WO2023030445A1 - 一种用于车辆的电能传输系统、充电装置和电动车辆 - Google Patents

一种用于车辆的电能传输系统、充电装置和电动车辆 Download PDF

Info

Publication number
WO2023030445A1
WO2023030445A1 PCT/CN2022/116514 CN2022116514W WO2023030445A1 WO 2023030445 A1 WO2023030445 A1 WO 2023030445A1 CN 2022116514 W CN2022116514 W CN 2022116514W WO 2023030445 A1 WO2023030445 A1 WO 2023030445A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric energy
power transmission
transmission system
energy transmission
vehicles according
Prior art date
Application number
PCT/CN2022/116514
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to KR1020247010027A priority Critical patent/KR20240052020A/ko
Priority to MX2024002809A priority patent/MX2024002809A/es
Priority to CA3230765A priority patent/CA3230765A1/en
Priority to JP2024514108A priority patent/JP2024532514A/ja
Priority to EP22863580.1A priority patent/EP4398270A1/en
Publication of WO2023030445A1 publication Critical patent/WO2023030445A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R41/00Non-rotary current collectors for maintaining contact between moving and stationary parts of an electric circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the technical field of electric energy transmission, in particular to an electric energy transmission system for a vehicle, a charging device, and even an electric vehicle.
  • a charging system mainly includes charging sockets, wires, and connectors.
  • the wires of the current charging system are mainly copper wire harnesses, and the connection scheme is mainly as follows: the two ends of the wire are connected to the terminals, and then the two ends are respectively connected to the charging stand and the connector, and the male end of the connector is matched with the female end to charge the battery.
  • the high current brings high heat generation of the power transmission system.
  • the method of increasing the wire diameter is usually used to reduce the resistance of the wire and reduce the heat generation.
  • this method The cost and weight of the high-voltage wiring harness are significantly increased.
  • the present invention provides an electric energy transmission system for a vehicle, a charging device and an electric vehicle.
  • the electric energy transmission system for a vehicle has the advantages of excellent electrical conductivity during charging with a large current,
  • the utility model has the advantages of light weight, low cost and good shielding effect, can effectively reduce the temperature of the power transmission system, and has a simple structure and convenient assembly.
  • An electric energy transmission system for vehicles comprising an electric energy transmission guide rail and a charging connection part connected to an external charging system, one end of the electric energy transmission guide rail is connected to one end of the charging connection part.
  • a charging device the charging device includes the above electric energy transmission system for vehicles, the charging connection part is a charging plug or a charging socket.
  • An electric vehicle the electric vehicle includes the above electric energy transmission system for the vehicle, and the charging connection part is a charging plug or a charging socket.
  • the power transmission system for vehicles uses aluminum-containing material as the wire of the power transmission guide rail, which can not only reduce costs and weight, but also meet the requirements of high-current charging due to its good electrical conductivity.
  • the power transmission guide rails are stacked and set at an appropriate distance, which can effectively reduce the electromagnetic interference caused to other components after the power transmission system beam is energized, so as to achieve the cancellation of the power transmission system shielding layer structure to meet the needs of reducing cost and weight.
  • This is used in the power transmission system of the vehicle. By setting the heat dissipation structure on the power transmission guide rail, it can effectively reduce the heat generation problem after the power transmission system is powered on, and has a good cooling effect. At the same time, a temperature sensor is also installed in the connection area, which can be used at any time. Monitor the temperature of the power delivery system.
  • the corrosion resistance of the connection area can be improved, thereby prolonging the service life of the power transmission system.
  • FIG. 1 is a schematic diagram of an electric energy transmission system for a vehicle according to the present invention.
  • Fig. 2 is a schematic diagram of the bending section in the Z direction.
  • Fig. 3 is a schematic diagram of the bending section in the XY direction.
  • Fig. 4 is a schematic diagram of the spiral of the electric energy transmission guide rail.
  • Fig. 5 is an exploded schematic view of the connection area and the power transfer layer.
  • Fig. 6 is a schematic diagram of connection between the connection area and the power transfer layer.
  • Fig. 7 is a schematic diagram of the connection area, the power transfer layer and the transition connection ring.
  • Fig. 8 is a schematic diagram of two power transmission guide rails being a DC positive power transmission system and a DC negative power transmission system respectively.
  • FIG. 9 is a schematic plan view of the induced magnetic fields generated by the DC positive power transmission system and the DC negative power transmission system.
  • FIG. 10 is a three-dimensional schematic diagram of the induced magnetic field generated by the DC positive power transmission system and the DC negative power transmission system.
  • Fig. 11 is a schematic diagram of the distance between the DC positive power transmission system and the DC negative power transmission system.
  • Figure 12 is a schematic view of the end of the insulator.
  • Fig. 13 is a schematic cross-sectional view of the electric energy transmission system for vehicles according to the present invention.
  • Figure 14 is a schematic illustration of a support structure.
  • Fig. 15 is a schematic cross-sectional view of the liquid cooling heat dissipation channel located in the power transmission body.
  • Fig. 16 is an external schematic diagram of the liquid cooling heat dissipation channel located in the power transmission body.
  • Fig. 17 is a schematic cross-sectional view of a liquid cooling heat dissipation channel located between the power transmission body and the insulator.
  • Fig. 18 is an external schematic diagram of a liquid cooling heat dissipation channel located between the power transmission body and the insulator.
  • 201 AC power transmission system; 202. DC power transmission system; 203. Spiral part; 204. Pitch; 205. Bending section in Z direction; 206. Bending section in XY direction; 207. Connection area; 208. First connection Hole; 209, power transfer layer; 210, second connection through hole; 211, transition connection ring; 212, power transmission body; 213, insulator; 214, air-cooling heat dissipation channel; 215, support structure; 216, support bar or support block; 217, circumferential channel; 218, axial channel; 219, liquid cooling channel; 220, DC positive power transmission system; 221, DC negative power transmission system; 222, induced magnetic field.
  • a power transmission system for vehicles comprising a charging connection part 1 and a power transmission guide rail 2, the charging connection part 1 can be connected to an external charging system, and one end of the power transmission guide rail 2 is connected to the charging connection part 1, as shown in Figure 1 Show.
  • the power transmission system for vehicles uses power transmission guide rails as wires, which have excellent electrical conductivity, light weight, low cost, and simple structure and easy assembly during high-current charging.
  • the electric energy transmission system for a vehicle can be used not only inside the vehicle, but also for a charging gun outside the vehicle.
  • the number of power transmission guide rails 2 can be determined according to needs, for example, there can be one or more.
  • the power transmission rail 2 can be an AC power transmission system 201; or, the power transmission rail 2 can also be a DC power transmission system 202; or, the power transmission rail 2 can be a DC power transmission system 201 and an AC power transmission system 202, as shown in Figure 1 shown.
  • the power transmission guide rail 2 includes a flat strip-shaped power transmission body 212, and the material of the power transmission body 212 contains (or is) aluminum, phosphorus, tin, copper, iron, manganese, chromium, titanium, and lithium. one or several.
  • the material of the power transmission body 212 contains (or is) aluminum.
  • the power transmission guide rail 2 is a high-voltage aluminum flat strip, that is, the material of the power transmission body 212 is aluminum.
  • the power transmission guide rail 2 is a charging aluminum flat strip.
  • the aluminum flat strip has excellent electrical conductivity and its density is equal to that of copper. 1/3, not only lighter than copper wire harness, but also the cost of aluminum is lower than that of copper.
  • the advantage of the power transmission guide rail 2 is that it is convenient for bending and forming, that is, the power transmission guide rail 2 can maintain its shape after being bent, so that it can be arranged along with the body sheet metal, and can be bent and formed at different positions as required , so as to save space, and at the same time, it can be fixed conveniently and avoid being entangled with other cables.
  • the power transmission guide rail 2 includes a Z-direction bending section 205 and/or an XY-direction bending section 206, as shown in FIGS. 2 and 3 .
  • the bending angle ⁇ of the bending section 205 in the Z direction is 0°-180°
  • the bending angle ⁇ of the bending section 206 in the XY direction is 0°-180°.
  • the power transmission guide rail 2 has good bending performance, and the bending part can maintain a certain radian, and/or be bent continuously, and can also be coiled to the car body parts.
  • the forming method can be extrusion, fixed module coiling , torsion, etc. After forming, a small range of springback is allowed on the basis of not affecting the assembly effect of the motor vehicle.
  • the power transmission guide rail 2 is not limited to be bent in the same direction, the power transmission guide rail 2 can be continuously bent in the XY direction and the Z direction, so as to obtain a specific shape of the power transmission guide rail 2 .
  • the power transmission guide rail 2 includes at least one helical part 203 , and the pitch 204 of the helical part 203 is greater than 8 mm, as shown in FIG. 4 .
  • the method for testing the tensile strength of the electric energy transmission guide rail 2 using a universal tensile testing machine, respectively fix the two ends of the electric energy transmission guide rail 2 sample with the spiral part 203 on the tensile fixture of the universal tensile testing machine, and set Stretch at a speed of 1/min, record the position of the fracture when it is finally broken, and the tensile value when it is broken.
  • a tensile value greater than 1600N is a qualified value.
  • Table 1 Effects of different pitches on the tensile strength and fracture position of the power transmission rail 2
  • the pitch of the helical part is greater than 8mm
  • the power transmission guide rail 2 can be twisted relatively smoothly, and the stress of the helical part is uniform, so when it breaks, the fracture will not be concentrated on the helical part, and the tensile value when it is broken is high.
  • the mechanical performance and electrical performance of the electric energy transmission guide rail 2 can be guaranteed if the qualified value is met. Therefore, the inventors set the pitch of the spiral part to be greater than 8 mm.
  • the tensile strength of the power transmission body 212 is 30MPa-230MPa.
  • the tensile strength of the power transmission body 212 is 40MPa-170MPa.
  • the tensile strength test method of the power transmission body 212 use a universal tensile testing machine, fix the two ends of the power transmission body sample on the tensile fixture of the universal tensile testing machine, and stretch it at a speed of 50mm/min , and record the tensile force value at the time of final breaking.
  • the tensile force value greater than 1600N is a qualified value.
  • the torque test method of the power transmission body 212 use a torque tester to bend the power transmission body 90° at the same radius and the same speed, and test the torque value of the power transmission body 212 deformation during the bending process.
  • the torque value less than 30N ⁇ m is a qualified value.
  • Table 2 Effects of different tensile strengths on the tensile strength of the power transmission body 212
  • the tensile force value of the power transmission body when it is broken is less than the qualified value.
  • the function of the power transmission body 212 becomes invalid, thereby failing to achieve the purpose of power transmission.
  • the tensile strength of the power transmission body 212 is greater than 230MPa, due to the high strength of the power transmission body 212 itself, the tensile force value when the power transmission body 212 is broken can meet the qualified value range, but when the power transmission body 212 needs to be bent , a larger torque is required to deform the power transmission body 212, and the torque value does not meet the requirement of a qualified value at this time. Therefore, the inventors set the tensile strength of the power transmission body 212 to be 30MPa-230MPa.
  • the elongation at break of the power transmission body 212 is 2%-60%.
  • the inventor selected power transmission devices with the same size and specifications but with different elongation at break.
  • the main body 212 sample was tested on the fracture condition and electrical conductivity of the power transmission main body 212 when stretched for a certain distance, and the test results are shown in Table 3.
  • the test method for the fracture of the power transmission body 212 use a universal tensile testing machine, fix the two ends of the power transmission body 212 sample on the tensile fixture of the universal tensile testing machine, and stretch it at a speed of 50mm/min , stretch the same distance, and observe the fracture of the power transmission body 212.
  • the stretching distance is generally the distance that the power transmission body 212 moves after being pulled under working conditions, and the fracture of the power transmission body 212 is unqualified .
  • the method for testing the conductivity of the power transmission body 212 use a multimeter to apply the same voltage at fixed positions at both ends of the power transmission body 212, and measure the current of the power transmission body 212 before stretching and stretching a certain length, and do The ratio is multiplied by 100%. In this embodiment, the conductivity greater than 95% is acceptable.
  • the inventors set the elongation at break of the power transmission body 212 to 2%-60%.
  • the hardness of the power transmission body 212 is 8HV-105HV.
  • the hardness of the power transmission body 212 is 10HV-55HV.
  • the inventor selected power transmission bodies with the same size and specifications and different hardness 212 samples, the peeling force and bending torque of the power transfer layer 209 of the power transmission body 212 were tested, and the test results are shown in Table 4.
  • the test method for the peeling force of the power transfer layer 209 use a universal tensile testing machine to weld the power transfer layer 209 of the power transmission body 212 sample, respectively fix the power transfer layer 209 and the power transfer body 212 in the universal tensile test On the stretching jig of the machine, stretch at a speed of 50mm/min, and record the tensile value when the final power transfer layer 209 is peeled off from the power transmission body 212.
  • the tensile value is greater than 900N as qualified value.
  • the torque test method of the power transmission body 212 use a torque tester to bend the power transmission body 212 at 90° with the same radius and the same speed, and test the torque value of the power transmission body deformation during the bending process.
  • the torque value less than 30N ⁇ m is a qualified value.
  • Table 4 Influence of the hardness of the power transmission body 212 on the peeling force of the power transfer layer and the torque during bending
