WO2023173794A1 - 集成式车辆换电系统、方法、设备及存储介质 - Google Patents

集成式车辆换电系统、方法、设备及存储介质 Download PDF

Info

Publication number
WO2023173794A1
WO2023173794A1 PCT/CN2022/133464 CN2022133464W WO2023173794A1 WO 2023173794 A1 WO2023173794 A1 WO 2023173794A1 CN 2022133464 W CN2022133464 W CN 2022133464W WO 2023173794 A1 WO2023173794 A1 WO 2023173794A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
container
track
swapping
robot
Prior art date
Application number
PCT/CN2022/133464
Other languages
English (en)
French (fr)
Inventor
谭黎敏
江华
袁刚
安居月
Original Assignee
上海西井科技股份有限公司
上海氪纬科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海西井科技股份有限公司, 上海氪纬科技有限公司 filed Critical 上海西井科技股份有限公司
Publication of WO2023173794A1 publication Critical patent/WO2023173794A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to the field of battery swapping for large new energy vehicles, and specifically to an integrated vehicle battery swapping system, method, equipment and storage medium.
  • CN215552604U a new energy heavy truck power swapping station
  • CN214689108U an electric heavy truck power swapping station with a two-way lane
  • CN110862008A an electric heavy truck charging and swapping station System
  • CN210634533U a heavy-duty truck battery replacement station.
  • the core equipment of these technical solutions includes a traveling crane, a vehicle-mounted battery replacement base, and a battery box.
  • the main feature is to lift the battery pack on the vehicle from the top of the vehicle body through the traveling crane to perform battery replacement operations.
  • the battery replacement process mainly includes:
  • the RFID device on the battery swap station side identifies vehicle information.
  • the height of the station is >6 meters, which makes it difficult to transport the equipment as a whole;
  • Each workstation needs to be equipped with a mobile device, which increases the system complexity and cost;
  • the battery swapping station can be easily moved to the destination at any time to swap battery on the truck.
  • the purpose of the present invention is to provide an integrated vehicle power exchange system, method, equipment and storage medium, which overcomes the difficulties of the existing technology and can provide a modular and containerized power exchange solution that can easily move and layout to the target battery swap location, and greatly save the space of the battery swap station.
  • Embodiments of the present invention provide an integrated vehicle power exchange system, including:
  • a power-changing robot moves along the track
  • At least one container battery warehouse is provided on the first side of the track, including a container body and a plurality of charging positions for charging batteries located inside.
  • the charging positions are arranged along the length direction of the container battery warehouse.
  • the container A separation side plate is provided on the side of the battery compartment adjacent to the track, and the separation side plate is separated from the container battery compartment to expose the charging position and battery inside;
  • a battery-swapping parking space is provided on the second side of the track.
  • the battery-swapping robot replaces the batteries in the container battery warehouse and the batteries in the vehicles to be swapped that are parked in the battery-swapping parking space.
  • the battery swapping robot has a channel for linearly transporting batteries in a direction perpendicular to the track, and the container battery bin and the container battery bin are used to set the minimum space between the battery swapping robot and the track.
  • the spacing is equal to the length of the battery.
  • the length direction of the container battery compartment is parallel to the extension direction of the rail.
  • it also includes: at least one pair of positioning components, the positioning component is along the second side perpendicular to the track and at least partially enters the battery swap parking space and limits the vehicle to be swapped.
  • the battery swapping robot swaps power to the vehicle to be swapped based on at least the relative position of the alignment component and the track.
  • each of the alignment components includes a set of transmission belts that rotate independently. After the wheels of the vehicle to be replaced fall into the space between the transmission belts and are limited, each set of the transmission belts rotates in the same direction. To pull the wheels closer to or push away from the track, each set of the transmission belts rotates in reverse direction to adjust the angle between the rolling direction of the wheels relative to the extension direction of the track.
  • the extension direction of the transmission belt is perpendicular to the extension direction of the track, and the spacing between the transmission belts is smaller than the wheel diameter of the vehicle to be replaced.
  • it also includes: a container control warehouse, the container control warehouse is connected to one end of the container battery warehouse, and is electrically connected to the charging position, battery replacement robot, and alignment component of the container battery warehouse respectively.
  • the number of the alignment components is the same as the number of axles of the vehicle to be replaced, and the alignment components move based on the extension direction of the track, so that the distance between the alignment components The spacing matches the spacing between axles of the vehicle to be replaced.
  • the separation side plate is hingedly connected to the bottom edge of the container battery compartment, the track is provided on the inside of the separation side plate in the container battery compartment, and the battery swapping robot is limited Located on the track, the container battery compartment is provided with a robot accommodation space arranged along the charging position, for the battery-changing robot to enter the container battery compartment along the track after the separation side panels are aligned. placed in the robot accommodation space.
  • the track on the inside of the separated side panel and the battery swapping robot located on the track are exposed;
  • the power-swapping robot on the track is inserted into the robot accommodation space.
  • the separation side plate is embedded with at least one telescopic alignment component, and the direction of the telescopic stroke of the alignment component is perpendicular to the extension direction of the track;
  • the alignment component When the separation side panel is flipped from the container battery compartment to the ground, the alignment component extends out of the separation side panel, and the alignment component is along the second side perpendicular to the track and at least partially enters the
  • the vehicle to be swapped is placed in the battery swap parking space and limited, and the battery swap robot performs battery swap to the vehicle to be swapped based at least on the relative position of the alignment component and the track;
  • the alignment component is retracted into the separation side panel.
  • the separated side panels of the container battery compartments are all located on the same side.
  • a transport vehicle for transporting and/or loading and unloading the container battery compartment is also included.
  • Embodiments of the present invention also provide an integrated vehicle power exchange method, using the above-mentioned integrated vehicle power exchange system, including the following steps:
  • the separation side panel is separated from the container battery compartment, exposing the charging position and battery inside;
  • the battery swap robot moves along the track to the battery compartment of the vehicle to be swapped in the battery swap parking space, and takes out the first battery;
  • the battery-swapping robot places the first battery into the free charging position of the container battery compartment;
  • the battery-swapping robot moves to obtain a second battery from another charging position
  • the battery swapping robot returns to the battery compartment of the vehicle to be swapped along the track and delivers the second battery.
  • An embodiment of the present invention also provides an integrated vehicle power swapping device, including:
  • a memory in which executable instructions of the processor are stored
  • the processor is configured to execute the steps of the above integrated vehicle power swap method by executing the executable instructions.
  • Embodiments of the present invention also provide a computer-readable storage medium for storing a program. When the program is executed, the steps of the integrated vehicle power swap method are implemented.
  • the purpose of the present invention is to provide an integrated vehicle power swapping system, method, equipment and storage medium, which can provide a modular and containerized power swapping solution, can be easily moved and laid out to the target power swapping position, and greatly saves the space of the power swapping station. Location.
  • Figure 1 is a perspective view of the integrated vehicle power swap system of the present invention.
  • Figure 2 is a front view of the integrated vehicle power swap system of the present invention.
  • Figure 3 is a side view of the integrated vehicle power swap system of the present invention.
  • Figure 4 is a top view of the integrated vehicle power swap system of the present invention.
  • Figure 5 is a top view of the container battery compartment in a closed transportation state in the integrated vehicle battery swapping system of the present invention.
  • Figure 6 is a front view of the container battery compartment in a closed transportation state in the integrated vehicle battery swapping system of the present invention.
  • Figure 7 is a schematic diagram of the expanded state of the container battery compartment in the integrated vehicle power swap system of the present invention.
  • Figure 8 is a schematic diagram of the alignment component extending out of the container battery compartment in the integrated vehicle power swap system of the present invention.
  • Figure 9 is a schematic diagram of a vehicle entering a battery swapping space when using the integrated vehicle battery swapping system of the present invention.
  • Figure 10 is a schematic diagram of the vehicle being aligned through the alignment component when using the integrated vehicle power swap system of the present invention.
  • Figure 11 is a schematic diagram of the alignment of the battery swap robot with the battery compartment of the vehicle when using the integrated vehicle battery swap system of the present invention.
  • Figure 12 is a schematic diagram of a battery swapping robot taking out a vehicle battery when using the integrated vehicle battery swapping system of the present invention.
