WO2023173814A1 - 电驱动桥、电驱动桥的控制方法和车辆 - Google Patents

电驱动桥、电驱动桥的控制方法和车辆 Download PDF

Info

Publication number
WO2023173814A1
WO2023173814A1 PCT/CN2022/136386 CN2022136386W WO2023173814A1 WO 2023173814 A1 WO2023173814 A1 WO 2023173814A1 CN 2022136386 W CN2022136386 W CN 2022136386W WO 2023173814 A1 WO2023173814 A1 WO 2023173814A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
electric drive
reducer
drive axle
mode
Prior art date
Application number
PCT/CN2022/136386
Other languages
English (en)
French (fr)
Inventor
袁世鹏
胡如现
张艳超
李国选
Original Assignee
北汽福田汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北汽福田汽车股份有限公司 filed Critical 北汽福田汽车股份有限公司
Publication of WO2023173814A1 publication Critical patent/WO2023173814A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/121Power-transmission from drive shaft to hub
    • B60B35/122Power-transmission from drive shaft to hub using gearings
    • B60B35/125Power-transmission from drive shaft to hub using gearings of the planetary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • B60K17/165Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to an electric drive axle, a control method of the electric drive axle, and a vehicle.
  • the powertrain of new energy pure electric commercial vehicles generally adopts the traditional solution, which uses a motor or a motor-matching reducer to replace the engine, and continues to retain the structure of the transmission shaft and universal joint, which greatly reduces the chassis space utilization, and has heavy weight and longitudinal transmission.
  • the first category is a centralized electric drive axle, in which a single power unit distributes energy through a differential; the second category is a distributed electric drive axle, which consists of two power units respectively. Control the wheels on both sides, but this technology requires extremely high control accuracy, otherwise it will cause great damage to the tires, and the wheel edge environment and working conditions are harsh, which requires extremely high product reliability. Therefore, centralized electric drive axles are more popular in the market.
  • centralized electric drive axles usually adopt the following structural forms: First, the motor and reducer are fixed on springs through suspension and matched with the support bridge structure. Although the NVH effect is better, it still takes up too much space, and the suspension The cost of installing and axle shafts is relatively high; the second is the parallel-shaft electric drive axle, which transmits power to the axle shafts through cylindrical helical gears. Although it saves space, is light in weight, and has high efficiency, due to the center of gravity deviating from the central axis, the power system and the bridge body Hard connection will lead to a poor driving experience; the third is the coaxial electric drive axle. Due to the harsh working environment, it is not suitable to use a variable speed structure, so the power output is not flexible enough.
  • the dual-motor coaxial electric drive axles on the market are all dual-motor coaxial electric drive axles. Synchronous motor electric drive axles have no advantages in working efficiency, operational stability and cost under the conditions where commercial vehicles require low speed, large torque and high speed, light torque.
  • the purpose of the present disclosure is to provide an electric drive axle, a control method for the electric drive axle, and a vehicle, so as to at least partially solve the problems existing in the electric drive axle provided in the related art.
  • an electric drive axle including an axle housing and a driving mechanism provided in the axle housing.
  • the driving mechanism includes:
  • axle including a first half-shaft and a second half-shaft arranged coaxially and respectively connected to opposite wheels;
  • a differential assembly connected between the first half shaft and the second half shaft;
  • a first motor and a first reducer connected to the output end of the first motor, the output end of the first reducer being connected to the differential assembly;
  • the first motor is a permanent magnet synchronous motor
  • the second motor is an asynchronous motor
  • the first motor and the second motor respectively include a stator, a rotor and a motor shaft arranged coaxially with the rotor, wherein the stator is fixedly provided on the inner wall of the axle housing, and the third motor
  • the motor shaft of a motor is hollowly sleeved on the outside of the first half shaft and is drivingly connected to the first reducer.
  • the motor shaft of the second motor is hollowly sleeved on the outside of the second half shaft and is connected with the first reducer.
  • the second reducer transmission connection is provided.
  • bearings are respectively provided between the motor shafts of the first motor and the second motor and the axle housing, and the first motor is provided at the end of the first half-shaft close to the wheel, The second motor is disposed at an end of the second half shaft close to the wheel.
  • the first reducer and the second reducer respectively include an external ring gear, a sun gear and a planet carrier, the planet carrier is a fixed end, and the motors of the first motor and the second motor The shafts are respectively connected with the sun gear of the corresponding reducer;
  • the first reducer and the second reducer are both planetary gear reducers, and the transmission ratio of the first reducer is greater than the transmission ratio of the second reducer.
  • the differential assembly includes a differential case and a differential gear set connecting the differential case and the axle, and the differential case is fixedly connected to the first reduction gearbox. on the external ring gear of the reducer and the second reducer.
  • stator is connected with power lines, and the first motor and the second motor are respectively connected to the motor controller through power lines.
  • a vehicle which vehicle includes the above-mentioned electric drive axle.
  • a method for controlling an electric drive axle is also provided.
  • the electric drive axle is the above-mentioned electric drive axle.
  • the control method includes:
  • the first motor is controlled to be in non-tap mode, and the maximum output torque is T 1max ;
  • the first motor is controlled to be in tap mode, and the maximum output torque is 1/2*T 1max ,
  • M 1 (T 0 /k1, n 0 *k1) is the efficiency of the first motor in non-tapping mode
  • M 2 (T 0 /k1, n 0 *k1) is the efficiency of the first motor in tapping mode
  • M 3 (T 0 /k2, n 0 *k2) is the efficiency of the second motor
  • k1 is the reduction ratio of the first reducer
  • k2 is the reduction ratio of the second reducer.
  • the output torque and output speed of the first motor are (T 1max , n 0 *k1), and the output torque and output speed of the second motor are (T 0 -T 1max *k1)/k2, n 0 *k2);
  • the output torque and output speed of the first motor are (T 0 /k1, n 0 *k1);
  • the working point of the first motor is (a/k1, n 0 *k1), and the working point of the second motor is ((T 0 -a)/k2, n 0 * k2);
  • the operating point of the first motor is (T 0 /k1, n 0 *k1);
  • the operating point of the second motor is (T 0 /k2, n 0 *k2).
  • the permanent magnet synchronous motor and the asynchronous motor can play different roles in different working conditions, thereby effectively improving the power flexibility of the coaxial electric drive axle and taking into account commercial use.
  • the wide range of power characteristics of the vehicle improves the efficiency of the overall power system; by designing the transmission ratio of the first reducer and the second reducer, electronic shifting can be realized through the in-vehicle controller, improving the overall smoothness of the vehicle's operation and improving Vehicle NVH characteristics.
  • the multi-state coupling operation of the first motor and the second motor can not only meet the power requirements, but also achieve the purpose of saving energy and improving battery life.
