WO2023173885A1 - 光学组件、光发射模组、深度相机及电子设备 - Google Patents

光学组件、光发射模组、深度相机及电子设备 Download PDF

Info

Publication number
WO2023173885A1
WO2023173885A1 PCT/CN2022/142265 CN2022142265W WO2023173885A1 WO 2023173885 A1 WO2023173885 A1 WO 2023173885A1 CN 2022142265 W CN2022142265 W CN 2022142265W WO 2023173885 A1 WO2023173885 A1 WO 2023173885A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diffractive optical
optical element
light
area
Prior art date
Application number
PCT/CN2022/142265
Other languages
English (en)
French (fr)
Inventor
戴阳
刘海亮
顾标平
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023173885A1 publication Critical patent/WO2023173885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present application relates to the field of laser ranging technology, and more specifically, to an optical component, a light emitting module, a depth camera and an electronic device.
  • Depth cameras usually include a transmitting end and a receiving end.
  • the transmitting end is used to emit laser light to the object to be measured
  • the receiving end is used to receive the laser light reflected by the object to be measured.
  • the surface of the substrate of the diffractive optical element in the transmitting end such as glass, can easily cause reflection of part of the light beam, causing stray light interference, affecting the quality of the laser beam projection, and thus also causing interference to the signal received by the receiving end.
  • the matrix of the diffractive optical element in the transmitter is broken, the laser emitted by the transmitter may directly enter the human eye, causing damage to human eye safety.
  • Embodiments of the present application provide an optical component, a light emitting module, a depth camera and an electronic device.
  • the optical component in the embodiment of the present application includes a diffractive optical element, an anti-reflection film and a detection element.
  • the diffractive optical element includes a first region and a second region surrounding the first region.
  • the anti-reflective film is provided in the first area of the diffractive optical element, and the anti-reflective film is used to reduce the reflectivity of light received by the diffractive optical element in the first area.
  • the detection element is used to detect diffractive optical elements and is located in the second area.
  • the light emitting module in the embodiment of the present application includes a light source and an optical component.
  • the light source is used to emit light
  • the optical component is arranged on the light path of the light source.
  • the optical component includes a diffractive optical element, an anti-reflective film and a detection element.
  • the diffractive optical element includes a first region and a second region surrounding the first region.
  • the anti-reflective film is provided in the first area of the diffractive optical element, and the anti-reflective film is used to reduce the reflectivity of light received by the diffractive optical element in the first area.
  • the detection element is used to detect diffractive optical elements and is located in the second area.
  • the depth camera in the embodiment of the present application includes a light emitting module and a light receiving module.
  • the light emitting module is used to emit light.
  • the light receiving module is used to receive at least part of the light reflected by the object and convert it into electricity. Signal.
  • the light emitting module includes a light source and an optical component.
  • the light source is used to emit light, and the optical component is arranged on the light path of the light source.
  • the optical component includes a diffractive optical element, an anti-reflective film and a detection element.
  • the diffractive optical element includes a first region and a second region surrounding the first region.
  • the anti-reflective film is provided in the first area of the diffractive optical element, and the anti-reflective film is used to reduce the reflectivity of light received by the diffractive optical element in the first area.
  • the detection element is used to detect diffractive optical elements and is located in the second area.
  • the electronic device in the embodiment of the present application includes a housing and a depth camera, and the housing is combined with the depth camera.
  • the depth camera includes a light emitting module and a light receiving module.
  • the light emitting module is used to emit light.
  • the light receiving module is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the light emitting module includes a light source and an optical component.
  • the light source is used to emit light, and the optical component is arranged on the light path of the light source.
  • the optical component includes a diffractive optical element, an anti-reflective film and a detection element.
  • the diffractive optical element includes a first region and a second region surrounding the first region.
  • the anti-reflective film is provided in the first area of the diffractive optical element, and the anti-reflective film is used to reduce the reflectivity of light received by the diffractive optical element in the first area.
  • the detection element is used to detect diffractive optical elements and is located in the second area.
  • the optical components, light emission modules, depth cameras and electronic equipment in this application are provided with anti-reflective films and detection elements on the diffractive optical elements, which can not only reduce the reflectivity of light, reduce stray light interference, but also pass
  • the detection element detects diffractive optical elements to prevent users from using abnormal diffractive optical elements, thereby improving the safety of users using optical components.
  • the anti-reflection film is located in the first area in the center of the diffractive optical element, and the detection element is located in the second area at the edge of the diffractive optical element, that is, there is no detection element in the central area of the diffractive optical element, so that most of the light rays can be detected They all pass through the anti-reflective film and then emerge, which is conducive to further reducing stray light interference.
  • Figure 1 is a schematic structural diagram of an optical component in certain embodiments of the present application.
  • Figure 2 is a schematic plan view of an optical assembly in certain embodiments of the present application.
  • Figures 3 and 4 are schematic cross-section views of optical components in certain embodiments of the present application.
  • Figure 5a is a schematic diagram of light passing through a diffractive optical element without an anti-reflective film
  • Figure 5b is a schematic diagram of light passing through an optical component in some embodiments of the present application.
  • Figure 6a shows the speckle pattern that the light receiving module can obtain after light passes through a diffractive optical element without an anti-reflective film
  • Figure 6b is a speckle pattern that the light receiving module can obtain after light passes through the optical components in certain embodiments of the present application;
  • Figure 7 is a schematic diagram of an anti-reflective film in an optical component according to certain embodiments of the present application.
  • Figure 8 is a schematic diagram of a partial cross-section of an optical component in certain embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a depth camera in some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of a light emitting module in certain embodiments of the present application.
  • Figure 11 is a schematic structural diagram of an electronic device in certain embodiments of the present application.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Modules that use laser ranging usually include a transmitter and a receiver.
  • the transmitter is used to emit laser light to objects, and the receiver end is used to receive laser light reflected by the object.
  • the surface of the matrix of the diffractive optical element in the transmitting end such as glass, polyvinyl chloride plate, acrylic plate, etc., can easily cause reflection of part of the beam, causing stray light interference, affecting the quality of laser beam projection, and thus affecting the reception of the receiving end. Incoming signals can also cause interference.
  • the matrix of the diffractive optical element in the transmitter is broken, the laser emitted by the transmitter may directly enter the human eye, causing damage to human eye safety.
  • the optical component 100 includes a diffractive optical element 10 , an anti-reflection film 20 and a detection element 30 .
  • the diffractive optical element 10 includes a first area 11 and a second area 12 surrounding the first area 11 .
  • the anti-reflective film 20 is located in the first area 11 of the diffractive optical element 10 .
  • the anti-reflective film 20 is used to reduce the reflectivity of the light received by the diffractive optical element 10 in the first area 11 .
  • the detection element 30 is used to detect the diffractive optical element 10 and is located in the second area 12 of the diffractive optical element 10 .
  • the first area 11 and the second area 12 of the diffractive optical element 10 are a three-dimensional structure, not just a plane.
  • the volume and cross-section of the first region 11 and the second region 12 are not limited here.
  • the optical component 100 in this application can reduce the reflectivity of the light received by the diffractive optical element 10 in the first area 11 by providing an anti-reflective film 20 on the diffractive optical element 10, thereby reducing stray light interference and improving use.
  • the light emitting module 200 (shown in FIG. 9 ) of the optical component 100 emits a beam of quality, thereby improving the accuracy of distance measurement using the depth camera 400 (shown in FIG. 9 ) using the optical component 100; on the other hand, by A detection element 30 capable of detecting the diffractive optical element 10 is provided on the diffractive optical element 10 to prevent users from using abnormal diffractive optical elements, thereby improving the safety of users using the optical assembly 100 .
  • the diffractive optical element usually includes a glass matrix and a microstructure, and the microstructure is arranged on one surface of the glass matrix. Since the microstructure is provided on one surface of the glass substrate, if you want to install the anti-reflective film and the detection element on the diffractive optical element at the same time, the anti-reflection film and the detection element can only be laminated on the other surface of the glass substrate, that is, the glass substrate There is no micro-junction structure on the side.
  • the anti-reflective film is first placed on the diffractive optical element, and then the detection element is placed on the side of the anti-anti-reflection film away from the diffractive optical element, then the detection element and the diffractive optical element are not in direct contact, so the detection element cannot pass through
  • the electrical signal is used to detect whether the diffractive optical element is abnormal; if the detection element is first placed behind the diffractive optical element, and then the anti-reflection film is placed on the side of the detection element away from the diffractive optical element, it is firstly more difficult in terms of process, and due to the anti-reflection film
  • the reflective film is not in direct contact with the diffractive optical element, that is, the light passing through the diffractive optical element is not directly incident on the anti-reflective film.
  • the anti-reflection film 20 and the detection element 30 are respectively disposed in different areas of the diffractive optical element 10, so that they can be placed on the same layer and both can be directly disposed on the diffractive optical element 10. This not only The thickness of the optical component 100 can be reduced, the detection element 30 can be used to detect whether the diffractive optical element 10 is abnormal, and the reflectivity of light can be reduced, thereby reducing stray light interference. In addition, in this way, there is no need to provide the anti-reflection film on the side of the detection element away from the diffractive optical element, which can reduce the difficulty of manufacturing the optical component.