  • Figure 13 is a schematic diagram of a battery-swapping robot carrying a battery and moving to an idle charging position when using the integrated vehicle battery-swapping system of the present invention.
  • Figure 14 is a schematic diagram of a battery-swapping robot carrying a battery to an idle charging position when using the integrated vehicle battery-swapping system of the present invention.
  • Figure 15 is a schematic diagram of the battery swapping robot sending the battery into an idle charging position when using the integrated vehicle battery swapping system of the present invention.
  • Figure 16 is a schematic diagram of the battery swapping robot moving to another charging position with a fully charged battery when using the integrated vehicle battery swapping system of the present invention.
  • Figure 17 is a schematic diagram of a battery swapping robot taking out a fully charged battery when using the integrated vehicle battery swapping system of the present invention.
  • Figure 18 is a schematic diagram of the battery swapping robot carrying the battery and moving to the battery compartment when using the integrated vehicle battery swapping system of the present invention.
  • Figure 19 is a schematic diagram of the battery swapping robot sending the battery into the battery compartment when using the integrated vehicle battery swapping system of the present invention.
  • Figure 20 is a schematic diagram of the vehicle driving away after the battery swap is completed when using the integrated vehicle battery swap system of the present invention.
  • Figure 21 is a flow chart of the integrated vehicle power swap method of the present invention.
  • Figure 22 is a schematic structural diagram of the integrated vehicle power swapping device of the present invention.
  • Figure 23 is a schematic structural diagram of a computer-readable storage medium according to an embodiment of the present invention.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “a specific example,” or “some examples” or the like is intended to be in conjunction with a specific feature of the embodiment or example representation.
  • structures, materials or features are included in at least one embodiment or example of the present application.
  • the specific features, structures, materials, or characteristics shown may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine and combine the different embodiments or examples represented in this application and the features of the different embodiments or examples unless they are inconsistent with each other.
  • first and second are only used for expression purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the expression of this application, the meaning of “plurality” is two or more than two, unless otherwise expressly and specifically limited.
  • first, second, etc. are used herein to refer to various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element.
  • first interface and the second interface are represented.
  • singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • the terms “comprising” and “including” indicate the presence of features, steps, operations, elements, components, items, categories, and/or groups, but do not exclude one or more other features, steps, operations, elements, The presence, occurrence, or addition of components, items, categories, and/or groups.
  • FIG 1 is a perspective view of the integrated vehicle power swap system of the present invention.
  • Figure 2 is a front view of the integrated vehicle power swap system of the present invention.
  • Figure 3 is a side view of the integrated vehicle power swap system of the present invention.
  • Figure 4 is a top view of the integrated vehicle power swap system of the present invention.
  • the integrated vehicle battery swapping system of the present invention includes: at least one container battery compartment 1, a set of tracks 3 and a battery swapping robot 4.
  • the battery replacement robot 4 moves along the track 3 .
  • the container battery warehouse 1 is arranged on the first side of the track 3 and includes a container body and a plurality of charging stations 11 for charging batteries located inside.
  • the charging stations 11 are arranged along the length direction of the container battery warehouse 1.
  • the container battery warehouse 1 is adjacent to the track 3.
  • a separation side plate 10 is provided on one side of the container, and the separation side plate 10 is separated from the container battery compartment 1 to expose the internal charging position 11 and the battery.
  • a battery-swapping parking space 14 is provided on the second side of the track 3.
  • the battery-swapping robot 4 replaces the batteries in the container battery warehouse 1 and the batteries in the vehicles to be swapped parked at the battery-swapping parking space 14.
  • the separated side panels 10 can be manually disassembled or automatically deployed by a mechanical structure, but are not limited to this.
  • the purpose of the present invention is to provide a modular and containerized new power exchange device.
  • the shell of the container battery compartment 1 in the present invention is a 40-foot standard container, but is not limited to this.
  • the battery pack and the robot are designed to be separated, and the battery-swapping robot is modular in design, and can be loaded into a standard container. It is expected that the entire set of equipment will be packaged in three containers (40 feet + two 20 feet), which is convenient for sea and land transportation.
  • the arrangement of the container battery warehouse and the truck side by side in the present invention can realize parallel loading and unloading, which greatly saves the space of the container battery warehouse.
  • the container battery warehouse is arranged on the side of the truck channel and is exchanged through side forks, which is very suitable for card exchange in places with limited space such as ports. Moreover, the container battery warehouse can be installed on a flatbed trailer to facilitate road transportation to quickly reach the destination. A mobile container battery warehouse can be established to replace the target vehicle's battery.
  • the power-swapping robot 4 has a channel for linearly transporting batteries in a direction perpendicular to the track 3.
  • the minimum distance between the container battery warehouse 1 and the container battery warehouse 1 for setting the power-swapping robot 4 and the track 3 is equal to the battery.
  • the length of the container battery compartment 1 is parallel to the extension direction of the track 3.
  • the working space required by the power swapping robot 4 in the present invention is much smaller than that of the existing power swapping equipment, which can greatly reduce the overall space volume. Conducive to layout in small spaces.
  • the positioning components 5 are along the second side perpendicular to the track 3 and at least partially enter the battery swap parking space 14 to limit the vehicle to be swapped.
  • the robot 4 exchanges electricity to the vehicle to be exchanged based on at least the relative position of the alignment component 5 and the track 3.
  • the alignment component 5 assists the electricity exchange robot 4 in improving the accuracy of alignment and electricity exchange.
  • the alignment component 5 can be set to assist in detection.
  • the infrared or laser radar detects the posture of the vehicle to be replaced, and adjusts it so that the battery layer of the vehicle to be replaced is coaxial with the linear battery transport channel of the battery swapping robot 4, thereby improving the accuracy of the battery swapping action.
  • each alignment component 5 includes a set of transmission belts that rotate independently. After the wheels of the battery-swapping vehicle fall into the space between the transmission belts and are limited, each set of transmission belts rotates in the same direction to move the wheels toward the track 3 Pulling closer or pushing farther, each set of transmission belts rotates in reverse to adjust the angle between the rolling direction of the wheels relative to the extension direction of the track 3, which reduces the accuracy requirements for the path of the vehicle to be swapped into the swap parking space 14. .
  • the extension direction of the transmission belt is perpendicular to the extension direction of the track 3, and the spacing between the transmission belts is smaller than the wheel diameter of the vehicle to be replaced, ensuring that the wheels of the vehicle to be replaced are limited between the transmission belts, and the transmission belts
  • the position and direction of the wheels can be adjusted by turning independently.
  • a container control warehouse 6 is connected to one end of the container battery warehouse 1, and is connected to the charging position 11 of the container battery warehouse 1, the battery replacement robot 4, and the alignment component 5 respectively. Electrical connection, thereby providing a usage scenario for the operator to control, repair or debug the container battery compartment 1 in the container control compartment 6, and enhance the flexibility of the container battery compartment 1 to cope with different scenarios.
  • the number of alignment components 5 is the same as the number of axles of the vehicle to be replaced.
  • the alignment components 5 move based on the extension direction of the track 3 so that the spacing between the alignment components 5 is equal to that of the vehicle to be replaced.
  • the spacing between the vehicle's axles is matched to improve alignment accuracy.
  • the power swap station can be equipped with 10-20 or 8-16 battery boxes (the first of its kind), which enhances the utilization rate of batteries in the power swap station and greatly improves the battery swap operation capability.
  • a transport vehicle for transporting and/or loading and unloading the container battery warehouse 1 is also included, so as to transport the container battery warehouse 1 to the next place where power replacement is required, thereby enhancing the moving efficiency of the container battery warehouse 1 .
  • the transport vehicle has an air suspension, which allows the transport container battery compartment 1 to be dropped to the ground for battery replacement, or the container battery compartment 1 can be lifted for travel.
  • the main components of the battery swap station mainly include: battery swap robot 4, container battery compartment 1, battery compartment base, vehicle base, alignment component 5, and auxiliary system.
  • the main functions of each component are:
  • Battery Swapping Robot 4 Unlock the vehicle base, accurately position the battery, automatically remove the empty battery, and load the full battery.
  • Container battery compartment 1 stores batteries, charges and manages empty batteries, and monitors and detects batteries at the same time.
