WO2023071650A1 - 深度相机、制造光发射模组的方法和终端 - Google Patents

深度相机、制造光发射模组的方法和终端 Download PDF

Info

Publication number
WO2023071650A1
WO2023071650A1 PCT/CN2022/120965 CN2022120965W WO2023071650A1 WO 2023071650 A1 WO2023071650 A1 WO 2023071650A1 CN 2022120965 W CN2022120965 W CN 2022120965W WO 2023071650 A1 WO2023071650 A1 WO 2023071650A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern
microstructure
optical element
zero
Prior art date
Application number
PCT/CN2022/120965
Other languages
English (en)
French (fr)
Inventor
刘海亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023071650A1 publication Critical patent/WO2023071650A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement

Definitions

  • the present application relates to the technical field of ranging, and more specifically, to a depth camera, a method for manufacturing a light emitting module, and a terminal.
  • the light emitting module in the depth camera generally uses a combination of "light source + lens group + diffractive optical element", in which the lens group is used to collimate the planar pattern emitted by the light source, and the diffractive optical element is used to copy and emit the copied planar pattern .
  • the light emission module with such a structure has good optical effect (including but not limited to efficiency, uniformity and light spot quality), but this solution has a large volume and high overall cost.
  • Embodiments of the present application provide a depth camera, a method for manufacturing a light emission module, and a terminal.
  • Embodiments of the present application provide a depth camera.
  • the depth camera includes a light emitting module and a light receiving module.
  • the light emitting module includes a light source and a diffractive optical element.
  • the light source includes a plurality of light emitting elements and is used to emit light beams to form a planar pattern.
  • gap x is the first distance between the first-level area and the zero-level area in the first direction
  • gap y is the second distance between the first-level area and the zero-level area in the second direction
  • ⁇ x is the first spacing in the first direction between two adjacent speckles arranged in the same row in the zero-order region
  • ⁇ y is the first distance between two adjacent rows of speckles in the zero-order region. The second spacing in both directions.
  • the light receiving module is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the embodiments of the present application also provide a method for manufacturing the light emission module described in the above embodiments.
  • the manufacturing method includes: obtaining a first pattern emitted by a reference module; wherein, the reference module includes a light-emitting component, a collimator lens group, and a first optical element, and the light-emitting component can emit light beams to form a second pattern, and the The collimator lens group is used to collimate the second pattern, the first optical element is used to replicate the second pattern to emit the first pattern, the first pattern is a planar pattern, and the first The second pattern is a speckle pattern; according to the first pattern and the second pattern, the diffractive optical element of the light emitting module is designed so that the second pattern can emit the light after passing through the diffractive optical element.
  • the first pattern and design the light source of the light emitting module according to the light emitting component, so that the light beam emitted by the light source can form the second image; and assemble the diffractive optical element in the light emitting direction of the light source , to obtain the light emitting module.
  • the embodiments of the present application also provide a terminal.
  • the terminal includes a housing and a depth camera.
  • the depth camera is combined with the casing.
  • the depth camera includes a light emitting module and a light receiving module.
  • the light emitting module includes a light source and a diffractive optical element.
  • the light source includes a plurality of light emitting elements and is used to emit light beams to form a planar pattern.
  • the diffractive optical element is provided with an integrated microstructure capable of collimating the planar pattern and replicating the planar pattern to emit a speckle pattern;
  • gap x is the first distance between the first-level area and the zero-level area in the first direction
  • gap y is the second distance between the first-level area and the zero-level area in the second direction
  • ⁇ x is the first spacing in the first direction between two adjacent speckles arranged in the same row in the zero-order region
  • ⁇ y is the first distance between two adjacent rows of speckles in the zero-order region. The second spacing in both directions.
  • the light receiving module is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the depth camera, method and terminal for manufacturing a light emitting module of the present application collimate the planar pattern through the integrated microstructure on the diffractive optical element, and replicate the planar pattern to emit the speckle pattern, and the formed speckle pattern
  • the light emitting module of the present application can reduce the volume of the light emitting module without affecting the optical effect of projected speckle images.
  • FIG. 1 is a schematic structural diagram of a depth camera in some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of a light emitting module in some embodiments of the present application.
  • 3 and 4 are schematic diagrams of speckle images in some embodiments of the present application.
  • Fig. 5 is a schematic structural diagram of a reference module in some embodiments of the present application.
  • Figure 6(a) and Figure 6(b) are schematic diagrams of planar images in some embodiments of the present application.
  • 10 to 12 are schematic diagrams of speckle images in some embodiments of the present application.
  • Fig. 13 is a schematic structural diagram of the first microstructure in some embodiments of the present application.
  • Fig. 14 is a schematic structural diagram of a second microstructure in some embodiments of the present application.
  • Figure 15 is a schematic diagram of the principle of the integrated microstructure formed in some embodiments of the present application.
  • 16 to 18 are structural schematic diagrams of light emitting modules in some embodiments of the present application.
  • FIG. 19 and FIG. 20 are schematic diagrams of the plane pattern copied by the light emitting module in some embodiments of the present application.
  • Fig. 21 is a schematic structural diagram of a terminal in some embodiments of the present application.
  • 22 is a flowchart of a method of manufacturing a light emission module in some embodiments of the present application.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • Embodiments of the present application provide a depth camera.
  • the depth camera includes a light emitting module and a light receiving module, and the light emitting module includes a light source and a diffractive optical element.
  • the light source includes a plurality of light emitting elements and is used to emit light beams to form a planar pattern.
  • the diffractive optical element is provided with an integrated microstructure, and the integrated microstructure can collimate the planar pattern and replicate the planar pattern to emit a speckle pattern;
  • gap x is the first distance between the first-level area and the zero-level area in the first direction
  • gap y is the second distance between the first-level area and the zero-level area in the second direction
  • ⁇ x is the row in the zero-level area
  • ⁇ y is the second distance between two adjacent rows of speckle spots in the zero-order region in the second direction.
  • the light receiving module is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • a plurality of light emitting elements are arranged regularly.
  • the speckle pattern includes a plurality of speckles, and the plurality of speckles are regularly arranged; and/or, the speckle pattern is formed by a plurality of planar patterns, and between each planar pattern in the speckle pattern There are gaps.
  • the light source includes a first light-emitting element group and a second light-emitting element group, each of the first light-emitting element group and the second light-emitting element group includes a plurality of light-emitting elements, and when the light source emits a planar pattern, the first The light-emitting element group and the second light-emitting element group, and the time difference between turning on the first light-emitting element group and turning on the second light-emitting element group is less than a preset time.
  • the vertical distance between the light source and the diffractive optical element is related to the object distance of the light emitting module and the effective focal length of the diffractive optical element.
  • the field angle of the zero-order region in the horizontal direction is related to the length of the plane pattern in the first direction and the effective focal length of the diffractive optical element;
  • the field angle of the zero-order region in the vertical direction is related to the length of the plane pattern in the first direction;
  • the length of the pattern in the second direction is related to the effective focal length of the diffractive optical element.
  • the integrated microstructure is formed by fusion of a virtual phase-based first microstructure and a virtual phase-based second microstructure, the first microstructure is used for collimating light, and the second microstructure is used for It is used to reproduce the spot formed by the received light.
  • the first microstructure is a microstructure of n-step diffractive lens or a microstructure of a metalens, wherein n is greater than or equal to 2; and/or, the second microstructure is a grating-based diffractive microstructure or Diffractive microstructures based on metalenses.
  • the light source is a vertical cavity surface emitting laser, and the outgoing light of the vertical cavity surface emitting laser directly enters the diffractive optical element.
  • the diffractive optical element includes a first surface facing the light source and a second surface away from the light source, and the integrated microstructure is arranged on the first surface or the second surface; or, the diffractive optical element includes a first layer and a second layer layer, and the integrated microstructure is located in the sealed cavity formed by the first layer and the second layer.
  • a filler is provided between the voids of the integrated microstructure, and the filler includes organic matter or silicon dioxide.
  • the integrated microstructure replicates the planar pattern into M*N parts, and the plurality of planar patterns form a speckle pattern, wherein M is greater than or equal to 3, N is greater than or equal to 3, and both M and N are odd numbers.
  • the planar patterns between adjacent columns are misaligned or the planar patterns between adjacent rows are misaligned.
  • the embodiments of the present application provide a method for manufacturing the light emission module in any one of the above embodiments.
  • the manufacturing method is as follows: take the first pattern emitted by the reference module; wherein, the reference module includes a light-emitting component, a collimating lens group and a first optical element, the light-emitting component can emit light beams to form a second pattern, and the collimating lens group uses In collimating the second pattern, the first optical element is used to replicate the second pattern to emit the first pattern, the first pattern is a speckle pattern, and the second pattern is a planar pattern; according to the first pattern and the second pattern, the design The diffractive optical element of the light emitting module, so that the second pattern can emit the first pattern after passing through the diffractive optical element; and design the light source of the light emitting module according to the light emitting component, so that the light source can emit light beams to form a second image; and The diffractive optical element is assembled in the light emitting direction of the light source to obtain a
  • An embodiment of the present application provides a terminal.
  • the terminal includes a casing and a depth camera, and the depth camera is combined with the casing.
  • the depth camera includes a light emitting module and a light receiving module, and the light emitting module includes a light source and a diffractive optical element.
  • the light source includes a plurality of light emitting elements and is used to emit light beams to form a planar pattern.
  • the diffractive optical element is provided with an integrated microstructure, and the integrated microstructure can collimate the planar pattern and replicate the planar pattern to emit a speckle pattern;
  • gap x is the first distance between the first-level area and the zero-level area in the first direction
  • gap y is the second distance between the first-level area and the zero-level area in the second direction
  • ⁇ x is the row in the zero-level area
  • ⁇ y is the second distance between two adjacent rows of speckle spots in the zero-order region in the second direction.
  • the light receiving module is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • a plurality of light emitting elements are arranged regularly.
  • the speckle pattern includes a plurality of speckles, and the plurality of speckles are regularly arranged; and/or, the speckle pattern is formed by a plurality of planar patterns, and between each planar pattern in the speckle pattern There are gaps.
  • the light source includes a first light-emitting element group and a second light-emitting element group, each of the first light-emitting element group and the second light-emitting element group includes a plurality of light-emitting elements, and when the light source emits a planar pattern, the first The light-emitting element group and the second light-emitting element group, and the time difference between turning on the first light-emitting element group and turning on the second light-emitting element group is less than a preset time.
  • the vertical distance between the light source and the diffractive optical element is related to the object distance of the light emitting module and the effective focal length of the diffractive optical element.
  • the field angle of the zero-order region in the horizontal direction is related to the length of the plane pattern in the first direction and the effective focal length of the diffractive optical element;
  • the field angle of the zero-order region in the vertical direction is related to the length of the plane pattern in the first direction;
  • the length of the pattern in the second direction is related to the effective focal length of the diffractive optical element.
  • the integrated microstructure is formed by fusion of a virtual phase-based first microstructure and a virtual phase-based second microstructure, the first microstructure is used for collimating light, and the second microstructure is used for It is used to reproduce the spot formed by the received light.
  • the first microstructure is a microstructure of n-step diffractive lens or a microstructure of a metalens, wherein n is greater than or equal to 2; and/or, the second microstructure is a grating-based diffractive microstructure or Diffractive microstructures based on metalenses.
  • the light source is a vertical cavity surface emitting laser, and the outgoing light of the vertical cavity surface emitting laser directly enters the diffractive optical element.
  • the diffractive optical element includes a first surface facing the light source and a second surface away from the light source, and the integrated microstructure is arranged on the first surface or the second surface; or, the diffractive optical element includes a first layer and a second layer layer, and the integrated microstructure is located in the sealed cavity formed by the first layer and the second layer.
  • a filler is provided between the voids of the integrated microstructure, and the filler includes organic matter or silicon dioxide.
  • the integrated microstructure replicates the planar pattern into M*N parts, and the plurality of planar patterns form a speckle pattern, wherein M is greater than or equal to 3, N is greater than or equal to 3, and both M and N are odd numbers.
  • the planar patterns between adjacent columns are misaligned or the planar patterns between adjacent rows are misaligned.
  • the light emitting module in the depth camera generally uses a combination of "light source + lens group + diffractive optical element", in which the lens group is used to collimate the planar pattern emitted by the light source, and the diffractive optical element is used to copy and emit the copied planar pattern .
  • the light emission module with such a structure has good optical effect (including but not limited to efficiency, uniformity and light spot quality), but this solution has a large volume and high overall cost.
  • the implementation of the present application provides a depth camera 100 .
  • the depth camera 100 includes a light emitting module 10 and a light receiving module 20 .
  • the light emitting module 10 includes a light source 11 and a diffractive optical element 12 .
  • the light source 11 includes a plurality of light emitting elements 111 and is used to emit light beams to form a planar pattern.
  • the diffractive optical element 12 is provided with an integrated microstructure 121 capable of collimating a planar pattern and replicating the planar pattern to emit a speckle pattern.
  • gap x is the first distance between the first-level area b and the zero-level area a in the first direction D1
  • gap y is the second distance between the first-level area b and the zero-level area a in the second direction D2
  • ⁇ x is the first distance between two adjacent speckles arranged in the same row in the zero-level area a in the first direction D1
  • ⁇ y is the speckle in the second direction D2 of two adjacent rows in the zero-level area a
  • the second spacing on The light receiving module 20 is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the light emitting module 10 in the depth camera 100 of the present application collimates the planar pattern through the integrated microstructure 121 on the diffractive optical element 12, and replicates the planar pattern to emit the speckle pattern, and the zeros in the formed speckle pattern
  • the light emitting module 10 of the present application can also reduce the size of the light emitting module 10 without affecting the optical effect of the projected speckle image.
  • the first distance gap x or the second distance gap y between the zero-level area a and the first-level area b in the speckle pattern is too large, it will As a result, in the subsequent software calculation process, it takes time to find the first-level region b in the speckle pattern, and the efficiency decreases; when the first distance gap x or the second distance between the zero-level region a and the first-level region b in the speckle pattern If the distance gap y is too small, the zero-level area a and the first-level area b cannot be well distinguished in the subsequent software calculation process, resulting in low calculation accuracy of depth information.
  • the light beams emitted by the multiple light emitting elements 111 form a planar pattern, and the planar pattern is replicated after passing through the diffractive optical element 12 to form a speckle pattern, that is, the speckle pattern is formed by a set of multiple planar patterns.
  • the speckle pattern includes a plurality of speckles.
  • the depth camera 100 can be a time-of-flight (TOF)-based depth camera, that is, the depth camera 100 can calculate the time difference between the light beam emitted by the light source 11 and the corresponding speckle received by the light receiving module 20. depth information.
  • TOF time-of-flight
  • a plurality of light emitting elements 111 in the light source 11 are regularly arranged.
  • the plurality of light emitting elements 111 are arranged regularly, compared with the random arrangement of the plurality of light emitting elements 111, it is beneficial to reduce the volume of the light source 11;
  • the formed light-emitting points because the multiple light-emitting elements 111 are regularly arranged, and the planar pattern is copied to form a speckle pattern, which is beneficial to prevent the multiple speckles in the speckle pattern from overlapping each other, thus facilitating the subsequent The corresponding speckles are found to obtain depth information.
  • the light source 11 includes multiple rows of light emitting elements 111 , and each row of light emitting elements 111 includes multiple light emitting elements 111 .
