CN217822167U - 一种电能传输系统及一种汽车 - Google Patents

一种电能传输系统及一种汽车 Download PDF

Info

Publication number
CN217822167U
CN217822167U CN202220552513.3U CN202220552513U CN217822167U CN 217822167 U CN217822167 U CN 217822167U CN 202220552513 U CN202220552513 U CN 202220552513U CN 217822167 U CN217822167 U CN 217822167U
Authority
CN
China
Prior art keywords
shaped
cavity
electrical connection
insulating layer
transfer system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202220552513.3U
Other languages
English (en)
Inventor
王超
苗云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Zhong Ying High Technology Co Ltd
Original Assignee
Jilin Zhong Ying High Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Zhong Ying High Technology Co Ltd filed Critical Jilin Zhong Ying High Technology Co Ltd
Priority to CN202220552513.3U priority Critical patent/CN217822167U/zh
Application granted granted Critical
Publication of CN217822167U publication Critical patent/CN217822167U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本实用新型公开了一种电能传输系统及一种汽车,包括至少一根电连接骨架、套接在所述电连接骨架外壁的绝缘层和设置在所述电连接骨架两端的连接器,所述电连接骨架具有至少一个弯曲部,在所述弯曲部至少部分中,所述绝缘层内壁到所述电连接骨架外周之间设置有至少一个腔体。此结构的设置能保证电能传输系统的安全性得到很大提高。

