WO2023174115A1 - 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件 - Google Patents

抑制量子点闪烁的处理方法、量子点膜及量子点发光器件 Download PDF

Info

Publication number
WO2023174115A1
WO2023174115A1 PCT/CN2023/080193 CN2023080193W WO2023174115A1 WO 2023174115 A1 WO2023174115 A1 WO 2023174115A1 CN 2023080193 W CN2023080193 W CN 2023080193W WO 2023174115 A1 WO2023174115 A1 WO 2023174115A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
quantum dots
quantum
dots
infrared irradiation
Prior art date
Application number
PCT/CN2023/080193
Other languages
English (en)
French (fr)
Inventor
张超
庄永漳
仉旭
Original Assignee
镭昱光电科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 镭昱光电科技(苏州)有限公司 filed Critical 镭昱光电科技(苏州)有限公司
Publication of WO2023174115A1 publication Critical patent/WO2023174115A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Definitions

  • the present application relates to a processing method for suppressing quantum dot flicker, a quantum dot film, a quantum dot light-emitting device and a display device, and belongs to the field of quantum dot technology.
  • Quantum dots have become the preferred material for solar cells, light-emitting diodes, lasers, color conversion, and color enhancement films due to their superior optoelectronic properties.
  • the forward aging process since it is a forward aging process in its application, and the forward aging lasts for a long time and the degree is uncontrollable, which seriously affects the adjustment of white balance of quantum dots in display applications. Therefore, many industry technicians adjust by adding certain accelerators, but because most accelerators damage quantum dots, the lifespan of quantum dots is greatly reduced, thus hindering the further application of quantum dot devices.
  • the main purpose of this application is to propose a processing method and application for suppressing quantum dot flicker, so as to overcome the shortcomings of the existing technology.
  • Another object of the present application is to provide a quantum dot film, a quantum dot light-emitting device and a display device.
  • Embodiments of the present application provide a processing method for suppressing quantum dot flicker, which includes: subjecting quantum dots or a composite material system containing quantum dots to irradiation with infrared rays, the wavelength of the infrared rays is 0.7 ⁇ m to 1000 ⁇ m, and the infrared rays The time of irradiation treatment is 1min ⁇ 200min.
  • the embodiment of the present application also provides a quantum dot, which is processed by the aforementioned method.
  • Embodiments of the present application also provide a quantum dot film, which includes the aforementioned quantum dots, or the quantum dot film is processed by the aforementioned method.
  • Embodiments of the present application also provide a quantum dot light-emitting device, which includes the aforementioned quantum dots or quantum dot film.
  • embodiments of the present application also provide a display device, which includes the aforementioned quantum dots, quantum dot film or quantum dot light-emitting device.
  • the processing method for suppressing quantum dot flicker provided by this application can reduce or even eliminate the "flicker" probability of quantum dots by subjecting quantum dots to infrared irradiation treatment, improve the initial PLQY, and make the quantum dots have no forward direction during use. aging phenomenon, and the treated quantum dots and their derivatives have superior performance and can be better used in display devices.
  • Figure 1 is a schematic diagram of the mechanism of quantum dot fluorescence flashing phenomenon
  • Figures 2a-2d are respectively graphs of blue light aging experimental data of quantum dot films prepared in Examples 1-4 of the present application under 1W/ cm2 ;
  • Figure 2e is a blue light aging experimental data chart of the quantum dot film prepared in Example 5 of the present invention under 1W/ cm2 ;
  • Figures 3a to 3c are respectively graphs of blue light aging experimental data of quantum dot films prepared in Comparative Examples 1-3 of the present application under 1W/ cm2 .
  • the inventor of this case was able to propose the technical solution of this application after long-term research and extensive practice.
