WO2023173715A1 - 臭氧催化氧化气浮一体化系统及其使用方法 - Google Patents

臭氧催化氧化气浮一体化系统及其使用方法 Download PDF

Info

Publication number
WO2023173715A1
WO2023173715A1 PCT/CN2022/120466 CN2022120466W WO2023173715A1 WO 2023173715 A1 WO2023173715 A1 WO 2023173715A1 CN 2022120466 W CN2022120466 W CN 2022120466W WO 2023173715 A1 WO2023173715 A1 WO 2023173715A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic oxidation
ozone
sewage
flotation
tank
Prior art date
Application number
PCT/CN2022/120466
Other languages
English (en)
French (fr)
Inventor
汤丁丁
郑碧娟
王涛
闵红平
霍培书
张利娜
龚杰
肖阳
刘军
赵皇
周艳
夏云峰
秦雄
Original Assignee
中建三局绿色产业投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建三局绿色产业投资有限公司 filed Critical 中建三局绿色产业投资有限公司
Publication of WO2023173715A1 publication Critical patent/WO2023173715A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of water environment protection, and in particular to an ozone catalytic oxidation and flotation integrated system and its use method.
  • Combined overflow is a mixture of sewage and rainwater that contains a large amount of pollutants.
  • concentrations of pollutants such as COD and TSS in combined overflows are high and vary greatly.
  • TSS can even be as high as 1000mg/L or more.
  • the traditional ozone flotation process is mostly used for advanced treatment of sewage or treatment of industrial wastewater such as oily wastewater and printing and dyeing wastewater.
  • a new ozone flotation device was developed to simultaneously complete emulsification or flocculation, solid-liquid separation, color removal, smell, taste, disinfection, etc. in one operating unit. This process can effectively remove suspended particles and colloids in water, and is very suitable for rapid treatment of sewage with large water quality fluctuations such as first rain and CSO.
  • the patent application number CN201710726484.1 discloses a catalytic ozonation-ozone flotation integrated device, which includes an ozone flotation unit, a catalytic ozonation unit one and a catalytic ozonation unit two. Ozone oxidation is completed in the ozone flotation unit. reaction, and then completes two catalytic oxidation reactions through catalytic ozonation unit one and catalytic ozonation unit two. This device can efficiently remove turbidity and total suspended solids in water.
  • the disadvantages of this device are: (1) The ozone flotation unit, catalytic ozonation unit 1 and catalytic ozonation unit 2 of the device are relatively dispersed, causing the entire device to occupy a large amount of space and limiting the applicability; (2) Ozone must pass through each unit in turn. In order to ensure the concentration of ozone, a larger amount of ozone is required.
  • the object of the present invention is to provide an ozone catalytic oxidation and air flotation integrated system and its use method. Multiple catalytic oxidation layers are sequentially arranged from top to bottom in the catalytic oxidation reaction tank.
  • the sewage treatment effect is good, and the structure of the device is more convenient. Compact and simple, it is especially suitable for CSO treatment fields where water quality fluctuates greatly.
  • the present invention provides an ozone catalytic oxidation and flotation integrated system, which includes a catalytic oxidation system and a water inlet system and an ozone flotation system respectively connected thereto;
  • the catalytic oxidation system includes a catalytic oxidation reaction tank and an ozone flotation system.
  • At least two catalytic oxidation layers are arranged in the catalytic oxidation reaction tank from top to bottom.
  • the catalytic oxidation layer includes a carrier and an active catalyst loaded on the carrier;
  • the ozone flotation system includes an ozone generator.
  • a microporous aerator arranged in the catalytic oxidation reaction tank and located below the catalytic oxidation layer; the water inlet of the water inlet system is located below the catalytic oxidation layer; ozone is exposed through the micropores
  • the aerator enters the catalytic oxidation reaction tank, mixes with the sewage entering from the water inlet system, and then passes through each layer of the catalytic oxidation layer in sequence, completing catalytic oxidation while ozone floats, thereby achieving sewage treatment.
  • the water inlet system includes a sewage tank and a lifting pump provided at the outlet end of the sewage tank.
  • the lifting pump pumps the sewage into the catalytic oxidation reaction tank.
  • the water inlet system also includes a chemical dissolving tank and a mixer; the water outlet end of the chemical dissolving tank is connected to the water inlet end of the lifting pump, and the water outlet end of the lifting pump is connected to The mixer is connected, and the sewage and chemicals in the sewage tank and the chemical dissolving tank are pumped into the mixer, and are mixed in the mixer.
  • the mixer is a tubular mixer.
  • the ozone flotation system also includes an air compressor.
  • the air compressor and the ozone generator respectively send air and ozone into the microporous aerator at the same time and enter the catalytic Oxidation reaction tank.
  • the microporous aerator is equipped with an automatic control system for controlling the air aeration volume and ozone aeration volume, which can flexibly adjust the air aeration volume and ozone aeration volume according to the incoming water quality conditions. quantity.
  • the carrier includes one or more of granular activated carbon, granular alumina and silicon-aluminum composite materials; the active catalyst includes one of Pt, Ni, Co, Mn and Cu metal ions. Kind or variety.
  • the upper part of the catalytic oxidation reaction tank is provided with a discharge system for discharging various substances obtained after sewage treatment.
  • the discharge system includes a water outlet pipe and a scum discharge system.
  • the slag discharge system includes a scum pipe. The treated sewage is discharged from the water outlet pipe, and the scum is discharged from the scum pipe.
  • the invention also provides a method for using the ozone catalytic oxidation and flotation integrated system described above, which specifically includes the following steps:
  • the present invention is equipped with multiple catalytic oxidation layers, which can perform multiple catalytic oxidation treatments on sewage and improve the sewage treatment effect.
  • multiple catalytic oxidation layers are arranged in the catalytic oxidation reaction tank from top to bottom.