  • the spacing between rows is the same, it can be considered that the plurality of light emitting elements 111 in the light source 11 are arranged regularly; otherwise, if the spacing between rows is not the same, or the spacing between rows If there is no correlation between the distances (correlations include but not limited to direct ratio, inverse ratio, increasing and decreasing, the same will not be repeated below), then it can be considered that the multiple light emitting elements 111 in the light source 11 are randomly arranged.
  • the multiple light emitting elements 111 in the light source 11 are arranged regularly; otherwise, if the multiple light emitting elements in the same row If the spacing between 111 is not the same, or there is no correlation between the spacing between multiple light emitting elements 111 in the same row, it can be considered that the multiple light emitting elements 111 in the light source 11 are arranged randomly.
  • the light source 11 includes multiple columns of light emitting elements 111, and each column of light emitting elements 111 includes a plurality of light emitting elements 111.
  • the spacing between columns is the same, it can be considered that the plurality of light emitting elements 111 in the light source 11 are arranged regularly; otherwise, if the spacing between columns is not the same, or the spacing between columns If there is no correlation between the distances between them, it can be considered that the multiple light emitting elements 111 in the light source 11 are randomly arranged.
  • the multiple light emitting elements 111 in the same column are the same, it can be considered that the multiple light emitting elements 111 in the light source 11 are arranged regularly; otherwise, if the multiple light emitting elements 111 in the same column If the distances between 111 are not the same, or there is no correlation between the distances between multiple light emitting elements 111 in the same row, then it can be considered that the multiple light emitting elements 111 in the light source 11 are arranged randomly.
  • the multiple speckles in the speckle pattern are arranged regularly, which facilitates subsequent finding of corresponding speckles to obtain depth information.
  • the speckle pattern is formed by a plurality of planar patterns, and there is a gap between each planar pattern in the speckle pattern, that is, each planar pattern in the speckle pattern does not overlap with each other, which is beneficial The corresponding speckles are subsequently found to obtain depth information.
  • the light source 11 includes a first light-emitting element group 101 and a second light-emitting element group 102 , and each of the first light-emitting element group 101 and the second light-emitting element group 102 includes a plurality of light-emitting elements 111 .
  • the first light-emitting element group 101 and the second light-emitting element group 102 are turned on at intervals, and the time difference between turning on the first light-emitting element group 101 and turning on the second light-emitting element group 102 is less than a preset time.
  • the planar pattern will not be reduced. While reducing the number of light-emitting points formed by the light beams emitted by the light-emitting elements 111, the power consumption of the light-emitting module 10 can also be reduced.
  • the first light-emitting element group 101 is first turned on, so that the plurality of light-emitting elements 111 in the first light-emitting element group 101 emit light beams, and then the second light-emitting element group 102 is turned on, so that the second light-emitting element group 101 emits light.
  • the plurality of light emitting elements 111 in the element group 102 emit light beams, and the time difference between turning on the first light emitting element group 101 and turning on the second light emitting element group 102 is less than a preset time. For example, as shown in FIG.
  • a plurality of light emitting elements 111 in the light source 11 are regularly arranged in five columns, wherein the plurality of light emitting elements arranged in the first column, the third column and the fifth column 111 is the first light emitting element group 101 , and the plurality of light emitting elements 111 arranged in the second column and the fourth column are the second light emitting element group 102 .
  • the first light-emitting element group 101 is first turned on, that is, the plurality of light-emitting elements 111 arranged in the first column, the third column, and the fifth column emit light beams, and then the second light-emitting element group 102 is turned on, That is, the light emitting elements 111 arranged in the second column and the fourth column emit light beams, and the time difference between turning on the first light emitting element group 101 and turning on the second light emitting element group 102 is less than a preset time.
  • the light beams emitted by all the light emitting elements 111 in the light source 11 form a planar pattern.
  • the second light emitting element group 102 may also be turned on first, and then the first light emitting element group 101 is turned on, which is not limited here.
  • the depth camera 100 when the depth camera 100 works in the first working mode, only some of the light emitting elements 111 in the light source 11 can emit light beams; when the depth camera 100 works in the second working mode, all light emitting elements in the light source 11 can be made to emit Element 111 emits a light beam.
  • the first working mode may be a mode with low security requirements such as shooting mode or ranging mode
  • the second working mode may be a mode with high security requirements such as payment or face recognition.
  • the depth camera 100 when the depth camera 100 is working in the first working mode with low security requirements, only part of the light emitting elements 111 emit light beams, thus reducing power consumption while being able to obtain depth information; on the other hand, because when the depth camera 100 works in the second working mode with higher security requirements, all light emitting elements 111 emit light beams, which can increase the number of speckle spots in the speckle pattern, thereby improving the accuracy of depth information acquisition.
  • the light source 11 is a vertical cavity surface emitting laser, and the outgoing light of the vertical cavity surface emitting laser is directly incident on the diffractive optical element 12 .
  • the light source 11 may also be other types of emitters, which is not limited here.
  • the diffractive optical element 12 is disposed on the light output path of the light source 11 , and a plurality of light emitting elements 111 of the light source 11 emit light beams to form a planar pattern.
  • the diffractive optical element 12 can receive a planar pattern, and the integrated microstructure 121 provided on the diffractive optical element 12 can collimate a planar image and replicate the planar pattern to emit a speckle pattern.
  • the speckle pattern includes a zero-level region a and a plurality of first-level regions b, a plurality of first-level regions b surround the zero-level region a, and each region (including the zero-level region a and the first The level region b) includes a plurality of speckles.
  • gap x is the first distance between the first-level area b and the zero-level area a in the first direction D1.
  • the zero-level region a has two adjacent first-level regions b in the first direction D1 (that is, the two first-level regions b on the left and right sides of the zero-level region a ).
  • the speckle in any row of the first-level area b1 that is closest to the zero-level area a and the speckle in the row corresponding to the zero-level area a that is closest to the first-level area b1
  • the distance between them in the first direction D1 is the first distance gap x .
  • the distance between the leftmost speckle in the first row of the first-level area b1 and the rightmost speckle in the first row of the zero-level area a is the first distance gap x ; the fourth-level gap x in the first-level area b1
  • the distance between the leftmost speckle in the row and the rightmost speckle in the fourth row of the zero-order area a is also the first distance gap x .
  • ⁇ x is the first distance between two adjacent speckles arranged in the same row in the zero-order area a in the first direction D1.
  • the distance between the first speckle and the second speckle in the fifth row from left to right in the zero-level area a in the first direction D1 is the first distance ⁇ x.
  • the first distance gap x between the first-level area b and the zero-level area a in the first direction D1, and the two adjacent speckles arranged in the same row in the zero-level area a are within the first distance.
  • q is a preset coefficient, and in some embodiments, 0.8 ⁇ q ⁇ 1.5.
  • the distance in the first direction D1 between the speckle in each row of the first-level area b1 closest to the zero-level area a and the speckle in the corresponding row of the zero-level area a closest to the first-level area b1 is equal to The same; the first spacing in the first direction D1 of any two adjacent speckles arranged in the same row in the zero-order region a is the same.
  • the first direction D1 is the same as the extending direction of each row of speckle in the zero-level region a (or the first-level region b).
  • the zero-level region a has two adjacent first-level regions b in the second direction D2 (that is, the two first-level regions b above and below the zero-level region a ).
  • the speckle in any column of the first-level area b2 that is closest to the zero-level area a and the speckle in the column corresponding to the zero-level area a that is closest to the first-level area b2
  • the distance between them in the second direction D2 is the second distance gap y .
  • the distance between the speckle at the bottom of the third column of the first-level area b2 and the speckle at the bottom of the third row of the zero-level area a is the second distance gap y .
  • ⁇ y is the second distance between two adjacent rows of speckles in the zero-order region a in the second direction D2.
  • the distance between the second row and the third row of the zero-level area a in the second direction D2 is the second distance ⁇ y.
  • the second distance gap y between the first-level region b and the zero-level region a in the second direction D2 the first distance between the two rows of speckle adjacent to the zero-level region a in the second direction D2
  • p is a preset coefficient, in some embodiments, 0.8 ⁇ q ⁇ 1.5.
  • the second direction D2 is the same as the extending direction of each column of speckle in the zero-level region a (or the first-level region b).
  • q and p may take the same value or different values, and only need to satisfy 0.8 ⁇ q ⁇ 1.5 and 0.8 ⁇ q ⁇ 1.5, which is not limited here.
  • the integrated microstructure 121 is designed based on the reference module 30 (shown in FIG. 5 ).
  • the vertical distance between the light source 11 and the diffractive optical element 12 is related to the object distance of the light emitting module 10 and the effective focal length of the collimator lens group 31 in the reference module 30 .
  • the reference module 30 includes a light emitting component 33 , a collimating lens group 31 and a first optical element 32 sequentially arranged along the light emitting path.
  • the light emitting assembly 33 is used to emit light beams to form a second image
  • the collimating lens group 31 is used to receive the second pattern emitted by the light emitting assembly 33, and collimate the second pattern
  • the first optical element 32 is used to receive the collimated first image.
  • second pattern and copy the planar pattern to emit the first pattern.
  • the first pattern is a speckle pattern
  • the second pattern is a planar pattern.
  • the light-emitting assembly 33 also includes a plurality of light-emitting elements, the number, arrangement and luminous power of the light-emitting elements in the light source 11 in the light-emitting module 10, and the number and arrangement of the light-emitting elements in the light-emitting assembly 33 in the reference module 30
  • Both the distribution and the luminous power are exactly the same, that is, the planar pattern emitted by the light source 11 is basically consistent with the second pattern emitted by the light emitting component 33 .
  • the integrated microstructure 121 on the diffractive optical element 12 in the light emitting module 10 is designed so that the planar pattern emitted by the light source 11
  • the speckle pattern emitted by the diffractive optical element 12 is basically consistent with the first pattern emitted by the reference module 30 .
  • the input i.e. the light beam emitted by the light-emitting component 33
  • the output i.e.
  • the first pattern emitted by the reference module 30 light waves
  • a plane phase change distribution diagram can be obtained, and then The phase change is achieved by using the optical path difference caused by the medium to design the integrated microstructure 121 on the diffractive optical element 12 .
  • other ways can also be used to design the integrated microstructure 121 based on the reference module 30, as long as the light emission module 10 adopts the same light source emission plane pattern as the reference module 30, the final speckle emitted by the light emission module 10 It is sufficient that the pattern is substantially consistent with the first pattern (ie, the speckle pattern) emitted by the reference module 30 .
  • the vertical distance between the light source 11 and the diffractive optical element 12 can be the same as the object distance of the light emitting module 10 and the collimator lens in the reference module 30
  • the effective focal length of group 31 is related.
  • v is the vertical distance between the light source 11 and the diffractive optical element 12
  • the EFL parameter is the effective focal length of the collimating lens group 31 in the reference module 30
  • u is the object distance of the light emitting module 10 .
  • the vertical distance between the light source 11 and the plane where the integrated microstructure 121 is located may be taken as the vertical distance v between the light source 11 and the diffractive optical element 12 .
  • the light emitting module 10 also has certain requirements on the assembly tolerance (that is, the vertical distance between the light source 11 and the diffractive optical element 12 , the same will not be repeated below). For example, when the assembly tolerance is large, it may cause the spot to be more diffuse, but when the assembly tolerance is within the range of ⁇ 30um, it will not cause the spot to be more diffuse. Therefore, in some embodiments, the assembly tolerance of the light emitting module 10 is ⁇ 30 um, that is, the vertical distance between the light source 11 and the diffractive optical element 12 is ⁇ 30 um, so as to avoid expanding the spot and spreading.
  • the assembly tolerance of the light emitting module 10 is ⁇ 30 um, that is, the vertical distance between the light source 11 and the diffractive optical element 12 is ⁇ 30 um, so as to avoid expanding the spot and spreading.
  • the vertical distance between the light source 11 and the diffractive optical element 12 may also be related to the object distance of the light emitting module 10 and the effective focal length of the diffractive optical element 12 .
  • v is the vertical distance between the light source 11 and the diffractive optical element 12
  • EFL diffraction is the effective focal length of the diffractive optical element 12
  • u is the object distance of the light emitting module 10 .
  • the vertical distance between the light source 11 and the plane where the integrated microstructure 121 is located may be taken as the vertical distance v between the light source 11 and the diffractive optical element 12 .
  • the angle of view of the light emitting module 10 is related to the length X of the planar pattern in the first direction D1, the length Y of the planar pattern in the second direction D2, and the diffractive optics.
  • the effective focal length EFL of the element 12 is related to the first distance gap x and the second distance gap y .
  • the light source 11 includes adjacent short sides 1101 and long sides 1102, the length of the long side 1102 is longer than the length of the short side 1101, and the extension direction of the short side 1101 is consistent with the plurality of light emitting
  • the extending direction of the columns formed by the arrangement of the elements 111 is the same, and the extending direction of the long sides is the same as the extending direction of the rows formed by the arrangement of the plurality of light emitting elements 111 .
  • the light source 11 includes a plurality of light emitting elements 111 regularly arranged to form a matrix, that is, multiple rows of light emitting elements 111 are uniformly aligned. In another example, as shown in FIG.
  • the light source 11 includes a plurality of light emitting elements 111 staggered along the long side 1102 , that is, multiple rows of light emitting elements 111 are staggered from each other.
  • the light source 11 includes a plurality of light emitting elements 111 that are displaced along the short side 1101 , that is, multiple columns of light emitting elements 111 are staggered from each other.
  • the length of the planar pattern in the first direction D1 can be a straight line passing through the center of the leftmost row of light-emitting points of the planar pattern, and a straight line passing through the rightmost row of the planar pattern.
  • the distance between the straight lines at the center of the light-emitting point; or, in some embodiments, as shown in Figure 6(b), the length X of the plane pattern in the first direction D1 can also be the leftmost column of the plane pattern The distance between the tangent to the left of the luminous point and the tangent to the right of the rightmost column of luminous points in the planar pattern.
  • the length X of the plane pattern in the first direction D1 can also be the tangent line passing through the left side of the leftmost row of light-emitting points of the plane pattern, and the left side of the plane pattern passing through the rightmost row of light-emitting points. or, in some embodiments, the length X of the planar pattern in the first direction D1 can also be the tangent passing through the right side of the leftmost row of light-emitting points of the planar pattern, and the length X passing through the rightmost row of the planar pattern Side The distance between the tangents to the right of a column of luminous points; no limitation here.
  • the length Y of the planar pattern in the second direction D2 can be a straight line passing through the center of the uppermost row of light-emitting points of the planar pattern, which is the same as the straight line passing through the center of the uppermost row of light-emitting points of the planar pattern.
  • the distance between the straight lines at the center of a row of luminous points on the lower side; or, in some embodiments, as shown in Figure 6(b), the length Y of the planar pattern in the second direction D2 can also be The distance between the tangent line of the upper side of the row of luminous points on the side and the tangent line passing through the lower side of the lowermost row of luminous points of the planar pattern.
  • the length Y of the planar pattern in the second direction D2 can also be the tangent line passing through the upper side of the uppermost row of light-emitting points of the planar pattern, and the length Y passing through the upper side of the lowermost row of light-emitting points of the planar pattern.
  • the distance between the tangents; or, in some embodiments, the length Y of the planar pattern in the second direction D2 can also be the tangent passing through the lower side of the uppermost row of light-emitting points of the planar pattern, and the length Y passing through the lowermost row of the planar pattern
  • the distance between the tangent lines on the lower side of the light-emitting points is not limited here.
  • the first direction D1 corresponds to the horizontal direction
  • the second direction D2 corresponds to the vertical direction
  • the field angle of the zero-order region a of the speckle pattern in the horizontal direction is related to the length X of the planar pattern in the first direction D1 and the effective focal length EFL of the diffractive optical element 12 .
  • X is the length of the planar pattern in the first direction D1
  • EFL is the effective focal length of the diffractive optical element 12
  • the field angle ⁇ H of the zero-order region a of the speckle pattern in the horizontal direction and the first distance gap x satisfy the calculation formula Where ⁇ H is the field angle of the zero-order area a in the horizontal direction.
  • the field angle of the zero-order area a in the horizontal direction may be the line between the center of the speckle located in the middle of the leftmost column of the zero-order area a and the light source 11, and the line between The angle between the center of the speckle in the middle of the rightmost column of the zero-order area a and the line between the light source 11; or, in some embodiments, the field angle of the zero-order area a in the horizontal direction can be at zero The connection line between the leftmost speckle in the middle of the leftmost column of the level area a and the light source 11, and the connection line between the rightmost of the speckle in the middle of the rightmost column of the zero-level area a and the light source 11 angle.