  • Figure 1 is a schematic diagram of an electric drive axle according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of working conditions when the dual motors are synchronous motors and asynchronous motors, according to an embodiment of the present disclosure.
  • Figure 3 is a flow chart of an electric drive axle control method according to an embodiment of the present disclosure.
  • FIG. 4 is a flow chart of an electric drive axle control method according to another embodiment of the present disclosure.
  • 1-axle housing 21-first half shaft; 22-second half shaft; 3-differential assembly; 31-differential case; 32-differential gear set; 4-first motor; 5- First reducer; 6-second motor; 41, 61-stator; 42, 62-rotor; 7-second reducer; 51, 71-external ring gear; 52, 72-sun gear.
  • an electric drive axle which may include an axle housing 1 and a driving mechanism provided in the axle housing.
  • the driving mechanism includes an axle, and the axle includes a coaxial arrangement and is respectively connected to The first half shaft 21 and the second half shaft 22 of the opposite side wheel;
  • the driving mechanism also includes a differential assembly 3, connected between the first half shaft 21 and the second half shaft 22;
  • the driving mechanism also includes dual motors and Double reducer, wherein the first motor 4 and the first reducer 5 connected to the output end of the first motor 4, the output end of the first reducer 5 is connected to the differential assembly 3; and the second motor 6 is connected to The second reducer 7 is at the output end of the second motor 6, and the output end of the second reducer 7 is connected to the differential assembly 3;
  • the first motor 4 can be a permanent magnet synchronous motor, and the permanent magnet synchronous motor can be divided into It has two states of tapping and non-tap, and the two states are interlocked.
  • the second motor 6 can be an asynchronous motor.
  • speed considering that the excitation magnetic field of the permanent magnet synchronous motor is provided by the permanent magnet, the rotor does not require excitation current, and the motor has high efficiency. Compared with the asynchronous motor, electric energy can be saved at any speed point, especially at low speeds. It is especially obvious under working conditions.
  • torque since the rotor winding does not work when the permanent magnet synchronous motor is operating normally, when designing the permanent magnet synchronous motor, the rotor winding can fully meet the high torque requirements.
  • the combination of permanent magnet synchronous motor and asynchronous motor can make the vehicle adapt to different driving conditions.
  • the permanent magnet synchronous motor can be mainly used for power output. As the vehicle speed increases and the torque becomes smaller, the permanent magnet synchronous motor can be used for power output. The power output ratio of asynchronous motor gradually increases.
  • asynchronous motors do not require field weakening and do not have the problem of high-temperature demagnetization of permanent magnets. They can extend the peak power, rated power, and peak power working time, and are more suitable for vehicles driving at low loads and at high speeds. .
  • both motors are permanent magnet synchronous motors.
  • one synchronous motor can improve efficiency while ensuring different driving conditions of the vehicle.
  • the combination of an asynchronous motor can adjust the output ratio within a suitable speed and torque range.
  • asynchronous motors are lighter than synchronous motors, which helps reduce the unsprung weight of the electric drive axle, making the vehicle drive smoother and more stable.
  • cost reduction compared with synchronous motors, asynchronous motors have lower own costs and subsequent maintenance costs. Therefore, the combination of a synchronous motor and an asynchronous motor is obviously better than the combination of dual synchronous motors.
  • the permanent magnet synchronous motor and the asynchronous motor can play different roles in different working conditions, thereby effectively improving the power flexibility of the coaxial electric drive axle and taking into account commercial use.
  • the wide range of power characteristics of the vehicle improves the efficiency of the overall power system; by designing the transmission ratio of the first reducer 5 and the second reducer 7, electronic shifting can be realized through the in-vehicle controller, improving the overall smoothness of the vehicle's operation. , improve the NVH (Noise, Vibration, Harshness, Noise, Vibration and Acoustic Harshness) characteristics of the entire vehicle.
  • the multi-state coupling operation of the first motor 4 and the second motor 6 can not only meet the power requirements, but also achieve the purpose of saving energy and improving battery life.
  • the first motor 4 includes a stator 41 , a rotor 42 , and a motor shaft arranged coaxially with the rotor 42
  • the second motor 6 includes a stator 61 , a rotor 62 , and a motor arranged coaxially with the rotor 62 .
  • the motor shaft of the first motor 4 is hollowly sleeved on the outside of the first half shaft 21 and is drivingly connected to the first reducer 5
  • the second motor 6 The motor shaft is hollowly sleeved on the outside of the second half shaft 22 and is drivingly connected with the second reducer 7 .
  • the motor housing is shared with the axle housing 1, which can effectively reduce space occupation and also reduce the external interface of the electric drive axle.
  • bearings can be provided between the motor shafts of the first motor 4 and the second motor 6 and the axle housing 1 respectively, so that the motor shafts can rotate stably relative to the axle housing 1.
  • the bearings can be deep groove ball bearings, or It may be an angular contact ball bearing, which is not limited in this disclosure.
  • the first motor 4 is arranged at the end of the first half shaft 21 close to the wheel
  • the second motor 6 is arranged at the end of the second half shaft 22 close to the wheel to ensure that the electric drive axle is integrated
  • the weight is evenly distributed to enhance the driving experience.
  • the first reducer 5 and the second reducer 7 may adopt a single-row planetary gear structure.
  • the first reducer 5 includes an external ring gear 51 , a sun gear 52 and a
  • the planet carrier and the second reducer 7 respectively include an external ring gear 71, a sun gear 72 and a planet carrier.
  • the planet carrier is a fixed end.
  • the motor shaft of the first motor 4 is transmission connected to the sun gear 52.
  • the motor shaft of the second motor 6 is connected to the sun gear. Wheel 72 transmission connection.
  • the first reducer 5 and the second reducer 7 can also be designed as two or more rows of planetary gear mechanisms. By designing their transmission ratios, the electronic shifting function of the electric drive axle can be realized. .
  • the differential assembly 3 may include a differential case 31 and a differential gear set 32 connecting the differential case 31 and the axle.
  • the differential case 31 is fixedly connected to the external teeth of the first reducer 5 ring 51 and the external ring gear 71 of the second reducer 7 .
  • the differential case 31 is integrally connected with the external ring gear 51 and the external ring gear 71.
  • the differential case 31 drives the differential gear set 32, and the differential gear set 32 balances the different speeds of the wheels on both sides, and then transfers the power It is transmitted to the corresponding first half shaft 21 or the second half shaft 22, and finally the power is transmitted to the wheels. More specifically, when the electric drive axle provided by the present disclosure is in working condition, the power transmission path on the first motor 4 side is: rotor 42 - motor shaft - sun gear 52 - external ring gear 51 - differential case 31 - differential Speed gear set 32 - first half shaft 21 - wheel; the power transmission path on the 6th side of the second motor is: rotor 62 - motor shaft - sun gear 72 - external ring gear 71 - differential case 31 - differential gear Group 32 - Second half shaft 22 - Wheel.