  • the hardness of the power transmission body 212 is greater than 105HV, since the hardness of the power transmission body 212 itself is very high, when the power transmission body 212 needs to be bent, a larger torque is required to deform the power transmission body 212. At this time, the torque value is not Meet the pass value requirements. Therefore, the inventors set the hardness of the power transmission body to be 8HV-105HV.
  • the grain size of the power transmission body 212 is 5 ⁇ m-200 ⁇ m.
  • the inventor selected samples of the power transmission body 212 with the same size and specifications but with different grain sizes, and tested the power transmission body 212.
  • the tensile strength of 212 samples and the energy consumed during preparation were tested, and the test results are shown in Table 5.
  • the tensile strength test method of the power transmission body 212 using a universal tensile testing machine, respectively fix the two ends of the power transmission body 212 sample on the tensile fixture of the universal tensile testing machine, and pull it at a speed of 50mm/min Stretch, and record the tensile force value when finally breaking, in the present embodiment, the tensile force value greater than 1600N is a qualified value.
  • the energy consumption test method during the preparation of the power transmission body 212 In order to obtain the power transmission body 212 with different grain sizes, it is necessary to perform heat treatment on the power transmission body 212, and perform statistical calculations on the energy consumed corresponding to different grain sizes. In this embodiment Among them, the energy consumption value is less than 30KW/H is the qualified value.
  • the grain size of the power transmission body 212 when the grain size of the power transmission body 212 is less than 5 ⁇ m, the energy consumed during the preparation of the power transmission body 212 does not meet the requirements of the qualified value, and the smaller the grain, the higher the energy consumption during preparation , the cost of the power transmission body 212 will also be higher, but the corresponding performance increase is not much.
  • the grain size of the power transmission body 212 is larger than 200 ⁇ m, the tensile force value of the power transmission body 212 is less than the qualified value when the power transmission body 212 is broken. At this time, the strength of the power transmission body 212 itself is not high. The function of the main body 212 fails, so that the purpose of power transmission cannot be achieved. Therefore, the inventors set the grain size of the power transmission body 212 to be 5 ⁇ m-200 ⁇ m.
  • the material of the power transmission body 212 is aluminum, that is, the power transmission guide rail 2 is a charging aluminum flat belt, one end of the power transmission guide rail 2 is connected to one end of the charging connection part 1, and the power transmission guide rail 2 contains the power transmission body 212 , the other end of the electric energy transmission guide rail 2 is connected to the vehicle power supply unit, and one end of the electric energy transmission guide rail is provided with a connection area 207 .
  • both ends of the power transmission guide rail 2 are provided with connection areas 207, the connection area 207 at one end of the power transmission guide rail 2 is connected to the interface part of the charging connection part 1, and the connection area 207 at the other end of the power transmission guide rail 2 is connected to the vehicle. Electrode connections for the power supply unit.
  • connection method between the connection area 207 and the charging connection part 1 and/or the vehicle power supply unit is resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, magnetic induction welding, screw connection One or more of clamping, splicing and crimping.
  • the resistance welding method refers to a method that uses a strong current to pass through the contact point between the electrode and the workpiece, and generates heat from the contact resistance to achieve welding.
  • the friction welding method refers to the method of welding by using the heat generated by the friction of the contact surface of the workpiece as the heat source to cause the workpiece to undergo plastic deformation under pressure.
  • the ultrasonic welding method is to use high-frequency vibration waves to transmit to the surfaces of two objects to be welded. Under pressure, the surfaces of the two objects are rubbed against each other to form fusion between molecular layers.
  • the arc welding method refers to using the arc as a heat source and using the physical phenomenon of air discharge to convert electrical energy into thermal energy and mechanical energy required for welding, so as to achieve the purpose of connecting metals.
  • the main methods are electrode arc welding, submerged arc welding, and gas protection. welding etc.
  • Laser welding is an efficient and precise welding method that uses a high-energy-density laser beam as a heat source.
  • the electron beam welding method refers to the use of accelerated and focused electron beams to bombard the welding surface placed in a vacuum or non-vacuum, so that the workpiece to be welded is melted to achieve welding.
  • the pressure welding method is a method of applying pressure to the weldment so that the joint surfaces are in close contact to produce a certain plastic deformation to complete the welding.
  • the diffusion welding method refers to a solid-state welding method in which the workpiece is pressurized at high temperature without visible deformation and relative movement.
  • the magnetic induction welding method is that two workpieces to be welded are subjected to an instantaneous high-speed collision under the action of a strong pulsed magnetic field. Form a stable metallurgical bond. It is a kind of solid-state cold welding, which can weld conductive metals with similar or dissimilar properties together.
  • the threaded connection method refers to a threaded connection, a detachable connection in which the connected parts are integrated with a threaded part (or the threaded part of the connected part).
  • Commonly used threaded joints include bolts, studs, screws and set screws, etc., mostly standard parts.
  • the clamping method refers to setting corresponding claws or grooves on the connecting end or connecting surface, and assembling through the grooves and claws to make them connected together.
  • the advantage of the card connection method is that the connection is fast and detachable.
  • the splicing method refers to setting corresponding grooves and protrusions on the connecting end or connecting surface, and mortising or splicing the grooves and protrusions to assemble each other to make them connected together.
  • the advantage of splicing is that the connection is stable and detachable.
  • Crimping method is a production process in which the connecting end and the connecting surface are assembled, and then the two are stamped together using a crimping machine.
  • the advantage of crimping is mass production. By using an automatic crimping machine, it is possible to quickly manufacture a large number of stable quality products.
  • connection methods an appropriate connection method or combination of connection methods can be selected according to the actual use environment and the actual state of the connection area 207 and the vehicle power supply unit or the charging connection part 1 to realize an effective electrical connection.
  • a first connection through hole 208 may be provided in the connection area 207, and the electric energy transmission guide rail 2 may be directly bolted to the vehicle battery.
  • the pole connection with the vehicle battery is fixed.
  • the battery terminal that is, the electrode
  • the battery terminal that is, the electrode
  • the battery terminal that is, the electrode
  • the electrode potential difference between the aluminum material and the copper material is about 1.7V. Electrochemical corrosion will occur when the two metals are in contact, and copper oxide will be produced at the contact position. With alumina, the resistance of the contact part will increase, resulting in heating at the contact position, affecting power transmission and even accidents.
  • connection area 207 it is necessary to arrange a transition metal between the connection area 207 and the electrode of the vehicle battery, so as to simultaneously solve the problem of the torque generated by the tightening of the bolts and the electrochemical corrosion caused by the connection of the two metals.
  • the first optional implementation is to further include a power transfer layer 209, the power transfer layer 209 is stacked and connected to the connection area 207, and a second connection through hole 210 is provided in the power transfer layer 209 , the second connecting through hole 210 is axially coincident with the first connecting through hole 208 , as shown in FIGS. 5 and 6 .
  • connection mode between the power transfer layer 209 and the connection area 207 is resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, magnetic induction welding, screw connection, clip connection, splicing, and crimping. one or several.
  • the power transfer layer 209 should be selected to have a certain hardness, conductivity, electrode potential close to that of copper and aluminum electrodes or an inactive metal.
  • the material of the power transfer layer 209 contains (or is) cadmium, manganese, zirconium, cobalt, One or more of titanium, chromium, gold, silver, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite silver, graphene silver, hard silver, and silver-gold-zirconium alloy.
  • the electric energy conversion layer 209 and the connection area 207 are welded by lamination, which may be one or more of pressure welding, friction welding, resistance welding and ultrasonic welding.
  • the thickness of the power transfer layer 209 may be 1 ⁇ m to 5000 ⁇ m.
  • the temperature rise test is to pass the same current to the sample of the connection area 207 after connection, and detect the temperature of the same position of the sample of the connection area 207 before power-on and after the temperature is stabilized in a closed environment, and make a difference to obtain the absolute value.
  • a temperature rise greater than 50K is considered unqualified.
  • the corrosion resistance time test is to put the sample of the connection area 207 into the salt spray test box, spray salt spray on each position of the connection area 207, take it out and clean it every 20 hours to observe the surface corrosion condition, that is, a Cycle until the corrosion area on the surface of the connection area 207 is greater than 10% of the total area, stop the test, and record the number of cycles at that time. In this embodiment, the number of cycles less than 80 is considered unqualified.
  • the thickness of the power transfer layer 209 is greater than 5000 ⁇ m, the heat generated by the connection area 207 cannot be dissipated, so that the temperature rise of the connection area 207 of the power transmission system is unqualified, and the thicker power transfer layer 209 is easy to fall off from the surface of the connection area 207 , resulting in a decrease in the number of cycles of corrosion resistance. Therefore, the inventors choose the thickness of the power transfer layer 209 to be 1 ⁇ m-5000 ⁇ m.
  • the corrosion resistance is better; when the thickness of the nickel sheet is less than or equal to 3000 ⁇ m, the temperature rise value is less than 40K, so the preferred thickness of the power transfer layer 209 is 50 ⁇ m-3000 ⁇ m.
  • connection area 207 the connection area 207 of the power transfer layer 209 made of different materials was subjected to a series of corrosion resistance time tests, and the experimental results are shown in Table 7.
  • the corrosion resistance time test in Table 7 is to put the sample of the connection area 207 into the salt spray test box, spray salt spray on each position of the connection area 207, take it out and clean it every 20 hours to observe the surface corrosion, That is, one cycle, until the corroded area of the surface of the connection area 207 sample is greater than 10% of the total area, the test is stopped, and the number of cycles at that time is recorded. In this embodiment, the number of cycles less than 80 is considered unqualified.
  • the inventor selected the material of the power transfer layer 209 to contain nickel, cadmium, manganese, zirconium, cobalt, tin, titanium, chromium, gold, silver, zinc, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite One or more of silver, graphene silver, hard silver and silver-gold-zirconium alloy.
  • a more preferred mode is to select the material of the power transfer layer 209 to contain (or be) cadmium, manganese, zirconium, cobalt, titanium, chromium, gold, silver, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite silver One or more of graphene silver, hard silver and silver-gold-zirconium alloy.
  • a transitional connection ring 211 can be sleeved in the first connection through hole 208 and the second connection through hole 210, and the transition connection ring 211 is interference-fitted or bonded to the first connection through hole 208 and the second connection through hole 210.
  • the material of the transition connection ring 211 contains (or is) nickel, cadmium, manganese, zirconium, cobalt, tin, titanium, chromium, gold, silver, zinc, tin-lead alloy, silver antimony One or more of alloy, palladium, palladium-nickel alloy, graphite silver, graphene silver, hard silver and silver-gold-zirconium alloy.
  • the material of the transition connection ring 211 may also be the same as that of the power transfer layer 209 , as shown in FIG. 6 .
  • the material of the transition connecting ring 211 can be metal, and the peripheral outer surface of the transition connecting ring 211 can be provided with an outer transition layer, and the material of the outer transition layer contains (or is) nickel, cadmium, manganese, zirconium, cobalt, tin, One or more of titanium, chromium, gold, silver, zinc, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite silver, graphene silver, hard silver, and silver-gold-zirconium alloy.
  • the material of the outer transition layer is the same as that of the power transmission body 212 .
  • a second optional implementation is to set a deposited metal layer on the connection surface of the connection region 207 (that is, the surface facing the battery electrodes).
  • the material of the deposited metal layer contains (or is) nickel, cadmium, manganese, zirconium, cobalt, tin, titanium, chromium, gold, silver, zinc, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite silver , one or more of graphene silver, hard silver and silver-gold-zirconium alloy.
  • the metal layer is deposited by means of physical vapor deposition.
  • the material of the deposited metal layer is the same as that of the battery electrodes overlapped by the connecting region 207 .
  • Such a solution can also enhance the surface strength of the connecting region 207 and avoid corrosion caused by the overlapping of the connecting region 207 and dissimilar metals.
  • connection area 207 made of the metal layer was subjected to a series of corrosion resistance time tests, and the test results are shown in Table 8.
  • the corrosion resistance time test in Table 8 is to put the sample of the connection area 207 into the salt spray test box, spray salt spray on each position of the connection area 207, take it out and clean it every 20 hours, and observe the surface corrosion. That is, one cycle, until the corroded area of the surface of the connection area 207 sample is greater than 10% of the total area, the test is stopped, and the number of cycles at that time is recorded. In this embodiment, the number of cycles less than 80 is considered unqualified.
  • the inventor selects the deposited metal layer material to contain (or be) nickel, cadmium, manganese, zirconium, cobalt, tin-titanium, chromium, gold, silver, zinc-tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite silver , one or more of graphene silver, hard silver and silver-gold-zirconium alloy.
  • a more preferred mode is to select the deposited metal layer material to contain (or be) cadmium, manganese, zirconium, cobalt, titanium, chromium, gold, silver, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite silver, graphite One or more of vinyl silver, hard silver and silver-gold-zirconium alloy.
  • the thickness of the deposited metal layer may be 1 ⁇ m to 5000 ⁇ m.
  • the temperature rise test is to pass the same current through the connected connection area 207 samples, and detect the temperature at the same position of the connection area 207 samples before power-on and after temperature stabilization in a closed environment, and make the difference to get the absolute value.
