WO2019120278A1 - 一种外翅片换热管及其使用方法 - Google Patents

一种外翅片换热管及其使用方法 Download PDF

Info

Publication number
WO2019120278A1
WO2019120278A1 PCT/CN2018/122564 CN2018122564W WO2019120278A1 WO 2019120278 A1 WO2019120278 A1 WO 2019120278A1 CN 2018122564 W CN2018122564 W CN 2018122564W WO 2019120278 A1 WO2019120278 A1 WO 2019120278A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
outer fin
heat exchange
heat transfer
heat
Prior art date
Application number
PCT/CN2018/122564
Other languages
English (en)
French (fr)
Inventor
黄志强
郑开云
Original Assignee
上海发电设备成套设计研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海发电设备成套设计研究院有限责任公司 filed Critical 上海发电设备成套设计研究院有限责任公司
Priority to JP2020545429A priority Critical patent/JP7011079B2/ja
Priority to EP18891569.8A priority patent/EP3702712B1/en
Priority to KR1020207011695A priority patent/KR102389843B1/ko
Publication of WO2019120278A1 publication Critical patent/WO2019120278A1/zh
Priority to US16/884,085 priority patent/US11118847B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present disclosure relates to an outer fin heat exchange tube and a method of using the same, and belongs to the technical field of high efficiency compact heat exchangers.
  • Heat exchangers are key equipment in various industrial productions such as electric power, chemical industry, vehicles, refrigeration, etc. Materials and processing and manufacturing costs often occupy an important share in the entire project investment, for example: in thermal power plants, boilers and other types of Auxiliary heat exchangers account for about 70% of the total investment of the power plant; in petrochemical plants, heat exchanger investment can account for more than 40% of the total investment.
  • the working fluid in the circulation loop is always in a gas or supercritical state, requiring efficient gas and gas or gas.
  • Heat exchangers with supercritical fluids require compact heat exchangers for cost control and volume reduction. Since the heat transfer system of the working medium is much smaller than the liquid state, and in order to ensure the cycle efficiency, the efficiency of the heat exchanger is very high.
  • Existing compact heat exchangers, such as diffusion bonded printed circuit board heat exchangers, are too costly.
  • the heat exchange tube is a commonly used heat exchange device in shell-and-tube heat exchangers, tube and plate heat exchangers, tube-fin heat exchangers, boilers, tube heaters, etc. It is widely used in installations, but conventional heat transfer tubes are not suitable for making efficient and compact heat exchangers and require improved design.
  • the addition of fins on the outer surface of the heat exchange tube can expand the heat exchange surface, which can simultaneously increase the heat transfer surface and increase the heat transfer coefficient, thereby improving heat transfer performance.
  • the fins are commonly used heat transfer methods for gas side surfaces, including outer fins and inner fins. Considering the reasons of processing and manufacturing technology and application, the outer fin heat exchange tube is more convenient to use and lower in cost.
  • the fin surface of the outer finned tube is perpendicular to the axial direction of the tube, and the flow direction of the medium in the tube is perpendicular to the flow direction of the medium outside the tube, that is, cross-flow heat exchange.
  • the regenerator in the Brayton cycle needs to use full countercurrent heat transfer to achieve, then, the above Finned tubes are not suitable, and it is necessary to develop a new type of outer fin heat exchange tube for countercurrent heat exchange.
  • the technical problem to be solved by the present disclosure is how to strengthen the heat transfer of the heat exchange tube, realize the complete countercurrent heat exchange of the medium inside and outside the tube, meet the requirements of the small temperature difference heat transfer working condition, and effectively control the processing cost.
  • an outer fin heat exchange tube which comprises:
  • a heat transfer tube for separating fluid inside and outside the tube, and realizing heat transfer between the inside and outside of the tube by convection and conduction;
  • the utility model is used for expanding an outer heat exchange surface of the heat transfer tube to form a micro flow passage, and restricting a counterflow of the fluid outside the tube along the axial direction of the heat transfer tube, and simultaneously generating a spoiler outer fin group;
  • An outer fin group frame for reducing lateral flow of fluid outside the heat transfer tube
  • the outer wall of the heat transfer tube is connected to a plurality of outer fin groups, and the plurality of outer fin groups are arranged along the axial direction of the heat transfer tube; the outer fin group is provided with a hole, and the holes of the plurality of outer fin groups are formed and
  • the heat transfer tubes are axially parallel to the micro flow passages; the outer fin groups are connected to the outer fin group frame.
  • the outer fin groups are arranged at intervals along the axial direction of the heat transfer tube.
  • the outer fin groups are arranged in the axial direction of the heat transfer tube without being spaced apart.
  • the spacing of adjacent sets of outer fins is less than 5 mm.
  • the heat transfer tube employs a metal tube that can withstand a specified temperature and pressure, including a circular cross section and other cross-section tubes or shaped tubes.
  • the heat transfer tube is provided with an insert for enhancing heat exchange.
  • the outer fin group is a symmetrical structure in which a metal foil or a thin strip is arranged around the heat transfer tube, the metal foil or strip surface being axially parallel to the heat transfer tube.
  • the outer fin group metal foil or ribbon has a width of 3 mm to 20 mm and a thickness of 0.2 mm to 1 mm.
  • the structure of the outer fin group forms an extended heat exchange surface and a micro flow passage; the outer fin group is axially segmented along the heat transfer tube to form different fin structures, and the heat transfer surface is expanded. And micro runner size.
  • the outer fin group frame is a full-enclosed structure arranged by a metal foil or a thin strip around the outer fin group, the metal foil or strip surface being axially parallel to the heat transfer tube.
  • the outer fin group frame metal foil or ribbon has a width of 3 mm to 20 mm and a thickness of 0.5 mm to 1.5 mm.
  • the shape of the outer fin group frame is a symmetrical structure that can be periodically arranged.
