WO2023174280A1 - 一种电能传输总成及车辆 - Google Patents
一种电能传输总成及车辆 Download PDFInfo
- Publication number
- WO2023174280A1 WO2023174280A1 PCT/CN2023/081363 CN2023081363W WO2023174280A1 WO 2023174280 A1 WO2023174280 A1 WO 2023174280A1 CN 2023081363 W CN2023081363 W CN 2023081363W WO 2023174280 A1 WO2023174280 A1 WO 2023174280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat dissipation
- transmission assembly
- electrical connection
- power transmission
- assembly according
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R31/00—Coupling parts supported only by co-operation with counterpart
- H01R31/06—Intermediate parts for linking two coupling parts, e.g. adapter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/16—Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/18—Cables specially adapted for charging electric vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/0009—Details relating to the conductive cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/0045—Cable-harnesses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/42—Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
- H01B7/421—Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
- H01B7/426—Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using cooling fins, ribs
Definitions
- the present invention relates to the technical field of electric energy transmission, and more specifically, to an electric energy transmission assembly and a vehicle.
- an electric vehicle is a vehicle powered by an on-board power supply and a motor driving the wheels. It is widely accepted and marketed by people for its environmental protection and energy saving. With the development of science and technology, the driving range of electric vehicles has been greatly improved and the charging time has been greatly shortened.
- the cable core used in the connector does not have an active heat dissipation mechanism, and the heat dissipation performance needs to be improved. Therefore, the market urgently needs to develop a new structure of power transmission connector to help people solve existing problems.
- the first aspect of the present invention provides an electric energy transmission assembly, including at least one electrical connection frame and connectors provided at both ends of the electrical connection frame.
- the connectors include connection terminals. Both ends of the electrical connection frame are electrically connected to the connection terminals, and at least one heat dissipation fin is provided on the periphery of the electrical connection frame.
- the material of the electrical connection skeleton is pure aluminum or an aluminum alloy with an aluminum content of more than 90%.
- the electrical connection skeleton is at least partly a hollow structure.
- the heat dissipation fins and the electrical connection frame are integrally formed.
- the heat dissipation fins and the electrical connection frame are connected by welding, bonding, clamping, screwing or crimping.
- the heat dissipation fins and the electrical connection frame are made of different materials.
- the heat dissipation fins are made of high thermal conductivity material.
- the high thermal conductivity material is one or more of metal, thermally conductive insulating rubber, flexible thermal pad, and thermally conductive resin.
- the thermal conductivity of the high thermal conductivity material is greater than or equal to 98W/m ⁇ K.
- the cross-sectional shape of the electrical connection skeleton is circular, elliptical, rectangular, polygonal, A-shaped, B-shaped, D-shaped, M-shaped, N-shaped, O-shaped, S-shaped, E-shaped Shape, F shape, H shape, K shape, L shape
- the cross-sectional shape of the heat dissipation fins is one or more of arc, gear, trapezoid, polygon, quadrilateral, fusiform, curve and wavy.
- the angle between the radial direction of the electrical connection frame and the outward extension direction of the electrical connection frame or the tangential direction of the outward extension of the heat dissipation fin is 0°-53°.
- the width of the cross section of the heat dissipation fin at a position close to the electrical connection frame is greater than the width of the cross section of the heat dissipation fin at a position away from the electrical connection frame.
- All corners of the cross section of the heat dissipation fin are chamfered or rounded.
- heat dissipation fins There are multiple heat dissipation fins, and the plurality of heat dissipation fins are distributed on the outer periphery of the electrical connection frame.
- a plurality of the heat dissipation fins are evenly distributed on the outer periphery of the electrical connection frame.
- the plurality of heat dissipation fins have the same radial height.
- the plurality of heat dissipation fins have different radial heights.
- the heat dissipation fins with different radial heights are placed at intervals.
- the maximum radial height of the heat dissipation fin is 1%-56% of the maximum outer diameter of the electrical connection frame.
- the outer peripheral surface of the heat dissipation fin is flat.
- the outer peripheral surface of the heat dissipation fin is a curved surface.
- the heat dissipation fins are arranged in a spiral shape in the axial direction of the electrical connection frame.
- the minimum pitch of the spiral is the maximum outer diameter of the electrical connection skeleton.
- the outer periphery of the heat dissipation fin is covered with an insulating layer.
- the heat dissipation fins are also provided with heat dissipation arms at the ends away from the electrical connection frame, and the heat dissipation fins are integrally formed with the heat dissipation arms.
- the heat dissipation fin is also provided with a heat dissipation arm at an end away from the electrical connection frame.
- the heat dissipation fin and the heat dissipation arm are connected by welding, bonding, snapping, screwing or crimping.
- the thickness of the heat dissipation arm in the radial direction is 1%-35% of the maximum outer diameter of the electrical connection frame.
- the heat dissipation fins and the heat dissipation arm are made of different materials.
- the heat dissipation arm is made of high thermal conductivity material.
- the high thermal conductivity material is one or more of metal, thermally conductive insulating rubber, flexible thermal pad, and thermally conductive resin.
- the cross-sectional shape of the heat dissipation arm is one or more of trapezoid, polygon, quadrilateral, fusiform, curved and wavy.
- the heat dissipation fins and the heat dissipation arms are arranged at a certain angle.
- the heat dissipation fins and the heat dissipation arms are arranged in a T-shape or L-shape.
- the heat dissipation arm seals the outer periphery of the heat dissipation fin.
- the outer periphery of the heat dissipation arm is covered with an insulation layer.
- the insulation layer is also surrounded by a shielding layer and an outer insulation layer.
- the electrical connection frame is connected to the connection terminal by welding or crimping.
- At least part of the electrical connection skeleton is a flexible body.
- the electrical connection frame includes at least one bend.
- One of said connectors is a charging dock.
- the present invention also provides a vehicle, including the electric energy transmission assembly as described above.
- a heat dissipation device is further included.
- the gap between the insulating layer and the heat dissipation fins forms a cavity, and the heat dissipation device transports air to the in the cavity.
- a heat dissipation device is further included.
- the heat dissipation arm seals the outer periphery of the heat dissipation fin
- the gap between the heat dissipation arm and the heat dissipation fin forms a cavity
- the heat dissipation device transports air to in the cavity.
- a heat dissipation device is further included.
- the gap between the insulating layer, the heat dissipation fins and the heat dissipation arm forms a cavity, and the heat dissipation device removes the air from the heat dissipation arm. delivered into the cavity.
- the hollow structure adopted in the present invention can effectively avoid the increase in resistance and ensure transmission efficiency.
- an electrical connection skeleton with a smaller wire diameter can be used.
- the hollow structure can also reduce the weight of the vehicle and save costs.
- an electrical connection skeleton 3 with a smaller wire diameter can be used.
- the hollow structure can also reduce weight and save costs.
- the hollow structure can effectively reduce the weight without reducing the magnitude of the conduction current. Moreover, due to the heat dissipation effect of the heat dissipation fins 4, the temperature of the hollow electrical connection frame 3 will not exceed the standard when current flows.
- Figure 1 is a schematic structural diagram of the power transmission connector of the present invention
- Figures 2-4 are cross-sectional views of the electrical connection skeleton of the present invention.
- FIGS 5-6 are cross-sectional views of the heat dissipation fins of the electrical connection frame of the present invention.
- Figures 7-8 are cross-sectional views of the electrical connection skeleton with heat dissipation arms of the present invention.
- Figures 9-10 are schematic structural diagrams of the electrical connection skeleton of the present invention.
- any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
- the electrical connection skeleton 3 with smaller wire diameter can be used.
- the hollow structure can also reduce weight and save costs.
- An electric energy transmission assembly as shown in Figure 1, includes at least one electrical connection frame 3 and connectors 1 provided at both ends of the electrical connection frame 3.
- the electrical connector 1 includes connection terminals 2. Both ends of the connecting frame 3 are electrically connected to the connecting terminals 2 , and at least one heat dissipation fin 4 is provided on the outer periphery of the electrical connecting frame 3 .
- setting the heat dissipation fins 4 along the outer periphery of the electrical connection frame 3 can not only increase the heat dissipation area of the electrical connection frame 3 and enhance the heat dissipation effect, but also has a large carrying capacity and better conductivity.
- the heat dissipation fins 4 It extends along the axial direction of the electrical connection frame 3 .
- the electrical connection skeleton 3 is at least partially a hollow structure.