  • a temperature rise greater than 50K is considered unqualified.
  • the corrosion resistance time test is to put the sample of the connection area 207 into the salt spray test box, spray salt spray on each position of the connection area 207, take it out and clean it every 20 hours to observe the surface corrosion, that is, a Cycle until the corrosion area on the surface of the connection area 207 is greater than 10% of the total area, stop the test, and record the number of cycles at that time. In this embodiment, the number of cycles less than 80 is considered unqualified.
  • Table 9 Effects of different thicknesses of deposited metal layers on the temperature rise and corrosion resistance of samples in the connection area
  • the inventors choose to deposit the metal layer with a thickness of 1 ⁇ m-5000 ⁇ m for the power transfer layer.
  • the thickness of the nickel sheet is greater than or equal to 1 ⁇ m, the corrosion resistance is better; when the thickness of the nickel sheet is less than or equal to 100 ⁇ m, the temperature rise is less than 20K, so the thickness of the electric energy transfer layer 209 is preferably 1 ⁇ m-100 ⁇ m.
  • the deposited metal layer is plated on the connection surface of the connection region 207 by one or more of electroplating, electroless plating, magnetron sputtering and vacuum plating.
  • the electroplating method is the process of plating a thin layer of other metals or alloys on the surface of certain metals using the principle of electrolysis.
  • Electroless plating is a deposition process in which metals are produced through controllable redox reactions under the catalysis of metals.
  • Magnetron sputtering uses the interaction between the magnetic field and the electric field to make electrons run in a spiral shape near the target surface, thereby increasing the probability of electrons hitting argon to generate ions.
  • the generated ions hit the target surface under the action of the electric field to sputter out the target material.
  • Vacuum plating is to deposit various metal and non-metal films on the surface of plastic parts by means of distillation or sputtering under vacuum conditions.
  • the power transmission system for vehicles includes two stacked power transmission guide rails 2, and the two power transmission guide rails 2 are DC positive poles respectively.
  • the power transmission system 220 and the DC negative power transmission system 221 (that is, the power transmission guide rail 2 contains two DC power transmission systems 202, one DC power transmission system 202 is the DC positive power transmission system 220, and the other DC power transmission system 202 is the DC negative pole Power transmission system 221), the power transmission guide rail 2 includes a power transmission body 212, as shown in FIG. 8 .
  • the power transmission system includes at least two power transmission guide rails 2 stacked.
  • the generated magnetic fields are shown in FIGS. 9 and 10 . Since the power transmission guide rail 2 is a flat structure, its strongest magnetic field is at its largest area, and the magnetic fields of the positive and negative charging aluminum flat strips can be offset by stacking the power transmission guide rail 2 (due to the two power transmission guide rails 2, the current is the same in magnitude and the current direction A is opposite, then the induced magnetic field strength is the same and the direction is opposite), so as to eliminate the electromagnetic interference to other electrical devices when the power transmission guide rail 2 is energized.
  • the distance between the two power transmission guide rails 2 and the lamination overlap of the two power transmission guide rails 2 have a great influence on the offset degree of the magnetic field.
  • the stacking distance and coincidence of the power transmission guide rails 2 are controlled to effectively offset the magnetic field of the power transmission guide rails 2, so as to cancel the shielding layer structure of the power transmission system and meet the requirements of reducing costs and weight.
  • the width directions of the two power transmission guide rails 2 are parallel to each other.
  • the power transmission bodies 212 of the two power transmission guide rails 2 are mirror images of each other.
  • the distance between the power transmission bodies 212 of the two power transmission guide rails 2 is H, as shown in FIG. 11 .
  • the stacking direction of the power transmission bodies 212 of the two power transmission guide rails 2 is the up-down direction in FIG. 10 .
  • Table 10 Influence of the distance H between the aluminum conductors on the magnetic field cancellation when the overlapping area of the two power transmission bodies 212 is 100%.
  • the degree of overlap means the percentage of the overlapping area of the power transmission bodies 212 of the two power transmission guide rails 2 along the stacking direction to the area of the power transmission body 212 of one power transmission guide rail 2 .
  • the distance H between the power transmission bodies 212 of the two power transmission guide rails 2 is less than or When it is equal to 27cm, the magnetic field offset percentage is qualified, which has a certain effect on preventing electromagnetic interference; preferably, when the distance between the power transmission bodies 212 of the two power transmission guide rails 2 is less than or equal to 7cm, the magnetic field can be effectively offset, and the effect is obvious. Therefore, the distance H between the power transmission bodies 212 of the two power transmission guide rails 2 is further set to be less than or equal to 7 cm.
  • the power transmission guide rail 2 includes a power transmission body 212 and a protection device, and the protection device is sleeved on the outside of the power transmission body 212 .
  • the protection device has a shielding function, and the transfer impedance of the protection device is less than or equal to 100m ⁇ .
  • the protection device may be an insulator 213 .
  • the power transmission guide rail 2 includes a power transmission body 212 (that is, the above-mentioned flat strip-shaped conductor metal) and an insulator 213 sleeved outside the power transmission body 212.
  • the power transmission guide rail 2 contains a heat dissipation structure.
  • the structure can cool down the power transmission body 212 .
  • the cooling rate of the heat dissipation structure is greater than or equal to 0.5° C./min.
  • the inventor selected 10 power transmission guide rails 2 with the same cross-sectional area, the same material, and the same length, and passed the same current, and adopted heat dissipation structures with different cooling rates. , to cool the power transmission guide rail 2, and read the temperature rise value of each power transmission guide rail 2, and record it in Table 12.
  • the experimental method is to conduct the same current on the power transmission guide rail 2 with heat dissipation structures with different cooling rates in a closed environment, record the temperature before power-on and the temperature when the temperature is stable after power-on, and make a difference to obtain the absolute value.
  • a temperature rise of less than 50K is a qualified value.
  • Table 12 Effects of heat dissipation structures with different cooling rates on temperature rise of power transmission rail 2
  • the materials of the power transmission body 212 and the insulator 213 can be existing materials
  • the ratio of the width to the thickness of the power transmission rail 2 can be 2:1 to 20:1
  • the width and thickness of the power transmission body 212 The ratio can be from 2:1 to 20:1.
  • the gap between the power transmission body 212 and the insulator 213 is less than or equal to 1 cm.
  • the protection device may also be a protective plastic shell, which is integrally injection-molded with the power transmission body 212 .
  • the specific structure of the protective plastic shell can be an insulator 213 or an injection-molded conductive plastic or a combination of both.
  • the protection device has a shielding function, and the transfer impedance of the protection device is less than 100 m ⁇ .
  • Shielding materials usually use transfer impedance to characterize the shielding effect of the protection device. The smaller the transfer impedance, the better the shielding effect.
  • the transfer impedance of the protective device is defined as the ratio of the differential mode voltage U induced by the shield per unit length to the current Is passing through the surface of the shield, that is:
  • the following experiment uses a protective plastic case as a specific implementation method.
  • the inventor selected protective plastic shells with different transfer impedance values, made a series of samples of the power transmission guide rail 2, and tested the power transmission guide rails respectively. 2, the experimental results are shown in Table 13 below.
  • the shielding performance value of the power transmission guide rail 2 is greater than 40dB, which is an ideal value.
  • the first optional implementation is air-cooling heat dissipation, that is, the heat dissipation structure is an air-cooling heat dissipation channel 214, and the power transmission guide rail 2 contains an air-cooling heat dissipation channel 214, and the air-cooling heat dissipation channel 214 is connected to the vehicle.
  • the external connection of the power transmission system is shown in Figure 9 and Figure 10.
  • the air-cooling heat dissipation channel 214 is located between the power transmission body 212 and the protection device.
  • the protection device can be an insulator 213, the inner surface of the insulator 213 is provided with a support structure 215, and the power transmission body 212 and the protection device
  • the supporting structure 215 is in direct contact, and the power transmission body 212 , the insulator 213 and the supporting structure 215 enclose an air-cooling heat dissipation channel 214 .
  • the supporting structure 215 includes a plurality of supporting bars or supporting blocks 216 arranged along the circumference and the axial direction of the power transmission guide rail 2 , for example, the supporting bars shown are roughly U-shaped.
  • the air-cooling heat dissipation channel 214 includes a circumferential channel 217 and an axial channel 218 , and the circumferential channel 217 communicates with the axial channel 218 , as shown in FIG. 11 .
  • the axial direction of the electric energy transmission guide rail 2 is the left-right direction in FIG. 11 , and is also perpendicular to the paper surface of FIG. 10 .
  • the circumferential channel 217 extends in the vertical direction in FIG. 11
  • the axial channel 218 extends in the left-right direction in FIG. 11 .
  • the conductor power transmission body 212 When the current is increased, the conductor power transmission body 212 generates heat, and the heat can be dissipated by the air circulating in the air-cooling heat dissipation channel 214 to reduce the wire diameter.
  • the heat dissipation effect of the power transmission guide rail 2 is also closely related to its size. For example, the larger the width of the power transmission guide rail 2 and the smaller the thickness, the better the heat dissipation.
  • the second optional implementation is liquid cooling heat dissipation, that is, the heat dissipation structure is a liquid cooling heat dissipation channel 219, the power transmission guide rail 2 contains a liquid cooling heat dissipation channel 219, and the liquid cooling heat dissipation channel 219 can pass through the infusion
  • the pipe 5 is connected to the circulating water pump 3, and the liquid cooling channel 219 contains cooling fluid such as cooling water or cooling oil, and circulates between the liquid cooling channel 219 and the circulating water pump 3 through cooling, so that the electric energy is transmitted to the guide rail 2
  • the heat generated in the working state is taken out, so that the electric energy transmission guide rail 2 can ensure good electrical conductivity.
  • the liquid cooling channel 219 can be located in the power transmission body 212 , and the liquid cooling channel 219 extends along the axis of the power transmission body 212 , as shown in FIGS. 12 and 13 .
  • the specific number, location and size of the liquid-cooling heat dissipation channels 219 those skilled in the art can obtain the optimal parameter selection based on a limited number of experiments.
  • the liquid cooling channel 219 may be located between the power transmission body 212 and the protection device.
  • the protection device can be an insulator 213, and the liquid cooling heat dissipation channel 219 is located outside along the thickness direction of the power transmission body 212, that is, the liquid cooling heat dissipation channel 219 is located on the upper and lower sides of the power transmission body 212, as shown in FIG. 14 .
  • the liquid-cooled heat dissipation channel 219 is located on both sides along the width direction of the power transmission body 212, and the liquid-cooled heat dissipation channel 219 is located on the left and right sides of the power transmission body 212.
  • liquid-cooled heat dissipation channel 219 is located on the power transmission body 212
  • the electric energy transmission system for vehicles further includes a temperature sensor 4 that can measure the temperature of the electric energy transmission guide rail 2 .
  • the temperature sensor 4 is located at the connection area 207 , that is, the temperature sensor 4 is in contact with the connection area 207 , as shown in FIG. 13 and FIG. 15 .
  • the temperature sensor 4 can also be arranged within a radius of no more than 9 cm around the connection area 207 .
  • the temperature sensor 4 is linked with the circulating water pump 3 to set the working temperature of the circulating water pump 3.
  • the working temperature of the circulating water pump 3 is designed to be 80°C, that is, when the working temperature of the connection area 207 reaches 80°C, The circulating water pump 3 is turned on to reduce the temperature of the electric energy transmission guide rail 2 . If the set temperature is not reached, the circulating water pump 3 does not need to work, and the cooling liquid inside the liquid cooling channel 219 itself dissipates heat and cools down.
  • the temperature sensor 4 is an NTC temperature sensor or a PTC temperature sensor.
  • the advantage of using these two temperature sensors is that they are small in size and can measure gaps that cannot be measured by other thermometers; they are easy to use, and the resistance value can be freely selected from 0.1k ⁇ to 100k ⁇ ; Good, strong overload capacity, suitable for conversion joints, which require small size and stable performance.
  • One end of the power transmission guide rail 2 is connected to the charging connection part 1.
  • the structure of one end of the power transmission guide rail 2 can be the same as that of the other end of the power transmission guide rail 2.
  • the connection method between one end of the power transmission guide rail 2 and the charging connection part 1 can be adopted
  • the other end of the electric energy transmission guide rail 2 is connected to the electrode of the above-mentioned rechargeable battery. That is, one end of the power transmission guide rail 2 may also be provided with a connection area 207 , a power transfer layer 209 or a transition metal layer.
  • a charging device is introduced below, which includes the above-mentioned power transmission system for vehicles, the charging connection part 1 is a charging plug or a charging socket, and the other end of the power transmission guide rail 2 is connected to a power terminal.
  • the power transmission system for the vehicle is located in the charging gun, and preferably the charging connection part 1 is a charging plug.
  • a kind of electric vehicle is introduced below, and described electric vehicle comprises above-mentioned electric energy transmission system and rechargeable battery for vehicle, and charging connection part 1 is charging plug or charging socket, and the other end of electric energy transmission guide rail 2 and the electrode of described rechargeable battery connect.
  • the electric energy transmission system for the vehicle is located in the electric vehicle, and preferably the charging connection part 1 is a charging socket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供了一种用于车辆的电能传输系统、充电装置和电动车辆,所述用于车辆的电能传输系统包括充电连接部(1)和电能传输导轨(2),电能传输导轨(2)的一端与充电连接部(1)一端连接。该用于车辆的电能传输系统的优点在于,在大电流充电过程中导电性能优异、重量轻、成本低、避免电磁干扰且结构简单组装方便。

