WO2021248377A1 - 加氢装置,加氢装置的冷却装置及其制造方法 - Google Patents

加氢装置,加氢装置的冷却装置及其制造方法 Download PDF

Info

Publication number
WO2021248377A1
WO2021248377A1 PCT/CN2020/095442 CN2020095442W WO2021248377A1 WO 2021248377 A1 WO2021248377 A1 WO 2021248377A1 CN 2020095442 W CN2020095442 W CN 2020095442W WO 2021248377 A1 WO2021248377 A1 WO 2021248377A1
Authority
WO
WIPO (PCT)
Prior art keywords
cos
cooling device
manufacturing
hydrogenation
cooling
Prior art date
Application number
PCT/CN2020/095442
Other languages
English (en)
French (fr)
Inventor
张卿卿
斯维纳连科卡特瑞娜
吴琪
李长鹏
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2020/095442 priority Critical patent/WO2021248377A1/zh
Priority to CN202080099014.7A priority patent/CN115335206A/zh
Publication of WO2021248377A1 publication Critical patent/WO2021248377A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media

Definitions

  • the invention relates to the field of additive manufacturing, in particular to a hydrogenation device, a cooling device of the hydrogenation device and a manufacturing method thereof.
  • Refrigeration is the main function of hydrogen refueling.
  • Hydrogen pre-cooling microchannel heat exchangers H2PC, Hydrogen pre-cooling microchannel heat exchangers
  • hydrogen recuperators are now manufactured for hydrogen refueling stations with different hydrogen filling rates.
  • the heat transfer principle of hydrogen refueling heat exchangers is based on counterflow liquid cooling.
  • the micro-pipe structure is also used in the design of hydrogen pre-cooling/reflow heat exchanger.
  • the existing technology uses regular pipelines.
  • the first aspect of the present invention provides a method for manufacturing a cooling device of a hydrogenation device, wherein the hydrogenation device includes a housing, and a cooling device is provided in the housing, including the following steps: S1, generating the hydrogenation device The three-dimensional model of the cooling device of the device, wherein the cooling device is provided with a hydrogen pipeline and a cooling medium pipeline; S2, laser scanning is performed on the metal particles in the additive manufacturing printing device, so that the metal particles are in accordance with the cooling device The three-dimensional model melts layer by layer from bottom to top into the cooling device.
  • the method further includes the following steps: respectively connecting a hydrogen inlet and a hydrogen outlet to the hydrogen pipeline, and respectively setting a cooling medium inlet and a cooling medium outlet on the cooling medium pipeline.
  • the additive manufacturing printing device is a selective laser melting device or an adhesive jet forming device.
  • the metal powder is stainless steel powder.
  • the step S1 also includes the following steps: constructing a filling curve of a two-dimensional plane based on the Peano curve; dividing the plane into two disconnected areas according to the filling curve of the two-dimensional plane, and performing a three-dimensional stretching transformation to generate The contact area of the hydrogen gas and the cooling medium is used to generate a three-dimensional model of the cooling device of the hydrogenation unit.
  • step S1 also includes the following steps: determining the initial structural unit and its distribution; generating a three-dimensional model of the cooling device of the hydrogenation unit based on the initial structural unit and its corresponding three-period minimal surface algorithm, wherein,
  • the three-period minimal surface algorithm includes any one of the following:
  • F(x,y,z) sin(x)sin(y)sin(z)+sin(x)cos(y)cos(z)+cos(x)sin(y)cos(z)+cos( x)cos(y)sin(z)–t;
  • t is a surface parameter
  • x, y, and z are the x-axis coordinates, y-axis coordinates, and z-axis coordinates, respectively.
  • the method further includes the following step: adjusting the curved surface parameter t according to the performance parameter to adjust the configuration of the three-dimensional model of the cooling device of the hydrogenation unit.
  • performance parameters include heat exchange rate, temperature change, pressure drop, and contact area.
  • a second aspect of the present invention provides a cooling device of a hydrogenation unit, wherein the cooling device of the hydrogenation unit is manufactured by the method for manufacturing a cooling device of a hydrogenation unit according to the first aspect of the present invention.
  • a third aspect of the present invention provides a hydrogenation device, characterized in that the hydrogenation device includes a cooling device manufactured by the method for manufacturing a cooling device for a hydrogenation device according to the first aspect of the present invention.
  • the cooling device of the hydrogenation device provided by the present invention utilizes additive manufacturing technology, which has a good hydrogen cooling effect, has a compact structure, and can be realized at a lower manufacturing cost.
  • the cooling device of the hydrogenation device provided by the present invention has better heat transfer ability, and can have a lower design threshold, and can be quickly manufactured by adopting a convenient and automatic method.
  • Figure 1 is a schematic diagram of the structure of a hydrogenation unit
  • FIG. 2 is a schematic diagram of a filling curve of a two-dimensional plane constructed based on a Peano curve in a method for manufacturing a cooling device of a hydrogenation device according to a specific embodiment of the present invention
  • FIG. 3 is a schematic diagram of converting a two-dimensional curve into a three-dimensional structure in a method for manufacturing a cooling device of a hydrogenation device according to a specific embodiment of the present invention
  • FIG. 4 is a schematic diagram of a three-dimensional model of the cooling device of the hydrogenation device based on the theory of three-period minimal curved surface in the method for manufacturing the cooling device of the hydrogenation device according to a specific embodiment of the present invention