  • the inventor of this case unexpectedly discovered during the experiment that a special method, that is, infrared irradiation treatment, can be used to solve the problem of long forward aging time of quantum dots without the introduction of accelerators, and the probability of "flickering" of quantum dots can even be reduced.
  • the "blinking" phenomenon of quantum dots means that the fluorescence of quantum dots will switch back and forth between the bright state and the dark state when excited by excitation light. This phenomenon is called the fluorescence blinking of quantum dots.
  • the reason for this flicker is that during the growth process of the quantum dots, some unpaired chemical bonds with higher free energy are produced on the surface due to crystal interruption, forming a surface capture state of the quantum dots.
  • Electrons or holes in the valence band are captured by surface trapping states and then converge non-radiatively with holes in the valence band or electrons in the conduction band.
  • the nonradiative recombination rate is close to the radiative recombination rate, surface atoms jump back and forth between two quasi-stable positions under light excitation.
  • One aspect of the embodiment of the present application provides a processing method for suppressing quantum dot flicker, which includes: subjecting quantum dots or a composite material system containing quantum dots to infrared irradiation treatment, the wavelength of the infrared ray is 0.7 ⁇ m to 1000 ⁇ m, and the The time of infrared irradiation treatment is 1min ⁇ 200min.
  • the method includes subjecting the quantum dots to infrared irradiation in a protective gas atmosphere.
  • the quantum dots may be quantum dot powder or quantum dot liquid, but are not limited thereto.
  • the method includes subjecting the quantum dots distributed in the composite material system including quantum dots to infrared irradiation.
  • the composite material system containing quantum dots may include a quantum dot film or a quantum dot light-emitting device, but is not limited thereto.
  • the processing method for suppressing quantum dot flicker provided by this application includes: using an infrared processor to perform the infrared irradiation treatment on the quantum dots in a protective gas atmosphere, or using an infrared processor to perform the infrared irradiation treatment on the quantum dots.
  • the quantum dots distributed in the composite material system containing quantum dots are subjected to the infrared irradiation treatment.
  • the infrared ray emitted by the infrared processor has a wavelength of 2.5 ⁇ m to 25 ⁇ m.
  • the time for subjecting the quantum dots to infrared irradiation treatment in the infrared band is 30 min to 120 min.
  • the protective gas atmosphere includes an atmosphere formed by high purity nitrogen and/or inert gases, for example,
  • the inert gas is preferably high-purity argon, but is not limited thereto.
  • the quantum dots include any one or a combination of two or more of CdSe, CdS, CdZnSe, CdZnS, CdZnSeS, ZnSeS, ZnSe, CuInS, CuInSe, InP, InZnP, perovskite quantum dots, etc. , but not limited to this.
  • Another aspect of the embodiments of the present application also provides a quantum dot, which is processed by the aforementioned method.
  • Another aspect of the embodiment of the present application also provides a quantum dot film, the quantum dot film includes the aforementioned quantum dots, or the quantum dot film is processed by the aforementioned method.
  • Another aspect of the embodiments of the present application also provides a quantum dot light-emitting device, which includes the aforementioned quantum dots or quantum dot film.
  • the quantum dot light-emitting device may be a QLED device.
  • another aspect of the embodiment of the present application also provides a display device, which includes the aforementioned quantum dots, quantum dot film structure, or quantum dot light-emitting device.
  • quantum dots when quantum dots are prepared into films or QLED devices, as light excitation or current is given to them, the efficiency of quantum dot derivatives increases and the brightness becomes higher within a certain period of time, and this phenomenon A phenomenon exists for a long time and takes a long time to reach its peak, which is unavoidable.
  • the processing method for suppressing quantum dot flicker improves the carrier migration inside the quantum dots by subjecting the quantum dots to infrared irradiation.