  • Alignment component 5 identifies the information of the vehicle 7 to be replaced, interacts with the vehicle and battery, guides the vehicle, and performs preliminary positioning.
  • Vehicle base connects the battery to the vehicle 7 to be replaced, and is equipped with a quick-plug connector to connect the battery to the motor of the vehicle 7 to be replaced.
  • Battery room base connects the battery and charger, and is equipped with a quick-plug connector.
  • Charger Responsible for charging the batteries in the battery library.
  • Auxiliary systems configure fire protection systems, video surveillance systems, and data servers. Conduct all-round monitoring and data processing of the entire site, and connect to the cloud server.
  • a power exchange process of the present invention is as follows:
  • the vehicle drives into the battery swap station and reaches the fixed battery swap position.
  • the vehicle 7 to be swapped uploads battery swap demand information (unmanned truck collection and AGV vehicles automatically upload through the wireless communication system, manual truck collection and trailers click the battery swap button to upload information ).
  • the battery-swapping robot 4 adjusts its state according to the parking position and posture of the vehicle 7 to be swapped, and performs its own actions based on the data obtained by the laser sensor. It first extends the fork and then uses the lifting mechanism of the battery-swapping robot 4 to separate the battery pack from the battery pack on the vehicle. Electric base.
  • the battery replacement robot 4 stores the battery pack on the base of the charging station assigned by the system for charging.
  • the battery replacement robot 4 grabs the fully charged battery pack from the battery warehouse and carries it to the vehicle, and the vehicle battery base is locked.
  • the integrated vehicle power swap system has the following advantages:
  • the power-changing robot has few movements and full alignment freedom.
  • Figure 5 is a top view of the container battery compartment in a closed transportation state in the integrated vehicle battery swapping system of the present invention.
  • Figure 6 is a front view of the container battery compartment in a closed transportation state in the integrated vehicle battery swapping system of the present invention.
  • Figure 7 is a schematic diagram of the expanded state of the container battery compartment in the integrated vehicle power swap system of the present invention.
  • Figure 8 is a schematic diagram of the alignment component extending out of the container battery compartment in the integrated vehicle power swap system of the present invention.
  • the present invention also provides another further integrated container battery compartment 1, in which the separation side plate 10 is hingedly connected to the bottom edge of the container battery compartment 1, and the track 3 is provided where the separation side plate 10 is located.
  • the battery swapping robot 4 is limited to the track 3 (the rollers at the lower part of the battery swapping robot 4 clamp the track 3, and will not fall from the track 3 even if the track 3 is flipped), the container battery room 1 There is a robot accommodation space 12 arranged along the charging position 11. After the separation side panels 10 are folded, the battery swapping robot 4 that enters the container battery compartment 1 along the track 3 is accommodated in the robot accommodation space 12. When the separation side panel 10 is driven by a mechanical hydraulic railing provided in the container battery compartment 1 and flips from the container battery compartment 1 to the ground, the inner track 3 of the separation side panel 10 and the battery swapping robot 4 located on the track 3 are exposed. After the separation side panel 10 is aligned with the container battery compartment 1, the battery swapping robot 4 on the track 3 is inserted into the robot accommodation space 12.
  • At least one telescopic alignment component 5 is embedded in the separation side plate 10 , and the direction of the telescopic stroke of the alignment component 5 is perpendicular to the extension direction of the track 3 .
  • the alignment component 5 extends out of the separation side panel 10 , and the alignment component 5 enters the battery swap parking space 14 along the second side perpendicular to the track 3 and at least partially enters and limits the position.
  • the battery swap robot 4 swaps battery with the vehicle to be swapped based at least on the relative position of the alignment component 5 and the track 3; when the separation side plate 10 is aligned with the container battery compartment 1, the alignment component 5 is retracted and separated. Side panels 10.
  • the container battery warehouse 1 of the present invention can integrate the battery pack, the track 3, the battery replacement robot 4 and the alignment assembly 5 into a container structure, greatly reducing the volume during transportation, enhancing convenience, and can Driven by the mechanical structure of the container battery compartment 1, it automatically unfolds to achieve the effect of automatically laying out charging stations. The entire process is completely completed by the container battery compartment 1 independently and does not require human assistance.
  • Figure 9 is a schematic diagram of a vehicle entering a battery swapping space when using the integrated vehicle battery swapping system of the present invention.
  • Figure 10 is a schematic diagram of the vehicle being aligned through the alignment component when using the integrated vehicle power swap system of the present invention.
  • Figure 11 is a schematic diagram of the alignment of the battery swap robot with the battery compartment of the vehicle when using the integrated vehicle battery swap system of the present invention.
  • Figure 12 is a schematic diagram of a battery swapping robot taking out a vehicle battery when using the integrated vehicle battery swapping system of the present invention.
  • Figure 13 is a schematic diagram of a battery-swapping robot carrying a battery and moving to an idle charging position when using the integrated vehicle battery-swapping system of the present invention.
  • Figure 14 is a schematic diagram of a battery-swapping robot carrying a battery to an idle charging position when using the integrated vehicle battery-swapping system of the present invention.
  • Figure 15 is a schematic diagram of the battery swapping robot sending the battery into an idle charging position when using the integrated vehicle battery swapping system of the present invention.
  • Figure 16 is a schematic diagram of the battery swapping robot moving to another charging position with a fully charged battery when using the integrated vehicle battery swapping system of the present invention.
  • Figure 17 is a schematic diagram of a battery swapping robot taking out a fully charged battery when using the integrated vehicle battery swapping system of the present invention.
  • Figure 18 is a schematic diagram of the battery swapping robot carrying the battery and moving to the battery compartment when using the integrated vehicle battery swapping system of the present invention.
  • Figure 19 is a schematic diagram of the battery swapping robot sending the battery into the battery compartment when using the integrated vehicle battery swapping system of the present invention.
  • Figure 20 is a schematic diagram of the vehicle driving away after the battery swap is completed when using the integrated vehicle battery swap system of the present invention.
  • the battery replacement robot 4 moves along the track 3 to the battery compartment, and takes out the first battery 13 along a straight line perpendicular to the track 3 .
  • the battery-swapping robot 4 carries the first battery 13 and moves along the track 3 to a free charging base 11 in the container battery compartment 1, and pushes the first battery 13 to the free charging base 11 for charging.
  • the battery-swapping robot 4 continues along the track 3 to reach a high-power second battery 2 in the container battery compartment 1, and takes out the second battery 2.
  • the battery swapping robot 4 returns to the battery compartment of the vehicle 7 to be swapped along the track 3, and sends the second battery 2 into the battery compartment of the vehicle 7 to be swapped. After the battery compartment door is closed, the second battery 2 is moved toward the battery compartment.
  • the battery exchange vehicle 7 provides power. After the battery replacement vehicle 7 completes the battery replacement, it drives away from the container battery warehouse 1.
  • FIG. 21 is a flow chart of the integrated vehicle power swap method of the present invention. As shown in Figure 21, the integrated vehicle power exchange method of the present invention uses the above-mentioned integrated vehicle power exchange system and includes the following steps:
  • the separated side panel is separated from the container battery compartment, exposing the internal charging position and battery.
  • the battery swap robot moves along the track to the battery compartment of the vehicle to be swapped in the battery swap parking space, and takes out the first battery.
  • the battery swapping robot puts the first battery into the free charging position in the container battery compartment.
  • the battery replacement robot moves to obtain the second battery from another charging position.
  • the battery swapping robot returns along the track to the battery compartment of the vehicle to be swapped, and feeds the second battery.
  • the integrated vehicle power swap method of the present invention can provide a modular and containerized power swap solution, which can be easily moved and laid out to the target power swap location, and greatly saves the space of the power swap station.
  • An embodiment of the present invention also provides an integrated vehicle power swapping device, including a processor.
  • Memory which stores the executable instructions of the processor.
  • the processor is configured to perform the steps of the integrated vehicle power swap method by executing executable instructions.
  • the integrated vehicle power swap system of this embodiment of the present invention can provide a modular and containerized power swap solution, which can be easily moved and laid out to the target power swap location, and greatly saves the space of the power swap station.
  • FIG. 22 is a schematic structural diagram of the integrated vehicle power swapping device of the present invention.
  • An electronic device 600 according to this embodiment of the present invention is described below with reference to FIG. 22 .