  • the field angle of the zero-order region a of the speckle pattern in the vertical direction is related to the length Y of the planar pattern in the second direction D2 and the effective focal length EFL of the diffractive optical element 12 .
  • Y is the length of the planar pattern in the second direction D2
  • EFL is the effective focal length of the diffractive optical element 12 .
  • the field angle ⁇ V and the second distance gap y in the vertical direction of the zero-order region a of the speckle pattern satisfy the calculation formula Where ⁇ v is the field angle of the zero-order area a in the vertical direction.
  • the field angle of the zero-order region a in the vertical direction may be the line between the center of the speckle located in the middle of the uppermost row of the zero-order region a and the light source 11, and the line between The angle between the center of the speckle in the middle of the bottom row of the zero-order area a and the line between the light source 11; or, in some embodiments, the field angle of the zero-order area a in the vertical direction can be The connection line between the uppermost side of the speckle in the middle of the uppermost row of the zero-order area a and the light source 11, and the connection line between the lowermost side of the speckle in the middle of the lowermost row of the zero-order area a and the light source 11 angle.
  • the speckle pattern includes a plurality of regions of different grades, and the higher grade regions are peripheral to the lower grade regions.
  • the speckle pattern includes a zero-level area a and a first-level area b, and the first-level area b is on the periphery of the zero-level area a; for another example, as shown in Figure 10, the speckle pattern includes a zero-level area area a, the first level area b and the second level area c, the first level area b is on the periphery of the zero level area a, and the second level area c is on the periphery of the first level area b.
  • the first direction D1 corresponds to the horizontal direction
  • the second direction D2 corresponds to the vertical direction.
  • the field of view of the light emitting module 10 includes a horizontal field of view FOV-X and a vertical field of view FOV-Y.
  • the horizontal field of view FOV-X of the light emitting module 10 may be a line from the center of the speckle located in the middle of the leftmost column of the speckle pattern to the light source 11, and the angle between the center of the speckle located in the middle of the rightmost column of the speckle pattern and the line between the light source 11; or, in some embodiments, the horizontal field of view FOV of the light emitting module 10- X may be a line between the leftmost of the speckle in the middle of the leftmost column of the speckle pattern and the light source 11, and the line between the rightmost of the speckle in the middle of the rightmost column of the speckle pattern and the light source 11 The angle between the connecting lines of .
  • the vertical field of view FOV-Y of the light emitting module 10 may be the line between the center of the speckle located in the middle of the uppermost row of the speckle pattern and the line between the light source 11 and the line between The angle between the center of the speckle in the middle of the bottom row of the speckle pattern and the line between the light sources 11; or, in some embodiments, the vertical field of view FOV-Y of the light emitting module 10 It may be a line between the uppermost side of the speckle located in the middle row on the uppermost side of the speckle pattern and the light source 11, and a connection line between the lowermost side of the speckle located in the middle row of the lowermost row of the speckle pattern and the light source 11 The angle between them is not limited here.
  • the horizontal field of view FOV-X and the length X of the planar pattern in the first direction D1 is related to the maximum grade level that is available in direction D1. Specifically, the calculation formula can be and Calculated to get.
  • X is the length of the planar pattern in the first direction D1
  • EFL is the effective focal length of the diffractive optical element 12
  • gap x is the first distance
  • e is the maximum level of the speckle pattern in the first direction D1.
  • the vertical field of view FOV-Y and the length Y of the planar pattern in the second direction D2 are related to the maximum grade level on D2.
  • the calculation formula can be and Calculated to get.
  • Y is the length of the planar pattern in the second direction D2
  • EFL is the effective focal length of the diffractive optical element 12
  • gap y is the second distance
  • f is the maximum level of the speckle pattern in the second direction D2.
  • the integrated microstructure 121 is formed by fusion of a virtual phase-based first microstructure and a virtual second microstructure.
  • the first microstructure is used to collimate the light
  • the second microstructure is used to replicate the light spot formed by the received light.
  • the first microstructure is a microstructure of n-step diffractive lens (as shown in Figure 13(a)) or a microstructure of a metalens (as shown in Figure 13(b)), where n greater than or equal to 2.
  • the first microstructure can be used to collimate light.
  • the second microstructure is a diffractive microstructure based on a grating (as shown in FIG. 14( a )) or a diffractive microstructure based on a metalens (as shown in FIG. 14( b )). In this way, the second microstructure can be used to replicate the light spot formed by the received light.
  • the upper left figure is a schematic diagram of the first microstructure for collimating light
  • the upper left figure is a second microstructure for replicating the light spot formed by the received light
  • the right figure is a schematic diagram of the integrated microstructure 121 formed by the fusion of the first microstructure and the second microstructure.
  • the integrated microstructure 121 is formed by fusion of a virtual phase-based first microstructure and a virtual second microstructure, the integrated microstructure 121 can collimate the planar pattern and replicate the planar pattern to emit a speckle pattern, so that The light emitting module 10 can achieve a better light projection effect without arranging multiple optical devices, thereby reducing the volume of the light emitting module 10 and reducing the manufacturing cost of the light emitting module 10 .
  • the diffractive optical element 12 includes a first surface 1201 and a second surface 1202 , wherein the first surface 1201 faces the light source 11 , and the second surface 1202 is away from the light source 11 . That is to say, the light emitted by the light source 11 will enter the first surface 1201 and then exit from the second surface 1202 .
  • the integrated microstructure 121 can be arranged on the first surface 1201, the light emitted by the light source 11 will be incident on the integrated microstructure 121, and the integrated microstructure 121 forms a planar pattern on the light emitted by the light source 11.
  • the speckle pattern is emitted from the second surface 1202 . Since the integrated microstructure 12 is arranged on the first surface 1201 close to the light source 11, and intersects with the integrated microstructure 121 and is arranged on the second surface 1202 away from the light source 11, it is beneficial to prevent the integrated microstructure 121 from being scratched and prevent moisture and dust from entering the integrated circuit.
  • the microstructure 121 prolongs the service life of the light emitting module 10 .
  • the integrated microstructure 12 can be arranged on the second surface 1202, the light emitted by the light source 11 will be incident on the first surface 1201 and then incident on the integrated microstructure 12, and the integrated microstructure 12 is opposite to the light source 11.
  • the planar pattern formed by the emitted light is collimated and replicated to emit a speckle pattern. Because strong light directly incident on the integrated microstructure 122 may cause glare, and the stray light is relatively severe, which will affect the effect of the speckle pattern emitted by the light emitting module 10, thereby affecting the detection accuracy of the depth camera 100 (shown in FIG. 1 ). . Therefore, in this implementation, the integrated microstructure 12 is arranged on the second surface 1202 away from the light source 11, which can reduce the volume of the light emitting module 10 while avoiding glare and reducing stray light, which is conducive to improving the light emitting module 10. The effect of emitting the speckle pattern, thereby improving the detection accuracy of the depth camera 100 (shown in FIG. 1 ). Certainly, in some embodiments, the integrated microstructure 121 can also be provided on the first surface 1201 and the second surface 1202 , that is, the integrated microstructure 121 is provided on opposite surfaces of the diffractive optical element 12 , which is not limited here.
  • the diffractive optical element 12 includes a first layer 1203 and a second layer 1204 , and the first layer 1203 is closer to the light source 11 than the second layer 124 .
  • the integrated microstructure 121 is located in a sealed cavity 1205 formed by the first layer 1203 and the second layer 1204 . Since the integrated microstructure 121 is accommodated in the sealed cavity 1205 , moisture and dust can be prevented from entering the integrated microstructure 121 , which is beneficial to prolong the service life of the light emitting module 10 .
  • the first layer 1203 and the second layer 1204 of the diffractive optical element 12 can be made of plastic material.
  • the first layer 1203 and the second layer 1204 of the diffractive optical element 12 may also be made of other waterproof and dustproof materials, which are not limited here.
  • fillers 122 are disposed between the voids of the integrated microstructures 121 .
  • the filler 122 may include organic matter or silicon dioxide.
  • the integrated microstructure 121 can replicate the planar pattern into M*N parts, and a plurality of planar patterns (that is, M*N parts) planar patterns form scattered spotted pattern.
  • M is greater than or equal to 3
  • N is greater than or equal to 3
  • both M and N are odd numbers. Since the integrated microstructure 121 can replicate the planar pattern into M*N parts, the projected range of the speckle pattern can be enlarged, that is, the measured range of the depth camera 100 (shown in FIG. 1 ) can be expanded.
  • the integrated microstructures 121 are arranged along two symmetry axes. Specifically, as shown in the schematic diagram of the integrated microstructure on the right side of FIG.
  • the axes are the symmetry axis S1 and the symmetry axis S2, respectively.
  • the integrated microstructures 121 are distributed symmetrically along the axis of symmetry S1
  • the integrated microstructures 121 are also distributed symmetrically along the axis of symmetry S2 .
  • the integrated microstructure 121 on the left side of the symmetry axis S1 and the integrated microstructure 121 on the right side of the symmetry axis S1 are axisymmetrically distributed with respect to the symmetry axis S1;
  • the microstructures are distributed axisymmetrically with respect to the axis of symmetry S2. It should be noted that the symmetry axis S1 and the symmetry axis S2 are virtual and do not exist in reality.
  • the integrated microstructure 121 on the straight line F1 and on the left side of the symmetry axis S1 and the integrated microstructure 121 on the straight line F1 and on the right side of the symmetry axis S1 are symmetrically distributed about the symmetry axis S1
  • the integrated microstructure 121 on the line F2 and the left side of the symmetry axis S1 and the integrated microstructure 121 on the line F2 and the right side of the symmetry axis S1 are symmetrically distributed about the symmetry axis S1; similarly, if the symmetry axis S2 is used as the boundary, the line F3
  • the integrated microstructure 121 on the upper side of the symmetry axis S2 and the integrated microstructure 121 on the line F3 and on the lower side of the symmetry axis S2 are symmetrically distributed about the
  • straight line F1, straight line F2, and straight line F5 are all perpendicular to the axis of symmetry S1 and parallel to the axis of symmetry S2, among the three straight lines, that is, straight line F1, straight line F2, and straight line F5, the distance between straight line F1 and straight line F2 to the axis of symmetry S2
  • the distances are the same and form the first straight line pair
  • the distances from the straight line F1 and the straight line F5 to the symmetry axis S2 are different and form the second straight line pair
  • the distances from the straight line F2 and the straight line F5 to the symmetry axis S2 are also different and form the second straight line pair
  • the distribution of the integrated microstructures 121 on the straight line F1 and the straight line F2 is the same
  • the integrated microstructures 121 on the straight line F1 and the straight line F5 are different
  • the integrated microstructures 121 on the straight line F2 and the straight line F5 are also different.
  • the two symmetry axes are perpendicular to each other, so that M*N planar images obtained after copying can be arranged in one-to-one correspondence (as shown in FIG. 19 ).
  • the two axes of symmetry are not perpendicular, so that in the speckle pattern formed by M*N planar patterns, the planar patterns between adjacent columns are misaligned (as shown in FIG. 20 ).
  • the planar patterns between adjacent rows may also be dislocated, which is not limited here.
  • the diffractive optical element 12 may also be a planar phase lens, and the planar phase lens realizes the functions of collimating and reproducing light.
  • the planar pattern formed by the light beams emitted by multiple light-emitting elements 111 in the light source 11 can be incident on the planar phase lens, and the planar phase lens is provided with a plurality of phase microstructures, and the phase microstructure can collimate the received planar pattern and copy.
  • the volume of the light emitting module 10 can be reduced, and the manufacturing cost of the light emitting module 10 can be reduced.
  • the embodiment of the present application further provides a terminal 1000 .
  • the terminal 1000 includes a casing 200 and the depth camera 100 described in any one of the above embodiments, and the depth camera 100 is combined with the casing 200 .
  • the terminal 1000 may be a mobile phone, a computer, a tablet computer, a smart watch, a smart wearable device, etc., which is not limited here.
  • the terminal 1000 of this application collimates the planar pattern through the integrated microstructure 121 on the diffractive optical element 12 in the light emitting module 10, and replicates the planar pattern to emit the speckle pattern, and the zero-order in the formed speckle pattern
  • the light emitting module 10 of the present application can also reduce the size of the light emitting module 10 without affecting the optical effect of the projected speckle image.
  • the embodiment of the present application also provides a method for manufacturing the light emitting module 10 described in any one of the above embodiments.
  • the manufactured light emitting module 10 includes a light source 11 and a diffractive optical element 12 .
  • the light source 11 includes a plurality of light emitting elements 111 and is used to emit light beams to form a planar pattern.
  • the diffractive optical element 12 is provided with an integrated microstructure 121 capable of collimating a planar pattern and replicating the planar pattern to emit a speckle pattern.
  • gap x is the first distance between the first-level area b and the zero-level area a in the first direction D1
  • gap y is the second distance between the first-level area b and the zero-level area a in the second direction D2
  • ⁇ x is the first distance between two adjacent speckles arranged in the same row in the zero-level area a in the first direction D1
  • ⁇ y is the speckle in the second direction D2 of two adjacent rows in the zero-level area a
  • the second spacing on is the first distance between the first-level area b and the zero-level area a in the first direction D1
  • gap y is the second distance between the first-level area b and the zero-level area a in the second direction D2
  • ⁇ x is the first distance between two adjacent speckles arranged in the same row in the zero-level area a in the first direction D1
  • ⁇ y is the speckle in the second direction D2 of two adjacent rows in the zero-level area a
  • the manufacturing method includes:
  • the reference module includes a light-emitting component, a collimator lens group and a first optical element
  • the light-emitting component can emit light beams to form a second pattern
  • the collimator lens group is used to Collimating the second pattern
  • the first optical element is used to replicate the second pattern to emit the first pattern
  • the first pattern is a speckle pattern
  • the second pattern is a planar pattern
  • a reference module 30 (as shown in FIG. 5 ) is acquired.
  • the reference module 30 includes a light emitting component 33 , a collimating lens group 31 and a first optical element 32 sequentially arranged along the light path.
  • the light emitting component 33 is used to emit light beams to form a second pattern
  • the collimating lens group 31 is used to receive the second pattern emitted by the light emitting component 33, and collimate the second pattern
  • the first optical element 32 is used to receive the collimated first pattern.
  • two patterns, and copy the second pattern to emit the first pattern the first pattern is a speckle pattern
  • the second pattern is a planar pattern.
  • the diffractive optical element 12 in the light emitting module 10 is designed according to the first pattern emitted by the reference module 30 and the light beam emitted in the light emitting component 33 to form a second pattern, So that the second pattern can emerge from the first pattern after passing through the diffractive optical element 12 .
  • the integrated microstructure 121 on the diffractive optical element 12 is designed according to the first pattern emitted by the reference module 30 and the light beam emitted in the light emitting component 11 to form the second pattern, so that the light emitting component 33
  • the emitted second pattern can emit a speckle pattern after passing through the diffractive optical element 12 , and the emitted speckle pattern is basically consistent with the first pattern emitted by the reference module 30 .
  • the input i.e. the light beam emitted by the light-emitting component 33
  • the output i.e.
  • the first pattern emitted by the reference module 30 light waves
  • a plane phase change distribution diagram can be obtained, and then The phase change is achieved by using the optical path difference caused by the medium to design the integrated microstructure 121 on the diffractive optical element 12 .
  • the light source 11 of the light emitting module 10 is designed according to the light emitting component 33 , so that the light source 11 can emit light beams to form the first image.
  • the light emitting assembly 33 includes a plurality of light emitting elements
  • the light source 11 also includes a plurality of light emitting elements
  • the number, arrangement and luminous power of the light emitting elements in the light source 11 are the same as those in the light emitting assembly 33
  • the number, arrangement and luminous power of the multiple light-emitting elements are exactly the same.
  • the obtained light emitting module 10 includes a light source 11 and a diffractive optical element 12 .
  • the light source 11 includes a plurality of light emitting elements 111 and is used to emit light beams to form a planar pattern.
  • the diffractive optical element 12 is provided with an integrated microstructure 121 capable of collimating a planar pattern and replicating the planar pattern to emit a speckle pattern.
  • references to the terms “certain embodiments,” “one embodiment,” “some embodiments,” “exemplary embodiments,” “examples,” “specific examples,” or “some examples” To describe means that a specific feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, unless otherwise specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种深度相机(100)、制造光发射模组(10)的方法和终端(1000)。深度相机(100)包括光发射模组(10),光发射模组(10)包括光源(11)及衍射光学元件(12)。衍射光学元件(12)上的集成微结构(121)能够准直及对光源(11)发射的平面图案进行复制以出射散斑图案;散斑图案中的零级区(a)及多个第一级区(b)满足:gap x=q△x,0.8<q<1.5;gap y=p△y,0.8<p<1.5。其中,gap x为第一级区(b)与零级区(a)在第一方向(D1)的第一距离,gap y为第一级区(b)与零级区(a)在第二方向(D2)的第二距离,△x为零级区(a)中排布在同一行中相邻的两个散斑在第一方向(D1)上的第一间距,△y为零级区(a)中相邻两行的散斑在第二方向(D2)上的第二间距。