Description

一种用于车辆的电能传输系统、充电装置和电动车辆
相关申请
本申请要求专利申请号为202111028873.X、申请日为2021年9月2日、发明名称为“一种用于车辆的电能传输系统、充电装置和电动车辆”的中国发明专利的优先权。
技术领域
本发明涉及电能传输技术领域,具体是一种用于车辆的电能传输系统,还是一种充电装置,更是一种电动车辆。
背景技术
随着新能源领域的发展,环保要求的提高,电动汽车发展迅速。电动汽车动力来源主要为电池,当电池电量耗尽后,给其蓄能充电的系统是电动汽车重要的组成部分,一个充电系统主要包含充电插座、电线、连接器。当前充电系统的电线主要为铜线束,其连接方案主要为:电线两端与端子连接,然后两端分别与充电座和连接器连接,连接器公端与母端配合后对电池进行充电。随着新能源汽车发展,在最短的时间内充满电是客户们的主体需求,为满足此种快速充电需要加大电流输入,从而需要加大电能传输系统束的线径,导致铜线束尺寸增大,其成本和重量均显著增加。
当大电流通过电能传输系统时,会对其它零部件产生电磁干扰,为避免这种电磁干扰,需要在电能传输系统外侧增加屏蔽层,这种屏蔽高压线束使其成本及重量显著增加。
目前给电动汽车进行充电过程中,大电流带来了电能传输系统的高发热量,为了降低高压线束的热量通常采用增加线径的方式,使导线电阻减小,减小热量产生,但这种方式使高压线束的成本及重量显著增加。
因此电能传输技术领域,急需一种导电性能优异、重量轻、成本低、避免电磁干扰且结构简单组装方便的电能传输系统。
申请内容
为了降低电能传输系统的成本,本发明提供了一种用于车辆的电能传输系统、充电装置和电动车辆,该用于车辆的电能传输系统的优点在于,在大电流充电过程中导电性 能优异、重量轻、成本低、屏蔽效果好,能够有效降低电能传输系统的温度且结构简单组装方便。
本发明解决其技术问题所采用的技术方案是:
一种用于车辆的电能传输系统,包括电能传输导轨和与外界充电系统相连接的充电连接部,电能传输导轨的一端与充电连接部的一端相连接。
一种充电装置,所述充电装置包括上述的用于车辆的电能传输系统,充电连接部为充电插头或充电插座。
一种电动车辆,所述电动车辆包括上述的用于车辆的电能传输系统,充电连接部为充电插头或充电插座。
本发明的有益效果是:
1、该用于车辆的电能传输系统采用含有铝的材质作为电能传输导轨的导线,不仅可以降低成本、减轻重量,并且其良好的导电性能同时可以满足大电流充电要求。
2、该用于车辆的电能传输系统,电能传输导轨层叠设置,并设置适当的间距,能够有效的降低电能传输系统束通电之后对其它零部件造成的电磁干扰,从而达到取消电能传输系统屏蔽层结构,达到减少成本、降低重量的需求。
3、该用于车辆的电能传输系统,电能传输导轨通过设置散热结构,能够有效降低电能传输系统通电之后发热问题,起到很好的降温效果,同时还在连接区位置设置温度传感器,能够随时监测电能传输系统的温度。
4、该用于车辆的电能传输系统,通过在电能传输系统连接区设置电能转接层和/或沉积金属层,可以提高连接区的耐腐蚀性能,从而延长电能传输系统的使用寿命。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明所述用于车辆的电能传输系统的示意图。
图2是Z方向折弯段的示意图。
图3是XY方向折弯段的示意图。
图4是电能传输导轨螺旋示意图。
图5是连接区和电能转接层的分解示意图。
图6是连接区和电能转接层的连接示意图。
图7是连接区、电能转接层和过渡连接环的示意图。
图8是两条电能传输导轨分别为直流正极电能传输系统和直流负极电能传输系统的示意图。
图9是直流正极电能传输系统和直流负极电能传输系统产生的感应磁场的平面示意图。
图10是直流正极电能传输系统和直流负极电能传输系统产生的感应磁场的立体示意图。
图11是直流正极电能传输系统和直流负极电能传输系统产生之间距离的示意图。
图12是绝缘体端部的示意图。
图13是本发明所述用于车辆的电能传输系统的断面示意图。
图14是支撑结构的示意图。
图15是液冷散热通道位于电能传输本体内的断面示意图。
图16是液冷散热通道位于电能传输本体内的外部示意图。
图17是液冷散热通道位于电能传输本体和绝缘体之间的断面示意图。
图18是液冷散热通道位于电能传输本体和绝缘体之间的外部示意图。
1、充电连接部;2、电能传输导轨;3、循环水泵;4、温度传感器;5、输液管;
201、交流电能传输系统;202、直流电能传输系统;203、螺旋部;204、螺距;205、Z方向折弯段;206、XY方向折弯段;207、连接区;208、第一连接通孔;209、电能转接层;210、第二连接通孔;211、过渡连接环;212、电能传输本体;213、绝缘体;214、空冷散热通道;215、支撑结构;216、支撑条或支撑块;217、周向通道;218、轴向通道;219、液冷散热通道;220、直流正极电能传输系统;221、直流负极电能传输系统;222、感应磁场。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
一种用于车辆的电能传输系统,包括充电连接部1和电能传输导轨2,充电连接部1能够与外界充电系统相连接,电能传输导轨2的一端与充电连接部1连接,如图1所示。
如图1至图18所示,该用于车辆的电能传输系统采用电能传输导轨作为导线,在 大电流充电过程中导电性能优异、重量轻、成本低,且结构简单组装方便。该用于车辆的电能传输系统不但可以用于车辆的内部,还可以用于车辆外部的充电枪。
在本实施例中,电能传输导轨2的数量可以根据需要而定,如可以为一条至多条。电能传输导轨2可以为交流电能传输系统201;或,电能传输导轨2也可以为直流电能传输系统202;或,电能传输导轨2可以为直流电能传输系统201和交流电能传输系统202,如图1所示。
在本实施例中,电能传输导轨2含有扁条形的电能传输本体212,电能传输本体212的材质含有(或为)铝、磷、锡、铜、铁、锰、铬、钛、锂其中的一种或几种。
优选的,电能传输本体212的材质含有(或为)铝。
优选的,电能传输导轨2为高压铝扁带,即所述电能传输本体212的材质为铝,此时电能传输导轨2为充电铝扁带,铝扁带导电性能优异,其密度是铜密度的1/3,不但重量轻于铜线束,同时铝的成本也低于铜。
在本实施例中,电能传输导轨2的优点还在于方便弯曲成型,即电能传输导轨2在弯曲后能够保持形状,这样可以随着车身钣金进行布置,在不同位置可以根据需要进行折弯成型,以便于节省空间,同时也可以方便固定,还可以避免与其它线缆缠绕。
具体的,在以X、Y、Z轴为坐标轴的空间直角坐标系中,电能传输导轨2含有Z方向折弯段205和/或XY方向折弯段206,如图2和图3所示。Z方向折弯段205的弯曲角度α为0°-180°,XY方向折弯段206的弯曲角度β为0°-180°。
电能传输导轨2具有很好的弯曲性能,弯曲部位可以保持一定的弧度,并且/或者连续弯折,亦可以盘附于车体部件,对于弯折情况,成型方式可以选择挤压、固定模块盘绕、扭转等,成型后在不影响机动车装配效果的基础上,允许有小范围的回弹。
电能传输导轨2不限于向同一方向弯折,电能传输导轨2可以在XY方向和Z方向上进行连续的弯折,从而得到具体形状的电能传输导轨2。
在本实施例中,电能传输导轨2至少含有一个螺旋部203,所述螺旋部203的螺距204为大于8mm,如图4所示。
为了验证螺旋部203的螺距204,对电能传输导轨2的抗拉强度的影响,发明人选用了相同规格的电能传输导轨2,按照不同的螺距,制作了带有相同数量螺旋部203的电能传输导轨2样件,并对电能传输导轨2的拉伸强度进行测试,测试结果如表1所示。
电能传输导轨2的拉伸强度测试方法:使用万能拉力测试机,将带有螺旋部203的电能传输导轨2样件的两端分别固定在万能拉力测试机的拉伸治具上,并以50mm/min 的速度进行拉伸,记录最终拉断时断裂的位置,以及拉断时的拉力值,在本实施例中,拉力值大于1600N为合格值。
表1:不同的螺距对电能传输导轨2的拉伸强度和断裂位置的影响
Figure PCTCN2022116514-appb-000001
从上表1中可以看出,当螺旋部的螺距为小于8mm时,由于螺距较小,需要电能传输导轨2进行较大尺寸的扭曲,造成电能传输导轨2的内部应力集中,受到外力作用时,首先是螺旋部断裂,并且拉断时的拉力值小于合格值,此时的电能传输导轨2强度不高,在使用过程中易发生断裂的危险,造成电能传输导轨2功能失效,严重时会引发短路导致燃烧事故。当螺旋部的螺距为大于8mm时,电能传输导轨2可以较平滑的进行扭曲,螺旋部的应力均匀,因此在断裂时,断裂处不会集中在螺旋部,并且拉断时的拉力值都高于合格值,电能传输导轨2的力学性能和电学性能都能得到保障,因此,发明人将螺旋部的螺距设定为大于8mm。
在本实施例中,所述电能传输本体212的抗拉强度为30MPa-230MPa。优选的,所述电能传输本体212的抗拉强度为40MPa-170MPa。
为了验证电能传输本体212的抗拉强度,对电能传输本体212拉断时的拉力值以及沿XY方向折弯的扭矩的影响进行了研究,发明人选用了相同尺寸规格的,使用不同抗拉强度的电能传输本体212样件,对电能传输本体212的拉伸强度和折弯时的扭矩进行测试,测试结果如表2所示。
电能传输本体212的拉伸强度测试方法:使用万能拉力测试机,将电能传输本体样件,两端分别固定在万能拉力测试机的拉伸治具上,并以50mm/min的速度进行拉伸,记录最终拉断时的拉力值,在本实施例中,拉力值大于1600N为合格值。
电能传输本体212的扭矩测试方法:使用扭矩测试仪,将电能传输本体以相同的半径,相同的速度弯折90°的时候,测试弯折过程中电能传输本体212变形的扭矩值,在 本实施例中,扭矩值小于30N·m为合格值。
表2:不同的抗拉强度对电能传输本体212的拉伸强度的影响
Figure PCTCN2022116514-appb-000002
从上表2中可以看出,当电能传输本体212抗拉强度为小于30MPa时,电能传输本体拉断时的拉力值小于合格值,此时电能传输本体212本身的强度不高,受到较小外力时拉断,造成电能传输本体212功能失效,从而无法起到电能传输的目的。当电能传输本体212抗拉强度为大于230MPa时,由于电能传输本体212本身的强度很高,电能传输本体212拉断时的拉力值都能满足合格值范围,但是当电能传输本体212需要折弯时,需要更大的扭矩使电能传输本体212变形,此时扭矩值不满足合格值要求。因此,发明人设定电能传输本体212抗拉强度为30MPa-230MPa。
从表2中数据可以看出,当电能传输本体212抗拉强度为40MPa-170MPa时,电能传输本体拉断时的拉力值和沿XY方向折弯的扭矩值都在很好的范围内,因此,发明人优选电能传输本体212的抗拉强度为40MPa-170MPa。
在本实施例中,所述电能传输本体212断裂伸长率为2%-60%。
为了验证电能传输本体212的断裂伸长率,对电能传输本体212拉伸一定距离时,其断裂情况和导电率的影响,发明人选用了相同尺寸规格的,使用不同断裂伸长率的电能传输本体212样件,对电能传输本体212拉伸一定距离时的断裂情况和导电率进行测试,测试结果如表3所示。
电能传输本体212断裂情况的测试方法:使用万能拉力测试机,将电能传输本体212样件,两端分别固定在万能拉力测试机的拉伸治具上,并以50mm/min的速度进行拉伸,拉伸同样的距离,观察电能传输本体212的断裂情况,在本实施例中,拉伸距离一般是电能传输本体212在工作条件下受到拉力后移动的距离,电能传输本体212断裂为不合格。
电能传输本体212导电率的测试方法:使用万用表,在电能传输本体212的两端固定的位置施加相同的电压,并分别测量拉伸前和拉伸一定长度的电能传输本体212的电流,并做比值乘上100%,在本实施例中,导电率大于95%为合格。
表3:电能传输本体212的断裂伸长率对断裂情况和导电率的影响
Figure PCTCN2022116514-appb-000003
从上表3中可以看出,当电能传输本体212的断裂伸长率小于2%时,此时电能传输本体212的刚性较大,拉伸一定距离后,电能传输本体212发生断裂,造成电能传输本体212功能失效,从而无法起到电能传输的目的,严重时会引发短路导致燃烧事故。当电能传输本体212的断裂伸长率大于60%时,虽然电能传输本体212没有被拉断,但是由于电能传输本体212相对较柔软,电能传输本体212容易被拉伸到截面积更小,从而导致电能传输本体212的导电率不满足合格值要求,因此,发明人设定电能传输本体212的断裂伸长率为2%-60%。
在本实施例中,所述电能传输本体212的硬度为8HV-105HV。优选的,所述电能传输本体212的硬度为10HV-55HV。
为了验证电能传输本体212的硬度对电能转接层209从电能传输本体212上剥离的力和沿XY方向折弯的扭矩的影响,发明人选用了相同尺寸规格的,使用不同硬度的电能传输本体212样件,对电能传输本体212的电能转接层209剥离的力和折弯时的扭矩进行了测试,测试结果如表4所示。
电能转接层209剥离的力的测试方法:使用万能拉力测试机,将焊接电能转接层209的电能传输本体212样件,分别将电能转接层209和电能传输本体212固定在万能拉力测试机的拉伸治具上,并以50mm/min的速度进行拉伸,记录最终电能转接层209从电能传输本体212上剥离时的拉力值,在本实施例中,拉力值大于900N为合格值。
电能传输本体212的扭矩测试方法:使用扭矩测试仪,将电能传输本体212以相同 的半径,相同的速度弯折90°的时候,测试弯折过程中电能传输本体变形的扭矩值,在本实施例中,扭矩值小于30N·m为合格值。
