WO2023173443A1 - 电池单体、电池、用电设备、电池单体的制造方法和设备 - Google Patents

电池单体、电池、用电设备、电池单体的制造方法和设备 Download PDF

Info

Publication number
WO2023173443A1
WO2023173443A1 PCT/CN2022/081842 CN2022081842W WO2023173443A1 WO 2023173443 A1 WO2023173443 A1 WO 2023173443A1 CN 2022081842 W CN2022081842 W CN 2022081842W WO 2023173443 A1 WO2023173443 A1 WO 2023173443A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
battery cell
wall
hole
liquid
Prior art date
Application number
PCT/CN2022/081842
Other languages
English (en)
French (fr)
Inventor
陈龙
林蹬华
黄守君
陈新祥
郑于炼
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/081842 priority Critical patent/WO2023173443A1/zh
Publication of WO2023173443A1 publication Critical patent/WO2023173443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery, an electrical device, a manufacturing method and equipment for a battery cell.
  • Embodiments of the present application provide a battery cell, a battery, electrical equipment, and a manufacturing method and equipment for the battery cell, which can improve the infiltration effect and infiltration efficiency of the battery cell.
  • a battery cell including: a casing having an accommodation cavity; the casing has a first wall; the first wall is provided with a liquid injection hole; an electrode assembly is accommodated in the accommodation cavity; A flow guide member is provided between the first wall and the electrode assembly.
  • the flow guide member is provided with a liquid accumulation tank.
  • the opening of the liquid accumulation tank faces the first wall.
  • the liquid accumulation tank has an opening facing the first wall.
  • the bottom wall is provided with a through hole, the liquid collecting tank is used to collect the electrolyte injected through the liquid injection hole, and the electrolyte in the liquid collecting tank flows to the electrode assembly through the through hole.
  • the electrolyte injected into the battery cell through the liquid injection hole is collected through the accumulation tank of the flow guide, and then flows to the area where the electrode assembly is located through the through hole in the liquid accumulation tank.
  • the design of the liquid collecting tank and the through hole can realize the redistribution of the electrolyte injection position. That is, based on the infiltration requirements of the internal electrode components of the battery cells for the electrolyte, the position of the accumulation tank and the position of the through hole can be adjusted to cause the electrolyte to flow out in a directional manner, so that the electrode components can achieve a better infiltration effect and improve the infiltration efficiency.
  • the electrolyte can flow from a specific position to a specific position of the electrode assembly to achieve the best infiltration effect and infiltration efficiency.
  • the battery cell contains multiple electrode assemblies, if the electrolyte can flow to the positions between the multiple electrode assemblies, it can ensure that the multiple electrode assemblies can be evenly infiltrated and the infiltration effect is better.
  • the battery in the embodiment of the present application For monomers, there is no need to limit the position of the liquid injection hole.
  • the electrolyte can flow in a directional manner, that is, to the position between multiple electrode assemblies, achieving a better infiltration effect.
  • the infiltration efficiency is improved, and the processing efficiency and electrochemical performance of the battery cells are also improved.
  • the orthographic projection of the liquid injection hole toward the flow guide is located on the bottom wall of the liquid accumulation tank.
  • the electrolyte When the electrolyte is injected into the battery cell through the injection hole, the electrolyte flows into the accumulation tank of the guide member under the action of gravity.
  • the injection hole can be provided Corresponds to the bottom wall of the liquid collecting tank to try to prevent the electrolyte from flowing in other directions.
  • the bottom wall of the liquid collecting tank is inclined relative to a first plane, so that the electrolyte in the liquid collecting tank converges toward the through hole, and the first plane is perpendicular to The axis of the liquid injection hole.
  • the bottom wall of the accumulation tank is set to be inclined so that the electrolyte in the accumulation tank converges toward the through hole. On the one hand, it can speed up the flow of electrolyte to the electrode assembly. On the other hand, it can also prevent the electrolyte from accumulating in the liquid tank. Accumulation in other locations in the tank except through holes prevents waste of electrolyte remaining in the accumulation tank.
  • the bottom wall of the liquid collecting tank is inclined at an angle greater than 0° and less than 1° relative to the first plane.
  • the inclination angle can be set according to the thickness of the flow guide. If the thickness of the flow guide is larger, the inclination angle can be set larger; conversely, if the thickness of the flow guide is smaller, the inclination angle can also be smaller. Considering that the internal space of the battery cell is limited, in order to increase the energy density of the battery cell, the thickness of the flow guide is usually small. Therefore, the inclination angle is usually set to less than or equal to 0.25° to save the space occupied by the flow guide.
  • the battery cell includes two electrode assemblies arranged along a first direction, and the through hole corresponds to a position between the two electrode assemblies, so that the The electrolyte flows between the two electrode assemblies through the through hole, so that the electrolyte between the two electrode assemblies can infiltrate the two electrode assemblies at the same time, speeding up the infiltration speed and improving the infiltration efficiency.
  • the first direction is perpendicular to the axial direction of the liquid injection hole.
  • the two electrode assemblies include a first electrode assembly and a second electrode assembly, and a first end surface of the first electrode assembly faces the second electrode assembly.
  • the first electrode assembly includes a first pole piece and a second pole piece.
  • the first pole piece and the second pole piece are wound around a winding axis, and the winding axis is parallel to the first direction.
  • the first end surface is perpendicular to the winding axis.
  • the first electrode assembly includes a plurality of first pole pieces and a plurality of second pole pieces, and the plurality of first pole pieces and the plurality of second pole pieces are alternately stacked along the second direction, and the The second direction is perpendicular to the first direction, and the first end surface is perpendicular to the first direction.
  • the first electrode assembly includes a first pole piece and a plurality of second pole pieces
  • the first pole piece includes a plurality of laminated sections and a plurality of bent sections
  • the bent sections are used to connect adjacent
  • the two laminated sections, the plurality of second pole pieces and the plurality of laminated sections are alternately stacked along a second direction, the second direction is perpendicular to the first direction, and the first end surface is perpendicular to the first direction.
  • the first end surface of the first electrode assembly is arranged in the above manner. Compared with other arrangements, when the electrolyte contacts the first end surface, the electrolyte can quickly infiltrate each layer of pole pieces of the first electrode assembly through the first end surface. It can also This makes the wetting effect of the multiple layers of the first electrode assembly and the second electrode assembly more uniform, thereby improving the wetting efficiency of the first electrode assembly.
  • the battery cell is a rectangular parallelepiped, and the first direction is the length direction of the battery cell.
  • Arranging the two electrode assemblies along the length direction of the battery cell can increase the size of the battery cell in the length direction. In this way, when such multiple battery cells are assembled into a battery, the interior of the battery can be more fully utilized. space, that is, it can improve the space utilization of the battery, thereby increasing the energy density of the battery.
  • the two electrode assemblies are electrically insulated. In this way, the first electrode assembly and the second electrode assembly do not need to transmit current to each other, which can shorten the conductive paths of the first electrode assembly and the second electrode assembly, reduce internal resistance, reduce heat generation, and improve the performance of the battery cells. power and improve the charge and discharge performance of battery cells.
  • the tabs of the same electrode assembly among the two electrode assemblies are disposed on the same end surface, and the tabs of the two electrode assemblies face opposite directions and both face the outside of the battery cell.
  • the tabs are arranged on the same end face of the electrode assembly, which not only facilitates processing, but also facilitates the connection between the tabs and the electrode terminals.
  • the tabs are all facing the outside of the battery cell in opposite directions, which can avoid mutual influence between the tabs of different electrode assemblies and facilitate the electrical connection between each electrode assembly and the corresponding electrode terminal.
  • the battery cell further includes: an insulating member disposed on the outer surface of the electrode assembly, the insulating member being used to isolate the electrode assembly from the casing, the conductor The flow piece is fixed to the insulating piece.
  • the relative fixation between the flow guide and the electrode assembly can make the through hole correspond to the optimal injection position of the electrode assembly and be relatively fixed.
  • the through hole corresponds to between the two electrode assemblies.
  • the fixed conductor The flow piece and the electrode assembly are jointly arranged in the casing, which can avoid misalignment between the flow piece and the electrode assembly during installation into the casing, and avoid the through hole not corresponding to the optimal injection position of the electrode assembly. Condition.
  • the casing includes: a casing, the casing is a hollow structure with openings at both ends, the two ends are opposite ends of the casing, and the first wall is the Any wall of the housing; two cover plates, the two cover plates are respectively used to cover the openings at both ends of the housing.
  • a casing with openings at both ends facilitates the insertion of electrode components into the casing.
  • different electrode components can enter the hollow part of the casing through different openings to speed up installation.
  • the first wall is the smallest area wall of the housing.
  • the wall with the largest area of the casing is usually set to correspond to the surface with the largest area of the electrode assembly. Therefore, the first wall is usually not set as the wall with the largest area of the housing. On the one hand, it avoids the impact of the liquid injection hole on the first wall on heat dissipation.
  • the deformation of the wall with the largest area is usually larger. If The liquid injection hole is arranged on the wall with the largest area, which is not conducive to the sealing effect of the sealing component used to seal the liquid injection hole. The deformation of the wall with the largest area will cause the deformation of the sealing component, which will lead to sealing failure and affect the performance of the battery cells. Safety and performance.
  • the first wall is provided with a pressure relief mechanism
  • the pressure relief mechanism is used to be activated when the internal pressure or temperature of the battery cell reaches a threshold value to release the battery cell. of internal pressure. In this way, the battery cells can be depressurized under controlled pressure or temperature, thereby avoiding potentially more serious accidents.
  • a battery including: a plurality of battery cells, and the battery cells are the battery cells described in the first aspect.
  • an electrical device including: the battery cell described in the first aspect.
  • the electrical equipment is a vehicle, ship or spacecraft.
  • a method for manufacturing a battery cell including: providing a casing, the casing having a receiving cavity, the casing having a first wall, the first wall being provided with a liquid injection hole; and providing an electrode assembly; Provide a flow guide, and the flow guide is provided with a liquid accumulation tank; accommodate the electrode assembly and the flow guide in the accommodation cavity, so that the flow guide is disposed between the first wall and the Between the electrode assemblies, the opening of the liquid accumulation tank faces the first wall, and the bottom wall of the liquid accumulation tank is provided with a through hole. The liquid accumulation tank is used to collect the electrolyte injected through the liquid injection hole. liquid, and the electrolyte in the liquid reservoir flows to the electrode assembly through the through hole.
  • a fifth aspect provides a battery cell manufacturing equipment, including a module for executing the method of the fourth aspect.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 4 is a schematic diagram of the exploded structure of a battery cell disclosed in an embodiment of the present application.
  • FIG. 5 to 7 are schematic cross-sectional views of the first electrode assembly provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a flow guide disclosed in an embodiment of the present application.
  • Figure 9 is a schematic top view of a flow guide disclosed in an embodiment of the present application.
  • Figure 10 is a schematic cross-sectional view of a flow guide disclosed in an embodiment of the present application.
  • Figure 11 is a schematic diagram of the exploded structure of another battery cell disclosed in an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of an insulation structure disclosed in an embodiment of the present application.
  • Figure 13 is a schematic top view of an insulation structure disclosed in an embodiment of the present application.
  • Figure 14 is a schematic cross-sectional view of an insulation structure disclosed in an embodiment of the present application.
  • Figure 15 is another schematic cross-sectional view of an insulation structure disclosed in an embodiment of the present application.
  • Figure 16 is a schematic flow chart of a manufacturing method of a battery cell disclosed in an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a battery cell manufacturing equipment disclosed in an embodiment of the present application.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the casing of the battery cell is usually provided with a liquid injection hole, through which the electrolyte is injected into the battery cell.
  • the liquid injection hole is usually provided on one wall of the battery cell together with other components.
  • the liquid injection hole is usually located on the same wall as the electrode terminal or pressure relief mechanism of the battery cell. Then, in order to avoid other components and avoid impact on other components, the location of the liquid injection hole is very limited; therefore, the liquid injection hole of the battery cell can often only be located at a specific position. The effect of the electrolyte soaking the electrode components inside the battery cell will directly affect the electrochemical performance of the battery cell.
  • the electrolyte injected through the injection hole at a fixed position on the casing is often It cannot meet the requirements for the wetting effect of each internal electrode assembly, and it is also difficult to achieve uniform wetting between multiple electrode assemblies. This will affect the wetting efficiency and wetting effect of the electrolyte of the battery cell, and then affect the processing of the battery cell. efficiency and electrochemical performance.
  • inventions of the present application provide a battery cell.
  • the first wall of the casing of the battery cell is provided with a liquid injection hole, and a flow guide is provided between the first wall and the electrode assembly.