  • the number and dosage of the catalytic oxidation layer can be freely adjusted according to the actual situation. It is especially suitable for CSO treatment fields where water quality fluctuates greatly.
  • the entire sewage treatment process is carried out in a reaction tank.
  • the structure of the device is more compact and simple, and the ozone utilization rate is high.
  • the present invention develops a flexible aeration system, which can flexibly adjust the air aeration volume and ozone aeration volume according to the inlet water quality conditions (the concentration of ozone is passed through the air compressor The amount of air provided is diluted and adjusted) to give full play to the role of air flotation and reduce the amount of ozone used.
  • the COD of the CSO inlet water is low, only air can be introduced and the sewage is purified by air flotation; when the COD of the CSO inlet water is high, the ozone air intake volume can be increased to improve the COD removal effect through ozone catalytic oxidation. .
  • the present invention can prepare microbubbles containing air and ozone by setting up an air compressor and an ozone generator.
  • both the air and ozone in the microbubbles can adhere to the hydrophobic substances in the sewage. Reduced ozone usage.
  • the flotation reaction occurs in sewage, some pollutants can also undergo oxidation reactions with ozone in microbubbles. That is, ozone can not only provide microbubbles for the flotation process, but also perform oxidation reactions, so that ozone can be fully utilized and improve the quality of sewage. processing efficiency.
  • This device can also freely adjust the ratio of air and ozone according to the actual situation of sewage, making full use of ozone, without causing a waste of ozone, and is environmentally friendly.
  • Figure 1 is a schematic structural diagram of the ozone catalytic oxidation and flotation integrated system of the present invention.
  • the present invention provides an ozone catalytic oxidation and flotation integrated system, which includes a catalytic oxidation system 3 and a water inlet system 1 and an ozone flotation system 2 respectively connected thereto.
  • the catalytic oxidation system 3 includes a catalytic oxidation reaction tank 31 and at least two catalytic oxidation layers 32 arranged in the catalytic oxidation reaction tank 31 from top to bottom.
  • the catalytic oxidation layer 32 includes a carrier and an active catalyst loaded on the carrier; ozone gas
  • the floating system 2 includes an ozone generator 21 and a microporous aerator 22 disposed in the catalytic oxidation reaction tank 31 and located below the catalytic oxidation layer 32; the water inlet of the water inlet system 1 is located below the catalytic oxidation layer 32.
  • the ozone prepared by the ozone generator 21 enters the catalytic oxidation reaction tank 31 through the microporous aerator 22, mixes with the sewage entering from the water inlet system 1, and then passes through each catalytic oxidation layer 22 in sequence. While the ozone is floating, Complete catalytic oxidation and realize sewage treatment. (The switches of each part are not shown in the picture)
  • the water inlet system 1 is disposed at the bottom of the catalytic oxidation reaction tank 31 and includes a sewage tank 11 and a lift pump 12 disposed at the outlet end of the sewage tank 11 .
  • the lifting pump 12 can pump the sewage in the sewage tank 11 into the catalytic oxidation reaction tank 31 , and can continuously raise the sewage water level in the catalytic oxidation reaction tank 31 until it reaches the water outlet end of the catalytic oxidation reaction tank 31 .
  • the water inlet system 1 further includes a chemical solution tank 13 and a mixer 14 .
  • the water outlet end of the dissolving tank 13 is connected with the water inlet end of the lifting pump 12, and the water outlet end of the lifting pump 12 is connected with the mixer 14.
  • mixer 14 is a tube mixer.
  • the sewage enters the catalytic oxidation reaction tank 31 from the water inlet system 1 provided at the bottom of the catalytic oxidation reaction tank 31, and through the pressure of the lifting pump 12, the water level continues to rise.
  • the ozone flotation system 2 also includes an air compressor 23.
  • the air outlet ends of the ozone generator 21 and the air compressor 23 are both connected to the microporous aerator 22.
  • the air compressor 23 and the ozone generator 21 respectively send air and ozone to the microporous aerator 22 at the same time.
  • the aerator 22 generates a large number of highly dispersed microbubbles from the mixture of air and ozone. These microbubbles will adhere to hydrophobic substances in the sewage after contact with the rising water level.
  • the microbubbles and these substances form a whole body with a density smaller than water, and Float on the water.
  • ozone can not only provide tiny bubbles for the flotation process, but also perform oxidation reactions to improve the efficiency of the sewage treatment process. As the sewage rises, flotation and oxidation reactions continue to occur.
  • the amount and ratio of air and ozone can be adjusted at any time according to actual conditions.
  • the proportion of ozone in the total air intake of the system is ⁇ 30%; when the incoming water is 300 > COD > 150 mg / L, the proportion of ozone in the total system air intake is > 30%; when the incoming water COD ⁇ 300 mg /L, N-level ozone gas distribution can be used, or water reflux can be used.
  • N-level ozone gas distribution can be used, that is, ozone microporous aerators 22 are installed at different heights of the catalytic oxidation reaction tank 31 to increase the amount of ozone aeration.
  • the first-level ozone is directly mixed with the sewage. After the sewage is separated by air flotation, it then passes through the N-level ozone gas distribution equipment to use ozone to degrade the dissolved pollutants in the sewage.
  • the microporous aerator 22 can be replaced by an annular aeration coil, and the annular aeration coil is coiled in the inner cavity of the catalytic oxidation reaction tank 31 .
  • the catalytic oxidation reaction tank 31 of the catalytic oxidation system 3 is provided with at least two catalytic oxidation layers 32 in sequence from top to bottom.
  • the catalytic oxidation layer 32 is provided on the upper part of the microporous aerator 22 .
  • the catalytic oxidation layer 32 is sequentially referred to as the first layer, the second layer, the third layer, etc. from bottom to top.
  • the catalytic oxidation layer 32 includes a carrier and an active catalyst, and the active catalyst is supported on the carrier.