  • the present disclosure also provides a method for using the above-mentioned outer fin heat exchange tube, characterized in that the outer fin heat exchange tube is processed into a set specification and installed as a component in a heat exchanger; Input from the inlet end of the heat exchange tube, flowing along the inner side of the heat exchange tube to the outlet end of the heat exchange tube, during the flow process, the fluid in the heat exchange tube tube and the inner surface of the heat exchange tube are subjected to heat transfer process; the fluid outside the tube is from the tube of the heat exchanger tube The external fluid inlet end is input, and flows along the outer side of the heat exchange tube and the fluid in the tube, and flows to the outer fluid outlet end of the heat exchanger, and the outer surface of the heat exchange tube outside the heat exchange tube and the outer surface of the heat exchange tube, the outer fin group and the outside
  • the fin group frame performs a heat transfer process, and a heat conduction process occurs between the heat exchange tube, the outer fin group, and the outer fin group frame.
  • the outer fin heat exchange tube does not process the outer fin group at the fluid inlet and the outlet; the outer fin group and the outer fin group frame of the outer fin heat exchange tube are on the inner wall surface of the heat exchanger outer casing The part is processed into a mating structure according to the inner wall surface geometry of the heat exchanger casing.
  • the fluid in the tube of the heat exchange tube and the fluid outside the tube are countercurrently exchanged; the outer fin group expands the outer heat exchange surface of the heat transfer tube and turbulates, forming a micro flow passage, and restricting the flow of the fluid outside the tube through the micro flow
  • the channel flows axially back along the heat transfer tube.
  • the outer fin heat exchange tube provided by the present disclosure has the following beneficial effects:
  • the fin When the fluid outside the tube passes through the micro-channel structure of the outer fin group, the fin has sufficient turbulence effect to improve the convective heat transfer coefficient.
  • the extended surface area and micro flow channel size can be changed, the variable cross section design can be realized, and the performance and manufacturing cost of the heat exchanger can be optimized.
  • Embodiment 1 is a front elevational view showing an outer fin heat exchange tube provided in Embodiment 1;
  • Figure 2 is a side view of the outer fin heat exchange tube provided in the first embodiment
  • Figure 3 is a side view of the outer fin heat exchange tube provided in the second embodiment
  • Figure 4 is a side view of the outer fin heat exchange tube provided in Example 3.
  • FIG. 1 is a front view of the outer fin heat exchange tube provided by the embodiment, wherein the outer fin heat exchange tube is composed of the following components:
  • the heat transfer tube 1 is used for separating two kinds of fluids inside and outside the tube, and mainly realizes heat transfer by convection and conduction;
  • the outer fin group 2 is used for expanding the outer heat exchange surface of the heat transfer tube 1 to form a micro flow passage, and restricting the flow of the fluid outside the tube along the axial direction of the heat transfer tube 1 while generating a spoiler;
  • the outer fin group frame 3 is for reducing the lateral flow of the fluid outside the tube of the heat transfer tube 1.
  • the outer wall of the heat transfer tube 1 is connected to the plurality of outer fin groups 2, and the plurality of outer fin groups 2 are arranged along the axial direction of the heat transfer tube 1; the outer fin group 2 is provided with holes, and the holes of the plurality of outer fin groups 2 are provided.
  • a micro flow path parallel to the axial direction of the heat transfer tube 1 is formed; the outer periphery of the outer fin group 2 is connected to the outer fin group frame 3.
  • the outer fin group 2 is a hollow elliptical or elliptical frame structure formed by a metal foil or a thin strip.
  • a plurality of outer fin groups 2 are arranged around the heat transfer tube 1, and the surface of the outer fin group 2 is perpendicular to the heat transfer tube, and a symmetrical petal-like structure is formed in a cross section.
  • the outer fin heat exchange tubes are machined to the required specifications according to the overall design of the heat exchanger, including the specifications of the heat transfer tubes 1, the specifications of the outer fin groups 2 in different sections, and the outer fin group frames 3 in different regions. Specification, and installed as a component in a heat exchanger (eg, a tube bundle made into a shell-and-tube heat exchanger); when a smaller, more compact heat exchanger is required, the heat transfer tube 1 and the outer wing
  • a heat exchanger eg, a tube bundle made into a shell-and-tube heat exchanger
  • the heat exchanger composed of the tube group 2, the tube bundle composed of the outer fin group frame 3 and other components can be directly manufactured by the additive manufacturing (3D printing) technology.
  • the fluid in the tube of each heat transfer tube 1 is input from the inlet end of the heat transfer tube 1 (for example, the inlet of the tube-and-tube heat exchanger), flows along the inner side of the heat transfer tube 1 to the outlet end of the heat transfer tube 1, and the flow process
  • the fluid in the tube of the heat transfer tube 1 and the inner surface of the heat transfer tube 1 undergo a convective heat transfer process, and the fluid outside the tube of the heat transfer tube 1 is from the outer fluid inlet end of the heat exchanger (eg, a shell-and-tube heat exchanger)
  • the inlet of the casing is input, and flows along the outer side of the heat transfer tube 1 and the fluid in the tube of the heat transfer tube 1 to flow to the outer fluid outlet end of the heat exchanger; the fluid outside the tube passes through the micro flow passage of the outer fin group 2,
  • the fin group 2 expands the outer heat exchange surface of the heat transfer tube 1 and disturbs the flow, and restricts the fluid outside the tube to flow backward along the heat transfer tube through the micro flow
  • Embodiment 2 is substantially the same as Embodiment 1, except that the outer fin group 2 is a hollow rectangular frame structure formed by a metal foil or a thin strip. A plurality of outer fin groups 2 are disposed around the heat transfer tubes 1, and the surface of the outer fin groups 2 is perpendicular to the heat transfer tubes to form a symmetrical structure, as shown in FIG.
  • Embodiment 2 is substantially the same as Embodiment 1, except that the outer fin group 2 is made of a metal foil or a thin strip, and a strip-like structure in which a plurality of hollow circular rings are sequentially connected is formed.
  • a plurality of outer fin groups 2 are arranged around the heat transfer tubes 1, and the surface of the outer fin groups 2 is perpendicular to the heat transfer tubes to form a symmetrical structure, as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种外翅片换热管及使用方法,包括:传热管(1);用于扩展传热管(1)的外侧换热表面,形成微流道,约束管外流体沿传热管轴向的逆流,同时产生扰流作用的外翅片组(2);用于减少传热管(1)管外侧流体的横向流动的外翅片组框架(3);传热管(1)外壁与多个外翅片组(2)相连,外翅片组(2)沿传热管(1)轴向排列,外翅片组(2)上设有孔洞,多个外翅片组(2)的孔洞形成与传热管(1)轴向平行的微流道;外翅片组(2)周围与外翅片组框架(3)相连。