  • the light source 201 (shown in FIG. 10) usually corresponds to the central area of the diffractive optical element 10, that is, the central area of the diffractive optical element 10 can receive more light than the edge area. . Therefore, in the embodiment of the present application, the anti-reflection film 20 is located in the first area 11 in the center of the diffractive optical element 10, and the detection element 30 is located in the second area 12 at the edge of the diffractive optical element 10, so that most of the light can pass through the anti-reflection film. 20, which helps reduce the reflectivity of light and thereby reduce stray light interference.
  • the diffractive optical element 10 includes a microstructure 13.
  • the microstructure 13 is used to receive light, copy the received light and then emit it. That is, the number of light rays will increase after being replicated by the microstructure 13 .
  • the diffractive optical element 10 includes a plurality of microstructures 13 , and all microstructures 13 are located in the first region 11 . Since all the microstructures 13 are arranged in the first area 11, after the light is copied by the microstructures 13, more light emitted from the first area 11 is compared with the light emitted from the second area 12.
  • the light is emitted from the anti-reflection film 20 located in the first area 11, which is beneficial to reducing the reflectivity of the light received by the diffractive optical element 10 in the first area 11, thereby reducing stray light interference.
  • the detection element 30 is located in the second area 12 where no microstructure 13 is provided, which can reduce the sensitivity of the detection element 30 to light. Blocking can help the light emitting module 200 emit light while detecting whether the diffractive optical element 10 is abnormal.
  • both the first area 11 and the second area 12 may be provided with microstructures 13, but the number of microstructures 13 in the first area 11 is greater than The number of microstructures 13 in the second zone 12 .
  • the number of microstructures 13 in the first area 11 is greater than The number of microstructures 13 in the second zone 12 .
  • more light rays are emitted from the first area 11 than from the second area 12, so that most of the light rays are emitted from the anti-reflection film 20 located in the first area 11, which is beneficial to reducing the amount of light emitted by the diffractive optical element 10.
  • the reflectivity of the light received by the first area 11 thereby reduces stray light interference.
  • the diffractive optical element 10 includes a base 14, the anti-reflection film 20 and the detection element 30 are located on the same side of the base 14, and the microstructure 13 is located on the opposite side to the anti-reflection film 20 and the detection element 30.
  • the base 14 includes a first surface 1401 and a second surface 1402 that are opposite to each other.
  • the first surface 1401 of the first base 14 is the first side 101 of the diffractive optical element 10 .
  • the microstructure 13 is disposed on the second surface 1402 of the base 14 , and the anti-reflective film 20 and the detection element 30 are both disposed on the first surface 1401 of the base 14 .
  • the anti-reflective film 20 is disposed on the first surface 1401 and located in the first area 11
  • the detection element 30 is disposed on the first surface 1401 and located in the second area 12 .
  • the detection element 30 and the anti-reflection film 20 can be placed on the same layer and both can be directly arranged on the diffractive optical element 10, thereby reducing the thickness of the optical component 100, and detecting whether the diffractive optical element 10 is abnormal through the detection element 30, and also It can reduce the reflectivity of light, thereby reducing stray light interference.
  • base 14 may be made of glass material.
  • the diffractive optical element 10 includes a base 14 , and the base 14 includes a first layer 141 and a second layer 142 .
  • the side of the first layer 141 away from the second layer 142 is the first side 101 of the diffractive optical element 10 .
  • a sealed cavity 143 is formed between the first layer 141 and the second layer 142, and the microstructure 13 is located in the sealed cavity 143.
  • the anti-reflective film 20 is disposed on the side of the first layer 141 away from the second layer 142 and located in the first area 11
  • the detection element 30 is disposed on the side of the first layer 141 away from the second layer 142 and located in the second area 12 , so
  • the detection element 30 and the anti-reflection film 20 can be placed on the same layer and both can be directly arranged on the diffractive optical element 10, so that the thickness of the optical component 100 can be reduced, and whether the diffractive optical element 10 is abnormal can be detected through the detection element 30, and it can also Reduce the reflectivity of light, thereby reducing stray light interference.
  • both the first layer 141 and the second layer 142 can be made of glass material.
  • the detection element 30 can also be disposed on the side of the second layer 142 away from the first layer 141 , or the detection element 30 and the anti-reflection film 20 can be directly disposed on the diffraction optical element 10 , so that By using the detection element 30 to detect whether the diffractive optical element 10 is abnormal, the reflectivity of light can also be reduced, thereby reducing stray light interference.
  • the detection element 30 is provided on both the side of the first layer 141 away from the second layer 142 and the side of the second layer 142 away from the first layer 141 . Due to the opposite direction of the diffractive optical element 10 Detection elements 30 are provided on both sides. Whether the first layer 141 or the second layer 142 is ruptured, it can be detected in time by the detection elements 30, which can further improve the safety of users.
  • the first side 101 of the optical component 100 is away from the light source 201 (as shown in FIG. 10). After the light passes through the microstructure 13, it is emitted from the first side 101 of the diffractive optical element 10. At this time, after the light corresponding to the first area 11 is emitted from the first side 101, it can be incident on the anti-reflective film 20, and the anti-reflective film 20 can reduce the reflectivity of the incident light.
  • the description will be given by taking the diffractive optical element 10 in which the microstructure 13 is disposed in the sealed cavity 143 between the first layer 141 and the second layer 142 as an example.
  • Figure 5a and Figure 5b (for convenience of explanation, only one beam of light is drawn in Figure 5a and Figure 5b, and the copying effect of the microstructure 13 on the light is ignored).
  • Figure 5a shows that the light passes through without an anti-reflective film.
  • 20 is a schematic diagram of the diffractive optical element 10. Since the light from the first layer 141 of the substrate 14 to the environmental medium (usually air) outside the diffractive optical element 10 belongs to an optically dense medium to an optically sparse medium, it is easy to cause reflection.
  • the reflected light Will return to the inside of the diffractive optical element 10, and a part of the reflected light will contact other components. That is, as shown in Figure 5a, after the reflected light contacts the second layer 142 of the substrate 14, it will be reflected back from the diffractive optical element 10 again.
  • the first side 101 emits light, but the exit position at this time is different from the actual exit position, so stray light will be generated.
  • Figure 6a shows the speckle image A that can be obtained by the light receiving module 300 after the light passes through the diffractive optical element 10 without the anti-reflection film 20. It can be seen that there is a lot of stray light in the speckle image A, which is not conducive to subsequent follow-up.
  • FIG 5b is a schematic diagram of light passing through the diffractive optical element 10 provided with an anti-reflective film 20. After the light emerges from the base 14, it can pass through the anti-reflective film 20 and exit to the outside of the diffractive optical element 10, thus preventing the light from passing directly from the base 14 to the diffractive optical element 10.
  • the outer medium can reduce the reflectivity of the light received by the diffractive optical element 10 in the first area 11, thereby reducing stray light.
  • Figure 6b shows the speckle image B that can be obtained by the light receiving module 300 after the light passes through the diffractive optical element 10 provided with the anti-reflection film 20. It can be seen that there is almost no stray light interference in the speckle image B, which is conducive to Subsequently, the depth information of the object is obtained based on the speckle image B.
  • the diffractive optical element 10 is placed in an environmental medium, the substrate 14 has a first refractive index, the environmental medium has a second refractive index, and the refractive index of the anti-reflection film 20 is consistent with the first refractive index and the second refractive index. Refractive index related.
  • the environmental medium is air, that is, the second refractive index is the refractive index of air. If the diffractive optical element 10 is placed in another medium for use, the second refractive index is the refractive index of the medium.
  • the refractive index of the anti-reflective film 20 is related to the refractive index of the substrate 14 and the refractive index of the environmental medium, the refractive index between the substrate 14 and the first medium can be reduced, thereby reducing the reflectivity of light.
  • the refractive index of anti-reflective film 20 is the square root of the product of the first refractive index and the second refractive index. That is, the refractive index of the anti-reflection film 20 can be calculated by the formula: Calculated.
  • n 1 is the refractive index of the anti-reflection film 20
  • n 0 is the first refractive index, that is, n 0 is the refractive index of the substrate 14
  • n s is the second refractive index, that is, n s is the refractive index of the environmental medium.
  • FIG. 7 provides a schematic diagram of the principle of the anti-reflection film 20 .
  • the light ray I enters the anti-reflective film 20 from the substrate 14 with the first refractive index, and then enters the environmental medium with the second refractive index from the anti-reflective film 20 .
  • the refractive index of the anti-reflective film 20 is the square root of the product of the first refractive index and the second refractive index. 20
  • the first side 101 of the optical component 100 faces the light source 201.
  • the light enters the optical component 100 after passing through the anti-reflection film 20, and then exits from the optical component 100 to the outside of the optical component 100 and reaches the object to be measured.
  • the light from the base 14 to the environmental medium is from an optically dense medium to an optically sparse medium, it is easy to cause reflection, and some reflected light will be reflected back to the inside of the optical component 100 (the side where the base 14 is located)
  • the anti-reflective film 20 can prevent the reflected light from being reflected again in the direction away from the first side 101, thereby preventing the reflected light from being reflected back and forth again.
  • the different exit positions are emitted to the outside world, thereby reducing the generation of stray light.
  • the base 14 when the base 14 includes a first layer 141 and a second layer 142, and the microstructure 13 is located in the sealed cavity 143 between the first layer 141 and the second layer 142, in some embodiments, the second layer The side of 142 away from the first layer 141 may also be provided with an anti-reflective film 20 . That is, the anti-reflective film 20 can be provided on both the side of the first layer 141 away from the second layer 142 and the side of the second layer 142 away from the first layer 141 .
  • the anti-reflective film 20 provided on the first layer 141 can prevent the light emitted from the first side 101 of the diffractive optical element 10 from being reflected, even if a small amount of light emitted from the first side 101 is reflected, the anti-reflective film 20 provided on the second layer 142
  • the film 20 can also prevent the reflected light from being emitted to the outside world at a position different from the previous emitting position after secondary reflection. In this way, compared with only arranging the anti-reflection film 20 on one side of the diffractive optical element 10 , stray light can be further reduced, thereby improving the accuracy of the depth camera 400 in detecting the depth information of the object.