  • the transmission ratio of the first reducer 5 is larger than that of the second reducer 7 transmission ratio.
  • the planetary gear has a compact structure, small size, light weight, and a wide transmission ratio range.
  • the first reducer 5 and the second reducer 7 can use different speed ratios.
  • the planetary gear mechanism in which the transmission ratio of the first reducer 5 on the permanent magnet synchronous motor side can be greater than the transmission ratio of the second reducer 7 on the asynchronous motor side, or the transmission ratio on both sides can be the same, this disclosure does not do this Specially limited.
  • power lines are connected to both the stator 41 and the stator 61 , and the first motor 4 and the second motor 6 are connected to the motor controller through the power lines.
  • a single power line is connected to the stator 61 of the second motor 6.
  • the first motor 4 is a tapped permanent magnet synchronous motor
  • multiple power lines can be connected to the stator 41 of the first motor 4.
  • the power lines are characteristics of a tapped permanent magnet synchronous motor.
  • a circuit switch is connected to the power line. The wiring arrangement can be changed through the circuit switch, thereby changing the motor power.
  • the circuit switch can be used to switch the first motor 4
  • the wiring arrangement reduces the magnetic flux and halve the back electromotive force, thus protecting the controller of the first motor 4 from reverse voltage impact.
  • one motor controller can be used to control two motors respectively.
  • Two motor controllers can be provided to control the first motor 4 and the second motor 6 respectively, in the high-efficiency area of the asynchronous motor and the high-efficiency area of the tapped permanent magnet motor. Make predictions and reasonably allocate power sources so that the power system can work more in the efficient range and improve endurance and work efficiency.
  • the electric drive axle has at least the following working states.
  • low-speed and high-torque working conditions that is, when the vehicle is climbing a slope
  • the first motor 4 and the second motor 6 jointly output power, As shown in area B in Figure 2
  • low speed and small torque conditions that is, low-speed operation on urban roads
  • the first motor 4 mainly outputs power
  • the second motor 6 does not work, as shown in area A in Figure 2.
  • the low-speed and small-torque working condition belongs to the advantageous range of the permanent magnet synchronous motor, the low-speed efficiency is high, and it works in its middle working area, close to the high-efficiency range; among them, in area A and area B, the first motor is in a non-tap working state .
  • the first motor 4 does not work, and the second motor 6 outputs power, as shown in area D in Figure 2.
  • the vehicle generally works in the low load range.
  • the power source of the vehicle is mainly the second motor 6 and its second reducer 7 with a small transmission ratio. This does not require too high motor speed, but can also take advantage of the high efficiency characteristics of asynchronous motors in the medium and high speed range.
  • the electric drive axle can also have a medium-speed working mode, as shown in area C in Figure 2.
  • the first motor 4 when the first motor 4 is in the tap working state, in the medium-speed area, it can be controlled by two motor controllers or the overall integrated
  • the cooperation of a motor controller predicts the high-efficiency area of the second motor 6 and the high-efficiency area of the first motor 4 based on the vehicle speed and vehicle load, and reasonably allocates the power source, so that the entire drive system works more in the high-efficiency range. , to improve the endurance of the vehicle.
  • the specific control method will be explained in detail below.
  • the classification standards of high speed, medium speed, low speed, large torque and low torque can be divided by referring to the normal driving data of the corresponding vehicle model, and there are no specific restrictions here.
  • the present disclosure also provides an electric drive axle control method.
  • the electric drive axle is the electric drive axle mentioned above.
  • the control method includes step 301, first obtaining the wheel target speed n 0 , wheel target torque T 0 , then execute step 302 to determine whether M 1 (T 0 /k1, n 0 *k1) ⁇ M 2 (T 0 /k1, n 0 *k1) and M 1 (T 0 /k1, n 0 *k1) ⁇ M 3 (T 0 /k2, n 0 *k2), if the determination is true, the first motor 4 is controlled to be in the non-tap mode. At this time, the maximum output torque of the electric drive axle is T1max .
  • the first motor 4 is controlled to be in tap mode. At this time, the maximum output torque of the electric drive axle is 1/2*T 1max .
  • M 1 (T 0 /k1, n 0 *k1) is the efficiency of the first motor 4 in the non-tap mode
  • M 2 (T 0 /k1, n 0 *k1) is the efficiency of the first motor 4 in the tap mode.
  • Efficiency, M 3 (T 0 /k2, n 0 *k2) is the efficiency of the second motor 6
  • k1 is the reduction ratio of the first reducer 5
  • k2 is the reduction ratio of the second reducer 7 .
  • step 401 is executed to determine whether T 0 > T 1max *k1. If the determination is true, the first motor 4 is controlled to run in the non-tap mode, and the second motor 6 is controlled to run at the same time. , the electric drive axle is in the first working mode. If the determination is not established, step 402 is continued to determine whether T 0 > 1/2*T 1max *k1. If the determination is established, the first motor 4 is controlled to run and be in the non-tap mode, and the second motor 6 is controlled to turn off. At this time , the electric drive axle is in the second working mode. If the determination is not established, step 403 is executed to calculate MM in a loop.
  • MM is the maximum average efficiency of the first motor 4 and the second motor 6 when the first motor 4 and the second motor 6 work together.
  • MM Max ⁇ 1/2*[M 2 (a/k1 , n 0 *k1)+M 3 ((T 0 -a)/k2, n 0 *k2)] ⁇
  • a is the torque value from the output conversion value of the first motor 4 to the wheel edge, 0 ⁇ a ⁇ T 1max *k1.
  • step 405 is executed to determine whether M 2 (T 0 /k1, n 0 *k1) > M 3 (T 0 /k2, n 0 *k2). If the determination is established, the first motor 4 is controlled to run. And in the tap mode, the second motor 6 is controlled to be turned off. At this time, the electric drive axle is in the fourth working mode. If the determination is not established, the first motor 4 is controlled to be turned off and the second motor 6 is operated. At this time, the electric drive axle is in the fifth working mode.
  • the output torque and output speed of the first motor 4 can be (T 1max , n 0 *k1) respectively, and the output torque and output speed of the second motor 6 can be (T 0 -T 1max *k1)/k2, n 0 *k2).
  • the output torque and output speed of the first motor 4 can be (T 0 /k1, n 0 *k1) respectively, and the second motor 6 does not work at this time.
  • the first motor 4 is in the tap mode. At this time, the wiring arrangement of the first motor 4 can be adjusted as needed, and the electric potential is indirectly adjusted by adjusting the magnetic flux.
  • the working point of the first motor 4 can be (a/ k1, n 0 *k1)
  • the operating point of the second motor 6 can be ((T 0 -a)/k2, n 0 *k2).
  • the first motor 4 is in tap mode, and the operating point of the first motor 4 can be (T 0 /k1, n 0 *k1).
  • the second motor 6 does not work.
  • the operating working point of the second motor 6 may be (T 0 /k2, n 0 *k2), and the first motor 4 does not work at this time.
  • the present disclosure also provides a vehicle, which includes the above-mentioned electric drive axle, and the vehicle has all the beneficial effects of the above-mentioned electric drive axle, which will not be described again here.
  • any combination of various embodiments of the present disclosure can also be carried out, and as long as they do not violate the idea of the present disclosure, they should also be regarded as the contents disclosed in the present disclosure.

