺寸和体积,提高SIP芯片的集成度。
  9. 根据权利要求8所述的一种变压器套管局部放电监测芯片装置,其特征在于,所述SIP芯片的尺寸为50mm×50mm,以满足变压器套管局部放电监测芯片装置的小型化需求。
  10. 一种变压器套管信号局部放电监测方法,其特征在于,包括:
    采集单元采集变压器套管末屏的局部放电信号以及工频电流信号,并将采集的局部放电信号以及工频电流信号发送到SIP数字化单元进行数字化;所述SIP数字化单元包括无线通信单元和SIP芯片;
    所述SIP芯片包括一路高速采集通道以及四路低速采集通道;所述高速采集通道的输入端与所述高频电流传感器连接;所述高速采集通道包括仪表放大器以及125MHz高速A/D数模转换器;所述仪表放大器用于将所述局部放电信号放大,所述125MHz高速A/D数模转换器用于将所述局部放电信号转换为局部放电数字信号,以便后续对所述局部放电数字信号进行逻辑计算;所述低速采集通道包括仪表放大器以及2MHz低速A/D数模转换器;其中一路低速采集通道的输入端与所述工频电流传感器连接,所述仪表放大器用于将所述工频电流信号放大,所述125MHz高速A/D数模转换器用于将所述工频电流信号转换为工频电流数字信号,以便后续对所述工频电流数字信号进行逻辑计算;另外三路低速采集通道的输入端为预留接口,用于连接其他信号采集设备;
    所述SIP数字化单元对所述局部放电信号以及工频电流信号进行数字化处理,得到变压器的局部放电信息,并将所述局部放电信息通过所述无线通信单元发送到后台处理终端进行处理,以使后台处理终端根据所述局部放电信息确定变压器套管是否有局部放电。
PCT/CN2023/094261 2022-03-18 2023-05-15 一种变压器套管局部放电监测芯片装置及方法 WO2023174448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/283,843 US20240168077A1 (en) 2022-03-18 2023-05-15 Transformer bushing partial discharge monitoring chip device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210268797.8A CN114594351A (zh) 2022-03-18 2022-03-18 一种变压器套管局部放电监测芯片装置及方法
CN202210268797.8 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023174448A1 true WO2023174448A1 (zh) 2023-09-21

Family

ID=81820296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094261 WO2023174448A1 (zh) 2022-03-18 2023-05-15 一种变压器套管局部放电监测芯片装置及方法

Country Status (3)