Description

一种电能传输系统及一种汽车
技术领域
本实用新型涉及电能传输技术领域,更具体地,涉及一种电能传输系统及一种汽车。
背景技术
随着汽车上的电器越来越多,大功率线缆也越来越多的被使用在汽车上,目前的大功率线缆多数采用多芯的柔性线缆,多芯的线缆虽然较柔软,能够方便加工和布线,都是由于线径过粗,重量较大,在汽车行驶过程中,线缆会频繁的摩擦车壳,导致线缆的绝缘层破损,造成高压放电或短路,轻则损坏车辆,重则会造成严重的交通事故。因此,实心的线缆成为替代柔性线缆的主要选择之一。
但是,车身内的布局环境复杂,需要线缆由多处弯曲成型,实心的线缆弯曲处的电阻发生变化,会造成弯曲处发热大于其它位置,造成部分绝缘层软化甚至熔化,造成高压放电或短路。另外,过高的热量也会对线缆弯曲处的布置环境造成影响,当紧贴线缆弯曲处的物体熔点较低时,会造成此物体熔化导致线缆整体被包裹,散热效果更差,最终导致线缆过热烧毁,甚至引发车辆燃烧。
因此,现有技术中亟需一种新的方案来解决上述问题。
实用新型内容
为了解决上述问题,本实用新型提供了一种新技术方案。
根据本实用新型的第一方面,提供了一种电能传输系统,包括至少一根电连接骨架和设置在所述电连接骨架两端的连接器,所述电连接骨架外侧设置有绝缘层,其特征在于,所述电连接骨架具有至少一个弯曲部,至少部分的所述弯曲部含有至少一个腔体,所述腔体位于所述绝缘层内壁到所述电连接骨架外周之间。
所述腔体内气压值大于所述电连接骨架所处环境的气压值。
所述腔体内包含阻挡击穿介质,所述阻挡击穿介质的介电击穿强度大于空气的介电击穿强度。
所述阻挡击穿介质含有硅化合物、卤化合物、氮化合物、碳化合物的一种或几种。
所述连接器包含连接端子,所述电连接骨架两端与所述连接端子电连接。
所述连接端子的材质为铜或铜合金。
所述电连接骨架材质为铝或铝合金,所述电连接骨架与所述连接端子通过焊接或压接的方式电连接。
所述电连接骨架为刚性体,所述电连接骨架的抗拉强度大于75MPa。
所述电连接骨架的横截面形状为圆形、椭圆形、矩形、多边形、A形、 B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L形、P 形、T形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或多种。
所述电连接骨架的横截面有棱边时,所述棱边倒角或倒圆。
所述弯曲部的弯曲半径大于等于所述电连接骨架最大外径的1.19倍。
所述弯曲部为至少两个,相邻两个所述弯曲部的距离大于等于所述电连接骨架最大外径的2.6倍。
所述腔体的径向最大高度,小于等于所述绝缘层厚度的3倍。
所述腔体的径向高度,从所述腔体的中间向四周逐渐减小。
所述腔体的占所述电连接骨架表面的最大尺寸,小于等于所述电连接骨架最大外径。
所述腔体在所述弯曲部表面上的面积之和,占所述弯曲部表面积的 20%-80%。
所述腔体的径向形状为圆形、椭圆形、多边形、扇形、棱形或梭形。
本实用新型还提供了一种汽车,包括如上所述的电能传输系统。
本实用新型的技术效果如下:
1、电连接骨架的弯曲部与绝缘层内壁之间存在腔体,腔体内存有空气,密闭空气的导热效果较差,因此当电连接骨架的弯曲部发热量较大时,不会影响到腔体外的绝缘层,从而保护弯曲部的绝缘层不会软化或熔化。
2、由于腔体内存有密闭空气有隔热作用,电连接骨架的弯曲部的热量无法传递到绝缘层之外,使包覆绝缘层的胶布、海绵等熔点低的物体不会受热熔化,降低了事故的发生概率。
3、腔体内存有的密闭空气在电连接骨架的弯曲部发热时会膨胀,但由于绝缘层的存在,会使腔体内的压力逐渐增大,根据帕邢定律,空气压力越大,击穿电压越高,因此会使弯曲部的耐电压击穿能力提升,电能传输系统的安全性得到提高。
通过以下参照附图对本实用新型的示例性实施例的详细描述,本实用新型的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本实用新型的实施例,并且连同其说明一起用于解释本实用新型的原理。
图1为本实用新型连接器总成的结构示意图;
图2-图4为本实用新型电连接骨架弯曲部的结构示意图;
图5图8图9为本实用新型电连接骨架不同横截面积的剖面图;
图6图7为本实用新型腔体结构示意图;
图10为本实用新型弯曲部结构示意图。
图中标示如下:
1、电连接骨架;2、绝缘层;3、连接器;4、弯曲部;5、连接端子; 6、腔体。
具体实施方式
现在将参照附图来详细描述本实用新型的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本实用新型的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本实用新型及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