Abstract

一种电驱动桥、电驱动桥的控制方法和车辆,电驱动桥包括桥壳(1)以及设置在桥壳(1)内的驱动机构,驱动机构包括:车轴,包括同轴设置且分别连接到对侧车轮的第一半轴(21)和第二半轴(22);差速器总成(3),连接在第一半轴(21)和第二半轴(22)之间;第一电机(4)和连接在第一电机(4)的输出端的第一减速器(5),第一减速器(5)的输出端连接到差速器总成(3);以及第二电机(6)和连接在第二电机(6)的输出端的第二减速器(7),第二减速器(7)的输出端连接到差速器总成(3);其中,第一电机(4)为永磁同步电机,第二电机(6)为异步电机。

Description

电驱动桥、电驱动桥的控制方法和车辆 技术领域
本公开涉及车辆技术领域,具体地,涉及一种电驱动桥、电驱动桥的控制方法和车辆。
背景技术
目前新能源纯电动商用车的动力总成普遍采用传统方案,利用电机或电机匹配减速器取代发动机,继续保留传动轴、万向节的结构,大大降低底盘利用空间,且具有重量大,纵向传动效率低的问题。
因此电驱动桥成为各主机厂及市场争相研发的替代产品。目前市场上常见的电驱动桥分两大类,一大类是集中式电驱动桥,单一动力单元通过差速器进行能量分流;第二类是分布式电驱动桥,由两个动力单元分别控制两侧车轮,但该技术需要控制精度极高,否则对轮胎损伤较大,且轮边环境及工况严苛,对产品可靠性要求极高。因此集中式电驱动桥比较受市场的青睐。
相关技术中,集中式电驱动桥存通常采用以下结构形式:一是电机与减速器通过悬置固定在簧上,并匹配支撑桥结构,虽然NVH效果较好,但依旧占用过多空间,悬置及半轴成本较高;二是平行轴式电驱动桥,通过圆柱斜齿轮将动力传递至半轴,虽然节省空间、重量轻、效率高,但由于重心偏离中轴、动力系统与桥体硬连接,会导致驾驶体验差;三是同轴式电驱动桥,由于工作环境苛刻,不宜采用变速结构,因此动力输出不够灵活,市面上所具有的双电机同轴式电驱桥均为双同步电机电驱桥,在商用车要求低速大转矩及高速轻转矩的工况下,其工作效率、运行稳定性及成本不具有优势。
发明内容
本公开的目的是提供一种电驱动桥、电驱动桥的控制方法和车辆,以至少部分的解决相关技术中提供的电驱动桥存在的问题。
为了实现上述目的,本公开提供一种电驱动桥,包括桥壳以及设置在所述桥壳内的驱动机构,所述驱动机构包括:
车轴,包括同轴设置且分别连接到对侧车轮的第一半轴和第二半轴;
差速器总成,连接在所述第一半轴和所述第二半轴之间;
第一电机和连接在所述第一电机的输出端的第一减速器,所述第一减速器的输出端连接到所述差速器总成;以及
第二电机和连接在所述第二电机的输出端的第二减速器,所述第二减速器的输出端连接到所述差速器总成;
其中,所述第一电机为永磁同步电机,所述第二电机为异步电机。
可选地,所述第一电机与所述第二电机分别包括定子、转子以及与所述转子同轴布置的电机轴,其中,所述定子固定设置于所述桥壳内壁上,所述第一电机的电机轴空套在所述第一半轴的外侧并与所述第一减速器传动连接,所述第二电机的电机轴空套在所述第二半轴的外侧并与所述第二减速器传动连接。
可选地,所述第一电机和所述第二电机的电机轴与所述桥壳之间分别设置有轴承,所述第一电机设置在所述第一半轴的靠近车轮的端部,所述第二电机设置在所述第二半轴的靠近车轮的端部。
可选地,所述第一减速器和所述第二减速器分别包括外齿圈、太阳轮和行星架,所述行星架为固定端,所述第一电机和所述第二电机的电机轴分别与对应减速器的太阳轮传动 连接;
所述第一减速器和第二减速器均为行星齿轮减速器,且所述第一减速器的传动比大于所述第二减速器的传动比。
可选地,所述差速器总成包括差速器壳、以及连接所述差速器壳和所述车轴的差速器齿轮组,所述差速器壳固定连接到所述第一减速器和所述第二减速器的外齿圈上。
可选地,所述定子处均连接有动力线,所述第一电机与所述第二电机分别通过动力线与电机控制器相连。
根据本公开的再一个方面,还提供一种车辆,该车辆包括上述的电驱动桥。
根据本公开的再一个方面,还提供一种电驱动桥控制方法,所述电驱动桥为上述的电驱动桥,所述控制方法包括:
获取轮边目标转速n 0,轮边目标转矩T 0
判断M 1(T 0/k1,n 0*k1)是否≥M 2(T 0/k1,n 0*k1)且M 1(T 0/k1,n 0*k1)≥M 3(T 0/k2,n 0*k2),
若是,则控制所述第一电机处于非抽头模式,最大输出转矩为T 1max
若否,则控制所述第一电机处于抽头模式,最大输出转矩为1/2*T 1max
其中,M 1(T 0/k1,n 0*k1)为处于非抽头模式的第一电机的效率,M 2(T 0/k1,n 0*k1)处于抽头模式的第一电机的效率,M 3(T 0/k2,n 0*k2)为第二电机的效率,k1为所述第一减速器的减速比,k2为所述第二减速器的减速比。
可选地,判断T 0是否>T 1max*k1,若是,则控制第一电机运行且处于非抽头模式,控制第二电机同时运行,此时,所述电驱动桥处于第一工作模式;若否,
判断T 0是否>1/2*T 1max*k1,若是,则控制第一电机运行且处于非抽头模式,控制所述第二电机关闭,此时,所述电驱动桥处于第二工作模式;若否,
判断MM是否≥M 2(T 0/k1,n 0*k1)且MM≥M 3(T 0/k2,n 0*k2),若是,则控制第一电机运行且处于抽头模式,控制所述第二电机同时运行,此时,所述电驱动桥处于第三工作模式;若否,
判断M 2(T 0/k1,n 0*k1)是否>M 3(T 0/k2,n 0*k2),若是,则控制所述第一电机运行且处于抽头模式,控制所述第二电机关闭,此时,所述电驱动桥处于第四工作模式;若否,
控制所述第一电机关闭,所述第二电机运行,此时,所述电驱动桥处于第五工作模式,
其中,MM为所述第一电机与所述第二电机的共同工作情况下平均效率的最大值,MM=Max{1/2*[M 2(a/k1,n 0*k1)+M 3((T 0-a)/k2,n 0*k2)]},a为所述第一电机输出折算值到轮边的转矩值,0<a<T 1max*k1。
可选地,在所述第一工作模式,所述第一电机的输出转矩、输出转速为(T 1max,n 0*k1),所述第二电机的输出转矩、输出转速为(T 0-T 1max*k1)/k2,n 0*k2);
在所述第二工作模式,所述第一电机的输出转矩、输出转速为(T 0/k1,n 0*k1);
在所述第三工作模式,所述第一电机的工作点为(a/k1,n 0*k1),所述第二电机的工作点为((T 0-a)/k2,n 0*k2);