  • the carrier is generally one or more of granular activated carbon, granular alumina and silicon-aluminum composite materials; the active catalyst is generally one or more of Pt, Ni, Co, Mn and Cu metal ions.
  • the active catalyst can be prepared by impregnation or blending.
  • the particles used in the catalytic oxidation layer 32 here are larger, so that the pores are larger, and the residues in the sewage are enough to pass through and continue to float.
  • Different catalytic oxidation layers 32 may use the same active catalyst and carrier, or may use different active catalysts and carriers.
  • the number of catalytic oxidation layers 32 can be specifically set according to actual conditions.
  • the catalyst here is a heterogeneous catalyst in the reaction system
  • the water and ozone in the dissolved gas water pass through
  • the multi-step reaction generates hydroxyl radicals that are more oxidizing than ozone (the water molecules adsorbed on the surface of the catalyst first dissociate into hydroxyl and H, and the hydroxyl combines with the catalyst to form Cat-OH.
  • the H in Cat-OH is easily taken away by ozone. , forming an O 2 -OH intermediate product, and O 2 -OH is further decomposed into oxygen and hydroxyl radicals).
  • the oxidation reaction can be further accelerated, achieving efficient decomposition of dissolved organic matter, and further Wastewater is treated.
  • the catalytic oxidation layer 32 near the water outlet end of the catalytic reaction tank can treat excess ozone and minimize the amount of ozone entering the atmosphere.
  • the upper part of the catalytic oxidation reaction tank 31 is provided with a discharge system 4.
  • the discharge system 4 includes a water outlet pipe 41 and a slag discharge system.
  • the treated sewage is discharged from the water outlet pipe 41 and the scum is discharged from the slag discharge system.
  • the scum discharge system includes a scum pipe 42, which discharges scum.
  • the lifting pump 12 pumps the sewage in the sewage tank 11 into the catalytic oxidation reaction tank 31 , and can continuously raise the sewage water level in the catalytic oxidation reaction tank 31 until it reaches the nozzle of the water inlet end of the water outlet pipe 41 .
  • the distance between the liquid level in the catalytic oxidation reaction tank 31 and its top is jointly controlled by the water inlet system 1 and the water outlet pipe 41. This distance can be freely adjusted according to the different water quality and quantity of water being processed.
  • the water after ozone catalytic oxidation is discharged through the water outlet pipe 41, and the scum accumulates to a certain amount and is discharged from the scum pipe 42 by gravity.
  • the present invention also provides a method for using the above-mentioned ozone catalytic oxidation and flotation integrated system, which specifically includes the following steps:
  • the working principle of the ozone catalytic oxidation and air flotation integrated system is as follows: the sewage and chemicals in the sewage tank 11 and the chemical dissolving tank 13 are pumped into the mixer 14 by the lift pump 12, and are mixed in the mixer 14, and react to the sewage. Carry out preliminary processing.
  • the preliminarily treated sewage enters the catalytic oxidation reaction tank 31 and continues to rise under the action of the lifting pump 12 .
  • the microporous aerator 22 releases a large number of highly dispersed microbubbles mixed with air and ozone. On the one hand, they adhere to the surface of hydrophobic substances, and the microbubbles form a density with these substances.
  • the H in Cat-OH is easily taken away by ozone to form an O 2 -OH intermediate product.
  • O 2 -OH is further decomposed into oxygen. and hydroxyl radicals), under the joint action of ozone and hydroxyl radicals, it can further accelerate the oxidation reaction, achieve efficient decomposition of organic matter, and further treat sewage.
  • the water level of the treated sewage further rises, the sewage is discharged from the outlet pipe 41, and the scum accumulates to a certain amount and is discharged from the scum pipe 42 by gravity.
  • the water quality of the sewage treated by the present invention is generally as follows: SS content is 70-500mg/L; COD content is 100-400mg/L; TP content is not higher than 4mg/L.
  • the water quality of the sewage is: SS content is 120mg/L; COD content is 150mg/L; TP content is 2mg/L. It was carried out without adding a catalyst and with one catalytic treatment. The treatment effects are shown in Table 1.
  • the water quality of the sewage is: SS content is 500mg/L; COD content is 400mg/L; TP content is 4mg/L.
  • the carrier of the catalytic oxidation layer 32 is Al 2 O 3 .
  • the number of layers of the catalytic oxidation layer 32 , the type, dosage and treatment effect of the active catalyst are as shown in Table 2.