  • the electronic device 600 shown in FIG. 22 is only an example and should not bring any limitations to the functions and scope of use of the embodiments of the present invention.
  • electronic device 600 is embodied in the form of a general computing device.
  • the components of the electronic device 600 may include, but are not limited to: at least one processing unit 610, at least one storage unit 620, a bus 630 connecting different platform components (including the storage unit 620 and the processing unit 610), a display unit 640, and the like.
  • the storage unit stores program code, and the program code can be executed by the processing unit 610, so that the processing unit 610 performs the steps according to various exemplary embodiments of the present invention described in the electronic prescription transfer processing method section of this specification.
  • the processing unit 610 may perform steps as shown in Figure 13 or 14.
  • the storage unit 620 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 6201 and/or a cache storage unit 6202, and may further include a read-only storage unit (ROM) 6203.
  • RAM random access storage unit
  • ROM read-only storage unit
  • Storage unit 620 may also include a program/utility 6204 having a set of (at least one) program modules 6205 including, but not limited to: an operating system, one or more application programs, other program modules, and program data, Each of these examples, or some combination, may include the implementation of a network environment.
  • program/utility 6204 having a set of (at least one) program modules 6205 including, but not limited to: an operating system, one or more application programs, other program modules, and program data, Each of these examples, or some combination, may include the implementation of a network environment.
  • Bus 630 may be a local area representing one or more of several types of bus structures, including a memory unit bus or memory unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or using any of a variety of bus structures. bus.
  • Electronic device 600 may also communicate with one or more external devices 700 (e.g., keyboard, pointing device, Bluetooth device, etc.), may also communicate with one or more devices that enable a user to interact with electronic device 600, and/or with Any device (eg, router, modem, etc.) that enables the electronic device 600 to communicate with one or more other computing devices. This communication may occur through input/output (I/O) interface 650.
  • the electronic device 600 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 660.
  • Network adapter 660 may communicate with other modules of electronic device 600 via bus 630.
  • Embodiments of the present invention also provide a computer-readable storage medium for storing a program, and the steps of the integrated vehicle power swap method are implemented when the program is executed.
  • various aspects of the present invention can also be implemented in the form of a program product, which includes program code.
  • the program product is run on a terminal device, the program code is used to cause the terminal device to execute the above described instructions.
  • the steps according to various exemplary embodiments of the present invention are described in the electronic prescription flow processing method section.
  • the integrated vehicle power swap system of this embodiment of the present invention can provide a modular and containerized power swap solution, which can be easily moved and laid out to the target power swap location, and greatly saves the space of the power swap station.
  • Figure 23 is a schematic structural diagram of the computer-readable storage medium of the present invention.
  • a program product 800 for implementing the above method according to an embodiment of the present invention is described, which can adopt a portable compact disk read-only memory (CD-ROM) and include program code, and can be used on a terminal device, For example, run on a personal computer.
  • CD-ROM portable compact disk read-only memory
  • the program product of the present invention is not limited thereto.
  • a readable storage medium may be any tangible medium containing or storing a program that may be used by or in combination with an instruction execution system, apparatus or device.