  • the carriers in the quantum dots with originally high ground state energy are Captured by quantum dots with low ground state energy.
  • this state After being treated with infrared irradiation, this state is activated, reducing or eliminating the amount of "dark state” caused by quantum dot flickering, and then the photoluminescence intensity of quantum dots gradually increases, which can reduce the probability of "flickering" of quantum dots and even Elimination is achieved and the initial PLQY is improved, so that there is no positive aging phenomenon of quantum dots during use, and the performance of the treated quantum dots and their derivatives is more superior and can be better applied to display devices.
  • Cd quantum dots (you can choose CdZnS, CdZnSe, CdSe, CdZnSeS, etc.) into quantum dot dry powder. Dissolve 1g of the obtained product in 5ml PGMEA solvent, and then mix with 0.1 parts of nano-aluminum, 10 parts of polyester acrylate, and 15 parts of acrylic resin.
  • InP quantum dots are prepared into quantum dot dry powder.
  • the obtained quantum dot dry powder is placed in an inert gas (such as Ar gas) atmosphere and subjected to infrared irradiation treatment under an infrared emitter with a wavelength band of 15000nm.
  • the processing time is 80 minutes.
  • the quantum dot glue was obtained by mechanical stirring and mixing at 25°C, and a quantum dot film was prepared, and an aging experiment was performed on it.
  • the blue light aging experiment data chart at 1W/ cm2 is shown in Figure 2b.
  • Cd quantum dots (CdZnS, CdZnSe, CdSe, CdZnSeS, etc. can be selected) are prepared into quantum dot dry powder, and the obtained quantum dot dry powder is placed in an inert gas (such as Ar gas) atmosphere and operated under an infrared emitter with a wavelength of 2500nm. Infrared irradiation treatment, the treatment time is 30 minutes, the resultant is prepared into a device according to the conventional quantum dot light-emitting diode device preparation method, and the brightness decay is tested under constant current. The data is shown in Figure 2d.
  • an inert gas such as Ar gas
  • Cd quantum dots (CdZnS, CdZnSe, CdSe, CdZnSeS, etc. can be selected) are prepared into quantum dot dry powder.
  • the obtained quantum dot dry powder is dissolved in n-octane and spin-coated to prepare a quantum dot film.
  • the resultant is processed according to conventional quantum dot
  • a light emitting diode device preparation method is used to prepare the device.
  • the device is placed in an inert gas (such as Ar gas) atmosphere and subjected to infrared irradiation treatment under an infrared emitter with a wavelength band of 2500 nm.
  • the treatment time is 30 minutes.
  • the brightness decay was tested under constant current, and the data is shown in Figure 2e.
  • the Cd quantum dots were prepared into dry powder, and the resultant was prepared into quantum dot glue according to the method in Example 1, and a quantum dot film was prepared, and an aging experiment was performed on it.
  • the data of the blue light aging experiment at 1W/ cm2 is as follows: As shown in Figure 3a.
  • InP quantum dots were prepared into dry powder, and the resultant was combined to prepare quantum dot glue according to the method in Example 2, and a quantum dot film was prepared, and an aging experiment was performed on it.
  • the perovskite quantum dots were prepared into dry powder, and the resultant was combined to prepare quantum dot glue according to the method in Example 3, and a quantum dot film was prepared, and an aging experiment was performed on it, and the blue light aging experiment was performed at 1 W/cm 2
  • the data plot is shown in Figure 3c.
  • the processing method for suppressing quantum dot flicker provided by the above embodiments can reduce the "flicker" probability of quantum dots and even eliminate it by using infrared thermal radiation processing, improve the initial PLQY, and make the quantum dots more effective during use. There is no positive aging phenomenon, and the performance of the treated quantum dots and their derivatives is more superior and can be better applied to display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种抑制量子点闪烁的处理方法、量子点膜及量子点发光器件。所述抑制量子点闪烁的处理方法包括:对量子点或包含量子点的复合材料体系进行红外线辐照处理,所述红外线的波长为0.7μm~1000μm,所述红外线辐照处理的时间为1min~200min。提供的抑制量子点闪烁的处理方法通过对量子点进行红外线辐照处理,可降低量子点的"闪烁"几率甚至可达到消除,提升初始的PLQY,使量子点在使用过程中无正向老化现象,且处理后的量子点及其衍生物的性能更加优越,能够更好的应用于显示设备上。