  • the present invention provides an ozone catalytic oxidation and air flotation integrated system and its use method. It is provided with multiple catalytic oxidation layers, which can perform multiple catalytic oxidation treatments on sewage and improve the sewage treatment effect; the structure of the device It is more compact and simple, and can be widely used in the field of sewage treatment; the number and dosage of the catalytic oxidation layer can be freely adjusted according to the actual situation; according to the actual situation of large fluctuations in CSO inlet water quality, a flexible aeration system has been developed, which can be adjusted according to the actual situation. Depending on the water quality conditions, the air aeration volume and ozone aeration volume can be flexibly adjusted to give full play to the role of air flotation and reduce ozone usage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明提供了一种臭氧催化氧化气浮一体化系统及其使用方法。该系统包括进水系统、臭氧气浮系统和催化氧化系统;进水系统的进水口位于臭氧气浮系统的下方;臭氧气浮系统包括臭氧发生器和微孔曝气器;进水系统和臭氧气浮系统分别和催化氧化系统连通;催化氧化系统包括催化氧化反应罐和从上到下依次设置于催化氧化反应罐内的至少两层催化氧化层,催化氧化层包括载体和负载于载体上的活性催化剂;臭氧通过微孔曝气器进入催化氧化反应罐,与从进水系统进入的污水混合后依次通过每层催化氧化层,在臭氧气浮的同时完成催化氧化,实现污水处理。本发明装置结构紧凑简洁,从从上到下依次设置多层催化氧化层,污水处理效果好。

Description

臭氧催化氧化气浮一体化系统及其使用方法 技术领域
本发明涉及水环境保护技术领域,尤其涉及一种臭氧催化氧化气浮一体化系统及其使用方法。
背景技术
早期建设的城市大多采用合流制排水系统,随着城市的发展,城市合流制溢流污染严重。合流制溢流(CSO)是污水和雨水的混合液,含有大量的污染物。国内多个城市的数据表明,合流制溢流中COD和TSS等污染物浓度较高且变化较大,部分实测数据TSS甚至可高达1000mg/L以上。
目前合流制溢流处理的常见方法有水力旋流分离器、高效沉淀池、磁混凝高密度沉淀池等。从现有的工艺来看,基本都缺乏处理初雨污染中的COD污染物。如果采用生化工艺处理工序,由于COD变化系数大、停留时间过短、碳氮失衡、日常维护难等问题的存在,难以实现对COD指标的有效去除。因此,开发能够同时处理SS、TP、COD等污染指标的快速处理技术尤为必要。
传统臭氧气浮工艺多用于污水深度处理或含油废水、印染废水等工业废水的处理。为了进一步提高臭氧氧化效率,结合非均相臭氧催化氧化,开发一种新型臭氧气浮装置,在一个操作单元内同时完成破乳或絮凝、固液分离、除色、嗅、味、消毒等多个过程,可高效去除水中的悬浮性颗粒物及胶体,非常适合快速处理初雨和CSO这类水质波动大的污水。
申请号为CN201710726484.1的专利公开了一种催化臭氧化-臭氧气浮一体化装置,包括臭氧气浮单元、催化臭氧化单元一和催化臭氧化单元二,在臭氧气浮单元中完成臭氧氧化反应,然后依次通过催化臭氧化单元一和催化 臭氧化单元二完成两次催化氧化反应,该装置能高效去除水中浊度和总悬浮固体。该装置的不足之处在于:(1)该装置的臭氧气浮单元、催化臭氧化单元一和催化臭氧化单元二布置较为分散,使整个装置占用大量的空间,限制了适用性;(2)臭氧要依次经过每个单元,为了确保臭氧的浓度,所需的臭氧量较多。
有鉴于此,有必要设计一种改进的臭氧催化氧化气浮一体化系统及其使用方法,以解决上述问题。
发明内容
本发明的目的在于提供一种臭氧催化氧化气浮一体化系统及其使用方法,在催化氧化反应罐中从上到下依次设置多层催化氧化层,污水处理效果好,且装置的结构更为紧凑简洁,尤其适用于水质波动大的CSO处理领域。
为实现上述发明目的,本发明提供了一种臭氧催化氧化气浮一体化系统,包括催化氧化系统以及分别与其连通的进水系统和臭氧气浮系统;所述催化氧化系统包括催化氧化反应罐和从上到下依次设置于所述催化氧化反应罐内的至少两层催化氧化层,所述催化氧化层包括载体和负载于所述载体上的活性催化剂;所述臭氧气浮系统包括臭氧发生器和设置于所述催化氧化反应罐内,且位于所述催化氧化层下方的微孔曝气器;所述进水系统的进水口位于所述催化氧化层的下方;臭氧通过所述微孔曝气器进入所述催化氧化反应罐,与从所述进水系统进入的污水混合后依次通过每层所述催化氧化层,在臭氧气浮的同时完成催化氧化,实现污水处理。
作为本发明的进一步改进,所述进水系统包括污水箱和设置于所述污水箱出水口端的提升泵,所述提升泵将所述污水泵入所述催化氧化反应罐。
作为本发明的进一步改进,所述进水系统还包括溶药罐和混合器;所述溶药罐的出水口端与所述提升泵的进水口端连接,所述提升泵的出水口端与所述混合器连接,所述污水箱和所述溶药罐的污水和药剂被泵入所述混合器,在所述混合器内进行混合。
作为本发明的进一步改进,所述混合器为管式混合器。
作为本发明的进一步改进,所述臭氧气浮系统还包括空气压缩机,所述空气压缩机和所述臭氧发生器分别将空气和臭氧同时送入所述微孔曝气器,进入所述催化氧化反应罐。