一种电能传输系统,如图1-图10所示,包括至少一根电连接骨架1、套接在所述电连接骨架1外壁的绝缘层2和设置在所述电连接骨架1两端的连接器3,所述电连接骨架1具有至少一个弯曲部4,在所述弯曲部4至少部分中,所述绝缘层2内壁到所述电连接骨架1外周之间设置有至少一个腔体6。
在电能传输系统的设计过程中,电连接骨架1的截面积是根据导通电流进行周密的计算的,并且会留有充分的余量,即使电连接骨架1导通的电流由于电压不稳等原因有超过额定电流的情况,电连接骨架1也只会导致发热,不会使电连接骨架1熔断或烧毁。但是电连接骨架1外包覆的绝缘层2为塑料材质,其熔融温度在115℃到120℃之间,另外电连接骨架1 在安装的时候,绝缘层2外还需要包覆胶布、海绵等熔点低的物体,其熔融温度会在100摄氏度以下,因此,电连接骨架1在电流过大,温度升温超标时,其外周的绝缘层2或胶布或海绵等材料,才是需要保护不能熔化或者燃烧的物品。
如图6-图7所示,电连接骨架1的弯曲部4与绝缘层2内壁之间存在腔体6,腔体6内存有空气,密闭空气的导热效果较差,因此当电连接骨架1的弯曲部4发热量较大时,不会影响到腔体6外的绝缘层2,从而保护弯曲部4的绝缘层2不会软化或熔化。
由于腔体6内存有密闭空气有隔热作用,电连接骨架1的弯曲部4的热量无法传递到绝缘层2之外,使包覆绝缘层2的胶布、海绵等熔点低的物体不会受热熔化,降低了事故的发生概率。
腔体6内存有的密闭空气在电连接骨架1的弯曲部4发热时会膨胀,但由于绝缘层2的存在,会使腔体6内的压力逐渐增大,根据帕邢定律,空气压力越大,击穿电压越高,因此会使弯曲部4的耐电压击穿能力提升,电能传输系统的安全性得到提高。
在一些实施例中,所述腔体6内气压值大于所述电连接骨架1所处环境的气压值。只有腔体6的大气压值大于外部的气压值,才能从内支撑腔体6,防止腔体6的塌陷。同时,根据帕邢定律,空气压力越大,击穿电压越高,因此会使弯曲部4的耐电压击穿能力提升,电能传输系统的安全性得到提高。
在一些实施例中,所述腔体6内包含阻挡击穿介质,所述阻挡击穿介质的介电击穿强度大于空气的介电击穿强度。阻挡击穿介质具有更高的抗击穿能力,当电连接骨架1的电压较高时,与外界导电装置接近后,容易产生电场,若绝缘层2抗击穿能力差,电场会将绝缘层击穿导致瞬间短路,严重时会造成车辆损坏,因此,在腔体6内添加阻挡击穿介质能够提高绝缘层2部分的抗击穿能力,更能够提高电能传输系统的安全性。
在一些实施例中,所述阻挡击穿介质含有硅化合物、卤化合物、氮化合物、碳化合物的一种或几种。这几种化合物导热性能好,能够充分的辅助散热;热膨胀系数小,能够避免从内部胀破腔体6;同时电绝缘性能好,介电系数小,抗击穿电压高,能够更有效的防止击穿。
为了验证腔体6内不含有阻挡击穿介质和含有不同阻挡击穿介质对弯曲部4抗击穿效果的影响,发明人选用了相同尺寸的电连接骨架1,相同尺寸的弯曲部4,相同尺寸的腔体6,腔体6内为相同的压力值,分别设置腔体6内部不含有阻挡击穿介质,以及含有不同的阻挡击穿介质,分别做耐击穿电压的测试,观察击穿时的电压值,并记录在表1中。在本实施例中,耐击穿电压值大于2.1KV为合格值。
弯曲部4的耐击穿电压的测试方法:对电能传输系统进行通稳定电流,并在弯曲部4的电连接骨架1和绝缘层2分别设置电极,并在两个电极通直流高压,当两个电极发生击穿时,记录当时的电压值。在本实施例中,耐击穿电压值大于2.1KV为合格值。
表1,腔体内不含有阻挡击穿介质和含有不同阻挡击穿介质,对弯曲部4的温升和击穿电压的影响,
Figure DEST_PATH_GDA0003816118240000061
从上表1可以看出,当腔体6内部不含有阻挡击穿介质时,弯曲部4 的耐击穿电压值大于2.1KV,为贴近合格临界值,即没有超出合格值太多,此时弯曲部4的耐击穿性能还存在风险。当腔体6内部的阻挡击穿介质含有硅化合物、卤化合物、氮化合物、碳化合物时,弯曲部4的耐击穿电压值超出合格值很多,耐击穿性能显著优于腔体6内部不含有阻挡击穿介质时。因此,发明人设定阻挡击穿介质含有硅化合物、卤化合物、氮化合物、碳化合物的一种或几种。
如图1所示,所述连接器3包含连接端子5,所述电连接骨架1两端与所述连接端子5电连接。连接端子5用于和对插端的端子插接,从而时间电流的导通,以实现电能传输。
在具体的实施方式中,所述连接端子5的材质为铜或铜合金。
铜或铜合金导电率高,并且耐摩擦,而且目前大多数的用电装置的接电部分材质都是铜,因此需要使用材质为铜或铜合金的连接端子5进行插拔连接,连接端子5可以广泛应用于各种电传输场景。