  • the flow guide is A liquid collecting tank with an opening facing the first wall is provided on the surface facing the first wall, and a through hole is provided on the bottom wall of the liquid collecting tank.
  • the liquid accumulation tank can collect the electrolyte injected into the battery cell through the liquid injection hole, and the electrolyte in the liquid accumulation tank can flow to the electrode assembly through the through hole.
  • the liquid injection hole is only located on a specific part of the first wall location, but the design of the accumulation tank and through-hole can realize the redistribution of the electrolyte injection location.
  • the position of the accumulation tank and the position of the through hole can be adjusted to cause the electrolyte to flow out in a directional manner, so that the electrode components can achieve a better infiltration effect and improve the infiltration efficiency.
  • the battery cell contains two electrode assemblies
  • the electrolyte can flow to the position between the two electrode assemblies, it can ensure that the two electrode assemblies can be evenly infiltrated and the infiltration effect is better.
  • the battery cells in the embodiments of the present application body there is no need to limit the position of the liquid injection hole.
  • the electrolyte can flow in a directional manner, that is, to the position between the two electrode assemblies, to achieve a better infiltration effect, and
  • the infiltration efficiency is improved, and the processing efficiency and electrochemical performance of the battery cells are also improved.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • Batteries may also be called battery packs.
  • multiple battery cells can be connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel, or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include multiple battery cells 20 .
  • the battery 10 may also include a box 11.
  • the inside of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • Figure 2 shows a possible implementation of the box 11 in the embodiment of the present application.
  • the box 11 may include two parts, here respectively referred to as the first part 111 and the second part 112.
  • the first part 111 and the second part 112 are fastened together.
  • the shape of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 20 , and at least one of the first part 111 and the second part 112 has an opening.
  • both the first part 111 and the second part 112 may be hollow rectangular parallelepipeds and each has only one open surface.
  • the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the opening of the first part 111
  • the second part 112 and the second part 112 are interlocked to form the box 11 with a closed cavity.
  • first part 111 and the second part 112 may be a hollow rectangular parallelepiped with an opening, and the other may be plate-shaped to cover the opening.
  • the second part 112 is a hollow rectangular parallelepiped with only one open surface, and the first part 111 is plate-shaped. Then the first part 111 is covered at the opening of the second part 112 to form a box with a closed chamber. 11.
  • the chamber can be used to accommodate multiple battery cells 20 .
  • a plurality of battery cells 20 are connected in parallel or in series or in a mixed combination and then placed in the box 11 formed by the first part 111 and the second part 112 being fastened together.
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box 11 through the conductive mechanism.
  • the number of battery cells 20 in the battery 10 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 forms a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • FIG. 3 shows a schematic diagram of the battery cell 20 according to the embodiment of the present application.
  • FIG. 4 shows a possible exploded structural diagram of the battery cell 20 according to the embodiment of the present application.
  • the body 20 may be an exploded structural diagram of the battery cell 20 as shown in FIG. 3 .
  • the battery cell 20 in the embodiment of the present application includes: a housing 21 with a receiving cavity, the housing 21 has a first wall 213, and the first wall 213 is provided with a liquid injection hole 2131; an electrode assembly 22, accommodated in the accommodation cavity; the flow guide 23 is provided between the first wall 213 and the electrode assembly 22, the flow guide 23 is provided with a liquid accumulation tank 231, and the opening of the liquid accumulation tank 231 faces the
  • the first wall 213, the bottom wall 2311 of the liquid accumulation tank 231 is provided with a through hole 232, the liquid accumulation tank 231 is used to collect the electrolyte injected through the liquid injection hole 2131, and the electrolyte in the liquid accumulation tank 231 It flows to the electrode assembly 22 through the through hole 232 .
  • the battery cell 20 in the embodiment of the present application has a casing 21, and the casing 21 has a receiving cavity inside, so that the battery cell 20 has a hollow polyhedral structure.
  • the outer casing of the battery cell 20 may include a plurality of walls, and the first wall 213 may be any one of the plurality of walls.
  • the first wall 213 may have a liquid injection hole 2131 for supplying water to the battery through the liquid injection hole 2131 . The electrolyte is injected into the battery cell 20 .
  • the battery cell 20 in the embodiment of the present application can accommodate at least one electrode assembly 22 inside.
  • a flow guide 23 is provided between the electrode assembly 22 and the first wall 213.
  • the flow guide 23 has an opening facing the first wall 213.
  • the liquid collecting tank 231 can collect the electrolyte when the electrolyte is injected into the liquid filling hole 2131, and the collected electrolyte can flow to the electrode assembly 22 through the through hole 232 on the liquid collecting tank 231.
  • the electrolyte flowing to the electrode assembly 22 through the through hole 232 may mean that the electrolyte flows through the through hole 232 to any position in the area where at least one electrode assembly 22 is located.
  • the electrolyte may flow to a position between the plurality of electrode assemblies 22 and then infiltrate the plurality of electrode assemblies 22; or, the electrolyte may also flow to any end face of any one electrode assembly 22 to effectively infiltrate the end face.
  • Electrode assembly 22, embodiments of the present application are not limited to this.
  • the electrolyte injected into the battery cell 20 through the liquid injection hole 2131 is collected through the liquid accumulation tank 231 of the flow guide 23, and then flows to the battery cell 20 through the through hole 232 in the liquid accumulation tank 231.
  • the liquid injection hole 2131 is only located at a specific position of the first wall 213, the design of the liquid accumulation groove 231 and the through hole 232 can realize the redistribution of the electrolyte injection position.
  • the position of the liquid reservoir 231 and the position of the through hole 232 can be adjusted to cause the electrolyte to flow out in a direction, so that the electrode assembly 22 can achieve a better infiltration effect. , and improve the infiltration efficiency.
  • the electrolyte can flow from a specific position to a specific position of the electrode assembly 22 to achieve the best wetting effect and Wetting efficiency.
  • the electrolyte can flow to the positions between the multiple electrode assemblies 22, it can ensure that the multiple electrode assemblies can be evenly infiltrated and the infiltration effect is better, and the implementation of this application In the battery cell 20 of the example, there is no need to limit the position of the liquid injection hole 2131.
  • the electrolyte can flow in a directional manner, that is, to the position between the multiple electrode assemblies 22. , achieving a better infiltration effect, improving the infiltration efficiency, and also improving the processing efficiency and electrochemical performance of the battery cell 20 .
  • the housing 21 of the embodiment of the present application may have a polyhedral structure.
  • the housing 21 may include a housing 211 and a cover 212, wherein the housing 211 may be a hollow structure with an opening formed at at least one end, and the shape of the cover 212 may be adapted to the shape of the housing 211.
  • the plate 212 is used to cover the opening of the housing 211 so that the housing 21 isolates the internal environment of the battery cell 20 from the external environment.
  • the number of cover plates 212 may be one; if the housing 211 is a hollow structure with openings formed at opposite ends, the number of the cover plates 212 may be two, and two cover plates may be provided. 212 respectively cover the openings at both ends of the housing 211.
  • the housing 211 in the embodiment of the present application may be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the cover plate 212 can also be made of a variety of materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the cover plate 212 and the housing 211 can be made of the same material or different.
  • the housing 21 in the embodiment of the present application can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the shapes of the housing 211 and the cover 212 match each other.
  • the housing 211 can have a rectangular parallelepiped structure
  • the cover 212 can have a rectangular plate structure matching the housing 211 .
  • the casing 21 includes: a casing 211, which is a hollow structure with openings at both ends, and the two ends are opposite ends of the casing 211; two cover plates 212, The two cover plates 212 are respectively used to cover the openings at both ends of the housing 211 .
  • the two cover plates 212 include a first cover plate 2121 and a second cover plate 2122.
  • the first cover plate 2121 and the second cover plate 2122 are respectively located at opposite ends to cover the two ends of the housing 211.
  • the case 211 with openings at both ends facilitates the insertion of the internal electrode assembly 22 into the case.
  • different electrode assemblies 22 can enter the hollow part of the case 211 through different openings. to speed up installation.
  • the number of electrode assemblies 22 in the housing 211 can be one or more.
  • the battery cell 20 includes a battery cell 22 along the first direction. Two electrode assemblies 22 arranged in an
  • the electrode assembly 22 is a component in the battery cell 20 where electrochemical reactions occur.
  • the electrode assembly 22 can be a cylinder, a rectangular parallelepiped, etc. If the electrode assembly 22 has a cylindrical structure, the housing 211 can also have a cylindrical structure. If the electrode assembly 22 has a rectangular parallelepiped structure, the housing 211 can also have a rectangular parallelepiped structure.
  • the electrode assembly 22 may include a tab and a main body.
  • the first electrode assembly 221 may be any one of a plurality of electrode assemblies 20 included in the battery cell 20 .
  • the tab 2212 of the first electrode assembly 221 may include a positive tab 2212a and a negative tab 2212b.
  • the positive tab 2212a may be formed by stacking a portion of the positive electrode piece that is not coated with the positive active material layer, and the negative tab 2212b may be formed by a negative electrode.
  • the portions of the pole piece that are not coated with the negative active material layer are laminated.
  • the main body of the first electrode assembly 221 may be formed by laminating or winding the portion of the positive electrode sheet coated with the positive active material layer and the portion of the negative electrode sheet coated with the negative active material layer.
  • the tabs of the electrode assembly 22 can be located on the same end surface or on different end surfaces; when the battery cell 20 includes multiple electrode assemblies 22, the tabs of the multiple electrode assemblies 20 can also be located on the same end surface.
  • Corresponding end faces, or located at non-corresponding end faces, the embodiments of the present application are not limited thereto.
  • the housing 21 in the embodiment of the present application is also provided with electrode terminals, and the electrode terminals are used to electrically connect with the electrode assembly 22 to output the electric energy of the battery cell 20 .
  • the electrode terminals may be configured according to the position of the tabs of the electrode assembly 22 .
  • the battery cell 20 may include at least one group of electrode terminals, each group of electrode terminals including a positive electrode terminal and a negative electrode terminal, wherein the positive electrode terminal is used to be electrically connected to the positive tab.
  • the negative electrode terminal is used to electrically connect with the negative electrode tab.
  • the positive electrode terminal and the positive electrode tab can be connected directly or indirectly, and the negative electrode terminal and the negative electrode tab can be connected directly or indirectly.
  • the positive electrode terminal is electrically connected to the positive electrode tab through a connecting member
  • the negative electrode terminal is electrically connected to the negative electrode tab through a connecting member.
  • the same group of electrode terminals can be arranged on the same wall of the housing 21, or on different walls, and different groups of electrode terminals can also be arranged on the same wall of the housing 21 or on different walls. wall.
  • this application takes an example in which the battery cell 20 includes multiple sets of electrode terminals.
  • the tabs of the same electrode assembly 22 of the two electrode assemblies 22 are disposed on the same end surface, but the tabs of the two electrode assemblies 22 face opposite directions, and both Towards the outside of the battery cell 20 .
  • Arranging the tab on one end face of the electrode assembly 22 not only facilitates processing, but also facilitates the connection between the tab and the electrode terminal.
  • the tabs of the two electrode assemblies 22 are all facing the outside of the battery cell 20 , that is, the two electrode assemblies 22 are not disposed on the opposite end surfaces of the two electrode assemblies 22 . For example, as shown in FIGS.
  • the first The first end surface 2211 of the electrode assembly 221 faces the second end surface 2221 of the second electrode assembly 222.
  • the first end surface 2211 and the second end surface 2221 are not provided with tabs; and the directions of the tabs of the two electrode assemblies 22 are opposite, for example, As shown in FIGS. 3 and 4 , the tabs 2212 of the first electrode assembly 221 face the negative direction of the first direction X, while the tabs of the second electrode assembly 222 face the positive direction of the first direction X. Arranging the two electrode assemblies 22 in this way facilitates the electrical connection between each electrode assembly 22 and the corresponding electrode terminal.
  • the battery cell 20 includes two sets of electrode terminals, and the two sets of electrode terminals are respectively disposed on two opposite cover plates 212, which increases the distance between the two sets of electrode terminals and avoids mutual interference.
  • each of the two cover plates 212 is provided with a positive electrode terminal and a negative electrode terminal, and an end surface of the electrode assembly 22 facing the corresponding cover plate 212 is provided with a tab.
  • the tabs 2212 included in the first electrode assembly 221 are located on the end surface of the first electrode assembly 221 facing the first cover plate 2121.
  • the first cover plate 2121 includes a set of electrode terminals 214, wherein the positive electrode terminal 214a is used for It is electrically connected to the positive electrode tab 2212a of the first electrode assembly 221, and the negative electrode terminal 214b is used to be electrically connected to the negative electrode tab 2212a of the first electrode assembly 221.