  • Figure 5 is a schematic diagram of a selective laser melting device.
  • the cooling device manufacturing mechanism of the hydrogenation device provided by the present invention can effectively manufacture the structure of the cooling device.
  • the external geometric design and internal structure are optimized through thermal conduction structure coupling analysis.
  • the liquid guiding connection structure inside the cooling device structure and the partition wall of the hydrogen pre-cooling micro-pipe heat exchanger is determined by different applications.
  • the main geometric structure is the main factor that affects the performance of the hydrogenation unit.
  • FIG. 1 is a schematic diagram of the structure of a hydrogenation unit.
  • the hydrogenation unit 100 includes a housing with a housing space in the housing, and a cooling device 110 is provided in the housing space.
  • the cooling device 110 is provided with as many tiny hydrogen pipes and cooling medium pipes 112 as possible in a limited space.
  • a hydrogen inlet 122 and a hydrogen outlet 124, as well as a cooling medium inlet 132 and a cooling medium outlet 134 are respectively provided on the shell of the hydrogenation device 100.
  • a pre-cooling device 110 is required in the hydrogen refueling station 100.
  • the medium outlet 134 outputs to provide a continuous cooling medium.
  • the hot hydrogen is fed into the hydrogenation device 100 from the hydrogen inlet 122 and exchanges heat with the cooling medium in the cooling device 110 as much as possible in a limited space, so as to achieve the effect of cooling.
  • the hydrogen gas and the cooling medium are divided into several branches and small pieces through the above-mentioned pipes and inlets and outlets, so that the hydrogen and the cooling medium are fully fused without mixing, and the wall-type heat exchange is performed to achieve thermal contact heat transfer. Purpose.
  • the first aspect of the present invention provides a method for manufacturing a cooling device of a hydrogenation device, which includes the following steps.
  • step S1 perform step S1 to generate a three-dimensional model of the cooling device of the hydrogenation device, wherein the cooling device is provided with a hydrogen pipeline and a cooling medium pipeline.
  • the three-dimensional model of the cooling device of the hydrogenation device can optionally be realized by the Peano curve theory, or by the theory of three-period minimal surface.
  • the step S1 further includes a sub-step S11 and a sub-step S12.
  • a filling curve of a two-dimensional plane is constructed based on the Peano curve.
  • the successive iteration step of the curve is set at a predetermined distance, which combines a surface based on the non-uniform rational B-Splines of the curve and surface , wherein, the non-uniform rational B-spline of the curved surface has a non-uniform rational basic spline.
  • Such a surface is set on a curve and defines a closed structure combined with the external skin.
  • Figure 2 shows the four iterative steps of constructing a Peano two-dimensional curve from left to right. Since it is necessary to always create an isolated area for the hydrogen pipeline and the cooling medium pipeline, the amount of deviation must be adjusted. Since each iteration step is performed from left to right as shown in Figure 2, the curve becomes longer and the selected deviation is also reduced.
  • step S12 the plane is divided into two disconnected areas according to the filling curve of the two-dimensional plane, and a three-dimensional stretching transformation is performed to generate the contact area of the hydrogen gas and the cooling medium to generate the hydrogenation device Three-dimensional model of the cooling device.
  • the visualization data that can accommodate hydrogen and cooling medium in different spaces can be displayed in one unit or one element, such as unit 210 or unit 220.
  • the thickness of the partition wall of the hydrogen pipe and the cooling medium pipe will be greatly reduced, which is equivalent to an adjustment factor, and the length of the partition wall will also be greatly reduced within the same range.
  • the geometry of the final cooling device is countercurrent. As shown in FIG. 3, the cooling device 200 thus formed realizes the arrangement of as many cooling pipes 240 and hydrogen pipes 230 as possible in a limited space.
  • the step S1 further includes a sub-step S11' and a sub-step S12'.
  • the initial structural unit and distribution are determined.
  • Triply Periodic Minimal Surfaces are minimal surfaces that are periodic in three independent directions in a three-dimensional space. They have the advantages of diverse geometric shapes and parametric modeling. Using the TPMS structure to fill the three-dimensional space can form a smooth and continuous shell surface inside it, divide the space into two continuous internal areas that are not connected to each other, and have a large surface area, which is suitable for constructing heat exchange elements.
  • the initial structure unit may be selected from a first initial structure unit 310, a second initial structure unit 410, a third initial structure unit 510, a fourth initial structure unit 610, and the like.
  • a three-dimensional model of the cooling device of the hydrogenation unit is generated based on the initial structure unit and its corresponding three-period minimal surface algorithm, wherein the three-period minimal surface algorithm includes any of the following item:
  • F(x,y,z) sin(x)sin(y)sin(z)+sin(x)cos(y)cos(z)+cos(x)sin(y)cos(z)+cos( x)cos(y)sin(z)–t;
  • t is a surface parameter
  • the following step is further included: adjusting the curved surface parameter t according to the performance parameter to adjust the configuration of the three-dimensional model of the cooling device of the hydrogenation unit.
  • the performance parameters include heat exchange rate, temperature change, pressure drop, and contact area.