- the hollow structure is more conducive to heat dissipation of the electrical connection skeleton 3 .
- the current inside the conductor is unevenly distributed Uniformly, the current is concentrated in the "skin" part of the conductor, that is to say, the current is concentrated in the thin layer on the outside of the conductor.
- the resistance of the conductor increases, so that Its power loss also increases. This phenomenon is called the skin effect.
- the hollow structure adopted by the present invention can effectively avoid an increase in resistance and ensure transmission efficiency.
- the current is concentrated on the surface of the electrical connection skeleton 3, and the hollow structure can effectively reduce the weight without reducing the magnitude of the conduction current.
- the temperature of the hollow electrical connection frame 3 will not exceed the standard when current flows.
- an insulating layer 5 is placed around the outer periphery of the heat dissipation fin 4 .
- the material of the insulation layer 5 is PVC. On the one hand, it ensures the insulation performance, and on the other hand, it also has waterproof performance, wear resistance and hardness.
- the insulation material of the cable can also be rubber, TPE, XPE, PP, XLPE, FEP, ETFE, One or more of TPR and TPFE.
- the outer periphery of the heat dissipation fin 4 is covered with an insulating layer 5 , and the outer periphery of the heat dissipation fin 4 fits the insulating layer 5 to ensure that the heat generated by the electrical connection frame 3 is conducted to the outside.
- the material of the electrical connection frame 3 is pure aluminum or an aluminum alloy with an aluminum content of more than 90%.
- the aluminum alloy is an aluminum-copper alloy, an aluminum-magnesium alloy, an aluminum-lithium alloy, an aluminum-manganese alloy, an aluminum-zinc alloy, or an aluminum-silicon alloy with an aluminum content of more than 90%.
- the heat dissipation fins 4 and the electrical connection frame 3 are integrally formed.
- the heat dissipation fins 4 and the electrical connection frame 3 are integrally formed using the same material to improve production efficiency. Specifically, a continuous extrusion process can be used to integrally form the electrical connection frame 3 and the heat dissipation fins 4, so that the connection between the heat dissipation fins 4 and the electrical connection frame 3 is stronger and less likely to fall off.
- the heat dissipation fins 4 and the electrical connection frame 3 are connected by welding, bonding, snapping, screwing or crimping.
- the heat dissipation fins 4 and the electrical connection frame 3 can also be connected by welding or bonding.
- the specific welding method is one or more of resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, and magnetic induction welding.
- Resistance welding refers to a method that uses strong current to pass through the contact point between the electrode and the workpiece, and generates heat due to the contact resistance to achieve welding.
- Friction welding refers to a method that uses the heat generated by friction on the contact surface of the workpiece as a heat source to cause plastic deformation of the workpiece under pressure for welding.
- Ultrasonic welding uses high-frequency vibration waves to transmit to the surfaces of two objects to be welded. Under pressure, the surfaces of the two objects rub against each other to form fusion between the molecular layers.
- the arc welding method refers to using the arc as a heat source and utilizing the physical phenomenon of air discharge to convert electrical energy into the thermal energy and mechanical energy required for welding, thereby achieving the purpose of joining metals.
- the main methods include electrode arc welding, submerged arc welding, and gas shielding. Welding etc.
- Laser welding is an efficient and precise welding method that uses high-energy-density laser beams as heat sources.
- Electron beam welding refers to the use of accelerated and focused electron beams to bombard the welding surface placed in a vacuum or non-vacuum, so that the workpiece to be welded melts to achieve welding.
- Pressure welding is a method of applying pressure to the weldment to bring the joint surfaces into close contact to produce a certain degree of plastic deformation to complete the welding.
- Diffusion welding refers to a solid-state welding method that pressurizes the workpiece at high temperatures without causing visible deformation or relative movement.
- the specific welding method is based on the actual status of the heat dissipation fins 4 and the electrical connection frame 3, and an appropriate connection method or combination of connection methods is selected to achieve effective electrical connection.
- the screw connection method refers to a threaded connection, which uses threaded parts (or the threaded part of the connected part) to connect the connected parts into a detachable connection.
- threaded connections include bolts, studs, screws, set screws, etc., most of which are standard parts.
- the clamping method refers to setting corresponding claws or slots on the heat dissipation fins 4 or the electrical connection frame 3, and assembling them through the slots and claws to connect them together.
- the advantage of the snap-on method is that it is quick to connect and detachable.
- the contact surface between the heat dissipation fins 4 and the electrical connection frame 3 is an adhesive layer.
- the adhesive layer is a sticky material made of thermal conductive material. The heat dissipation fins 4 and the electrical connection frame 3 are bonded together through the adhesive layer.
- Crimping is a production process in which after assembling the heat dissipation fins 4 and the electrical connection frame 3, a crimping machine is used to stamp the two into one body.
- the advantage of crimping is mass production. By using an automatic crimping machine, products of stable quality can be manufactured quickly and in large quantities.
- the heat dissipation fins 4 and the electrical connection frame 3 are made of different materials.
- the main function of the electrical connection skeleton 3 is to conduct current. It has high electrical conductivity and is usually made of materials with good electrical energy transmission performance. However, materials with high electrical conductivity may not have high thermal conductivity, and the heat dissipation fins 4 can be made of materials with better thermal conductivity. This combination allows the power transmission assembly to have both better electrical conductivity and better heat dissipation.
- the heat dissipation fins 4 are made of high thermal conductivity material. High thermal conductivity materials can transfer the generated heat out in time, reducing the temperature of the power transmission assembly and ensuring safety.
- the high thermal conductivity material is one or more of metal, thermally conductive insulating rubber, flexible thermal pad, and thermally conductive resin.
- thermally conductive insulating rubber has excellent thermal conductivity and can be widely used to make various heat transfer media.
- the surface of the electrical connection skeleton 3 is generally cleaned, and the heat dissipation fins 4 made of thermally conductive insulating rubber are placed on the electrical Just connect it to skeleton 3.
- Flexible thermal pads are high-performance gap-filling thermal conductive materials, mainly used for the transfer interface between electronic equipment and heat sinks or product casings. It has good viscosity, flexibility, good compression properties and excellent thermal conductivity. So that the air can be completely discharged during use to achieve full contact. The heat dissipation effect is significantly increased.
- Thermal conductive resin has the characteristics of excellent insulation, reduced shrinkage after curing, high mechanical strength, and good chemical resistance. Users can choose different materials according to their needs.
- the thermal conductivity of the high thermal conductivity material is greater than or equal to 98 W/m ⁇ K.
- the inventor selected 10 electrical connection skeletons 3 with the same cross-sectional area, the same material, and the same length, and passed the same current, using high-temperature conductors with different thermal conductivities.
- Thermal conductive materials are used as heat dissipation fins 4, and the temperature rise values of each electrical connection frame 3 are read and recorded in Table 1.
- the experimental method is to conduct the same current through the electrical connection skeleton 3 using the heat dissipation fins 4 of different materials in a closed environment, record the temperature before power on and the temperature after power on when the temperature is stable, and take the absolute value of the difference.
- a temperature rise of less than 50K is considered a qualified value.
- the thermal conductivity of the high thermal conductivity material is less than 98W/m ⁇ K, the temperature rise value of the electrical connection skeleton 3 is unqualified.
- the greater the thermal conductivity of the high thermal conductivity material the lower the temperature rise value of the electrical connection skeleton 3.
- the cross-sectional shape of the electrical connection skeleton 3 is circular, elliptical, rectangular, polygonal, A-shaped, B-shaped, D-shaped, M-shaped, N-shaped, O-shaped, S-shaped, E-shaped , F shape, H shape, K shape, L shape, T shape, P shape, U shape, V shape, W shape, X shape, Y shape, Z shape, semi-arc shape, arc shape, wavy shape or more.
- electrical connection skeletons 3 with different cross-sections can be selected.
- the cross-sectional shape of the electrical connection skeleton 3 is circular, rectangular or hexagonal, which can better conduct wiring according to the outline of the vehicle body and reduce wiring consumables.
- the cross-sectional shape of the heat dissipation fins 4 is one or more of arc, gear, trapezoid, polygon, quadrilateral, fusiform, curve and wavy.
- the cross-sectional shape of the heat dissipation fin 4 is a trapezoid.
- the angle between the heat dissipation fin 4 and the radial direction of the electrical connection frame 3 is 0°-53° in the outward extension direction or the tangential direction of the outward extension of the electrical connection frame 3 . .
- the inventor selected the same size.