  • the second electrode assembly 222 includes tabs located on the end surface of the second electrode assembly 222 facing the second cover plate 2122 , and the second cover plate 2122 includes a set of electrode terminals, wherein the second cover plate 2122
  • the positive electrode terminal is used to be electrically connected to the positive electrode tab of the second electrode assembly 222
  • the negative electrode terminal of the second cover plate 2122 is used to be electrically connected to the negative electrode tab of the second electrode assembly 222.
  • the embodiment of the present application is not limited to this.
  • the two electrode assemblies 22 are electrically insulated. That is, the first electrode assembly 221 and the second electrode assembly 222 are electrically insulated. In this way, the first electrode assembly 221 and the second electrode assembly 222 do not need to transmit current to each other, which can shorten the conductive paths of the first electrode assembly 221 and the second electrode assembly 222, reduce internal resistance, reduce heat generation, and improve The power of the battery cell 20 improves the charge and discharge performance of the battery cell 20 .
  • the electrode assembly 22 in the embodiment of the present application may be of a rolled type or a stacked type, or may be other types of electrode components 22; and when the same battery cell 20 includes multiple electrode assemblies 22, the plurality of electrode assemblies 22 may
  • the electrode assemblies 22 may be the same or different types of electrode assemblies 22 .
  • the two electrode assemblies 22 in the embodiment of the present application include a first electrode assembly 221 and a second electrode assembly 222 , and the first end surface 2211 of the first electrode assembly 221 faces the second electrode assembly 221 .
  • Electrode assembly 222 The following uses the first electrode assembly 221 and the first end surface 2211 as an example to describe possible types of electrode assemblies 22 included in the battery cell 20 in the embodiment of the present application.
  • the first electrode assembly 221 may be rolled.
  • FIG. 5 shows a possible cross-sectional schematic view of the first electrode assembly 221 according to the embodiment of the present application, and the cross-section is perpendicular to the first direction X.
  • the first electrode assembly 221 includes a first pole piece 221 a and a second pole piece 221 c.
  • the first pole piece 221 a and the second pole piece 221 c are wound around the winding axis.
  • the winding axis of the first electrode assembly 221 is parallel to the first direction X, and the first end surface 2211 is perpendicular to the winding axis, that is, the first end surface 2211 is parallel to the cross section shown in FIG. 5 .
  • the first electrode assembly 221 further includes a spacer 221c disposed between the first pole piece 221a and the second pole piece 221b.
  • the isolation member 221c is used to insulate and isolate the first pole piece 221a and the second pole piece 221b.
  • the first pole piece 221a, the second pole piece 221b and the separator 221c are all strip structures.
  • the first pole piece 221a, the second pole piece 221b and the separator 221c are stacked and wound along the winding axis for at least two turns to form the first electrode assembly 221.
  • the isolation member 221c can be the aforementioned isolation film, and its material can be polypropylene or polyethylene.
  • the first electrode assembly 221 may also be stacked.
  • FIG. 6 shows another possible cross-sectional schematic diagram of the first electrode assembly 221 according to the embodiment of the present application, and the cross-section is perpendicular to the first direction X.
  • the first electrode assembly 221 includes a plurality of first pole pieces 221a and a plurality of second pole pieces 221b.
  • the plurality of first pole pieces 221a and the plurality of second pole pieces 221b are alternately stacked along the second direction Y. set up.
  • the second direction Y can be set perpendicular to the first direction X
  • the first end surface 2211 is perpendicular to the first direction X.
  • the first electrode assembly 221 further includes an isolation member 221 c, which is used to insulate and isolate the adjacent first pole piece 221 a and the second pole piece 221 b.
  • the stacked first electrode components 221 can also be stacked in other ways.
  • FIG. 7 shows another possible cross-sectional schematic diagram of the first electrode assembly 221 according to the embodiment of the present application, and the cross-section is perpendicular to the first direction X.
  • the first electrode assembly 221 includes a first pole piece 221a and a plurality of second pole pieces 221b.
  • the first pole piece 221a includes a plurality of laminated sections 221d and a plurality of bent sections 221e.
  • the bent sections 221e are To connect two adjacent laminated sections 221d, a plurality of second pole pieces 221b and a plurality of laminated sections 221d are alternately stacked along the second direction Y.
  • the second direction Y can be set perpendicular to the first direction X
  • the first end surface 2211 can be set perpendicular to the first direction 2211 is perpendicular to the extension direction of each bent section 221e to avoid setting the first end surface 2211 as an end surface including multiple bent sections 221e, thereby avoiding the need for the electrolyte to penetrate the first electrode assembly 221 through the bent section 221e. , to improve the infiltration efficiency.
  • the first electrode assembly 221 further includes a spacer 221c, which is used to insulate and isolate the adjacent first pole piece 221a and the second pole piece 221b.
  • first pole piece and the second pole piece are two pole pieces with opposite polarities.
  • first pole piece is a positive pole piece
  • second pole piece is a negative pole piece
  • first pole piece is a negative pole piece
  • second pole piece is a positive pole piece.
  • Figures 5 to 7 show a solution in which the first pole piece 221a is a negative pole piece and the second pole piece 221b is a positive pole piece.
  • the first end face 2211 of the first electrode assembly 221 is arranged in the above manner, and the end of the pole piece is exposed on the first end face 2211.
  • the electrolyte can quickly infiltrate the first electrode assembly through the first end face 2211.
  • Each layer of pole pieces 221 can make the wetting effect of each layer of pole pieces of the first electrode assembly 221 more uniform, thereby improving the wetting efficiency of the first electrode assembly 221.
  • the above-mentioned arrangement of the first electrode assembly 221 and the first end surface 2211 is also applicable to the arrangement of the second electrode assembly 222 and the second end surface 2221.
  • the second end surface 2221 of the second electrode assembly 222 faces the first electrode assembly 221 .
  • the first electrode assembly 221 may be of the same type as the first electrode assembly 222 or a different type of electrode assembly 22 .
  • the first electrode assembly 221 and the second electrode assembly 222 may both be rolled or stacked of the same type to facilitate processing.
  • first end face 2211 and the second end face 2221 in the above manner, compared with other arrangements, when the electrolyte flows in from between the first end face 2211 and the second end face 2221, the electrolyte can pass through the first end face 2211 and the second end face 2221.
  • the end surface 2211 and the second end surface 2221 quickly wet each layer of the first electrode assembly 221 and the second electrode assembly 222 respectively, which can also make the wetting effect of the first electrode assembly 221 and the second electrode assembly 222 more uniform, thereby improving the performance of the first electrode assembly 221 and the second electrode assembly 222. Wetting efficiency of one electrode assembly 221 and the second electrode assembly 222.
  • the first end surface 2211 of the first electrode assembly 221 and the second end surface 2221 of the second electrode assembly 222 in the embodiment of the present application adopt the above arrangement as an example, so that the electrolyte flows into the first end surface 2211 and the second end surface 2221 of the second electrode assembly 222 . Between the two end faces 2221, the wetting effect is the best.
  • the two tabs 2212 of the first electrode assembly 221 can be disposed on a surface parallel to and opposite to the first end surface 2211, and the second The two tabs of the electrode assembly 222 are also disposed on a surface parallel to and opposite to the second end surface 2221 to facilitate processing.
  • the first direction X is the length direction of the battery cell 20 .
  • arranging the two electrode assemblies 22 along the length direction of the battery cell 20 can increase the size of the battery cell 20 in the length direction. , in this way, when such a plurality of battery cells 20 are assembled into the battery 10, the internal space of the battery 10 can be more fully utilized, that is, the space utilization rate of the battery 10 can be improved, thereby improving the energy density of the battery 10.
  • the two cover plates 212 can be respectively perpendicular to the first direction X, that is, the first cover plate 2121 and the second cover plate 212
  • the plate 2122 is the wall of the battery cell 20 with the smallest area.
  • the surface of each electrode assembly 22 that is prone to expansion due to temperature corresponds to the wall with the largest area of the battery cell 20 , that is, the expansion direction of the position of the electrode assembly 22 that is most susceptible to thermal expansion, and is perpendicular to the battery cell 20
  • the wall with the largest area is beneficial to the heat dissipation of the battery cell 20 and reduces expansion.
  • the first wall 213 is any wall of the housing 211 .
  • the two cover plates 212 of the embodiment of the present application are both provided with electrode terminals and correspond to different electrically insulated electrode assemblies 22. Therefore, if the liquid injection hole 2131 is provided in any one of them, On the cover 212 , for example, if the liquid injection hole 2131 is provided on the first cover 2121 , the wetting effect of the second electrode assembly 222 corresponding to the second cover 2122 may be affected. Therefore, the liquid injection hole 2131 can be provided on the casing 211 , that is, the first wall 213 provided with the liquid injection hole 2131 can be any wall of the casing 211 to improve the infiltration of each electrode assembly 22 inside the battery cell 20 Effect.
  • the first wall 213 is not the wall with the largest area of the housing 211 .
  • the first wall 213 is the wall with the smallest area of the housing 211 .
  • the wall with the largest area of the housing 211 is usually set to correspond to the surface with the largest area of the electrode assembly 22 . Therefore, the first wall 213 is usually not set as the wall with the largest area of the housing 211.
  • the deformation amount of the wall with the largest area is usually If the liquid injection hole 2131 is arranged on the wall with the largest area, it will not be conducive to the sealing effect of the sealing component 2132 used to seal the liquid injection hole 2131. The deformation of the wall with the largest area will cause the deformation of the sealing component 2132, which will lead to The seal fails, affecting the safety and performance of the battery cell 20 .
  • the battery cell 20 in the embodiment of the present application may also include a sealing component 2132, which is used to seal the liquid injection hole 2131.
  • the sealing component 2131 can be implemented in a variety of ways, and the sealing component 2132 can be a non-detachable structure or a detachable structure, and the embodiment of the present application is not limited thereto.
  • the sealing component 2132 may be a sealing nail.
  • the first wall 213 is provided with a pressure relief mechanism 2133, which is used to be activated when the internal pressure or temperature of the battery cell reaches a threshold value to relieve the internal pressure of the battery cell.
  • the predetermined threshold may depend on one or more materials of the positive electrode plate, the negative electrode plate, the electrolyte, and the separator in the battery cell 20 .
  • the pressure relief mechanism 2133 can be integrally formed with the first wall 213.
  • the pressure relief mechanism 2133 can be a score on the first wall 213; or, the pressure relief mechanism 2133 can also use a pressure-sensitive or temperature-sensitive element such as Or component, that is, when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold, the pressure relief mechanism 2133 is activated, thereby forming a channel for the internal pressure or temperature to be released.
  • the “actuation” mentioned in this application means that the pressure relief mechanism 2133 operates, so that the internal pressure and temperature of the battery cell 20 can be released.
  • the actions generated by the pressure relief mechanism 2133 may include, but are not limited to: at least a part of the pressure relief mechanism 2133 is broken, torn, or melted, and so on. After the pressure relief mechanism 2133 is activated, the high-temperature and high-pressure substances inside the battery cells 20 will be discharged outward from the pressure relief mechanism 2133 as emissions. In this way, the battery cell 20 can be depressurized under controllable pressure or temperature, thereby avoiding potentially more serious accidents.
  • the emissions from the battery cells 20 mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode plates, fragments of the isolation film, high-temperature and high-pressure gases generated by reactions, flames, etc. .
  • the pressure relief mechanism 2133 on the battery cell 20 has an important impact on the safety of the battery 10 .
  • thermal runaway may occur inside the battery cell 20 and the pressure or temperature may rise suddenly.
  • the internal pressure and temperature can be released outward by actuating the pressure relief mechanism 2133 to prevent the battery cell 20 from exploding or catching fire.
  • the pressure relief mechanism 2133 is usually disposed in the middle of the first wall 213 so that it can be destroyed promptly and effectively, thereby releasing the internal pressure and temperature. Therefore, in order to avoid the pressure relief mechanism 2133 or other components located on the first wall 213, the position of the liquid injection hole 2131 on the first wall 213 is very limited, and may not be located at the optimal liquid injection position. Location. For example, in the electrode assembly 22 shown in Figures 3 and 4, when liquid is injected between the first electrode assembly 221 and the second electrode assembly 222, the wetting effect of the two electrode assemblies 22 can be better, but the liquid injection hole 2131 In order to avoid the pressure relief mechanism 2133, it can usually only be set at an edge position deviating from the middle position.
  • the battery cell 20 in the embodiment of the present application includes a flow guide 23, which can solve this problem.
  • the flow guide 23 in the embodiment of the present application has a liquid accumulation tank 231, and the bottom wall 2311 of the liquid accumulation tank 231 is provided with a through hole 232.
  • the battery cells can be adjusted by reasonably setting the positions of the liquid accumulation tank 231 and the through hole 232.