  • the detection element 30 can be energized to generate an electrical signal.
  • the light emitting module 200 of the optical assembly 100 it can be determined based on the electrical signal of the detection element 30 whether there is an abnormality in the diffraction optical element 10 (such as diffraction).
  • the optical element 10 is broken, tilted or fallen off), so that whether there is an abnormality in the diffractive optical element 10 can be detected in time to prevent the light emitted by the light source 201 in the light emitting module 200 from directly passing through the abnormal diffractive optical element 10 and entering the human eye. , thereby improving the safety of users using optical modules.
  • the detection element 30 includes an input terminal 31 , an output terminal 32 and a conductive part 33 .
  • the conductive part 33 is connected to the input terminal 31 and the output terminal 32 .
  • the input terminal 31 and the output terminal 32 are respectively electrically connected to an external circuit, so that the detection element 30 is electrically connected to the external circuit to form a detection circuit.
  • the detection circuit is disconnected. In this way, it can be determined whether the diffractive optical element 10 is abnormal based on whether the detection circuit is disconnected.
  • the input terminal 31 and the output terminal 32 are located on the same side of the second area 12, and the conductive portion 33 is bent through other sides of the second area 12 until the side where the input terminal 31 or the output terminal 32 is located, and the conductive portion 33 on the other side Includes two paragraphs.
  • the diffractive optical element 10 includes a first area 11 and a second area 12 surrounding the first area 11 .
  • the second area 12 includes a first side 121 , a second side 122 , a third side that are adjacent in sequence.
  • the side 123 and the fourth side 124, the output terminal 32 and the output terminal 32 are all arranged on the first side 121 of the second area 12.
  • One end of the conductive part 33 is connected to the input terminal 31, and the other end is along the second side 122 and the third side in sequence. 123 and the fourth side 124 extend.
  • the conductive portion 33 bends back and then sequentially along the fourth side 124 , the third side 123 , and the second side 122 And the first side 121 extends until connected with the output terminal 32 .
  • the second side 122 , the third side 123 and the fourth side 124 each have two sections of conductive parts 33 on the side where the output terminal 32 and the output terminal 32 are not provided.
  • each of the conductive parts 33 has two sections, so that the range covered by the detection conductive part 33 can be expanded, so that whether the diffractive optical element 10 is abnormal can be detected in time.
  • the conductive part 33 may include conductive particles (not shown), wherein the conductive particles are disposed inside the base 14. When the base 14 does not break, the conductive particles can electrically connect the input terminal 31 and Output 32.
  • the conductive part 33 By arranging the conductive part 33 inside the base 14 in this way, compared with directly arranging the conductive part 33 on the surface of the base 14, it is possible to prevent the input terminal 31 and the output terminal 32 from not functioning normally due to mechanical scratches or the influence of water vapor on the conductive part 33. connection, causing misjudgment of abnormalities of the diffractive optical element 10, thereby improving the detection accuracy of the detection element 30.
  • the side of the input end 31 away from the diffractive optical element 10 may be provided with at least one conductive layer 34 .
  • This can increase the conductivity of the input terminal 31, thereby facilitating the electrical connection between the input terminal 31 and the external circuit.
  • the side of the output end 32 away from the diffractive optical element 10 may also be provided with at least one conductive layer 34 .
  • the conductive layer 34 may be made of chromium; or, the conductive layer 34 may be made of gold. For example, as shown in FIG.
  • the input terminal 31 and the output terminal 32 are provided with two conductive layers 34 on a layer away from the diffractive optical element 10 , one of the conductive layers 34 is made of chromium, and the other is made of chromium.
  • the conductive layer 34 is made of gold.
  • the detection element 30 further includes an insulating portion 35 .
  • the insulating portion 35 is disposed on the first side 101 of the diffractive optical element 10 and is bent following the bending shape of the conductive portion 33 to surround the conductive portion 33 . In this way, the conductive part 33 can be insulated and protected. Please refer to FIG. 4 .
  • an insulating portion 35 may also be provided around the input terminal 31 and the output terminal 32 , so that the input terminal 31 and the output terminal 32 can also be insulated and protected.
  • the insulating part 35 may be disposed only around the input terminal 31 and the output terminal 32 to insulate and protect the input terminal 31 and the output terminal 32 .
  • the insulating part 35 may be made of silicon dioxide.
  • the insulating part 35 has the largest thickness, so that when the detection element 30 is disposed on the surface of the diffractive optical element 10 , since the thickness of the insulating part 35 is the largest, it can prevent other devices in the light emitting module 200 from directly contacting the detection element 30, and scratching the detection element 30 will cause misjudgment of the abnormality of the diffraction optical element 10, thereby conducive to improving the detection element 30 Detection accuracy.
  • an embodiment of the present application also provides a light emitting module 200.
  • the light emitting module 200 includes a light source 201 and the optical component 100 described in any of the above embodiments.
  • the optical component 100 is disposed on the light path of the light source 201 so that the light emitted by the light source 201 can pass through the optical component 100 and then be emitted to the outside of the light emitting module 200 .
  • the light emission module 200 in this application is provided with an anti-reflection film 20 and a detection element 30 on the diffractive optical element 10, which can not only reduce the reflectivity of light and reduce stray light interference, but also detect diffractive optics through the detection element 30. element 10 to prevent users from using abnormal diffractive optical elements 10, thereby improving the safety of users using the light emitting module 200.
  • the anti-reflection film 20 is located in the first area 11 in the center of the diffractive optical element 10
  • the detection element 20 is located in the second area 12 at the edge of the diffractive optical element 10. That is, no detection element is provided in the central area of the diffractive optical element 10. 30, so that most of the light can be emitted after passing through the anti-reflective film 20, which is conducive to further reducing stray light interference.
  • the first side 101 of the diffractive optical element 10 is provided with the anti-reflective film 20 , and the first side 101 of the diffractive optical element 10 is away from the light source 201 .
  • the light emitted by the light source 201 passes through the diffractive optical element 10 and then passes through the anti-reflection film 20 , and then is emitted from the optical component 100 to the outside of the optical component 100 .
  • an anti-reflection film is provided on the side away from the light source 201 20, the reflectivity of light can be reduced to prevent light from being reflected back into the optical component 100, thereby reducing the generation of stray light.
  • the first side 101 of the diffractive optical element 10 is provided with an anti-reflective film 20 , and the first side 101 of the diffractive optical element 10 can also face the light source 201 .
  • the light emitted by the light source 201 passes through the anti-reflection film 20 and then enters the diffractive optical element 10 and then emits out of the optical assembly 100 .
  • the light from the substrate 14 to the medium (usually air) outside the diffractive optical element 10 is from an optically dense medium to an optically sparse medium, it is easy to cause reflection, and some reflected light will be reflected back to the optical component 100.
  • the anti-reflective film 20 When the reflected light passes through The anti-reflective film 20 is provided behind the anti-reflective film 20 on the first side 101 of the optical component 100.
  • the anti-reflective film 20 can prevent the reflected light from being reflected into the optical component 100 again, thereby preventing the reflected light from being emitted at a position different from the previous exit position after secondary reflection. outside, reducing stray light.
  • the thickness of the anti-reflection film 20 is one quarter of the wavelength of the light emitted by the light source 201 . This is helpful to further reduce the reflectivity of light, thereby improving the quality of light emitted by the light emitting module 200 .
  • the wavelength of the light emitted by the light source 201 is ⁇
  • the thickness of the anti-reflection film 20 is one quarter of the wavelength of the light, that is, the thickness of the anti-reflection film 20 is
  • an embodiment of the present application also provides a depth camera 400.
  • the depth camera 400 includes a light receiving module 300 and the light emitting module 200 described in any of the above embodiments.
  • the light emitting module 200 is used to emit light
  • the light receiving module 300 is used to receive at least part of the light reflected by the object and form an electrical signal.
  • the depth camera 400 obtains the depth information of the object based on the electrical signal formed by the light receiving module 300 .
  • the depth camera 400 in this application is provided with an anti-reflective film 20 and a detection element 30 on the diffractive optical element 10, which can not only reduce the reflectivity of light and reduce stray light interference, but also detect the diffractive optical element 10 through the detection element 30. , to prevent the user from using abnormal diffractive optical elements 10 , thereby improving the safety of the user using the depth camera 400 .
  • the anti-reflection film 20 is located in the first area 11 in the center of the diffractive optical element 10
  • the detection element 20 is located in the second area 12 at the edge of the diffractive optical element 10. That is, no detection element is provided in the central area of the diffractive optical element 10. 30, so that most of the light can be emitted after passing through the anti-reflective film 20, which is conducive to further reducing stray light interference.
  • an embodiment of the present application also provides an electronic device 1000.
  • the electronic device 1000 includes a housing 500 and the depth camera 400 described in any of the above embodiments.
  • the depth camera 400 is combined with the housing 500 .
  • the terminal can be a mobile phone, computer, tablet, smart watch, smart wearable device, etc., and is not limited here.
  • the electronic device 1000 in this application is provided with an anti-reflection film 20 and a detection element 30 on the diffractive optical element 10, so that the detection element 30 can detect whether the diffractive optical element 10 is abnormal, and can also reduce the reflectivity of light, thereby reducing noise. Light interference.
  • the anti-reflection film 20 is located in the first area 11 in the center of the diffractive optical element 10
  • the detection element 30 is located in the second area 12 at the edge of the diffractive optical element 10, so that most of the light can pass through the anti-reflection film 20 and then be emitted. This way, It is helpful to further reduce stray light interference.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include at least one of the described features.
  • “plurality” means at least two, such as two or three, unless otherwise expressly and specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种光学组件(100)、光发射模组(200)、深度相机(400)及电子设备(1000)。光学组件(100)包括衍射光学元件(10)、抗反射膜(20)及检测元件(30)。衍射光学元件(10)包括第一区(11)及环绕第一区(11)的第二区(12)。抗反射膜(20)设于第一区(11),并用于减小第一区(11)接收到的光线的反射率。检测元件(30)用于检测衍射光学元件(10),并位于第二区(12)。