在所述第四工作模式,所述第一电机的运行工作点为(T 0/k1,n 0*k1);
在所述第五工作模式,所述第二电机的运行工作点为(T 0/k2,n 0*k2)。
通过上述技术方案,在车辆的不同行驶工况下,永磁同步电机与异步电机可在不同的工况区间发挥不同的作用,从而可以有效提高同轴式电驱动桥的动力灵活性,兼顾商用车宽范围的动力特性,提高整体动力系统的效率;通过对第一减速器和第二减速器的传动比进行设计,可以通过车内控制器实现电子换挡,提高车辆整体运行平顺性,提高整车NVH特性。同时还能通过第一电机与第二电机多状态的耦合运行达到既满足动力性的要求,同时达到节能提高续航的目的。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开一种实施方式的电驱动桥的示意图。
图2是根据本公开一种实施方式,在双电机分别为同步电机和异步电机的情况下的工况示意图。
图3是根据本公开一种实施方式的电驱动桥控制方法的流程框图。
图4是根据本公开另一种实施方式的电驱动桥控制方法的流程框图。
附图标记说明
1-桥壳;21-第一半轴;22-第二半轴;3-差速器总成;31-差速器壳;32-差速器齿轮组;4-第一电机;5-第一减速器;6-第二电机;41、61-定子;42、62-转子;7-第二减速器;51、71-外齿圈;52、72-太阳轮。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的方位词如“内”、“外”是针对相应零部件的本身轮廓所定义的。使用的术语“第一”、“第二”等词的使用目的在于区分不同的部件,并不具有顺序性和重要性。此外,在下面的描述中,当涉及到附图时,除非另有解释,不同的附图中相同的附图标记表示相同或相似的要素。
根据本公开一种实施方式,如图1所示,提供一种电驱动桥,可以包括桥壳1以及设置在桥壳内的驱动机构,驱动机构包括车轴,车轴包括同轴设置且分别连接到对侧车轮的第一半轴21和第二半轴22;驱动机构还包括差速器总成3,连接在第一半轴21和第二半轴22之间;驱动机构还包括双电机及双减速器,其中,第一电机4和连接在第一电机4的输出端的第一减速器5,第一减速器5的输出端连接到差速器总成3;以及第二电机6和连接在第二电机6的输出端的第二减速器7,第二减速器7的输出端连接到差速器总成3;其中,第一电机4可以为永磁同步电机,永磁同步电机可以分为抽头与非抽头两种状态,且两种状态互锁,第二电机6可以为异步电机。首先,在转速方面,考虑到永磁同步电机的励磁磁场由永磁体提供,转子不需要励磁电流,电机的效率高,与异步电机相比,任何转速点均能够节约电能,尤其是在低速行驶的工况下尤为明显。其次,在转矩方面,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁同步电机时,可使转子绕组完全满足高转矩的要求。永磁同步电机与异步电机的搭配可使车辆适应不同的行驶工况,在中低速以及大转矩区间内,可主要由永磁同步电机进行动力输出,随着车速提高以及转矩变小,异步电机动力输出比逐渐增大。相较于永磁同步电机,异步电机由于不需要弱磁,无永磁高温退磁问题,可以将峰值功率、额定功率、峰值功率工作时间延长,更适用于在车辆低载荷高速行驶的工况中。市面上现有的双电机同轴电驱桥,双电机均为永磁同步电机,在保证车辆不同行驶工况的情况下,相较于双同步电机的搭配,在效率提高方面,一同步电机一异步电机的搭配可分别在适宜各自的速率及转矩区间内进行输出比率调整。在提升稳定性方面,异步电机相较于同步电机重量更轻,有助于减小电驱桥簧下重量,可使车辆行驶更加平顺,稳定性更高。在减少成本方面,异步电机相较于同步电机,自身成本以及后续维护成本也低于同步电机。因此,一同步电机一异步电机的搭配明显优于双同步 电机的搭配。
通过上述技术方案,在车辆不同的行驶工况下,永磁同步电机与异步电机可在不同的工况区间发挥不同的作用,从而可以有效提高同轴式电驱动桥的动力灵活性,兼顾商用车宽范围的动力特性,提高整体动力系统的效率;通过对第一减速器5和第二减速器7的传动比进行设计,可以通过车内控制器实现电子换挡,提高车辆整体运行平顺性,提高整车NVH(Noise、Vibration、Harshness,噪声、振动与声振粗糙度)特性。同时还能通过第一电机4与第二电机6多状态的耦合运行达到既满足动力性的要求,同时达到节能提高续航的目的。
进一步地,如图1所示,第一电机4包括定子41、转子42、以及与转子42同轴布置的电机轴,第二电机6包括定子61、转子62以及与转子62同轴布置的电机轴,其中,定子41和定子61固定设置于桥壳1的内壁上,第一电机4的电机轴空套在第一半轴21的外侧并与第一减速器5传动连接,第二电机6的电机轴空套在第二半轴22的外侧并与第二减速器7传动连接。电机外壳与桥壳1共用,可以有效减少空间占用,还可以减少电驱动桥对外接口。
进一步地,在第一电机4和第二电机6的电机轴与桥壳1之间,可以分别设置有轴承,使电机轴可以相对于桥壳1稳定转动,轴承可以是深沟球轴承,也可以是角接触球轴承,本公开对此不做任何限定。另外,根据图1所示,第一电机4设置在第一半轴21的靠近车轮的端部,第二电机6设置在第二半轴22的靠近车轮的端部,以保证电驱动桥整体重量均匀分布,提升驾驶体验。
根据本公开的一种实施方式,如图1所示,第一减速器5和第二减速器7可以采用单排的行星齿轮结构,第一减速器5包括外齿圈51、太阳轮52和行星架,第二减速器7分别包括外齿圈71、太阳轮72和行星架,行星架为固定端,第一电机4电机轴与太阳轮52传动连接,第二电机6的电机轴与太阳轮72传动连接。在其他实施方式中,第一减速器5和第二减速器7还可以设计为两排或多排的行星齿轮机构,通过对其传动比进行设计,可实现该电驱动桥的电子换挡功能。
进一步地,差速器总成3可以包括差速器壳31、以及连接差速器壳31和车轴的差速器齿轮组32,差速器壳31固定连接到第一减速器5的外齿圈51和第二减速器7的外齿圈71上。此时差速器壳31和外齿圈51、外齿圈71为一体式连接,太阳轮52带动外齿圈51转动、太阳轮72带动外齿圈71转动时,可直接使与外齿圈51、外齿圈71一体成型的差速器壳31转动,减少多余能量消耗,差速器壳31带动差速器齿轮组32,由差速器齿轮组32平衡两边车轮的不同速度后,将动力传给对应的第一半轴21或第二半轴22,最终将动力传动给车轮。更具体地,在本公开提供的电驱动桥处于工作状态时,第一电机4侧的动力传递路径为:转子42-电机轴-太阳轮52-外齿圈51-差速器壳31-差速器齿轮组32-第一半轴21-车轮;第二电机6侧的动力传递路径为:转子62-电机轴-太阳轮72-外齿圈71-差速器壳31-差速器齿轮组32-第二半轴22-车轮。