- the electrical connection frame 3 and the heat dissipation fin 4 are tested at different angles in the radial direction of the heat dissipation fin 4 and the electrical connection frame 3.
- the same current is passed through the different electrical connection frame 3 samples, and the electrical current is measured.
- the temperature rise is less than 50K, it is considered a qualified value.
- Table 2 The influence of the angle between the outward extending direction of the electrical connecting frame 3 or the tangent direction of the outward extending direction of the heat dissipation fin 4 and the radial direction of the electrical connecting frame 3 and the temperature rise of the electrical connecting frame 3
- the inventor preferably places the heat dissipation fins 4 on the electrical connecting bone.
- the angle between the outward extending direction of the frame 3 or the tangential direction extending outward and the radial direction of the electrical connection frame 3 is 0°-53°.
- the width of the cross section of the heat dissipation fin 4 at a position close to the electrical connection frame 3 is greater than the width of the cross section of the heat dissipation fin 4 at a position away from the electrical connection frame 3 .
- this design can ensure that the heat dissipation fins 4 are firmly fixed on the electrical connection frame 3, and can ensure that the heat dissipation fins 4 are not easily deformed and fall off when external forces act.
- All corners of the cross section of the heat dissipation fin 4 are chamfered or rounded. As shown in Figure 5, the heat dissipation fin 4 is covered with an insulating layer 5.
- the chamfering or rounding design is to prevent friction with the insulating layer 5 and damage to the insulating layer 5. It can also play a guiding role when the heat dissipation fin 4 comes into contact with other components to prevent the heat dissipation fin 4 from falling off due to excessive rigidity.
- connection position between the bottom of the heat dissipation fins 4 and the electrical connection frame 3 is chamfered or rounded, which can ensure that the heat dissipation fins 4 are firmly fixed on the electrical connection frame 3 and prevent the heat dissipation fins 4 from deforming and falling off easily when external forces act.
- FIGS. 2 to 8 there are multiple heat dissipation fins 4 , and the plurality of heat dissipation fins 4 are distributed on the outer periphery of the electrical connection frame 3 .
- a plurality of the heat dissipation fins 4 are evenly distributed on the outer periphery of the electrical connection frame 3 .
- Multiple heat dissipation fins 4 are provided on the periphery of the electrical connection frame 3, which not only increases the heat dissipation area and achieves better heat dissipation effect, but also ensures that the heat dissipation fins 4 are evenly arranged during the bending process of the electrical connection frame 3.
- the uniform force is applied everywhere, which also ensures that the insulating layer 5 covering the outside of the electrical connection skeleton 3 is uniformly stressed.
- the heat dissipation fins 4 can be arranged at parallel intervals on the outer periphery of the electrical connection frame 3 .
- the plurality of heat dissipation fins 4 have the same radial height.
- the outside of the heat dissipation fin 4 is covered with an insulating layer 5 to ensure that the insulating layer 5 is evenly stressed.
- the plurality of heat dissipation fins 4 have different radial heights.
- the heat dissipation fins 4 with different radial heights are placed at intervals.
- the heat dissipation fins 4 have different radial heights, and the air between two adjacent heat dissipation fins 4 with different radial heights can circulate with each other, thereby improving the heat dissipation effect.
- the maximum radial height of the heat dissipation fins 4 is 1%-56% of the maximum outer diameter of the electrical connection frame 3 .
- the setting of the maximum radial height of the heat dissipation fin 4 has a certain influence on the temperature rise of the electrical connection frame 3 .
- the outer peripheral surface of the heat dissipation fin 4 is flat. As shown in FIG. 4 , when the electrical connection frame 3 is in the shape of a flat strip, the outer peripheral surface of the heat dissipation fin 4 is set in a planar structure, which can better fit with the insulating layer 5 .
- the outer peripheral surface of the heat dissipation fin 4 is an arc surface. As shown in FIG. 3 , when the electrical connection frame 3 is circular or elliptical, the outer peripheral surface of the heat dissipation fin 4 is configured as an arc surface.
- the outer peripheral surface of the heat dissipation fin 4 is a flat surface or an arc surface.
- the heat dissipation fins 4 are arranged in a spiral shape in the axial direction of the electrical connection frame 3 .
- the heat dissipation fins 4 are arranged in a spiral shape, and a spiral channel is formed between the heat dissipation fins 4, the electrical connection frame 3 and the insulating layer 5.
- This design can ensure that the heat dissipation effect is the same everywhere in the electrical connection frame 3.
- the gap between the insulation layer 5 and the electrical connection skeleton 3 will also be the same, which is more conducive to heat dissipation.
- the heat dissipation fins 4 of the electrical connection skeleton 3 of the same length are arranged in a spiral and are longer than the parallel heat dissipation fins 4, which increases the heat dissipation area and makes the heat dissipation effect of the electric energy transmission assembly better.
- the minimum pitch of the spiral is the maximum outer diameter of the electrical connection skeleton 3 .
- the minimum pitch of the spiral shape of the heat dissipation fins 4 is greater than or equal to the maximum outer diameter of the electrical connection frame 3. If the pitch is too small, the gaps between the heat dissipation arms 6 will be small and the heat dissipation effect will not be achieved.
- the heat dissipation fins 4 are also provided with heat dissipation arms 6 at the ends away from the electrical connection frame 3 .
- the heat dissipation fins 4 and the heat dissipation arms 6 One piece.
- the arrangement of the heat dissipation arms 6 can conduct the heat exported by the heat dissipation fins 4 to the outside more quickly, thereby accelerating the heat dissipation effect.
- the integrated heat dissipation arm 6 and heat dissipation fin 4 can improve production efficiency.
- a continuous extrusion process can be used to integrally form the heat dissipation arm 6 and the heat dissipation fin 4, so that the connection between the heat dissipation fin 4 and the heat dissipation arm 6 is stronger and less likely to fall off.
- the heat dissipation fin 4 is also provided with a heat dissipation arm 6 at the end far away from the electrical connection frame 3.
- the heat dissipation fin 4 and the heat dissipation arm 6 are connected by welding, bonding, snapping or screwing.
- the specific welding method may be one or more of resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, magnetic induction welding, screw jointing, clamping jointing, splicing and crimping.
- Resistance welding refers to a method that uses strong current to pass through the contact point between the electrode and the workpiece, and generates heat due to the contact resistance to achieve welding.
- Friction welding refers to a method that uses the heat generated by friction on the contact surface of the workpiece as a heat source to cause plastic deformation of the workpiece under pressure for welding.
- Ultrasonic welding uses high-frequency vibration waves to transmit to the surfaces of two objects to be welded. Under pressure, the surfaces of the two objects rub against each other to form fusion between the molecular layers.
- the arc welding method refers to using the arc as a heat source and utilizing the physical phenomenon of air discharge to convert electrical energy into the thermal energy and mechanical energy required for welding, thereby achieving the purpose of joining metals.
- the main methods include electrode arc welding, submerged arc welding, and gas shielding. Welding etc.
- Laser welding is an efficient and precise welding method that uses high-energy-density laser beams as heat sources.
- Electron beam welding refers to the use of accelerated and focused electron beams to bombard the welding surface placed in a vacuum or non-vacuum, so that the workpiece to be welded melts to achieve welding.
- the pressure diffusion welding method is a method of applying pressure to the weldment to bring the joint surfaces into close contact to produce a certain degree of plastic deformation to complete the welding.
- the bonding method is: the contact surface between the heat dissipation fin 4 and the heat dissipation arm 6 is an adhesive layer, and the adhesive layer is a sticky material made of thermal conductive material.
- the heat dissipation fin 4 and the heat dissipation arm 6 are bonded together through the adhesive layer. .
- the clamping method is: one of the contact surfaces of the heat dissipation fin 4 and the heat dissipation arm 6 is a claw, and the other is a clip groove. Through the assembly of the claws and the clip groove, the contact surface of the heat dissipation fin 4 and the heat dissipation arm 6 is stably connected. together.
- the screw connection method is as follows: threads and screws are provided on the heat dissipation fins 4 and the heat dissipation arm 6 respectively, and the contact surfaces of the heat transfer medium 4 and the temperature sensor 2 are stably connected through the screw connection of the threads and screws.
- the thickness of the heat dissipation arm 6 in the radial direction is 1%-35% of the maximum outer diameter of the electrical connection frame 3 .
- the arrangement of the heat dissipation arm 6 has a certain influence on the temperature rise of the electrical connection frame 3 .