Description

深度相机、制造光发射模组的方法和终端
优先权信息
本申请请求2021年10月28日向中国国家知识产权局提交的、专利申请号为202111261453.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及测距技术领域,更具体而言,涉及一种深度相机、制造光发射模组的方法和终端。
背景技术
深度相机中的光发射模组一般会采用“光源+透镜组+衍射光学元件”的组合,其中透镜组用于准直光源发射的平面图案,衍射光学元件用于复制并发射复制后的平面图案。如此结构的光发射模组光学效果(包括但不限于效率、均匀性及光斑质量)好,但是这种方案体积较大,整体成本较高。
发明内容
本申请实施方式提供一种深度相机、制造光发射模组的方法及终端。
本申请实施方式提供一种深度相机。深度相机包括光发射模组及光接收模组。光发射模组包括光源及衍射光学元件。所述光源包括多个发光元件,并用于发射光束以形成平面图案。所述衍射光学元件设有集成微结构,所述集成微结构能够准直所述平面图案、及对所述平面图案进行复制以出射散斑图案;所述散斑图案包括零级区及环绕所述零级区的多个第一级区,所述零级区及所述第一级区满足以下条件:gap x=q△x,0.8<q<1.5;gap y=p△y,0.8<p<1.5。其中,gap x为所述第一级区与所述零级区在第一方向的第一距离,gap y为所述第一级区与所述零级区在第二方向的第二距离,△x为所述零级区中排布在同一行中相邻的两个散斑在第一方向上的第一间距,△y为所述零级区中相邻两行的散斑在第二方向上的第二间距。光接收模组用于接收被物体反射回的至少部分所述光线并转换成电信号。
本申请实施方式还提供一种制造上述实施例所述的光发射模组的方法。制造方法包括:获取参考模组发射形成的第一图案;其中,所述参考模组包括发光组件、准直透镜组及第一光学元件,所发光组件能够发射光束以形成第二图案,所述准直透镜组用于准直所述第二图案、所述第一光学元件用于对所述第二图案进行复制以出射所述第一图案,所述第一图案为平面图案,所述第二图案为散斑图案;根据所述第一图案及所述第二图案,设计所述光发射模组的衍射光学元件,以使所述第二图案经过所述衍射光学元件后能够出射所述第一图案;并根据所述发光组件设计所述光发射模组的光源,以使所述光源发射光束能够形成所述第二图像;及将所述衍射光学元件组装在所述光源的出光方向,以获得所述光发射模组。
本申请实施方式还提供一种终端。终端包括壳体及深度相机。深度相机与壳体结合。深度相机包括光发射模组及光接收模组。光光发射模组包括光源及衍射光学元件。所述光源包括多个发光元件,并用于发射光束以形成平面图案。所述衍射光学元件设有集成微结构,所述集成微结构能够准直所述平面图案、及对所述平面图案进行复制以出射散斑图案;所述散斑图案包括零级区及环绕所述零级区的多个第一级区,所述零级区及所述第一级区满足以下条件:gap x=q△x,0.8<q<1.5;gap y=p△y,0.8<p<1.5。其中,gap x为所述第一级区与所述零级区在第一方向的第一距离,gap y为所述第一级区与所述零级区在第二方向的第二距离,△x为所述零级区中排布在同一行中相邻的两个散斑在第一方向上的第一间距,△y为所述零级区中相邻两行的散斑在第二方向上的第二间距。光接收模组用于接收被物体反射回的至少部分所述光线并转换成电信号。
本申请的深度相机、制造光发射模组的方法及终端,通过衍射光学元件上的集成微结构准直平面图案、及对平面图案进行复制以出射散斑图案,并且形成的散斑图案中的零级区及第一级区还能够满足gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5。一方面,相较于采用不同光学元件分别实现准直及复制功能,本申请的光发射模组能够在不影响投射散斑图像的光学效果的前提下,还能够缩小光发射模组的体积,及降低光发射模组的制造成本,从而降低深度相机的体积及成本;另一方面,由于散斑图案中的零级区和第一级区还能够满足gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5,这能够满足后续软件计算的要求,能够快速且准确地寻找到散斑图案中的零级区及第一级区,有利于提升深度信息获取的效率及准确率。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式中的深度相机的结构示意图;
图2是本申请某些实施方式中的光发射模组的结构示意图;
图3及图4是本申请某些实施方式中的散斑图像的示意图;
图5是本申请某些实施方式中的参考模组的结构示意图;
图6(a)及图6(b)是本申请某些实施方式中的平面图像的示意图;
图7至图9是本申请某些实施方式中的光源的结构示意图;
图10至图12是本申请某些实施方式中的散斑图像的示意图;
图13是本申请某些实施方式中的第一微结构的结构示意图;
图14是本申请某些实施方式中的第二微结构的结构示意图;
图15是本申请某些实施方式中的形成的集成微结构的原理示意图;
图16至图18是本申请某些实施方式中的光发射模组的结构示意图;
图19及图20是本申请某些实施方式中的光发射模组复制平面图案的示意图;
图21是本申请某些实施方式中的终端的结构示意图;
图22是本申请某些实施方式中的制造光发射模组的方法的流程图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请实施方式提供一种深度相机。深度相机包括光发射模组及光接收模组,光发射模组包括光源及衍射光学元件。光源包括多个发光元件,并用于发射光束以形成平面图案。衍射光学元件设有集成微结构,集成微结构能够准直平面图案、及对平面图案进行复制以出射散斑图案;散斑图案包括零级区及环绕零级区的多个第一级区,零级区及第一级区满足以下条件:gap x=q△x,0.8<q<1.5;gap y=p△y,0.8<p<1.5。其中,gap x为第一级区与零级区在第一方向的第一距离,gap y为第一级区与零级区在第二方向的第二距离,△x为零级区中排布在同一行中相邻的两个散斑在第一方向上的第一间距,△y为零级区中相邻两行的散斑在第二方向上的第二间距。光接收模组用于接收被物体反射回的至少部分光线并转换成电信号。
在某些实施方式中,多个发光元件呈规则排布。
在某些实施方式中,散斑图案包括多个散斑,多个散斑呈规则排布;和/或,散斑图案由多个平面图案形成,在散斑图案中每个平面图案之间均存在间隙。
在某些实施方式中,光源包括第一发光元件组及第二发光元件组,第一发光元件组及第二发光元件组均包括多个发光元件,在光源发射平面图案时,间隔开启第一发光元件组与第二发光元件组,并且开启第一发光元件组、与开启第二发光元件组之间的时间差小于预设时间。
在某些实施方式中,光源与衍射光学元件的垂直距离与光发射模组的物距及衍射光学元件的有效焦距相关。
在某些实施方式中,光发射模组的视场角与平面图案在第一方向上的长度、平面图案在第二方向上的长度、衍射光学元件的有效焦距、第一距离及第二距离相关。
在某些实施方式中,零级区域在水平方向的视场角与平面图案在第一方向上的长度、及衍射光学元件的有效焦距有关;零级区域在竖直方向的视场角与平面图案在第二方向上的长度、及衍射光学元件的有效焦距有关。
在某些实施方式中,集成微结构由虚拟的基于相位的第一微结构和虚拟的基于相位的第二微结构融合形成,第一微结构用于对光线进行准直,第二微结构用于对接收到的光线形成的光斑起复制作用。
在某些实施方式中,第一微结构为n台阶的衍射透镜的微结构或超透镜的微结构,其中,n大于等于2;和/或,第二微结构为基于光栅的衍射微结构或基于超透镜的衍射微结构。
在某些实施方式中,光源为垂直腔面发射激光器,垂直腔面发射激光器的出射光线直接入射至衍射光学元件。
在某些实施方式中,衍射光学元件包括朝向光源的第一面和远离光源的第二面,集成微结构设于第一面或第二面;或,衍射光学元件包括第一层和第二层,集成微结构位于第一层与第二层形成的密封腔内。
在某些实施方式中,集成微结构的空隙之间设置有填充物,填充物包括有机物或二氧化硅。
在某些实施方式中,集成微结构对平面图案复制成M*N份,多个平面图案形成散斑图案,其中M大于等于3,N大于等于3,且M与N均为奇数。
在某些实施方式中,在由M*N份的平面图像形成的散斑图案中,相邻列之间的平面图案错位或相邻行之间的平面图案错位。
本申请实施方式提供一种制造上述任意一项实施方式中的光发射模组的方法。制造方法如下:取参考模组发射形成的第一图案;其中,参考模组包括发光组件、准直透镜组及第一光学元件,发光组件能够发射光束以形成第二图案,准直透镜组用于准直第二图案、第一光学元件用于对第二图案进行复制以出射第一图案,第一图案为散斑图案,第二图案为平面图案;根据第一图案及第二图案,设计光发射模组的衍射光学元件,以使第二图案经过衍射光学元件后能够出射第一图案;并根据发光组件设计光发射模组的光源,以使光源发射光束能够形成第二图像;及将衍射光学元件组装在光源的出光方向,以获得光发射模组。
本申请实施方式提供一种终端。终端包括壳体及深度相机,深度相机与壳体结合。深度相机包括光发射模组及光接收模组,光发射模组包括光源及衍射光学元件。光源包括多个发光元件,并用于发射光束以形成平面图案。衍射光学元件设有集成微结构,集成微结构能够准直平面图案、及对平面图案进行复制以出射散斑图案;散斑图案包括零级区及环绕零级区的多个第一级区,零级区及第一级区满足以下条件:gap x=q△x,0.8<q<1.5;gap y=p△y,0.8<p<1.5。其中,gap x为第一级区与零级区在第一方向的第一距离,gap y为第一级区与零级区在第二方向的第二距离,△x为零级区中排布在同一行中相邻的两个散斑在第一方向上的第一间距,△y为零级区中相邻两行的散斑在第二方向上的第二间距。光接收模组用于接收被物体反射回的至少部分光线并转换成电信号。
在某些实施方式中,多个发光元件呈规则排布。
在某些实施方式中,散斑图案包括多个散斑,多个散斑呈规则排布;和/或,散斑图案由多个平面图案形成,在散斑图案中每个平面图案之间均存在间隙。
在某些实施方式中,光源包括第一发光元件组及第二发光元件组,第一发光元件组及第二发光元件组均包括多个发光元件,在光源发射平面图案时,间隔开启第一发光元件组与第二发光元件组,并且开启第一发光元件组、与开启第二发光元件组之间的时间差小于预设时间。
在某些实施方式中,光源与衍射光学元件的垂直距离与光发射模组的物距及衍射光学元件的有效焦距相关。
在某些实施方式中,光发射模组的视场角与平面图案在第一方向上的长度、平面图案在第二方向上的长度、衍射光学元件的有效焦距、第一距离及第二距离相关。
在某些实施方式中,零级区域在水平方向的视场角与平面图案在第一方向上的长度、及衍射光学元件的有效焦距有关;零级区域在竖直方向的视场角与平面图案在第二方向上的长度、及衍射光学元件的有效焦距有关。
在某些实施方式中,集成微结构由虚拟的基于相位的第一微结构和虚拟的基于相位的第二微结构融合形成,第一微结构用于对光线进行准直,第二微结构用于对接收到的光线形成的光斑起复制作用。
在某些实施方式中,第一微结构为n台阶的衍射透镜的微结构或超透镜的微结构,其中,n大于等于2;和/或,第二微结构为基于光栅的衍射微结构或基于超透镜的衍射微结构。
在某些实施方式中,光源为垂直腔面发射激光器,垂直腔面发射激光器的出射光线直接入射至衍射光学元件。
在某些实施方式中,衍射光学元件包括朝向光源的第一面和远离光源的第二面,集成微结构设于第一面或第二面;或,衍射光学元件包括第一层和第二层,集成微结构位于第一层与第二层形成的密封腔内。
在某些实施方式中,集成微结构的空隙之间设置有填充物,填充物包括有机物或二氧化硅。
在某些实施方式中,集成微结构对平面图案复制成M*N份,多个平面图案形成散斑图案,其中M大于等于3,N大于等于3,且M与N均为奇数。
在某些实施方式中,在由M*N份的平面图像形成的散斑图案中,相邻列之间的平面图案错位或相邻行之间的平面图案错位。
深度相机中的光发射模组一般会采用“光源+透镜组+衍射光学元件”的组合,其中透镜组用于准直光源发射的平面图案,衍射光学元件用于复制并发射复制后的平面图案。如此结构的光发射模组光学效果(包括但不限于效率、均匀性及光斑质量)好,但是这种方案体积较大,整体成本较高。
为了解决上述问题,请参阅图1、图2至图4及图7,本申请实施提供一种深度相机100,深度相机100包括光发射模组10及光接收模组20。光发射模组10。光发射模组10包括光源11及衍射光学元件12。光源11包括多个发光元件111,并用于发射光束以形成平面图案。衍射光学元 件12设有集成微结构121,集成微结构121能够准直平面图案、及对平面图案进行复制以出射散斑图案。散斑图案包括零级区a及环绕零级区a的多个第一级区b,零级区a及第一级区b满足以下条件:gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5。其中,gap x为第一级区b与零级区a在第一方向D1的第一距离,gap y为第一级区b与零级区a在第二方向D2的第二距离,△x为零级区a中排布在同一行中相邻的两个散斑在第一方向D1上的第一间距,△y为零级区a中相邻两行的散斑在第二方向D2上的第二间距。光接收模组20用于接收被物体反射回的至少部分光线并转换成电信号。
本申请的深度相机100中的光发射模组10通过衍射光学元件12上的集成微结构121准直平面图案、及对平面图案进行复制以出射散斑图案,并且形成的散斑图案中的零级区a及第一级区b还能够满足gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5。一方面,相较于采用不同光学元件分别实现准直及复制功能,本申请的光发射模组10能够在不影响投射散斑图像的光学效果的前提下,还能够缩小光发射模组10的体积,及降低光发射模组10的制造成本;另一方面,当散斑图案中零级区a及第一级区b之间的第一距离gap x或第二距离gap y过大,会导致在后续软件计算的过程中,寻找散斑图案中的第一级区b费时,效率降低;当斑图案中零级区a及第一级区b之间的第一距离gap x或第二距离gap y过小,会导致在后续软件计算的过程中,不能够很好地区分零级区a及第一级区b,从而导致深度信息的计算精度较低。而本申请中形成的散斑图案中的零级区a及第一级区b还能够满足gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5,这能够满足后续软件计算的要求,能够快速且准确地寻找到散斑图案中的零级区a及第一级区b,有利于提升深度信息获取的效率及准确率。
需要说明的是,由多个发光元件111发射的光束形成平面图案,而平面图案经过衍射光学元件12后进行复制以出射形成散斑图案,也即散斑图案是由多个平面图案集合形成。散斑图案中包括多个散斑。深度相机100可以是基于飞行时间(Time of flight,TOF)的深度相机,即深度相机100可以根据光源11发射光束、与光接收模组20接收到对应的散斑之间的时间差,计算物体的深度信息。