Description

一种外翅片换热管及其使用方法
本公开要求于2017年12月22日在中国专利局提交的、申请号为201711410324.2、发明名称为“一种外翅片换热管及其使用方法”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种外翅片换热管及其使用方法,属于高效紧凑换热器技术领域。
背景技术
换热器是电力、化工、车辆、制冷等各种工业生产中的关键设备,材料及加工制造成本在整个工程投资中往往占有重要的份额,例如:在火力发电厂中,锅炉及其它各类辅助换热器约占电厂总投资的70%左右;石油化工厂中,换热器投资可占总投资的40%以上。
近年来,以能源为中心的社会发展问题日益突出,节能、提高能效、提高能量转换效率等成为技术关注焦点。特别是新能源发电、储能、热电联供、分布式能源等领域发展迅猛,在这些技术的应用过程中,各种新型的高效紧凑换热器成为迫切需求。基于现有的换热器设计技术,并借助不断发展的制造工艺水平和新的制造技术,新型换热器的发展空间十分广阔。
在第四代核电、太阳能热发电、舰船等新的应用领域,由于采用了新型的布雷顿循环发电方式,循环回路中工质始终处于气体或超临界态,需要高效的气体与气体或气体与超临界流体的换热器,同时,为了控制成本和减小体积,要求采用紧凑换热器。由于工质的传热系统远小于液态,且为了保证循环效率,对换热器的效能要求非常高。 现有的紧凑换热器,例如:扩散焊印刷电路板换热器,成本太高。
在各类经典的换热器设计中,换热管是一种常用的换热器件,在管壳式换热器、管板换热器、管翅换热器、锅炉、管式加热器等装置中都有广泛应用,但是,常规的换热管不适用于制作高效紧凑换热器,需要进行改进设计。在换热管外表面增加翅片可以扩展换热表面,可同时增加传热表面和提高传热系数,从而提高换热性能。翅片是气体侧表面的常用强化传热方式,包括外翅片和内翅片。考虑到加工制造技术和应用方面的原因,外翅片换热管应用较为方便、成本较低。通常的外翅片管的翅片平面与管子轴向垂直,管内介质流动方向与管外介质流动方向垂直,即交叉流换热。对于小温差(<10℃)换热工况,特别是气体与气体的小温差换热,例如:布雷顿循环中的回热器,需要采用全逆流换热才能实现,这时,上述的外翅片管就不适宜了,需要开发新型的逆流换热的外翅片换热管。
目前,用于全逆流换热的外翅片换热管在行业内还未见公开报道。
发明内容
本公开要解决的技术问题是如何强化换热管的传热,实现管内、外两侧介质完全逆流换热,满足小温差换热工况的要求,并有效控制加工成本。
为了解决上述技术问题,本公开的技术方案是提供一种外翅片换热管,其特征在于,包括:
用于分隔管内和管外的流体,并通过对流、传导的方式实现管内、外流体传热的传热管;
用于扩展传热管的外侧换热表面,形成微流道,约束管外流体沿传热管轴向的逆流,同时产生扰流作用的外翅片组;
用于减少传热管管外侧流体的横向流动的外翅片组框架;
所述传热管外壁与多个外翅片组相连,多个外翅片组沿传热管轴 向排列;外翅片组上设有孔洞,多个外翅片组的孔洞形成与所述传热管轴向平行的微流道;外翅片组外围与外翅片组框架相连。
优选地,所述外翅片组之间相互间隔地沿传热管轴向排列。
优选地,所述外翅片组之间不间隔地沿传热管轴向排列。
优选地,相邻所述外翅片组的间距小于5mm。
优选地,所述传热管采用可承受规定温度和压力的金属管,包括圆截面及其它截面管或异型管。
优选地,所述传热管内设有用于强化换热的插入物。
优选地,所述外翅片组为金属薄片或薄带围绕所述传热管布置成的对称结构,所述金属薄片或薄带表面与所述传热管轴向平行。
优选地,所述外翅片组金属薄片或薄带的宽度为3mm-20mm,厚度为0.2mm-1mm。
优选地,所述外翅片组的结构内部形成扩展换热表面和微流道;所述外翅片组沿所述传热管轴向分段设计成不同的翅片结构,扩展换热表面和微流道尺寸。
优选地,所述外翅片组框架为由金属薄片或薄带围绕所述外翅片组布置成的全包围结构,所述金属薄片或薄带表面与所述传热管轴向平行。
优选地,所述外翅片组框架金属薄片或薄带的宽度为3mm-20mm,厚度为0.5mm-1.5mm。
优选地,所述外翅片组框架的形状为可周期性排列的对称结构。
本公开还提供了一种上述的外翅片换热管的使用方法,其特征在于:将所述外翅片换热管加工成设定规格,并作为部件安装于换热器中;管内流体从换热管的进口端输入,沿换热管内侧流向换热管的出口端,流动过程中换热管管内流体与换热管内侧表面进行传热过程;管外流体从换热器的管外流体进口端输入,沿换热管外侧与管内流体相向流动,流向换热器的管外流体出口端,流动过程中换热管管外流 体与换热管外侧表面、外翅片组及外翅片组框架进行传热过程,换热管、外翅片组和外翅片组框架之间发生热传导过程。