- the heat dissipation fins 4 and the heat dissipation arms 6 are made of different materials.
- the heat dissipation fins 4 are made of materials with good heat dissipation effect, but they may have low strength and are easy to fall off or be damaged when in contact with other parts.
- the heat dissipation arms 6 are relatively thin and obviously protrude from the heat dissipation fins, so the heat dissipation effect of the heat dissipation fins 4 can be better than that of the material. Slightly less durable but very strong material.
- the heat dissipation arm 6 is made of a material with high thermal conductivity. The same or different combinations can be used with the heat dissipation fins 4 .
- the high thermal conductivity material is one or more of metal, thermally conductive insulating rubber, flexible thermal pad, and thermally conductive resin.
- the cross-sectional shape of the heat dissipation arm 6 is one or more of a trapezoid, a polygon, a quadrilateral, a fusiform, a curve, and a wave shape.
- the cross-sectional shape of the heat dissipation arm 6 is a trapezoid or a polygon.
- the heat dissipation fins 4 and the heat dissipation arms 6 are arranged at a certain angle.
- the heat dissipation fins 4 connected to the circular electrical connection skeleton 3 are arranged in an annular shape.
- the heat dissipation arm 6 is covered with an insulating layer 5.
- the heat dissipation arm 6 and the heat dissipation fin 4 need to be Set certain angle settings.
- channels of different shapes can be constructed outside the electrical connection skeleton 3 to achieve better heat dissipation effects.
- the heat dissipation fins 4 and the heat dissipation arms 6 are arranged in a T-shape or L-shape.
- the heat dissipation arm 6 seals the outer periphery of the heat dissipation fin 4 .
- the outer periphery of the heat dissipation arm 6 is closed to increase the heat dissipation area.
- cooling gas can be introduced into the closed cavity, which can take away the heat generated by the skeleton more quickly and achieve better heat dissipation effect.
- the heat dissipation arm 6 is covered with an insulating layer 5 around its periphery.
- the material of the insulation layer 5 is PVC. On the one hand, it ensures the insulation performance, and on the other hand, it also has waterproof performance, wear resistance and hardness.
- the insulation material of the cable can also be rubber, TPE, XPE, PP, XLPE, FEP, ETFE, One or more of TPR and TPFE.
- a shielding layer and an outer insulating layer are also arranged around the insulating layer 5 .
- the shielding layer can reduce the interference of electromagnetic radiation generated by the electrical connection frame 3 to other electrical devices in the car.
- the shielding layer is made of conductor and needs to be grounded, so an insulation layer 5 is provided between the shielding layer and the electrical connection frame 3 to prevent the two contact.
- the outer insulation layer prevents the shielding layer from contacting the car shell and causing a short circuit.
- connection frame 3 and the connection terminal 2 are connected by welding or crimping.
- the specific welding method is one or more of resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, and magnetic induction welding.
- At least part of the electrical connection skeleton 3 is a flexible body.
- the flexible body can ensure that the electrical connection frame 3 can have a larger bending angle to facilitate installation in a car body with a relatively large corner.
- the electrical connection skeleton 3 includes at least one bend. To meet the needs of vehicle interior body installation.
- One of the connectors 1 is a charging stand.
- One end of the electrical connection frame 3 is connected to the terminal in the charging base, and the other end can be connected to the vehicle battery to form a complete charging system.
- a vehicle includes the aforementioned electric energy transmission assembly 1.
- the vehicle also includes a heat dissipation device (not shown in the figure).
- a heat dissipation device (not shown in the figure).
- the gap between the insulating layer 5 and the heat dissipation fins 4 forms a cavity.
- the heat dissipation device transports air into the cavity, and the air circulates to achieve a better heat dissipation effect.
- the vehicle further includes a heat dissipation device.