在具体的实施方式中,所述电连接骨架1材质为铝或铝合金,所述电连接骨架1与所述连接端子5通过焊接或压接的方式电连接。
电连接骨架1的材质具体的可以采用铝或铜铝合金、铝镁合金、铝锂合金、铝锌合金等。
电连接端子5的材质为铜或铜合金,铜的金属惰性要大于铝,铜与铝之间的电极电位差为1.9997V,这两种金属连接通电后会发生电化学反应,导致铝线逐渐被氧化,降低铝线的机械强度和导电性,采用焊接的方式可以实现异种材料的连接,由于接触位置相融,导电效果更好。
具体的焊接方式为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接的一种或几种。
电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法。
摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
压力焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
扩散焊方式,指将工件在高温下加压,但不产生可见变形和相对移动的固态焊方法。
磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的传导金属焊接在一起。
具体焊接方式根据电连接骨架1和连接端子5的实际状态,选择合适的连接方式或者连接方式组合,实现有效的电性连接。
压接方式,压接是将电连接骨架1和连接端子5装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
在具体的实施方式中,所述电连接骨架1为刚性体,所述电连接骨架 1的抗拉强度大于75MPa。
电连接骨架1采用刚性导体,在车辆整体震动时不会与车壳进行摩擦,能够保证电连接骨架1的完整性。
刚性体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。绝对刚性体实际上是不存在的,只是一种理想模型,因为任何物体在受力作用后,都或多或少地变形,如果变形的程度相对于物体本身几何尺寸来说极为微小,在研究物体运动时变形就可以忽略不计。所以,由刚性体材料制成的电连接骨架1在使用过程中,产生的形变量微乎其微,可忽略不计,刚性体的抗拉强度越大,其变形量越小。
为了验证电连接骨架1的抗拉强度,对电连接骨架1拉断时的拉力值,折弯的扭矩以及振动过程中是否发生异响的影响,发明人选用了相同尺寸规格的,使用不同抗拉强度的电连接骨架1样件,对电连接骨架1拉断时的拉力值,折弯时的扭矩和振动过程中的异响进行测试。
电连接骨架1的拉力值的测试方法:使用万能拉力测试机,将电连接骨架 1,两端分别固定在万能拉力测试机的拉伸治具上,并以50mm/min的速度进行拉伸,记录最终拉断时的拉力值,在本实施例中,拉力值大于1600N为合格值。
电连接骨架1的扭矩测试方法:使用扭矩测试仪,将电连接骨架1以相同的半径,相同的速度弯折90°的时候,测试弯折过程中电连接骨架1变形的扭矩值,在本实施例中,扭矩值小于60N·m为优选值。
电连接骨架1是否会出现异响,试验方法为选择相同尺寸规格的,使用不同抗拉强度的电连接骨架1样件,相同规格的连接器2组装在一起,固定在振动试验台上,在振动试验过程中,观察电连接骨架1是否会出现异响。
表2:不同的抗拉强度对电连接骨架1的扭矩值和异响的影响
Figure DEST_PATH_GDA0003816118240000081
从上表2中可以看出,当电连接骨架1抗拉强度为小于75MPa时,电连接骨架1拉断时的拉力值小于1600N,此时电连接骨架1本身的强度不高,受到较小外力时容易拉断,造成电连接骨架1功能失效,从而无法起到电能传输的目的。
另一方面,由于电连接骨架1的抗拉强度值越大,电连接骨架1越不易发生形变,所以振动试验过程中,电连接骨架1越不容易相对两端连接的连接器3振动而产生异响,相反,电连接骨架1的抗拉强度值越小,电连接骨架1越容易发生形变,所以振动试验过程中,电连接骨架1越容易相对两端连接的连接器3振动而产生异响。从上表1中可以看出,当电连接骨架1抗拉强度为小于等于75MPa时,电连接骨架1在振动试验过程中会产生异响。所以发明人优选电连接骨架1的抗拉强度大于75MPa。
同时,在表1中也能看出,当电连接骨架1抗拉强度为大于480MPa时,电连接骨架1折弯90°时的扭矩值大于60N·m,此时,电连接骨架1不容置折弯,因此,发明人进一步优选电连接骨架1抗拉强度为大于75MPa且小于等于480MPa。