根据本公开的一种实施方式,如图1所示,在第一减速器5和第二减速器7均采用行星齿轮机构的情况下,第一减速器5的传动比大于第二减速器7的传动比。行星齿轮的结构紧凑、体积小、重量轻,且传动比范围大,当第一电机4和第二电机6的电机类型不同时,第一减速器5和第二减速器7可以使用不同速比的行星齿轮机构,其中永磁同步电机一侧的第一减速器5的传动比可以大于异步电机一侧的第二减速器7传动比,也可以两侧传动比相同,本公开对此不做特别限定。
根据本公开的一种实施方式,如图1所示,定子41和定子61处均连接有动力线,第一电机4与第二电机6通过动力线与电机控制器相连。其中,第二电机6的定子61处连接有单根动力线,在第一电机4为抽头式永磁同步电机的情况下,第一电机4的定子41 处可以连接有多根动力线,多条动力线为抽头式永磁同步电机的特性,动力线上连接有电路开关,可通过电路开关改变接线排列,从而改变电机功率,当车速很高时,可以通过电路开关切换第一电机4的接线排列,将磁通量降低,使得反电势减半,从而保护第一电机4的控制器不被反向电压冲击。另外,可以通过一个电机控制器分别控制两个电机,可以设置两个电机控制器,分别控制第一电机4和第二电机6,在异步电机的高效区和抽头永磁电机的高效区内分别进行预判,并合理分配动力来源,使动力系统更多的工作在高效区间,提高续航能力和工作效率。
根据上文所提到的技术方案,电驱动桥至少具有以下几种工作状态,在低速大转矩工况即车辆处于爬坡的情况下,第一电机4和第二电机6共同输出动力,如图2中B区域所示;在低速小转矩工况即市区道路低速运行的情况下,主要为第一电机4输出动力,第二电机6不工作,如图2中A区域所示,低速小转矩工况属于永磁同步电机的优势区间,低速效率高,且工作在其中间工作区,接近高效区间;其中,A区域和B区域中,第一电机均为非抽头工作状态。在高转速小转矩工况下,第一电机4不工作,第二电机6输出动力,如图2中D区域所示,此时车辆一般工作在低载荷区间,对于为异步电机而言,由于不需要弱磁,在高速区较永磁同步电机有较好的效率优势,因此车辆在高速城郊工况下,动力来源主要为第二电机6及其小传动比的第二减速器7,这样既不需要太高的电机转速,又能发挥异步电机在中高速区间的高效特点。此外,电驱动桥还可以有中速工作模式,如图2中C区域所示,此时第一电机4为抽头工作状态时,在中速区域,可以通过两个电机控制器或整体集成的一个电机控制器的配合,根据车速及车辆载荷情况在第二电机6的高效区和第一电机4的高效区内进行预判,合理分配动力来源,使整个驱动系统更多的工作在高效区间,提高车辆的续航能力,具体控制方法将在下文详细说明。另外,这里的高速、中速、低速、大转矩、小转矩的划分标准可参考对应车型的正常行驶数据进行划分,这里不做具体的限定。
在上述方案的基础上,本公开还提供一种电驱动桥控制方法,如图3所示,电驱动桥为上文中提到的电驱动桥,控制方法包括步骤301,先获取轮边目标转速n 0,轮边目标转矩T 0,再执行步骤302,判断M 1(T 0/k1,n 0*k1)是否≥M 2(T 0/k1,n 0*k1)且M 1(T 0/k1,n 0*k1)≥M 3(T 0/k2,n 0*k2),若判定成立,则控制第一电机4处于非抽头模式,此时电驱动桥的最大输出转矩为T 1max。若判定不成立,则控制第一电机4处于抽头模式,此时电驱动桥的最大输出转矩为1/2*T 1max。其中,M 1(T 0/k1,n 0*k1)为处于非抽头模式的第一电机4的效率,M 2(T 0/k1,n 0*k1)处于抽头模式的第一电机4的效率,M 3(T 0/k2,n 0*k2)为第二电机6的效率,k1为第一减速器5的减速比,k2为第二减速器7的减速比。
进一步地,如图4所示,执行步骤401,判断T 0是否>T 1max*k1,若判定成立,则控制第一电机4运行且处于非抽头模式,控制第二电机6同时运行,此时,电驱动桥处于第一工作模式。若判定不成立,则继续执行步骤402,判断T 0是否>1/2*T 1max*k1,若判定成立,则控制第一电机4运行且处于非抽头模式,控制第二电机6关闭,此时,电驱动桥处于第二工作模式。若判定不成立,则执行步骤403,循环计算MM,MM为第一电机4与第二电机6的共同工作情况下平均效率的最大值,MM=Max{1/2*[M 2(a/k1,n 0*k1)+M 3((T 0-a)/k2,n 0*k2)]},a为第一电机4输出折算值到轮边的转矩值,0<a<T 1max*k1。得到数据MM后,执行步骤404,判断MM是否≥M 2(T 0/k1,n 0*k1)且MM≥M 3(T 0/k2,n 0*k2),若判定成立,则控制第一电机4运行且处于抽头模式,控制第二电机6同时运行,此时,电驱动桥处于第三工作模式。若判定不成立,则执行步骤405,判断M 2(T 0/k1,n 0*k1)是否>M 3(T 0/k2,n 0*k2),若判定成立,则控制第一电机4运行且处于抽头模式,控制第二电机6关闭,此时,电驱动桥处于第四工作模式。若判定不成立,则控制第一电机4关闭,第二电机6运行,此时,电驱动桥处于第五工作模式。
进一步地,在第一工作模式中,第一电机4的输出转矩、输出转速可以分别为(T 1max,n 0*k1),第二电机6的输出转矩、输出转速可以分别为(T 0-T 1max*k1)/k2,n 0*k2)。在第二工作模式中,第一电机4的输出转矩、输出转速可以分别为(T 0/k1,n 0*k1),第二电机6此时不工作。在第三工作模式中,第一电机4为抽头模式,此时可以根据需要调整第一电机4的接线排列,通过调整磁通量间接调整电势,此时第一电机4的工作点可以为(a/k1,n 0*k1),第二电机6的工作点可以为((T 0-a)/k2,n 0*k2)。在第四工作模式中,第一电机4为抽头模式,第一电机4的运行工作点可以为(T 0/k1,n 0*k1),此时第二电机6不工作。在第五工作模式中,第二电机6的运行工作点可以为(T 0/k2,n 0*k2),此时第一电机4不工作。
在上述方案的基础上,本公开还提供一种车辆,该车辆包括上述电驱动桥,且该车辆具有上述电驱动桥所有有益效果,这里不再赘述。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