表4:电能传输本体212的硬度对电能转接层剥离的力和折弯时的扭矩的影响
Figure PCTCN2022116514-appb-000004
从上表4中可以看出,当电能传输本体212的硬度为小于8HV时,电能转接层209从电能传输本体212上剥离时的拉力值小于合格值,此时焊接在电能传输本体212上的电能转接层209容易在外力的作用下从电能传输本体212上剥离,从而无法实现对电能传输本体212的保护,以及电能传输本体212功能失效,从而无法起到电能传输的目的,严重时会引发短路导致燃烧事故。当电能传输本体212的硬度为大于105HV时,由于电能传输本体212本身的硬度很高,当电能传输本体212需要折弯时,需要更大的扭矩使电能传输本体212变形,此时扭矩值不满足合格值要求。因此,发明人设定电能传输本体的硬度为8HV-105HV。
从表4中数据可以看出,当电能传输本体212的硬度为10HV-55HV时,电能转接层209从电能传输本体212上剥离时的拉力值和沿XY方向折弯的扭矩值都在很好的范围内,因此,发明人优选电能传输的硬度为10HV-55HV。
在本实施例中,所述电能传输本体212的晶粒大小为5μm-200μm。
为了验证电能传输本体212的晶粒大小对电能传输本体212的拉伸强度和制备能量的影响,发明人选用了相同尺寸规格的,不同晶粒大小的电能传输本体212样件,对电能传输本体212样件的拉伸强度和制备时消耗的能量进行测试,测试结果如表5所示。
电能传输本体212的拉伸强度测试方法:使用万能拉力测试机,将电能传输本体212样件的两端分别固定在万能拉力测试机的拉伸治具上,并以50mm/min的速度进行拉伸,记录最终拉断时的拉力值,在本实施例中,拉力值大于1600N为合格值。
电能传输本体212制备时消耗的能量测试方法:为了获得不同晶粒大小的电能传输 本体212,需要对电能传输本体212进行热处理,对应不同晶粒大小所消耗的能量进行统计计算,在本实施例中,消耗的能量值小于30KW/H为合格值。
表5:电能传输本体212的晶粒大小对拉伸强度和制备时消耗的能量的影响
Figure PCTCN2022116514-appb-000005
从上表5中可以看出,当电能传输本体212的晶粒大小小于5μm时,电能传输本体212制备时消耗的能量不满足合格值要求,晶粒越小,制备时需要消耗的能量越高,电能传输本体212的成本也会越高,但对应的性能增加不多。当电能传输本体212的晶粒大小大于200μm时,电能传输本体212拉断时的拉力值小于合格值,此时电能传输本体212本身的强度不高,受到较小外力时拉断,造成电能传输本体212功能失效,从而无法起到电能传输的目的。因此,发明人设定电能传输本体212的晶粒大小为5μm-200μm。
优选的,所述电能传输本体212的材质为铝,即电能传输导轨2为充电铝扁带,电能传输导轨2的一端与充电连接部1的一端相连接,电能传输导轨2含有电能传输本体212,电能传输导轨2的另一端与车辆供电单元连接,电能传输导轨的一端设有连接区207。
优选的,电能传输导轨2的两端均设有连接区207,电能传输导轨2的一端的连接区207与充电连接部1的接口部分连接,电能传输导轨2的另一端的连接区207与车辆供电单元的电极连接。
关于连接方式,连接区207与充电连接部1和/或车辆供电单元的连接方式为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接、压接的一种或几种。
电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产 生热量而实现焊接的一种方法。
摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
压力焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
扩散焊方式,指将工件在高温下加压,但不产生可见变形和相对移动的固态焊方法。
磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的传导金属焊接在一起。
螺接方式,是指螺纹连接,用螺纹件(或被连接件的螺纹部分)将被连接件连成一体的可拆卸连接。常用的螺纹联接件有螺栓、螺柱、螺钉和紧定螺钉等,多为标准件。
卡接方式,是指在连接端或连接面上分别设置对应的卡爪或卡槽,通过卡槽和卡爪进行装配,使其连接在一起。卡接的方式优点是连接快速,可拆卸。
拼接方式,是指在连接端或连接面上分别设置对应的凹槽和凸起,通过凹槽和凸起相互榫接或拼接进行装配,使其连接在一起。拼接的方式优点是连接稳定,可拆卸。
压接方式,压接是将连接端与连接面装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
通过上述连接方式,可以根据实际的使用环境,以及连接区207与车辆供电单元或者与充电连接部1的实际状态,选择合适的连接方式或者连接方式组合,实现有效的电性连接。
连接区207内可以设有第一连接通孔208,电能传输导轨2可以与车载电池直接进行螺栓连接,如螺栓在连接区207内穿过第一连接通孔208将电能传输导轨2的另一端与车载电池的电极连接固定。
由于铝材质硬度偏软无法承受螺栓拧紧的力矩,所以需要在螺栓拧紧区域增加垫片。同时与铝扁带用螺栓拧紧的电池端(即电极)通常为铜金属,铝材质与铜材质的电极电位差距在1.7V左右,两种金属接触会发生电化学腐蚀,在接触位置产生氧化铜与氧化铝,使接触部位电阻增大,导致接触位置发热影响电能传输甚至发生事故。综上两种情况,需要在连接区207和车载电池的电极之间设置过渡金属,以同时来解决螺栓拧紧产生的力矩及两种金属连接产生的电化学腐蚀问题。
关于所述过渡金属,第一种可以选择的实现方案为,还包括电能转接层209,电能转接层209与连接区207层叠连接,电能转接层209内设有第二连接通孔210,第二连接通孔210与第一连接通孔208轴向重合,如图5和图6所示。
电能转接层209与连接区207的连接方式为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接、压接的一种或几种。
电能转接层209应选择需具备一定的硬度、导电性能、电极电位与铜铝电极电位接近或非活泼金属,例如电能转接层209的材质含有(或为)镉、锰、锆、钴、钛、铬、金、银、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金的一种或几种。
进一步的,电能转接层209与连接区207采用层叠焊接方式,可以采用压力焊、摩擦焊、电阻焊和超声波焊中的一种或多种。
电能转接层209的为厚度可以为1μm至5000μm。
为了论证电能转接层209的层厚度变化对连接区207性能的影响,发明人使用相同规格、材质,采用不同镀镍沉积金属层厚度,做一系列温升测试和耐腐蚀性时间测试,实验结果如表6所示。
温升测试是对连接后的连接区207样件通相同的电流,在封闭的环境下检测通电前和温度稳定后的连接区207样件相同位置的温度,并做差取绝对值。在本实施例中,温升大于50K认为不合格。
耐腐蚀性时间测试,是将连接区207样件放入到盐雾喷淋试验箱内,对连接区207 的各个位置喷淋盐雾,每隔20小时取出清洗观察表面腐蚀情况,即为一个周期,直到连接区207表面腐蚀面积大于总面积的10%的时候,停止测试,并记录当时的周期数。在本实施例中,周期数小于80次认为不合格。
表6:不同电能转接层209厚度对连接区207样件的温升和耐腐蚀性影响
Figure PCTCN2022116514-appb-000006
从表6可以看出,当电能转接层209厚度小于1μm时,该连接区207样件的温升虽然合格,但是连接区207样件的耐腐蚀性周期数小于80,不符合性能要求,对该电能传输系统整体性能和寿命都有很大的影响,严重时造成产品寿命骤减甚至失效导致燃烧事故。当电能转接层209厚度大于5000μm时,连接区207产生的热量散发不出来,使电能传输系统连接区207的温升不合格,而且电能转接层209较厚反而容易从连接区207表面脱落,造成耐腐蚀性周期数下降。因此,发明人选择电能转接层209厚度为1μm-5000μm。优选的,当镍片厚度为大于或等于50μm时,耐腐蚀性更好;当镍片厚度小于或等于3000μm时,温升值都小于40K,所以优选电能转接层209的厚度为50μm-3000μm。
下面以120mm宽的电能传输导轨2为例,在连接区207上焊接电能转接层209,为论证不同电能转接层209材质对连接区207性能的影响,发明人使用相同规格、材质,采用不同材质的电能转接层209的连接区207,做一系列耐腐蚀性时间测试,实验结果如表7所示。
表7中的耐腐蚀性时间测试,是将连接区207样件放入到盐雾喷淋试验箱内,对连接区207各个位置喷淋盐雾,每隔20小时取出清洗观察表面腐蚀情况,即为一个周期,直到连接区207样件表面腐蚀面积大于总面积的10%的时候,停止测试,并记录当时的周期数。在本实施例中,周期数小于80次认为不合格。
表7:不同电能转接层209材质对连接区207样件的耐腐蚀性的影响
Figure PCTCN2022116514-appb-000007
从表7可以看出,当电能转接层209材质含有常用的金属锡、镍、锌时,实验的结果不如其他选用的金属,选用其他金属的实验结果,超过标准值较多,性能比较稳定。因此,发明人选择电能转接层209的材质含有镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。而更优选的方式是选择电能转接层209材质含有(或为)镉、锰、锆、钴、钛、铬、金、银、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金的一种或几种。
另外,第一连接通孔208和第二连接通孔210内可以套设有过渡连接环211,过渡连接环211与第一连接通孔208和第二连接通孔210均过盈配合或贴合,避免连接部位异种金属搭接产生腐蚀,过渡连接环211的材质含有(或为)镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。
过渡连接环211的材质也可与电能转接层209的材质相同,如图6所示。
过渡连接环211的材质可以为金属,过渡连接环211的周向外表面可以设有外过渡层,所述外过渡层的材质含有(或为)镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。
所述外过渡层的材质与所述电能传输本体212的材质相同。
关于所述过渡金属,第二种可以选择的实现方案为,在连接区207的连接面(即朝 向电池电极的表面)上设置沉积金属层。所述沉积金属层的材质含有(或为)镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。沉积金属层通过物理气相沉积的方式实现。所述沉积金属层的材质与连接区207搭接的电池电极的材质相同。这样的方案同样可以实现增强连接区207表面强度及避免连接区207与异种金属搭接产生的腐蚀。
下面同样以120mm宽的电能传输导轨2为例,在连接区207上设置有沉积金属层,为论证不同沉积金属层材质对连接区207性能的影响,发明人使用相同规格、材质,采用不同沉积金属层材质的连接区207,做一系列耐腐蚀性时间测试,实验结果如表8所示。
表8中的耐腐蚀性时间测试,是将连接区207样件放入到盐雾喷淋试验箱内,对连接区207各个位置喷淋盐雾,每隔20小时取出清洗观察表面腐蚀情况,即为一个周期,直到连接区207样件表面腐蚀面积大于总面积的10%的时候,停止测试,并记录当时的周期数。在本实施例中,周期数小于80次认为不合格。
表8:不同沉积金属层材质对连接区207样件耐腐蚀性的影响
Figure PCTCN2022116514-appb-000008
从表8可以看出,当沉积金属层材质含有常用的金属锡、镍、锌时,实验的结果不如其他选用的金属,选用其他金属的实验结果,超过标准值较多,性能比较稳定。因此,发明人选择沉积金属层材质含有(或为)镍、镉、锰、锆、钴、锡钛、铬、金、银、锌锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。而更优选的方式是选择沉积金属层材质含有(或为)镉、锰、锆、钴、钛、铬、金、银、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金 的一种或几种。
所述沉积金属层的厚度可以为1μm至5000μm。
为了论证沉积金属层厚度变化连接区207性能的影响,发明人使用相同规格、材质,采用不同镀镍沉积金属层厚度,做一系列温升测试和耐腐蚀性时间测试,实验结果如表9所示。
温升测试是将连接后的连接区207样件通相同的电流,在封闭的环境下检测通电前和温度稳定后的连接区207样件相同位置的温度,并做差取绝对值。在本实施例中,温升大于50K认为不合格。
耐腐蚀性时间测试,是将连接区207样件放入到盐雾喷淋试验箱内,对连接区207的各个位置喷淋盐雾,每隔20小时取出清洗观察表面腐蚀情况,即为一个周期,直到连接区207表面腐蚀面积大于总面积的10%的时候,停止测试,并记录当时的周期数。在本实施例中,周期数小于80次认为不合格。
表9:不同沉积金属层厚度对连接区样件的温升和耐腐蚀性影响
Figure PCTCN2022116514-appb-000009