Description

抑制量子点闪烁的处理方法、量子点膜及量子点发光器件
本申请基于并要求于2022年3月15日递交的申请号为202210254202.3、发明名称为“抑制量子点闪烁的处理方法、量子点膜及量子点发光器件”的中国专利申请的优先权。
技术领域
本申请涉及一种抑制量子点闪烁的处理方法、量子点膜、量子点发光器件及显示设备,属于量子点技术领域。
背景技术
量子点因其优越的光电学性能,成为太阳能电池、发光二极管、激光器、色彩转换、色彩增强膜的优选材料。但在其应用中存在正向老化过程,且正向老化持续时间较长,程度不可控制,这严重影响了量子点在显示应用中白平衡的调节。因而很多业界技术人员通过增加某些促进剂来调节,但因为促进剂多数对量子点存在破坏,使得在量子点寿命上大打折扣,从而阻碍了量子点器件的进一步应用。
发明内容
本申请的主要目的在于提出一种抑制量子点闪烁的处理方法及应用,以克服现有技术的不足。
本申请的另一目的还在于提供一种量子点膜、量子点发光器件及显示设备。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种抑制量子点闪烁的处理方法,其包括:对量子点或包含量子点的复合材料体系进行红外线辐照处理,所述红外线的波长为0.7μm~1000μm,所述红外线辐照处理的时间为1min~200min。
本申请实施例还提供了一种量子点,所述量子点经前述方法处理。
本申请实施例还提供了一种量子点膜,它包括前述的量子点,或者所述量子点膜经前述方法处理。
本申请实施例还提供了一种量子点发光器件,它包括前述的量子点或量子点膜。
相应的,本申请实施例还提供了一种显示设备,其包含前述的量子点、量子点膜或者量子点发光器件。
与现有技术相比,本申请的显著优点和有益效果至少包括:
本申请提供的抑制量子点闪烁的处理方法通过对量子点进行红外线辐照处理,可降低量子点的“闪烁”几率甚至可达到消除,提升初始的PLQY,使量子点在使用过程中无正向老化现象,且处理后的量子点及其衍生物的性能更加优越,能够更好的应用于显示设备上。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是量子点荧光闪烁现象的机理示意图;
图2a-图2d分别是本申请实施例1-4制得的量子点膜在1W/cm2下蓝光老化实验数据图;
图2e是本发明实施例5制得的量子点膜在1W/cm2下蓝光老化实验数据图;
图3a-图3c分别是本申请对比例1-3制得的量子点膜在1W/cm2下蓝光老化实验数据图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。本案发明人在实验中意外发现,可以通过一种特殊的方式,即红外线辐照处理,无需引入促进剂来解决量子点正向老化时间长的问题,降低量子点的“闪烁”几率甚至可达到消除,提升初始的PLQY(即光致发光量子产率),使量子点在使用过程中无正向老化现象。
需要解释的技术术语如下:
正向老化:传统中所有材料的使用寿命应该是一种持续下降不可逆的状态,因量子点存在“闪烁”现象,使得量子点在性能上存在一定的逆向老化现象即正向老化。
量子点“闪烁”现象:是指在激发光激发下,量子点的荧光会在亮态与暗态之间来回切换,这现象称为量子点的荧光闪烁。可参阅图1所示,此闪烁原因为量子点在生长过程中,表面分布有一些由于晶体中断产生未配对的化学键具有较高的自由能,形成量子点的表面俘获态,量子点导带中电子或价带中的空穴被表面俘获态俘获,随后与价带中的空穴或导带中的电子非辐射辐合。但是因该非辐射复合速率与辐射复合速率接近,导致在光激发情况下,表面原子在两个准稳态位置来回跳跃。
如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例的一个方面提供的一种抑制量子点闪烁的处理方法包括:对量子点或包含量子点的复合材料体系进行红外线辐照处理,所述红外线的波长为0.7μm~1000μm,所述红外线辐照处理的时间为1min~200min。
在一些实施方案中,所述方法包括:在保护性气体氛围中,对量子点进行红外线辐照处理。
其中,所述量子点可以是量子点粉末或者量子点液体等,但不限于此。
在另一些实施方案中,所述方法包括:对分布在所述包含量子点的复合材料体系中的量子点进行红外线辐照处理。
进一步地,所述包含量子点的复合材料体系可以包括量子点膜或量子点发光器件等,但不限于此。
在一些实施方案中,本申请提供的抑制量子点闪烁的处理方法包括:在保护性气体氛围中,采用红外处理器对所述量子点进行所述的红外线辐照处理,或者采用红外处理器对分布在所述包含量子点的复合材料体系中的量子点进行所述的红外线辐照处理。
在一些实施方案中,所述红外处理器所发射的红外线的波长为2.5μm~25μm。
在一些实施方案中,将所述量子点在红外波段下进行红外线辐照处理的时间为30min~120min。
在一些实施方案中,所述保护性气体氛围包括高纯氮气和/或惰性气体形成的氛围,例如, 所述惰性气体优选为高纯氩气,但不仅限于此。
在一些实施方案中,所述量子点包括CdSe、CdS、CdZnSe、CdZnS、CdZnSeS、ZnSeS、ZnSe、CuInS、CuInSe、InP、InZnP以及钙钛矿量子点等中的任意一种或两种以上的组合,但不仅限于此。
本申请实施例的另一个方面还提供了一种量子点,所述量子点经过前述方法处理。