优选地,所述外翅片换热管在流体进口和出口处不加工外翅片组;所述外翅片换热管的外翅片组和外翅片组框架在换热器外壳体内壁面处根据换热器外壳体内壁面几何形状加工成配合结构。
优选地,所述换热管的管内流体和管外流体逆流换热;所述外翅片组扩展传热管的外侧换热表面并扰流,形成微流道,约束管外流体通过微流道沿传热管轴向逆流。
与现有技术相比,本公开提供的外翅片换热管具有如下有益效果:
1、管内、外流体之间实现完全逆流换热,可实现小温差传热。
2、管外流体在经过外翅片组的微流道结构时,翅片有充分的扰流作用,提高对流传热系数。
3、通过沿换热管轴向分段布置不同的外翅片组结构,可改变扩展表面积和微流道尺寸,实现变横截面设计,优化换热器的性能和制造成本。
4、可用于制造高效紧凑换热器,尤其适用于气体-气体换热工况。
附图说明
通过参考下面的附图,可以更为完整地理解本公开的示例性实施方式:
图1为实施例1提供的外翅片换热管主视示意图;
图2为实施例1提供的外翅片换热管侧视图;
图3为实施例2提供的外翅片换热管侧视图;
图4为实施例3提供的外翅片换热管侧视图;
附图标记说明:
1—传热管,2—外翅片组,3—外翅片组框架。
具体实施方式
下面结合具体实施例,进一步阐述本公开。
实施例1
图1为本实施例提供的外翅片换热管主视示意图,所述的外翅片换热管由以下部件组成:
传热管1,用于分隔管内和管外的两种流体,并主要通过对流、传导的方式实现传热;
外翅片组2,用于扩展传热管1的外侧换热表面,形成微流道,约束管外侧流体沿传热管1轴向的逆流,同时产生扰流作用;
外翅片组框架3,用于减少传热管1管外侧流体的横向流动。
传热管1外壁与多个外翅片组2相连,多个外翅片组2沿传热管1轴向排列;外翅片组2上设有孔洞,多个外翅片组2的孔洞形成与所述传热管1轴向平行的微流道;外翅片组2外围与外翅片组框架3相连。
结合图2,外翅片组2为金属薄片或薄带形成的空心椭圆形或类似椭圆形框结构。多个外翅片组2围绕传热管1布置,外翅片组2表面与所述传热管轴向垂直,截面形成的对称的花瓣状结构。
上述的外翅片换热管的工作方法如下:
将外翅片换热管按照换热器的总体设计加工成所需规格,包括传热管1的规格、外翅片组2在不同区段的规格、外翅片组框架3在不同区域的规格,并作为部件安装于换热器中(如:制造成管壳式换热器的管束);当需要体积更小的、更紧凑的换热器时,由上述传热管1、外翅片组2、外翅片组框架3组成的管束及其他部件组成的换热器整体可直接由增材制造(3D打印)技术完成制造。
每根传热管1的管内流体从传热管1的进口端(如:管壳式换热器的管箱进口)输入,沿传热管1内侧流向传热管1的出口端,流动过程中传热管1的管内流体与传热管1的内侧表面进行对流传热过程,传热管1的管外流体从换热器的管外流体进口端(如:管壳式换 热器的壳体进口)输入,沿传热管1外侧与传热管1的管内流体相向流动,流向换热器的管外流体出口端;管外流体从外翅片组2的微流道通过,外翅片组2扩展传热管1的外侧换热表面并扰流,约束管外流体通过微流道沿传热管轴向逆流;流动过程中管外流体与传热管1外侧表面和外翅片组2、外翅片组框架3进行传热过程,换热管1、外翅片组2和外翅片组框架3之间发生热传导过程。
实施例2
本实施例与实施例1大体相同,其区别在于:外翅片组2为金属薄片或薄带形成的空心矩形框结构。多个外翅片组2围绕传热管1布置,外翅片组2表面与所述传热管轴向垂直,形成对称的结构,如图3所示。
实施例3
本实施例与实施例1大体相同,其区别在于:外翅片组2由金属薄片或薄带制成,形成多个空心圆环依次连接的条状结构。多个外翅片组2围绕传热管1布置,外翅片组2表面与所述传热管轴向垂直,形成对称的结构,如图4所示。
以上所述,仅为本公共的较佳实施例,并非对本公共任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本公开方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本公开的保护范围。凡熟悉本专业的技术人员,在不脱离本公开的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本公开的等效实施例;同时,凡依据本公开的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本公开的技术方案的范围内。