从表9可以看出,当沉积金属层厚度小于1μm时,该连接区207样件的温升虽然合格,但是由于沉积金属层太薄,连接区207样件的耐腐蚀性周期数小于80,不符合性能要求,对该电能传输系统整体性能和寿命都有很大的影响,严重时造成产品寿命骤减甚至失效导致燃烧事故。当沉积金属层厚度大于5000μm时,连接区207产生的热量散发不出来,使电能传输系统连接区207的温升不合格,而且沉积金属层较厚反而容易从连接区207表面脱落,造成耐腐蚀性周期数下降。因此,发明人选择沉积金属层厚度为1μm-5000μm电能转接层。优选的,当镍片厚度为大于或等于1μm时,耐腐蚀性更好;当镍片厚度小于或等于100μm时,温升值都小于20K,所以优选电能转接层209的厚度 为1μm-100μm。
所述沉积金属层为通过电镀、化学镀、磁控溅射和真空镀中的一种或多种镀在连接区207的连接面上。
电镀方法是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。
化学镀是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。
磁控溅射是利用磁场与电场交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率。所产生的离子在电场作用下撞向靶面从而溅射出靶材。
真空镀是采用在真空条件下,通过蒸馏或溅射等方式在塑件表面沉积各种金属和非金属薄膜。
当电能传输导轨2为直流电能传输系统202时,电能传输导轨2在通电时将产生感应磁场222,该感应磁场222会对外界的产生电磁干扰,现有技术中通常的解决方案是在导线外设置电磁屏蔽层。为了取消屏蔽结构,降低成本、减轻重量,本发明采用了以下设计,所述用于车辆的电能传输系统包括两条层叠设置的电能传输导轨2,所述两条电能传输导轨2分别为直流正极电能传输系统220和直流负极电能传输系统221(即电能传输导轨2含有两条直流电能传输系统202,一条直流电能传输系统202为直流正极电能传输系统220,另一条直流电能传输系统202为直流负极电能传输系统221),电能传输导轨2含有电能传输本体212,如图8所示。
在本实施例中,所述电能传输系统至少包含层叠设置的两条电能传输导轨2。
当所述两条电能传输导轨2上下叠层放置时,产生的磁场如图9和图10所示。由于电能传输导轨2为扁平结构,其磁场最强处在其面积最大部位,通过对电能传输导轨2的叠层放置可以使正负极充电铝扁带的磁场进行抵消(由于两条电能传输导轨2中电流大小相同电流方向A相反,则感应磁场强度相同方向相反),从而达到消除由于电能传输导轨2通电时对其它电器件的电磁干扰。
两条电能传输导轨2之间的距离及两条电能传输导轨2的叠层重合度,对磁场的抵消程度有很大的影响,本发明通过对两条电能传输导轨2的叠层设计及两条电能传输导轨2的叠层距离和重合度控制来有效抵消电能传输导轨2的磁场,从而达到取消电能传输系统屏蔽层结构,达到减少成本、降低重量的需求。
优选,所述两条电能传输导轨2的宽度方向相互平行。所述两条电能传输导轨2的电能传输本体212互为镜像。所述两条电能传输导轨2的电能传输本体212之间距离为H,如图11所示。所述两条电能传输导轨2的电能传输本体212的层叠方向为图10中 的上下方向。
当所述两条电能传输导轨2的电能传输本体212沿层叠方向的重合度为100%时,所述两条电能传输导轨2的电能传输本体212之间距离H对磁场抵消的影响见表10,磁场抵消百分比大于30%为合格值。
表10:两条电能传输本体212叠层重合面积为100%时,铝导体之间距离H对磁场抵消的影响
Figure PCTCN2022116514-appb-000010
其中,所述重合度的含义为所述两条电能传输导轨2的电能传输本体212沿层叠方向的重叠面积占一条电能传输导轨2的电能传输本体212的面积的百分比。
从表10可知,当所述两条电能传输导轨2的电能传输本体212沿层叠方向的重合度为100%时,所述两条电能传输导轨2的电能传输本体212之间距离H为小于或等于27cm时,磁场抵消百分比合格,对防电磁干扰有一定效果;优选的,所述两条电能传输导轨2的电能传输本体212之间距离小于或等于7cm时磁场可以有效抵消,且效果明显,所以进一步的把两条电能传输导轨2的电能传输本体212之间距离H为小于或等于7cm。
当所述两条电能传输导轨2的电能传输本体212之间的距离为7cm时,所述两条电能传输导轨2沿层叠方向的重合度对磁场抵消的影响见表11,磁场抵消百分比大于30%为合格值。
表11:两条电能传输本体212距离为7cm时,电能传输导轨2叠层重合面积对磁场抵消的影响
Figure PCTCN2022116514-appb-000011
从表11可知,当两条电能传输导轨2的电能传输本体212之间的距离为7cm时,所述两条电能传输导轨2沿层叠方向的重合度为40%-100%,磁场抵消百分比合格,对防电磁干扰有一定的效果,两条电能传输导轨2沿层叠方向的重合度在90%以上效果明显,当两条电能传输导轨2沿层叠方向的重合度为100%时效果最优。
在本实施例中,所述电能传输导轨2包括电能传输本体212和保护装置,所述保护装置套设在所述电能传输本体212的外侧。
所述保护装置具有屏蔽功能,且所述保护装置的转移阻抗小于或等于100mΩ。
在本实施例中,所述保护装置可以为绝缘体213。
在本实施例中,电能传输导轨2含有电能传输本体212(即上述扁条形的导体金属)和套设在所述电能传输本体212外的绝缘体213,电能传输导轨2含有散热结构,该散热结构能够对电能传输本体212降温。优选所述散热结构的冷却速率大于或等于0.5℃/min。
发明人为了验证散热结构的冷却速率对电能传输导轨2温升的影响,选用10根相同截面积、相同材质、相同长度的电能传输导轨2,并通相同的电流,采用不同冷却速率的散热结构,对电能传输导轨2进行冷却,并读取各个电能传输导轨2的温升值,记录在表12中。
实验方法是在封闭的环境中,将采用不同冷却速率的散热结构的电能传输导轨2,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表12:不同冷却速率的散热结构对电能传输导轨2温升的影响
Figure PCTCN2022116514-appb-000012
从上表12中可以看出,当散热结构的冷却速率小于0.5℃/min时,电能传输导轨2的温升值不合格,散热结构的冷却速率越大,电能传输导轨2的温升值越小。因此,发明人将散热结构的冷却速率设定为大于或等于0.5℃/min。
在本实施例中,电能传输本体212和绝缘体213的材质均可以采用现有材料,电能传输导轨2的宽度和厚度之比可以为2:1至20:1,电能传输本体212的宽度和厚度之比 可以为2:1至20:1。
在本实施例中,电能传输本体212和绝缘体213的间隙小于或等于1cm。
或者,所述保护装置也可以为保护塑料壳,所述保护塑料壳与电能传输本体212一体注塑成型设置。具体的保护塑料壳的结构可以为绝缘体213或者注塑导电塑料或者其两者的组合。
在一实施方式中,所述保护装置具有屏蔽功能,且所述保护装置的转移阻抗为小于100mΩ,屏蔽材料通常用转移阻抗来表征保护装置的屏蔽效果,转移阻抗越小,屏蔽效果越好。保护装置的转移阻抗定义为单位长度屏蔽体感应的差模电压U与屏蔽体表面通过的电流Is之比,即:
Z T=U/I S,所以可以理解为,保护装置的转移阻抗将保护装置的电流转换成差模干扰。转移阻抗越小越好,即减小差模干扰转换,可以得到较好的屏蔽性能。
为了验证保护装置的屏蔽阻抗,下面实验具体使用保护塑料壳为具体实施方式。
为了验证不同转移阻抗值的保护塑料壳的对电能传输导轨2屏蔽效果的影响,发明人选用不同转移阻抗值的保护塑料壳,制作了一系列电能传输导轨2的样件,分别测试电能传输导轨2的屏蔽效果,实验结果如下表13所示,在本实施例中,电能传输导轨2的屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对电能传输导轨2输出一个信号值(此数值为测试值2),在电能传输导轨2外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表13:保护塑料壳的转移阻抗对屏蔽性能的影响
Figure PCTCN2022116514-appb-000013
从上表13可以看出,当保护塑料壳的转移阻抗值大于100mΩ时,电能传输导轨2连接结构的屏蔽性能值小于40dB,不符合理想值要求,保护塑料壳的转移阻抗值为小于100mΩ时,电能传输导轨2连接结构的屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定保护塑料壳的转移阻抗为小于100mΩ。
关于所述散热结构,第一种可以选择的实现方案为空冷散热,即所述散热结构为空冷散热通道214,电能传输导轨2含有空冷散热通道214,空冷散热通道214与所述用于车辆的电能传输系统的外部连通,如图9和图10所示。
在本实施例中,空冷散热通道214位于电能传输本体212和所述保护装置之间,例如,所述保护装置可以为绝缘体213,绝缘体213的内表面设有支撑结构215,电能传输本体212与支撑结构215直接接触,电能传输本体212、绝缘体213和支撑结构215围成空冷散热通道214。
具体的,支撑结构215含有沿电能传输导轨2的周向和轴向设置的多个支撑条或支撑块216,例如所示支撑条大致呈U形。空冷散热通道214含有周向通道217和轴向通道218,周向通道217与轴向通道218连通,如图11所示。
其中,电能传输导轨2的轴向为图11中的左右方向,同时也是垂直于图10的纸面方向。周向通道217沿图11中的上下方向延伸,轴向通道218沿图11中的左右方向延伸。
当增大电流时,导体电能传输本体212发热,其热量可以通过空冷散热通道214内流通的空气进行散热从而达到降低线径的作用。电能传输导轨2的散热效果与其尺寸也密切相关,例如,电能传输导轨2的宽度越大厚度越小,则其散热情况越好。
关于所述散热结构,第二种可以选择的实现方案为液冷散热,即所述散热结构为液冷散热通道219,电能传输导轨2含有液冷散热通道219,液冷散热通道219能够通过输液管5与循环水泵3连接,液冷散热通道219内含可以注入有冷却水或冷却油等冷却液,通过冷却在液冷散热通道219和循环水泵3之间循环流动,从而把电能传输导轨2工作状态下产生的热量带出,使电能传输导轨2保证良好的导电性能。
在本实施例中,液冷散热通道219可以位于电能传输本体212内,液冷散热通道219沿电能传输本体212的轴线方向延伸,如图12和图13所示。关于液冷散热通道219的具体数量、位置和尺寸,本领域的技术人员可以根据有限次实验获得最佳的参数选择。
或者,液冷散热通道219可以位于电能传输本体212和所述保护装置之间。例如,所述保护装置可以为绝缘体213,液冷散热通道219位于沿电能传输本体212的厚度方向外,即液冷散热通道219位于电能传输本体212的上下两侧,如图14所示。或液冷散热通道219位于沿电能传输本体212的宽度方向的两侧外,液冷散热通道219位于电能传输本体212的左右两侧,另一种情况,液冷散热通道219位于电能传输本体212的上下两侧,同时液冷散热通道219位于电能传输本体212的左右两侧,以达到更好的散 热效果。
循环水泵3在工作时可能有一定的能量消耗,为了避免浪费节约能源,所述用于车辆的电能传输系统还包括温度传感器4,温度传感器4能够测量电能传输导轨2的温度。优选,温度传感器4位于连接区207,即温度传感器4与连接区207接触,如图13和图15所示。或温度传感器4也可以设置在连接区207周围不超过9cm的半径范围内。
在工作时,温度传感器4与循环水泵3联动,可以对循环水泵3的工作温度进行设定,例如循环水泵3的工作温度设计为80℃,即当连接区207的工作温度达到80℃时,循环水泵3开启工作,降低电能传输导轨2的温度。如未达到设定的温度,循环水泵3无需工作,通过液冷散热通道219自身内部的冷却液散热降温。
温度传感器4为NTC温度传感器或PTC温度传感器。采用这两种温度传感器的好处是体积小,能够测量其他温度计无法测量的空隙;使用方便,电阻值可在0.1kΩ~100kΩ间任意选择;易加工成复杂的形状,可大批量生产,稳定性好、过载能力强,适用于转换接头这种要求体积小,性能稳定的产品中。
电能传输导轨2的一端与充电连接部1连接,电能传输导轨2的一端的构造可以与电能传输导轨2的另一端的构造相同,电能传输导轨2的一端与充电连接部1的连接方式可以采用电能传输导轨2的另一端与上述充电电池的电极的连接方式。即电能传输导轨2的一端也可以设有连接区207、电能转接层209或过渡金属层等。
下面介绍一种充电装置,所述充电装置包括上述的用于车辆的电能传输系统,充电连接部1为充电插头或充电插座,电能传输导轨2的另一端与电源端子连接。此时所述用于车辆的电能传输系统位于充电枪内,优选充电连接部1为充电插头。
下面介绍一种电动车辆,所述电动车辆包括上述的用于车辆的电能传输系统和充电电池,充电连接部1为充电插头或充电插座,电能传输导轨2的另一端与所述充电电池的电极连接。此时所述用于车辆的电能传输系统位于电动车辆内,优选充电连接部1为充电插座。
以上所述,仅为本发明的具体实施例,不能以其限定发明实施的范围,所以其等同组件的置换,或依本发明专利保护范围所作的等同变化与修饰,都应仍属于本专利涵盖的范畴。另外,本发明中的技术特征与技术特征之间、技术特征与技术方案、技术方案与技术方案之间均可以自由组合使用。