  • the TPMS unit can be non-uniformly filled, distributed and fused in the area, thereby realizing the adjustment of key performance such as contrast surface area and heat exchange rate.
  • the design optimization process takes structural element parameters and their distribution in the design area as design variables, and iteratively solves them through multi-physics coupling simulation and optimization methods. Through multi-physics coupling analysis, the performance of the heat exchange element is analyzed, and the design variables are updated by the optimization algorithm, and iteratively until the design requirements are met.
  • step S2 is performed to perform laser scanning on the metal particles in the additive manufacturing printing device, so that the metal particles are melted into the cooling device layer by layer from bottom to top according to the three-dimensional model of the cooling device.
  • the additive manufacturing printing device is a selective laser melting device or an adhesive jet forming device.
  • Additive Manufacturing is now one of the rapidly developing advanced manufacturing technologies in the world, and it shows broad application prospects.
  • SLM Selected Laser Melting
  • additive manufacturing is a type of additive manufacturing (Additive manufacturing) technology, which can quickly manufacture the same parts as the CAD model by means of laser selective melting.
  • the selective laser melting process has been widely used. Different from the traditional material removal mechanism, additive manufacturing is based on the completely opposite principle of materials incremental manufacturing (philosophy). Among them, selective laser melting uses high-power lasers to melt the metal powder and input layer by layer through 3D CAD. The parts/components are built up to the ground, so that components with complex internal channels can be successfully manufactured. Additive manufacturing technology can provide a unique potential for arbitrarily manufacturing complex structural components, such complex components usually cannot be easily manufactured by traditional manufacturing processes.
  • FIG. 5 is a schematic diagram of a selective laser melting device.
  • the selective laser melting device 100 includes a laser source 110, a mirror scanner 120, a prism 130, a powder feeding cylinder 140, a forming cylinder 150 and a recovery cylinder 160.
  • the laser source 110 is arranged above the selective laser melting device 100 and serves as a heating source for the metal powder, that is, the metal powder is melted for 3D printing.
  • first piston (not shown) that can move up and down at the lower part of the powder feeding cylinder 140.
  • a spare metal powder is placed in the cavity space above the first piston of the powder feeding cylinder 140, and it follows the movement of the first piston. Moving up and down sends the metal powder from the powder feeding cylinder 140 into the forming cylinder 150.
  • a 3D printed part placement table 154 is provided in the forming cylinder 150, a 3D printed part is clamped above the placement table 154, and a second piston 152 is fixed below the placement table 154, wherein the second piston 152 is perpendicular to the placement table 154 set up.
  • the second piston 152 moves from top to bottom to form a printing space in the molding cylinder 220.
  • the laser source 110 for laser scanning should be set above the forming cylinder 150 of the selective laser melting equipment.
  • the mirror scanner 120 adjusts the position of the laser by adjusting the angle of a prism 130, and determines which area of the laser is melted by the adjustment of the prism 130. powder.
  • the powder feeding cylinder 140 further includes a roller (not shown), and the metal powder P is stacked on the upper surface of the first piston.
  • the first piston moves vertically from bottom to top to transfer the metal powder to the upper part of the powder feeding cylinder 140.
  • the roller may roll on the metal powder to send the metal powder P to the forming cylinder 150.
  • the metal powder is stainless steel powder.
  • step S3 a hydrogen inlet and a hydrogen outlet are respectively connected to the hydrogen pipeline, and a cooling medium inlet and a cooling medium outlet are respectively arranged on the cooling medium pipeline.
  • the second aspect of the present invention provides a cooling device of a hydrogenation unit, wherein the cooling device of the hydrogenation unit is manufactured by the method for manufacturing a cooling device of a hydrogenation unit according to the first aspect of the present invention.
  • a third aspect of the present invention provides a hydrogenation device, characterized in that the hydrogenation device includes a cooling device manufactured by the method for manufacturing a cooling device for a hydrogenation device according to the first aspect of the present invention.
  • the cooling device of the hydrogenation device provided by the present invention utilizes additive manufacturing technology, which has a good hydrogen cooling effect, has a compact structure, and can be realized at a lower manufacturing cost.
  • the cooling device of the hydrogenation device provided by the present invention has better heat transfer ability, and can have a lower design threshold, and can be quickly manufactured by adopting a convenient and automatic method.
  • the additive feature unit geometry has a high strength-to-weight ratio and a surface area to mass ratio, which can maximize the heat exchange surface while reducing the wall thickness, but can still maintain a stable Structural strength and rigidity, so as to achieve the goal of reducing the weight of parts and improving the overall heat transfer performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了加氢装置,加氢装置的冷却装置及其制造方法,其中,所述加氢装置包括一个外壳,所述外壳中设置有一个冷却装置,包括如下步骤:S1,生成所述加氢装置的冷却装置的三维模型,其中,所述冷却装置设置有氢气管道和冷却介质管道;S2,在增材制造打印装置中对金属颗粒进行激光扫描,使得所述金属颗粒按照所述冷却装置的三维模型自下而上地逐层融化为所述冷却装置。本发明制造加氢站的冷却装置方便快速,冷却效果好。