- a heat dissipation device When the heat dissipation arm 6 seals the outer periphery of the heat dissipation fin 4, the gap between the heat dissipation arm 6 and the heat dissipation fin 4 forms a cavity, The heat dissipation device transports air into the cavity, and the air circulates to achieve a better heat dissipation effect.
- the vehicle further includes a heat dissipation device.
- a heat dissipation device When an insulation layer 5 is placed around the heat dissipation arm 6, as shown in Figure 8, the insulation layer 5, the heat dissipation fins 4 and the heat dissipation fins 4 are connected to each other.
- the gap between the heat dissipation arms 6 forms a cavity.
- the heat dissipation device transports air into the cavity, and the air circulates to achieve a better heat dissipation effect.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明公开了一种电能传输总成及车辆,包括至少一根电连接骨架和设置在所述电连接骨架两端的连接器所述电连接器包含连接端子,所述电连接骨架两端与所述连接端子电连接,所述电连接骨架外周设置至少一个散热翅。结构简单,散热效果好。
Description
本申请要求2022年3月14日递交的申请号为CN202210248400.9、发明名称为“一种电能传输总成及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及电能传输技术领域,更具体地,涉及一种电能传输总成及车辆。
现有技术中,电动汽车是以车载电源为动力,用电机驱动车轮行驶的车辆,其以环保节能受到人们的广泛接受及市场推广。随着科技的发展,电动汽车的续驶里程大大提高、充电时间大大缩短,但是在现有的电能传输系统中,连接器使用的电缆线芯没有主动散热的机构,散热性能有待提高。因此市场急需研制一种新型结构的电能传输连接器来帮助人们解决现有的问题。
发明内容
为了解决上述问题,本发明的第一方面,提供了一种电能传输总成,包括至少一根电连接骨架和设置在所述电连接骨架两端的连接器,所述连接器包含连接端子,所述电连接骨架两端与所述连接端子电连接,所述电连接骨架外周设置至少一个散热翅。
所述电连接骨架的材质为纯铝或铝含量在90%以上的铝合金。
所述电连接骨架至少部分为中空结构。
所述散热翅与所述电连接骨架一体成型。
所述散热翅与所述电连接骨架通过焊接或粘接或卡接或螺接或压接的方式连接。
所述散热翅与所述电连接骨架的材质不相同。
所述散热翅的材质为高导热性材料。
所述高导热性材料为金属、导热绝缘橡胶、柔性导热垫、导热树脂中的一种或几种。
所述高导热性材料的导热率大于等于98W/m·K。
所述电连接骨架横截面形状所述电连接骨架的横截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L
形、T形、P形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或多种。
所述散热翅的横截面形状为弧形、齿轮形、梯形、多边形、四边形、梭形、曲线形和波浪形的一种或几种。
所述散热翅在所述电连接骨架向外部延伸方向或向外部延伸的切线方向与所述电连接骨架的径向方向的夹角为0°-53°。
所述散热翅的横截面在靠近所述电连接骨架位置的宽度,大于所述散热翅的横截面在远离所述电连接骨架位置的宽度。
所述散热翅的横截面的边角处全部是倒角或倒圆。
所述散热翅为多个,多个所述散热翅分布在所述电连接骨架外周上。
多个所述散热翅均匀的分布在所述电连接骨架外周上。
多个所述散热翅径向高度相同。
多个所述散热翅径向高度不同。
不同径向高度的所述散热翅间隔放置。
所述散热翅最大径向高度,为所述电连接骨架最大外径的1%-56%。
所述散热翅的外周面为平面。
所述散热翅的外周面为弧面。
所述散热翅在所述电连接骨架轴向方向上呈螺旋状布置。
所述螺旋状的最小螺距为所述电连接骨架的最大外径。
所述散热翅的外周套设绝缘层。
所述散热翅在远离所述电连接骨架的端部,还设置散热臂,所述散热翅与所述散热臂一体成型。
所述散热翅在远离所述电连接骨架的端部,还设置散热臂,所述散热翅与所述散热臂通过焊接或粘接或卡接或螺接或压接的方式连接。
所述散热臂径向方向的厚度,为所述电连接骨架最大外径的1%-35%。
所述散热翅与所述散热臂材质不相同。
所述散热臂材质高导热性材料。
所述高导热性材料为金属、导热绝缘橡胶、柔性导热垫、导热树脂中的一种或几种。
所述散热臂的横截面形状为梯形、多边形、四边形、梭形、曲线形和波浪形的一种或几种。
所述散热翅与所述散热臂呈一定角度设置。
所述散热翅与所述散热臂呈T型或L型布置。
所述散热臂将所述散热翅的外周封闭。
所述散热臂外周套设绝缘层。
所述绝缘层外周还套设屏蔽层和外绝缘层。
所述电连接骨架与所述连接端子焊接或压接连接。
所述电连接骨架的至少部分区域为柔性体。
所述电连接骨架包括至少一个弯曲部。
其中一个所述连接器为充电座。
本发明还提供了一种车辆,包括如上所述的电能传输总成。
在一实施例中,还包括散热装置,当所述散热翅的外周套设所述绝缘层时,所述绝缘层与所述散热翅的间隙形成腔体,所述散热装置将空气输送到所述腔体中。
在另一实施例中,还包括散热装置,当所述散热臂将所述散热翅的外周封闭时,所述散热臂与所述散热翅的间隙形成腔体,所述散热装置将空气输送到所述腔体中。
在又一实施例中,还包括散热装置,当所述散热臂外周套设绝缘层时,所述绝缘层与所述散热翅和所述散热臂的间隙形成腔体,所述散热装置将空气输送到所述腔体中。
本发明具有以下技术效果:
1、沿电连接骨架的外周设置散热翅,此结构不仅能够增加电连接骨架的散热面积,增强在工作时的散热效果,而且载流量大,导电性能更好。
2、本发明采用的中空结构则能有效的避免电阻增加,保证传输效率。传输相同的电流可以使用线径更小的电连接骨架,同时中空结构还能降低整车重量,节约成本。
3、传输相同的电流可以使用线径更小的电连接骨架3,同时中空结构还能降低重量,节约成本。
4、由于趋肤效应,电流集中在电连接骨架3的表面,中空的结构能够有效的降重,还不会降低导通电流的大小。并且由于散热翅4的散热效果,使中空的电连接骨架3在流通电流时,温度也不会超标。
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本发明的电能传输连接器的结构示意图;
图2-图4为本发明电连接骨架的截面图;
图5-图6为本发明电连接骨架散热翅的截面图;
图7-图8为本发明电连接骨架带散热臂的截面图;
图9-图10为本发明电连接骨架结构示意图。
图中标示如下:
1、连接器;2、连接端子;3、电连接骨架;4、散热翅;5、绝缘层;6、散热臂。
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。传输相同的电流可以使用线径更小的电连接骨架3,同时中空结构还能降低重量,节约成本。
一种电能传输总成,如图1所示,包括至少一根电连接骨架3和设置在所述电连接骨架3两端的连接器1,所述电连接器1包含连接端子2,所述电连接骨架3两端与所述连接端子2电连接,所述电连接骨架3外周设置至少一个散热翅4。
如图1-图4所示,沿电连接骨架3的外周设置散热翅4不仅能够增加电连接骨架3散热面积,增强散热效果,而且载流量大,导电性能更好,具体的,散热翅4沿电连接骨架3的轴向方向延伸设置。
在一具体的实施方式中,所述电连接骨架3至少部分为中空结构。中空结构更利于电连接骨架3的散热。当导体中有交流电或者交变电磁场时,导体内部的电流分布不均
匀,电流集中在导体的“皮肤”部分,也就是说电流集中在导体外表的薄层,越靠近导体表面,电流密度越大,导体内部实际上电流较小,结果使导体的电阻增加,使它的损耗功率也增加。这一现象称为趋肤效应。本发明采用的中空结构则能有效的避免电阻增加,保证传输效率。
由于趋肤效应,电流集中在电连接骨架3的表面,中空的结构能够有效的降重,还不会降低导通电流的大小。并且由于散热翅4的散热效果,使中空的电连接骨架3在流通电流时,温度也不会超标。
在一具体的实施方式中,如图5和图6所示,所述散热翅4的外周套设绝缘层5。
绝缘层5的材质为PVC,一方面保证绝缘性能,另一方面还具有防水性能,耐磨性和硬度,电缆的绝缘的材质还可以是橡胶,TPE、XPE、PP、XLPE、FEP、ETFE、TPR和TPFE的一种或多种。
散热翅4的外周套设绝缘层5,散热翅4的外周与绝缘层5贴合,能够保证电连接骨架3产生的热量传导到外部。
在具体的实施方式中,所述电连接骨架3的材质为纯铝或铝含量在90%以上的铝合金。
采用纯铝或铝含量在90%以上的铝合金代替现有技术中通常使用的铜导芯,由于铝的密度仅为铜的三分之一,而根据电气性能实心导芯电阻率的差异,在满足相同导电性能的前提下,铝与铜的线径比只相差1.28倍,铝材重量只有相同载流量铜材的一半,在不增加电缆装车空间的情况下,可大大减轻线材重量,有利于实现车体的轻量化。而且采用比重小,材质价格便宜的铝导芯(包括铝芯或其合金材料)代替比重大,材质价格高的铜导芯,可减少材料成本和运输成本,节约车辆的生产成本。
优选地,所述铝合金是铝含量在90%以上的铝铜合金或铝镁合金或铝锂合金或铝锰合金或铝锌合金或铝硅合金。
在具体的实施方式中,所述散热翅4与所述电连接骨架3一体成型。
散热翅4与电连接骨架3使用相同材质一体成型设置,提高生产效率。具体可以采用连续挤出工艺使电连接骨架3与散热翅4一体成型,这样散热翅4与电连接骨架3的连接更牢固,不易脱落。
在具体的实施方式中,所述散热翅4与所述电连接骨架3通过焊接或粘接或卡接或螺接或压接的方式连接。
具体的根据实际使用环境,散热翅4和电连接骨架3也可以通过焊接或粘结的方式连接。
具体的焊接方式为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接的一种或几种。