Claims (10)

  1. 一种外翅片换热管,其特征在于,包括:
    用于分隔管内和管外的流体,并通过对流、传导的方式实现管内、外流体传热的传热管(1);
    用于扩展传热管(1)的外侧换热表面,形成微流道,约束管外流体沿传热管(1)轴向的逆流,同时产生扰流作用的外翅片组(2);
    用于减少传热管(1)管外侧流体的横向流动的外翅片组框架(3);
    所述传热管(1)外壁与多个外翅片组(2)相连,多个外翅片组(2)沿传热管(1)轴向排列;外翅片组(2)上设有孔洞,多个外翅片组(2)的孔洞形成与所述传热管(1)轴向平行的微流道;外翅片组(2)外围与外翅片组框架(3)相连。
  2. 如权利要求1所述的一种外翅片换热管,其特征在于:所述传热管(1)为金属管。
  3. 如权利要求1所述的一种外翅片换热管,其特征在于:所述传热管(1)内设有用于强化换热的插入物。
  4. 如权利要求1所述的一种外翅片换热管,其特征在于:所述外翅片组(2)为由金属薄片或薄带围绕所述传热管(1)布置成的对称结构,所述金属薄片或薄带表面与所述传热管(1)轴向平行。
  5. 如权利要求1或4所述的一种外翅片换热管,其特征在于:相邻所述外翅片组(2)的间距小于5mm;所述外翅片组(2)沿所述传热管(1)轴向分段设计成不同的翅片结构,扩展换热表面和微流道尺寸。
  6. 如权利要求1所述的一种外翅片换热管,其特征在于:所述外翅片组框架(3)为由金属薄片或薄带围绕所述外翅片组(2)布置成的全包围结构,所述金属薄片或薄带表面与所述传热管(1)轴向平行。
  7. 如权利要求1或6所述的一种外翅片换热管,其特征在于: 所述外翅片组框架(3)的形状为可周期性排列的对称结构。
  8. 一种如权利要求1-3任一项所述的外翅片换热管的使用方法,其特征在于:将所述外翅片换热管加工成设定规格,并作为部件安装于换热器中;管内流体从换热管(1)的进口端输入,沿换热管(1)内侧流向换热管(1)的出口端,流动过程中换热管(1)管内流体与换热管(1)内侧表面进行传热过程;管外流体从换热器的管外流体进口端输入,沿换热管(1)外侧与管内流体相向流动,流向换热器的管外流体出口端,流动过程中换热管(1)管外流体与换热管(1)外侧表面、外翅片组(2)及外翅片组框架(3)进行传热过程,换热管(1)、外翅片组(2)和外翅片组框架(3)之间发生热传导过程。
  9. 一种如权利要求8所述的外翅片换热管的使用方法,其特征在于:所述外翅片换热管在流体进口和出口处不加工外翅片组(2);所述外翅片换热管的外翅片组(2)和外翅片组框架(3)在换热器外壳体内壁面处根据换热器外壳体内壁面几何形状加工成配合结构。
  10. 一种如权利要求8所述的外翅片换热管的使用方法,其特征在于:所述换热管(1)的管内流体和管外流体逆流换热;所述外翅片组(2)扩展传热管(1)的外侧换热表面并扰流,形成微流道,约束管外流体通过微流道沿传热管(1)轴向逆流。
PCT/CN2018/122564 2017-12-22 2018-12-21 一种外翅片换热管及其使用方法 WO2019120278A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020545429A JP7011079B2 (ja) 2017-12-22 2018-12-21 アウターフィン付き熱交換チューブ及びその使用方法
EP18891569.8A EP3702712B1 (en) 2017-12-22 2018-12-21 Outer fin heat exchange tube and use method therefor
KR1020207011695A KR102389843B1 (ko) 2017-12-22 2018-12-21 아우터 핀 열교환 튜브 및 그 사용방법
US16/884,085 US11118847B2 (en) 2017-12-22 2020-05-27 Finned heat exchanger tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711410324.2A CN107976101B (zh) 2017-12-22 2017-12-22 一种外翅片换热管的使用方法
CN201711410324.2 2017-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/884,085 Continuation-In-Part US11118847B2 (en) 2017-12-22 2020-05-27 Finned heat exchanger tube