Description

加氢装置,加氢装置的冷却装置及其制造方法 技术领域
本发明涉及增材制造领域,尤其涉及一种加氢装置,加氢装置的冷却装置及其制造方法。
背景技术
制冷(Refrigeration)是氢加油的主要功能。氢预冷却微管道热交换器(H2PC,Hydrogen pre-cooling microchannel heat exchangers)和氢同流换热器(hydrogen recuperators)现在制造为用于具有不同氢填入率的加氢站。通常,加氢热交换器(hydrogen refueling heat exchangers)的热传输原则是基于逆流液体冷却(counterflow liquid cooling)。为了在有限空间里增强热交换效果,微管道结构也被应用于氢预冷却/同流换热器的设计。现有技术利用的是规则管道。
这些氢预冷却微管道热交换器需要处理1000bar以上的压力,预冷却或热交换的设备费用很高。另一方面,运行能耗花费也是一个具有较少效率燃料补给的考虑。钎焊或扩散压合等传统制造方法用于识别印金属板(stamped metal sheets)的冶金结合(metallurgical bonding)来形成热交换核。也就是,现有技术通过一层层金属薄片冲压,在炉子里钎焊或者扩散焊制造冷却装置。由于传统制造模式的局限性,加氢热交换器的花费和效率并不能满足市场需求。
通过利用增材制造技术能够获取显而易见的优点和效果。这些氢预冷却微管道热交换器只能在一个时间生产,其会免除许多传统工序。同时,通过杠杆作用DfAM,这些新设计会更加紧凑和更有能量效率。然而,增材制造的新涉及总是需要具有丰富实操经验和领域知识的资深专家。因此,现有技术对在该领域应用增材制造的快速接受还具有局限性。
发明内容
本发明第一方面提供了一种加氢装置的冷却装置制造方法,其中,所述加氢装置包括一个外壳,所述外壳中设置有一个冷却装置,包括如 下步骤:S1,生成所述加氢装置的冷却装置的三维模型,其中,所述冷却装置设置有氢气管道和冷却介质管道;S2,在增材制造打印装置中对金属颗粒进行激光扫描,使得所述金属颗粒按照所述冷却装置的三维模型自下而上地逐层融化为所述冷却装置。
进一步地,所述步骤S2之后还包括如下步骤:在所述氢气管道上分别连接一个氢气入口和一个氢气出口,在所述冷却介质管道上分别设置一个冷却介质入口和一个冷却介质出口。
进一步地,所述增材制造打印装置为选择性激光熔化装置或者粘合剂喷射成形装置。
进一步地,所述金属粉末为不锈钢粉末。
进一步地,所述步骤S1还包括如下步骤:基于Peano曲线构建二维平面的填充曲线;根据所述二维平面的填充曲线将平面分成两个不联通的区域,并且执行三维拉伸变换以产生所述氢气和冷却介质的接触面积,以产生所述加氢装置的冷却装置的三维模型。
进一步地,所述步骤S1还包括如下步骤:确定初始结构单元及分布;基于所述初始结构单元及其对应的三周期极小曲面算法产生所述加氢装置的冷却装置的三维模型,其中,所述三周期极小曲面算法包括以下任一项:
F(x,y,z)=sin(x)cos(y)+sin(y)cos(z)+sin(z)cos(x)–t;
F(x,y,z)=sin(x)sin(y)sin(z)+sin(x)cos(y)cos(z)+cos(x)sin(y)cos(z)+cos(x)cos(y)sin(z)–t;
F(x,y,z)=cos(x)+cos(y)+cos(z)-t;
F(x,y,z)=2(cos(x)cos(y)+cos(y)cos(z)+cos(z)cos(x))+(cos(2x)+cos(2y)+cos(2z))–t,
其中,t为曲面参数,x、y、z分别为x轴坐标、y轴坐标、z轴坐标。
进一步地,所述步骤S1之后和所述步骤S2之前还包括如下步骤:根据绩效参数调整曲面参数t,以调整所述加氢装置的冷却装置的三维模型的构型。
进一步地,所述绩效参数包括热交换率、温度变化、压降、接触面积。
本发明第二方面提供了加氢装置的冷却装置,其中,所述加氢装置 的冷却装置由本发明第一方面所述的加氢装置的冷却装置制造方法制造。
本发明第三方面提供了加氢装置,其特征在于,所述加氢装置包括由本发明第一方面所述的加氢装置的冷却装置制造方法制造的冷却装置。
本发明提供的加氢装置的冷却装置利用了增材制造技术,其具有很好的氢气冷却效果,并具有致密的结构,以及能够较低的制造成本来实现。本发明提供的加氢装置的冷却装置具有更好的热传到能力,并且能够具有较低的设计阈值,并且能够采用方便和自动的方法快速制造。
附图说明
图1是加氢装置的结构示意图;
图2是根据本发明一个具体实施例的加氢装置的冷却装置制造方法的基于Peano曲线构建二维平面的填充曲线示意图;
图3是根据本发明一个具体实施例的加氢装置的冷却装置制造方法的将二维曲线转换为三维结构的示意图;
图4是根据本发明一个具体实施例的加氢装置的冷却装置制造方法的基于三周期极小曲面理论产生加氢装置的冷却装置的三维模型的示意图;
图5是选择性激光熔化设备的示意图。
具体实施方式
以下结合附图,对本发明的具体实施方式进行说明。
本发明提供的加氢装置的冷却装置制造机制能够有效制造冷却装置的结构。对于普通冷却装置来说,外部几何设计和内部结构是通过热传导结构耦合分析来优化的。在冷却装置结构内部和氢预冷却微管道热交换器的间壁的液体引导连接结构是由不同的应用决定的。