电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法。
摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
压力焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
扩散焊方式,指将工件在高温下加压,但不产生可见变形和相对移动的固态焊方法。
磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的传导金属焊接在一起。
具体焊接方式根据散热翅4和电连接骨架3的实际状态,选择合适的连接方式或者连接方式组合,实现有效的电性连接。
螺接方式,是指螺纹连接,用螺纹件(或被连接件的螺纹部分)将被连接件连成一体的可拆卸连接。常用的螺纹联接件有螺栓、螺柱、螺钉和紧定螺钉等,多为标准件。
卡接方式,是指在散热翅4或电连接骨架3上分别设置对应的卡爪或卡槽,通过卡槽和卡爪进行装配,使其连接在一起。卡接的方式优点是连接快速,可拆卸。
散热翅4与电连接骨架3接触面为粘贴层,粘贴层为导热材料制作的带有粘性的材料,通过粘贴层将散热翅4与电连接骨架3粘接在一起。
压接是将散热翅4与电连接骨架3装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
在具体的实施方式中,所述散热翅4与所述电连接骨架3的材质不相同。电连接骨架3主要功能是导通电流,其导电率高,通常采用电能传输性能好的材料,但是导电率高的材料导热率可能不高,而散热翅4可以采用导热性更好的材料,这样的组合可以使电能传输总成同时具有较好的导电性和较好的散热性。
所述散热翅4的材质为高导热性材料。高导热材料可以将产生的热量及时传到出去,降低电能传输总成的温度,确保安全性。
具体的,所述高导热性材料为金属、导热绝缘橡胶、柔性导热垫、导热树脂中的一种或几种。其中,导热绝缘橡胶是具有极佳的导热性,可广泛用于制作各种热传递介质,使用时,电连接骨架3表面作一般的清洁处理,将导热绝缘橡胶制的散热翅4设置在电连接骨架3上即可。柔性导热垫是高性能间隙填充导热材料,主要用于电子设备与散热片或产品外壳间的传递界面。具有良好的粘性、柔性、良好的压缩性能以及具有优良的热传导率。使其在使用中能完全使空气排出,以达到接触充分。散热效果明显增加。导热树脂具有绝缘性优异、固化收环缩小、机械强度高、耐化学药品性好等特点,使用者可以根据需要选择不同材质。
在具体的实施方式中,所述高导热性材料的导热率大于等于98W/m·K。发明人为了验证高导热材料的导热率对电连接骨架3温升的影响,选用10根相同截面积、相同材质、相同长度的电连接骨架3,并通相同的电流,采用不同导热率的高导热性材料做为散热翅4,并读取各个电连接骨架3的温升值,记录在表1中。实验方法是在封闭的环境中,将采用不同材质散热翅4的电连接骨架3导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表1:不同导热率的高导热性材料对电连接骨架3温升的影响
从上表1中可以看出,当高导热性材料的导热率小于98W/m·K时,电连接骨架3的温升值不合格,高导热性材料的导热率越大,电连接骨架3的温升值越小。因此,发明人将高导热性材料的导热率设定为大于等于98W/m·K。
在具体的实施方式中,所述电连接骨架3横截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L形、T形、P形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或多种。
根据实际使用环境,可选用横截面不同的电连接骨架3。更进一步的,具体的如图2-图4所示,电连接骨架3的横截面形状呈圆形、矩形和六边形,能够更好的根据车辆车身的轮廓进行布线,减少布线耗材。
所述散热翅4的横截面形状为弧形、齿轮形、梯形、多边形、四边形、梭形、曲线形和波浪形的一种或几种。
具体的,如图6所示,散热翅4的横截面形状为梯形。
在具体的实施方式中,所述散热翅4在所述电连接骨架3向外部延伸方向或向外部延伸的切线方向与所述电连接骨架3的径向方向的夹角为0°-53°。散热翅4与径向方向的夹角越大,意味着其越靠近电连接骨架3,这样获得的散热效果也就越差。
为了验证散热翅4在电连接骨架3向外部延伸方向或向外部延伸的切线方向与电连接骨架3的径向方向的夹角与电连接骨架3温升的影响,发明人选用了相同尺寸的电连接骨架3和散热翅4,散热翅4与电连接骨架3的径向方向的不同角度的进行测试,在密封的环境中,对不同的电连接骨架3样件通相同的电流,测量电连接骨架3的温度变化,温升小于50K为合格值。
表2,散热翅4在电连接骨架3向外部延伸方向或向外部延伸的切线方向与电连接骨架3的径向方向的夹角与电连接骨架3温升的影响
从上表2可以看出,当散热翅4与电连接骨架3的径向方向的夹角大于53°后散热效果明显下降,不符合合格的温升值。因此,发明人优选所述散热翅4在所述电连接骨
架3向外部延伸方向或向外部延伸的切线方向与所述电连接骨架3的径向方向的夹角为0°-53°。
在具体的实施方式中,所述散热翅4的横截面在靠近所述电连接骨架3位置的宽度,大于所述散热翅4的横截面在远离所述电连接骨架3位置的宽度。
如图6所示,此设计能够保证散热翅4牢固的固定在电连接骨架3上,当有外力作用时,能够保证散热翅4不易产生变形和脱落。
所述散热翅4的横截面的边角处全部是倒角或倒圆。如图5所示,散热翅4外部包覆绝缘层5,倒角或倒圆设计为了防止与绝缘层5摩擦,防止绝缘层5破损。还能在散热翅4与其他部件接触时,起到导向作用,避免刚性太强,导致散热翅4的脱落。散热翅4底部与电连接骨架3连接位置设置倒角或倒圆,能够保证散热翅4牢固的固定在电连接骨架3上,当有外力作用时,能够保证散热翅4不易产生变形和脱落。
在具体的实施方式中,如图2-图8所示,所述散热翅4为多个,多个所述散热翅4分布在所述电连接骨架3外周上。散热翅4的数量越多,电连接骨架3的散热效果越好。但太密集也会使空气流通不畅,反而降低了散热效果。
更进一步的,多个所述散热翅4均匀的分布在所述电连接骨架3外周上。电连接骨架3外周设置多个散热翅4不仅增大散热面积,起到更好的散热效果,而且,在电连接骨架3弯折过程中,均匀的设置散热翅4能够保证电连接骨架3的各处受力均匀,也能保证电连接骨架3外部包覆的绝缘层5受力均匀。
更进一步的,散热翅4可以平行的间隔设置在电连接骨架3的外周上。
如图2所示,多个所述散热翅4径向高度相同。散热翅4的外部包覆绝缘层5,保证绝缘层5受力均匀。
如图6所示,多个所述散热翅4径向高度不同。不同径向高度的所述散热翅4间隔放置。
散热翅4径向高度不同,径向高度不同的相邻两个散热翅4之间空气可以互相流通,提高散热效果。
所述散热翅4最大径向高度,为所述电连接骨架3最大外径的1%-56%。
散热翅4的最大径向高度的设置对电连接骨架3的温升有一定的影响。
为了验证散热翅4的径向高度占电连接骨架3最大外径的百分比对电连接骨架3温升的影响,发明人进行了相关测试,实验方法选择相同的电连接骨架3,散热翅4与电连接骨架3一体成型设置,散热翅4的径向高度分别为电连接骨架3的比值不同,在密
封的环境中,对不同的电连接骨架3通相同的电流,温升小于50K为合格值,剥离绝缘层5后,对电连接骨架3的弯折60°进行测试,观察散热翅4是否变形。结果如表3所示。
表3,散热翅4最大径向高度占电连接骨架3最大外径的百分比对电连接骨架3温升及散热翅4变形的影响
从表3可以看出,散热翅4的径向高度占电连接骨架3最大外径的百分比小于1%时,电连接骨架3的温升大于50K,不符合要求。当散热翅4的径向高度占电连接骨架3最大外径的百分比大于56%时,散热翅4变形,不符合要求。所以发明人设定散热翅4的最大径向高度,为所述电连接骨架3最大外径的1%-56%。
所述散热翅4的外周面为平面。如图4所示,当电连接骨架3为扁带形状时,散热翅4的外周面设置为平面结构,能够与绝缘层5更好的贴合。
所述散热翅4的外周面为弧面。如图3所示,当电连接骨架3为圆形、椭圆形的形状时,散热翅4的外周面设置为弧面。
具体的根据实际的使用情况,散热翅4的外周面为平面或弧面。
在一具体的实施方式中,所述散热翅4在所述电连接骨架3轴向方向上呈螺旋状布置。
如图9-图10所示,散热翅4螺旋状布置,散热翅4与电连接骨架3和绝缘层5之间形成了螺旋状通道,此设计能够保证电连接骨架3各处散热效果相同,避免局部过热,同时螺旋状布置同一散热翅4的径向高度相同,那么绝缘层5与电连接骨架3之间的空隙也会相同,更有利于散热。同时,相同长度的电连接骨架3,散热翅4呈螺旋布置,长度比平行设置的散热翅4更长,增大了散热面积,使电能传输总成的散热效果更好。
所述螺旋状的最小螺距为所述电连接骨架3的最大外径。
散热翅4螺旋状的最小螺距大于等于电连接骨架3的最大外径,如果螺距太小,各散热臂6之间空隙较小,起不到散热效果。
在具体的实施方式中,如图7和图8所示,所述散热翅4在远离所述电连接骨架3的端部,还设置散热臂6,所述散热翅4与所述散热臂6一体成型。散热臂6的设置,能够将散热翅4导出的热量更快的传导到外部,起到加速散热效果的作用。一体成型的散热臂6和散热翅4能够提高生产效率。具体可以采用连续挤出工艺使散热臂6与散热翅4一体成型,这样散热翅4与散热臂6的连接更牢固,不易脱落。
所述散热翅4在远离所述电连接骨架3的端部,还设置散热臂6,所述散热翅4与所述散热臂6通过焊接或粘接或卡接或螺接的方式连接。
具体的焊接方法可以为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接和压接中的一种或几种。
电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法。
摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
压力扩散焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的传导金属焊接在一起。
粘接方法为:散热翅4与所述散热臂6接触面为粘贴层,粘贴层为导热材料制作的带有粘性的材料,通过粘贴层将散热翅4与所述散热臂6粘接在一起。
卡接方法为:散热翅4与所述散热臂6接触面一个为卡爪,一个为卡槽,通过卡爪与卡槽的装配,使散热翅4与所述散热臂6接触面稳定的连接在一起。
螺接方法为:在散热翅4与所述散热臂6上分别设置螺纹和螺钉,通过螺纹和螺钉的螺接,将导热介质4与温度传感器2接触面稳定的连接在一起。