在一具体的实施方式中,所述电连接骨架1的横截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、 F形、H形、K形、L形、T形、P形、U形、V形、W形、X形、Y形、 Z形、半弧形、弧形、波浪形中的一种或多种。更进一步的,具体的如图5,图8和图9所示,电连接骨架1的横截面形状呈圆形、矩形和六边形,能够更好的根据电动车辆车身的轮廓进行布线,减少布线耗材。
所述电连接骨架1的横截面有棱边时,所述棱边倒角或倒圆。
电连接骨架1的外周包覆绝缘层2,防止棱边与绝缘层2摩擦损坏,所以把棱边设置成倒角或倒圆。
所述弯曲部4的弯曲半径大于等于所述电连接骨架1最大外径的1.19 倍。
电连接骨架1相较于多芯铝线,具有很好的刚性,不易在折弯的过程中出现断裂,本实用新型用电连接骨架1连接第一连接器和第二连接器,使从第一连接器输入的电流经第二连接器进入车载电池中。电连接骨架1 沿车壳布置,如果距离车壳太近,则在汽车运动中,电连接骨架1会与车壳干涉发出异响,经发明人测试,当电连接骨架1距离车壳的最小距离大于等于5mm时,能够有效杜绝异响的出现。电连接骨架1作为导体的很大一个优势在于它容易折弯,但是如果折弯的弯曲半径太小,弯曲内部的电连接骨架1受到较大的压缩,而弯曲外部的电连接骨架1受到较大的拉伸,会使电连接骨架1内部出现较多的褶皱和断裂,这样就会增加电连接骨架 1的电阻,影响电连接骨架1的导电率,因此经发明人测试,电连接骨架1 的弯曲半径,大于等于所述电连接骨架1最大外径的1.19倍时,电连接骨架1内部不会出现褶皱和断裂。
发明人为了验证弯曲部4的弯曲半径对电连接骨架1温升的影响,选用了相同截面形状,相同尺寸的电连接骨架1,分别制作成不同弯曲半径的样件,然后进行导通相同的电流,分别测试弯曲部4的温升。
弯曲部4的温升的测试方法:将弯曲部4封闭在相同大小的密闭空间中,并在密闭空间设置多个温度传感器,在电能传输系统未通电时,测量密闭空间内的温度值并取平均值,然后对电能传输系统进行通稳定电流,等到密闭空间内的温度稳定后,测量密闭空间内的温度值并取平均值,将两个温度平均值相减,即是弯曲部4的温升值。在本实施例中,温升值小于50K为合格值。
表3,弯曲部4的弯曲半径与电连接骨架1最大外径的比例,对弯曲部4的温升的影响
Figure DEST_PATH_GDA0003816118240000101
从上表3可以看出,当弯曲部4的弯曲半径与电连接骨架1最大外径的比例小于1.19倍时,弯曲部4的温升值大于50K,为不合格。当弯曲部 4的弯曲半径与电连接骨架1最大外径的比例大于1.19倍时,弯曲部4的温升值逐渐减小,趋势明显。因此,发明人设定所述弯曲部4的弯曲半径大于等于电连接骨架1最大外径的1.19倍。
在具体的实施方式中,所述弯曲部4为至少两个,相邻两个所述弯曲部4的距离大于等于所述电连接骨架1最大外径的2.6倍。
如图10所示,相邻两个弯曲部4的距离,是指两个弯曲部4之间的直线段的电连接骨架1的长度,在实际操作中,是将直线的电连接骨架1按照设计要求,将相应尺寸的电连接骨架1弯曲到一定的半径和角度,以适配安装环境,使电连接骨架1能够更合适的安装在车身内部。在将电连接骨架1弯曲的过程中,需要将部分电连接骨架1进行固定,才能将直线的电连接骨架1进行弯曲,固定的电连接骨架1部分长度不能太小,必须大于电连接骨架1最大外径的2.6倍,才能有效的将电连接骨架1固定住,不会在电连接骨架1弯曲时导致电连接骨架1移动或变形,保证弯曲部4 能够成型。
发明人为了验证相邻两个弯曲部4的距离与电连接骨架1最大外径的倍数,与直线的电连接骨架1进行弯曲的成功率的影响,选用尺寸相同的电连接骨架1,分别在相邻不同的距离进行弯曲,分别进行50次弯曲,记录弯曲良好的样件数量,并计算弯曲的成功率。在本实施例中,弯曲的成功率大于95%为合格。
表4,相邻两个弯曲部4的距离与电连接骨架1最大外径的倍数,与直线的电连接骨架1进行弯曲的成功率的影响
Figure DEST_PATH_GDA0003816118240000111
从上表4可以看出,当相邻两个弯曲部4的距离与电连接骨架1最大外径的倍数小于2.6倍时,直线的电连接骨架1进行弯曲的成功率小于95%,为不合格。当相邻两个弯曲部4的距离与电连接骨架1最大外径的倍数大于2.6倍时,直线的电连接骨架1进行弯曲的成功率逐渐上升,趋势明显,因此,发明人设定相邻两个所述弯曲部4的距离大于等于所述电连接骨架 1最大外径的2.6倍。
在具体的实施方式中,所述腔体6的径向最大高度,小于等于所述绝缘层2厚度的3倍。
所述腔体6的径向高度太高,在布线过程中,可能遇到狭窄空间,腔体6的径向高度过高会影响布线,同时腔体6部分绝缘层2的凸起也会与车壳或其他部件摩擦导致绝缘层2破裂,所述发明人将腔体6的径向最大高度限定为小于等于绝缘层2厚度的3倍。