  1. 一种电驱动桥,其特征在于,包括桥壳(1)以及设置在所述桥壳(1)内的驱动机构,所述驱动机构包括:
    车轴,包括同轴设置且分别连接到对侧车轮的第一半轴(21)和第二半轴(22);
    差速器总成(3),连接在所述第一半轴(21)和所述第二半轴(22)之间;
    第一电机(4)和连接在所述第一电机(4)的输出端的第一减速器(5),所述第一减速器(5)的输出端连接到所述差速器总成(3);以及
    第二电机(6)和连接在所述第二电机(6)的输出端的第二减速器(7),所述第二减速器(7)的输出端连接到所述差速器总成(3);
    其中,所述第一电机(4)为永磁同步电机,所述第二电机(6)为异步电机。
  2. 根据权利要求1所述的电驱动桥,其特征在于,所述第一电机(4)与所述第二电机(6)分别包括定子(41,61)、转子(42,62)以及与所述转子(42,62)同轴布置的电机轴,其中,所述定子(41,61)固定设置于所述桥壳(1)内壁上,所述第一电机(4)的电机轴空套在所述第一半轴(21)的外侧并与所述第一减速器(5)传动连接,所述第二电机(6)的电机轴空套在所述第二半轴(22)的外侧并与所述第二减速器(7)传动连接。
  3. 根据权利要求2所述的电驱动桥,其特征在于,所述第一电机(4)和所述第二电机(6)的电机轴与所述桥壳(1)之间分别设置有轴承,所述第一电机(4)设置在所述第一半轴(21)的靠近车轮的端部,所述第二电机(6)设置在所述第二半轴(22)的靠近车轮的端部。
  4. 根据权利要求2所述的电驱动桥,其特征在于,所述第一减速器(5)和所述第二减速器(7)分别包括外齿圈(51,71)、太阳轮(52,72)和行星架,所述行星架为固定端,所述第一电机(4)和所述第二电机(6)的电机轴分别与对应减速器的太阳轮(52,72)传动连接;
    所述第一减速器(5)和第二减速器(7)均为行星齿轮减速器,且所述第一减速器(5)的传动比大于所述第二减速器(7)的传动比。
  5. 根据权利要求4所述的电驱动桥,其特征在于,所述差速器总成(3)包括差速器壳(31)、以及连接所述差速器壳(31)和所述车轴的差速器齿轮组(32),所述差速器壳(31)固定连接到所述第一减速器(5)和所述第二减速器(7)的外齿圈(51,71)上。
  6. 根据权利要求2所述的电驱动桥,其特征在于,所述定子(41,61)处均连接有动力线,所述第一电机(4)与所述第二电机(6)分别通过动力线与电机控制器相连。
  7. 一种车辆,其特征在于,包括根据权利要求1-6中任意一项所述的电驱动桥。
  8. 一种电驱动桥的控制方法,其特征在于,所述电驱动桥为根据权利要求5所述的电驱动桥,所述控制方法包括:
    获取轮边目标转速n 0,轮边目标转矩T 0
    判断M 1(T 0/k1,n 0*k1)是否≥M 2(T 0/k1,n 0*k1)且M 1(T 0/k1,n 0*k1)≥M 3(T 0/k2,n 0*k2),
    若是,则控制所述第一电机处于非抽头模式,最大输出转矩为T 1max
    若否,则控制所述第一电机处于抽头模式,最大输出转矩为1/2*T 1max
    其中,M 1(T 0/k1,n 0*k1)为处于非抽头模式的第一电机的效率,M 2(T 0/k1,n 0*k1)处于抽头模式的第一电机的效率,M 3(T 0/k2,n 0*k2)为第二电机的效率,k1为所述第一减速器的减速比,k2为所述第二减速器的减速比。
  9. 根据权利要求8所述的电驱动桥的控制方法,其特征在于,
    判断T 0是否>T 1max*k1,若是,则控制第一电机运行且处于非抽头模式,控制第二电机同时运行,此时,所述电驱动桥处于第一工作模式;若否,
    判断T 0是否>1/2*T 1max*k1,若是,则控制第一电机运行且处于非抽头模式,控制所述第二电机关闭,此时,所述电驱动桥处于第二工作模式;若否,
    判断MM是否≥M 2(T 0/k1,n 0*k1)且MM≥M 3(T 0/k2,n 0*k2),若是,则控制第一电机运行且处于抽头模式,控制所述第二电机同时运行,此时,所述电驱动桥处于第三工作模式;若否,
    判断M 2(T 0/k1,n 0*k1)是否>M 3(T 0/k2,n 0*k2),若是,则控制所述第一电机运行且处于抽头模式,控制所述第二电机关闭,此时,所述电驱动桥处于第四工作模式;若否,
    控制所述第一电机关闭,所述第二电机运行,此时,所述电驱动桥处于第五工作模式,
    其中,MM为所述第一电机与所述第二电机的共同工作情况下平均效率的最大值,MM=Max{1/2*[M 2(a/k1,n 0*k1)+M 3((T 0-a)/k2,n 0*k2)]},a为所述第一电机输出折算值到轮边的转矩值,0<a<T 1max*k1。
  10. 根据权利要求9所述的电驱动桥的控制方法,其特征在于,
    在所述第一工作模式,所述第一电机的输出转矩、输出转速为(T 1max,n 0*k1),所述第二电机的输出转矩、输出转速为(T 0-T 1max*k1)/k2,n 0*k2);
    在所述第二工作模式,所述第一电机的输出转矩、输出转速为(T 0/k1,n 0*k1);
    在所述第三工作模式,所述第一电机的工作点为(a/k1,n 0*k1),所述第二电机的工作点为((T 0-a)/k2,n 0*k2);
    在所述第四工作模式,所述第一电机的运行工作点为(T 0/k1,n 0*k1);
    在所述第五工作模式,所述第二电机的运行工作点为(T 0/k2,n 0*k2)。
PCT/CN2022/136386 2022-03-18 2022-12-02 电驱动桥、电驱动桥的控制方法和车辆 WO2023173814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210272282.5A CN114619867B (zh) 2022-03-18 2022-03-18 电驱动桥、电驱动桥的控制方法和车辆
CN202210272282.5 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023173814A1 true WO2023173814A1 (zh) 2023-09-21