  • the infiltration effect of body 20 is not limited to.
  • the battery cell 20 includes two electrode assemblies 22 arranged along the first direction
  • the electrolyte flows between the two electrode assemblies 22 through the through hole 232, and the first direction X is perpendicular to the axial direction of the liquid injection hole 2131.
  • the electrolyte flows between the first electrode assembly 221 and the second electrode assembly 222, the wetting effect is better, but the liquid injection hole 2131 may not meet this position requirement.
  • the electrolyte flows into the interior of the battery cell 20 through the liquid injection hole 2131, the electrolyte is collected in the liquid accumulation tank 231, and then the flow direction of the electrolyte is adjusted again through the through hole 232, which can be achieved.
  • Directional flow of electrolyte For example, by arranging the through hole 232 between the first electrode assembly 221 and the second electrode assembly 222, the electrolyte can flow through the through hole 232 between the first electrode assembly 221 and the second electrode assembly 222 to reach The infiltration effect is better, the infiltration efficiency is improved, and the processing efficiency and electrochemical performance of the battery cell 20 are also improved.
  • the flow guide 23 plays an insulating role to ensure electrical insulation between the collision between the electrode assembly 22 and the casing 21 .
  • the battery cell 20 also includes: an insulating member 25, which is disposed on the outer surface of the electrode assembly 22.
  • the insulating member 25 is used to isolate the electrode assembly 22 from the casing 21, and the flow guide 23 and the insulating member. 25 fixed.
  • an insulating member 25 may be provided on all or part of the outer surface of the electrode assembly 22 , and the insulating member 25 may be used for isolation. Electrode assembly 22 and housing 21 . Furthermore, the plurality of electrode assemblies 22 may share the same insulating member or use different insulating members 25 , and the embodiment of the present application is not limited thereto.
  • the flow guide 23 and the insulator 25 can be fixed by adhesive to achieve relative fixation between the flow guide 23 and the electrode assembly 22, and to make the through hole 232 correspond to the optimal injection position of the electrode assembly 22. , for example, the through hole 232 corresponds to between the two electrode assemblies 22.
  • the fixed flow guide 23 and the electrode assembly 22 are jointly arranged in the housing 21, which can avoid the flow guide during installation into the housing 21.
  • the dislocation occurs between the member 23 and the electrode assembly 22, thereby avoiding the situation that the through hole 232 cannot correspond to the optimal liquid injection position of the electrode assembly 22.
  • the orthographic projection of the liquid injection hole 2131 toward the guide 23 is located on the bottom wall 2311 of the liquid accumulation tank 231 .
  • the electrolyte flows into the liquid accumulation groove 231 of the guide 23 under the action of gravity.
  • the liquid injection hole 2131 can be provided corresponding to the bottom wall 2311 of the liquid accumulation tank 231 to prevent the electrolyte from flowing in other directions.
  • Figure 8 shows a schematic structural view of the air guide 23 according to the embodiment of the present application
  • Figure 9 shows a schematic top view of the air guide 23 according to the embodiment of the present application
  • Figure 10 shows a schematic structural view of the air guide 23 according to the embodiment of the present application.
  • a schematic cross-sectional view, wherein the cross-section may be a cross-sectional view along the AA′ direction as shown in FIG. 9 , that is, the cross-section is perpendicular to the second direction Y, perpendicular to the flow guide 23 and parallel to the first direction X.
  • the area and shape of the liquid collecting groove 231 of the flow guide 23 in the embodiment of the present application can be set according to actual applications.
  • the shape of the liquid collecting tank 231 can be set as an oblong shape to facilitate processing.
  • the area of the liquid accumulation tank 231 in the embodiment of the present application can be set according to the position of the liquid injection hole 2131, the position of the electrode assembly 22, the liquid injection speed, etc.
  • the liquid accumulation tank 231 should cover the corresponding position of the liquid injection hole 2131 to ensure the collection of the electrolyte injected through the liquid injection hole 2131; for another example, the liquid accumulation tank 231 should also cover the optimal position required by the electrode assembly 22.
  • the liquid injection position is such that the through hole 232 corresponds to the optimal position; for another example, if the liquid injection speed is fast, the area of the liquid accumulation tank 231 should be set larger to prevent the electrolyte from overflowing the liquid accumulation tank 231 and reducing infiltration. efficiency.
  • the bottom wall 2311 of the liquid accumulation tank 231 is inclined relative to the first plane 2312 so that the electrolyte in the liquid accumulation tank 231 converges toward the through hole 232 .
  • a plane 2312 is perpendicular to the axis of the liquid injection hole 2131.
  • the first plane 2312 is perpendicular to the third direction Z and parallel to the first direction X.
  • the third direction Z is the thickness direction of the air guide 23 , and the third direction Z is perpendicular to the first direction X.
  • the bottom wall 2311 of the liquid accumulation tank 231 is set to be inclined, so that the electrolyte in the liquid accumulation tank 231 converges toward the through hole 232.
  • the speed of the electrolyte flowing to the electrode assembly 22 can be accelerated, and on the other hand, it can also avoid The accumulation of electrolyte in other locations in the liquid reservoir 231 except the through hole 232 prevents the electrolyte from remaining in the liquid reservoir 231 and causing waste.
  • the angle ⁇ at which the bottom wall 2311 of the liquid collecting tank 231 in the embodiment of the present application is inclined relative to the first plane 2312 can be set according to actual applications. In some embodiments, the angle ⁇ at which the bottom wall 2311 of the accumulation tank 231 is inclined relative to the first plane 2312 is greater than 0° and less than 1°.
  • the inclination angle ⁇ can be set according to the thickness of the air guide 23 . If the thickness of the flow guide 23 is large, the inclination angle ⁇ can be set larger.
  • the inclination angle ⁇ can be greater than or equal to 5°; conversely, if the thickness of the flow guide 23 The thickness is smaller, the inclination angle ⁇ is also smaller.
  • the inclination angle ⁇ can be set to about 0.25°.
  • the inclination angle ⁇ is usually set to less than or equal to 0.25° to save the air guide 23 occupied space.
  • the first electrode assembly 221 and the second electrode assembly can also be An insulating structure 24 is provided between 222 .
  • Figure 11 shows another possible exploded structural diagram of the battery cell 20 according to the embodiment of the present application.
  • the battery cell 20 shown in Figure 11 can be another possible diagram of the battery cell 20 shown in Figure 3 schematic diagram of the decomposition structure.
  • the difference from the battery cell 20 shown in FIG. 4 is that the battery cell 20 shown in FIG. 11 also includes an insulation structure 24 .
  • Figure 12 shows a schematic structural diagram of the insulation structure 24 according to the embodiment of the present application.
  • the insulation structure 24 is disposed between the first electrode assembly 221 and the second electrode assembly 222 .
  • the insulation structure 24 includes a second wall 241 and a third wall 241 .
  • the second wall 241 is opposite to the first end surface 2211 of the first electrode assembly 221.
  • the third wall 242 is opposite to the second end surface 2221 of the second electrode assembly 222.
  • the second wall 241 is provided with a first through hole 2411.
  • the wall 242 is provided with a second through hole 2421, and the first surface 243 of the insulation structure 24 facing the first wall 213 has a third through hole 2431.
  • the third through hole 2431 is used to inject liquid injected through the liquid injection hole 2131.
  • the electrolyte is introduced into the interior of the insulation structure 24 so that the electrolyte inside the insulation structure 24 flows to the first electrode assembly 221 through the first through hole 2411 and flows to the second electrode through the second through hole 2421 Component 222.
  • the electrolyte flows into the interior of the battery cell 20 through the liquid injection hole 2131.
  • the electrolyte is first collected by the liquid accumulation tank 231, and flows to the first electrode through the through hole 232. between component 221 and second electrode component 222. Since the hollow insulation structure 24 is provided between the first electrode assembly 221 and the second electrode assembly 222, the insulation structure 24 is provided with the third through hole 2431 toward the first surface 243 of the first wall 213. Therefore, the through hole 232 flows out The electrolyte can flow into the interior of the hollow insulation structure 24 through the third through hole 2431.
  • the electrolyte inside the insulation structure 24 can further flow to the first electrode assembly 221 through the first through hole 2411 on the second wall 241 corresponding to the first end face 2211. This part of the electrolyte infiltrates the first electrode assembly 221 through the first end face 2211. Electrode assembly 221; In addition, the electrolyte inside the insulation structure 24 can further flow to the second electrode assembly 222 through the second through hole 2421 on the third wall 242 corresponding to the second end surface 2221, and this part of the electrolyte passes through the second through hole 2421.
  • the end surface 2221 infiltrates the second electrode assembly 222, thereby achieving the effect of evenly and quickly infiltrating the two electrode assemblies 22, thereby improving the infiltration efficiency of the battery cell 20.
  • the gap between the first electrode assembly 221 and the second electrode assembly 222 will be smaller, and the electrolyte will After flowing out through the through hole 232, it needs to slowly penetrate through the gap between the first electrode assembly 221 and the second electrode assembly 222, and then penetrate into the first electrode assembly 221 through the first end face 2211 of the first electrode assembly 221, and through the first electrode assembly 221.
  • the second end face 2221 of the second electrode assembly 222 penetrates into the second electrode assembly 22, and the whole process is slow. If the electrolyte injected into the injection hole 2131 is too fast, most of the electrolyte will flow in other directions, which is not conducive to the two Wetting effect of electrode assembly 22.
  • the electrolyte flows out through the through hole 232, it will flow to the solid insulating structure, where part of the electrolyte passes through The gap between the solid insulation structure and the first electrode assembly 221 slowly penetrates into the first electrode assembly 221, and part of the electrolyte slowly penetrates into the second electrode assembly 222 through the gap between the solid insulation structure and the second electrode assembly 222.
  • the hollow insulation structure 24 of the embodiment of the present application can well solve the above problems and reasonably guide the flow direction of the electrolyte, so that the electrolyte can quickly infiltrate the first electrode assembly 221 and the second electrode assembly 222, thereby improving the infiltration efficiency, and can also Improving the wetting effect of the two electrode assemblies 22 also improves the wetting efficiency and electrochemical performance of the battery cell 20 .
  • the insulation structure 24 can also be used to achieve electrical insulation between the first electrode assembly 221 and the second electrode assembly 222 without the need to provide additional insulation components, thereby saving the internal space of the battery cell 20 .
  • the orthographic projection of the through hole 232 provided on the bottom wall 2311 of the liquid reservoir 231 toward the first surface 243 is located in the area where the third through hole 2431 is located.
  • the electrolyte is injected through the liquid injection hole 2131 , the electrolyte collected in the liquid reservoir 231 can flow out through the through hole 232, and under the action of the gravity of the electrolyte, can all flow to the third through hole 2431, and then enter the interior of the insulation structure 24 through the third through hole 2431.
  • Figure 13 shows a schematic top view of the insulating structure 24 of the embodiment of the present application, that is, Figure 13 shows a schematic view of the first surface 243 of the insulating structure 24;
  • Figure 14 shows a cross-section of the insulating structure 24 of the embodiment of the present application.
  • Schematic diagram, Figure 14 can be a cross-sectional view in the BB' direction shown in Figure 13, that is, the cross-section shown in Figure 14 is a plane perpendicular to the second direction Y;
  • Figure 15 shows the insulation structure of the embodiment of the present application
  • Another schematic cross-sectional view of 24, this Figure 15 can be a cross-sectional view along the CC' direction shown in Figure 13, that is, the cross-section shown in Figure 15 is a plane perpendicular to the first direction X.
  • the insulation structure 24 can be in any regular or irregular shape.
  • this application mainly takes the rectangular parallelepiped insulating structure 24 as an example.
  • the rectangular parallelepiped insulating structure 24 is easy to process.
  • the rectangular parallelepiped insulating structure 24 is The insulation structure 24 is more space-saving and can improve the space utilization inside the battery cell 20 .
  • the insulation structure 24 further includes a second surface 244 , which is away from the first wall 213 and opposite to the first surface 243 . Further, the second surface 244 is provided with a fourth through hole.
  • the fourth through hole is used for the electrolyte inside the insulation structure 24 to flow to the first electrode assembly 221 and the second electrode assembly 222 through the fourth through hole to further speed up the flow of electrolyte into the first electrode assembly 221 and the second electrode assembly 222 .
  • the outflow speed of the electrolyte in the insulation structure 24 accelerates the infiltration speed of the electrolyte into the first electrode assembly 221 and the second electrode assembly 222 .
  • the second surface 244 may also be a wall of the insulation structure 24 , that is, the fourth through hole may not be provided on the second surface 244 , and the electrolyte in the insulation structure 24 will only pass through the fourth through hole.