Publications (1)

Publication Number Publication Date
WO2019120278A1 true WO2019120278A1 (zh) 2019-06-27

Family

ID=62007393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122564 WO2019120278A1 (zh) 2017-12-22 2018-12-21 一种外翅片换热管及其使用方法

Country Status (6)

Country Link
US (1) US11118847B2 (zh)
EP (1) EP3702712B1 (zh)
JP (1) JP7011079B2 (zh)
KR (1) KR102389843B1 (zh)
CN (1) CN107976101B (zh)
WO (1) WO2019120278A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976101B (zh) * 2017-12-22 2023-07-14 上海发电设备成套设计研究院有限责任公司 一种外翅片换热管的使用方法
CN108917436B (zh) * 2018-08-28 2020-09-18 南京工业大学 一种新型的带有涡流发生器的椭圆扭曲管换热器
CN109443053A (zh) * 2018-10-30 2019-03-08 佛山科学技术学院 一种管壳式换热器
CN109323613A (zh) * 2018-10-30 2019-02-12 佛山科学技术学院 一种齿孔膜片管
CN113030165B (zh) * 2021-03-09 2022-05-06 西安交通大学 一种高温气体等温壁面冷却实验矩形实验段
CN114003113B (zh) * 2021-11-01 2024-03-01 集美大学 一种海底数据中心用散热管理辅助装置及其系统
CN114413675B (zh) * 2021-12-15 2023-10-13 合肥通用机械研究院有限公司 一种内表面具有Laval结构的管道及其增材制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056586A (en) * 1990-06-18 1991-10-15 Modine Heat Transfer, Inc. Vortex jet impingement heat exchanger
US5758720A (en) * 1996-11-26 1998-06-02 Behr America, Inc. Unitary heat exchanger core and method of making same
CN101691974A (zh) * 2009-09-11 2010-04-07 西安石油大学 一种传热管内外装配纵向螺旋翅片传热元件
CN105043151A (zh) * 2015-07-21 2015-11-11 东南大学 一种鳍片管及换热器
CN105758245A (zh) * 2016-01-11 2016-07-13 上海核工程研究设计院 一种非连续外梯形纵肋管
CN107976101A (zh) * 2017-12-22 2018-05-01 上海发电设备成套设计研究院有限责任公司 一种外翅片换热管及其使用方法
CN207832003U (zh) * 2017-12-22 2018-09-07 上海发电设备成套设计研究院有限责任公司 外翅片换热管
CN109059601A (zh) * 2018-09-05 2018-12-21 上海发电设备成套设计研究院有限责任公司 一种紧凑型气体-气体换热管及其制造和使用方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1726235A (en) * 1924-04-26 1929-08-27 Thomas E Murray Radiator
US1699542A (en) * 1924-05-27 1929-01-22 Thomas E Murray Radiator
US1942211A (en) * 1933-04-20 1934-01-02 Charles W Hartwig Combination guard and heat transfer device
US2063736A (en) * 1935-03-08 1936-12-08 Gen Motors Corp Heat exchanger
US2196186A (en) * 1936-02-14 1940-04-09 Alfred J Berg Heat exchange element and process of making same
US2445471A (en) * 1944-05-09 1948-07-20 Salem Engineering Company Heat exchanger
US2471582A (en) * 1944-09-15 1949-05-31 Poole Ralph Heat exchange apparatus for fluids
GB636910A (en) * 1946-06-07 1950-05-10 Wera App Bau A G Improvements in or relating to finned elements for heating or cooling purposes
US2703921A (en) * 1949-04-14 1955-03-15 Brown Fintube Co Method of making internally finned tubes
US2692763A (en) * 1952-03-08 1954-10-26 Air Preheater Supporting spacer for annular corrugated fins
US2752128A (en) * 1955-10-17 1956-06-26 Modine Mfg Co Heat exchange structure
US3036818A (en) * 1958-01-29 1962-05-29 Foster Wheeler Francaise Soc Heat exchanger
US3016893A (en) * 1959-05-29 1962-01-16 Brown Fintube Co Heater
US3028855A (en) * 1960-10-07 1962-04-10 Brown Fintube Co Heat exchanger
US3200848A (en) * 1963-05-29 1965-08-17 Takagi Ichizo Heat exchanger tubes
US3288209A (en) * 1964-04-13 1966-11-29 Dewandre Co Ltd C Heat transmitting tubes having helical fin means
GB1141514A (en) * 1966-11-25 1969-01-29 Sevelen Metallbau Finned heat exchanger and method of producing it
US3474513A (en) * 1967-04-07 1969-10-28 William D Allingham Method of fabricating a cored structure
US3656547A (en) * 1970-05-08 1972-04-18 Winfield G Beach Thermal radiation system for soil stabilizer
US3795125A (en) * 1972-01-27 1974-03-05 Universal Oil Prod Co High-fin integral finned tube of heat-resisting alloys, and multi-pass process for making the same
US3804159A (en) * 1972-06-13 1974-04-16 Thermo Electron Corp Jet impingement fin coil
US3887004A (en) * 1972-06-19 1975-06-03 Hayden Trans Cooler Inc Heat exchange apparatus
US3878888A (en) * 1973-12-07 1975-04-22 George H Seidl Heat exchanger
DE2415656A1 (de) * 1974-04-01 1975-10-16 Buderus Eisenwerk Waermeaustauscher mit im abstand zueinander angeordneten rippen
US3920383A (en) * 1974-06-20 1975-11-18 Electric Furnace Co Fluted surface heat exchanger