本申请实施例的另一个方面还提供了一种量子点膜,所述量子点膜包括前述的量子点,或者所述量子点膜经前述方法处理。
本申请实施例的另一个方面还提供了一种量子点发光器件,它包括前述的量子点或量子点膜。
进一步地,所述量子点发光器件可以是QLED器件。
相应的,本申请实施例的另一个方面还提供了一种显示设备,其包含前述的量子点、量子点膜层结构,或者量子点发光器件等。
因此,与传统量子点相比较,量子点在制备成膜或QLED器件中,随着给其光激发或者电流,在一定时间内量子点的衍生物存在效率上升、亮度变高的现象,且这一现象存在时间长,需要很长时间才能达到峰值,无法避免。
综上所述,本申请提供的抑制量子点闪烁的处理方法通过对量子点进行红外线辐照处理,提升了量子点内部产生了载流子迁移,原本基态能量高的量子点中的载流子被基态能量低的量子点俘获。通过红外线辐照处理后,这种状态被激活,减少或消除了量子点闪烁的“暗态”的量,进而量子点的光致发光强度逐步提升,可降低量子点的“闪烁”几率甚至可达到消除,提升初始的PLQY,使量子点在使用过程中无正向老化现象,且处理后的量子点及其衍生物的性能更加优越,能够更好的应用于显示设备上。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及若干较佳实施例对本申请的技术方案做进一步详细说明。以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本申请而不限于限制本申请的范围。以下实施例中所用试剂和原料均市售可得,而其中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。又及,除非另外说明,本申请中所公开的实验方法、检测方法均采用相关领域的常 规技术。
实施例1
将Cd量子点(可以选取CdZnS、CdZnSe、CdSe、CdZnSeS等)制备成量子点干粉,将所得物1g溶解于5ml PGMEA溶剂,然后与纳米铝0.1份,聚酯丙烯酸酯10份,亚克力树脂15份,PGMEA 70份,以及偶氮二异丁腈5份,于25℃机械搅拌混合得到量子点胶水,制备成量子点膜,将所得量子点膜放在波段为2500nm处的红外发射器下进行红外线辐照处理,处理时间为30min,并对其进行老化实验,其在1W/cm2下蓝光老化实验数据图如图2a所示。
实施例2
将InP量子点制备成量子点干粉,将所得量子点干粉放在惰性气体(如Ar气)氛围中并在波段为15000nm处的红外发射器下进行红外线辐照处理,处理时间为80min,将所得物1g溶解于5ml PGMEA溶剂,然后与纳米锆10份,聚酯丙烯酸酯22份,亚克力树脂16份,PGMEA50份,丙烯酸异冰片酯(IBOA)10份,以及偶氮二异丁腈1.9份,于25℃机械搅拌混合得到量子点胶水,制备成量子点膜,并对其进行老化实验,其在1W/cm2下蓝光老化实验数据图如图2b所示。
实施例3
将钙钛矿量子点制备成量子点干粉,将所得量子点干粉放在惰性气体(如Ar气)氛围中并在波段为25000nm处的红外发射器下进行红外线辐照处理,处理时间为120min,将所得物1.5g溶解于5ml PGMEA溶剂,然后与纳米钛30份,聚氨酯丙烯酸酯20份,亚克力树脂9份,PGMEA 30份,IBOA 10份,以及偶氮二异丁腈1份,于25℃机械搅拌混合得到量子点胶水,制备成量子点膜,并对其进行老化实验,其在1W/cm2下蓝光老化实验数据图如图2c所示。
实施例4
将Cd量子点(可以选取CdZnS、CdZnSe、CdSe、CdZnSeS等)制备成量子点干粉,将所得量子点干粉放在惰性气体(如Ar气)氛围中并在波段为2500nm处的红外发射器下进行红外线辐照处理,处理时间为30min,将所得物按照常规量子点发光二极管器件制备方法制备成器件,在恒定电流下测试亮度衰变情况,数据如图2d所示。
实施例5
将Cd量子点(可以选取CdZnS、CdZnSe、CdSe、CdZnSeS等)制备成量子点干粉,将所得量子点干粉,溶解在正辛烷中,旋涂制备成量子点膜,将所得物按照常规量子点发光二极管器件制备方法制备成器件。将所述器件放在惰性气体(如Ar气)氛围中并在波段为2500nm处的红外发射器下进行红外线辐照处理,处理时间为30min。在恒定电流下测试亮度衰变情况,数据如图2e所示。
对比例1
将Cd量子点制备成干粉,将所得物按照实施例1中的方法制备成量子点胶水,制备成量子点膜,并对其进行老化实验,其在1W/cm2下蓝光老化实验数据图如图3a所示。
对比例2
将InP量子点制备成干粉,将所得物结合按照实施例2中的方法制备成量子点胶水,制备成量子点膜,并对其进行老化实验,其在1W/cm2下蓝光老化实验数据图如图3b所示。
对比例3
将钙钛矿量子点制备成干粉,将所得物结合按照实施例3中的方法制备成量子点胶水,制备成量子点膜,并对其进行老化实验,其在1W/cm2下蓝光老化实验数据图如图3c所示。
综上所述,以上实施例提供的抑制量子点闪烁的处理方法通过利用红外热辐射处理,可降低量子点的“闪烁”几率甚至可达到消除,提升初始的PLQY,使量子点在使用过程中无正向老化现象,且处理后的量子点及其衍生物的性能更加优越,能够更好的应用于显示设备上。
对于本领域的技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有拜年话囊括在本申请。不应将权利要求的任何附图标记视为限制涉及的权利要求。