  • the first through hole 2411 on the second wall 241 and the second through hole 2421 on the third wall 242 flow out.
  • the insulation structure 24 in the embodiment of the present application is a hollow structure, and the insulation structure 24 can be implemented in a variety of ways.
  • the insulating structure 24 may be formed by through-holes in a solid insulating material.
  • the insulation structure 24 in the embodiment of the present application can be processed using a solid plate-shaped insulation material.
  • a through hole can be provided on the solid insulating material, and the through hole penetrates the entire insulating material from the first surface 243 to the second surface 244 , thereby making the solid insulating material hollow. structure, and form a second wall 241 and a third wall 242 that are oppositely arranged, and then a first through hole 2411 can be provided on the second wall 241, and a second through hole 2421 can be provided on the third wall 242; at the same time, the The through hole forms a third through hole 2431 on the first surface 243 and a fourth through hole 2441 on the second surface 244 .
  • a groove with a larger depth can also be provided on the solid insulating material.
  • the groove extends from the first surface 243 to the second surface 244 but does not penetrate the second surface 244. This can also make the solid insulating material become It is a hollow structure, and the side wall of the groove includes a second wall 241 and a third wall 242 that are arranged oppositely.
  • a first through hole 2411 can be provided on the second wall 241, and a second through hole 2411 can be provided on the third wall 242. Via 2421.
  • the opening of the groove forms a third through hole 2431 on the first surface 243, and the bottom wall of the groove can be used to form a wall of the insulation structure 24.
  • the second surface of the insulation structure 24 No fourth through hole 2441 is provided on 244 .
  • the size of the third through hole 2431 of the first surface 243 is related to the size of the hollow portion of the insulation structure 24 .
  • the size of the third through hole 2431 is equal to the diameter of the groove or through hole; for another example, if The diameter of the groove or through hole extending from the first surface 243 to the second surface 244 is not a fixed value.
  • the size of the hole 2431 is equal to the minimum diameter of the groove or the through hole, but the embodiment of the present application is not limited thereto.
  • the insulation structure 24 of the embodiment of the present application may also include a fourth wall opposite to the first wall 213, and the outer surface of the fourth wall is the first surface 2431, then
  • the third through hole 2431 can be formed by providing a through hole penetrating the fourth wall on the fourth wall; similarly, the insulation structure 24 can also include a fifth wall opposite to the fourth wall. Far away from the first wall 213, the outer surface of the fifth wall is the second surface 244, and a through hole penetrating the fifth wall can be provided on the fifth wall as a fourth through hole, but the embodiment of the present application is not limited thereto. this.
  • first through holes 2411 provided on the second wall 241 in the embodiment of the present application can be flexibly set according to the actual application; the number of the second through holes 2421 provided on the third wall 242 , position, shape and size can also be flexibly set according to actual applications.
  • their numbers may be the same or different, their positions may be the same or different, and their shapes may be the same or different, And their sizes may be the same or different, and the embodiments of the present application are not limited thereto.
  • the second wall 241 is provided with a plurality of first through holes 2411
  • the third wall 242 is provided with a plurality of second through holes 2421 .
  • Providing multiple first through holes 2411 at different positions on the second wall 241 facilitates the electrolyte inside the insulation structure 24 to flow to the first electrode assembly 221 through the different first through holes 2411 at different positions, and then from the multiple first through holes 2411 .
  • Wetting the first electrode assembly 221 at multiple positions can not only speed up the wetting speed, but also improve the wetting effect and evenly infiltrate the first electrode assembly 221 as much as possible; similarly, multiple second passes are provided at different positions on the third wall 242.
  • the holes 2421 are conducive to the electrolyte inside the insulation structure 24 flowing to the second electrode assembly 222 through different second through holes 2421 at different positions, and then infiltrating the second electrode assembly 222 from multiple positions, which can speed up the infiltration speed. , it can also improve the wetting effect and evenly wet the second electrode assembly 222 as much as possible.
  • the number of first through holes 2411 provided on the second wall 241 is equal to the number of second through holes 2421 provided on the third wall 242 .
  • the position of the first through hole 2411 corresponds to the position of the second through hole 2421 provided on the third wall 242 .
  • An equal number of first through holes 2411 and a second through hole 2421 at corresponding positions are provided on the second wall 241 and the third wall 242 respectively, which not only facilitates processing, but also improves the wetting efficiency.
  • the first through hole 2411 on the second wall 241 and the second through hole 2421 on the third wall 242 can be obtained by providing through holes that penetrate the second wall 241 and the third wall 242 at the same time.
  • the wetting effects of the first electrode assembly 221 and the second electrode assembly 222 are basically the same, thereby improving the wetting efficiency.
  • the first through holes 2411 can be distributed on the second wall 241 according to certain rules.
  • the second through holes 2421 can also be distributed on the third wall 242 according to certain rules. Regular distribution can not only improve processing efficiency, but also improve the uniformity of infiltration.
  • the second wall 241 is provided with multiple rows of first through holes 2411 arranged along the second direction Y.
  • Each row of the multiple rows of first through holes 2411 includes a row of first through holes 2411 along the second direction Y.
  • a plurality of first through holes 2411 are arranged in three directions Z, and the first direction X, the second direction Y, and the third direction Z are perpendicular to each other. That is, the first through holes 2411 may be distributed in a matrix on the second wall 241 .
  • first through holes 2411 can be set to be equal, and the spacing between multiple first through holes 2411 in the same row can also be set to be equal, so that the plurality of first through holes 2411 are in the same row.
  • the second wall 241 is evenly distributed in the second direction Y and is also evenly distributed in the third direction Z. Try to ensure that the electrolyte enters into different areas of the first end surface 2211 of the first electrode assembly 221 to improve the third direction. Uniformity of wetting of an electrode assembly 221.
  • the second through holes 2421 can also be distributed in a matrix on the third wall 242 .
  • the third wall 242 is provided with multiple rows of second through holes 2421 arranged along the second direction Y.
  • Each row of the multiple rows of second through holes 2421 includes a plurality of rows of second through holes 2421 along the third direction Y.
  • the plurality of second through holes 2421 are arranged in Z, and the first direction X, the second direction Y and the third direction Z are perpendicular to each other.
  • the spacing between multiple rows of second through holes 2421 can be set to be equal, and the spacing between multiple second through holes 2421 in the same row can also be set to be equal, so that the plurality of second through holes 2421 are in the same row.
  • the three walls 242 are evenly distributed in the second direction Y and are also evenly distributed in the third direction Z. Try to ensure that the electrolyte enters different areas of the second end surface 2221 of the second electrode assembly 222 to improve the third direction. Uniformity of wetting of the two electrode assemblies 222.
  • the electrolyte flows into the interior of the battery cell 20 through the liquid injection hole 2131.
  • the electrolyte is first collected by the liquid accumulation tank 231, and flows to the first electrode through the through hole 232. between component 221 and second electrode component 222. Since the hollow insulation structure 24 is provided between the first electrode assembly 221 and the second electrode assembly 222, the insulation structure 24 is provided with the third through hole 2431 toward the first surface 243 of the first wall 213. Therefore, the through hole 232 flows out The electrolyte can flow into the interior of the hollow insulation structure 24 through the third through hole 2431.
  • the electrolyte inside the insulation structure 24 can further flow to the first electrode assembly 221 through the first through hole 2411, and this part of the electrolyte infiltrates the first electrode assembly 221 through the first end surface 2211 of the first electrode assembly 221; in addition, in The electrolyte inside the insulation structure 24 can further flow to the second electrode assembly 222 through the second through hole 2421. This part of the electrolyte infiltrates the second electrode assembly 222 through the second end surface 2221 of the second electrode assembly 222, thereby achieving uniform and rapid infiltration.
  • the effect of the two electrode assemblies 22 improves the wetting efficiency of the battery cells 20 .
  • FIG. 16 shows a schematic flow chart of a manufacturing method 300 of the battery cell 20 according to an embodiment of the present application.
  • the method 300 may include: S310, providing a housing 21 having a receiving cavity, the housing 21 having a first wall 213, and the first wall 213 being provided with a liquid injection hole 2131; S320, providing an electrode Component 22; S330, provide a flow guide 23, which is provided with a liquid accumulation tank 231; S340, accommodate the electrode assembly 22 and the flow guide 23 in the accommodation cavity, so that the flow guide 23 is provided Between the first wall 213 and the electrode assembly 22, the opening of the liquid accumulation tank 231 faces the first wall 213.
  • the bottom wall 2311 of the liquid accumulation tank 231 is provided with a through hole 232.
  • the liquid accumulation tank 231 is used for The electrolyte injected through the liquid injection hole 2131 is collected, and the electrolyte in the liquid reservoir 231 flows to the electrode assembly 22 through the through hole 232 .
  • FIG. 17 shows a schematic block diagram of a manufacturing equipment 400 for a battery cell 20 according to an embodiment of the present application.
  • the device 400 may include: a provision module 410.
  • the providing module 410 is used to: provide a housing 21 with a receiving cavity, a first wall 213 with a liquid injection hole 2131 provided on the first wall 213; provide an electrode assembly 22; and provide a flow guide.
  • the flow guide 23 is provided with a liquid accumulation tank 231; the electrode assembly 22 and the flow guide 23 are accommodated in the accommodation cavity, so that the flow guide 23 is disposed between the first wall 213 and the electrode assembly.
  • the opening of the liquid accumulation tank 231 faces the first wall 213, and the bottom wall 2311 of the liquid accumulation tank 231 is provided with a through hole 232.
  • the liquid accumulation tank 231 is used to collect the electrolyte injected through the liquid injection hole 2131. liquid, and the electrolyte in the liquid reservoir 231 flows to the electrode assembly 22 through the through hole 232 .