Description

光学组件、光发射模组、深度相机及电子设备
优先权信息
本申请请求2022年03月15日向中国国家知识产权局提交的、专利申请号为2022102544175的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及激光测距技术领域,更具体而言,涉及一种光学组件、光发射模组、深度相机及电子设备。
背景技术
深度相机通常包括发射端及接收端,发射端用于向待测物发射激光,接收端用于接收经待测物反射回的激光。其中,发射端中的衍射光学元件的基体,如玻璃,其表面容易引起部分光束的反射,形成杂光干扰,影响激光光束投影的质量,进而对于接收端接收到的信号也会形成干扰。此外,若发射端中的衍射光学元件的基体破裂,发射端发射的激光可能直接射入人眼,对人眼安全造成损伤。
发明内容
本申请实施方式提供一种光学组件、光发射模组、深度相机及电子设备。
本申请实施方式的光学组件包括衍射光学元件、抗反射膜及检测元件。衍射光学元件包括第一区及环绕所述第一区的第二区。所述抗反射膜设于所述衍射光学元件的第一区,所述抗反射膜用于减小所述衍射光学元件在第一区接收到的光线的反射率。所述检测元件用于检测衍射光学元件,并位于所述第二区。
本申请实施方式的光发射模组包括光源及光学组件。光源用于发射光线,光学组件设置于光源的出光路径上。所述光学组件包括衍射光学元件、抗反射膜及检测元件。衍射光学元件包括第一区及环绕所述第一区的第二区。所述抗反射膜设于所述衍射光学元件的第一区,所述抗反射膜用于减小所述衍射光学元件在第一区接收到的光线的反射率。所述检测元件用于检测衍射光学元件,并位于所述第二区。
本申请实施方式的深度相机包括光发射模组及光接收模组,所述光发射模组用于发射光线,所述光接收模组用于接收至少部分由物体反射的光线,并转换为电信号。所述光发射模组包括光源及光学组件。光源用于发射光线,光学组件设置于光源的出光路径上。所述光学组件包括衍射光学元件、抗反射膜及检测元件。衍射光学元件包括第一区及环绕所述第一区的第二区。所述抗反射膜设于所述衍射光学元件的第一区,所述抗反射膜用于减小所述衍射光学元件在第一区接收到的光线的反射率。所述检测元件用于检测衍射光学元件,并位于所述第二区。
本申请实施方式的电子设备包括壳体及深度相机,所述壳体与所述深度相机结合。所述深度相机包括光发射模组及光接收模组,所述光发射模组用于发射光线,所述光接收模组用于接收至少部分由物体反射的光线,并转换为电信号。所述光发射模组包括光源及光学组件。光源用于发射光线,光学组件设置于光源的出光路径上。所述光学组件包括衍射光学元件、抗反射膜及检测元件。衍射光学元件包括第一区及环绕所述第一区的第二区。所述抗反射膜设于所述衍射光学元件的第一区,所述抗反射膜用于减小所述衍射光学元件在第一区接收到的光线的反射率。所述检测元件用于检测衍射光学元件,并位于所述第二区。
本申请中的光学组件、光发射模组、深度相机及电子设备,通过在衍射光学元件上设置抗反射膜及检测元件,如此既能够减小光线的反射率,降低杂光干扰,还能够通过检测元件检测衍射光学元件,以避免用户使用异常的衍射光学元件,从而提高用户使用光学组件的安全性。此外,由于将抗反射膜位于衍射光学元件中心的第一区,检测元件位于衍射光学元件边缘的第二区,也即,衍射光学元件的中心区域并未设置检测元件,如此能够使大部分光线均通过抗反射膜后出射,有利于进一步地减降低杂光干扰。
另外,在本申请实施例中,本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式中的光学组件的结构示意图;
图2是本申请某些实施方式中的光学组件的平面示意图;
图3及图4是本申请某些实施方式中的光学组件截面的示意图;
图5a是光线经过没有设置抗反射膜的衍射光学元件的示意图;
图5b是光线经过是光线经过本申请某些实施方式中的光学组件的示意图;
图6a是光线经过没有设置抗反射膜的衍射光学元件后,光接收模组能够获得的散斑图案;
图6b是是光线经过本申请某些实施方式中的光学组件后,光接收模组能够获得的散斑图案;
图7是本申请某些实施方式的光学组件中的抗反射膜的原理图;
图8是本申请某些实施方式中的光学组件部分截面的示意图;
图9是本申请某些实施方式中的深度相机的结构示意图;
图10是本申请某些实施方式中的光发射模组的结构示意图;
图11是本申请某些实施方式中的电子设备的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
通过激光测距的模组通常包括发射端及接收端,发射端用于向物体发射激光,接收端用于接收经物体反射回的激光。其中,发射端中的衍射光学元件的基体,如玻璃、聚氯乙烯板、亚克力板等,其表面容易引起部分光束的反射,形成杂光干扰,影响激光光束投影的质量,进而对于接收端接收到的信号也会形成干扰。此外,若发射端中的衍射光学元件的基体破裂,发射端发射的激光可能直接射入人眼,对人眼安全造成损伤。
为了解决上述问题,请参阅图1至图3,本申请实施方式提供一种光学组件100。光学组件100包括衍射光学元件10、抗反射膜20及检测元件30。衍射光学元件10包括第一区11及环绕第一区11的第二区12。抗反射膜20位于衍射光学元件10的第一区11,抗反射膜20用于减小衍射光学元件10在第一区11接收到的光线的反射率。检测元件30用于检测衍射光学元件10,并位于衍射光学元件10的第二区12。需要说明的是,如图4所示,衍射光学元件10的第一区11与第二区12是一个立体结构,并非仅仅只一个平面。此外,第一区11及第二区12的体积及横截面在此均不作限定。
本申请中的光学组件100,一方面通过在衍射光学元件10设置抗反射膜20,能够减小衍射光学元件10在第一区11接收到的光线的反射率,从而降低杂光干扰,提高使用该光学组件100的光发射模组200(如图9所示)发射光束的质量,从而提升使用该光学组件100的深度相机400(如图9所示)测距的准确性;另一方面通过在衍射光学元件10设置能够检测衍射光学元件10的检测元件30,以避免用户使用异常的衍射光学元件,从而提高用户使用光学组件100的安全性。
另外,通常衍射光学元件包括玻璃基体及微结构,微结构设置在玻璃基体的一个面上。由于玻璃基体的一个面上设置有微结构,如此若要同时在衍射光学元件上设置抗反射膜及检测元件,抗反射膜及检测元件只能够层叠设置在玻璃基体另一个面上,即玻璃基体没有设置微结结构的一面。然而,若先将抗反射膜设于衍射光学元件后,再在抗防反射膜远离衍射光学元件的一侧设置检测元件,此时检测元件与衍射光学元件没有直接接触,如此不能够通过检测元件的电信号检测 衍射光学元件是否异常;若先将检测元件设置在衍射光学元件后,再将抗反射膜设于检测元件远离衍射光学元件的一侧,首先在工艺上难度较大,并且由于抗反射膜没有与衍射光学元件直接接触,即穿过衍射光学元件的光线并没有直接入射至抗反射膜,如此相较于穿过衍射光学元件的光线直接入射至抗反射膜,会增加光线的反射率,不利于降低杂光干扰。因此,本申请实施例中,将抗反射膜20及检测元件30分别设于衍射光学元件10的不同区,能够使二者置于同一层并且均能够直接设置在衍射光学元件10上,如此不但能够降低光学组件100的厚度,还能够通过检测元件30检测衍射光学元件10是否异常,还能够减小光线的反射率,从而降低杂光干扰。此外,如此不需要将抗反射膜设于检测元件远离衍射光学元件的一侧,能够降低光学组件的制作难度。
再者由于在光发射模组200中,光源201(图10所示)通常会与衍射光学元件10的中心区域对应,即衍射光学元件10中心区域相较于边缘区域能够接收到的光线更多。因此在本申请实施例中,将抗反射膜20位于衍射光学元件10中心的第一区11,检测元件30位于衍射光学元件10边缘的第二区12,能够使大部分光线均通过抗反射膜20后出射,如此有利于减小光线的反射率,从而降低杂光干扰。
具体地,衍射光学元件10包括微结构13,微结构13用于接收光线,并将接收到的光线复制后射出。也即,光线在经过微结构13的复制后数量会增加。在一些实施例中,衍射光学元件10包括多个微结构13,并且所有微结构13均位于第一区11。由于所有微结构13均设置在第一区11,光线在经过微结构13的复制后,从第一区11出射的光线相较于从第二区12出射的光线更多,如此能够使大部分光线由位于第一区11的抗反射膜20出射,有利于减小衍射光学元件10在第一区11接收到的光线的反射率,从而降低杂光干扰。此外,由于所有微结构13均设置在第一区11,即第二区12没有设置微结构13,检测元件30位于没有设置微结构13的第二区12,能够减小检测元件30对光线的遮挡,能够在检测衍射光学元件10是否异常的同时,有利于光发射模组200出射光线。