作为本发明的进一步改进,所述微孔曝气器内设有用于控制空气曝气量和臭氧曝气量的自动控制系统,可以根据进水水质条件,灵活调整空气曝气量和臭氧曝气量。
作为本发明的进一步改进,所述载体包括颗粒活性炭、颗粒状氧化铝和硅铝复合材料中的一种或多种;所述活性催化剂包括Pt、Ni、Co、Mn和Cu金属离子中的一种或多种。
作为本发明的进一步改进,所述催化氧化反应罐的上部设有排放系统,用于排放污水处理后得到的各类物质。
作为本发明的进一步改进,所述排放系统包括出水管和排渣系统,所述排渣系统包括浮渣管,处理过的污水从所述出水管排出,浮渣从浮渣管排出。
本发明还提供了一种上述所述的臭氧催化氧化气浮一体化系统的使用方法,具体包括如下步骤:
S1.打开所述污水箱、所述溶药罐、所述提升泵和所述混合器的开关,污水和药剂被所述提升泵泵入所述混合器,污水和药剂进行混合,并发生反应,对污水进行初步处理;
S2.打开所述催化氧化反应罐进水口的开关、所述臭氧发生器、所述空气压缩机以及所述微孔曝气器的开关,空气和臭氧的微气泡与污水接触,微气泡粘附于疏水性物质表面形成整体,并浮于水面上;同时微气泡中的臭氧开始和部分污染物发生氧化反应;
S3.随着污水不断上升,污水和不同层的所述催化氧化层接触,发生催化氧化反应,实现有机物的高效分解;
S4.打开所述出水管和所述浮渣管的开关,被处理过的污水从所述出水管排出,浮渣从所述浮渣管排出。
本发明的有益效果是:
(1)本发明设置了多层催化氧化层,能够对污水进行多次催化氧化处理,提高污水处理效果。同时多层催化氧化层从上到下依次设置于催化氧化反应罐中,催化氧化层的层数和用量可以根据实际情况自由调整,尤其适用于水质波动大的CSO处理领域。整个污水处理过程在一个反应罐中进行,装置的结构更为紧凑简洁,臭氧利用率高。
(2)本发明根据CSO进水水质波动大的实际情况,开发了灵活的曝气系统,可根据进水水质条件,灵活调整空气曝气量和臭氧曝气量(臭氧的浓度通过空气压缩机提供的空气量进行稀释调整),充分发挥空气气浮的作用,并减少臭氧使用量。具体来说,当CSO进水COD较低时,可只通入空气,依靠空气气浮净化污水;当CSO进水COD较高时,可增加臭氧进气量,通过臭氧催化氧化提高COD去除效果。
(3)本发明通过设置空气压缩机和臭氧发生器,可以制备出含空气和臭氧的微气泡,在气浮过程中,微气泡中的空气和臭氧均可以和污水中疏水性物质粘附,减少了臭氧的使用量。污水发生气浮反应的同时,部分污染物还可以和微气泡中的臭氧发生氧化反应,即臭氧不仅可以为气浮过程提供微小气泡,还可以进行氧化反应,使臭氧得到充分的利用,提高污水处理效率。本装置还可以根据污水的实际情况自由调整空气和臭氧的比例,充分利用臭氧,不会造成臭氧的浪费,对环境友好。
附图说明
图1为本发明臭氧催化氧化气浮一体化系统的结构示意图。
附图标记
1-进水系统;2-臭氧气浮系统;3-催化氧化系统;4-排放系统;11-污水箱;12-提升泵;13-溶药罐;14-混合器;21-臭氧发生器;22-微孔曝气器;23-空气压缩机;31-催化氧化反应罐;32-催化氧化层;41-出水管;42-浮渣管。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
请参阅图1所示,本发明提供了一种臭氧催化氧化气浮一体化系统,包括催化氧化系统3以及分别与其连通的进水系统1和臭氧气浮系统2。催化氧化系统3包括催化氧化反应罐31和从上到下依次设置于催化氧化反应罐31内的至少两层催化氧化层32,催化氧化层32包括载体和负载于载体上的活性催化剂;臭氧气浮系统2包括臭氧发生器21和设置于催化氧化反应罐31内、且位于催化氧化层32下方的微孔曝气器22;进水系统1的进水口位于催化氧化层32的下方。如此设置,臭氧发生器21制备的臭氧通过微孔曝气器22进入催化氧化反应罐31,与从进水系统1进入的污水混合后依次通过每层催化氧化层22,在臭氧气浮的同时完成催化氧化,实现污水处理。(图中各个部分的开关没有画出)
具体地,进水系统1设置于催化氧化反应罐31的底部,包括污水箱11和设置于污水箱11出水口端的提升泵12。提升泵12可以将污水箱11中的污水泵入催化氧化反应罐31中,并可以将催化氧化反应罐31中污水水位不断提升,直至提升至催化氧化反应罐31的出水口端。
在一些实施例中,进水系统1还包括溶药罐13和混合器14。溶药罐13的出水口端与提升泵12的进水口端连接,提升泵12的出水口端连接混合器 14。如此设置,污水箱11和溶药罐13的污水和药剂被泵入混合器14,在混合器14内进行混合,并发生反应,对污水进行初步处理。优选地,混合器14为管式混合器。最终,污水从催化氧化反应罐31底部设置的进水系统1进入催化氧化反应罐31,并通过提升泵12的压力,水位不断上升。
臭氧气浮系统2除了设有臭氧发生器21和微孔曝气器22(设置于催化氧化反应罐31的内腔中)外,还包括空气压缩机23。臭氧发生器21和空气压缩机23的出气口端均与微孔曝气器22连通,空气压缩机23和臭氧发生器21分别将空气和臭氧同时送入微孔曝气器22,微孔曝气器22将空气和臭氧的混合物生成大量高度分散的微气泡,这些微气泡与水位不断上升的污水接触后会粘附污水中疏水性物质,微气泡和这些物质形成密度小于水的整体,并浮于水面上。
该过程中,污水发生气浮反应的同时,部分污染物已经和微气泡中的臭氧发生氧化反应。此时,臭氧不仅可以为气浮过程提供微小气泡,还可以进行氧化反应,提高污水处理过程的效率。污水在上升过程中,不断发生这气浮和氧化反应。
空气和臭氧的通入量及比例可以根据实际情况随时调整。当进水COD≤150mg/L,臭氧占系统总进气量比例<30%;当进水300>COD>150mg/L,臭氧占系统总进气量比例>30%;当进水COD≥300mg/L,可采用N级臭氧布气,或采用出水回流。
在一些实施例中,可采用N级臭氧布气,即在催化氧化反应罐31的不同高度设置臭氧微孔曝气器22,增加臭氧曝气量。第一级臭氧直接与污水混合,污水经过气浮分离后,再经过N级臭氧布气设备,利用臭氧降解污水中溶解性污染物。
在一些实施例中,微孔曝气器22可以换成环形曝气盘管,环形曝气盘管盘旋在催化氧化反应罐31的内腔中。
催化氧化系统3的催化氧化反应罐31内从上到下依次设置有至少两层催化氧化层32。催化氧化层32设置于微孔曝气器22的上部。催化氧化层32 从下到上依次记为第一层、第二层、第三层等。