Claims (58)

  1. 一种用于车辆的电能传输系统,其中,所述用于车辆的电能传输系统包括电能传输导轨(2)和与外界充电系统相连接的充电连接部(1),电能传输导轨(2)的一端与充电连接部(1)的一端相连接。
  2. 根据权利要求1所述的用于车辆的电能传输系统,其中,
    电能传输导轨(2)为交流电能传输系统(201);
    或,电能传输导轨(2)为直流电能传输系统(202);
    或,电能传输导轨(2)为交流电能传输系统(201)和直流电能传输系统(202)。
  3. 根据权利要求1所述的用于车辆的电能传输系统,其中,在以X、Y、Z轴为坐标轴的空间直角坐标系中,电能传输导轨(2)含有Z方向折弯段(205)和/或XY方向折弯段(206)。
  4. 根据权利要求3所述的用于车辆的电能传输系统,其中,Z方向折弯段(205)的弯曲角度为0°-180°,XY方向折弯段(206)的弯曲角度为0°-180°。
  5. 根据权利要求1所述的用于车辆的电能传输系统,其中,电能传输导轨(2)至少含有一个螺旋部(203)。
  6. 根据权利要求5所述的用于车辆的电能传输系统,其中,螺旋部(203)的螺距(204)大于等于8mm。
  7. 根据权利要求1所述的用于车辆的电能传输系统,其中,电能传输导轨(2)含有扁条形的电能传输本体(212),电能传输本体(212)的材质含有铝、磷、锡、铜、铁、锰、铬、钛和锂中的一种或几种。
  8. 根据权利要求7所述的用于车辆的电能传输系统,其中,电能传输本体(212)的材质含有铝。
  9. 根据权利要求7所述的用于车辆的电能传输系统,其中,电能传输本体(212)的抗拉强度为30MPa-230MPa。
  10. 根据权利要求9所述的用于车辆的电能传输系统,其中,电能传输本体(212)的抗拉强度为40MPa-170MPa。
  11. 根据权利要求7所述的用于车辆的电能传输系统,其中,电能传输本体(212)的断裂伸长率为2%-60%。
  12. 根据权利要求7所述的用于车辆的电能传输系统,其中,电能传输本体(212)的硬度为8HV-105HV。
  13. 根据权利要求12所述的用于车辆的电能传输系统,其中,电能传输本体(212)的硬度为10HV-55HV。
  14. 根据权利要求7所述的用于车辆的电能传输系统,其中,电能传输本体(212)的晶粒大小为5μm-200μm。
  15. 根据权利要求1所述的用于车辆的电能传输系统,其中,电能传输导轨(2)含有电能传输本体(212),电能传输导轨(2)的另一端与车辆供电单元相连接。
  16. 根据权利要求15所述的用于车辆的电能传输系统,其中,电能传输导轨(2)设有连接区(207)。
  17. 根据权利要求16所述的用于车辆的电能传输系统,其中,连接区(207)与充电连接部(1)和/或所述车辆供电单元的连接方式为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接和压接中的一种或几种。
  18. 根据权利要求16所述的用于车辆的电能传输系统,其中,所述用于车辆的电能传输系统还包括电能转接层(209),电能转接层(209)与连接区(207)层叠连接。
  19. 根据权利要求18所述的用于车辆的电能传输系统,其中,电能转接层(209)的材质含有镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。
  20. 根据权利要求18所述的用于车辆的电能传输系统,其中,电能转接层(209)的厚度为1μm-5000μm。
  21. 根据权利要求18所述的用于车辆的电能传输系统,其中,所述连接的方式为电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接和压接中的一种或几种。
  22. 根据权利要求18所述的用于车辆的电能传输系统,其中,连接区(207)内设有第一连接通孔(208),电能转接层(209)内设有第二连接通孔(210),第二连接通孔(210)与第一连接通孔(208)轴向重合。
  23. 根据权利要求22所述的用于车辆的电能传输系统,其中,第一连接通孔(208)和第二连接通孔(210)内套设有过渡连接环(211),过渡连接环(211)与第一连接通孔(208)和第二连接通孔(210)为过盈配合或贴合。
  24. 根据权利要求23所述的用于车辆的电能传输系统,其中,过渡连接环(211)的材质含有镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、 钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。
  25. 根据权利要求23所述的用于车辆的电能传输系统,其中,过渡连接环(211)的材质与电能转接层(209)的材质相同。
  26. 根据权利要求25所述的用于车辆的电能传输系统,其中,过渡连接环(211)的周向外表面设有外过渡层,所述外过渡层的材质含有镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。
  27. 根据权利要求26所述的用于车辆的电能传输系统,其中,所述外过渡层的材质与电能传输本体(212)的材质相同。
  28. 根据权利要求16所述的用于车辆的电能传输系统,其中,连接区(207)的连接面上设有沉积金属层。
  29. 根据权利要求28所述的用于车辆的电能传输系统,其中,所述沉积金属层的材质含有镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。
  30. 根据权利要求28所述的用于车辆的电能传输系统,其中,所述沉积金属层的材质与连接区(207)搭接的电极的材质相同。
  31. 根据权利要求28所述的用于车辆的电能传输系统,其中,所述沉积金属层的厚度为1μm至5000μm。
  32. 根据权利要求1所述的用于车辆的电能传输系统,其中,所述用于车辆的电能传输系统至少包含两条电能传输导轨(2),所述两条电能传输导轨(2)分别为直流正极电能传输系统(220)和直流负极电能传输系统(221),电能传输导轨(2)含有电能传输本体(212)。
  33. 根据权利要求32所述的用于车辆的电能传输系统,其中,所述两条电能传输导轨(2)的宽度方向相互平行。
  34. 根据权利要求32所述的用于车辆的电能传输系统,其中,所述两条电能传输导轨(2)的电能传输本体(212)之间距离小于等于27cm。
  35. 根据权利要求34所述的用于车辆的电能传输系统,其中,所述两条电能传输导轨(2)的电能传输本体(212)之间距离小于等于7cm。
  36. 根据权利要求32所述的用于车辆的电能传输系统,其中,所述两条电能传输导轨(2)的电能传输本体(212)互为镜像。
  37. 根据权利要求32所述的用于车辆的电能传输系统,其中,所述两条电能传输导轨(2)的电能传输本体(212)沿层叠方向的重合度为40%-100%。
  38. 根据权利要求1所述的用于车辆的电能传输系统,其中,电能传输导轨(2)包括电能传输本体(212)和保护装置,所述保护装置设置在电能传输本体(212)的外侧。
  39. 根据权利要求38所述的用于车辆的电能传输系统,其中,电能传输本体(212)和保护装置的间隙小于等于1cm。
  40. 根据权利要求38所述的用于车辆的电能传输系统,其中,所述保护装置为绝缘体(213)。
  41. 根据权利要求38所述的用于车辆的电能传输系统,其中,所述保护装置为保护塑料壳。
  42. 根据权利要求41所述的用于车辆的电能传输系统,其中,所述保护塑料壳与电能传输本体(212)一体注塑成型。
  43. 根据权利要求38所述的用于车辆的电能传输系统,其中,所述保护装置具有屏蔽功能,且所述保护装置的转移阻抗小于100mΩ。
  44. 根据权利要求38所述的用于车辆的电能传输系统,其中,电能传输导轨(2)含有散热结构,该散热结构能够对电能传输本体(212)降温。
  45. 根据权利要求44所述的用于车辆的电能传输系统,其中,所述散热结构的冷却速率大于等于0.5℃/min。
  46. 根据权利要求44所述的用于车辆的电能传输系统,其中,所述散热结构为空冷散热通道(214),空冷散热通道(214)与所述用于车辆的电能传输系统的外部连通。
  47. 根据权利要求38所述的用于车辆的电能传输系统,其中,电能传输导轨(2)含有散热结构,所述散热结构为空冷散热通道(214),空冷散热通道(214)位于电能传输本体(212)和所述保护装置之间。
  48. 根据权利要求47所述的用于车辆的电能传输系统,其中,所述保护装置的内表面设有支撑结构(215),电能传输本体(212)与支撑结构(215)接触,电能传输本体(212)、所述保护装置和支撑结构(215)围成空冷散热通道(214)。
  49. 根据权利要求48所述的用于车辆的电能传输系统,其中,支撑结构(215)含有沿电能传输导轨(2)的周向和轴向设置的多个支撑条或支撑块(216)。
  50. 根据权利要求48所述的用于车辆的电能传输系统,其中,空冷散热通道(214)含有周向通道(217)和轴向通道(218),周向通道(217)与轴向通道(218)连通。
  51. 根据权利要求44所述的用于车辆的电能传输系统,其中,所述散热结构为液冷散热通道(219),液冷散热通道(219)能够通过输液管(5)与循环水泵(3)连接。
  52. 根据权利要求51所述的用于车辆的电能传输系统,其中,液冷散热通道(219)位于电能传输本体(212)内,液冷散热通道(219)沿电能传输本体(212)的轴线方向延伸。
  53. 根据权利要求52所述的用于车辆的电能传输系统,其中,液冷散热通道(219)位于电能传输本体(212)和所述保护装置之间。
  54. 根据权利要求53所述的用于车辆的电能传输系统,其中,液冷散热通道(219)位于沿电能传输本体(212)的厚度方向和/或宽度方向的两侧外。
  55. 根据权利要求16所述的用于车辆的电能传输系统,其中,所述用于车辆的电能传输系统还包括温度传感器(4),温度传感器(4)设置在连接区(207)上或设置在连接区(207)周围不超过9cm的半径范围内,温度传感器(4)能够测量电能传输导轨(2)的温度。
  56. 根据权利要求55所述的用于车辆的电能传输系统,其中,温度传感器(4)为NTC温度传感器或PTC温度传感器。
  57. 一种充电装置,其中,所述充电装置包括权利要求1-56所述的用于车辆的电能传输系统,充电连接部(1)为充电插头或充电插座。
  58. 一种电动车辆,其中,所述电动车辆包括权利要求1-56所述的用于车辆的电能传输系统,充电连接部(1)为充电插头或充电插座。
PCT/CN2022/116514 2021-09-02 2022-09-01 一种用于车辆的电能传输系统、充电装置和电动车辆 WO2023030445A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247010027A KR20240052020A (ko) 2021-09-02 2022-09-01 차량용 전기 에너지 전송시스템, 충전장치 및 전기 차량
MX2024002809A MX2024002809A (es) 2021-09-02 2022-09-01 Sistema de transmision de energia electrica para vehiculo, y aparatos de carga y vehiculo electrico.
CA3230765A CA3230765A1 (en) 2021-09-02 2022-09-01 Electric energy transmission system for vehicle, and charging apparatus and electric vehicle
JP2024514108A JP2024532514A (ja) 2021-09-02 2022-09-01 車両用電力伝送システム、充電装置及び電気車両
EP22863580.1A EP4398270A1 (en) 2021-09-02 2022-09-01 Electric energy transmission system for vehicle, and charging apparatus and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111028873.XA CN113602111A (zh) 2021-09-02 2021-09-02 一种用于车辆的电能传输系统、充电装置和电动车辆
CN202111028873.X 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023030445A1 true WO2023030445A1 (zh) 2023-03-09