Claims (13)

  1. 一种抑制量子点闪烁的处理方法,其特征在于,包括:对量子点或包含量子点的复合材料体系进行红外线辐照处理,所述红外线的波长为0.7μm~1000μm,所述红外线辐照处理的时间为1min~200min。
  2. 根据权利要求1所述的方法,其特征在于,包括:在保护性气体氛围中,对量子点进行红外线辐照处理。
  3. 根据权利要求2所述的方法,其特征在于:所述量子点为量子点粉末或量子点液体。
  4. 根据权利要求1所述的方法,其特征在于,包括:对分布在所述包含量子点的复合材料体系中的量子点进行红外线辐照处理。
  5. 根据权利要求4所述的方法,其特征在于:所述包含量子点的复合材料体系包括量子点膜或量子点发光器件。
  6. 根据权利要求1所述的方法,其特征在于:所述红外线的波长为2.5μm~25μm。
  7. 根据权利要求1所述的方法,其特征在于:所述红外线辐照处理的时间30min~120min。
  8. 根据权利要求2所述的方法,其特征在于:所述保护性气体氛围包括氮气和/或惰性气体形成的氛围。
  9. 根据权利要求8所述的方法,其特征在于:所述惰性气体包括氩气。
  10. 根据权利要求1所述的方法,其特征在于:所述量子点包括CdSe、CdS、CdZnSe、CdZnS、CdZnSeS、ZnSeS、ZnSe、CuInS、CuInSe、InP、InZnP以及钙钛矿量子点中的任意一种或两种以上的组合。
  11. 一种量子点,其特征在于,所述量子点经权利要求1-10中任一项所述方法处理。
  12. 一种量子点膜,其特征在于,所述量子点膜包括权利要求11所述的量子点,所述量子点膜经权利要求1-10中任一项所述方法处理。
  13. 一种量子点发光器件,其特征在于,所述量子点发光器件包括权利要求11所述的量子点或者权利要求12所述的量子点膜。
PCT/CN2023/080193 2022-03-15 2023-03-08 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件 WO2023174115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210254202.3A CN114644921B (zh) 2022-03-15 2022-03-15 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件
CN202210254202.3 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023174115A1 true WO2023174115A1 (zh) 2023-09-21

Family

ID=81993248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080193 WO2023174115A1 (zh) 2022-03-15 2023-03-08 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件

Country Status (2)