催化氧化层32包括载体和活性催化剂,活性催化剂负载于载体上。载体一般为颗粒活性炭、颗粒状氧化铝和硅铝复合材料中的一种或多种;活性催化剂一般为Pt、Ni、Co、Mn和Cu金属离子中的一种或多种。活性催化剂的制备方式可为浸渍法或共混法。此处的催化氧化层32采用的颗粒较大从而使孔隙较大,污水中的残渣足以通过并不断上浮。
不同的催化氧化层32可以采用相同的活性催化剂和载体,也可以采用不同的活性催化剂和载体。催化氧化层32的层数可以根据实际情况具体设置。
污水在不断上升的过程中,开始和催化氧化层32的不同层接触,在此处有催化剂的存在(这里的催化剂在该反应体系中属于非均相催化剂),溶气水中的水和臭氧经过多步反应生成氧化性比臭氧更强的羟基自由基(吸附在催化剂表面的水分子先解离成羟基和H,羟基与催化剂结合形成Cat-OH,Cat-OH中的H很容易被臭氧夺取,形成O 2-OH中间产物,O 2-OH进一步分解为氧气和羟基自由基),在臭氧和羟基自由基的共同作用下,能进一步加快氧化反应,实现溶解性有机物的高效分解,进一步对污水进行处理。
催化反应罐靠近出水端的催化氧化层32可以将多余的臭氧处理,尽量降低进入大气中的臭氧量。
催化氧化反应罐31的上部设有排放系统4,排放系统4包括出水管41和排渣系统,处理过的污水从出水管41排出,浮渣从排渣系统排出。排渣系统包括浮渣管42,浮渣管42将浮渣排出。
具体地,提升泵12将污水箱11中的污水泵入催化氧化反应罐31中,并可以将催化氧化反应罐31中污水水位不断提升,直至提升至出水管41的进水端的管口处。通过进水系统1和出水管41联合控制催化氧化反应罐31内液位距其顶部的距离,该距离可以根据处理的水质和水量的不同进行自由调节。臭氧催化氧化后的水经由出水管41排出,浮渣积累一定量后自浮渣管42自流排出。
本发明还提供了一种上述所述的臭氧催化氧化气浮一体化系统的使用 方法,具体包括如下步骤:
S1.打开污水箱11、溶药罐13、提升泵12和混合器14的开关,污水和药剂被提升泵12泵入混合器14,污水和药剂进行混合,并发生反应,对污水进行初步处理;
S2.关闭污水箱11和溶药罐13开关,打开催化氧化反应罐31进水口的开关、臭氧发生器21、空气压缩机23以及微孔曝气器22的开关,空气和臭氧的微气泡与污水接触,微气泡粘附于疏水性物质表面形成整体,并浮于水面上;同时微气泡中的臭氧开始和部分污染物发生氧化反应;
S3.随着污水不断上升,污水和不同层的催化氧化层32接触,发生催化氧化反应,实现有机物的高效分解;
S4.打开所述出水管41和浮渣管42的开关,被处理过的污水从出水管41排出,浮渣从浮渣管42排出。
该臭氧催化氧化气浮一体化系统的工作原理为:污水箱11和溶药罐13的污水和药剂被提升泵12泵入混合器14,在混合器14内进行混合,并发生反应,对污水进行初步处理。得到初步处理的污水进入催化氧化反应罐31,并在提升泵12的作用下不断上升。当污水与微孔曝气器22接触时,微孔曝气器22释放出的大量高度分散的空气和臭氧混合的微气泡,一方面粘附于疏水性物质表面,微气泡和这些物质形成密度小于水的整体,并浮于水面上;另一方面,微气泡和污水发生气浮反应的同时,微气泡中的臭氧开始和部分污染物发生氧化反应。随着污水水位的进一步上升,污水开始和催化氧化层32的不同层接触,在催化剂的存在,溶气水中的水和臭氧经过多步反应生成氧化性比臭氧更强的羟基自由基(吸附在催化剂表面的水分子先解离成羟基和H,羟基与催化剂结合形成Cat-OH,Cat-OH中的H很容易被臭氧夺取,形成O 2-OH中间产物,O 2-OH进一步分解为氧气和羟基自由基),在臭氧和羟基自由基的共同作用下,能进一步加快氧化反应,实现有机物的高效分解,进一步对污水进行处理。被处理过的污水水位进一步上升,污水从出水管41排出,浮渣积累一定量后自浮渣管42自流排出。
本发明处理的污水的水质情况一般为为:SS含量为70-500mg/L;COD含量为100-400mg/L;TP含量不高于4mg/L。
以下通过多个实施例对本发明的臭氧催化氧化气浮一体化系统进行说明。
实施例1-2
污水的水质情况为:SS含量为120mg/L;COD含量为150mg/L;TP含量为2mg/L。分别在不添加催化剂和进行一次催化处理的情况下进行,处理效果如表1所示。
表1实施例1-2的污水处理效果
Figure PCTCN2022120466-appb-000001
由表2可知,针对水质较好的进水,(1)不采用催化剂时,仅通过气浮系统就可以达到较好的处理效果;(2)采用催化剂时,能进一步提高污水处理效果。
实施例3-7
污水的水质情况为:SS含量为500mg/L;COD含量为400mg/L;TP含量为4mg/L。催化氧化层32的载体均为Al 2O 3,催化氧化层32的层数、活性催化剂的种类、用量及处理效果如表2所示。
表2实施例3-7的污水处理效果
Figure PCTCN2022120466-appb-000002
Figure PCTCN2022120466-appb-000003
由表2可知,(1)采用催化氧化层,可大幅提高系统COD去除率;(2)增加催化剂活性离子的浓度,有助于提高污水的处理效果;(3)增加催化层的层数,有助于提高污水的处理效果。
综上所述,本发明提供了一种臭氧催化氧化气浮一体化系统及其使用方法,设置了多层催化氧化层,能够对污水进行多次催化氧化处理,提高污水处理效果;装置的结构更为紧凑简洁,能广泛适用于污水处理领域;催化氧化层的层数和用量可以根据实际情况自由调整;根据CSO进水水质波动大的实际情况,开发了灵活的曝气系统,可根据进水水质条件,灵活调整空气曝气量和臭氧曝气量,充分发挥空气气浮的作用,并减少臭氧使用量。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种臭氧催化氧化气浮一体化系统,其特征在于:包括催化氧化系统(3)以及分别与其连通的进水系统(1)和臭氧气浮系统(2);所述催化氧化系统(3)包括催化氧化反应罐(31)和从上到下依次设置于所述催化氧化反应罐(31)内的至少两层催化氧化层(32),所述催化氧化层(32)包括载体和负载于所述载体上的活性催化剂;所述臭氧气浮系统(2)包括臭氧发生器(21)和设置于所述催化氧化反应罐(31)内,且位于所述催化氧化层(32)下方的微孔曝气器(22);所述进水系统(1)的进水口位于所述催化氧化层(32)的下方;臭氧通过所述微孔曝气器(22)进入所述催化氧化反应罐(31),与从所述进水系统(1)进入的污水混合后依次通过每层所述催化氧化层(32),在臭氧气浮的同时完成催化氧化,实现污水处理。