Family

ID=78310016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116514 WO2023030445A1 (zh) 2021-09-02 2022-09-01 一种用于车辆的电能传输系统、充电装置和电动车辆

Country Status (7)

Country Link
EP (1) EP4398270A1 (zh)
JP (1) JP2024532514A (zh)
KR (1) KR20240052020A (zh)
CN (1) CN113602111A (zh)
CA (1) CA3230765A1 (zh)
MX (1) MX2024002809A (zh)
WO (1) WO2023030445A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113602111A (zh) * 2021-09-02 2021-11-05 长春捷翼汽车零部件有限公司 一种用于车辆的电能传输系统、充电装置和电动车辆
CN217740814U (zh) * 2021-12-30 2022-11-04 长春捷翼汽车零部件有限公司 一种电能传输连接机构、充电插座及一种机动车辆
CN114709683A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种固态冷却的连接器总成及一种车辆
CN217823621U (zh) * 2022-03-14 2022-11-15 吉林省中赢高科技有限公司 一种连接器总成及一种车辆
CN114709685A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种多芯电连接器总成和车辆
CN114709687A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种电能传输连接装置及车辆

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329377A (zh) * 2000-05-12 2002-01-02 汤姆森许可公司 扁平柔性电缆的双螺旋导线的包扎
CN107342510A (zh) * 2016-04-29 2017-11-10 迪尔公司 电连接器组件
WO2021091216A1 (ko) * 2019-11-06 2021-05-14 엘에스전선 주식회사 전기차 충전용 케이블 어셈블리
CN213583228U (zh) * 2020-10-26 2021-06-29 深圳市展旺精密科技有限公司 一种具有信息提醒功能的新能源电动汽车电缆
CN213988399U (zh) * 2021-01-28 2021-08-17 广东奥美格传导科技股份有限公司 一种用于新能源汽车的充电线缆
EP3869622A1 (de) * 2020-02-20 2021-08-25 HARTING Automotive GmbH Ladebuchse für ein elektrofahrzeug
CN113602111A (zh) * 2021-09-02 2021-11-05 长春捷翼汽车零部件有限公司 一种用于车辆的电能传输系统、充电装置和电动车辆
CN113922124A (zh) * 2021-10-01 2022-01-11 长春捷翼汽车零部件有限公司 一种连接机构、电能传输装置及机动车辆
CN113922138A (zh) * 2021-10-01 2022-01-11 长春捷翼汽车零部件有限公司 一种扁带式连接机构、电能传输装置及机动车辆
CN215944316U (zh) * 2021-09-02 2022-03-04 长春捷翼汽车零部件有限公司 一种用于车辆的电能传输系统、充电装置和电动车辆

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329377A (zh) * 2000-05-12 2002-01-02 汤姆森许可公司 扁平柔性电缆的双螺旋导线的包扎
CN107342510A (zh) * 2016-04-29 2017-11-10 迪尔公司 电连接器组件
WO2021091216A1 (ko) * 2019-11-06 2021-05-14 엘에스전선 주식회사 전기차 충전용 케이블 어셈블리
EP3869622A1 (de) * 2020-02-20 2021-08-25 HARTING Automotive GmbH Ladebuchse für ein elektrofahrzeug
CN213583228U (zh) * 2020-10-26 2021-06-29 深圳市展旺精密科技有限公司 一种具有信息提醒功能的新能源电动汽车电缆
CN213988399U (zh) * 2021-01-28 2021-08-17 广东奥美格传导科技股份有限公司 一种用于新能源汽车的充电线缆
CN113602111A (zh) * 2021-09-02 2021-11-05 长春捷翼汽车零部件有限公司 一种用于车辆的电能传输系统、充电装置和电动车辆
CN215944316U (zh) * 2021-09-02 2022-03-04 长春捷翼汽车零部件有限公司 一种用于车辆的电能传输系统、充电装置和电动车辆
CN113922124A (zh) * 2021-10-01 2022-01-11 长春捷翼汽车零部件有限公司 一种连接机构、电能传输装置及机动车辆
CN113922138A (zh) * 2021-10-01 2022-01-11 长春捷翼汽车零部件有限公司 一种扁带式连接机构、电能传输装置及机动车辆

Also Published As

Publication number Publication date
KR20240052020A (ko) 2024-04-22
MX2024002809A (es) 2024-04-26
EP4398270A1 (en) 2024-07-10
JP2024532514A (ja) 2024-09-05
CA3230765A1 (en) 2023-03-09
CN113602111A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023030445A1 (zh) 一种用于车辆的电能传输系统、充电装置和电动车辆
WO2023024971A1 (zh) 一种电能传输转接机构、充电插座和机动车辆
WO2023098793A1 (zh) 一种含有冷却结构的充电枪和充电桩
CN217823618U (zh) 一种电能传输总成及车辆
CN216251492U (zh) 一种电能传输转接机构、充电插座和机动车辆
WO2024056048A1 (zh) 一种新型铝端子
JP2024530188A (ja) 充電インレットおよび自動車
WO2024056047A1 (zh) 一种新型铜铝复合端子
WO2023174247A1 (zh) 一种电能传输连接装置及车辆
WO2023174260A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
WO2023125496A1 (zh) 便于更换的充电座及汽车
WO2024056060A1 (zh) 一种新型铝端子
WO2023174276A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
CN113922138A (zh) 一种扁带式连接机构、电能传输装置及机动车辆
EP4372920A1 (en) Plug-in terminal, plug-in connection structure, and plug-in terminal assembly
CN113922124A (zh) 一种连接机构、电能传输装置及机动车辆
CN215944316U (zh) 一种用于车辆的电能传输系统、充电装置和电动车辆
CN215771835U (zh) 一种线束模块及组合式线束
WO2024149194A1 (zh) 一种电连接结构
CN114709685A (zh) 一种多芯电连接器总成和车辆
WO2023174248A1 (zh) 一种连接器总成及一种车辆
WO2023174290A1 (zh) 一种连接器柔性连接结构及一种车辆
WO2024056069A1 (zh) 一种新型铝端子
WO2023051767A1 (zh) 一种连接机构、电能传输装置及机动车辆
WO2023174279A1 (zh) 一种电能传输总成及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18688656

Country of ref document: US

Ref document number: 2024514108

Country of ref document: JP

Ref document number: 3230765

Country of ref document: CA

Ref document number: 2401001373

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024004157

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247010027

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022863580

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863580

Country of ref document: EP

Effective date: 20240402

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112024004157

Country of ref document: BR

Free format text: APRESENTAR ESCLARECIMENTOS A RESPEITO DA ALTERACAO DE ENDERECO SOLICITADA NA PETICAO 870240027222, DE 28/03/2024, PARA A INVENTORA EMMA LOUISE HAWKINS, UMA VEZ QUE A MESMA NAO CONSTA DA PUBLICACAO INTERNACIONAL OU DO FORMULARIO DE ENTRADA NA FASE NACIONAL.

ENP Entry into the national phase

Ref document number: 112024004157

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240301