  • the Program Product may take the form of one or more readable media in any combination.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may include a data signal propagated in baseband or as part of a carrier wave carrying the readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a readable storage medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code contained on a readable storage medium may be transmitted using any suitable medium, including but not limited to wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • Program code for performing the operations of the present invention may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural programming. Language—such as "C” or a similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as provided by an Internet service. (business comes via Internet connection).
  • LAN local area network
  • WAN wide area network
  • the purpose of the present invention is to provide an integrated vehicle power swapping system, method, equipment and storage medium, which can provide a modular and containerized power swapping solution that can be easily moved and laid out to the target power swapping location, and greatly saves money.
  • the spatial location of the battery swap station is to provide a modular and containerized power swapping solution that can be easily moved and laid out to the target power swapping location, and greatly saves money.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供一种集成式车辆换电系统、方法、设备及存储介质,该系统包括:一组轨道(3);一换电机器人(4),沿着轨道(3)移动;至少一集装箱电池仓(1),设置于轨道(3)的第一侧,包括一集装箱本体以及位于内部的若干供电池充电的充电位(11),充电位(11)沿集装箱电池仓(1)的长度方向排列,集装箱电池仓(1)邻近轨道(3)的一侧设有一分离侧板(10),分离侧板(10)与集装箱电池仓(1)分离后露出内部的充电位(11)和电池;以及一换电车位(14),设置于轨道(3)的第二侧,换电机器人(4)对集装箱电池仓(1)内的电池和停靠于换电车位(14)的待换电车辆内的电池进行更换。该系统能够提供模块化、集装箱化的换电解决方案,可以轻松移动并布局到目标换电位置,并且大大节约换电站空间位置。

Description

集成式车辆换电系统、方法、设备及存储介质 技术领域
本发明涉及大型新能源车换电领域,具体地说,涉及集成式车辆换电系统、方法、设备及存储介质。
背景技术
目前的电动车采用的换电模式,大部分是底部换电,需要把车辆支撑起来,在车辆底部打开电池仓门,从下方取出电池,进行电池更换。但是,大型新能源车例如:重型无人卡车等,自身的重量巨大,显然无法进行底部换电,而且底部换电整体速度慢,降低了换电站的周转效率。
对于卡车尤其是重卡换电,目前大多都采用顶部吊装方式,例如:CN215552604U,一种新能源重卡换电站;CN214689108U,一种具有双向车道的电动重卡换电站;CN110862008A,一种电动重卡充换电系统;CN210634533U,一种重型卡车电池更换站。这些技术方案的核心设备包括了行吊、车载换电底座、电池箱,主要特点是通过行车吊将车上的电池包从顶部吊离车身,进行换电操作。其换电流程主要包括:
①车辆驶入换电等待区,停靠准确后熄火。
②换电站侧RFID设备识别车辆信息。
③司机下车扫码启动换电。
④车载电池底座解锁,行业吊定位电池包位置,吊取车上的电池包。
⑤行车吊在电池仓内倒仓,将新的电池包吊装到车辆上后,行车吊恢复原位。
⑥新的电池包到位后,车载电池底座上锁,司机驾驶车辆离开换电站;
但是,这些技术方案都存在一下缺点:
①站体高度>6米,高度较高,设备难以整体运输;
②每个工位需要设置移动装置,增加了系统复杂度和成本;
③不适合移动换电,即换电站可随时方便地移动到目的地对卡车进行换电。
④电池包吊装时,会晃动,会导致定位不准且有掉落风险;
⑤顶部吊装不能满足部分卡车的换电需求,如矿卡顶部部分结构会遮挡住电池包,从而无法从顶部吊装。
发明内容
针对现有技术中的问题,本发明的目的在于提供集成式车辆换电系统、方法、设备及存储介质,克服了现有技术的困难,能够提供模块化、集装箱化的换电解决方案,可以轻松移动并布局到目标换电位置,并且大大节约换电站空间位置。
本发明的实施例提供一种集成式车辆换电系统,包括:
一组轨道;
一换电机器人,沿着所述轨道移动;
至少一集装箱电池仓,设置于所述轨道的第一侧,包括一集装箱本体以及位于内部的若干供电池充电的充电位,所述充电位沿所述集装箱电池仓的长度方向排列,所述集装箱电池仓邻近所述轨道的一侧设有一分离侧板,所述分离侧板与所述集装箱电池仓分离后露出内部的所述充电位和电池;以及
一换电车位,设置于所述轨道的第二侧,所述换电机器人对所述集装箱电池仓内的电池和停靠于所述换电车位的待换电车辆内的电池进行更换。
在一些实施例中,所述换电机器人具有一沿垂直于所述轨道的方向线性搬运电池的通道,所述集装箱电池仓与所述集装箱电池仓用于设置所述换电机器人和轨道 的最小间距等于所述电池的长度。
在一些实施例中,所述集装箱电池仓的长度方向平行于所述轨道的延展方向。
在一些实施例中,还包括:至少一对位组件,所述对位组件沿着垂直于所述轨道的第二侧且至少部分进入所述换电车位中并限位所述待换电车辆,所述换电机器人至少基于所述对位组件与所述轨道的相对位置向所述待换电车辆进行换电。
在一些实施例中,每个所述对位组件包括一组各自独立转动的传动带,所述待换电车辆的车轮落入所述传动带之间被限位后,每组所述传动带同向旋转以将所述车轮向所述轨道拉近或是推远,每组所述传动带反向旋转以调整所述车轮的滚动方向相对于所述轨道的延展方向之间的角度。
在一些实施例中,所述传动带的延展方向垂直于所述轨道的延展方向,所述传动带之间的间距小于所述待换电车辆的车轮直径。
在一些实施例中,还包括:一集装箱控制仓,所述集装箱控制仓连接于所述集装箱电池仓的一端,且分别与所述集装箱电池仓的充电位、换电机器人、对位组件电连接。
在一些实施例中,所述对位组件的数量与所述待换电车辆的车桥的数量相同,所述对位组件基于所述轨道的延展方向移动,令所述对位组件之间的间距与所述待换电车辆的车桥之间的间距相匹配。
在一些实施例中,所述分离侧板与所述集装箱电池仓的底边铰链连接,所述轨道设置于所述分离侧板位于所述集装箱电池仓中的内侧,所述换电机器人被限位于所述轨道,所述集装箱电池仓内设有一沿着所述充电位排列的机器人容纳空间,供所述分离侧板对合后,随所述轨道进入所述集装箱电池仓的换电机器人容置于所述机器人容纳空间。
在一些实施例中,当所述分离侧板自所述集装箱电池仓翻转落地后,露出所述分离侧板的内侧的所述轨道和位于所述轨道上的换电机器人;
当所述分离侧板与所述集装箱电池仓对合后,所述轨道上的换电机器人被插入所述机器人容纳空间中。
在一些实施例中,所述分离侧板内嵌至少一可伸缩的对位组件,所述对位组件的伸缩行程的方向垂直于所述轨道的延展方向;
当所述分离侧板自所述集装箱电池仓翻转落地,所述对位组件伸出所述分离侧板,所述对位组件沿着垂直于所述轨道的第二侧且至少部分进入所述换电车位中并限位所述待换电车辆,所述换电机器人至少基于所述对位组件与所述轨道的相对位置向所述待换电车辆进行换电;
当所述分离侧板与所述集装箱电池仓对合,所述对位组件缩入所述分离侧板。
在一些实施例中,当大于或等于2个的所述集装箱电池仓垂直堆叠或是沿所述集装箱电池仓的长度方向直线排列时,所述集装箱电池仓的分离侧板均位于同一侧。
在一些实施例中,还包括一运输和/或装卸所述集装箱电池仓的运输车辆。
本发明的实施例还提供一种集成式车辆换电方法,采用上述的集成式车辆换电系统,包括以下步骤:
所述分离侧板与所述集装箱电池仓分离,露出内部的所述充电位和电池;
所述换电机器人沿着所述轨道移动到位于所述换电车位的待换电车辆的电池仓处,取出第一电池;
所述换电机器人将第一电池放入所述集装箱电池仓的空闲充电位;
所述换电机器人移动至自另一充电位取得第二电池;
所述换电机器人沿着所述轨道回到所述待换电车辆的电池仓处,送入所述第二电池。
本发明的实施例还提供一种集成式车辆换电设备,包括:
处理器;
存储器,其中存储有所述处理器的可执行指令;
其中,所述处理器配置为经由执行所述可执行指令来执行上述集成式车辆换电方法的步骤。
本发明的实施例还提供一种计算机可读存储介质,用于存储程序,所述程序被执行时实现上述集成式车辆换电方法的步骤。
本发明的目的在于提供集成式车辆换电系统、方法、设备及存储介质,能够提供模块化、集装箱化的换电解决方案,可以轻松移动并布局到目标换电位置,并且大大节约换电站空间位置。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1是本发明的集成式车辆换电系统的立体图。
图2是本发明的集成式车辆换电系统的主视图。
图3是本发明的集成式车辆换电系统的侧视图。
图4是本发明的集成式车辆换电系统的俯视图。
图5是本发明的集成式车辆换电系统中集装箱电池仓闭合运输状态的俯视图。
图6是本发明的集成式车辆换电系统中集装箱电池仓闭合运输状态的主视图。
图7是本发明的集成式车辆换电系统中集装箱电池仓展开状态的示意图。
图8是本发明的集成式车辆换电系统中集装箱电池仓伸出对位组件的示意图。