Abstract

本申请实施例提供一种电池单体、电池、用电设备、电池单体的制造方法和设备。该电池单体包括:外壳,具有容纳腔,所述外壳具有第一壁,所述第一壁设置有注液孔;电极组件,容纳于所述容纳腔中;导流件,设置在所述第一壁与所述电极组件之间,所述导流件设置有积液槽,所述积液槽的开口朝向所述第一壁,所述积液槽的底壁设置有通孔,所述积液槽用于收集通过所述注液孔注入的电解液,且所述积液槽内的所述电解液通过所述通孔流向所述电极组件。本申请实施例的电池单体、电池、用电设备、电池单体的制造方法和设备,能够提高电池单体的浸润效率和浸润效果。

Description

电池单体、电池、用电设备、电池单体的制造方法和设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池、用电设备、电池单体的制造方法和设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的飞速发展中,如何提高电池的加工生产效率,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池单体、电池、用电设备、电池单体的制造方法和设备,能够提高电池单体的浸润效果和浸润效率。
第一方面,提供了一种电池单体,包括:外壳,具有容纳腔,所述外壳具有第一壁,所述第一壁设置有注液孔;电极组件,容纳于所述容纳腔中;导流件,设置在所述第一壁与所述电极组件之间,所述导流件设置有积液槽,所述积液槽的开口朝向所述第一壁,所述积液槽的底壁设置有通孔,所述积液槽用于收集通过所述注液孔注入的电解液,且所述积液槽内的所述电解液通过所述通孔流向所述电极组件。
因此,本申请实施例的电池单体,通过设置的导流件的积液槽,收集通过注液孔注入电池单体内部的电解液,再通过积液槽内通孔流向电极组件所在区域,这样,虽然注液孔只位于第一壁的某一特定位置,但是积液槽和通孔的设计可以实现电解液注入位置的重新分配。即可以基于电池单体内部电极组件对电解液的浸润需求,通过调节积液槽的位置和通孔的位置,令电解液定向流出,以使得电极组件达到更好的浸润效果,并提高浸润效率。例如,电池单体包括单一电极组件时,通过调节积液槽和通孔的位置,可以使得电解液从特定位置流至该电极组件的特定位置,以达到最佳浸润效果和浸润效率。再例如,电池单体内部含有多个电极组件时,若电解液能够流向多个电极组件之间的位置,可以保证多个电极组件能够均匀浸润,浸润效果较好,而本申请实施例的电池单体,无需限制注液孔的位置,可以通过合理设置积液槽和通孔的位置,即可使得电解液定向流动,即流向多个电极组件之间的位置,到达较好的浸润效果,提高了浸润效率,也提高了电池单体的加工效率和电化学性能。
在一些实施例中,所述注液孔的朝向所述导流件的正投影位于所述积液槽的底 壁。在通过注液孔向电池单体内部注入电解液时,电解液在重力作用下流向导流件的积液槽,为了使得积液槽能够尽可能完全收集到注入的电解液,可以设置注液孔对应于积液槽的底壁,以尽量避免电解液流向其他方向。
在一些实施例中,所述积液槽的底壁相对于第一平面为倾斜的,以使所述积液槽内的所述电解液朝向所述通孔汇聚,所述第一平面垂直于所述注液孔的轴线。将积液槽的底壁设置为倾斜的,以使得积液槽内的电解液朝向通孔汇聚,一方面可以加快电解液流向电极组件的速度,另一方面,还可以避免电解液在积液槽内除通孔外其他位置的堆积,避免电解液残留在积液槽内造成浪费。
在一些实施例中,所述积液槽的底壁相对于所述第一平面倾斜的角度大于0°,且小于1°。该倾斜角度可以根据导流件的厚度进行设置。若导流件的厚度较大,则该倾斜角度可以设置较大;相反的,若导流件的厚度较小,则倾斜角度也较小。考虑到电池单体内部空间有限,为了提高电池单体的能量密度,导流件的厚度通常较小,因此,倾斜角度通常设置为小于或者等于0.25°,以节约导流件占用的空间。
在一些实施例中,所述电池单体包括沿第一方向排列的两个电极组件,所述通孔对应所述两个电极组件之间的位置,以使所述积液槽内的所述电解液通过所述通孔流向所述两个电极组件之间,这样,两个电极组件之间的电解液能够同时浸润两个电极组件,加快浸润速度,提高浸润效率。其中,所述第一方向垂直于所述注液孔的轴向。
在一些实施例中,所述两个电极组件包括第一电极组件和第二电极组件,所述第一电极组件的第一端面朝向所述第二电极组件。所述第一电极组件包括第一极片和第二极片,所述第一极片与所述第二极片绕卷绕轴线卷绕设置,所述卷绕轴线平行于所述第一方向,所述第一端面垂直于所述卷绕轴线。或者,所述第一电极组件包括多个第一极片和多个第二极片,所述多个第一极片和所述多个第二极片沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面垂直于所述第一方向。或者,所述第一电极组件包括第一极片和多个第二极片,所述第一极片包括多个层叠段和多个折弯段,所述折弯段用于连接相邻的两个所述层叠段,所述多个第二极片与多个所述层叠段沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面垂直于所述第一方向。
按照上述方式设置第一电极组件的第一端面,与其他设置方式相比,当电解液接触第一端面时,电解液可以通过第一端面快速浸润第一电极组件的各层极片,还可以使得第一电极组件的多个层和第二电极组件的浸润效果较为均匀,进而提高第一电极组件的浸润效率。
在一些实施例中,所述电池单体为长方体,所述第一方向为所述电池单体的长度方向。将两个电极组件沿电池单体的长度方向设置,可以增大电池单体的长度方向的尺寸,这样,在将这样的多个电池单体组装为电池时,可以更加充分地利用电池的内部空间,即能够提高电池的空间利用率,进而提高电池的能量密度。
在一些实施例中,所述两个电极组件电绝缘。这样,第一电极组件和第二电极组件无需传输彼此的电流,这样可以缩短第一电极组件的导电路径和第二电极组件的 导电路径,减小内阻,减少产热,提高电池单体的功率,改善电池单体的充放电性能。
在一些实施例中,所述两个电极组件中同一个电极组件的极耳设置在同一端面,所述两个电极组件的极耳朝向相反方向,且均朝向所述电池单体的外部。对于同一个电极组件,将极耳设置在该电极组件的同一个端面,既便于加工,又便于实现极耳与电极端子的连接。对于不同的电极组件,极耳均朝向电池单体的外部且方向相反,可以避免不同电极组件的极耳之间的相互影响,也便于实现每个电极组件与对应的电极端子的电连接。
在一些实施例中,所述电池单体还包括:绝缘件,所述绝缘件设置在所述电极组件的外表面,所述绝缘件用于隔离所述电极组件与所述外壳,所述导流件与所述绝缘件固定。
导流件与电极组件之间的相对固定,能够使得通孔对应于电极组件的最佳注液位置并相对固定,例如,通孔对应于两个电极组件之间,这样,再将固定的导流件和电极组件共同设置在外壳内,可以避免安装到外壳内的过程中,导流件与电极组件之间发生错位,也就避免了通孔无法对应于电极组件的最佳注液位置的情况。
在一些实施例中,所述外壳包括:壳体,所述壳体为两端开口的中空结构,所述两端为所述壳体的相对设置的两端,所述第一壁为所述壳体的任意一个壁;两个盖板,所述两个盖板分别用于盖合所述壳体的两端开口。
具有两端开口的壳体,便于实现电极组件的入壳,尤其是电池单体包括多个电极组件时,不同电极组件可以通过不同的开口进入壳体的中空部分,以加快安装。
在一些实施例中,所述第一壁为所述壳体的面积最小的壁。为提高电池单体的散热效率,壳体的面积最大的壁通常设置为对应于电极组件的面积最大的表面。因此,通常不会将第一壁设置为壳体的面积最大的壁,一方面避免第一壁上注液孔对散热的影响;另一方面,面积最大的壁的变形量通常较大,若注液孔设置在该面积最大的壁上,不利于用于密封注液孔的密封组件的密封效果,面积最大的壁的变形会导致密封组件的变形,进而导致密封失效,影响电池单体的安全和性能。
在一些实施例中,所述第一壁设置有泄压机构,所述泄压机构用于在所述电池单体的内部的压力或者温度达到阈值时致动,以泄放所述电池单体的内部的压力。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
第二方面,提供了一种电池,包括:多个电池单体,该电池单体为第一方面所述的电池单体。
第三方面,提供了一种用电设备,包括:第一方面所述的电池单体。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
第四方面,提供了一种电池单体的制造方法,包括:提供外壳,所述外壳具有容纳腔,所述外壳具有第一壁,所述第一壁设置有注液孔;提供电极组件;提供导流件,所述导流件设置有积液槽;将所述电极组件、所述导流件容纳于所述容纳腔中,使所述导流件设置在所述第一壁与所述电极组件之间,所述积液槽的开口朝向所述第一壁,所述积液槽的底壁设置有通孔,所述积液槽用于收集通过所述注液孔注入的电 解液,且所述积液槽内的所述电解液通过所述通孔流向所述电极组件。
第五方面,提供了一种电池单体的制造设备,包括执行上述第四方面的方法的模块。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的结构示意图;
图4是本申请一实施例公开的一种电池单体的分解结构示意图;
图5至图7是本申请一实施例提供的第一电极组件的截面示意图;
图8是本申请一实施例公开的一种导流件的结构示意图;
图9是本申请一实施例公开的一种导流件的俯视的示意图;
图10是本申请一实施例公开的一种导流件的截面示意图;
图11是本申请一实施例公开的另一种电池单体的分解结构示意图;
图12是本申请一实施例公开的一种绝缘结构的结构示意图;
图13是本申请一实施例公开的一种绝缘结构的俯视的示意图;
图14是本申请一实施例公开的一种绝缘结构的截面示意图;
图15是本申请一实施例公开的一种绝缘结构的另一截面示意图;
图16是本申请一实施例公开的一种电池单体的制造方法的示意性流程图;
图17是本申请一实施例公开的一种电池单体的制造设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本 领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体的外壳上通常设置有注液孔,通过该注液孔向电池单体内部注入电解液。为了便于加工,注液孔通常与其他部件共同设置于电池单体的一个壁上,例如,注液孔通常与电池单体的电极端子或者泄压机构位于同一个壁。那么,为了避让其他部件,避免对其他部件的影响,注液孔的设置位置则十分受限;因此,电池单体的注液孔往往仅能位于某一特定位置。电解液浸润电池单体内部设置的电极组件的效果会直接影响电池单体的电化学性能,尤其是电池单体包括多个电极组件时,通过外壳上固定位置的注液孔注入的电解液往往无法满足内部的各个电极组件对浸润效果的要求,也很难实现多个电极组件之间均匀的浸润,这会影响电池单体的电解液的浸润效率和浸润效果,进而影响电池单体的加工效率和电化学性能。
因此,本申请实施例提供了一种电池单体,该电池单体的外壳的第一壁上设置有注液孔,该第一壁与电极组件之间设置有导流件,该导流件的朝向第一壁的表面设 置有开口朝向第一壁的积液槽,该积液槽的底壁设置有通孔。该积液槽可以收集通过注液孔注入电池单体内部的电解液,并且积液槽内的电解液可以通过通孔流向电极组件,这样,虽然注液孔只位于第一壁的某一特定位置,但是积液槽和通孔的设计可以实现电解液注入位置的重新分配。即可以基于电池单体内部电极组件对电解液的浸润需求,通过调节积液槽的位置和通孔的位置,令电解液定向流出,以使得电极组件达到更好的浸润效果,并提高浸润效率。例如,电池单体内部含有两个电极组件时,若电解液能够流向两个电极组件之间的位置,可以保证两个电极组件能够均匀浸润,浸润效果较好,而本申请实施例的电池单体,无需限制注液孔的位置,可以通过合理设置积液槽和通孔的位置,即可使得电解液定向流动,即流向两个电极组件之间的位置,到达较好的浸润效果,并提高了浸润效率,也提高了电池单体的加工效率和电化学性能。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。例如,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,图2示出了本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。图2示出了本申请实施例的箱体11的一种可能的实现方式,如图2所示,箱体11可以包括两部分,这里分别称为第一部分111和第二部分 112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合后的形状而定,第一部分111和第二部分112中至少一个具有一个开口。例如,如图2所示,该第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。
再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
在一些实施例中,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。
根据不同的电力需求,电池10中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。
图3示出了本申请实施例的电池单体20的示意图,图4示出了本申请实施例的电池单体20的一种可能的分解结构示意图,例如,该图4所示的电池单体20可以为如图3所示的电池单体20的分解结构示意图。如图3和图4所示,本申请实施例的电池单体20包括:外壳21,具有容纳腔,该外壳21具有第一壁213,该第一壁213设置有注液孔2131;电极组件22,容纳于该容纳腔中;导流件23,设置在该第一壁213与该电极组件22之间,该导流件23设置有积液槽231,该积液槽231的开口朝向该第一壁213,该积液槽231的底壁2311设置有通孔232,该积液槽231用于收集通过该注液孔2131注入的电解液,且该积液槽231内的该电解液通过该通孔232流向该电极组件22。
应理解,本申请实施例的电池单体20具有外壳21,该外壳21内部具有容纳腔,以使该电池单体20为中空的多面体结构。具体地,该电池单体20的外壳可以包括多个壁,第一壁213为该多个壁中的任意一个壁,该第一壁213具有注液孔2131,以通过该注液孔2131向电池单体20内部注入电解液。