  2. 根据权利要求1所述的臭氧催化氧化气浮一体化系统,其特征在于:所述进水系统(1)包括污水箱(11)和设置于所述污水箱(11)出水口端的提升泵(12),所述提升泵(12)将所述污水泵入所述催化氧化反应罐(31)。
  3. 根据权利要求2所述的臭氧催化氧化气浮一体化系统,其特征在于:所述进水系统(1)还包括溶药罐(13)和混合器(14);所述溶药罐(13)的出水口端与所述提升泵(12)的进水口端连接,所述提升泵(12)的出水口端与所述混合器(14)连接,所述污水箱(11)和所述溶药罐(13)的污水和药剂被泵入所述混合器(14),在所述混合器(14)内进行混合。
  4. 根据权利要求3所述的臭氧催化氧化气浮一体化系统,其特征在于:所述混合器(14)为管式混合器。
  5. 根据权利要求4所述的臭氧催化氧化气浮一体化系统,其特征在于:所述臭氧气浮系统(2)还包括空气压缩机(23),所述空气压缩机(23)和所述臭氧发生器(21)分别将空气和臭氧同时送入所述微孔曝气器(22),进入所述催化氧化反应罐(31)。
  6. 根据权利要求5所述的臭氧催化氧化气浮一体化系统,其特征在于:所 述微孔曝气器(22)内设有用于控制空气曝气量和臭氧曝气量的自动控制系统,可以根据进水水质条件,灵活调整空气曝气量和臭氧曝气量。
  7. 根据权利要求1所述的臭氧催化氧化气浮一体化系统,其特征在于:所述载体包括颗粒活性炭、颗粒状氧化铝和硅铝复合材料中的一种或多种;所述活性催化剂包括Pt、Ni、Co、Mn和Cu金属离子中的一种或多种。
  8. 根据权利要求5所述的臭氧催化氧化气浮一体化系统,其特征在于:所述催化氧化反应罐(31)的上部设有排放系统(4),用于排放污水处理后得到的各类物质。
  9. 根据权利要求8所述的臭氧催化氧化气浮一体化系统,其特征在于:所述排放系统(4)包括出水管(41)和排渣系统,所述排渣系统包括浮渣管(42),处理过的污水从所述出水管(41)排出,浮渣从浮渣管(42)排出。
  10. 一种权利要求9所述的臭氧催化氧化气浮一体化系统的使用方法,其特征在于:具体包括如下步骤:
    S1.打开所述污水箱(11)、所述溶药罐(13)、所述提升泵(12)和所述混合器(14)的开关,污水和药剂被所述提升泵(12)泵入所述混合器(14),污水和药剂进行混合,并发生反应,对污水进行初步处理;
    S2.打开所述催化氧化反应罐(31)进水口的开关、所述臭氧发生器(21)、所述空气压缩机(23)以及所述微孔曝气器(22)的开关,空气和臭氧的微气泡与污水接触,微气泡粘附于疏水性物质表面形成整体,并浮于水面上;同时微气泡中的臭氧开始和部分污染物发生氧化反应;
    S3.随着污水不断上升,污水和不同层的所述催化氧化层(32)接触,发生催化氧化反应,实现有机物的高效分解;
    S4.打开所述出水管(41)和所述浮渣管(42)的开关,被处理过的污水从所述出水管(41)排出,浮渣从所述浮渣管(42)排出。
PCT/CN2022/120466 2022-03-18 2022-09-22 臭氧催化氧化气浮一体化系统及其使用方法 WO2023173715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210268417.0A CN114436457B (zh) 2022-03-18 2022-03-18 臭氧催化氧化气浮一体化系统及其使用方法
CN202210268417.0 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023173715A1 true WO2023173715A1 (zh) 2023-09-21

Family

ID=81359526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120466 WO2023173715A1 (zh) 2022-03-18 2022-09-22 臭氧催化氧化气浮一体化系统及其使用方法

Country Status (2)

Country Link
CN (1) CN114436457B (zh)
WO (1) WO2023173715A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117088578A (zh) * 2023-10-20 2023-11-21 杭州尚善若水环保科技有限公司 一种去除水中高浓度悬浮物的方法
CN117105392A (zh) * 2023-09-24 2023-11-24 岳阳振兴中顺新材料科技股份有限公司 一种催化反应装置及其使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436457B (zh) * 2022-03-18 2023-07-04 中建三局绿色产业投资有限公司 臭氧催化氧化气浮一体化系统及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090240A (ko) * 2008-02-20 2009-08-25 (주)국 제 앤 텍 초심층 가속증폭기법과 오존과 광촉매를 활용한 고농도하·폐수 처리장치 및 방법
CN208667385U (zh) * 2018-03-27 2019-03-29 中节能工程技术研究院有限公司 一种废水处理集成装置
CN110372085A (zh) * 2019-07-25 2019-10-25 成都硕特环保科技有限公司 一种有机废水臭氧催化氧化处理系统及方法
CN214422480U (zh) * 2021-02-10 2021-10-19 广州华美牛奶有限公司 一种处理废水的非均相臭氧催化工艺装置
CN113735245A (zh) * 2021-04-30 2021-12-03 清华苏州环境创新研究院 一种臭氧催化氧化污水的方法
CN114436457A (zh) * 2022-03-18 2022-05-06 中建三局绿色产业投资有限公司 臭氧催化氧化气浮一体化系统及其使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050530B (zh) * 2009-10-28 2012-05-30 中国石油化工股份有限公司 一种催化臭氧氧化—气浮一体化处理废水的方法