考虑到加氢装置的冷却装置的结构特质,主要几何结构是主要影响加氢装置产品性能的因素。在本发明中,我们主要通过自动进化来考虑HX主要几何结构制造。
图1是加氢装置的结构示意图。如图1所示,加氢装置100包括一 个壳体,壳体中具有容纳空间,在容纳空间中设置了一个冷却装置110。如图1所示,冷却装置110中在有限空间中设置了尽量多的微小氢气管道和冷却介质管道112。在加氢装置100的壳体上还分别设置有一个氢气入口122和一个氢气出口124,以及一个冷却介质入口132和一个冷却介质出口134。具体地,氢气作为新的燃料使用需要对氢气进行降温,因此在加氢站100中需要设置预先冷却装置110,冷却介质从冷却介质入口13输入加氢站100中的冷却装置110并从一个冷却介质出口134输出,从而提供持续不断的冷却介质。热氢气从氢气入口122输入加氢装置100并且在有限空间里尽量多地和冷却装置110中的冷却介质进行热交换,从而达到降温的效果。冷却装置110中通过上述管道和出入口把氢气气体和冷却介质分成若干个支流和小块,使得氢气和冷却介质在不需要混合的前提下充分融合,进行间壁式换热,达到热接触热传递的目的。
本发明第一方面提供了一种加氢装置的冷却装置制造方法,其中,包括如下步骤。
首先执行步骤S1,生成所述加氢装置的冷却装置的三维模型,其中,所述冷却装置设置有氢气管道和冷却介质管道。生成加氢装置的冷却装置的三维模型可选地可以选择Peano曲线理论实现,或者通过三周期极小曲面理论实现。
在基于Peano曲线理论生成加氢装置的冷却装置的三维模型的实施例中,所述步骤S1还进一步地包括子步骤S11和子步骤S12。
其中,在子步骤S11中,首先基于Peano曲线构建二维平面的填充曲线。为了构建一个三维得内部结构,曲线的逐次迭代(successive iteration)步骤会在一个预定距离中设置,其结合了一个基于曲线曲面的非均匀有理B样条(Non-Uniform Rational B-Splines)的表面,其中,曲线曲面的非均匀有理B样条具有非均匀有理基样条(non-uniform rational basic spline)。这样的表面是设置在曲线上,并且定义了一个结合了外部皮肤的封闭结构。图2从左至右地显示了构建一个Peano二维曲线的四个迭代步骤。由于需要总是针对氢气管道和冷却介质管道产生隔离的区域,就必须调节偏离量。由于如图2所示从左到右每执行一个迭代步骤,曲线都变得更长,所选的偏离量也会减少。
在步骤S12中,根据所述二维平面的填充曲线将平面分成两个不联通的区域,并且执行三维拉伸变换以产生所述氢气和冷却介质的接触面积,以产生所述加氢装置的冷却装置的三维模型。如图3所示,二维转换为三维步骤执行以后,可以容纳氢气和冷却介质在不同的空间中的可视化数据可以用一个单元或者一个元素展示,例如单元210或者单元220。在单元210或者单元220这样的模型中,氢气管道和冷却介质管道的隔间壁的厚度会极大地减少,其相当于一个调节因素,同时隔间壁的长度也会在同样范围内极大减少。此外,最终冷却装置的几何形状是逆流的。如图3所示,由此形成的冷却装置200在有限空间里实现了冷却管道240和氢气管道230尽量多地设置。
通过三周期极小曲面理论生成加氢装置的冷却装置的三维模型的实施例中,所述步骤S1还进一步地包括子步骤S11’和子步骤S12’。
在子步骤S11’中,确定初始结构单元及分布。三周期极小曲面(Triply Periodic Minimal Surfaces,TPMS)是在三维空间中三个独立方向均呈周期性的极小曲面,具有几何形状多样并可参数化建模等的优点。利用TPMS结构对三维空间进行填充,可在其内部形成光滑连续的壳面,将空间分割为互不联通的两个连续内部区域,并可具备大的表面积,适用于构造换热元件。如图4所示,初始结构单元可以选自第一初始结构单元310、第二初始结构单元410、第三初始结构单元510和第四初始结构单元610等。
在子步骤S12’中,基于所述初始结构单元及其对应的三周期极小曲面算法产生所述加氢装置的冷却装置的三维模型,其中,所述三周期极小曲面算法包括以下任一项:
F(x,y,z)=sin(x)cos(y)+sin(y)cos(z)+sin(z)cos(x)–t;
F(x,y,z)=sin(x)sin(y)sin(z)+sin(x)cos(y)cos(z)+cos(x)sin(y)cos(z)+cos(x)cos(y)sin(z)–t;
F(x,y,z)=cos(x)+cos(y)+cos(z)-t;
F(x,y,z)=2(cos(x)cos(y)+cos(y)cos(z)+cos(z)cos(x))+(cos(2x)+cos(2y)+cos(2z))–t,
其中,t为曲面参数,x、y、z分别为x轴坐标、y轴坐标、z轴坐标。因此,根据在步骤S11’中选择的初始结构单元执行不同的算法生成不同 形状的三维模型。例如,如果选择了第一初始结构单元310,所述第一初始结构单元310对应的三周期极小曲面算法为F(x,y,z)=sin(x)cos(y)+sin(y)cos(z)+sin(z)cos(x)–t,然后最终生成三维模型300。如果选择了第二初始结构单元410,所述第二初始结构单元410对应的三周期极小曲面算法为F(x,y,z)=sin(x)sin(y)sin(z)+sin(x)cos(y)cos(z)+cos(x)sin(y)cos(z)+cos(x)cos(y)sin(z)–t,然后最终生成三维模型400。如果选择了第三初始结构单元510,所述第三初始结构单元510对应的三周期极小曲面算法为F(x,y,z)=cos(x)+cos(y)+cos(z)–t,然后最终生成三维模型500。如果选择了第四初始结构单元610,所述第四初始结构单元610对应的三周期极小曲面算法为F(x,y,z)=2(cos(x)cos(y)+cos(y)cos(z)+cos(z)cos(x))+(cos(2x)+cos(2y)+cos(2z))–t,然后最终生成三维模型600。