本申请实施例的电池单体20的内部可以容纳有至少一个电极组件22,电极组件22与第一壁213之间设置有导流件23,该导流件23具有开口朝向第一壁213的积液槽231,这样,在注液孔2131注入电解液时,该积液槽231可以收集该电解液,并且收集的电解液可以通过积液槽231上的通孔232流向电极组件22。
本申请实施例中电解液通过通孔232流向电极组件22可以指电解液经过通孔 232流向至少一个电极组件22所在区域的任意位置。例如,该电解液可能流向多个电极组件22之间的位置,进而浸润多个电极组件22;或者,该电解液也可能流向任意一个电极组件22的任意一个端面,以通过该端面有效浸润该电极组件22,本申请实施例并不限于此。
本申请实施例的电池单体20,通过设置的导流件23的积液槽231,收集通过注液孔2131注入电池单体20内部的电解液,再通过积液槽231内通孔232流向电极组件所在区域,这样,虽然注液孔2131只位于第一壁213的某一特定位置,但是积液槽231和通孔232的设计可以实现电解液注入位置的重新分配。即可以基于电池单体20内部电极组件22对电解液的浸润需求,通过调节积液槽231的位置和通孔232的位置,令电解液定向流出,以使得电极组件22达到更好的浸润效果,并提高浸润效率。例如,电池单体20包括单一电极组件22时,通过调节积液槽231和通孔232的位置,可以使得电解液从特定位置流至该电极组件22的特定位置,以达到最佳浸润效果和浸润效率。再例如,电池单体20内部含有多个电极组件22时,若电解液能够流向多个电极组件22之间的位置,可以保证多个电极组件能够均匀浸润,浸润效果较好,而本申请实施例的电池单体20,无需限制注液孔2131的位置,可以通过合理设置积液槽231和通孔232的位置,即可使得电解液定向流动,即流向多个电极组件22之间的位置,到达较好的浸润效果,提高了浸润效率,也提高了电池单体20的加工效率和电化学性能。
应理解,如图3和图4所示,本申请实施例的外壳21可以为多面体结构。具体地,该外壳21可以包括壳体211和盖板212,其中,该壳体211可以是至少一端形成开口的空心结构,而盖板212的形状可以与壳体211的形状相适配,盖板212用于盖合于壳体211的开口,以使外壳21将电池单体20的内部环境与外部环境隔绝。若壳体211为一端形成开口的空心结构,盖板212则可以设置为一个;若壳体211为相对的两端形成开口的空心结构,盖板212则可以设置为两个,两个盖板212分别盖合于壳体211两端的开口。
本申请实施例的壳体211的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。盖板212的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等,盖板212的材质与壳体211的材质可以相同,也可以不同。
本申请实施例的外壳21可以是多种形状,比如,圆柱体、长方体等。壳体211和盖板212的形状相互配合,例如,如图3和图4所示,壳体211可以为长方体结构,盖板212为与壳体211相适配的矩形板状结构。
为了便于说明,本申请以包括两个盖板212为例,并且以外壳21为长方体为例。具体地,如图3和图4所示,外壳21包括:壳体211,壳体211为两端开口的中空结构,两端为壳体211的相对设置的两端;两个盖板212,两个盖板212分别用于盖合壳体211的两端开口。其中,两个盖板212包括第一盖板2121和第二盖板2122,第一盖板2121和第二盖板2122分别位于相对设置的两端,以盖合壳体211的两端。具有两端开口的壳体211,便于实现内部电极组件22的入壳,尤其是电池单体20包括多个电极组件22时,不同电极组件22可以通过不同的开口进入壳体211的中空部分,以加快安装。
在该电池单体20中,根据实际使用需求,壳体211内的电极组件22可设置为1个,也可以是多个,例如,图3和图4以电池单体20包括沿第一方向X排列的两个电极组件22为例,该两个电极组件22包括第一电极组件221和第二电极组件222,但本申请实施例并不限于此。
电极组件22是电池单体20中发生电化学反应的部件。电极组件22可以是圆柱体、长方体等,若电极组件22为圆柱体结构,壳体211也可以为圆柱体结构,若电极组件22为长方体结构,壳体211也可以为长方体结构。
对于任意一个电极组件22,电极组件22可以包括极耳和主体部。例如,以图3和图4中第一电极组件221为例,该第一电极组件221可以为电池单体20包括的多个电极组件20中的任意一个。该第一电极组件221的极耳2212可以包括正极极耳2212a和负极极耳2212b,正极极耳2212a可以由正极极片上未涂覆正极活性物质层的部分层叠形成,负极极耳2212b可以由负极极片上未涂覆负极活性物质层的部分层叠形成。该第一电极组件221的主体部可以由正极极片上涂覆有正极活性物质层的部分和负极极片上涂覆有负极活性物质层的部分层叠形成或者卷绕形成。
应理解,对于任意一个电极组件22,该电极组件22的极耳可以位于同一端面或者不同端面;电池单体20包括多个电极组件22时,该多个电极组件20的极耳也可以位于同一对应的端面,或者位于不对应的端面,本申请实施例并不限于此。
本申请实施例的外壳21上还设置有电极端子,电极端子用于与电极组件22电连接,以输出电池单体20的电能。在一些实施例中,电极端子可以根据电极组件22的极耳的设置位置进行设置。例如,对应于电极组件22的极耳,该电池单体20可以包括至少一组电极端子,每组电极端子包括正极电极端子和负极电极端子,其中,正极电极端子用于与正极极耳电连接,负极电极端子用于与负极极耳电连接。正极电极端子与正极极耳可以直接连接,也可以间接连接,负极电极端子与负极极耳可以直接连接,也可以间接连接。例如,正极电极端子通过一个连接构件与正极极耳电连接,负极电极端子通过一个连接构件与负极极耳电连接。
并且,与电极组件22的极耳的设置相对应,同一组电极端子可以设置于外壳21的同一个壁,或者不同壁,而不同组的电极端子也可以设置于外壳21的同一个壁或者不同的壁。
为了便于说明,本申请以电池单体20包括多组电极端子为例进行说明。具体地,对于第一电极组件221和第二电极组件222,两个电极组件22中同一个电极组件22的极耳设置在同一端面,但两个电极组件22的极耳朝向相反方向,且均朝向电池单体20的外部。将极耳设置在电极组件22的一个端面,既便于加工,又便于实现极耳与电极端子的连接。两个电极组件22的极耳均朝向电池单体20的外部,即两个电极组件22没有设置在两个电极组件22相对设置的端面上,例如,如图3和图4所示,第一电极组件221的第一端面2211朝向第二电极组件222的第二端面2221,第一端面2211和第二端面2221不设置有极耳;并且,两个电极组件22的极耳方向相反,例如,如图3和图4所示,第一电极组件221的极耳2212朝向第一方向X的负方向,而第二电极组件222的极耳朝向第一方向X的正方向。这样设置两个电极组件22便于实现每个电 极组件22与对应的电极端子的电连接。
与之对应的,该电池单体20包括两组电极端子,两组电极端子分别设置在相对的两个盖板212上,增加了两组电极端子之间的距离,能够避免相互干扰。
例如,如图3和图4所示,两个盖板212中的每个盖板212上设置有正电极端子和负电极端子,电极组件22的朝向对应盖板212的端面设置有极耳。具体地,第一电极组件221包括的极耳2212位于第一电极组件221的朝向第一盖板2121的端面,该第一盖板2121包括一组电极端子214,其中,正极电极端子214a用于与第一电极组件221的正极极耳2212a电连接,而负极电极端子214b用于与第一电极组件221的负极极耳2212a电连接。类似的,第二电极组件222包括的极耳位于该第二电极组件222的朝向第二盖板2122的端面,该第二盖板2122包括一组电极端子,其中,该第二盖板2122的正极电极端子用于与第二电极组件222的正极极耳电连接,第二盖板2122的负极电极端子用于与第二电极组件222的负极极耳电连接,但本申请实施例并不限于此。
由于两组电极端子分别设置在相对的两个盖板212上,降低干涉的风险,简化装配工艺。
在一些实施例中,如图3和图4所示,两个电极组件22电绝缘。即第一电极组件221与第二电极组件222之间电绝缘。这样,第一电极组件221和第二电极组件222无需传输彼此的电流,这样可以缩短第一电极组件221的导电路径和第二电极组件222的导电路径,减小内阻,减少产热,提高电池单体20的功率,改善电池单体20的充放电性能。
应理解,本申请实施例的电极组件22可以为卷绕式或者层叠式,或者也可以为其他类型的电极组件22;并且,同一电池单体20中包括多个电极组件22时,该多个电极组件22可以为相同或者不同类型的电极组件22。具体地,如图3和图4所示,本申请实施例中的两个电极组件22包括第一电极组件221和第二电极组件222,并且第一电极组件221的第一端面2211朝向第二电极组件222。下面以该第一电极组件221以及第一端面2211为例,说明本申请实施例的电池单体20包括的电极组件22的可能的类型。
在一些实施例中,该第一电极组件221可以为卷绕式。具体地,图5示出了本申请实施例的第一电极组件221的一种可能的截面示意图,该截面垂直于第一方向X。如图5所示,第一电极组件221包括第一极片221a和第二极片221c,第一极片221a与第二极片221c绕卷绕轴线卷绕设置。其中,该第一电极组件221的卷绕轴线平行于第一方向X,第一端面2211垂直于卷绕轴线,即该第一端面2211平行于图5所示的截面。
如图5所示,第一电极组件221还包括设置于第一极片221a与第二极片221b之间的隔离件221c。隔离件221c用于将第一极片221a与第二极片221b绝缘隔离。在一些实施例中,第一极片221a、第二极片221b和隔离件221c均为带状结构。第一极片221a、第二极片221b和隔离件221c层叠并沿卷绕轴线卷绕至少两圈,以形成第一电极组件221。隔离件221c可以为前述隔离膜,其材质可以为聚丙烯或聚乙烯等。
在一些实施例中,该第一电极组件221也可以为层叠式。具体地,图6示出了 本申请实施例的第一电极组件221的另一可能的截面示意图,该截面垂直于第一方向X。如图6所示,第一电极组件221包括多个第一极片221a和多个第二极片221b,多个第一极片221a和多个第二极片221b沿第二方向Y交替层叠设置。其中,可以设置第二方向Y垂直于第一方向X,第一端面2211垂直于第一方向X。
如图6所示,第一电极组件221还包括隔离件221c,隔离件221c用于将相邻的第一极片221a和第二极片221b绝缘隔离。
在一些实施例中,层叠式的第一电极组件221还可以通过其他方式堆叠。具体地,图7示出了本申请实施例的第一电极组件221的另一可能的截面示意图,该截面垂直于第一方向X。如图7所示,第一电极组件221包括第一极片221a和多个第二极片221b,第一极片221a包括多个层叠段221d和多个折弯段221e,折弯段221e用于连接相邻的两个层叠段221d,多个第二极片221b与多个层叠段221d沿第二方向Y交替层叠设置。其中,可以设置第二方向Y垂直于第一方向X,第一端面2211垂直于第一方向X;进一步地,该第一端面2211还可以设置为垂直于折弯段221e,即该第一端面2211垂直于每个折弯段221e的延伸方向,以避免将第一端面2211设置为包括多个折弯段221e的端面,进而避免电解液需要穿过该折弯段221e浸润第一电极组件221,以提高浸润效率。
如图7所示,第一电极组件221还包括隔离件221c,隔离件221c用于将相邻的第一极片221a和第二极片221b绝缘隔离。
应理解,上述第一极片和第二极片为极性相反的两个极片。例如,第一极片为正极极片,则第二极片为负极极片;若第一极片为负极极片,则第二极片为正极极片。图5至图7示出的是第一极片221a为负极极片、第二极片221b是正极极片的方案。
按照上述方式设置第一电极组件221的第一端面2211,极片的端部露出于第一端面2211当电解液接触第一端面2211时,电解液可以通过第一端面2211快速浸润第一电极组件221的各层极片,可以使得第一电极组件221的各层极片的浸润效果较为均匀,进而提高第一电极组件221的浸润效率。
上述第一电极组件221和第一端面2211的设置同样适用于第二电极组件222和第二端面2221的设置。第二电极组件222的第二端面2221朝向所述第一电极组件221。具体地,该第一电极组件221可以与第一电极组件222为同一类型或者不同类型的电极组件22。例如第一电极组件221和第二电极组件222可以均为卷绕式,或者为同一类型的层叠式,以便于加工。另外,按照上述方式设置相对的第一端面2211与第二端面2221,与其他设置方式相比,当电解液从该第一端面2211与第二端面2221之间流入时,电解液可以通过第一端面2211与第二端面2221分别快速浸润第一电极组件221和第二电极组件222的各层极片,还可以使得第一电极组件221和第二电极组件222的浸润效果较为均匀,进而提高第一电极组件221和第二电极组件222的浸润效率。
为了便于说明,本申请实施例的第一电极组件221的第一端面2211和第二电极组件222的第二端面2221以采用上述设置方式为例,以使得电解液流入该第一端面2211与第二端面2221之间时,浸润效果最佳。
在本申请实施例中,对应于第一端面2211和第二端面2221的设置方式,第一 电极组件221的两个极耳2212可以设置于与第一端面2211平行且相对设置的表面,第二电极组件222的两个极耳也设置于与第二端面2221平行且相对设置的表面,以便于加工。
在一些实施例中,第一方向X为电池单体20的长度方向。具体地,如图3和图4所示,以电池单体20为长方体为例,将两个电极组件22沿电池单体20的长度方向设置,可以增大电池单体20的长度方向的尺寸,这样,在将这样的多个电池单体20组装为电池10时,可以更加充分地利用电池10的内部空间,即能够提高电池10的空间利用率,进而提高电池10的能量密度。