当然,在一些实施例中,在衍射光学元件10包括多个微结构13时,第一区11及第二区12均可以设有微结构13,但第一区11中微结构13的数量大于第二区12中微结构13的数量。如此从第一区11出射的光线相较于从第二区12出射的光线更多,能够使大部分光线由位于第一区11的抗反射膜20出射,有利于减小衍射光学元件10在第一区11接收到的光线的反射率,从而降低杂光干扰。
请参阅图3,在一些实施例中,衍射光学元件10包括基体14,抗反射膜20及检测元件30位于基体14的同一面,微结构13位于与抗反射膜20及检测元件30相反的一面。具体地,基体14包括相背的第一面1401及第二面1402。其中,第一基体14的第一面1401即为衍射光学元件10的第一侧101。微结构13设于基体14的第二面1402,抗反射膜20及检测元件30均设于基体14的第一面1401。抗反射膜20设置于第一面1401且位于第一区11,检测元件30设置于第一面1401 且位于第二区12。如此能够使检测元件30及抗反射膜20置于同一层并且均能够直接设置在衍射光学元件10上,从而能够降低光学组件100的厚度,以及通过检测元件30检测衍射光学元件10是否异常,还能够减小光线的反射率,从而降低杂光干扰。在一些实施例中,基体14可以由玻璃材料制成。
请参阅图2及图4,在一些实施例中,衍射光学元件10包括基体14,基体14包括第一层141及第二层142。其中,第一层141远离第二层142的一侧,即为衍射光学元件10的第一侧101。第一层141与第二层142之间形成密封腔143,微结构13位于密封腔143内。抗反射膜20设于第一层141远离第二层142的一侧并位于第一区11,检测元件30设于第一层141远离第二层142的一侧并位于第二区12,如此能够使检测元件30及抗反射膜20置于同一层并且均能够直接设置在衍射光学元件10上,从而能够降低光学组件100的厚度,以及通过检测元件30检测衍射光学元件10是否异常,还能够减小光线的反射率,从而降低杂光干扰。此外,由于微结构13位于第一层141与第二层142之间的密封腔143内,能够避免微结构13受到划伤,以及避免微结构13结受水汽影响,从而延长衍射光学元件10的使用寿命。在一些实施例中,第一层141及第二层142均可以由玻璃材料制成。
当然,在一些实施例中,检测元件30还可以设于第二层142远离第一层141的一侧,也能够使检测元件30及抗反射膜20直接设置在衍射光学元件10上,从而能够通过检测元件30检测衍射光学元件10是否异常,还能够减小光线的反射率,从而降低杂光干扰。
进一步地,在一些实施例中,第一层141远离第二层142的一侧、及第二层142远离第一层141的一侧均设有检测元件30,由于衍射光学元件10的相背两侧均设有检测元件30,无论是第一层141破裂还是第二层142破裂,均能够及时通过检测元件30的检测出来,能够进一步提升用户使用的安全性。
需要说明的是,在一些实施例中,在光学组件100与光源201配合组成光发射模组200时,光学组件100的第一侧101是背离光源201的(如图10所示)。光线穿过微结构13后,从衍射光学元件10的第一侧101射出。此时与第一区11对应的光线从第一侧101射出后,能够入射至抗反射膜20,抗反射膜20能够减小入射其光线的反射率。也即,避免从第一侧101出射的光线向衍射光学元件10内部反射后,并经由其他部件(例如,衍射光学元件10自身结构,或光发射模组200中的其他器件)二次反射后,再次沿与之前出射位置不同的位置出射至外界,从而减小产生杂光。
示例地,以微结构13设于第一层141及第二层142之间的密封腔143的衍射光学元件10为例,进行说明。如图5a及图5b所示(为方便说明,图5a及图5b中仅画出了一束光线,并且忽略了微结构13对光线的复制作用),图5a为光线经过没有设置抗反射膜20的衍射光学元件10的示意图,由于光线从基体14的第一层141到衍射光学元件10外侧的环境介质(通常为空气) 属于从光密介质到光疏介质,易于引起反射,反射的光线会向衍射光学元件10内部返回,一部分反射光线在接触到其他部件,即如图5a所示反射光线在接触到基体14的第二层142后,又会被反射回去再次从衍射光学元件10的第一侧101出射,但此时的出射位置与其实际应该出射的位置不同,如此便会产生杂光。图6a为光线经过没有设置抗反射膜20的衍射光学元件10后,在光接收模组300所能够获得的散斑图像A,可以看到散斑图像A中非常多杂光,如此不利于后续根据散斑图像A获取物体的深度信息。图5b为光线经过设置抗反射膜20的衍射光学元件10的示意图,光线从基体14出射后经过抗反射膜20能够出射至衍射光学元件10外侧,避免了光线从基体14直接到衍射光学元件10外侧的介质,能够减小衍射光学元件10在第一区11接收到的光线的反射率,从而减少杂光。图6b为光线经过设有抗反射膜20的衍射光学元件10后,在光接收模组300所能够获得的散斑图像B,可以看到散斑图像B中几乎没有杂光干扰,如此有利于后续根据散斑图像B获取物体的深度信息。
具体地,在一些实施例中,衍射光学元件10置于环境介质中,基体14具有第一折射率,环境介质具有第二折射率,抗反射膜20的折射率与第一折射率及第二折射率相关。其中,当衍射光学元件10放置在空气中使用时,环境介质即为空气,也即第二折射率即为空气的折射率。若将衍射光学元件10放置在其他介质中使用时,第二折射率即为该介质的折射率。由于抗反射膜20的折射率与基体14的折射率和环境介质的折射率相关,如此能够降低基体14与第一的介质之间的折射差异,进而减小光线的反射率。
更具体地,在一些实施例中,抗反射膜20的折射率为第一折射率与第二折射率的乘积的平方根。也即,抗反射膜20的折射率可以通过计算公式:
Figure PCTCN2022142265-appb-000001
计算获得。其中,n 1为抗反射膜20的折射率,n 0为第一折射率,即n 0为基体14的折射率,n s为第二折射率,即n s为环境介质的折射率。示例地,如图7所示,图7给出了抗反射膜20的原理示意图。图中,光线I从折射率为第一折射率的基体14,进入抗反射膜20,再由抗反射膜20进入折射率为第二折射率的环境介质。从图7可以看到,抗反射膜20上下界面虽然也有少量的反射光R1和R2,但由于抗反射膜20的折射率为第一折射率与第二折射率的乘积的平方根,抗反射膜20上下界面虽然也有一定的反射光R1和R2的相位相反,如此能够相互抵消,从而能够降低光线反射,以减少杂光干扰。
当然,在一些实施例中,在光学组件100与光源201(如图10所示)配合组成光发射模组200时,光学组件100的第一侧101是朝向光源201的。光线经过抗反射膜20后进入光学组件100,再从光学组件100向光学组件100外侧射出到达被测物体。此时,由于光线从基体14到环境介质(通常为空气)属于从光密介质到光疏介质,易于引起反射,会有一些反射光线反射回光学组件100的内部(基体14所在的一侧),反射光线在经过设于光学组件100第一侧101的抗反射膜20后,抗反射膜20能够避免反射光线再次向背离第一侧101的方向反射,从而避免反射光线二次反射后沿与之前出射位置不同的位置出射至外界,从而减小产生杂光。
请参阅图8,当基体14包括第一层141及第二层142,且微结构13位于第一层141及第二层142之间的密封腔143时,在一些实施例中,第二层142远离第一层141的一侧也可以设有抗反射膜20。也即,第一层141远离第二层142的一侧、及第二层142远离第一层141的一侧均可设置有抗反射膜20。由于设置在第一层141的抗反射膜20能够避免从衍射光学元件10第一侧101出射的光线反射,即便有少量从第一侧101出射的光线反射,设置在第二层142的抗反射膜20也能够避免反射光线二次反射后沿与之前出射位置不同的位置出射至外界。如此相较于仅在衍射光学元件10的一侧设置抗反射膜20,能够进一步地减少杂光,从而能够提升深度相机400检测物体深度信息的精确度。