JPS5187852A (zh) * 1974-12-24 1976-07-31 Breda Backer Rueb Maschf
US4059882A (en) * 1976-05-24 1977-11-29 United Aircraft Products, Inc. Method of making an annular tube-fin heat exchanger
US4096910A (en) * 1976-10-28 1978-06-27 General Electric Company Concentric-tube stacked plate heat exchanger
HU183314B (en) * 1981-02-06 1984-04-28 Laszlo Szuecs Ribbed heat exchanger and method for producing same
JPS5935762A (ja) * 1982-08-24 1984-02-27 松下電器産業株式会社 凝縮器
JPS5997490A (ja) * 1982-11-27 1984-06-05 Matsushita Electric Ind Co Ltd 熱交換器
JPS59115983A (ja) * 1982-12-21 1984-07-04 Matsushita Electric Ind Co Ltd 熱交換器
US5107922A (en) * 1991-03-01 1992-04-28 Long Manufacturing Ltd. Optimized offset strip fin for use in contact heat exchangers
JPH1026489A (ja) * 1996-07-08 1998-01-27 Usui Internatl Ind Co Ltd フィンチューブ
US7128136B2 (en) * 1998-08-10 2006-10-31 Gregory Christian T Radial flow heat exchanger
DE60110813T2 (de) * 2000-09-01 2006-02-02 Sharp K.K. Wärmeaustauscher für stirling-kältemaschine, wärmeaustauscherkörper und herstellungsverfahren des wärmeaustauschkörpers
US7063131B2 (en) * 2001-07-12 2006-06-20 Nuvera Fuel Cells, Inc. Perforated fin heat exchangers and catalytic support
KR200266648Y1 (ko) 2001-12-08 2002-02-28 임관호 핀 튜브형 열교환기
KR20050075379A (ko) * 2002-11-05 2005-07-20 바브콕-히다찌 가부시끼가이샤 배기가스 처리장치
WO2006055916A2 (en) * 2004-11-18 2006-05-26 Allan Stikeleather Heat exchanger tube and method of making
US8092756B2 (en) * 2008-02-05 2012-01-10 Intercat Equipment, Inc. Catalyst withdrawal apparatus and method for regulating catalyst inventory in a unit
US8123382B2 (en) * 2008-10-10 2012-02-28 Cooper Technologies Company Modular extruded heat sink
US20100116466A1 (en) * 2008-11-07 2010-05-13 Jerzy Hawranek Axial Heat Exchanger for Regulating the Temperature and Air Comfort in an Indoor Space
US20100193168A1 (en) * 2009-02-02 2010-08-05 Johnson Jr Alfred Leroy Heat exchanger
CN201434621Y (zh) * 2009-07-14 2010-03-31 西安石油大学 传热管外流体多股螺旋流壳管式换热器
US20120012292A1 (en) * 2010-07-16 2012-01-19 Evapco, Inc. Evaporative heat exchange apparatus with finned elliptical tube coil assembly
CA2828021C (en) * 2011-03-01 2019-01-29 Dana Canada Corporation Coaxial gas-liquid heat exchanger with thermal expansion connector
ES2834434T3 (es) * 2011-04-14 2021-06-17 Carrier Corp Intercambiador de calor
PL220684B1 (pl) * 2011-06-10 2015-11-30 Aic Spółka Akcyjna Rurka wymiennika ciepła
US20130299145A1 (en) * 2012-04-19 2013-11-14 National University Of Singapore Heat sink system
CN104685313B (zh) 2012-09-26 2017-03-08 株式会社Uacj 空调机用翅片管式换热器
GB2525536B (en) * 2013-02-19 2019-05-08 Mitsubishi Electric Corp Heat exchanger having concentric pipes including intermediate heat transfer pipe and refrigeration cycle apparatus including the heat exchanger
US20150034279A1 (en) * 2013-03-18 2015-02-05 James G. Davidson Liquid nitrogen & carbon dioxide thermo vanes cold trap exchanger
JP2015224797A (ja) * 2014-05-26 2015-12-14 カルソニックカンセイ株式会社 排気熱回収器及びその製造方法
DE102014108209A1 (de) 2014-06-11 2015-12-17 GEA Luftkühler GmbH Wärmetauscher
US10514210B2 (en) * 2014-12-31 2019-12-24 Ingersoll-Rand Company Fin-tube heat exchanger
CN205300307U (zh) 2015-11-30 2016-06-08 仪征市永辉散热管制造有限公司 超耐用型开孔椭管散热器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056586A (en) * 1990-06-18 1991-10-15 Modine Heat Transfer, Inc. Vortex jet impingement heat exchanger
US5758720A (en) * 1996-11-26 1998-06-02 Behr America, Inc. Unitary heat exchanger core and method of making same
CN101691974A (zh) * 2009-09-11 2010-04-07 西安石油大学 一种传热管内外装配纵向螺旋翅片传热元件
CN105043151A (zh) * 2015-07-21 2015-11-11 东南大学 一种鳍片管及换热器
CN105758245A (zh) * 2016-01-11 2016-07-13 上海核工程研究设计院 一种非连续外梯形纵肋管
CN107976101A (zh) * 2017-12-22 2018-05-01 上海发电设备成套设计研究院有限责任公司 一种外翅片换热管及其使用方法
CN207832003U (zh) * 2017-12-22 2018-09-07 上海发电设备成套设计研究院有限责任公司 外翅片换热管
CN109059601A (zh) * 2018-09-05 2018-12-21 上海发电设备成套设计研究院有限责任公司 一种紧凑型气体-气体换热管及其制造和使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3702712A4