请参阅图7,在一些实施例中,光源11中的多个发光元件111呈规则排布。一方面,由于多个发光元件111呈规则排布,相较于多个发光元件111杂乱排布,有利于减小光源11的体积;另一方面,平面图案包括多个由发光元件111发射光束形成的发光点,由于多个发光元件111呈规则排布,并且平面图案经过复制后形成散斑图案,如此有利于使散斑图案中的多个散斑彼此之间不重叠,从而有利于后续寻找到对应的散斑以获取深度信息。需要说明的是,光源11中包括多行发光元件111,每一行发光元件111中均包括多个发光元件111。在一个例子中,若行与行之间的间距均相同,则可以认为光源11中的多个发光元件111呈规则排布;反之,若行与行之间的间距不相同,或者行与行之间的间距不存在任何相关关系(相关关系包括但不限于呈正比、呈反比、递增及递减,下同不在赘述),则可以认为光源11中的多个发光元件111杂乱排布。在一个例子中,若同一行中的多个发光元件111之间的间距均相同,则可以认为光源11中的多个发光元件111呈规则排布;反之,若同一行中的多个发光元件111之间的间距不相同,或者同一行中的多个发光元件111之间的间距不存在任何相关关系,则可以认为光源11中的多个发光元件111杂乱排布。光源11中包括多列发光元件111,每一列发光元件111中均包括多个 发光元件111。在一个例子中,若列与列之间的间距均相同,则可以认为光源11中的多个发光元件111呈规则排布;反之,若列与列之间的间距不相同,或者列与列之间的间距不存在任何相关关系,则可以认为光源11中的多个发光元件111杂乱排布。在一个例子中,若同一列中的多个发光元件111之间的间距均相同,则可以认为光源11中的多个发光元件111呈规则排布;反之,若同一列中的多个发光元件111之间的间距不相同,或者同一列中的多个发光元件111之间的间距不存在任何相关关系,则可以认为光源11中的多个发光元件111杂乱排布。
特别地,在一些实施例中,散斑图案中的多个散斑呈规则排布,如此有利于后续寻找到对应的散斑以获取深度信息。在一些实施例中,散斑图案由多个平面图案形成,在散斑图案中每个平面图案之间均存在间隙,也即在散斑图案中每个平面图案彼此均不重叠,如此有利于后续寻找到对应的散斑以获取深度信息。
请参阅图7,在一些实施例中,光源11包括第一发光元件组101及第二发光元件组102,第一发光元件组101及第二发光元件组102均包括多个发光元件111。在光源11发射平面图案时,间隔开启第一发光元件组101及第二发光元件组102,并且开启第一发光元件组101、与开启第二发光元件组102之间的时间差小于预设时间。由于间隔开启第一发光元件组101及第二发光元件组102,并且开启第一发光元件组101、与开启第二发光元件组102之间的时间差小于预设时间,如此在不减小平面图案中由发光元件111发射光束形成的发光点数量的同时,还能够降低光发射模组10的功耗。
示例地,在光源11发射平面图案时,先开启第一发光元件组101,使第一发光元件组101中的多个发光元件111发射光束,随后开启第二发光元件组102,使第二发光元件组102中的多个发光元件111发射光束,并且开启第一发光元件组101、与开启第二发光元件组102之间的时间差小于预设时间。例如,如图7所示,在一些实施例中,假设光源11中的多个发光元件111规则排列成5列,其中排列在第1列、第3列及第5列中的多个发光元件111为第一发光元件组101,排列在第2列及第4列中的多个发光元件111为第二发光元件组102。在光源11发射平面图案时,先开启第一发光元件组101,即排列在第1列、第3列及第5列中的多个发光元件111发射光束,随后开启第二发光元件组102,即排列在第2列及第4列中的多个发光元件111发射光束,并且开启第一发光元件组101、与开启第二发光元件组102之间的时间差小于预设时间。光源11中所有发光元件111发射的光束以形成平面图案。当然,在一些实施例中,也可以先开启第二发光元件组102,再开启第一发光元件组101,在此不作限制。
在一些实施例中,当深度相机100工作在第一工作模式时,可以仅使光源11中部分发光元件111发射光束;当深度相机100工作在第二工作模式时,可以使光源11中所有发光元件111发射光束。例如,第一工作模式可以是拍摄模式、或测距模式等对安全性的需求较低的模式,第二工作模式可以是支付或人脸识别等对安全性的需求较高的模式。一方面,由于当深度相机100工作在对安全性的需求较低的第一工作模式时,仅部分发光元件111发射光束,如此在能够获得深度信息的同时降低功耗;另一方面,由于当深度相机100工作在对安全性的需求较高的第二工作模式时,所有发光元件111均发射光束,如此能够增加散斑图案中散斑点的数量,从而有利于提升深度信息获取的准确率。
需要说明的是,光源11为垂直腔面发射激光器,垂直腔面发射激光器的出射光线直接入射至衍射光学元件12。当然,光源11也可以是其他类型的发射器,在此不作限制。
请参阅图2、图4及图7,衍射光学元件12设置在光源11的出光光路上,光源11的多个发光元件111发射光束以形成平面图案。衍射光学元件12能够接收平面图案,并且衍射光学元件12设有的集成微结构121能够准直平面图像,及对平面图案进行复制以出射散斑图案。如图3及图4所示散斑图案包括零级区a及多个第一级区b,多个第一级区b环绕零级区a,每个区域(包括零级区a及第一级区b)中包括多个散斑。散斑图案中的零级区a及第一级区b满足以下条件:gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5。
其中,gap x为第一级区b域零级区a在第一方向D1的第一距离。示例地,如图4所示,在第一方向D1上零级区a有两个相邻的第一级区b(即零级区a的左侧及右侧的两个第一级区b)。以零级区a右侧的第一级区b1为例,第一级区b1任意一行最靠近零级区a的散斑,与零级区a对应行最靠近第一级区b1的散斑之间在第一方向D1上的距离即为第一距离gap x。例如,第一级区b1第一行最左侧的散斑,与零级区a第一行最右侧的散斑之间的距离即为第一距离gap x;第一级区b1第四行最左侧的散斑,与零级区a第四行最右侧的散斑之间的距离也为第一距离gap x。△x为零级区a中排布在同一行中相邻的两个散斑在第一方向D1上的第一间距。例如,如图4所示,零级区a第五行从左至右数的第一个散斑及第二个散斑,在第一方向D1上的间距即为第一间距△x。也即是说,第一级区b域与零级区a在第一方向D1的第一距离gap x,与零级区a中排布在同一行中相邻的两个散斑在第一方向D1上的第一间距△x相关,具体地,可以通过计算公式gap x=q△x,计算获得。其中,q为预设的系数,在一些实施例中,0.8<q<1.5。
需要说明的是,第一级区b1每一行最靠近零级区a的散斑,与零级区a对应行最靠近第一级区b1的散斑之间在第一方向D1上的距离均相同;零级区a中排布在同一行中任意相邻的两个散斑在第一方向D1上的第一间距都相同。在一些实施例中,第一方向D1与零级区a(或第一级区b)中散斑每一行的延伸方向相同。
gap y为第一级区b域零级区a在第二方向D2的第一距离。示例地,如图4所示,在第二方向D2上零级区a有两个相邻的第一级区b(即零级区a的上侧及下侧的两个第一级区b)。以零级区a上侧的第一级区b2为例,第一级区b2任意一列最靠近零级区a的散斑,与零级区a对应列最靠近第一级区b2的散斑之间在第二方向D2上的距离即为第二距离gap y。例如,第一级区b2第三列最下侧的散斑,与零级区a第三行最下侧的散斑之间的距离即为第二距离gap y。△y为零级区a中相邻两行的散斑在第二方向D2上的第二间距。例如,如图4所示,零级区a第二行与第三行在第二方向D2上的间距即为第二间距△y。也即是说,第一级区b与零级区a在第二方向D2的第二距离gap y,与零级区a中相邻的两行的散斑在第二方向D2上的第一间距△y相关,具体地,可以通过计算公式gap y=p△y,计算获得。其中,p为预设的系数,在一些实施例中,0.8<q<1.5。需要说明的是,在一些实施例中,第二方向D2与零级区a(或第一级区b)中散斑每一列的延伸方向相同。另外,q与p的 可以取相同的取值,也可以取不同的取值,只需要满足0.8<q<1.5及0.8<q<1.5即可,在此不作限制。
在一些实施例中,集成微结构121基于参考模组30(如图5所示)设计而成。光源11与衍射光学元件12的垂直距离与光发射模组10的物距及参考模组30中准直透镜组31的有效焦距相关。
具体地,请参阅图2及图5,参考模组30包括沿发光光路依次设置的发光组件33、准直透镜组31及第一光学元件32。发光组件33用于发射光束以形成第二图像,准直透镜组31用于接收发光组件33发射的第二图案,并准直第二图案,第一光学元件32用于接收准直后的第二图案,并对平面图案进行复制以出射第一图案。第一图案为散斑图案,第二图案为平面图案。其中,发光组件33也包括多个发光元件,光发射模组10中的光源11中发光元件的数量、排布及发光功率、与参考模组30中的发光组件33中发光元件的数量、排布及发光功率均完全一样,也即光源11发射的平面图案与发光组件33发射的第二图案基本一致。根据参考模组30出射的第一图案、及发光组件33中发射光束以形成第二图案,设计光发射模组10中衍射光学元件12上的集成微结构121,以使光源11发射的平面图案经过衍射光学元件12后出射的散斑图案与参考模组30出射的第一图案基本一致。例如,在一个例子中,可以根据输入(即发光组件33发射的光束)和输出(即参考模组30出射的第一图案)光波,基于电磁波矢量理论,能够得到一个平面相位变化分布图,再利用介质导致的光程差来实现相位变化,以设计衍射光学元件12上的集成微结构121。当然,还可以采用其他方式基于参考模组30设计集成微结构121,只需要满足光发射模组10采用与参考模组30相同的光源发射平面图案时,光发射模组10最终射出的散斑图案与参考模组30射出的第一图案(即散斑图案)基本一致即可。
当集成微结构121基于参考模组30设计而成时,在一些实施例中,光源11与衍射光学元件12的垂直距离可以与光发射模组10的物距及参考模组30中准直透镜组31的有效焦距相关。具体地,在一些实施例中,光源11与衍射光学元件12的垂直距离可以通过计算公式v=EFL ×u/u-EFL 计算获得。其中,v为光源11与衍射光学元件12的垂直距离;EFL 为参考模组30中准直透镜组31的有效焦距;u为光发射模组10的物距。特别地,在一些实施例中,可以以光源11到集成微结构121所在的平面之间的垂直距离,作为光源11与衍射光学元件12的垂直距离v。
此外,光发射模组10对组装公差(即光源11与衍射光学元件12的垂直距离,下同不再赘述)也有一定要求。例如,当组装公差较大时,可能会导致光斑弥散更大,但在当组装公差<30um范围内时,并不会导致光斑弥散更大。因此,在一些实施例中,光发射模组10对组装公差<30um,即光源11与衍射光学元件12的垂直距离<30um,以避免导致扩大光斑弥散。
在一些实施例中,光源11与衍射光学元件12的垂直距离还可以与光发射模组10的物距及衍射光学元件12的有效焦距相关。具体地,在一些实施例中,光源11与衍射光学元件12的垂直距离可以通过计算公式v=EFL 衍射×u/u-EFL 衍射计算获得。其中,v为光源11与衍射光学元件12 的垂直距离;EFL 衍射为衍射光学元件12的有效焦距;u为光发射模组10的物距。同样地,在一些实施例中,可以以光源11到集成微结构121所在的平面之间的垂直距离,作为光源11与衍射光学元件12的垂直距离v。
请参阅图6至图9,在一些实施例中,光发射模组10的视场角与平面图案在第一方向D1上的长度X、平面图案在第二方向D2上的长度Y、衍射光学元件12的有效焦距EFL、第一距离gap x及第二距离gap y有关。
需要说明的是,如图7所示,光源11包括相邻的短边1101及长边1102,长边1102的长度比短边1101的长度更长,其中短边1101的延伸方向与多个发光元件111排列形成的列的延伸方向相同,长边的延伸方向与多个发光元件111排列形成的行的延伸方向相同。在一个例子中,如图7所示光源11包括多个发光元件111规则排布形成矩阵,即多行的发光元件111均一一对齐。在一另个例子中,如图8所示,光源11包括多个发光元件111沿长边1102错位,也即多行的发光元件111相互错开。在一又个例子中,如图9所示,光源11包括多个发光元件111沿短边1101错位,也即多列的发光元件111相互错开。
在一些实施例中,如图6(a)所示,平面图案在第一方向D1上的长度可以为经过平面图案最左侧一列发光点的中心处的直线,与经过平面图案最右侧一列发光点的中心处的直线之间的距离;或者,在一些实施例中,如图6(b)所示,平面图案在第一方向D1上的长度X还可以为经过平面图案最左侧一列发光点的左侧的切线,与经过平面图案最右侧一列发光点的右侧的切线之间的距离。当然,在一些实施例中,平面图案在第一方向D1上的长度X还可以为经过平面图案最左侧一列发光点的左侧的切线,与经过平面图案最右侧一列发光点的左侧的切线之间的距离;或者,在一些实施例中,平面图案在第一方向D1上的长度X还可以为经过平面图案最左侧一列发光点的右侧的切线,与经过平面图案最右侧一列发光点的右侧的切线之间的距离;在此不作限制。
类似地,在一些实施例中,如图6(a)所示,平面图案在第二方向D2上的长度Y可以为经过平面图案最上侧一行发光点的中心处的直线,与经过平面图案最下侧一行发光点的中心处的直线之间的距离;或者,在一些实施例中,如图6(b)所示,平面图案在第二方向D2上的长度Y还可以为经过平面图案最上侧一行发光点的上侧的切线,与经过平面图案最下侧一行发光点的下侧的切线之间的距离。当然,在一些实施例中,平面图案在第二方向D2上的长度Y也可以为经过平面图案最上侧一行发光点的上侧的切线,与经过平面图案最下侧一行发光点的上侧的切线之间的距离;或者,在一些实施例中,平面图案在第二方向D2上的长度Y也可以为经过平面图案最上侧一行发光点的下侧的切线,与经过平面图案最下侧一行发光点的下侧的切线之间的距离,在此不作限制。
具体地,第一方向D1与水平方向对应,第二方向D2与竖直方向对应。在一些实施例中,散斑图案的零级区域a在水平方向的视场角与平面图案在第一方向D1上的长度X、及衍射光学元件12的有效焦距EFL有关。示例地,
Figure PCTCN2022120965-appb-000001
其中X为平面图案在第一方向D1上的长度,EFL为衍射光学元件12的有效焦距。此外,在一些实施例中,散斑图案的零级区域a在水平方向 的视场角θ H与第一距离gap x满足计算公式
Figure PCTCN2022120965-appb-000002
其中θ H为零级区域a在水平方向的视场角。需要说明的是,在一些实施中,零级区域a在水平方向的视场角可以为位于零级区域a最左侧一列中间的散斑的中心处到光源11之间的连线,与位于零级区域a最右侧一列中间的散斑的中心处到光源11之间的连线的夹角;或者,在一些实施例中,零级区域a在水平方向的视场角可以为位于零级区域a最左侧一列中间的散斑的最左侧到光源11之间的连线,与位于零级区域a最右侧一列中间的散斑的最右侧到光源11之间的连线的夹角。
同样地,在一些实施例中,散斑图案的零级区域a在竖直方向的视场角与平面图案在第二方向D2上的长度Y、及衍射光学元件12的有效焦距EFL有关。示例地,
Figure PCTCN2022120965-appb-000003
其中Y为平面图案在第二方向D2上的长度,EFL为衍射光学元件12的有效焦距。此外,在一些实施例中,散斑图案的零级区域a在竖直方向的视场角θ V与第二距离gap y满足计算公式
Figure PCTCN2022120965-appb-000004
Figure PCTCN2022120965-appb-000005
其中θ v为零级区域a在竖直方向的视场角。需要说明的是,在一些实施中,零级区域a在竖直方向的视场角可以为位于零级区域a最上侧一行中间的散斑的中心处到光源11之间的连线,与位于零级区域a最下侧一行中间的散斑的中心处到光源11之间的连线的夹角;或者,在一些实施例中,零级区域a在竖直方向的视场角可以为位于零级区域a最上侧一行中间的散斑的最上侧到光源11之间的连线,与位于零级区域a最下侧一行中间的散斑的最下侧到光源11之间的连线的夹角。