Family

ID=81902301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136386 WO2023173814A1 (zh) 2022-03-18 2022-12-02 电驱动桥、电驱动桥的控制方法和车辆

Country Status (2)

Country Link
CN (1) CN114619867B (zh)
WO (1) WO2023173814A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619867B (zh) * 2022-03-18 2023-06-06 北汽福田汽车股份有限公司 电驱动桥、电驱动桥的控制方法和车辆
CN115042607A (zh) * 2022-06-20 2022-09-13 中国第一汽车股份有限公司 一种用于车辆的电驱总成、电驱系统以及车辆
CN117656702B (zh) * 2024-01-31 2024-04-19 载合汽车科技(苏州)有限公司 一种商用车用电驱动桥

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110733324A (zh) * 2018-07-20 2020-01-31 长沙智能驾驶研究院有限公司 电驱动桥及车辆
CN214112258U (zh) * 2020-12-16 2021-09-03 潍坊佩特来电器有限公司 一种双电机动力系统
CN113335044A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种带双变速器的电动汽车的动力系统及其控制方法
DE102020203669A1 (de) * 2020-03-23 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebssystem mit zwei elektrischen Maschinen
CN114619867A (zh) * 2022-03-18 2022-06-14 北汽福田汽车股份有限公司 电驱动桥、电驱动桥的控制方法和车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213193A (ja) * 2000-02-04 2001-08-07 Hitachi Ltd 車輌の走行制御方法及び走行制御装置
DE102011088647B4 (de) * 2011-12-15 2016-07-28 Schaeffler Technologies AG & Co. KG Elektromechanische Antriebseinrichtung für ein Kraftfahrzeug
DE102014201352A1 (de) * 2014-01-27 2015-01-08 Schaeffler Technologies Gmbh & Co. Kg Antriebsanordnung für ein Kraftfahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110733324A (zh) * 2018-07-20 2020-01-31 长沙智能驾驶研究院有限公司 电驱动桥及车辆
DE102020203669A1 (de) * 2020-03-23 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebssystem mit zwei elektrischen Maschinen
CN214112258U (zh) * 2020-12-16 2021-09-03 潍坊佩特来电器有限公司 一种双电机动力系统
CN113335044A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种带双变速器的电动汽车的动力系统及其控制方法
CN114619867A (zh) * 2022-03-18 2022-06-14 北汽福田汽车股份有限公司 电驱动桥、电驱动桥的控制方法和车辆

Also Published As

Publication number Publication date
CN114619867A (zh) 2022-06-14
CN114619867B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2023173814A1 (zh) 电驱动桥、电驱动桥的控制方法和车辆
CN110481305B (zh) 对称布置盘式电机差动轮系复合驱动的汽车轮毂电机
CN101692591B (zh) 一种分体式涡轮增压减速器差速电驱动机
CN110289729B (zh) 一种基于磁性齿轮的动力耦合复合电机及其控制方法
CN111055672B (zh) 两挡混合动力耦合系统及车辆
CN215096991U (zh) 一种轴向磁通电机四轮独立电驱动系统
CN102371892A (zh) 一体化电机驱动系统
CN205202730U (zh) 纯电动汽车轮边电机电动后桥动力总成
CN113696676A (zh) 使用行星排加双联齿轮的转矩定向分配电动驱动桥
CN109466296B (zh) 一种中央集成式双电机双减速器电驱动桥总成
CN102490597B (zh) 电动汽车自动变速动力总成系统
CN112477570B (zh) 一种驱动合成装置以及电动车辆
CN114013262A (zh) 一种双电机驱动纯电动装载机四驱结构及控制系统
WO2023206719A1 (zh) 一种同轴电驱桥和汽车
CN116605024A (zh) 一种双电驱桥驱动结构及车辆
CN207257373U (zh) 一种2amt电动车桥总成
CN215850710U (zh) 一种同轴集成式双电机双速比电驱动总成及电动车辆
CN214928916U (zh) 一种电机驱动结构及汽车
CN114851842A (zh) 一种电驱桥及汽车
CN211335438U (zh) 一种分开式双电机同轴轮边行星轮减速驱动桥
CN114435124A (zh) 一种基于行星齿轮的双电机多模式驱动系统
CN112519497A (zh) 一种分开式双电机同轴轮边行星轮减速驱动桥
CN216451248U (zh) 一种行星架输出的轮毂电机
CN214450254U (zh) 一种双电机双行星排混合动力系统
CN215806121U (zh) 行星架输出的两档自动变速器及应用其的新能源汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931825

Country of ref document: EP

Kind code of ref document: A1