图9是使用本发明的集成式车辆换电系统时车辆进入换电车位示意图。
图10是使用本发明的集成式车辆换电系统时车辆通过对位组件进行对位的示意图。
图11是使用本发明的集成式车辆换电系统时换电机器人与车辆的电池仓对位的示意图。
图12是使用本发明的集成式车辆换电系统时换电机器人取出车辆的电池的示意图。
图13是使用本发明的集成式车辆换电系统时换电机器人携带电池向空闲的充电位移动的示意图。
图14是使用本发明的集成式车辆换电系统时换电机器人携带电池到达空闲的充电位的示意图。
图15是使用本发明的集成式车辆换电系统时换电机器人将电池送入空闲的充电位的示意图。
图16是使用本发明的集成式车辆换电系统时换电机器人向另一个具有充满电的电池的充电位移动的示意图。
图17是使用本发明的集成式车辆换电系统时换电机器人取出充满电的电池的示意图。
图18是使用本发明的集成式车辆换电系统时换电机器人携带电池向电池仓移动的示意图。
图19是使用本发明的集成式车辆换电系统时换电机器人将电池送入电池仓的示意图。
图20是使用本发明的集成式车辆换电系统时换电结束车辆驶离的示意图。
图21是本发明的集成式车辆换电方法的流程图。
图22是本发明的集成式车辆换电设备的结构示意图。
图23是本发明一实施例的计算机可读存储介质的结构示意图。
具体实施方式
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本申请所揭露的内容轻易地了解本申请的其他优点与功效。本申请还可以通过另外不同的具体实施方式加以实施或应用系统,本申请中的各项细节也可以根据不同观点与应用系统,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面以附图为参考,针对本申请的实施例进行详细说明,以便本申请所属技术领域的技术人员能够容易地实施。本申请可以以多种不同形态体现,并不限定于此处说明的实施例。
在本申请的表示中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的表示意指结合该实施例或示例表示的具体特征、结构、材料或者特点包括于本申请的至少一个实施例或示例中。而且,表示的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本申请中表示的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于表示目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的表示中,“多个”的含义是两个 或两个以上,除非另有明确具体的限定。
为了明确说明本申请,省略与说明无关的器件,对于通篇说明书中相同或类似的构成要素,赋予了相同的参照符号。
在通篇说明书中,当说某器件与另一器件“连接”时,这不仅包括“直接连接”的情形,也包括在其中间把其它元件置于其间而“间接连接”的情形。另外,当说某种器件“包括”某种构成要素时,只要没有特别相反的记载,则并非将其它构成要素排除在外,而是意味着可以还包括其它构成要素。
当说某器件在另一器件“之上”时,这可以是直接在另一器件之上,但也可以在其之间伴随着其它器件。当对照地说某器件“直接”在另一器件“之上”时,其之间不伴随其它器件。
虽然在一些实例中术语第一、第二等在本文中用来表示各种元件,但是这些元件不应当被这些术语限制。这些术语仅用来将一个元件与另一个元件进行区分。例如,第一接口及第二接口等表示。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
此处使用的专业术语只用于言及特定实施例,并非意在限定本申请。此处使用的单数形态,只要语句未明确表示出与之相反的意义,那么还包括复数形态。在说 明书中使用的“包括”的意义是把特定特性、区域、整数、步骤、作业、要素及/或成份具体化,并非排除其它特性、区域、整数、步骤、作业、要素及/或成份的存在或附加。
虽然未不同地定义,但包括此处使用的技术术语及科学术语,所有术语均具有与本申请所属技术领域的技术人员一般理解的意义相同的意义。普通使用的字典中定义的术语追加解释为具有与相关技术文献和当前提示的内容相符的意义,只要未进行定义,不得过度解释为理想的或非常公式性的意义。
图1是本发明的集成式车辆换电系统的立体图。图2是本发明的集成式车辆换电系统的主视图。图3是本发明的集成式车辆换电系统的侧视图。图4是本发明的集成式车辆换电系统的俯视图。如图1至4所示,本发明的集成式车辆换电系统,包括:至少一集装箱电池仓1、一组轨道3以及一换电机器人4。换电机器人4沿着轨道3移动。集装箱电池仓1设置于轨道3的第一侧,包括一集装箱本体以及位于内部的若干供电池充电的充电位11,充电位11沿集装箱电池仓1的长度方向排列,集装箱电池仓1邻近轨道3的一侧设有一分离侧板10,分离侧板10与集装箱电池仓1分离后露出内部的充电位11和电池。一换电车位14,设置于轨道3的第二侧,换电机器人4对集装箱电池仓1内的电池和停靠于换电车位14的待换电车辆内的电池进行更换。分离侧板10可以通过人工拆卸或是机械结构自动展开,不以此为限。本发明的目的在于提供一种模块化、集装箱化的新型换电装置,通过将换电站封装于一个常规集装箱中,实现了快速拼装、便于运输,重量轻、可靠性高且便于移动供电的效果。本发明中的集装箱电池仓1的外壳是40英尺的标准集装箱,但不以此为限。本发明中电池包与机器人分离式设计,并且换电机器人模块化设计,可装入标准集装箱,预计整套设备三个集装箱(40英尺+2个20英尺)打包, 便于海运和陆运。本发明中的集装箱电池仓与卡车并排布置可以实现平行装卸,大大节约集装箱电池仓空间位置,集装箱电池仓布置在卡车通道侧边通过侧叉换电非常适合港口等空间受限的场合集卡换电,而且,集装箱电池仓可安装在平板挂车上,方便道路运输快捷的到达目的地,建立移动式集装箱电池仓对目标车辆进行换电。
在一个优选实施例中,换电机器人4具有一沿垂直于轨道3的方向线性搬运电池的通道,集装箱电池仓1与集装箱电池仓1用于设置换电机器人4和轨道3的最小间距等于电池的长度,集装箱电池仓1的长度方向平行于轨道3的延展方向,本发明中换电机器人4所需的作业空间远小于现有换电设备的作业空间,能够大减小了整体空间体积,有利于在狭小空间内进行布局。
在一个优选实施例中,还包括:至少一对位组件5,对位组件5沿着垂直于轨道3的第二侧且至少部分进入换电车位14中并限位待换电车辆,换电机器人4至少基于对位组件5与轨道3的相对位置向待换电车辆进行换电,对位组件5辅助换电机器人4提高对位换电的精确性,对位组件5可以通过设置辅助检测的红外或是激光雷达等检测待换电车辆的姿态,并且进行调整,以便使得待换电车辆的电池层与换电机器人4的线性搬运电池的通道同轴,提升换电动作的精确性。
在一个优选实施例中,每个对位组件5包括一组各自独立转动的传动带,待换电车辆的车轮落入传动带之间被限位后,每组传动带同向旋转以将车轮向轨道3拉近或是推远,每组传动带反向旋转以调整车轮的滚动方向相对于轨道3的延展方向之间的角度,减小了待换电车辆驶入换电车位14的路径准确性的要求。
在一个优选实施例中,传动带的延展方向垂直于轨道3的延展方向,传动带之间的间距小于待换电车辆的车轮直径,确保待换电车辆的车轮是限位在传动带之间,并且传动带可以通过独立转动来调整车轮的位置和方向。
在一个优选实施例中,还包括:一集装箱控制仓6,集装箱控制仓6连接于集装箱电池仓1的一端,且分别与集装箱电池仓1的充电位11、换电机器人4、对位组件5电连接,从而提供了操作人员在集装箱控制仓6对集装箱电池仓1进行控制、维修或是调试的使用场景,增强集装箱电池仓1应对不同场景的灵活性。
在一个优选实施例中,对位组件5的数量与待换电车辆的车桥的数量相同,对位组件5基于轨道3的延展方向移动,令对位组件5之间的间距与待换电车辆的车桥之间的间距相匹配,提高对位精度。
在一个优选实施例中,当大于或等于2个的集装箱电池仓1垂直堆叠或是沿集装箱电池仓1的长度方向直线排列时,集装箱电池仓1的分离侧板10均位于同一侧,从而对集装箱电池仓1进行电池扩容,增强对多辆车辆进行换电的效率和电池冗余。例如:通过单层个或双层集装箱,可以使得换电站具备10-20或8-16个电池箱体(首创),增强了换电站中电池的利用率,换电的操作能力大大提升。
在一个优选实施例中,还包括一运输和/或装卸集装箱电池仓1的运输车辆,以便运输集装箱电池仓1到下一个需要换电的场所,增强集装箱电池仓1的移动效率。
在一个优选实施例中,运输车辆具有空气悬架,可以使得运输集装箱电池仓1落地已进行换电,或者抬起集装箱电池仓1进行行驶。
本发明的一种实施方式如下:换电站主要组成主要包括:换电机器人4、集装箱电池仓1、电池仓底座、车载底座、对位组件5、辅助系统,各部件主要功能为:
换电机器人4:解锁车载底座,对电池进行精确定位,自动拆卸空电池,装载满电池。
集装箱电池仓1:存储电池,对空电池进行充电管理,同时进行电池监控检测。
对位组件5:识别待换电车辆7信息,与车辆和电池进行信息交互,引导车辆,进行初步定位。
车载底座:链接电池与待换电车辆7,配置快插连接器,链接电池与待换电车辆7电机。
电房底座:链接电池与充电机,配置快插连接器。
充电机:负责给电池库内电池充电。
辅助系统:配置消防系统、视频监控系统、数据服务器。对整站进行全方位监控和数据处理,连接云服务器。
本发明的一种换电流程如下:
①车辆驶入换电站,到达固定换电位置,待换电车辆7上传换电需求信息(无人集卡和AGV车辆通过无线通信系统自动上传,人工集卡和拖挂车点击换电按钮上传信息)。
②车载电池底座解锁,换电机器人4定位电池包位置。
③换电机器人4根据待换电车辆7停放位置和姿态调整自身状态,根据激光传感器获得的数据执行自身动作,先伸出货叉再通过换电机器人4提升机构把电池包脱离车辆上的换电底座。
④换电机器人4把电池包存放到系统分配的充电工位电房底座上进行充电。
⑤换电机器人4从电池库内抓取满电的电池包叉取到车上,车载电池底座上锁。
⑥待换电车辆7驶出换电站。
基于本发明的上述技术方案,集成式车辆换电系统具有以下优势:
1、模块化、集装箱化,便于海运和陆运。
2、通用性强,适合各种车型,如Qtruck,Etruck,IGV,挂车等。
3、集装箱电池仓内部无需移载底座。
4、换电机器人动作少,对位自由度全。
5、简单、可靠,真正的无人化,远程化。