在一些实施例中,散斑图案包括多个不同等级的区域,高等级区域在低等级区域的外围。例如,如图3所示,散斑图案包括零级区a及第一级区b,第一级区b在零级区a外围;再例如,如图10所示,散斑图案包括零级区a、第一级区b及第二级区c,第一级区b在零级区a外围,第二级区c在第一级区b外围。第一方向D1与水平方向对应,第二方向D2与竖直方向对应。光发射模组10的视场角包括水平视场角FOV-X及竖直视场角FOV-Y。
需要说明的是,在一些实施例中,光发射模组10的水平视场角FOV-X可以为位于散斑图案最左侧一列中间的散斑的中心处到光源11之间的连线,与位于散斑图案最右侧一列中间的散斑的中心处到光源11之间的连线之间的夹角;或者,在一些实施例中,光发射模组10的水平视场角FOV-X可以为位于散斑图案最左侧一列中间的散斑的最左侧到光源11之间的连线,与位于散斑图案最右侧一列中间的散斑的最右侧到光源11之间的连线之间的夹角。类似地,在一些实施例中,光发射模组10的竖直视场角FOV-Y可以为位于散斑图案最上侧一行中间的散斑的中心处到光源11之间的连线,与位于散斑图案最下侧一行中间的散斑的中心处到光源11之间的连线之间的夹角;或者,在一些实施例中,光发射模组10的竖直视场角FOV-Y可以为位于散斑图案最上侧一行中间的散斑的最上侧到光源11之间的连线,与位于散斑图案最下侧一行中间的散斑的最下侧到光源11之间的连线之间的夹角,在此均不作限制。
进一步地,在一些实施例中,水平视场角FOV-X与平面图案在第一方向D1上的长度X、衍射光 学元件12的有效焦距EFL、第一距离gap x及散斑图案在第一方向D1上具有的最大等级级别有关。具体地,可以通过计算公式
Figure PCTCN2022120965-appb-000006
Figure PCTCN2022120965-appb-000007
计算获得。其中,X为平面图案在第一方向D1上的长度,EFL为衍射光学元件12的有效焦距,gap x为第一距离,e为散斑图案在第一方向D1上具有的最大等级级别。需要说明的是,如图11所示,在第一方向D1上只有零级区a及第一级区b,则e为1;如图12所示,在第一方向D1上有零级区a、第一级区b及第二级区c,则e为2。
同样地,在一些实施例中,竖直视场角FOV-Y与平面图案在第二方向D2上的长度Y、衍射光学元件12的有效焦距EFL、第二距离gap y及散斑图案在第二方向D2上具有的最大等级级别有关。具体地,可以通过计算公式
Figure PCTCN2022120965-appb-000008
Figure PCTCN2022120965-appb-000009
计算获得。其中,Y为平面图案在第二方向D2上的长度,EFL为衍射光学元件12的有效焦距,gap y为第二距离,f为散斑图案在第二方向D2上具有的最大等级级别。需要说明的是,如图12所示,在第二方向D2上只有零级区a及第一级区b,则f为1;如图11所示,在第二方向D2上有零级区a、第一级区b及第二级区c,则f为2。
在一些实施例中,集成微结构121由虚拟的基于相位的第一微结构和虚拟的第二微结构融合形成。其中,第一微结构用于对光线进行准直,第二微结构用于对接收到的光线形成的光斑起复制作用。例如,在一些实施例中,第一微结构为n台阶的衍射透镜的微结构(如图13(a)所示)或超透镜的微结构(如图13(b)所示),其中n大于等于2。如此第一微结构能够用于对光线进行准直。再例如,在一些实施例中,第二微结构为基于光栅的衍射微结构(如图14(a)所示)或基于超透镜的衍射微结构(如图14(b)所示)。如此第二微结构能够用于对接收到的光线形成的光斑起复制作用。
示例地,如图15所示,左上侧图为用于对光线进行准直的第一微结构的示意图,左上侧图为用于对接收到的光线形成的光斑起复制作用的第二微结构的示意图,右侧图为第一微结构与第二微结构融合形成的集成微结构121的示意图。由于集成微结构121由虚拟的基于相位的第一微结构和虚拟的第二微结构融合形成,如此集成微结构121能够准直平面图案、及对平面图案进行复制以出射散斑图案,以使光发射模组10无需设置多个光学器件即可实现较佳的光投射效果,从而缩小光发射模组10的体积,及降低光发射模组10的制造成本。
请参阅图2,在一些实施方式中,衍射光学元件12包括第一面1201及第二面1202,其中第一面1201朝向光源11,第二面1202远离光源11。也即光源11发射的光线会入射第一面1201后由第二面1202出射。如图2所示,在一些实施例中,集成微结构121可以设于第一面1201,光源11发射的光线会入射集成微结构121,集成微结构121对光源11发射的光线形成的平面图案进行准直及复制后,从第二面1202出射散斑图案。由于集成微结构12设置在靠近光源11的第一面1201,相交于集成微结构121设置在远离光源11的第二面1202,有利于防止集成微结构121划伤、及避免水分及灰尘进入集成微结构121,从而延长光发射模组10的使用寿命。如图16所示,在一些实施例中,集成微结构12可以设于第 二面1202,光源11发射的光线会入射第一面1201后再入射集成微结构12,集成微结构12对光源11发射的光线形成的平面图案进行准直及复制后出射散斑图案。由于强光直接入射至集成微结构122可能会出现眩光,并且杂散光比较厉害,会影响光发射模组10发射散斑图案的效果,从而会影响深度相机100(图1所示)的检测精度。因此,本实施将集成微结构12设于远离光源11的第二面1202,能够在缩小光发射模组10的体积的同时,还避免出现眩光及减少杂散光,有利于提升光发射模组10发射散斑图案的效果,从而提升深度相机100(图1所示)的检测精度。当然,在一些实施例中,集成微结构121还可以设于第一面1201及第二面1202,即衍射光学元件12的相背两面均设置有集成微结构121,在此不作限制。
请参阅图17,在一些实施方式中,衍射光学元件12包括第一层1203及第二层1204,第一层1203相较于第二层124更靠近光源11。集成微结构121位于第一层1203及第二层1204形成的密封腔1205内。由于集成微结构121收容在密封腔1205内,能够避免水分和灰尘进入集成微结构121中,有利于延长光发射模组10的使用寿命。需要说明的是,衍射光学元件12的第一层1203及第二层1204可以是塑料材质。当然,衍射光学元件12的第一层1203及第二层1204也可以是其他能够防水防尘的材质,在此不作限制。
请参阅图18,在一些实施方式中,集成微结构121的空隙之间设置有填充物122。如此,一方面,能够避免水分及灰尘进入集成微结构121的空隙之间,从而延长光发射模组10的使用寿命;另一方面,还能够避免光源11发射的光束由集成微结构121的空隙之间直接射入人眼,从而提高光发射模组10的安全性。需要说明的是,在一些实施例中,填充物122可以包括有机物或二氧化硅。
请参阅图19,在一些实施方式中,平面图案经过集成微结构121后,集成微结构121能够将平面图案复制呈M*N份,多个平面图案(即M*N份)平面图案形成散斑图案。其中,M大于等于3,N大于等于3,且M与N均为奇数。由于集成微结构121能够将平面图案复制呈M*N份,如此能够扩大散斑图案能够投射的范围,即扩大深度相机100(图1所示)能够测量的范围。
集成微结构121沿两个对称轴设置,具体地,如图15右侧的集成微结构的示意图所示,集成微结构121大致呈圆形排布,可以圆心为中心形成两个相互垂直的对称轴,分别为对称轴S1和对称轴S2。在一些实施例中,集成微结构121沿对称轴S1对称分布的同时,集成微结构121还沿对称轴S2对称分布。具体地,对称轴S1左侧的集成微结构121与对称轴S1右侧的集成微结构关于对称轴S1呈轴对称分布;对称轴S2上侧的集成微结构121与对称轴S1下侧的集成微结构关于对称轴S2呈轴对称分布。需要说明的是,对称轴S1及对称轴S2是虚拟的,并非真实存在。
示例地,如图15右侧的集成微结构的示意图所示,假设直线F1和直线F2均垂直对称轴S1,且均平行于对称轴S2,直线F3和直线F4均垂直对称轴S2,且均平行于对称轴S1,则若以对称轴S1为分界,直线F1上且对称轴S1左侧的集成微结构121与直线F1上且对称轴S1右侧的集成微结构121关于对称轴S1对称分布,直线F2上且对称轴S1左侧的集成微结构121与直线F2上且对称轴S1右侧的集成微结构121关于对称轴S1对称分布;同样地,若以对称轴S2为分界,直线F3上且对称轴S2上侧的 集成微结构121与直线F3上且对称轴S2下侧的集成微结构121关于对称轴S2对称分布,直线F4上且对称轴S2上侧的集成微结构121与直线F4上且对称轴S2下侧的集成微结构121关于对称轴S2对称分布。
另外,在垂直对称轴S1,且均平行于对称轴S2多条直线中,存在到对称轴S2的距离相同的第一直线对以及到对称轴S2的距离不相同的第二直线对,第一直线对上的集成微结构121分布相同,第二直线对上的集成微结构121不同。例如,假设直线F1、直线F2、直线F5均垂直对称轴S1,且均平行于对称轴S2,三条直线中,即直线F1、直线F2、直线F5中,直线F1与直线F2到对称轴S2的距离相同并形成第一直线对,直线F1与直线F5到对称轴S2的距离不相同并形成第二直线对,直线F2与直线F5到对称轴S2的距离也不相同也形成第二直线对,直线F1与直线F2的集成微结构121分布相同,直线F1与直线F5上的集成微结构121不同,直线F2与直线F5上的集成微结构121也不同。同样地,在垂直对称轴S2,且均平行于对称轴S1多条直线中,存在到对称轴S1的距离相同的第三直线对以及到对称轴S1的距离不相同的第四直线对,第三直线对上的集成微结构121分布相同,第四直线对上的集成微结构121不同。
在一些实施例中,这两个对称轴是相互垂直的,如此能够使复制后获得的M*N份平面图像一一对应排列(如图19所示)。特别地,在一些实施例中,这两个对称轴是不垂直的,如此在由M*N份平面图案形成的散斑图案中,相邻列之间的平面图案错位(如图20所示)。当然,在一些实施例中,在由M*N份平面图案形成的散斑图案中,也可以使相邻行之间的平面图案错位,在此不作限制。
在一些实施例中,衍射光学元件12还可以是平面相位透镜,由平面相位透镜实现对光线的准直及复制功能。示例地,光源11中多个发光元件111发射光束形成的平面图案能够入射至平面相位透镜,平面相位透镜上设置有多个相位微结构,相位微结构能够对接收到的平面图案进行准直及复制。如此相较于采用不同光学元件分别实现准直及复制功能,能够缩小光发射模组10的体积,及降低光发射模组10的制造成本。
请参阅图21,本申请实施例还提供一种终端1000。终端1000包括壳体200及上述任意一项实施例中所述的深度相机100,深度相机100与壳体200结合。需要说明的是,终端1000可以是手机、电脑、平板电脑、智能手表、智能穿戴设备等,在此不作限制。
本申请的终端1000,通过光发射模组10中衍射光学元件12上的集成微结构121准直平面图案、及对平面图案进行复制以出射散斑图案,并且形成的散斑图案中的零级区a及第一级区b还能够满足gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5。一方面,相较于采用不同光学元件分别实现准直及复制功能,本申请的光发射模组10能够在不影响投射散斑图像的光学效果的前提下,还能够缩小光发射模组10的体积,及降低光发射模组10的制造成本,从而降低深度相机100的体积及成本;另一方面,由于散斑图案中的零级区和第一级区还能够满足gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5,这能够满足后续软件计算的要求,能够快速且准确地寻找到散斑图案中的零级区a及第一级区b,有利于提升深度信息获取的效率及准确率。
请参阅图2及图22,本申请实施方式还提供一种制造上述任意一项实施例中所述的光发射模组10的方法。例如,制造的光发射模组10包括光源11及衍射光学元件12。光源11包括多个发光元件111,并用于发射光束以形成平面图案。衍射光学元件12设有集成微结构121,集成微结构121能够准直平面图案、及对平面图案进行复制以出射散斑图案。散斑图案包括零级区a及环绕零级区a的多个第一级区b,零级区a及第一级区b满足以下条件:gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5。其中,gap x为第一级区b与零级区a在第一方向D1的第一距离,gap y为第一级区b与零级区a在第二方向D2的第二距离,△x为零级区a中排布在同一行中相邻的两个散斑在第一方向D1上的第一间距,△y为零级区a中相邻两行的散斑在第二方向D2上的第二间距。
具体地,制造方法包括:
01:获取参考模组发射形成的第一图案;其中,参考模组包括发光组件、准直透镜组及第一光学元件,所发光组件能够发射光束以形成第二图案,准直透镜组用于准直第二图案、第一光学元件用于对第二图案进行复制以出射第一图案,第一图案为散斑图案,第二图案为平面图案;
02:根据第一图案及第二图案,设计光发射模组的衍射光学元件,以使第二图案经过衍射光学元件后能够出射第一图案;并根据发光组件设计光发射模组的光源,以使光源发射光束能够形成第二图像;及
03:将衍射光学元件组装在光源的出光方向,以获得光发射模组。
示例地,在一些实施例中,获取参考模组30(如图5所示),参考模组30包括沿发光光路依次设置的发光组件33、准直透镜组31及第一光学元件32。发光组件33用于发射光束以形成第二图案,准直透镜组31用于接收发光组件33发射的第二图案,并准直第二图案,第一光学元件32用于接收准直后的第二图案,并对第二图案进行复制以出射第一图案,第一图案为散斑图案,第二图案为平面图案。
获取到参考模组30发射形成的第一图案后,根据参考模组30出射的第一图案、及发光组件33中发射光束以形成第二图案,设计光发射模组10中衍射光学元件12,以使第二图案经过衍射光学元件12后能够出射第一图案。
具体地,在一些实施例中,根据参考模组30出射的第一图案、及发光组件11中发射光束以形成第二图案,设计衍射光学元件12上的集成微结构121,以使发光组件33发射的第二图案经过衍射光学元件12后能够出射散斑图案,并且出射的散斑图案与参考模组30出射的第一图案基本一致。例如,在一个例子中,可以根据输入(即发光组件33发射的光束)和输出(即参考模组30出射的第一图案)光波,基于电磁波矢量理论,能够得到一个平面相位变化分布图,再利用介质导致的光程差来实现相位变化,以设计衍射光学元件12上的集成微结构121。
根据发光组件33设计光发射模组10的光源11,以使光源11发射光束能够形成第一图像。示例地,在一些实施例中,发光组件33包括多个发光元件,光源11也包括多个发光元件,并且光源11中的多个发光元件的数量、排布及发光功率,与发光组件33中的多个发光元件的数量、排布及发光功率均完 全相同。在获得光源11及衍射光学元件12后,将衍射光学元件12组装在光源11的出光方向,如此便能够获得光发射模组10。
请结合图2、图3及图4,获得的光发射模组10包括光源11及衍射光学元件12。光源11包括多个发光元件111,并用于发射光束以形成平面图案。衍射光学元件12设有集成微结构121,集成微结构121能够准直平面图案、及对平面图案进行复制以出射散斑图案。散斑图案包括零级区a及环绕零级区a的多个第一级区b,零级区a及第一级区b满足以下条件:gap x=q△x,0.8<q<1.5;及gap y=p△y,0.8<p<1.5。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (29)