在一些实施例中,检测元件30能够通电以产生电信号,在使用该光学组件100的光发射模组200工作时,可以根据检测元件30的电信号判断衍射光学元件10是否存在异常(例如衍射光学元件10破裂、倾斜或脱落),如此可以及时发现衍射光学元件10是否存在异常,以避免光发射模组200中的光源201发射的光线直接穿过存在异常的衍射光学元件10射入人眼,从而提高用户使用光学模组的安全性。
示例地,请参阅图2,在一些实施例中,检测元件30包括输入端31、输出端32及导电部33,导电部33连接输入端31及输出端32。其中,输入端31和输出端32分别与外部电路电连接,以使检测元件30与外部电路电连接形成检测电路,在衍射光学元件10异常时,检测电路断开。如此能根据检测电路是否断开,判断衍射光学元件10是否异常。
具体地,输入端31与输出端32位于第二区12的同一侧,导电部33弯折经过第二区12的其他侧直至输入端31或输出端32所在侧,且其他侧的导电部33包括两段。例如,如图2所示,衍射光学元件10包括第一区11及环绕第一区11的第二区12,第二区12包括依次相邻的第一侧121、第二侧122、第三侧123及第四侧124,输出端32及输出端32均设置于第二区12的第一侧121,导电部33的一端连接输入端31,另一端依次沿第二侧122、第三侧123及第四侧124延伸,在延伸至第四侧124与第一侧121的相接处时,导电部33弯折返回并再依次沿第四侧124、第三侧123、第二侧122及第一侧121延伸,直至与输出端32连接。如此在没有设置输出端32及输出端32的一侧,即第二侧122、第三侧123及第四侧124均具有两段导电部33。一方面由于输入端31与输出端32位于第二区12的同一侧,如此有利于输入端31与输出端32分别与外界电路电连接,降低了布线的难度;另一方面,由于在其他侧的导电部33均有两段,如此能够扩大检测导电部33覆盖的范围,从而能够及时发现衍射光学元件10是否异常。
需要说明的是,在一些实施例中,导电部33可包括导电粒子(图未示),其中导电粒子设置在基体14内部,当基体14没有发生破裂时,导电粒子能电连接输入端31及输出端32。如此将导电部33设置于基体14内部,相较于直接将导电部33设置于基体14的表面,能够避免导电部33由于机械划伤或水汽影响而导致输入端31与输出端32不能正常电连接,造成对衍射光学元件10 异常的误判,从而能够提高检测元件30检测的精确度。
请参阅图4,在一些实施例中,输入端31的远离衍射光学元件10的一侧可以设有至少一层导电层34。如此能够增加输入端31的导电性,从而有利于输入端31与外接电路电电连接。同样地,输出端32的远离衍射光学元件10的一侧也可以设有至少一层导电层34。其中,导电层34可以是由铬制成;或者,导电层34可以是由金制成。例如,如图4所示,在一些实施例中,输入端31及输出端32在远离衍射光学元件10的一层设置两层导电层34,其中一层导电层34由铬制成,另一层导电层34由金制成。
在一些实施例中,检测元件30还包括绝缘部35,绝缘部35设置于衍射光学元件10的第一侧101,并跟随导电部33的弯折形态而弯折,以环绕导电部33。如此能够绝缘保护导电部33。请参阅图4,在一些实施例中,输入端31及输出端32的周围也可以设有绝缘部35,如此也能够绝缘保护输入端31及输出端32。特别地,当导电部33包括导电粒子,导电粒子位于基体14内部时,绝缘部35可以仅设置在输入端31及输出端32的周围,对输入端31及输出端32进行绝缘保护。其中,在一些实施例中,绝缘部35可以由二氧化硅制成。
需要说明的是,在一些实施例中,在输入端31、输出端32、导电部33及绝缘部35中,绝缘部35的厚度最大,如此当检测元件30设置在衍射光学元件10的表面时,由于绝缘部35的厚度最大,能够避免光发射模组200中的其他器件直接与检测元件30接触,划伤检测元件30造成对衍射光学元件10异常的误判,从而有利于提升检测元件30检测的精确度。
请参阅图9,本申请实施方式还提供一种光发射模组200。光发射模组200包括光源201及上述任意一项实施例中所述的光学组件100。光学组件100设于光源201的出光光路上,以使光源201发射的光线能够通过光学组件100后,向光发射模组200外侧出射。
本申请中光发射模组200,通过在衍射光学元件10上设置抗反射膜20及检测元件30,如此既能够减小光线的反射率,降低杂光干扰,还能够通过检测元件30检测衍射光学元件10,以避免用户使用异常的衍射光学元件10,从而提高用户使用光发射模组200的安全性。此外,由于将抗反射膜20位于衍射光学元件10中心的第一区11,检测元件20位于衍射光学元件10边缘的第二区12,也即,衍射光学元件10的中心区域并未设置检测元件30,如此能够使大部分光线均通过抗反射膜20后出射,有利于进一步地减降低杂光干扰。
具体地,在一些实施例中,衍射光学元件10的第一侧101设有抗反射膜20,且衍射光学元件10的第一侧101背离光源201。光源201发射的光线经过衍射光学元件10后再经过抗反射膜20,随后再从光学组件100向光学组件100外侧射出。此时,由于光线从基体14到衍射光学元件10外侧的介质(通常为空气)属于从光密介质到光疏介质,易于引起反射,本实施例在背离光源201的一侧设有抗反射膜20,能够减小光线的反射率,以避免光线反射回光学组件100内,从而减小产生杂光。
当然,在一些实施例中,衍射光学元件10的第一侧101设有抗反射膜20,且衍射光学元件10的第一侧101也可以朝向光源201。光源201发射的光线经过抗反射膜20后进入衍射光学元件10,再向光学组件100外侧射出。此时,由于光线从基体14到衍射光学元件10外侧的介质(通常为空气)属于从光密介质到光疏介质,易于引起反射,会有一些反射光线反射回光学组件100,反射光线在经过设于光学组件100第一侧101的抗反射膜20后,抗反射膜20能够避免反射光线再次向光学组件100内反射,从而避免反射光线二次反射后沿与之前出射位置不同的位置出射至外界,减小产生杂光。
具体地,请参阅图7及图10,在一些实施例中,抗反射膜20的厚度为光源201发射的光线的波长的四分之一。如此有利于进一步降低光线的反射率,从而提升光发射模组200发射光线的品质。示例地,光源201发射的光线的波长为λ,抗反射膜20的厚度为光线的波长的四分之一,即抗反射膜20的厚度为
Figure PCTCN2022142265-appb-000002
请参阅图9,本申请实施方式还提供一种深度相机400。深度相机400包括光接收模组300及上述任意一项实施例中所述的光发射模组200。光发射模组200用于发射光线,光接收模组300用于接收被物体反射回的至少部分光线并形成电信号。深度相机400根据光接收模组300形成的电信号以获得物体的深度信息。
本申请中深度相机400,通过在衍射光学元件10上设置抗反射膜20及检测元件30,如此既能够减小光线的反射率,降低杂光干扰,还能够通过检测元件30检测衍射光学元件10,以避免用户使用异常的衍射光学元件10,从而提高用户使用深度相机400的安全性。此外,由于将抗反射膜20位于衍射光学元件10中心的第一区11,检测元件20位于衍射光学元件10边缘的第二区12,也即,衍射光学元件10的中心区域并未设置检测元件30,如此能够使大部分光线均通过抗反射膜20后出射,有利于进一步地减降低杂光干扰。
请参阅图11,本申请实施方式还提供一种电子设备1000。电子设备1000包括壳体500及上述任意一项实施例中所述的深度相机400,深度相机400与壳体500结合。需要说明的是,终端可以是手机、电脑、平板电脑、智能手表、智能穿戴设备等,在此不作限制。
本申请中电子设备1000,通过在衍射光学元件10上设置抗反射膜20及检测元件30,如此能够通过检测元件30检测衍射光学元件10是否异常,还能够减小光线的反射率,从而降低杂光干扰。此外,将抗反射膜20位于衍射光学元件10中心的第一区11,检测元件30位于衍射光学元件10边缘的第二区12,能够使大部分光线均通过抗反射膜20后出射,如此有利于进一步地降低杂光干扰。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式 或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (22)