CN204643940U (zh) * 2015-03-23 2015-09-16 深圳科力迩科技有限公司 臭氧氧化与气浮组合系统
CN107364991B (zh) * 2017-08-22 2020-08-25 西安建筑科技大学 一种催化臭氧化-臭氧气浮一体化装置
CN110054331A (zh) * 2019-04-23 2019-07-26 苏州劼平泰环保科技有限公司 一种压铸工厂废水处理方法
CN114130403B (zh) * 2021-11-25 2024-01-05 深圳科力迩科技有限公司 复合催化材料和黑臭水体的处理方法
CN217077108U (zh) * 2022-03-18 2022-07-29 中建三局绿色产业投资有限公司 基于臭氧催化氧化气浮一体化的污水处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090240A (ko) * 2008-02-20 2009-08-25 (주)국 제 앤 텍 초심층 가속증폭기법과 오존과 광촉매를 활용한 고농도하·폐수 처리장치 및 방법
CN208667385U (zh) * 2018-03-27 2019-03-29 中节能工程技术研究院有限公司 一种废水处理集成装置
CN110372085A (zh) * 2019-07-25 2019-10-25 成都硕特环保科技有限公司 一种有机废水臭氧催化氧化处理系统及方法
CN214422480U (zh) * 2021-02-10 2021-10-19 广州华美牛奶有限公司 一种处理废水的非均相臭氧催化工艺装置
CN113735245A (zh) * 2021-04-30 2021-12-03 清华苏州环境创新研究院 一种臭氧催化氧化污水的方法
CN114436457A (zh) * 2022-03-18 2022-05-06 中建三局绿色产业投资有限公司 臭氧催化氧化气浮一体化系统及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATER-INDUSTRY MARKET: "A collection of key water treatment technologies and engineering application cases during the 11th Five-Year Plan", 31 October 2010, CHINA ENVIRONMENTAL SCIENCE PRESS, ISBN: 978-7-5111-0373-4, article EDITOR OF WATER INDUSTRY MARKET MAGAZINE.: "Passage; A collection of key water treatment technologies and engineering application cases during the 11th Five-Year Plan", pages: 301 - 305, XP009549913 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117105392A (zh) * 2023-09-24 2023-11-24 岳阳振兴中顺新材料科技股份有限公司 一种催化反应装置及其使用方法
CN117105392B (zh) * 2023-09-24 2024-06-07 岳阳振兴中顺新材料科技股份有限公司 一种催化反应装置及其使用方法
CN117088578A (zh) * 2023-10-20 2023-11-21 杭州尚善若水环保科技有限公司 一种去除水中高浓度悬浮物的方法
CN117088578B (zh) * 2023-10-20 2024-01-23 杭州尚善若水环保科技有限公司 一种去除水中高浓度悬浮物的方法

Also Published As

Publication number Publication date
CN114436457A (zh) 2022-05-06
CN114436457B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2023173715A1 (zh) 臭氧催化氧化气浮一体化系统及其使用方法
CN106007256A (zh) 微气泡臭氧催化氧化-无曝气生化耦合工艺系统及其应用
CN107364991B (zh) 一种催化臭氧化-臭氧气浮一体化装置
CN104761088A (zh) 臭氧氧化与气浮组合处理系统及工艺
WO2023140319A1 (ja) 工業廃水の処理システム、工業廃水の処理システムの使用、工業廃水の処理方法、及び廃水処理プロセス
CN212293233U (zh) 一种低浓度难降解化工废水处理系统
JPH11277091A (ja) 生物学的反応による下水、廃水処理装置および方法
CN106495359A (zh) 一种高难度废水深度处理装置及方法
CN104710077B (zh) 合成橡胶废水的处理系统及其处理方法
JPH0240296A (ja) 廃水処理装置及び廃水処理方法
KR20010056230A (ko) 일체식 타워형 수처리 장치 및 방법
CN217077108U (zh) 基于臭氧催化氧化气浮一体化的污水处理系统
CN111762969B (zh) 一种低浓度难降解化工废水处理方法及系统
CN211770809U (zh) 一种高污染难降解废水高效处理装置
CN103011527A (zh) 一种己内酰胺生产废水的强化氧化-mbr处理方法
JP3731806B2 (ja) 有機性排水の処理方法及び装置
CN111217441B (zh) 一种臭氧氧化反应器及其使用方法
CN108658373B (zh) 一种羟基自由基去除制药废水中抗生素的组合系统
CN110862196A (zh) 一种高污染难降解废水高效处理方法、处理装置和应用
JP4271991B2 (ja) オゾン水処理装置
CN111689602B (zh) 一种芬顿氧化反应装置
KR101634292B1 (ko) 변형 a2o공법에 기반한 유동상여재 활용 수처리시스템
CN209081653U (zh) 一种新型石化废水处理设备
CN106673381A (zh) 一种污泥处理装置及方法
CN106542699B (zh) 一种高效的碎煤加压气化高浓污水处理方法