Country Link
US (1) US20240168077A1 (zh)
CN (1) CN114594351A (zh)
WO (1) WO2023174448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554767A (zh) * 2024-01-10 2024-02-13 华北电力科学研究院有限责任公司 一种基于工频电流互感器的高频放电信号检测装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114594351A (zh) * 2022-03-18 2022-06-07 国网浙江省电力有限公司电力科学研究院 一种变压器套管局部放电监测芯片装置及方法
CN115621255A (zh) * 2022-09-24 2023-01-17 国网浙江省电力有限公司电力科学研究院 一种用于高抗干扰电网的微系统sip装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101418A (ja) * 2002-09-11 2004-04-02 Toshiba Corp 部分放電検出装置
KR101103677B1 (ko) * 2010-11-11 2012-01-11 박기주 부분방전 검출 기능을 갖는 유입 변압기 및 부분방전 검출방법
CN202256590U (zh) * 2011-10-12 2012-05-30 珠海电力设计院有限公司 变压器套管绝缘在线监测装置
KR20150108147A (ko) * 2014-03-17 2015-09-25 한국전자통신연구원 밀리미터파용 레이더 온 패키지 및 이를 구비하는 레이더 어셈블리
KR20160091084A (ko) * 2015-01-23 2016-08-02 엘지이노텍 주식회사 시스템 인 패키지 모듈
CN107301982A (zh) * 2017-05-11 2017-10-27 西安空间无线电技术研究所 基于ltcc的cga一体化封装结构及其实现方法
CN109860137A (zh) * 2018-12-12 2019-06-07 中国电子科技集团公司第五十五研究所 小型化高密度fpga系统级3d封装电路
CN110176439A (zh) * 2019-05-29 2019-08-27 中国电子科技集团公司第四十三研究所 一种模块SiP结构及其制造方法
CN111505701A (zh) * 2020-05-27 2020-08-07 中国电子科技集团公司第三十八研究所 一种紧凑型加速器束流相位及位置测量系统及方法
CN215180796U (zh) * 2021-05-31 2021-12-14 国网山西省电力公司电力科学研究院 一种电力变压器套管状态数据监测与采集装置
CN215496704U (zh) * 2021-09-01 2022-01-11 成都西科微波通讯有限公司 一种基于HTCC的Ku波段集成封装微波组件
CN113985223A (zh) * 2021-09-24 2022-01-28 广东电网有限责任公司广州供电局 一种高压干式套管的多参量智能识别系统及应用
CN114594351A (zh) * 2022-03-18 2022-06-07 国网浙江省电力有限公司电力科学研究院 一种变压器套管局部放电监测芯片装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414877A (zh) * 2018-03-21 2018-08-17 广东电网有限责任公司电力科学研究院 一种用于对变压器故障进行预警的系统及方法
DE102019104841A1 (de) * 2019-02-26 2020-08-27 Endress+Hauser SE+Co. KG Messgerät mit einem Sensorelement und einer Mess- und Betriebsschaltung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101418A (ja) * 2002-09-11 2004-04-02 Toshiba Corp 部分放電検出装置
KR101103677B1 (ko) * 2010-11-11 2012-01-11 박기주 부분방전 검출 기능을 갖는 유입 변압기 및 부분방전 검출방법
CN202256590U (zh) * 2011-10-12 2012-05-30 珠海电力设计院有限公司 变压器套管绝缘在线监测装置
KR20150108147A (ko) * 2014-03-17 2015-09-25 한국전자통신연구원 밀리미터파용 레이더 온 패키지 및 이를 구비하는 레이더 어셈블리
KR20160091084A (ko) * 2015-01-23 2016-08-02 엘지이노텍 주식회사 시스템 인 패키지 모듈
CN107301982A (zh) * 2017-05-11 2017-10-27 西安空间无线电技术研究所 基于ltcc的cga一体化封装结构及其实现方法
CN109860137A (zh) * 2018-12-12 2019-06-07 中国电子科技集团公司第五十五研究所 小型化高密度fpga系统级3d封装电路
CN110176439A (zh) * 2019-05-29 2019-08-27 中国电子科技集团公司第四十三研究所 一种模块SiP结构及其制造方法
CN111505701A (zh) * 2020-05-27 2020-08-07 中国电子科技集团公司第三十八研究所 一种紧凑型加速器束流相位及位置测量系统及方法
CN215180796U (zh) * 2021-05-31 2021-12-14 国网山西省电力公司电力科学研究院 一种电力变压器套管状态数据监测与采集装置
CN215496704U (zh) * 2021-09-01 2022-01-11 成都西科微波通讯有限公司 一种基于HTCC的Ku波段集成封装微波组件
CN113985223A (zh) * 2021-09-24 2022-01-28 广东电网有限责任公司广州供电局 一种高压干式套管的多参量智能识别系统及应用
CN114594351A (zh) * 2022-03-18 2022-06-07 国网浙江省电力有限公司电力科学研究院 一种变压器套管局部放电监测芯片装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAO XIAN-JUN; CHEN XIAO-XIN; ZHAN JIANG-YANG; LV YU-HUI; MU HAI-BAO: "An Integrated Sensor with SiP Chip for Bushing Partial Discharge Monitoring of UHV Transformer", 2022 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (CEIDP), IEEE, 30 October 2022 (2022-10-30), pages 187 - 191, XP034253654, DOI: 10.1109/CEIDP55452.2022.9985256 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554767A (zh) * 2024-01-10 2024-02-13 华北电力科学研究院有限责任公司 一种基于工频电流互感器的高频放电信号检测装置及方法
CN117554767B (zh) * 2024-01-10 2024-04-05 华北电力科学研究院有限责任公司 一种基于工频电流互感器的高频放电信号检测装置及方法

Also Published As

Publication number Publication date
US20240168077A1 (en) 2024-05-23
CN114594351A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2023174448A1 (zh) 一种变压器套管局部放电监测芯片装置及方法
JP3839267B2 (ja) 半導体装置及びそれを用いた通信端末装置
CN102890168B (zh) 高频讯号路径调整方式及其测试装置
TWI404945B (zh) 一種測試具有負載阻抗之積體電路的方法、設備及系統
EP0180013A1 (en) Test probe system
CN108198788A (zh) 一种具有高射频信号垂直互联传输性能的ltcc基板
CN107452815A (zh) 一种同轴封装的光器件及光模块
CN107271021A (zh) 基于fpga的pxi接口多通道变压器振动测试仪
CN109521265A (zh) 一种电压电流组合数字式电子互感器
CN109521264A (zh) 一种柱上开关用数字式零序电流互感器
CN210572558U (zh) 一种测试装置
CN110544673B (zh) 一种多层次融合的三维系统集成结构
CN209513903U (zh) 一种电压电流组合数字式电子互感器
CN104105388B (zh) 一种测量综合控制器的电磁屏蔽系统
CN101187675A (zh) 可传输高频信号的探针
CN101251577A (zh) 可进行复合测试的测试设备
CN203310450U (zh) Gis用多功能组合传感器
EP4033262B1 (en) Partial discharge (pd) detection apparatus and method based on cross interconnection box
CN209513902U (zh) 一种柱上开关用数字式零序电流互感器
CN104316772A (zh) 用于极端物体条件下的电容测量装置
JP4556023B2 (ja) システムインパッケージ試験検査装置および試験検査方法
CN112486063B (zh) 一种面向高端轴承的内嵌式多维智能采集处理微系统
CN110531252A (zh) 一种集成电路测试设备机时管理系统
CN110609192A (zh) 一种低压一次电力系统参数获取系统
US6404611B1 (en) Single-chip integrated circuit module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18283843

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769950

Country of ref document: EP

Kind code of ref document: A1