  1. 一种光学组件,其中,包括:
    衍射光学元件,包括第一区及环绕所述第一区的第二区;
    抗反射膜,位于所述衍射光学元件的第一区上,所述抗反射膜用于减小所述衍射光学元件在第一区接收到的光线的反射率;及
    检测元件,用于检测所述衍射光学元件,并位于所述衍射光学元件的第二区。
  2. 根据权利要求1所述的光学组件,其中,所述衍射光学元件包括:
    基体,所述抗反射膜及所述检测元件位于所述基体的同一面;及
    设于所述基体的微结构,所述微结构位于与所述抗反射膜及所述检测元件相反的一面。
  3. 根据权利要求1所述的光学组件,其中,所述衍射光学元件包括基体及微结构,所述基体包括第一层及第二层,所述微结构位于所述第一层与所述第二层形成的密封腔内,所述抗反射膜设于所述第一层远离所述第二层的一侧;所述检测元件设于所述第一层远离所述第二层的一侧。
  4. 根据权利要求1所述的光学组件,其中,所述衍射光学元件包括基体及微结构,所述基体包括第一层及第二层,所述微结构位于所述第一层与所述第二层形成的密封腔内,所述抗反射膜设于所述第一层远离所述第二层的一侧;所述检测元件设于所述第二层远离所述第一层的一侧。
  5. 根据权利要求3或4所述的光学组件,其中,所述抗反射膜位于所述第二层远离所述第一层的一侧。
  6. 根据权利要求2至4中任意一项所述的光学组件,其中,所述衍射光学元件置于环境介质中,其中所述基体具有第一折射率,所述环境介质具有第二折射率,所述抗反射膜的折射率与所述第一折射率及所述第二折射率相关。
  7. 根据权利要求6所述的光学组件,其中,所述抗反射膜的折射率为所述第一折射率与所述第二折射率的乘积的平方根。
  8. 根据权利要求1所述的光学组件,其中,所述衍射光学元件包括多个微结构,
    所有所述微结构均位于所述第一区;或
    所述第一区中所述微结构的数量大于所述第二区中微结构的数量。
  9. 根据权利要求1所述的光学组件,其中,所述检测元件包括输入端、输出端、及连接所述输入端与所述输出端的导电部,所述输入端和所述输出端分别与外部电路电连接,以使所述检测元件与所述外部电路电连接形成检测电路,在所述衍射光学元件异常时,所述检测电路断开。
  10. 一种光发射模组,其中,包括:
    光源,所述光源用于发射光线;及
    光学组件,所述光学组件设置于所述光源的出光路径上,所述光学组件包括衍射光学元件、抗反射膜及检测元件,所述衍射光学元件包括第一区及环绕所述第一区的第二区;所述抗反射膜位于所述衍射光学元件的第一区上,所述抗反射膜用于减小所述衍射光学元件在第一区接收到的光线的反射率;所述检测元件用于检测所述衍射光学元件,并位于所述衍射光学元件的第二区。
  11. 根据权利要求10所述的光发射模组,其中,所述衍射光学元件的第一侧设有所述抗反射膜,
    所述衍射光学元件的第一侧背离所述光源;或
    所述衍射光学元件的第一侧朝向所述光源。
  12. 根据权利要求10所述的光发射模组,其中,所述抗反射膜的厚度为所述光线的波长的四分之一。
  13. 根据权利要求10所述的光发射模组,其中,所述衍射光学元件包括:
    基体,所述抗反射膜及所述检测元件位于所述基体的同一面;及
    设于所述基体的微结构,所述微结构位于与所述抗反射膜及所述检测元件相反的一面。
  14. 根据权利要求10所述的光发射模组,其中,所述衍射光学元件包括基体及微结构,所述基体包括第一层及第二层,所述微结构位于所述第一层与所述第二层形成的密封腔内,所述抗反射膜设于所述第一层远离所述第二层的一侧;所述检测元件设于所述第一层远离所述第二层的一侧。
  15. 根据权利要求10所述的光发射模组,其中,所述衍射光学元件包括基体及微结构,所述基体包括第一层及第二层,所述微结构位于所述第一层与所述第二层形成的密封腔内,所述抗反射膜设于所述第一层远离所述第二层的一侧;所述检测元件设于所述第二层远离所述第一层的一侧。
  16. 根据权利要求14或15所述的光发射模组,其中,所述抗反射膜位于所述第二层远离所述第一层的一侧。
  17. 根据权利要求13至15中任意一项所述的光发射模组,其中,所述衍射光学元件置于环境介质中,其中所述基体具有第一折射率,所述环境介质具有第二折射率,所述抗反射膜的折射率与所述第一折射率及所述第二折射率相关。
  18. 根据权利要求17所述的光发射模组,其中,所述抗反射膜的折射率为所述第一折射率与所述第二折射率的乘积的平方根。
  19. 根据权利要求10所述的光发射模组,其中,所述衍射光学元件包括多个微结构,
    所有所述微结构均位于所述第一区;或
    所述第一区中所述微结构的数量大于所述第二区中微结构的数量。
  20. 根据权利要求10所述的光发射模组,其中,所述检测元件包括输入端、输出端、及连接所述输入端与所述输出端的导电部,所述输入端和所述输出端分别与外部电路电连接,以使所述检测元件与所述外部电路电连接形成检测电路,在所述衍射光学元件异常时,所述检测电路断开。
  21. 一种深度相机,其中,包括:
    权利要求10至20任意一项所述的光发射模组,用于发射光线;及
    光接收模组,用于接收至少部分由物体反射的光线,并转换为电信号。
  22. 一种电子设备,其中,包括:
    壳体;及
    权利要求21所述的深度相机,所述壳体与所述深度相机结合。
PCT/CN2022/142265 2022-03-15 2022-12-27 光学组件、光发射模组、深度相机及电子设备 WO2023173885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210254417.5 2022-03-15
CN202210254417.5A CN114706093A (zh) 2022-03-15 2022-03-15 光学组件、光发射模组、深度相机及电子设备