Also Published As

Publication number Publication date
KR20200097242A (ko) 2020-08-18
JP2021502540A (ja) 2021-01-28
EP3702712C0 (en) 2024-04-24
US20200284528A1 (en) 2020-09-10
EP3702712A4 (en) 2020-12-09
US11118847B2 (en) 2021-09-14
CN107976101A (zh) 2018-05-01
EP3702712B1 (en) 2024-04-24
JP7011079B2 (ja) 2022-02-10
CN107976101B (zh) 2023-07-14
KR102389843B9 (ko) 2022-05-23
KR102389843B1 (ko) 2022-04-22
EP3702712A1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
WO2019120278A1 (zh) 一种外翅片换热管及其使用方法
CN109443043B (zh) 一种铅-超临界二氧化碳中间换热器
WO2017113571A1 (zh) 一体化相变抑制传热换热板结构及其制造方法
KR102559356B1 (ko) 콤팩트형 가스-가스 열교환 튜브 및 이의 제조와 사용 방법
US11287194B2 (en) Gas-gas high-temperature heat exchanger
CN207832003U (zh) 外翅片换热管
CN106500532B (zh) 一种螺旋式微通道换热器
CN112857103A (zh) 一种紧凑式换热器及其非对称翼型换热板片
CN115183609A (zh) 换热器芯体及包括其的印刷电路板式换热器
JP2011112331A (ja) 排ガス用熱交換器
CN103196310B (zh) 微型微通道金属圆管液冷型换热器
CN203336996U (zh) 微型微通道金属圆管液冷型换热器
CN207797806U (zh) 一种异形管翅换热器
CN205825777U (zh) 微通道热管换热器
CN206755963U (zh) 内翅片管换热器
CN209877730U (zh) 紧凑型气体-气体换热管
CN215984073U (zh) 一种双面蜂窝式翅片换热器
CN205642108U (zh) 一种多孔微通道型材的热交换器
CN203489748U (zh) 一种干燥机换热器
CN213363512U (zh) 一种组合式气液热交换装置
CN218480949U (zh) 换热器芯体及包括其的印刷电路板式换热器
CN214666241U (zh) 一种紧凑式换热器及其非对称翼型换热板片
CN212006837U (zh) 一种双面高肋翅片管式换热器
CN217654336U (zh) 空气引流式自然对流扰流斜翅片高效冷却器
CN215114143U (zh) 一种肋片全贯穿式换热管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545429

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018891569

Country of ref document: EP

Effective date: 20200525

NENP Non-entry into the national phase

Ref country code: DE