  1. 一种深度相机,其特征在于,包括光发射模组及光接收模组,所述光发射模组包括:
    光源,所述光源包括多个发光元件,并用于发射光束以形成平面图案;及
    衍射光学元件,所述衍射光学元件设有集成微结构,所述集成微结构能够准直所述平面图案、及对所述平面图案进行复制以出射散斑图案;所述散斑图案包括零级区及环绕所述零级区的多个第一级区,所述零级区及所述第一级区满足以下条件:
    gap x=q△x,0.8<q<1.5;
    gap y=p△y,0.8<p<1.5;
    其中,gap x为所述第一级区与所述零级区在第一方向的第一距离,gap y为所述第一级区与所述零级区在第二方向的第二距离,△x为所述零级区中排布在同一行中相邻的两个散斑在第一方向上的第一间距,△y为所述零级区中相邻两行的散斑在第二方向上的第二间距;
    所述光接收模组用于接收被物体反射回的至少部分所述光线并转换成电信号。
  2. 根据权利要求1所述的深度相机,其特征在于,多个所述发光元件呈规则排布。
  3. 根据权利要求2所述的深度相机,其特征在于,所述散斑图案包括多个散斑,多个所述散斑呈规则排布;和/或
    所述散斑图案由多个所述平面图案形成,在所述散斑图案中每个所述平面图案之间均存在间隙。
  4. 根据权利要求1所述的深度相机,其特征在于,所述光源包括第一发光元件组及第二发光元件组,所述第一发光元件组及所述第二发光元件组均包括多个所述发光元件,在所述光源发射所述平面图案时,间隔开启所述第一发光元件组与所述第二发光元件组,并且开启所述第一发光元件组、与开启所述第二发光元件组之间的时间差小于预设时间。
  5. 根据权利要求1所述的深度相机,其特征在于,所述光源与所述衍射光学元件的垂直距离与所述光发射模组的物距及所述衍射光学元件的有效焦距相关。
  6. 根据权利要求1所述的深度相机,其特征在于,所述光发射模组的视场角与所述平面图案在第一方向上的长度、所述平面图案在第二方向上的长度、所述衍射光学元件的有效焦距、所述第一距离及所述第二距离相关。
  7. 根据权利要求1所述的深度相机,其特征在于,所述零级区域在水平方向的视场角与所述平面图案在第一方向上的长度、及所述衍射光学元件的有效焦距有关;
    所述零级区域在竖直方向的视场角与所述平面图案在第二方向上的长度、及所述衍射光学元件的有效焦距有关。
  8. 根据权利要求1所述的深度相机,其特征在于,所述集成微结构由虚拟的基于相位的第一微结构和虚拟的基于相位的第二微结构融合形成,所述第一微结构用于对光线进行准直,所述第二微结构用于对接收到的光线形成的光斑起复制作用。
  9. 根据权利要求5所述的深度相机,其特征在于,所述第一微结构为n台阶的衍射透镜的微结构或 超透镜的微结构,其中,n大于等于2;和/或
    所述第二微结构为基于光栅的衍射微结构或基于超透镜的衍射微结构。
  10. 根据权利要求1所述的深度相机,其特征在于,所述光源为垂直腔面发射激光器,所述垂直腔面发射激光器的出射光线直接入射至所述衍射光学元件。
  11. 根据权利要求1所述的深度相机,其特征在于,所述衍射光学元件包括朝向所述光源的第一面和远离所述光源的第二面,所述集成微结构设于所述第一面或所述第二面;或
    所述衍射光学元件包括第一层和第二层,所述集成微结构位于所述第一层与所述第二层形成的密封腔内。
  12. 根据权利要求1所述的深度相机,其特征在于,所述集成微结构的空隙之间设置有填充物,所述填充物包括有机物或二氧化硅。
  13. 根据权利要求1所述的深度相机,其特征在于,所述集成微结构对所述平面图案复制成M*N份,多个所述平面图案形成所述散斑图案,其中M大于等于3,N大于等于3,且M与N均为奇数。
  14. 根据权利要求10所述的深度相机,其特征在于,在由所述M*N份的所述平面图像形成的所述散斑图案中,相邻列之间的所述平面图案错位或相邻行之间的所述平面图案错位。
  15. 一种制造如权利要求1-14任意一项所述的光发射模组的方法,其特征在于,包括:
    获取参考模组发射形成的第一图案;其中,所述参考模组包括发光组件、准直透镜组及第一光学元件,所述发光组件能够发射光束以形成第二图案,所述准直透镜组用于准直所述第二图案、所述第一光学元件用于对所述第二图案进行复制以出射所述第一图案,所述第一图案为散斑图案,所述第二图案为平面图案;
    根据所述第一图案及所述第二图案,设计所述光发射模组的衍射光学元件,以使所述第二图案经过所述衍射光学元件后能够出射所述第一图案;并根据所述发光组件设计所述光发射模组的光源,以使所述光源发射光束能够形成所述第二图像;及
    将所述衍射光学元件组装在所述光源的出光方向,以获得所述光发射模组。
  16. 一种终端,其特征在于,包括:
    壳体;及
    深度相机,所述深度相机与所述壳体结合;所述深度相机包括光发射模组及光接收模组,所述光发射模组包括:
    光源,所述光源包括多个发光元件,并用于发射光束以形成平面图案;及
    衍射光学元件,所述衍射光学元件设有集成微结构,所述集成微结构能够准直所述平面图案、及对所述平面图案进行复制以出射散斑图案;所述散斑图案包括零级区及环绕所述零级区的多个第一级区,所述零级区及所述第一级区满足以下条件:
    gap x=q△x,0.8<q<1.5;
    gap y=p△y,0.8<p<1.5;
    其中,gap x为所述第一级区与所述零级区在第一方向的第一距离,gap y为所述第一级区与所述零级区在第二方向的第二距离,△x为所述零级区中排布在同一行中相邻的两个散斑在第一方向上的第一间距,△y为所述零级区中相邻两行的散斑在第二方向上的第二间距;
    所述光接收模组用于接收被物体反射回的至少部分所述光线并转换成电信号。
  17. 根据权利要求16所述的终端,其特征在于,多个所述发光元件呈规则排布。
  18. 根据权利要求17所述的终端,其特征在于,所述散斑图案包括多个散斑,多个所述散斑呈规则排布;和/或
    所述散斑图案由多个所述平面图案形成,在所述散斑图案中每个所述平面图案之间均存在间隙。
  19. 根据权利要求16所述的终端,其特征在于,所述光源包括第一发光元件组及第二发光元件组,所述第一发光元件组及所述第二发光元件组均包括多个所述发光元件,在所述光源发射所述平面图案时,间隔开启所述第一发光元件组与所述第二发光元件组,并且开启所述第一发光元件组、与开启所述第二发光元件组之间的时间差小于预设时间。
  20. 根据权利要求16所述的终端,其特征在于,所述光源与所述衍射光学元件的垂直距离与所述光发射模组的物距及所述衍射光学元件的有效焦距相关。
  21. 根据权利要求16所述的终端,其特征在于,所述光发射模组的视场角与所述平面图案在第一方向上的长度、所述平面图案在第二方向上的长度、所述衍射光学元件的有效焦距、所述第一距离及所述第二距离相关。
  22. 根据权利要求16所述的终端,其特征在于,所述零级区域在水平方向的视场角与所述平面图案在第一方向上的长度、及所述衍射光学元件的有效焦距有关;
    所述零级区域在竖直方向的视场角与所述平面图案在第二方向上的长度、及所述衍射光学元件的有效焦距有关。
  23. 根据权利要求16所述的终端,其特征在于,所述集成微结构由虚拟的基于相位的第一微结构和虚拟的基于相位的第二微结构融合形成,所述第一微结构用于对光线进行准直,所述第二微结构用于对接收到的光线形成的光斑起复制作用。
  24. 根据权利要求20所述的终端,其特征在于,所述第一微结构为n台阶的衍射透镜的微结构或超透镜的微结构,其中,n大于等于2;和/或
    所述第二微结构为基于光栅的衍射微结构或基于超透镜的衍射微结构。
  25. 根据权利要求16所述的终端,其特征在于,所述光源为垂直腔面发射激光器,所述垂直腔面发射激光器的出射光线直接入射至所述衍射光学元件。
  26. 根据权利要求16所述的终端,其特征在于,所述衍射光学元件包括朝向所述光源的第一面和远离所述光源的第二面,所述集成微结构设于所述第一面或所述第二面;或
    所述衍射光学元件包括第一层和第二层,所述集成微结构位于所述第一层与所述第二层形成的密封腔内。
  27. 根据权利要求16所述的终端,其特征在于,所述集成微结构的空隙之间设置有填充物,所述填充物包括有机物或二氧化硅。
  28. 根据权利要求16所述的终端,其特征在于,所述集成微结构对所述平面图案复制成M*N份,多个所述平面图案形成所述散斑图案,其中M大于等于3,N大于等于3,且M与N均为奇数。
  29. 根据权利要求25所述的终端,其特征在于,在由所述M*N份的所述平面图像形成的所述散斑图案中,相邻列之间的所述平面图案错位或相邻行之间的所述平面图案错位。
PCT/CN2022/120965 2021-10-28 2022-09-23 深度相机、制造光发射模组的方法和终端 WO2023071650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111261453.6 2021-10-28
CN202111261453.6A CN114002698A (zh) 2021-10-28 2021-10-28 深度相机、制造光发射模组的方法和终端