Publications (1)

Publication Number Publication Date
WO2023173885A1 true WO2023173885A1 (zh) 2023-09-21

Family

ID=82169423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142265 WO2023173885A1 (zh) 2022-03-15 2022-12-27 光学组件、光发射模组、深度相机及电子设备

Country Status (2)

Country Link
CN (1) CN114706093A (zh)
WO (1) WO2023173885A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114706093A (zh) * 2022-03-15 2022-07-05 Oppo广东移动通信有限公司 光学组件、光发射模组、深度相机及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828702A (zh) * 2018-06-06 2018-11-16 Oppo广东移动通信有限公司 衍射光学元件、光电模组、输入输出组件及电子设备
CN109212763A (zh) * 2018-09-27 2019-01-15 Oppo广东移动通信有限公司 光发射模组及其损坏的检测方法、深度获取装置和电子设备
CN208653771U (zh) * 2018-09-20 2019-03-26 南昌欧菲生物识别技术有限公司 投影模组、光电装置和电子设备
CN111090175A (zh) * 2018-10-24 2020-05-01 南昌欧菲生物识别技术有限公司 光学组件、光电模组、深度获取装置及电子设备
CN211426952U (zh) * 2019-12-12 2020-09-04 三赢科技(深圳)有限公司 衍射光学结构及结构光投射装置
CN114706093A (zh) * 2022-03-15 2022-07-05 Oppo广东移动通信有限公司 光学组件、光发射模组、深度相机及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828702A (zh) * 2018-06-06 2018-11-16 Oppo广东移动通信有限公司 衍射光学元件、光电模组、输入输出组件及电子设备
CN208653771U (zh) * 2018-09-20 2019-03-26 南昌欧菲生物识别技术有限公司 投影模组、光电装置和电子设备
CN109212763A (zh) * 2018-09-27 2019-01-15 Oppo广东移动通信有限公司 光发射模组及其损坏的检测方法、深度获取装置和电子设备
CN111090175A (zh) * 2018-10-24 2020-05-01 南昌欧菲生物识别技术有限公司 光学组件、光电模组、深度获取装置及电子设备
CN211426952U (zh) * 2019-12-12 2020-09-04 三赢科技(深圳)有限公司 衍射光学结构及结构光投射装置
CN114706093A (zh) * 2022-03-15 2022-07-05 Oppo广东移动通信有限公司 光学组件、光发射模组、深度相机及电子设备

Also Published As

Publication number Publication date
CN114706093A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2020038068A1 (zh) 成像装置及电子设备
WO2023173885A1 (zh) 光学组件、光发射模组、深度相机及电子设备
WO2019237876A1 (zh) 摄像头模组和电子装置
KR20100092912A (ko) 감지 모듈과 이를 구비한 광학 감지 시스템
WO2019161759A1 (zh) 移动终端
TWI696000B (zh) 鐳射投射模組及其破裂的檢測方法、深度相機和電子裝置
WO2020038056A1 (zh) 飞行时间组件及电子设备
CN208737020U (zh) 移动终端
CN113324265A (zh) 无接触操控式电磁炉及操作方法和存储介质
WO2020038055A1 (zh) 飞行时间组件及移动终端
WO2023071650A1 (zh) 深度相机、制造光发射模组的方法和终端
WO2022193840A1 (zh) 电子设备和电子设备的测温方法
CN215064885U (zh) 传感器模组及显示装置
CN214536740U (zh) 无触摸空调
WO2020082876A1 (zh) 光学组件、光电模组、深度获取装置及电子设备
WO2020253686A1 (zh) 激光投射模组、深度相机和电子装置
CN218831236U (zh) 显示组件、电子设备
CN217008174U (zh) 点歌装置
CN112363147B (zh) 发射模组、时间飞行器件及电子设备
CN212969799U (zh) 光发射模组、深度相机及电子设备
TWI783772B (zh) 浮空影像產生裝置以及電子裝置
CN111090175A (zh) 光学组件、光电模组、深度获取装置及电子设备
CN218350606U (zh) 光学感测系统
WO2021238389A1 (zh) 光学模组及电子设备
CN218788090U (zh) 显示装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931890

Country of ref document: EP

Kind code of ref document: A1