发明人为了验证腔体6的径向最大高度与绝缘层2厚度的比例,对绝缘层2磨损的影响,选用尺寸相同的电连接骨架1,相同厚度的绝缘层2,不同的腔体6的径向最大高度的样件,分别将样件安装在振动试验台上,并在电连接骨架1附件模拟安装其他电器零件,然后进行振动试验,观察振动试验后,绝缘层2磨损的情况。在本实施例中,绝缘层2出现磨损为不合格。
表5,腔体6的径向最大高度与绝缘层2厚度的比例,对绝缘层2磨损的影响
Figure DEST_PATH_GDA0003816118240000121
从上表5可以看出,当腔体6的径向最大高度与绝缘层2厚度的比例小于等于3倍时,电连接骨架1的绝缘层2没有出现磨损,为合格状态。当腔体6的径向最大高度与绝缘层2厚度的比例大于3倍时,电连接骨架 1的绝缘层2开始出现磨损,为不合格状态。因此,发明人设定腔体6的径向最大高度,小于等于绝缘层2厚度的3倍。
在具体的实施方式中,所述腔体6的径向高度,从所述腔体6的中间向四周逐渐减小。
如图2-图4所示,腔体6的径向高度中间向四周逐渐减小。
在具体的实施方式中,所述腔体6的占所述电连接骨架1表面的最大尺寸,小于等于所述电连接骨架1最大外径。
如图2-图4所示,腔体6分布在电连接骨架1的表面上,是电连接骨架1和绝缘层2之间形成的腔体,当腔体6在电连接骨架1的表面上的尺寸较大时,绝缘层2会在外力或自身重力的影响下陷,从而接近或接触电连接骨架1的表面,使得较大尺寸的腔体6变成几个较小尺寸的腔体6,因此,腔体6在电连接骨架1的表面上的尺寸较大时没有实际的实用性,反而使腔体6的体积无法控制,导致电连接骨架1的热量无法控制在设计范围内。经过发明人多次实验后,发现当腔体6在电连接骨架1的表面上的尺寸小于等于电连接骨架1最大外径时,腔体6不会出现下陷的情况,因此,发明人设定腔体6在电连接骨架1的表面上的最大尺寸,小于等于电连接骨架1最大外径。
在具体的实施方式中,所述腔体6在所述弯曲部4表面上的面积之和,占所述弯曲部4表面积的20%-80%。
如图2-图4所示,腔体6在弯曲部4表面上的面积之和,是指多个腔体6在弯曲部4表面上的面积相加。为了验证腔体6在弯曲部4表面上的面积之和占弯曲部4表面积的比例,对电能传输系统的弯曲部4的温升和击穿电压的影响,发明人做了一系列实验,选用相同尺寸的电连接骨架1 和绝缘层2,并制备了相同尺寸的弯曲部4,将弯曲部4上设置大小相同的腔体6,数量不一致,腔体6在弯曲部4表面上的面积之和也就不一致,分别测试弯曲部4的温升和耐击穿电压,将结果记录在表2。
弯曲部4的温升的测试方法:将弯曲部4封闭在相同大小的密闭空间中,并在密闭空间设置多个温度传感器,在电能传输系统未通电时,测量密闭空间内的温度值并取平均值,然后对电能传输系统进行通稳定电流,等到密闭空间内的温度稳定后,测量密闭空间内的温度值并取平均值,将两个温度平均值相减,即是弯曲部4的温升值。在本实施例中,温升值小于50K为合格值。
弯曲部4的耐击穿电压的测试方法:对电能传输系统进行通稳定电流,并在弯曲部4的电连接骨架1和绝缘层2分别设置电极,并在两个电极通直流高压,当两个电极发生击穿时,记录当时的电压值。在本实施例中,耐击穿电压值大于2.1KV为合格值。
表6,不同的腔体6在弯曲部4表面上的面积之和占弯曲部4表面积的比例,对弯曲部4的温升和击穿电压的影响,
Figure DEST_PATH_GDA0003816118240000131
Figure DEST_PATH_GDA0003816118240000141
从上表6可以看出,当腔体6在弯曲部4表面上的面积之和占弯曲部 4表面积的比例小于20%时,弯曲部4的温升值大于50K,耐击穿电压值小于2.1KV,均为不合格。当腔体6在弯曲部4表面上的面积之和占弯曲部4表面积的比例大于80%时,弯曲部4的温升值和击穿电压值上升幅度很小,但是腔体6的制作难度增大很多,并且由于腔体6较多,绝缘层2 的强度降低,容易受外力影响导致凹陷或破损,因此,发明人设定腔体6 在弯曲部4表面上的面积之和,占弯曲部4表面积的20%-80%。
所述腔体6的径向形状为圆形、椭圆形、多边形、扇形、棱形或梭形。使用者可以根据不同的环境和使用要求,选择不同的径向形状。
所述连接器3为充电座。如图1所示,电连接骨架1的一端与连接端子5连接后与充电座连接,连接端子5设置在连接器3中另一端可以与车载电池连接,形成一个完整的充电系统。
一种汽车,包括上述电能传输系统。
虽然已经通过例子对本实用新型的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本实用新型的范围。本领域的技术人员应该理解,可在不脱离本实用新型的范围和精神的情况下,对以上实施例进行修改。本实用新型的范围由所附权利要求来限定。