所述散热臂6径向方向的厚度,为所述电连接骨架3最大外径的1%-35%。
散热臂6的设置对电连接骨架3的温升有一定的影响。
为了验证散热臂6的径向厚度对电连接骨架3最大外径的百分比对电连接骨架3温升的影响,发明人进行了相关测试,实验方法选择相同的电连接骨架3,散热臂6与散热翅4和电连接骨架3一体成型设置,散热臂6的径向厚度分别占电连接骨架3的最大外径的比值不同,在密封的环境中,对不同的电连接骨架3通相同的电流,温升小于50K为合格值。结果如表4所示。
表4,散热臂6最大径向厚度占电连接骨架3最大外径的百分比对电连接骨架3温升的影响
从表4可以看出,散热臂6的最大径向厚度占电连接骨架3最大外径的百分比小于于1时,温升值大于50K,不符合要求,但是当散热臂6的最大外径占比超过35%时,降温效果已经不明显,而生产成本却会大大增加,所述发明人设定散热臂6的径向方向厚度为电连接骨架3最大外径的1%-35%。
在具体的实施方式中,所述散热翅4与所述散热臂6材质不相同。散热翅4采用散热效果好的材料,但是可能强度小,在和其他部件接触中易脱落或损坏,而散热臂6相对单薄又明显突出于散热翅,所以可以采用散热效果比散热翅4材质导热性略差但是强度非常好的材质。
在具体的实施方式中,所述散热臂6材质为高导热性材料。可以和散热翅4采用相同或不同的组合。
在具体的实施方式中,所述高导热性材料为金属、导热绝缘橡胶、柔性导热垫、导热树脂中的一种或几种。
在具体的实施方式中,所述散热臂6的横截面形状为梯形、多边形、四边形、梭形、曲线形和波浪形的一种或几种。
具体的如图6-图7所示,散热臂6的横截面形状为梯形或多边形。
在具体的实施方式中,所述散热翅4与所述散热臂6呈一定角度设置。
根据实际使用的环境,圆形的电连接骨架3连接的散热翅4环形设置,散热臂6外部包覆绝缘层5,为了更好的与绝缘层5贴合,散热臂6与散热翅4需设置一定的角度设置。另外,不同的角度,可以在电连接骨架3外构建不同形状的通道,实现更好的散热效果。
在具体的实施方式中,如图6和图8所示,所述散热翅4与所述散热臂6呈T型或L型布置。
在具体的实施方式中,所述散热臂6将所述散热翅4的外周封闭。散热臂6的外周封闭设置,增加散热面积。同时,封闭的腔体可以通入冷却气体,能够更加快速的带走骨架产生的热量,起到更好的散热效果。
在具体的实施方式中,如图8所示,所述散热臂6外周套设绝缘层5。
绝缘层5的材质为PVC,一方面保证绝缘性能,另一方面还具有防水性能,耐磨性和硬度,电缆的绝缘的材质还可以是橡胶,TPE、XPE、PP、XLPE、FEP、ETFE、TPR和TPFE的一种或多种。
在具体的实施方式中,所述绝缘层5外周还套设屏蔽层和外绝缘层。
屏蔽层能够降低电连接骨架3产生的电磁辐射对车内其他用电装置的干扰,屏蔽层材质为导体,并且需要接地,所以在屏蔽层和电连接骨架3之间设置绝缘层5,防止两者接触。外绝缘层能够防止屏蔽层和车壳接触发生短路。
在具体的实施方式中,所述电连接骨架3与所述连接端子2焊接或压接连接。
具体的焊接方式为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接的一种或几种。
在一些实施例中,所述电连接骨架3的至少部分区域为柔性体。柔性体能够保证电连接骨架3上能够做出较大的折弯角度,以方便设置在拐角比较大的车体内。
在一些实施例中,所述电连接骨架3包括至少一个弯曲部。以满足车内体安装的需要。
其中一个所述连接器1为充电座。
电连接骨架3的一端与充电座内的端子连接,另一端可以与车载电池连接,形成一个完整的充电系统。
一种车辆,包括前面所述的电能传输总成1。
在具体的实施方式中,所述车辆,还包括散热装置(图中未示出),当所述散热翅4的外周套设所述绝缘层5时,如图5和图6所示,所述绝缘层5与所述散热翅4的间隙形成腔体,所述散热装置将空气输送到所述腔体中,空气流通,起到更好的散热效果。
在具体的实施方式中,所述车辆,还包括散热装置,当所述散热臂6将所述散热翅4的外周封闭时,所述散热臂6与所述散热翅4的间隙形成腔体,所述散热装置将空气输送到所述腔体中,空气流通,起到更好的散热效果。
在具体的实施方式中,所述车辆,还包括散热装置,当所述散热臂6外周套设绝缘层5时,如图8所示,所述绝缘层5与所述散热翅4和所述散热臂6的间隙形成腔体,所述散热装置将空气输送到所述腔体中,空气流通,起到更好的散热效果。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。
Claims (45)
- 一种电能传输总成,包括至少一根电连接骨架和设置在所述电连接骨架两端的连接器,其特征在于,所述连接器包含连接端子,所述电连接骨架两端与所述连接端子电连接,所述电连接骨架外周设置至少一个散热翅。
- 根据权利要求1所述的电能传输总成,其特征在于,所述电连接骨架的材质为纯铝或铝含量在90%以上的铝合金。
- 根据权利要求1所述的电能传输总成,其特征在于,所述电连接骨架至少部分为中空结构。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅与所述电连接骨架一体成型。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅与所述电连接骨架通过焊接或粘接或卡接或螺接或压接的方式连接。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅与所述电连接骨架的材质不相同。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅的材质为高导热性材料。
- 根据权利要求7所述的电能传输总成,其特征在于,所述高导热性材料为金属、导热绝缘橡胶、柔性导热垫、导热树脂中的一种或几种。
- 根据权利要求7所述的电能传输总成,其特征在于,所述高导热性材料的导热率大于等于98W/m·K。
- 根据权利要求1所述的电能传输总成,其特征在于,所述电连接骨架横截面形状所述电连接骨架的横截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L形、T形、P形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或多种。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅的横截面形状为弧形、齿轮形、梯形、多边形、四边形、梭形、曲线形和波浪形的一种或几种。
- 根据权利要求11所述的电能传输总成,其特征在于,所述散热翅在所述电连接骨架向外部延伸方向或向外部延伸的切线方向与所述电连接骨架的径向方向的夹角为0°-53°。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅的横截面在靠近所述电连接骨架位置的宽度,大于所述散热翅的横截面在远离所述电连接骨架位置的宽度。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅的横截面的边角处全部是倒角或倒圆。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅为多个,多个所述散热翅分布在所述电连接骨架外周上。
- 根据权利要求15所述的电能传输总成,其特征在于,多个所述散热翅均匀的分布在所述电连接骨架外周上。
- 根据权利要求15所述的电能传输总成,其特征在于,多个所述散热翅径向高度相同。
- 根据权利要求15所述的电能传输总成,其特征在于,多个所述散热翅径向高度不同。
- 根据权利要求18所述的电能传输总成,其特征在于,不同径向高度的所述散热翅间隔放置。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅最大径向高度,为所述电连接骨架最大外径的1%-56%。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅的外周面为平面。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅的外周面为弧面。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅在所述电连接骨架轴向方向上呈螺旋状布置。
- 根据权利要求23所述的电能传输总成,其特征在于,所述螺旋状的最小螺距为所述电连接骨架的最大外径。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅的外周套设绝缘层。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅在远离所述电连接骨架的端部,还设置散热臂,所述散热翅与所述散热臂一体成型。
- 根据权利要求1所述的电能传输总成,其特征在于,所述散热翅在远离所述电连接骨架的端部,还设置散热臂,所述散热翅与所述散热臂通过焊接或粘接或卡接或螺接或压接的方式连接。
- 根据权利要求26或27所述的电能传输总成,其特征在于,所述散热臂径向方向的厚度,为所述电连接骨架最大外径的1%-35%。
- 根据权利要求27所述的电能传输总成,其特征在于,所述散热翅与所述散热臂材质不相同。
- 根据权利要求26或27所述的电能传输总成,其特征在于,所述散热臂材质高导热性材料。
- 根据权利要求30所述的电能传输总成,其特征在于,所述高导热性材料为金属、导热绝缘橡胶、柔性导热垫、导热树脂中的一种或几种。
- 根据权利要求26或27所述的电能传输总成,其特征在于,所述散热臂的横截面形状为梯形、多边形、四边形、梭形、曲线形和波浪形的一种或几种。
- 根据权利要求26或27所述的电能传输总成,其特征在于,所述散热翅与所述散热臂呈一定角度设置。
- 根据权利要求26或27所述的电能传输总成,其特征在于,所述散热翅与所述散热臂呈T型或L型布置。
- 根据权利要求26或27所述的电能传输总成,其特征在于,所述散热臂将所述散热翅的外周封闭。
- 根据权利要求26或27所述的电能传输总成,其特征在于,所述散热臂外周套设绝缘层。
- 根据权利要求25所述的电能传输总成,其特征在于,所述绝缘层外周还套设屏蔽层和外绝缘层。
- 根据权利要求1所述的电能传输总成,其特征在于,所述电连接骨架与所述连接端子焊接或压接连接。
- 根据权利要求1所述的电能传输总成,其特征在于,所述电连接骨架的至少部分区域为柔性体。
- 根据权利要求1所述的电能传输总成,其特征在于,所述电连接骨架包括至少一个弯曲部。