图5是本发明的集成式车辆换电系统中集装箱电池仓闭合运输状态的俯视图。图6是本发明的集成式车辆换电系统中集装箱电池仓闭合运输状态的主视图。图7是本发明的集成式车辆换电系统中集装箱电池仓展开状态的示意图。图8是本发明的集成式车辆换电系统中集装箱电池仓伸出对位组件的示意图。如图5至8所示,本发明还提供另一种进一步集成化的集装箱电池仓1,其中,分离侧板10与集装箱电池仓1的底边铰链连接,轨道3设置于分离侧板10位于集装箱电池仓1中的内侧,换电机器人4被限位于轨道3(换电机器人4下部的滚轮夹持住轨道3,即便轨道3翻转后也不会自轨道3中落下),集装箱电池仓1内设有一沿着充电位11排列的机器人容纳空间12,供分离侧板10对合后,随轨道3进入集装箱电池仓1的换电机器人4容置于机器人容纳空间12。当分离侧板10通过设于集装箱电池仓1内的机械液栏杆等驱动,自集装箱电池仓1翻转落地后,露出分离侧板10的内侧的轨道3和位于轨道3上的换电机器人4。当分离侧板10与集装箱电池仓1对合后,轨道3上的换电机器人4被插入机器人容纳空间12中。
在一个优选例中,分离侧板10内嵌至少一可伸缩的对位组件5,对位组件5的伸缩行程的方向垂直于轨道3的延展方向。当分离侧板10自集装箱电池仓1翻转落地,对位组件5伸出分离侧板10,对位组件5沿着垂直于轨道3的第二侧且至少部分进入换电车位14中并限位待换电车辆,换电机器人4至少基于对位组件5与轨道3的相对位置向待换电车辆进行换电;当分离侧板10与集装箱电池仓1对 合,对位组件5缩入分离侧板10。
可见,本发明的集装箱电池仓1可以将电池包、轨道3、换电机器人4以及对位组件5全部集成在一个集装箱的结构中,大大缩小了运输时的体积,增强了便利性,并且可以通集装箱电池仓1的机械结构驱动,自动展开,实现自动布局充电站的效果,整个过程完全由集装箱电池仓1独立完成,不需要人力协助。
以下通过图9至图20来介绍本发明的实施过程。图9是使用本发明的集成式车辆换电系统时车辆进入换电车位示意图。图10是使用本发明的集成式车辆换电系统时车辆通过对位组件进行对位的示意图。图11是使用本发明的集成式车辆换电系统时换电机器人与车辆的电池仓对位的示意图。图12是使用本发明的集成式车辆换电系统时换电机器人取出车辆的电池的示意图。图13是使用本发明的集成式车辆换电系统时换电机器人携带电池向空闲的充电位移动的示意图。图14是使用本发明的集成式车辆换电系统时换电机器人携带电池到达空闲的充电位的示意图。图15是使用本发明的集成式车辆换电系统时换电机器人将电池送入空闲的充电位的示意图。图16是使用本发明的集成式车辆换电系统时换电机器人向另一个具有充满电的电池的充电位移动的示意图。图17是使用本发明的集成式车辆换电系统时换电机器人取出充满电的电池的示意图。图18是使用本发明的集成式车辆换电系统时换电机器人携带电池向电池仓移动的示意图。图19是使用本发明的集成式车辆换电系统时换电机器人将电池送入电池仓的示意图。图20是使用本发明的集成式车辆换电系统时换电结束车辆驶离的示意图。如图9至20所示,在集装箱电池仓1布局充电站之后(图5至8已展示了集装箱电池仓1布局充电站的过程,但不以此为限),集装箱电池仓1内的电池和充电座11被露出。待换电车辆7驶入换电车位14,并通过对位组件5将待换电车辆7的长度方向1调整到与轨道3 平行后,对位组件5拉近待换电车辆7靠拢轨道3。待换电车辆7的电池仓的仓门打开露出低电量的第一电池13。换电机器人4沿着轨道3移动到电池仓,并沿垂直于轨道3的直线方向取出第一电池13。换电机器人4携带着第一电池13沿着轨道3移动到集装箱电池仓1内一空闲的充电座11,将第一电池13推送到空闲的充电座11中让其充电。换电机器人4继续沿着轨道3到达集装箱电池仓1内一高电量的第二电池2处,并将第二电池2取出后。换电机器人4沿着轨道3返回到待换电车辆7的电池仓处,并将第二电池2送入待换电车辆7的电池仓,电池仓舱门关闭后让第二电池2向待换电车辆7进行供电。待换电车辆7完成换电后的,驶离集装箱电池仓1。
图21是本发明的集成式车辆换电方法的流程图。如图21所示,本发明的集成式车辆换电方法,采用上述的集成式车辆换电系统,包括以下步骤:
S110、分离侧板与集装箱电池仓分离,露出内部的充电位和电池。
S120、换电机器人沿着轨道移动到位于换电车位的待换电车辆的电池仓处,取出第一电池。
S130、换电机器人将第一电池放入集装箱电池仓的空闲充电位。
S140、换电机器人移动至自另一充电位取得第二电池。
S150、换电机器人沿着轨道回到待换电车辆的电池仓处,送入第二电池。
本发明的集成式车辆换电方法能够提供模块化、集装箱化的换电解决方案,可以轻松移动并布局到目标换电位置,并且大大节约换电站空间位置。
本发明实施例还提供一种集成式车辆换电设备,包括处理器。存储器,其中存储有处理器的可执行指令。其中,处理器配置为经由执行可执行指令来执行的集成式车辆换电方法的步骤。
如上所示,该实施例本发明的集成式车辆换电系统能够提供模块化、集装箱化的换电解决方案,可以轻松移动并布局到目标换电位置,并且大大节约换电站空间位置。
所属技术领域的技术人员能够理解,本发明的各个方面可以实现为系统、方法或程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“平台”。
图22是本发明的集成式车辆换电设备的结构示意图。下面参照图22来描述根据本发明的这种实施方式的电子设备600。图22显示的电子设备600仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图22所示,电子设备600以通用计算设备的形式表现。电子设备600的组件可以包括但不限于:至少一个处理单元610、至少一个存储单元620、连接不同平台组件(包括存储单元620和处理单元610)的总线630、显示单元640等。
其中,存储单元存储有程序代码,程序代码可以被处理单元610执行,使得处理单元610执行本说明书上述电子处方流转处理方法部分中描述的根据本发明各种示例性实施方式的步骤。例如,处理单元610可以执行如图13或14中所示的步骤。
存储单元620可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)6201和/或高速缓存存储单元6202,还可以进一步包括只读存储单元(ROM)6203。
存储单元620还可以包括具有一组(至少一个)程序模块6205的程序/实用工具6204,这样的程序模块6205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境 的实现。
总线630可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备600也可以与一个或多个外部设备700(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备600交互的设备通信,和/或与使得该电子设备600能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口650进行。并且,电子设备600还可以通过网络适配器660与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器660可以通过总线630与电子设备600的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备600使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储平台等。
本发明实施例还提供一种计算机可读存储介质,用于存储程序,程序被执行时实现的集成式车辆换电方法的步骤。在一些可能的实施方式中,本发明的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行本说明书上述电子处方流转处理方法部分中描述的根据本发明各种示例性实施方式的步骤。
如上所示,该实施例本发明的集成式车辆换电系统能够提供模块化、集装箱化的换电解决方案,可以轻松移动并布局到目标换电位置,并且大大节约换电站空间位置。
图23是本发明的计算机可读存储介质的结构示意图。参考图23所示,描述了根据本发明的实施方式的用于实现上述方法的程序产品800,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本发明的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读存储介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括 常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
综上,本发明的目的在于提供集成式车辆换电系统、方法、设备及存储介质,能够提供模块化、集装箱化的换电解决方案,可以轻松移动并布局到目标换电位置,并且大大节约换电站空间位置。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (16)

  1. 一种集成式车辆换电系统,其特征在于,包括:
    一组轨道;
    一换电机器人,沿着所述轨道移动;
    至少一集装箱电池仓,设置于所述轨道的第一侧,包括一集装箱本体以及位于内部的若干供电池充电的充电位,所述充电位沿所述集装箱电池仓的长度方向排列,所述集装箱电池仓邻近所述轨道的一侧设有一分离侧板,所述分离侧板与所述集装箱电池仓分离后露出内部的所述充电位和电池;以及
    一换电车位,设置于所述轨道的第二侧,所述换电机器人对所述集装箱电池仓内的电池和停靠于所述换电车位的待换电车辆内的电池进行更换。
  2. 如权利要求1所述的集成式车辆换电系统,其特征在于,所述换电机器人具有一沿垂直于所述轨道的方向线性搬运电池的通道,所述集装箱电池仓与所述集装箱电池仓用于设置所述换电机器人和轨道的最小间距等于所述电池的长度。
  3. 如权利要求1所述的集成式车辆换电系统,其特征在于,所述集装箱电池仓的长度方向平行于所述轨道的延展方向。
  4. 如权利要求1所述的集成式车辆换电系统,其特征在于,还包括:至少一对位组件,所述对位组件沿着垂直于所述轨道的第二侧且至少部分进入所述换电车位中并限位所述待换电车辆,所述换电机器人至少基于所述对位组件与所述轨道的相对位置向所述待换电车辆进行换电。
  5. 如权利要求4所述的集成式车辆换电系统,其特征在于,每个所述对位组件包括一组各自独立转动的传动带,所述待换电车辆的车轮落入所述传动带之间被限位后,每组所述传动带同向旋转以将所述车轮向所述轨道拉近或是推远,每组所 述传动带反向旋转以调整所述车轮的滚动方向相对于所述轨道的延展方向之间的角度。
  6. 如权利要求5所述的集成式车辆换电系统,其特征在于,所述传动带的延展方向垂直于所述轨道的延展方向,所述传动带之间的间距小于所述待换电车辆的车轮直径。