Claims (17)

1.一种电能传输系统,包括至少一根电连接骨架和设置在所述电连接骨架两端的连接器,所述电连接骨架外侧设置有绝缘层,其特征在于,所述电连接骨架具有至少一个弯曲部,至少部分的所述弯曲部含有至少一个腔体,所述腔体位于所述绝缘层内壁到所述电连接骨架外周之间。
2.根据权利要求1所述的电能传输系统,其特征在于,所述腔体内气压值大于所述电连接骨架所处环境的气压值。
3.根据权利要求1所述的电能传输系统,其特征在于,所述腔体内包含阻挡击穿介质,所述阻挡击穿介质的介电击穿强度大于空气的介电击穿强度。
4.根据权利要求1所述的电能传输系统,其特征在于,所述连接器包含连接端子,所述电连接骨架两端与所述连接端子电连接。
5.根据权利要求4所述的电能传输系统,其特征在于,所述连接端子的材质为铜或铜合金。
6.根据权利要求4所述的电能传输系统,其特征在于,所述电连接骨架材质为铝或铝合金,所述电连接骨架与所述连接端子通过焊接或压接的方式电连接。
7.根据权利要求1所述的电能传输系统,其特征在于,所述电连接骨架为刚性体,所述电连接骨架的抗拉强度大于75MPa。
8.根据权利要求1所述的电能传输系统,其特征在于,所述电连接骨架的横截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L形、T形、P形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或多种。
9.根据权利要求8所述的电能传输系统,其特征在于,所述电连接骨架的横截面有棱边时,所述棱边倒角或倒圆。
10.根据权利要求1所述的电能传输系统,其特征在于,所述弯曲部的弯曲半径大于等于所述电连接骨架最大外径的1.19倍。
11.根据权利要求1所述的电能传输系统,其特征在于,所述弯曲部为至少两个,相邻两个所述弯曲部的距离大于等于所述电连接骨架最大外径的2.6倍。
12.根据权利要求1所述的电能传输系统,其特征在于,所述腔体的径向最大高度,小于等于所述绝缘层厚度的3倍。
13.根据权利要求1所述的电能传输系统,其特征在于,所述腔体的径向高度,从所述腔体的中间向四周逐渐减小。
14.根据权利要求1所述的电能传输系统,其特征在于,所述腔体的占所述电连接骨架表面的最大尺寸,小于等于所述电连接骨架最大外径。
15.根据权利要求1所述的电能传输系统,其特征在于,所述腔体在所述弯曲部表面上的面积之和,占所述弯曲部表面积的20%-80%。
16.根据权利要求1所述的电能传输系统,其特征在于,所述腔体的径向形状为圆形、椭圆形、多边形、扇形、棱形或梭形。
17.一种汽车,其特征在于,包括如权利要求1-16任一项所述的电能传输系统。
CN202220552513.3U 2022-03-14 2022-03-14 一种电能传输系统及一种汽车 Active CN217822167U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202220552513.3U CN217822167U (zh) 2022-03-14 2022-03-14 一种电能传输系统及一种汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202220552513.3U CN217822167U (zh) 2022-03-14 2022-03-14 一种电能传输系统及一种汽车