在本实施例中,在所述步骤S1之后和所述步骤S2之前还包括如下步骤:根据绩效参数调整曲面参数t,以调整所述加氢装置的冷却装置的三维模型的构型。其中,所述绩效参数包括热交换率、温度变化、压降、接触面积。通过改变曲面参数t可实现对分隔区域体积划分的控制,控制单位体积内的表面的变化,例如t从0到1范围内变化,则最终生成的三维模型形状在初始构型上能够变化,所以本发明可以通过优化算法来优化三维模型的形状和构造。
因此,在本实施例中,在区域内可对TPMS单元进行非均匀填充分布及融合,进而实现对比表面积及换热率等关键性能的调节。设计优化过程以结构单元参数及其在设计区域内分布为设计变量,通过多物理场耦合仿真模拟和优化方法结合迭代求解。通过多物理场耦合分析,对换热元件进行性能分析,并由优化算法对设计变量进行更新,不断迭代直至满足设计要求。
然后执行步骤S2,在增材制造打印装置中对金属颗粒进行激光扫描,使得所述金属颗粒按照所述冷却装置的三维模型自下而上地逐层融化为所述冷却装置。其中,所述增材制造打印装置为选择性激光熔化装置或者粘合剂喷射成形装置。
增材制造工艺(Additive Manufacturing)如今是世界上发展迅速的先进制造技术之一,其显示出了宽广的应用前景。选择性激光熔化 (Selected Laser Melting,SLM)工艺是增材制造(Additive manufacturing)技术的一种,其通过激光选区融化的方式可快速地将与CAD模型相同的零部件制造出来。目前选择性激光熔化工艺得到了广泛的应用。和传统材料去除机制不同,增材制造是基于完全相反的材料增加制造原理(materials incremental manufacturing philosophy),其中,选择性激光熔化利用高功率激光熔化金属粉末,并通过3D CAD输入来一层一层地建立部件/元件,这样可以成功制造出具有复杂内部沟道的元件。增材制造技术能够提供一种任意制造复杂结构元件的独特潜力,这样的复杂元件通常不能轻易由传统制程来制造。
图5是选择性激光熔化设备的示意图。如图2所示,选择性激光熔化设备100包括一个激光源110、一个镜面扫描器120、一个棱镜130、一个送粉缸140、一成型缸150和一个回收缸160。其中,激光源110设置于选择性激光融化设备100上方,充当金属粉末的加热源,即融化金属粉末来进行3D打印。
其中,送粉缸140下部有一个能够上下移动的第一活塞(未示出),在送粉缸140的第一活塞上面的腔体空间放置了备用的金属粉末,并随着第一活塞的上下移动从送粉缸140将金属粉末送入成型缸150。在成型缸150中设置有一个3D打印件放置台154,放置台154上方夹持有一个3D打印件,放置台154下方固定有一个第二活塞152,其中,第二活塞152和放置台154垂直设置。在3D打印过程中,第二活塞152自上而下移动,以在成型缸220中形成打印空间。激光扫描的激光源110应设置于选择性激光融化设备的成型缸150的上方,镜面扫描器120通过调整一个棱镜130的角度调整激光的位置,通过棱镜130的调节来决定激光融化哪个区域的金属粉末。送粉缸140还包括一个滚轮(未示出),金属粉末P堆设于第一活塞的上表面,第一活塞垂直地自下而上移动传递金属粉末至送粉缸140上部。滚轮可在金属粉末上滚动,以将金属粉末P送至成型缸150中。从而持续对金属粉末执行激光扫描,将金属粉末分解为粉末基体,继续对所述粉末基体进行激光扫描直至使所述粉末基体自下而上地烧结为预设形状的打印件。
其中,所述金属粉末为不锈钢粉末。
最后步骤S3,在所述氢气管道上分别连接一个氢气入口和一个氢气 出口,在所述冷却介质管道上分别设置一个冷却介质入口和一个冷却介质出口。
本发明第二方面提供了加氢装置的冷却装置,其中,所述加氢装置的冷却装置由本发明第一方面所述的加氢装置的冷却装置制造方法制造。
本发明第三方面提供了加氢装置,其特征在于,所述加氢装置包括由本发明第一方面所述的加氢装置的冷却装置制造方法制造的冷却装置。
本发明提供的加氢装置的冷却装置利用了增材制造技术,其具有很好的氢气冷却效果,并具有致密的结构,以及能够较低的制造成本来实现。本发明提供的加氢装置的冷却装置具有更好的热传到能力,并且能够具有较低的设计阈值,并且能够采用方便和自动的方法快速制造。本发明和传统设计与制造方法相比,所述的增材特征单元几何具有高的强重比和表面积对质量比,能在最大化换热表面的同时减少壁厚,但可以依旧保持稳定的结构强度与刚性,从而达到减少零部件重量又提高整体换热性能的目标。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。此外,不应将权利要求中的任何附图标记视为限制所涉及的权利要求;“包括”一词不排除其它权利要求或说明书中未列出的装置或步骤;“第一”、“第二”等词语仅用来表示名称,而并不表示任何特定的顺序。