Country Link
CN (1) CN114644921B (zh)
WO (1) WO2023174115A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644921B (zh) * 2022-03-15 2023-10-24 镭昱光电科技(苏州)有限公司 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988562A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN110964529A (zh) * 2019-11-25 2020-04-07 南昌航空大学 一种高荧光产率的ZnSe/CdSe/ZnSe阱式量子点的制备方法
CN114644921A (zh) * 2022-03-15 2022-06-21 镭昱光电科技(苏州)有限公司 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687820A (zh) * 2020-12-29 2021-04-20 广东聚华印刷显示技术有限公司 Qled器件、qled器件的制备方法及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988562A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用
CN110964529A (zh) * 2019-11-25 2020-04-07 南昌航空大学 一种高荧光产率的ZnSe/CdSe/ZnSe阱式量子点的制备方法
CN114644921A (zh) * 2022-03-15 2022-06-21 镭昱光电科技(苏州)有限公司 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI BIN, ZHANG GUOFENG, WANG ZAO, LI ZHIJIE, CHEN RUIYUN, QIN CHENGBING, GAO YAN, XIAO LIANTUAN, JIA SUOTANG: "Suppressing the Fluorescence Blinking of Single Quantum Dots Encased in N-type Semiconductor Nanoparticles", SCIENTIFIC REPORTS, vol. 6, no. 1, XP093091021, DOI: 10.1038/srep32662 *
SHI JIAOJIAN; SUN WEIWEI; UTZAT HENDRIK; FARAHVASH ARDAVAN; GAO FRANK Y.; ZHANG ZHUQUAN; BAROTOV ULUGBEK; WILLARD ADAM P.; NELSON : "All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses", NATURE NANOTECHNOLOGY, NATURE PUB. GROUP, INC., LONDON, vol. 16, no. 12, 22 November 2021 (2021-11-22), London , pages 1355 - 1361, XP037640812, ISSN: 1748-3387, DOI: 10.1038/s41565-021-01016-w *

Also Published As

Publication number Publication date
CN114644921B (zh) 2023-10-24
CN114644921A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
Ookubo et al. Effects of thermal annealing on porous silicon photoluminescence dynamics
WO2023174115A1 (zh) 抑制量子点闪烁的处理方法、量子点膜及量子点发光器件
Talapin et al. Quantum dot light-emitting devices
Dev et al. Stable enhancement of near-band-edge emission of ZnO nanowires by hydrogen incorporation
Pankove et al. Electroluminescence in GaN
US7132692B2 (en) Nanosilicon light-emitting element and manufacturing method thereof
WO1996014206A1 (en) Semiconductor nanocrystal display materials and display apparatus employing same
CN110257063B (zh) 一种高量子产率的蓝光钙钛矿及其制备方法和应用
CN114774119B (zh) 一种磷光碳量子点基复合材料及其制备方法
Koyama et al. Post‐anodization filtered illumination of porous silicon in HF solutions: An effective method to improve luminescence properties
CN110964529A (zh) 一种高荧光产率的ZnSe/CdSe/ZnSe阱式量子点的制备方法
JP2020522397A (ja) 量子ドット及び量子ドットの製造方法
Shirakawa Effect of defects on the degradation of ZnSe-based white LEDs
US10593901B2 (en) Processes for improving efficiency of light emitting diodes
CN1311284A (zh) 紫外短波长区域发光的InAlGaN及其制备方法和使用它的紫外发光装置
CN113355082A (zh) 一种具有核壳结构的磷化铟量子点及其制备方法
CN111640876B (zh) 一种复合材料及其制备方法、量子点发光二极管
JPH02257679A (ja) 窒化ガリウム系化合物半導体発光素子の作製方法
Zhiwei et al. Highly efficient full color light-emitting diodes based on quantum dots surface passivation engineering
WO2019129005A1 (zh) 一种量子点及其制备方法与应用
CN114214063B (zh) 一种单基质白光发射碳点荧光粉的制备方法
JPH0797300A (ja) 窒化ガリウム系結晶の熱処理方法
JP2006348244A (ja) 酸化亜鉛紫外発光体、酸化亜鉛紫外発光体薄膜、およびそれらの製造方法
WO2021136382A1 (zh) 量子点材料及其制备方法、量子点发光二极管
Kimoto et al. Photoluminescence of rapid thermal treated porous Si in nitrogen atmosphere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769621

Country of ref document: EP

Kind code of ref document: A1