Publications (1)

Publication Number Publication Date
WO2023071650A1 true WO2023071650A1 (zh) 2023-05-04

Family

ID=79924503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120965 WO2023071650A1 (zh) 2021-10-28 2022-09-23 深度相机、制造光发射模组的方法和终端

Country Status (2)

Country Link
CN (1) CN114002698A (zh)
WO (1) WO2023071650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002698A (zh) * 2021-10-28 2022-02-01 Oppo广东移动通信有限公司 深度相机、制造光发射模组的方法和终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205350880U (zh) * 2015-11-27 2016-06-29 高准精密工业股份有限公司 发光装置
CN106292144A (zh) * 2015-06-23 2017-01-04 手持产品公司 光学图案投影仪
WO2019047460A1 (zh) * 2017-09-08 2019-03-14 深圳奥比中光科技有限公司 一种衍射光学元件及配制方法
US20190273906A1 (en) * 2017-05-19 2019-09-05 Shenzhen Orbbec Co., Ltd. Structured light projection module based on vcsel array light source
CN111399245A (zh) * 2020-05-13 2020-07-10 浙江水晶光电科技股份有限公司 一种激光发射模组和3d成像装置
CN111522190A (zh) * 2019-02-01 2020-08-11 无锡奥普顿光电子有限公司 基于面发射激光的投射装置及其制作方法
CN111694161A (zh) * 2020-06-05 2020-09-22 Oppo广东移动通信有限公司 光发射模组、深度相机及电子设备
CN114002698A (zh) * 2021-10-28 2022-02-01 Oppo广东移动通信有限公司 深度相机、制造光发射模组的方法和终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292144A (zh) * 2015-06-23 2017-01-04 手持产品公司 光学图案投影仪
CN205350880U (zh) * 2015-11-27 2016-06-29 高准精密工业股份有限公司 发光装置
US20190273906A1 (en) * 2017-05-19 2019-09-05 Shenzhen Orbbec Co., Ltd. Structured light projection module based on vcsel array light source
WO2019047460A1 (zh) * 2017-09-08 2019-03-14 深圳奥比中光科技有限公司 一种衍射光学元件及配制方法
CN111522190A (zh) * 2019-02-01 2020-08-11 无锡奥普顿光电子有限公司 基于面发射激光的投射装置及其制作方法
CN111399245A (zh) * 2020-05-13 2020-07-10 浙江水晶光电科技股份有限公司 一种激光发射模组和3d成像装置
CN111694161A (zh) * 2020-06-05 2020-09-22 Oppo广东移动通信有限公司 光发射模组、深度相机及电子设备
CN114002698A (zh) * 2021-10-28 2022-02-01 Oppo广东移动通信有限公司 深度相机、制造光发射模组的方法和终端

Also Published As

Publication number Publication date
CN114002698A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US11194171B2 (en) Structured light projection module, depth camera, and method for manufacturing structured light projection module
US10148941B2 (en) Optical pattern projection
WO2018201585A1 (zh) 用于3d成像的激光阵列
WO2019086003A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
US11835732B2 (en) Structured light projector
CN107703641B (zh) 一种结构光投影模组和深度相机
CN109579728B (zh) 基于全息波导的散斑结构光投影模组
CN116500799B (zh) 一种结构光投射器和结构光模组
WO2023071650A1 (zh) 深度相机、制造光发射模组的方法和终端
WO2019037468A1 (zh) 结构光投影器、三维摄像头模组以及终端设备
TWI695189B (zh) 交叉渲染多視域攝影機、系統、及方法
CN111884049A (zh) 点阵生成方法、装置、存储介质、电子设备及vcsel阵列光源
US11137246B2 (en) Optical device
WO2023011031A1 (zh) 光发射模组、深度相机及终端
US11474366B2 (en) Light projector
TWI740280B (zh) 結構光投射裝置
CN109521578B (zh) 深度相机
CN214954356U (zh) 一种散斑投射器及电子设备
JP2017142438A (ja) 光学結像装置及び方法
CN113589621B (zh) 结构光投射器、摄像头模组及电子设备
CN211878295U (zh) 一种面光源投射模组、深度相机和电子设备
CN109521631B (zh) 投射不相关图案的深度相机
WO2020103507A1 (zh) 投射模组、成像装置及电子设备
CN116224612A (zh) 一种结构光投射器及其设计方法、深度相机
CN114019597A (zh) 衍射光学元件的设计方法、衍射光学元件及结构光投射器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885537

Country of ref document: EP

Kind code of ref document: A1