Claims (10)

  1. 加氢装置的冷却装置制造方法,其中,所述加氢装置包括一个外壳,所述外壳中设置有一个冷却装置,包括如下步骤:
    S1,生成所述加氢装置的冷却装置的三维模型,其中,所述冷却装置设置有氢气管道和冷却介质管道;
    S2,在增材制造打印装置中对金属颗粒进行激光扫描,使得所述金属颗粒按照所述冷却装置的三维模型自下而上地逐层融化为所述冷却装置。
  2. 根据权利要求1所述的加氢装置的冷却装置制造方法,其特征在于,所述步骤S2之后还包括如下步骤:在所述氢气管道上分别连接一个氢气入口和一个氢气出口,在所述冷却介质管道上分别设置一个冷却介质入口和一个冷却介质出口。
  3. 根据权利要求1所述的加氢装置的冷却装置制造方法,其特征在于,所述增材制造打印装置为选择性激光熔化装置或者粘合剂喷射成形装置。
  4. 根据权利要求1所述的加氢装置的冷却装置制造方法,其特征在于,所述金属粉末为不锈钢粉末。
  5. 根据权利要求1所述的加氢装置的冷却装置制造方法,其特征在于,所述步骤S1还包括如下步骤:
    基于Peano曲线构建二维平面的填充曲线;
    根据所述二维平面的填充曲线将平面分成两个不联通的区域,并且执行三维拉伸变换以产生所述氢气和冷却介质的接触面积,以产生所述加氢装置的冷却装置的三维模型。
  6. 根据权利要求1所述的加氢装置的冷却装置制造方法,其特征在于,所述步骤S1还包括如下步骤:
    确定初始结构单元及分布;
    基于所述初始结构单元及其对应的三周期极小曲面算法产生所述加氢装置的冷却装置的三维模型,其中,所述三周期极小曲面算法包括以下任一项:
    F(x,y,z)=sin(x)cos(y)+sin(y)cos(z)+sin(z)cos(x)–t;
    F(x,y,z)=sin(x)sin(y)sin(z)+sin(x)cos(y)cos(z)+cos(x)sin(y)cos(z)+cos(x)cos(y)sin(z)–t;
    F(x,y,z)=cos(x)+cos(y)+cos(z)-t;
    F(x,y,z)=2(cos(x)cos(y)+cos(y)cos(z)+cos(z)cos(x))+(cos(2x)+cos(2y)+cos(2z))–t,
    其中,t为曲面参数,x、y、z分别为x轴坐标、y轴坐标、z轴坐标。
  7. 根据权利要求6所述的加氢装置的冷却装置制造方法,其特征在于,所述步骤S1之后和所述步骤S2之前还包括如下步骤:根据绩效参数调整曲面参数t,以调整所述加氢装置的冷却装置的三维模型的构型。
  8. 根据权利要求7所述的加氢装置的冷却装置制造方法,其特征在于,所述绩效参数包括热交换率、温度变化、压降、接触面积。
  9. 加氢装置的冷却装置,其特征在于,所述加氢装置的冷却装置由权利要求1至8任一项所述的加氢装置的冷却装置制造方法制造。
  10. 加氢装置,其特征在于,所述加氢装置包括由权利要求1至8任一项所述的加氢装置的冷却装置制造方法制造的冷却装置。
PCT/CN2020/095442 2020-06-10 2020-06-10 加氢装置,加氢装置的冷却装置及其制造方法 WO2021248377A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/095442 WO2021248377A1 (zh) 2020-06-10 2020-06-10 加氢装置,加氢装置的冷却装置及其制造方法
CN202080099014.7A CN115335206A (zh) 2020-06-10 2020-06-10 加氢装置,加氢装置的冷却装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095442 WO2021248377A1 (zh) 2020-06-10 2020-06-10 加氢装置,加氢装置的冷却装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2021248377A1 true WO2021248377A1 (zh) 2021-12-16