Publications (1)

Publication Number Publication Date
CN217822167U true CN217822167U (zh) 2022-11-15

Family

ID=83980347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202220552513.3U Active CN217822167U (zh) 2022-03-14 2022-03-14 一种电能传输系统及一种汽车

Country Status (1)

Country Link
CN (1) CN217822167U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174262A1 (zh) * 2022-03-14 2023-09-21 吉林省中赢高科技有限公司 一种电能传输系统及一种汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174262A1 (zh) * 2022-03-14 2023-09-21 吉林省中赢高科技有限公司 一种电能传输系统及一种汽车

Similar Documents

Publication Publication Date Title
WO2023174262A1 (zh) 一种电能传输系统及一种汽车
WO2023174277A1 (zh) 一种电能传输总成及车辆
CN217822167U (zh) 一种电能传输系统及一种汽车
WO2023174275A1 (zh) 一种具有固态冷却介质的连接器总成及一种车辆
WO2023174293A1 (zh) 一种具有固态冷却介质的连接器总成及一种车辆
WO2023174276A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
WO2023174281A1 (zh) 一种电能传输总成及车辆
WO2023174258A1 (zh) 一种连接器总成及充电座及车辆
WO2023174294A1 (zh) 一种多芯电连接器总成和车辆
WO2023174290A1 (zh) 一种连接器柔性连接结构及一种车辆
WO2023174279A1 (zh) 一种电能传输总成及车辆
CN218456165U (zh) 一种连接器总成及充电座及车辆
WO2023174263A1 (zh) 一种连接器总成及一种车辆
WO2023174280A1 (zh) 一种电能传输总成及车辆
WO2023174245A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
WO2023174259A1 (zh) 一种具有固态冷却介质的连接器总成及一种车辆
WO2023174247A1 (zh) 一种电能传输连接装置及车辆
CN217984005U (zh) 一种电能传输连接装置及车辆
WO2023174282A1 (zh) 一种液冷连接器总成及一种车辆
WO2023174246A1 (zh) 新型屏蔽材料的连接器总成及车辆
CN217823612U (zh) 一种电能传输总成及车辆
CN217823622U (zh) 一种具有固态冷却介质的连接器总成及一种车辆
CN218334623U (zh) 一种具有液冷功能的连接器总成及一种车辆
CN217823617U (zh) 一种液冷连接器总成及一种车辆
CN217823615U (zh) 一种具有液冷功能的连接器总成及一种车辆

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant