WO2023173880A1 - 一种基于gd型杂化极小曲面扰动结构的换热器 - Google Patents

一种基于gd型杂化极小曲面扰动结构的换热器 Download PDF

Info

Publication number
WO2023173880A1
WO2023173880A1 PCT/CN2022/141810 CN2022141810W WO2023173880A1 WO 2023173880 A1 WO2023173880 A1 WO 2023173880A1 CN 2022141810 W CN2022141810 W CN 2022141810W WO 2023173880 A1 WO2023173880 A1 WO 2023173880A1
Authority
WO
WIPO (PCT)
Prior art keywords
type hybrid
curved surface
cos
sin
heat exchanger
Prior art date
Application number
PCT/CN2022/141810
Other languages
English (en)
French (fr)
Inventor
刘瑜
闫广涵
赵佳飞
宋永臣
孙明瑞
梁义强
杨磊
张伦祥
杨云升
李帅
张赵达
张晓凯
严晗
华福裕
柴云龙
张俊
吴迪
刘康杰
王鹏
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2023173880A1 publication Critical patent/WO2023173880A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/06Arrangements for sealing elements into header boxes or end plates by dismountable joints
    • F28F9/12Arrangements for sealing elements into header boxes or end plates by dismountable joints by flange-type connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates

Definitions

  • the invention belongs to the technical field of heat exchangers and relates to a perturbation structure heat exchanger based on optimized bionic minimal curved surfaces.
  • heat exchangers are widely used in chemical industry, aviation, food and other fields.
  • the application of heat exchangers in the aviation field has become a research hotspot in recent years.
  • Aviation aircraft are developing towards high Mach numbers, and the thermal management problems caused by the gradually increasing flight speed are becoming increasingly severe.
  • a large amount of waste heat needs to be discharged or recycled.
  • most heat exchangers in the aviation field use fuel as a heat sink, which does not heat the heat.
  • the end working fluid is cooled and the fuel temperature can be increased at the same time, thereby improving combustion efficiency.
  • Heat exchangers required in the aviation field must meet requirements such as lightweight, high efficiency, and safety.
  • the heat exchanger spoiler structures used in aviation aircraft are mostly rectangular fins, zigzag fins, herringbone waves, etc.
  • the advantage of these structures is that they are relatively simple to produce and are highly compatible with traditional heat exchangers.
  • its disadvantage is more obvious, that is, the heat transfer amount is low due to insufficient disturbance. To solve this problem, it is necessary to design a more complex structure to increase the heat transfer rate.
  • Plate-fin heat exchangers separate hot and cold fluids with partitions. The hot and cold fluids are arranged at intervals. In each flow channel, fins are inserted to increase the disturbance effect and enhance the mechanical strength. Plate-fin heat exchangers have the advantages of compact structure, small size, less consumables, high heat transfer coefficient, and wide adaptability. They can meet the heat exchange needs of aviation aircraft in many aspects.
  • Minimal curved surfaces are a kind of bionic structure. The existence of minimal curved surfaces has been found in many biological structures such as bones, sea urchin skeletons, butterfly wings, etc. Research has found that this structure has good mechanical properties and thermal properties. G-type The thermal performance of extremely small curved surfaces is superior.
  • a GD-type hybrid minimum surface On the basis of the G-type minimum surface, a GD-type hybrid minimum surface is designed, and the GD-type hybrid minimum surface is arranged in the flow channel as a disturbance structure. When the fluid flows through the disturbance structure, the disturbance will be increased, the heat transfer area will be enlarged, more vortices will be generated, and the convection heat transfer effect will be enhanced.
  • the existing GD-type hybrid minimal surfaces are mostly used in the field of structural strength optimization, and there is no specific design inspiration for GD-type hybrid minimal surfaces suitable for enhancing heat transfer effects.
  • the invention solves the problems of low fuel inlet temperature and waste heat recovery and utilization in aviation aircraft.
  • a heat exchanger is used to exchange heat between the waste heat working medium and the fuel oil, and a heat exchanger based on the GD type hybrid minimal surface disturbance structure is provided.
  • a heat exchanger based on a GD-type hybrid minimum curved surface disturbance structure including a core, a head, and a flange; the core includes a cold fluid channel and a hot fluid channel, and the hot fluid channel is filled with GD-type hybrid electrodes Small surface perturbation structure, the basic governing equation of GD type hybrid minimal surface is: 0.5*(sin(x)*cos(y)+sin(y)* cos(z)+sin(z)*cos(x)+sin(x)*sin(y)*sin(z)+sin(x)*cos(y)*cos(z)+cos(x)* The difference between sin(y)*cos(z)+cos(x)*cos(y)*sin(z)) and the traditional G-type minimal surface is that the characteristic elements of the D-type minimal surface are added.
  • the heat exchangers are all made of aluminum alloy, and the GD-type hybrid minimum curved surface disturbance structure is manufactured by 3D printing, and the connection method between the components is welding.
  • the length and width of the GD-type hybrid minimal surface disturbance structure in the thermal fluid channel are equal.
  • the length and width refer to the length along the fluid flow direction and span direction respectively.
  • the cold fluid channel and the hot fluid channel are separated by partitions, the entrances and exits of different channels are separated by seals, and a pin-rib disturbance structure is inserted into the cold fluid channel;
  • the head includes a hot fluid head and a cold fluid head.
  • Head; flanges include a total of four hot fluid channel inlet and outlet flanges and cold fluid channel inlet and outlet flanges. The sides without heads and flanges are sealed with baffles; hot and cold fluids adopt a cross-flow arrangement.
  • the GD-type hybrid minimal curved surface disturbance structure is closely attached to the partition.
  • the invention also proposes a heat exchanger based on the GD-type hybrid minimal curved surface disturbance structure, including a core, a head, and a flange (1); the core includes a cold fluid channel and a hot fluid channel, and the hot fluid The channel is filled with a GD-type hybrid minimal surface perturbation structure.
  • M, N, A, B, and C are all constants; M is used to control the porosity of the overall structure.
  • N represents the G-type original minimum surface
  • A, B, and C in the trigonometric functions are constants used to control the number of lattice units per unit length in the x, y, and z directions.
  • the heat exchanger using the GD type hybrid minimum curved surface disturbance structure of the present invention has the advantages of compact structure, lightweight, large heat exchange area, high heat exchange efficiency, etc., especially the self-designed GD type hybrid minimum curved surface disturbance structure Compared with the traditional G-type minimal curved surface, the application greatly increases the heat exchange area, increases the number of eddy currents, and rationally distributes the porosity layout, which has a great positive effect on improving heat exchange efficiency.
  • the above-mentioned heat exchanger is compact, lightweight and efficient, providing a new idea for solving the heat exchange problem of aviation aircraft.
  • Figure 1 is a front view (section structure diagram) of a heat exchanger based on the GD-type hybrid minimal curved surface disturbance structure of the present invention
  • Figure 2 is a left view (section structure diagram) of a heat exchanger based on the GD-type hybrid minimal curved surface disturbance structure of the present invention
  • Figure 3 is a top view of a heat exchanger based on the GD-type hybrid minimal curved surface disturbance structure of the present invention
  • Figure 4 is a three-dimensional structural diagram of the GD-type hybrid minimum curved surface disturbance structure of the present invention.
  • a heat exchanger based on the GD-type hybrid minimal curved surface disturbance structure consists of a core, a head, and a flange 1.
  • the core body includes cold fluid channels 3, hot fluid channels 4, partitions 5, seals 6, and baffles 7; the heads include two cold fluid heads 2 and two hot fluid heads 8; there are four flanges 1.
  • the pin-rib structure is used as the disturbance and support structure in the cold fluid channel 3; the GD type hybrid minimal curved surface disturbance structure is used as the disturbance and support structure in the hot fluid channel 8.
  • the flange 1 is connected to the cold fluid head 2 and the hot fluid head 8 by welding; the cold fluid head 2 is connected to the core by welding; the hot fluid head 8 is connected to the core by welding; the cold fluid channel 3
  • the connection method between the pin rib structure in and the partition plate 5 and the baffle plate 7 is welding; the connection method between the GD type hybrid minimal curved surface disturbance structure in the thermal fluid channel 4 and the partition plate 5 and the baffle plate 7 is Welding; the connection method between the partition plate 5 and the seal 6 is welding.
  • the cold fluid is aviation fuel
  • the hot fluid is high-temperature air
  • the flow directions of the two fluids are vertical.
  • the overall material of the heat exchanger is aluminum alloy.
  • the GD-type hybrid minimal surface disturbance structure is manufactured using 3D printing technology (selective laser melting).
  • the material is aluminum alloy (AlSi10Mg).
  • the GD type hybrid minimum curved surface disturbance structure has a height of 10mm, and a length and width of 50mm.
  • the size of the pin-rib disturbance structure in the cold fluid channel 3 is 1 mm in diameter and 10 mm in height, and the arrangement is a rectangular arrangement in which the number in each row is equal to the number in each column, and the number is 16.
  • the number of the cold flow channels and the hot fluid channels is the same, and both are 5, arranged at intervals, and the flow pattern is cross flow.
  • the cold fluid working medium pipe is connected to the cold fluid head 2 through the first flange, and the cold fluid enters the cold fluid channel 3 in the core through the internal space of the cold fluid head 2. Since the hot fluid channel 4 is in the cold fluid A seal 6 is installed at the fluid inlet, so the cold fluid working medium will not enter the hot fluid channel; the hot fluid working medium pipeline is connected to the hot fluid head 8 through the second flange, and the hot fluid enters the core through the internal space of the hot fluid head 8 In the hot fluid channel 4 in the body, since the cold fluid channel 3 is equipped with a seal 6 at the hot fluid inlet, the hot fluid working medium will not enter the cold fluid channel; after the hot and cold fluids enter their respective channels, the cold fluid in the cold fluid channel 3 Under the action of the pin-fin structure, more vortices are generated, which exchange heat with the hot fluid through the partition 5; the hot fluid in the hot fluid channel 4 increases the heat exchange area under the action of the GD-type hybrid minimal curved surface disturbance structure, increasing The
  • Example 1 On the basis of Example 1, all the GD-type hybrid minimal curved surface perturbation structures in the above-mentioned Example 1 are replaced with traditional G-type minimal curved surface perturbation structures to ensure that the porosity of both structures is 80%.
  • the single-layer perturbed structure was tested in a flow heat transfer test bench, and the heat transfer conditions of the two structures were comparatively analyzed.
  • the experimental results show that: under the bottom heating power of 100W, the incoming flow velocities are 4m/s, 6m/s, and 8m/s respectively.
  • the Nusselt number (Nu) of the GD-type hybrid minimum surface is higher than that of the traditional G-type minimum surface. ) are 35.13%, 43.24%, and 45.58% higher respectively; under the bottom heating power of 50W, the inflow speeds are 4m/s, 6m/s, and 8m/s respectively.
  • the GD-type hybrid minimum curved surface is smaller than the traditional G-type pole.
  • the Nusselt number (Nu) of the small surface is 36.6%, 45.71%, and 46.71% higher respectively.
  • the cold fluid is generally aviation fuel
  • the hot fluid is generally a working fluid that contains waste heat during the flight of an aviation aircraft.
  • the introduction of the GD type hybrid minimal curved surface disturbance structure greatly increases the heat exchange area and improves the heat exchange efficiency, providing a new idea for solving aircraft waste heat recovery and fuel preheating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明属于换热器技术领域,提供了一种基于GD型杂化极小曲面扰动结构的换热器,其中,芯体包括冷流体通道和热流体通道,通道间用隔板隔开,不同通道进出口用封条隔开,热流体通道内插入GD型杂化极小曲面扰动结构,冷热流体采用叉流布置。该换热器具有结构紧凑、轻质化、换热面积大、换热效率高等优点,尤其是自主设计GD型杂化极小曲面扰动结构的应用,较之于传统G型极小曲面扰动结构,在流道中极大的提高了换热面积,增加了涡流的数量,合理分配了孔隙率布置,对换热效率的提高有极大积极作用。上述换热器紧凑、轻质、高效,为解决航空飞机换热问题提供了新的思路。

Description

一种基于GD型杂化极小曲面扰动结构的换热器 技术领域
本发明属于换热器技术领域,涉及一种以优化仿生极小曲面为基础的扰动结构换热器。
背景技术
换热器作为热交换的重要场所,广泛应用于化工、航空、食品等领域。其中,换热器近年来在航空领域的应用成为研究热点。航空飞机向着高马赫数方向发展,逐渐提高的飞行速度带来的热管理问题也日趋严峻,大量的余热需要被排出或回收利用,目前航空领域换热器多是把燃油作为热沉,对热端工质进行冷却,同时可以将燃油温度提升,进而提高燃烧效率。航空领域所要求换热器需满足轻质、高效、安全等要求。因此,设计出适用于航空飞机的紧凑式换热器对于进一步提高航空飞机性能具有重要意义。目前航空飞机使用的换热器扰流结构多为矩形翅片、锯齿形翅片、人字波等。这些结构的优势在于生产制造较为简单,与传统换热器匹配程度较高。但是其缺点较为明显,即扰动程度不足导致的换热量较低,为解决这一问题,设计更为复杂的结构以增加换热量是非常有必要的。
板翅式换热器是将冷热流体用隔板隔开,冷热流体间隔布置,在每个流道中,都插入翅片来增加扰动效果和加强力学强度。板翅式换热器具有结构紧凑、体积小、耗材少、传热系数高、适应性大等优点,可以在多方面满足航空飞机换热的需求。极小曲面是一种仿生结构,在许多生物结构如:骨骼、海胆骨架、蝴蝶翅膀等结构中发现了极小曲面的存在,研究发现这种结构具有良好的力学性能与热工性能,G型极小曲面的热工性能较为优越。在G型极小曲面的基础上,设计出GD型杂化极小曲面,将GD型杂化极小曲面作为扰动结构布置在流道内。流体流经扰动结构,会增大扰动,加大换热面积,产生更多的涡流,强化对流换热效果。但现有的GD型杂化极小曲面多用于结构强度优化领域,并没有适用于强化换热效果的GD型杂化极小曲面的具体设计启示。
技术问题
本发明为解决航空飞机中燃油进口温度低以及余热回收利用问题。使用换热器将余热工质与燃油进行热交换,提供一种基于GD型杂化极小曲面扰动结构的换热器。
技术解决方案
一种基于GD型杂化极小曲面扰动结构的换热器,包括芯体、封头、法兰;所述芯体包括冷流体通道和热流体通道,热流体通道内填充GD型杂化极小曲面扰动结构,GD型杂化极小曲面的基本控制方程为:0.5*(sin(x)*cos(y)+sin(y)* cos(z)+sin(z)*cos(x)+sin(x)*sin(y)*sin(z)+sin(x)*cos(y)*cos(z)+cos(x)*sin(y)*cos(z)+cos(x)*cos(y)*sin(z))与传统的G型极小曲面差别在于添加了D型极小曲面的特征元素。
进一步地,换热器材质均为铝合金,其中GD型杂化极小曲面扰动结构采用3D打印方式制造,各部件间连接方式为焊接。
进一步地,热流体通道中GD型杂化极小曲面扰动结构长度与宽度相等。所述长度与宽度分别指沿流体流动方向和展向的长度。
进一步地,所述冷流体通道和热流体通道间用隔板隔开,不同通道进出口用封条隔开,冷流体通道内插入针肋扰动结构;所述封头包括热流体封头和冷流体封头;法兰包括热流体通道进出口法兰和冷流体通道进出口法兰共四个,无封头与法兰的侧面用挡板封装;冷热流体采用叉流布置。
进一步地,GD型杂化极小曲面扰动结构与隔板紧密贴合。
本发明还提出了一种基于GD型杂化极小曲面扰动结构的换热器,包括芯体、封头、法兰(1);所述芯体包括冷流体通道和热流体通道,热流体通道内填充GD型杂化极小曲面扰动结构,GD型杂化极小曲面扰动结构的基本控制方程为:N*(sin(A*π*x)*cos(B*π*y)+sin(B*π*y)*cos(C*π*z)+sin(C*π*z)*cos(A*π*x))+(1-N)*(sin(A*π*x)*sin(B*π*y)*sin(C*π*z)+sin(A*π*x)*cos(B*π*y)*cos(C*π*z)+cos(A*π*x)*sin(B*π*y)*cos(C*π*z)+cos(A*π*x)*cos(B*π*y)*sin(C*π*z))=M,
式中,M,N,A,B,C均为常数;M用于控制整体结构孔隙率,当M=0时,杂化极小曲面扰动结构不具有厚度;N代表G型原始极小曲面元素在单元结构中的占比;三角函数中A,B,C是常数,用于控制在x,y,z方向上单位长度晶格个数。
优选地,所述GD型杂化极小曲面扰动结构的基本控制方程中,N=0.5;M=0.1382;A=B=C=2。
有益效果
采用本发明的GD型杂化极小曲面扰动结构的换热器,具有结构紧凑、轻质化、换热面积大、换热效率高等优点,尤其是自主设计GD型杂化极小曲面扰动结构的应用,较之于传统G型极小曲面,极大的提高了换热面积,增加了涡流的数量,合理分配了孔隙率布置,对换热效率的提高有极大积极作用。上述换热器紧凑、轻质、高效,为解决航空飞机换热问题提供了新的思路。
附图说明
图1是本发明一种基于GD型杂化极小曲面扰动结构的换热器的正视图(剖面结构图);
图2是本发明一种基于GD型杂化极小曲面扰动结构的换热器的左视图(剖面结构图);
图3是本发明一种基于GD型杂化极小曲面扰动结构的换热器的俯视图;
图4是本发明GD型杂化极小曲面扰动结构的三维结构图。
图中:1法兰;2冷流体封头;3冷流体通道;4热流体通道;5隔板;6封条;7挡板;8热流体封头。
具体实施方式
下面根据本发明的结构图进行更细致的阐述。
实施例1
如图1和图2所示,本发明中,一种基于GD型杂化极小曲面扰动结构的换热器,由芯体、封头、法兰1组成。芯体包括冷流体通道3、热流体通道4、隔板5、封条6、挡板7;封头包括冷流体封头2两个和热流体封头8两个;法兰1有四个。冷流体通道3中使用针肋结构作为扰动与支撑结构;热流体通道8中使用GD型杂化极小曲面扰动结构作为扰动与支撑结构。法兰1与冷流体封头2、热流体封头8通过焊接方式连接;冷流体封头2与芯体通过焊接方式连接;热流体封头8与芯体通过焊接方式连接;冷流体通道3中的针肋结构与隔板5以及挡板7之间的连接方式为焊接;热流体通道4中的GD型杂化极小曲面扰动结构与隔板5以及挡板7之间的连接方式为焊接;隔板5与封条6之间的连接方式为焊接。
所述冷流体为航空燃油,所述热流体为高温空气,两种流体流动方向垂直。所述换热器整体材料选用铝合金,GD型杂化极小曲面扰动结构采用3D打印技术制造(选择性激光融化),材料为铝合金(AlSi10Mg)。
GD型杂化极小曲面扰动结构高度为10mm,长度和宽度均为50mm。
所述冷流体通道3中针肋扰动结构尺寸为直径1mm、高度10mm,排列方式为每行个数与每列个数相等的矩形排列,个数为16个。
所述冷流通道与热流体通道的个数相同,且个数均为5个,呈间隔排列,流动方式为叉流。
换热过程中,冷流体工质管道通过第一法兰与冷流体封头2相连,冷流体经过冷流体封头2内部空间进入芯体中的冷流体通道3,由于热流体通道4在冷流体入口处装有封条6,所以冷流体工质不会进入热流体通道;热流体工质管道通过第二法兰与热流体封头8相连,热流体经过热流体封头8内部空间进入芯体中的热流体通道4,由于冷流体通道3在热流体入口处装有封条6,所以热流体工质不会进入冷流体通道;冷热流体进入各自通道后,冷流体通道3中冷流体在针肋结构的作用下产生更多的涡流,通过隔板5与热流体发生换热;热流体通道4中的热流体在GD型杂化极小曲面扰动结构作用下增加换热面积,增加流体扰动,湍流程度加大,通过隔板5与冷流体发生换热;如图3所示冷流体与热流体呈现垂直方向流动,可以有效提高换热效率。热交换完成后,冷流体通过冷流体封头2内部空间流出换热器;热流体通过热流体封头8内部空间流出换热器。
对比例 1
在实施例1的基础上,将上述实施例1中的GD型杂化极小曲面扰动结构全部替换成传统G型极小曲面扰动结构,保证两种结构的孔隙率都为80%。对单层扰动结构在流动换热试验台中进行试验,对比分析两种结构的换热情况。
实施例1中,结构的孔隙率都为80%时,GD型杂化极小曲面扰动结构的基本控制方程为:0.5*(sin(2π*x)*cos(2π*y)+sin(2π*y)*cos(2π*z)+sin(2π*z)*cos(2π*x))+0.5(sin(2π*x)*sin(2π*y)*sin(2π*z)+sin(2π*x)*cos(2π*y)*cos(2π*z)+cos(2π*x)*sin(2π*y)*cos(2π*z)+cos(2π*x)*cos(2π*y)*sin(2π*z))=0.1382。
对比结果发现,选择单层结构在流道内进行试验验证。实验结果表明:在100W的底面加热功率下,来流速度分别为4m/s,6m/s,8m/s,GD型杂化极小曲面比传统G型极小曲面的努塞尔数(Nu)分别高出35.13%,43.24%,45.58%;在50W的底面加热功率下,来流速度分别为4m/s,6m/s,8m/s,GD型杂化极小曲面比传统G型极小曲面的努塞尔数(Nu)分别高出36.6%,45.71%,46.71%。
航空飞机应用背景下,所述冷流体一般为航空燃油,所述热流体一般为航空飞机飞行过程中带有余热的工质。GD型杂化极小曲面扰动结构的引入较大地增加了换热面积,提高换热效率,为解决航空飞机余热回收与燃油预热提供了新的思路。

Claims (11)

  1. 一种基于GD型杂化极小曲面扰动结构的换热器,包括芯体、封头、法兰(1);其特征在于,所述芯体包括冷流体通道和热流体通道,热流体通道内填充GD型杂化极小曲面扰动结构,GD型杂化极小曲面的基本控制方程为:0.5*(sin(x)*cos(y)+sin(y)*cos(z)+sin(z)*cos(x)+sin(x)*sin(y)*sin(z)+sin(x)*cos(y)*cos(z)+cos(x)*sin(y)*cos(z)+cos(x)*cos(y)*sin(z))。
  2. 根据权利要求1所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于,其特征在于:换热器材质均为铝合金,其中GD型杂化极小曲面扰动结构采用3D打印方式制造,各部件间连接方式为焊接。
  3. 根据权利要求1所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于,其特征在于:热流体通道(4)中GD型杂化极小曲面扰动结构长度与宽度相等。
  4. 根据权利要求1所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于,其特征在于:GD型杂化极小曲面扰动结构高度为10mm,长度和宽度均为50mm。
  5. 根据权利要求1所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于,所述冷流体通道和热流体通道间用隔板(5)隔开,不同通道进出口用封条(6)隔开,冷流体通道内插入针肋扰动结构;所述封头包括热流体封头(8)和冷流体封头(2);法兰(1)包括热流体通道进出口法兰和冷流体通道进出口法兰共四个,无封头与法兰的侧面用挡板封装;冷热流体采用叉流布置。
  6. 根据权利要求5所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于,其特征在于:GD型杂化极小曲面扰动结构与隔板(5)紧密贴合。
  7. 根据权利要求5所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于:所述冷流体通道(3)中针肋扰动结构尺寸为直径1mm、高度10mm,排列方式为每行个数与每列个数相等的矩形排列,个数为16个。
  8. 根据权利要求5所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于:冷流通道与热流体通道的个数相同,且个数均为5个,呈间隔排列,流动方式为叉流。
  9. 根据权利要求5所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于:冷流体工质管道通过第一法兰与冷流体封头(2)相连,冷流体经过冷流体封头(2)内部空间进入芯体中的冷流体通道(3);热流体工质管道通过第二法兰与热流体封头(8)相连,热流体经过热流体封头(8)内部空间进入芯体中的热流体通道(4);冷热流体进入各自通道后,冷流体通道3中冷流体在针肋结构的作用下通过隔板(5)与热流体发生换热;热流体通道(4)中的热流体在GD型杂化极小曲面扰动结构作用下通过隔板(5)与冷流体发生换热;热交换完成后,冷流体通过冷流体封头(2)内部空间流出换热器;热流体通过热流体封头(8)内部空间流出换热器。
  10. 一种基于GD型杂化极小曲面扰动结构的换热器,包括芯体、封头、法兰(1);其特征在于,所述芯体包括冷流体通道和热流体通道,热流体通道内填充GD型杂化极小曲面扰动结构,GD型杂化极小曲面扰动结构的基本控制方程为:N*(sin(A*π*x)*cos(B*π*y)+sin(B*π*y)*cos(C*π*z)+sin(C*π*z)*cos(A*π*x))+(1-N)*(sin(A*π*x)*sin(B*π*y)*sin(C*π*z)+sin(A*π*x)*cos(B*π*y)*cos(C*π*z)+cos(A*π*x)*sin(B*π*y)*cos(C*π*z)+cos(A*π*x)*cos(B*π*y)*sin(C*π*z))=M,式中,M,N,A,B,C均为常数;M用于控制整体结构孔隙率,当M=0时,杂化极小曲面扰动结构不具有厚度;N代表G型原始极小曲面元素在单元结构中的占比;三角函数中A,B,C是常数,用于控制在x,y,z方向上单位长度晶格个数。
  11. 根据权利要求10所述的基于GD型杂化极小曲面扰动结构的换热器,其特征在于,所述GD型杂化极小曲面扰动结构的基本控制方程中,N=0.5;M=0.1382;A=B=C=2。
PCT/CN2022/141810 2022-03-15 2022-12-26 一种基于gd型杂化极小曲面扰动结构的换热器 WO2023173880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210255248.7A CN114623705B (zh) 2022-03-15 2022-03-15 一种基于gd型杂化极小曲面扰动结构的换热器
CN202210255248.7 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023173880A1 true WO2023173880A1 (zh) 2023-09-21

Family

ID=81901350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141810 WO2023173880A1 (zh) 2022-03-15 2022-12-26 一种基于gd型杂化极小曲面扰动结构的换热器

Country Status (2)

Country Link
CN (1) CN114623705B (zh)
WO (1) WO2023173880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928287A (zh) * 2024-03-18 2024-04-26 大连理工大学 基于Schwartz Diamond型杆状三周期极小曲面优化结构的换热器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623705B (zh) * 2022-03-15 2022-10-18 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器
CN115727691B (zh) * 2022-11-18 2023-11-21 大连理工大学 基于Sigmoid函数杂化方法的极小曲面与Kagome桁架结构的多孔介质换热器
CN116989599B (zh) * 2023-08-09 2024-03-15 大连理工大学 一种采用优化Weaire-Phelan结构的多孔介质换热器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111159903A (zh) * 2019-12-31 2020-05-15 重庆邮电大学 一种紧凑型多通道多流体热交换装置的设计和制造方法
CN111737835A (zh) * 2020-06-28 2020-10-02 大连理工大学 基于三周期极小曲面的三维多孔散热结构的设计与优化方法
CN112483569A (zh) * 2020-11-12 2021-03-12 南京航空航天大学 一种缓冲吸能仿生轻质夹芯结构
CN112989672A (zh) * 2021-04-16 2021-06-18 重庆大学 适应于复杂应力变化的极小曲面梯度结构的构建方法
WO2021248377A1 (zh) * 2020-06-10 2021-12-16 西门子股份公司 加氢装置,加氢装置的冷却装置及其制造方法
CN114623705A (zh) * 2022-03-15 2022-06-14 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1058592A (en) * 1963-02-19 1967-02-15 Whitworth Gloster Aircraft Ltd Improved transfer function analyser
ZW23583A1 (en) * 1982-11-02 1984-02-15 Kohler Packaging Ltd Container
JPS6033495A (ja) * 1983-08-02 1985-02-20 Matsushita Electric Ind Co Ltd 熱交換器
AU726791B1 (en) * 2000-05-12 2000-11-23 Peter A. Szorenyi Hinged rotor internal combustion engine
CN103512416B (zh) * 2013-10-14 2015-12-30 洛阳瑞昌石油化工设备有限公司 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器
CN108003377A (zh) * 2017-12-12 2018-05-08 大连工业大学 一种力学性能优良的电磁屏蔽材料及其制备方法
CN109977507B (zh) * 2019-03-15 2020-10-13 浙江大学 一种复杂形貌多孔支架的高效生成方法
CN110134909B (zh) * 2019-05-23 2023-05-12 武汉轻工大学 曲面绘制方法、设备、存储介质及装置
CN111035802A (zh) * 2019-12-18 2020-04-21 北京工业大学 一种光固化3d打印三周期极小曲面结构羟基磷灰石/二氧化钛复合生物陶瓷的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111159903A (zh) * 2019-12-31 2020-05-15 重庆邮电大学 一种紧凑型多通道多流体热交换装置的设计和制造方法
WO2021248377A1 (zh) * 2020-06-10 2021-12-16 西门子股份公司 加氢装置,加氢装置的冷却装置及其制造方法
CN111737835A (zh) * 2020-06-28 2020-10-02 大连理工大学 基于三周期极小曲面的三维多孔散热结构的设计与优化方法
CN112483569A (zh) * 2020-11-12 2021-03-12 南京航空航天大学 一种缓冲吸能仿生轻质夹芯结构
CN112989672A (zh) * 2021-04-16 2021-06-18 重庆大学 适应于复杂应力变化的极小曲面梯度结构的构建方法
CN114623705A (zh) * 2022-03-15 2022-06-14 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928287A (zh) * 2024-03-18 2024-04-26 大连理工大学 基于Schwartz Diamond型杆状三周期极小曲面优化结构的换热器
CN117928287B (zh) * 2024-03-18 2024-05-17 大连理工大学 基于Schwartz Diamond型杆状三周期极小曲面优化结构的换热器

Also Published As

Publication number Publication date
CN114623705B (zh) 2022-10-18
CN114623705A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023173880A1 (zh) 一种基于gd型杂化极小曲面扰动结构的换热器
CN204830955U (zh) 一种基于3d打印技术的新型微通道板式换热器
CN115727691B (zh) 基于Sigmoid函数杂化方法的极小曲面与Kagome桁架结构的多孔介质换热器
CN106091782A (zh) 一种轴向贯通的h型翅片管及其换热管束
WO2019120278A1 (zh) 一种外翅片换热管及其使用方法
JPS6334393B2 (zh)
CN106500532B (zh) 一种螺旋式微通道换热器
CN115183609A (zh) 换热器芯体及包括其的印刷电路板式换热器
CN114623707A (zh) 一种用于多流体换热的紧凑式换热器及换热方法
CN110319729A (zh) 基于仿生堆叠三维构型的换热器芯体及换热器
CN116989599B (zh) 一种采用优化Weaire-Phelan结构的多孔介质换热器
CN112595152A (zh) 基于泡沫金属的微通道板式换热器
CN108731534A (zh) 一种表面辐射状开缝h型翅片管
CN104344762B (zh) 换热器的板片及其换热器
CN101539384A (zh) 串片式热交换器的翅片
CN208606619U (zh) 管壳式换热器
US20130062039A1 (en) System and method for exchanging heat
CN106871689A (zh) 一种带有内翅片的换热管和热交换器
CN209558971U (zh) 一种新型石墨波纹换热板换热器
CN206488679U (zh) 一种轴向卡板式的针翅型翅片管结构
CN117906417B (zh) 一种基于梯度骨架直径晶格单元结构的多孔介质换热器
CN112595148A (zh) 基于泡沫金属的s型管束交叉流式管壳换热器
CN115387899B (zh) 一种用于换热器的百叶窗翅片结构
CN108592682A (zh) 一种几何改进型h型翅片管
CN110230941A (zh) 对称弧形开窗式换热器翅片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931886

Country of ref document: EP

Kind code of ref document: A1