  7. 如权利要求5所述的集成式车辆换电系统,其特征在于,还包括:一集装箱控制仓,所述集装箱控制仓连接于所述集装箱电池仓的一端,且分别与所述集装箱电池仓的充电位、换电机器人、对位组件电连接。
  8. 如权利要求4所述的集成式车辆换电系统,其特征在于,所述对位组件的数量与所述待换电车辆的车桥的数量相同,所述对位组件基于所述轨道的延展方向移动,令所述对位组件之间的间距与所述待换电车辆的车桥之间的间距相匹配。
  9. 如权利要求1所述的集成式车辆换电系统,其特征在于,所述分离侧板与所述集装箱电池仓的底边铰链连接,所述轨道设置于所述分离侧板位于所述集装箱电池仓中的内侧,所述换电机器人被限位于所述轨道,所述集装箱电池仓内设有一沿着所述充电位排列的机器人容纳空间,供所述分离侧板对合后,随所述轨道进入所述集装箱电池仓的换电机器人容置于所述机器人容纳空间。
  10. 如权利要求9所述的集成式车辆换电系统,其特征在于,当所述分离侧板自所述集装箱电池仓翻转落地后,露出所述分离侧板的内侧的所述轨道和位于所述轨道上的换电机器人;
    当所述分离侧板与所述集装箱电池仓对合后,所述轨道上的换电机器人被插入所述机器人容纳空间中。
  11. 如权利要求10所述的集成式车辆换电系统,其特征在于,所述分离侧板 内嵌至少一可伸缩的对位组件,所述对位组件的伸缩行程的方向垂直于所述轨道的延展方向;
    当所述分离侧板自所述集装箱电池仓翻转落地,所述对位组件伸出所述分离侧板,所述对位组件沿着垂直于所述轨道的第二侧且至少部分进入所述换电车位中并限位所述待换电车辆,所述换电机器人至少基于所述对位组件与所述轨道的相对位置向所述待换电车辆进行换电;
    当所述分离侧板与所述集装箱电池仓对合,所述对位组件缩入所述分离侧板。
  12. 如权利要求1所述的集成式车辆换电系统,其特征在于,当大于或等于2个的所述集装箱电池仓垂直堆叠或是沿所述集装箱电池仓的长度方向直线排列时,所述集装箱电池仓的分离侧板均位于同一侧。
  13. 如权利要求1所述的集成式车辆换电系统,其特征在于,还包括一运输和/或装卸所述集装箱电池仓的运输车辆。
  14. 一种集成式车辆换电方法,其特征在于,采用如权利要求1所述的集成式车辆换电系统,包括以下步骤:
    所述分离侧板与所述集装箱电池仓分离,露出内部的所述充电位和电池;
    所述换电机器人沿着所述轨道移动到位于所述换电车位的待换电车辆的电池仓处,取出第一电池;
    所述换电机器人将第一电池放入所述集装箱电池仓的空闲充电位;
    所述换电机器人移动至自另一充电位取得第二电池;
    所述换电机器人沿着所述轨道回到所述待换电车辆的电池仓处,送入所述第二电池。
  15. 一种集成式车辆换电设备,其特征在于,包括:
    处理器;
    存储器,其中存储有所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求14所述集成式车辆换电方法的步骤。
  16. 一种计算机可读存储介质,用于存储程序,其特征在于,所述程序被处理器执行时实现权利要求14所述集成式车辆换电方法的步骤。
PCT/CN2022/133464 2022-03-15 2022-11-22 集成式车辆换电系统、方法、设备及存储介质 WO2023173794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210254111.XA CN114572051B (zh) 2022-03-15 2022-03-15 集成式车辆换电系统、方法、设备及存储介质
CN202210254111.X 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023173794A1 true WO2023173794A1 (zh) 2023-09-21

Family

ID=81774671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133464 WO2023173794A1 (zh) 2022-03-15 2022-11-22 集成式车辆换电系统、方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114572051B (zh)
WO (1) WO2023173794A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114572051B (zh) * 2022-03-15 2023-09-26 上海西井科技股份有限公司 集成式车辆换电系统、方法、设备及存储介质
CN116691396B (zh) * 2023-08-08 2023-10-31 宁波格劳博智能工业有限公司 一种重卡换电系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211139084U (zh) * 2019-12-16 2020-07-31 北京金茂绿建科技有限公司 重型车辆集装箱换电站
KR20210084792A (ko) * 2019-12-27 2021-07-08 한국철도기술연구원 무가선트램 배터리 충전 시스템 및 제어 방법
CN113386613A (zh) * 2021-05-01 2021-09-14 江苏葑全新能源动力科技有限公司 一种电动汽车快速换电站系统
CN113400993A (zh) * 2021-05-11 2021-09-17 深圳市鑫煜控股有限公司 一种集约型重卡换电站
CN114572051A (zh) * 2022-03-15 2022-06-03 上海西井信息科技有限公司 集成式车辆换电系统、方法、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108177635A (zh) * 2017-12-15 2018-06-19 蔚来汽车有限公司 充换电站
DE102019108930A1 (de) * 2019-02-18 2020-08-20 Christian Andrea Michael Schnellwechselstationen für E-Autos
CN211107036U (zh) * 2019-08-16 2020-07-28 青岛联合新能源汽车有限公司 一种电动汽车移动换电车
CN211519318U (zh) * 2019-12-06 2020-09-18 深圳精智机器有限公司 一种纯电动重载卡车侧向充换电系统
CN213565499U (zh) * 2020-11-09 2021-06-29 中国民航大学 车载式移动换电站
CN113561844B (zh) * 2021-08-11 2023-01-31 三一重工股份有限公司 换电站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211139084U (zh) * 2019-12-16 2020-07-31 北京金茂绿建科技有限公司 重型车辆集装箱换电站
KR20210084792A (ko) * 2019-12-27 2021-07-08 한국철도기술연구원 무가선트램 배터리 충전 시스템 및 제어 방법
CN113386613A (zh) * 2021-05-01 2021-09-14 江苏葑全新能源动力科技有限公司 一种电动汽车快速换电站系统
CN113400993A (zh) * 2021-05-11 2021-09-17 深圳市鑫煜控股有限公司 一种集约型重卡换电站
CN114572051A (zh) * 2022-03-15 2022-06-03 上海西井信息科技有限公司 集成式车辆换电系统、方法、设备及存储介质

Also Published As

Publication number Publication date
CN114572051B (zh) 2023-09-26
CN114572051A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023173794A1 (zh) 集成式车辆换电系统、方法、设备及存储介质
US9566868B2 (en) Real-time system and method for tracking, locating and recharging electric vehicles in transit
EP3683083B1 (en) Full-feature container and container switching station
CN206427976U (zh) 一种全向举升式自动引导运输车
US20160134140A1 (en) Charging Station
CN116022099A (zh) 集成式车辆垂直换电系统、方法、设备及存储介质
CN110239967B (zh) 一种自动化集装箱堆场
CN103538811A (zh) 自卸式集装箱
CN112319302A (zh) 一种电动商用车换电系统
CN114013363A (zh) 一种电移动车厢分离智慧装运系统
CN112208957A (zh) 一种带有自发电装置的成品粮智能储运一体化集装箱
CN112277722A (zh) 一种电动商用车高效换电站
EP3428094B1 (en) Multimodal transport interworking system
JP6318933B2 (ja) 無人搬送車の搬送システム
CN211592353U (zh) 一种无人车与无人机协同快递投递系统
CN213948199U (zh) 电动商用车的快捷换电系统
CN112356735A (zh) 电动商用车的箱式换电站
CN210364130U (zh) 一种集装箱式升降快递箱无人配送车
CN114718352A (zh) 一种寻检修一体化智能抢修方舱
CN216467517U (zh) 一种电移动车厢分离智慧装运系统
CN116331158A (zh) 集成式车辆平行换电系统、方法、设备及存储介质
CN102815253B (zh) 一种化工救援抢险车
EP3428092B1 (en) Straddle-type multimodal transport interconnecting system
CN213948201U (zh) 一种电动商用车高效换电站
CN113753142B (zh) 无人平台车载客系统、方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931805

Country of ref document: EP

Kind code of ref document: A1