Family

ID=78846713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095442 WO2021248377A1 (zh) 2020-06-10 2020-06-10 加氢装置,加氢装置的冷却装置及其制造方法

Country Status (2)

Country Link
CN (1) CN115335206A (zh)
WO (1) WO2021248377A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623705A (zh) * 2022-03-15 2022-06-14 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410559A (zh) * 2006-01-24 2009-04-15 巴斯夫欧洲公司 用于制备人造组织的聚合物骨架
CN108027222A (zh) * 2015-09-25 2018-05-11 西屋电气有限责任公司 热交换器
US20180187984A1 (en) * 2017-01-03 2018-07-05 Titan Tensor LLC Monolithic Bicontinuous Labyrinth Structures and Methods For Their Manufacture
CN108613573A (zh) * 2018-07-04 2018-10-02 蚌埠艾普压缩机制造有限公司 加氢站高压氢气压缩机能够拆洗的高效管壳式冷却器
CN209877707U (zh) * 2018-12-27 2019-12-31 北京星际荣耀空间科技有限公司 微通道换热器
CN111159903A (zh) * 2019-12-31 2020-05-15 重庆邮电大学 一种紧凑型多通道多流体热交换装置的设计和制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410559A (zh) * 2006-01-24 2009-04-15 巴斯夫欧洲公司 用于制备人造组织的聚合物骨架
CN108027222A (zh) * 2015-09-25 2018-05-11 西屋电气有限责任公司 热交换器
US20180187984A1 (en) * 2017-01-03 2018-07-05 Titan Tensor LLC Monolithic Bicontinuous Labyrinth Structures and Methods For Their Manufacture
CN108613573A (zh) * 2018-07-04 2018-10-02 蚌埠艾普压缩机制造有限公司 加氢站高压氢气压缩机能够拆洗的高效管壳式冷却器
CN209877707U (zh) * 2018-12-27 2019-12-31 北京星际荣耀空间科技有限公司 微通道换热器
CN111159903A (zh) * 2019-12-31 2020-05-15 重庆邮电大学 一种紧凑型多通道多流体热交换装置的设计和制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623705A (zh) * 2022-03-15 2022-06-14 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器
CN114623705B (zh) * 2022-03-15 2022-10-18 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器
WO2023173880A1 (zh) * 2022-03-15 2023-09-21 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器

Also Published As

Publication number Publication date
CN115335206A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
JP7040707B2 (ja) 付加製造された熱交換器
Wang et al. Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization
Neugebauer et al. Additive manufacturing boosts efficiency of heat transfer components
CN100498183C (zh) 板-泡式换热器
WO2021248377A1 (zh) 加氢装置,加氢装置的冷却装置及其制造方法
CN112191849B (zh) 基于温度分布的梯度多孔散热装置设计及增材制造方法
CN111159903B (zh) 一种紧凑型多通道多流体热交换装置的设计和制造方法
Bao et al. Enhanced heat transport in partitioned thermal convection
Zhang et al. Numerical simulation of powder flow field on coaxial powder nozzle in laser metal direct manufacturing
JP2007163131A (ja) プレート式熱交換器の強度決定方法とプレート式熱交換器の製作方法並びに工業プロセスエンジニアリングプラントの製作方法
CN105598448A (zh) 一种金属材料激光3d打印原位预热温度的控制方法
CN114154262B (zh) 一种交叉流印刷电路板式换热器正向设计方法
CN115859851A (zh) 一种液态金属耦合超临界二氧化碳共轭传热的计算方法
CN105032980A (zh) 一种薄壁钛合金复杂变截面管材的成形方法及应用
CN116186809B (zh) 一种激光粉末床熔融多道多层扫描仿真方法
CN205519653U (zh) 一种非晶合金材料制备与成形一体化的3d打印装置
Alur Experimental studies on plate fin heat exchangers
CN203697387U (zh) 一种电加热式高光注塑模具
CN207247961U (zh) 一种超薄立体水冷装置
CN203936247U (zh) 热交流器用集流管双工位多品种散热管槽孔冲制模具
CN203665888U (zh) 一种蒸汽加热式高光注塑模具
Battaglia et al. Additive Manufacturing of a High Temperature, Ni-Based Superalloy Compact Heat Exchanger: A Study on the Role of Select Key Printing Parameters
CN107735172A (zh) 包括彼此之间具有薄壁的通道的热交换器和/或热交换器‑反应器
CN212860100U (zh) 一种基于铍铜材料的模具随形水路
Wu et al. Study on Support-Free Printing of Large-Flow Material Extrusion Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940036

Country of ref document: EP

Kind code of ref document: A1