- 根据权利要求1所述的电能传输总成,其特征在于,其中一个所述连接器为充电座。
- 一种车辆,其特征在于,包括如权利要求1-41任一项所述的电能传输总成。
- 根据权利要求42所述的车辆,其特征在于,还包括散热装置,当散热翅的外周套设绝缘层时,所述绝缘层与所述散热翅的间隙形成腔体,所述散热装置将空气输送到所述腔体中。
- 根据权利要求42所述的车辆,其特征在于,还包括散热装置,当散热臂将散热翅的外周封闭时,所述散热臂与所述散热翅的间隙形成腔体,所述散热装置将空气输送到所述腔体中。
- 根据权利要求42所述的车辆,其特征在于,还包括散热装置,当散热臂外周套设绝缘层时,所述绝缘层与所述散热翅和所述散热臂的间隙形成腔体,所述散热装置将空气输送到所述腔体中。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210248400.9A CN114709679A (zh) | 2022-03-14 | 2022-03-14 | 一种电能传输总成及车辆 |
CN202210248400.9 | 2022-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023174280A1 true WO2023174280A1 (zh) | 2023-09-21 |
Family
ID=82168535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/081363 WO2023174280A1 (zh) | 2022-03-14 | 2023-03-14 | 一种电能传输总成及车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114709679A (zh) |
WO (1) | WO2023174280A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114709679A (zh) * | 2022-03-14 | 2022-07-05 | 吉林省中赢高科技有限公司 | 一种电能传输总成及车辆 |
CN115733102A (zh) * | 2022-11-22 | 2023-03-03 | 长春捷翼汽车零部件有限公司 | 带散热片的整体线束及车辆 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010056058A (ja) * | 2008-07-31 | 2010-03-11 | Autonetworks Technologies Ltd | 導電体 |
CN204333535U (zh) * | 2015-01-22 | 2015-05-13 | 重庆凯邦科技有限公司 | 连接线 |
CN208422505U (zh) * | 2018-06-15 | 2019-01-22 | 中辰电缆股份有限公司 | 一种高载流量电力电缆 |
CN110014951A (zh) * | 2017-09-30 | 2019-07-16 | 比亚迪股份有限公司 | 充电装置以及车辆 |
CN209433929U (zh) * | 2019-01-29 | 2019-09-24 | 江苏昌盛电缆集团有限公司 | 高载流量电缆线芯 |
CN210091741U (zh) * | 2019-08-06 | 2020-02-18 | 广东天虹电缆有限公司 | 一种新能源汽车充电用散热扁电缆 |
CN111162489A (zh) * | 2019-12-25 | 2020-05-15 | 奇瑞汽车股份有限公司 | 线束散热管套 |
CN210668833U (zh) * | 2019-10-29 | 2020-06-02 | 江苏金好电缆科技有限公司 | 一种耐高温的电动汽车传导电系统用电缆 |
CN210805318U (zh) * | 2019-12-07 | 2020-06-19 | 深圳市金洋电子股份有限公司 | 一种双头耐腐蚀连接线 |
CN213123919U (zh) * | 2020-10-29 | 2021-05-04 | 安徽海源特种电缆有限公司 | 一种带有氟塑料绝缘护套的耐高温计算机电缆 |
CN214589594U (zh) * | 2021-05-18 | 2021-11-02 | 东莞市奋飞电子有限公司 | 一种快速散热连接线 |
CN114709679A (zh) * | 2022-03-14 | 2022-07-05 | 吉林省中赢高科技有限公司 | 一种电能传输总成及车辆 |
CN217823612U (zh) * | 2022-03-14 | 2022-11-15 | 吉林省中赢高科技有限公司 | 一种电能传输总成及车辆 |
-
2022
- 2022-03-14 CN CN202210248400.9A patent/CN114709679A/zh active Pending
-
2023
- 2023-03-14 WO PCT/CN2023/081363 patent/WO2023174280A1/zh unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010056058A (ja) * | 2008-07-31 | 2010-03-11 | Autonetworks Technologies Ltd | 導電体 |
CN204333535U (zh) * | 2015-01-22 | 2015-05-13 | 重庆凯邦科技有限公司 | 连接线 |
CN110014951A (zh) * | 2017-09-30 | 2019-07-16 | 比亚迪股份有限公司 | 充电装置以及车辆 |
CN208422505U (zh) * | 2018-06-15 | 2019-01-22 | 中辰电缆股份有限公司 | 一种高载流量电力电缆 |
CN209433929U (zh) * | 2019-01-29 | 2019-09-24 | 江苏昌盛电缆集团有限公司 | 高载流量电缆线芯 |
CN210091741U (zh) * | 2019-08-06 | 2020-02-18 | 广东天虹电缆有限公司 | 一种新能源汽车充电用散热扁电缆 |
CN210668833U (zh) * | 2019-10-29 | 2020-06-02 | 江苏金好电缆科技有限公司 | 一种耐高温的电动汽车传导电系统用电缆 |
CN210805318U (zh) * | 2019-12-07 | 2020-06-19 | 深圳市金洋电子股份有限公司 | 一种双头耐腐蚀连接线 |
CN111162489A (zh) * | 2019-12-25 | 2020-05-15 | 奇瑞汽车股份有限公司 | 线束散热管套 |
CN213123919U (zh) * | 2020-10-29 | 2021-05-04 | 安徽海源特种电缆有限公司 | 一种带有氟塑料绝缘护套的耐高温计算机电缆 |
CN214589594U (zh) * | 2021-05-18 | 2021-11-02 | 东莞市奋飞电子有限公司 | 一种快速散热连接线 |
CN114709679A (zh) * | 2022-03-14 | 2022-07-05 | 吉林省中赢高科技有限公司 | 一种电能传输总成及车辆 |
CN217823612U (zh) * | 2022-03-14 | 2022-11-15 | 吉林省中赢高科技有限公司 | 一种电能传输总成及车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN114709679A (zh) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023174280A1 (zh) | 一种电能传输总成及车辆 | |
JP7203740B2 (ja) | アルミ端子及び銅アルミトランジションコネクタ | |
WO2023174277A1 (zh) | 一种电能传输总成及车辆 | |
WO2023030445A1 (zh) | 一种用于车辆的电能传输系统、充电装置和电动车辆 | |
WO2023174281A1 (zh) | 一种电能传输总成及车辆 | |
WO2023174275A1 (zh) | 一种具有固态冷却介质的连接器总成及一种车辆 | |
WO2023174293A1 (zh) | 一种具有固态冷却介质的连接器总成及一种车辆 | |
WO2023174247A1 (zh) | 一种电能传输连接装置及车辆 | |
WO2023174262A1 (zh) | 一种电能传输系统及一种汽车 | |
WO2023174260A1 (zh) | 一种具有液冷功能的连接器总成及一种车辆 | |
WO2023174276A1 (zh) | 一种具有液冷功能的连接器总成及一种车辆 | |
WO2024056048A1 (zh) | 一种新型铝端子 | |
CN217823612U (zh) | 一种电能传输总成及车辆 | |
WO2008069208A1 (ja) | シールド導電体及びシールド導電体の製造方法 | |
WO2024056071A1 (zh) | 一种新型铜铝电连接装置 | |
WO2023174279A1 (zh) | 一种电能传输总成及车辆 | |
WO2024109601A1 (zh) | 带散热片的整体线束及车辆 | |
CN114709685A (zh) | 一种多芯电连接器总成和车辆 | |
WO2023174246A1 (zh) | 新型屏蔽材料的连接器总成及车辆 | |
WO2023174259A1 (zh) | 一种具有固态冷却介质的连接器总成及一种车辆 | |
WO2023174245A1 (zh) | 一种具有液冷功能的连接器总成及一种车辆 | |
WO2023174257A1 (zh) | 一种连接器总成及加工方法 | |
CN217822167U (zh) | 一种电能传输系统及一种汽车 | |
WO2023174282A1 (zh) | 一种液冷连接器总成及一种车辆 | |
CN107634433A (zh) | 基于感应热压制坯的铝导线压接工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23769782 Country of ref document: EP Kind code of ref document: A1 |