另外,考虑到第一电极组件221与第二电极组件222的上述设置方式和形状,对应的,两个盖板212可以分别垂直于该第一方向X,即第一盖板2121和第二盖板2122为电池单体20的面积最小的壁。这样,每个电极组件22由于温度而易于发生膨胀的表面对应于电池单体20的面积最大的壁,即电极组件22的最易于受热发生膨胀的位置的膨胀方向,垂直于该电池单体20的面积最大的壁,有利于该电池单体20的散热,减小膨胀。
在本申请实施例中,第一壁213为壳体211的任意一个壁。如图3和图4所示,本申请实施例的两个盖板212上均设置有电极端子,并且对应于电绝缘的不同电极组件22,因此,如果将注液孔2131设置在其中任意一个盖板212上,例如,若将注液孔2131设置在第一盖板2121上,则可能会影响与第二盖板2122对应的第二电极组件222的浸润效果。因此,可以将注液孔2131设置在壳体211上,即设置有注液孔2131的第一壁213可以为壳体211的任意一个壁,以提高电池单体20内部各个电极组件22的浸润效果。
进一步的,该第一壁213不是壳体211的面积最大的壁。例如,第一壁213为壳体211的面积最小的壁。为提高电池单体20的散热效率,壳体211的面积最大的壁通常设置为对应于电极组件22的面积最大的表面。因此,通常不会将第一壁213设置为壳体211的面积最大的壁,一方面避免第一壁213上注液孔2131对散热的影响;另一方面,面积最大的壁的变形量通常较大,若注液孔2131设置在该面积最大的壁上,不利于用于密封注液孔2131的密封组件2132的密封效果,面积最大的壁的变形会导致密封组件2132的变形,进而导致密封失效,影响电池单体20的安全和性能。
应理解,本申请实施例的电池单体20还可以包括密封组件2132,该密封组件2132用于密封注液孔2131。该密封组件2131可以通过多种方式实现,并且,密封组件2132可以为不可拆卸结构或者可以拆卸结构,本申请实施例并不限于此。例如,该密封组件2132可以为密封钉。
在本申请实施例中,该第一壁213上还可以设置有其他部件,以便于集中加工,提高加工效率。例如,第一壁213设置有泄压机构2133,泄压机构2133用于在电池单体的内部的压力或者温度达到阈值时致动,以泄放电池单体的内部的压力。
应理解,该阈值可以根据设计需求不同而进行调整。该预定的阈值可取决于电池单体20中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构2133可以与第一壁213一体成型,例如,该泄压机构2133可以为第一壁213上的刻 痕;或者,该泄压机构2133也可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体20的内部压力或温度达到预定阈值时,泄压机构2133致动,从而形成可供内部压力或温度泄放的通道。
本申请中所提到的“致动”是指泄压机构2133产生动作,从而使得电池单体20的内部压力及温度得以被泄放。泄压机构2133产生的动作可以包括但不限于:泄压机构2133中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构2133在致动后,电池单体20内部的高温高压物质作为排放物会从泄压机构2133向外排出。以此方式能够在可控压力或温度的情况下使电池单体20发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体20的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体20上的泄压机构2133对电池10的安全性有着重要影响。例如,当电池单体20发生短路、过充等现象时,可能会导致电池单体20内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构2133致动可以将内部压力及温度向外释放,以防止电池单体20爆炸、起火。
为了保证电池单体20的安全性,泄压机构2133通常设置在第一壁213的中间位置,以便于及时有效的被破坏,进而泄放内部压力和温度。因此,为了避让该泄压机构2133,或者为了避让位于第一壁213上的其他部件,该注液孔2131在第一壁213上的设置位置就十分受限,可能无法位于最佳的注液位置。例如,如图3和图4所示的电极组件22,向第一电极组件221和第二电极组件222之间注液时,可以使得两个电极组件22的浸润效果较好,但是注液孔2131为了避让泄压机构2133,通常只能设置在偏离中间位置的边缘位置。因此,本申请实施例的电池单体20包括导流件23,可以解决该问题。本申请实施例的导流件23上具有积液槽231,该积液槽231的底壁2311设置有通孔232,可以通过合理设置积液槽231和通孔232的位置,以调整电池单体20的浸润效果。
例如,以图3和图4为例,电池单体20包括沿第一方向X排列的两个电极组件22,通孔232对应两个电极组件22之间的位置,以使积液槽231内的电解液通过通孔232流向两个电极组件22之间,第一方向X垂直于注液孔2131的轴向。具体地,根据上文描述,若电解液流向第一电极组件221和第二电极组件222之间,浸润效果较好,但注液孔2131可能无法满足这一位置要求。因此,通过设置该导流件23,电解液通过注液孔2131流入电池单体20的内部,由积液槽231收集该电解液,再通过通孔232再次调整电解液的流动方向,可以实现电解液的定向流动。例如,将通孔232设置在第一电极组件221和第二电极组件222之间的位置,即可使得电解液通过通孔232流至第一电极组件221和第二电极组件222之间,到达较好的浸润效果,并提高了浸润效率,也提高了电池单体20的加工效率和电化学性能。
在电池单体20内,导流件23具有绝缘的作用,保证电极组件22与外壳21之间碰撞之间的电绝缘。
在本申请实施例中,电池单体20还包括:绝缘件25,绝缘件25设置在电极组 件22的外表面,绝缘件25用于隔离电极组件22与外壳21,导流件23与绝缘件25固定。
具体地,如图3和图4所示,对于电池单体20内任意一个电极组件22,在该电极组件22的全部或者部分外表面可以设置有绝缘件25,该绝缘件25可以用于隔离电极组件22与外壳21。并且,多个电极组件22之间可以共用同一个绝缘件或者使用不同的绝缘件25,本申请实施例并不限于此。导流件23与绝缘件25之间可以通过粘结剂粘贴固定,以实现导流件23与电极组件22之间的相对固定,并使得通孔232对应于电极组件22的最佳注液位置,例如,通孔232对应于两个电极组件22之间,这样,再将固定的导流件23和电极组件22共同设置在外壳21内,可以避免安装到外壳21内的过程中,导流件23与电极组件22之间发生错位,也就避免了通孔232无法对应于电极组件22的最佳注液位置的情况。
在本申请实施例中,如图3和图4所示,注液孔2131的朝向导流件23的正投影位于积液槽231的底壁2311。在通过注液孔2131向电池单体20内部注入电解液时,电解液在重力作用下流向导流件23的积液槽231,为了使得积液槽231能够尽可能完全收集到注入的电解液,可以设置注液孔2131对应于积液槽231的底壁2311,以尽量避免电解液流向其他方向。
下面将结合附图,对本申请实施例的导流件23进行详细描述。图8示出了本申请实施例的导流件23的结构示意图;图9示出了本申请实施例的导流件23的俯视示意图;图10示出了本申请实施例的导流件23的截面示意图,其中,该截面可以为如图9所示的沿A-A’方向的截面图,即该截面垂直于第二方向Y,垂直于导流件23且平行于第一方向X。
应理解,本申请实施例的导流件23的积液槽231的面积以及形状可以根据实际应用进行设置。例如,如图8至图10所示,该积液槽231的形状可以设置为腰圆形,以便于加工。另外,本申请实施例的积液槽231的面积可以根据注液孔2131的位置、电极组件22的位置以及注液速度等进行设置。例如,该积液槽231应覆盖该注液孔2131所在对应位置,以保证收集经过注液孔2131注入的电解液;再例如,该积液槽231还应该覆盖电极组件22所需的最佳注液位置,以使得通孔232对应于该最佳位置;再例如,若注液速度较快,应将积液槽231面积设置较大,以避免电解液溢出该积液槽231,降低浸润效率。
在一些实施例中,如图8至图10所示,积液槽231的底壁2311相对于第一平面2312为倾斜的,以使积液槽231内的电解液朝向通孔232汇聚,第一平面2312垂直于注液孔2131的轴线。其中,该第一平面2312垂直于第三方向Z,且平行于第一方向X,该第三方向Z为该导流件23的厚度方向,并且,该第三方向Z垂直于第一方向X。将积液槽231的底壁2311设置为倾斜的,以使得积液槽231内的电解液朝向通孔232汇聚,一方面可以加快电解液流向电极组件22的速度,另一方面,还可以避免电解液在积液槽231内除通孔232外其他位置的堆积,避免电解液残留在积液槽231内造成浪费。
应理解,本申请实施例的积液槽231的底壁2311相对于第一平面2312倾斜的 角度θ可以根据实际应用进行设置。在一些实施例中,积液槽231的底壁2311相对于第一平面2312倾斜的角度θ大于0°,且小于1°。例如,该倾斜角度θ可以根据导流件23的厚度进行设置。若导流件23的厚度较大,则该倾斜角度θ可以设置较大,比如导流件23的厚度在1mm左右时,倾斜角度θ可以大于或者等于5°;相反的,若导流件23的厚度较小,则倾斜角度θ也较小,比如导流件23的厚度在0.5mm左右时,倾斜角度θ可以设置为0.25°左右。考虑到电池单体20内部空间有限,为了提高电池单体20的能量密度,导流件23的厚度通常较小,因此,倾斜角度θ通常设置为小于或者等于0.25°,以节约导流件23占用的空间。
在本申请实施例中,为了进一步提高通过通孔232注入至第一电极组件221和第二电极组件222之间的电解液的浸润效率,还可以在该第一电极组件221和第二电极组件222之间设置绝缘结构24。
图11示出了本申请实施例的电池单体20的另一可能的分解结构示意图,该图11所示的电池单体20可以图如图3所示的电池单体20的另一种可能的分解结构示意图。如图11所示,与图4所示的电池单体20的区别在于,图11所述的电池单体20还包括:绝缘结构24。图12示出了本申请实施例的绝缘结构24的结构示意图。如图11和图12所示,该绝缘结构24设置在该第一电极组件221和该第二电极组件222之间,该绝缘结构24包括第二壁241和第三壁241,该第二壁241与该第一电极组件221的第一端面2211相对,该第三壁242与该第二电极组件222的第二端面2221相对,该第二壁241设置有第一通孔2411,该第三壁242设置有第二通孔2421,该绝缘结构24的朝向该第一壁213的第一表面243具有第三通孔2431,该第三通孔2431用于将通过该注液孔2131注入的电解液导入该绝缘结构24的内部,以使该绝缘结构24的内部的该电解液通过该第一通孔2411流向该第一电极组件221,且通过该第二通孔2421流向该第二电极组件222。
因此,本申请实施例的电池单体20在注液时,电解液经过注液孔2131流入电池单体20内部,首先由积液槽231收集该电解液,并通过通孔232流向第一电极组件221和第二电极组件222之间。由于第一电极组件221和第二电极组件222之间设置有中空的绝缘结构24,该绝缘结构24朝向第一壁213的第一表面243设置有第三通孔2431,因此,通孔232流出的电解液可以通过该第三通孔2431流入中空的绝缘结构24内部。这样,在绝缘结构24内部的电解液可以进一步通过与第一端面2211对应的第二壁241上的第一通孔2411流向第一电极组件221,该部分电解液经过第一端面2211浸润第一电极组件221;另外,在绝缘结构24内部的电解液还可以进一步通过与第二端面2221对应的第三壁242上的第二通孔2421流向第二电极组件222,该部分电解液经过第二端面2221浸润第二电极组件222,进而达到均匀快速浸润两个电极组件22的效果,提高了电池单体20的浸润效率。
与之不同,若该第一电极组件221和第二电极组件222之间未设置有绝缘结构24和其他绝缘结构,那么第一电极组件221和第二电极组件222之间空隙较小,电解液通过通孔232流出后,需要经过第一电极组件221和第二电极组件222之间空隙慢慢渗入,再经过第一电极组件221的第一端面2211渗入第一电极组件221内,以及通过 第二电极组件222第二端面2221渗入第二电极组件22,整个过程速度较慢,如果注液孔2131注入的电解液速度太快,还会导致大部分电解液会流向其他方向,不利于两个电极组件22的浸润效果。
或者,若该第一电极组件221和第二电极组件222之间设置的为实心的绝缘结构,那么电解液通过通孔232流出后,会流至该实心绝缘结构处,其中,一部分电解液通过实心绝缘结构与第一电极组件221之间的空隙慢慢渗入第一电极组件221,一部分电解液通过实心绝缘结构与第二电极组件222之间的空隙慢慢渗入第二电极组件222,还存在一部分电解液在该实心绝缘结构的朝向第一壁213的表面上发生喷溅,既影响电解液流向第一电极组件221和第二电极组件222的速度,还会影响第一电极组件221和第二电极组件222的浸润效果。
因此,本申请实施例的空心绝缘结构24可以很好的解决上述问题,合理引导电解液的流向,使得电解液快速浸润第一电极组件221和第二电极组件222,提高了浸润效率,也可以提高两个电极组件22的浸润效果,也就提高了电池单体20的浸润效率和电化学性能。除此之外,该绝缘结构24还可以用于实现第一电极组件221与第二电极组件222之间的电绝缘,而无需再设置额外的绝缘部件,节省了电池单体20的内部空间。
本申请实施例中,积液槽231的底壁2311上设置的通孔232的朝向第一表面243的正投影位于第三通孔2431所在区域内,这样,在通过注液孔2131注入电解液时,积液槽231收集的电解液可以通过通孔232流出,并且在电解液的重力的作用下,能够全部流向第三通孔2431,再通过第三通孔2431进入绝缘结构24的内部,避免在积液槽231的通孔232偏离第三通孔2431时,该通孔232流出的电解液喷溅至电池单体20内其他位置而影响电解液的浸润效率。
下面将结合附图,对本申请实施例的绝缘结构24进行详细介绍。
图13示出了本申请实施例的绝缘结构24的俯视示意图,即该图13示出了绝缘结构24的第一表面243的示意图;图14示出了本申请实施例的绝缘结构24的截面示意图,该图14可以为图13所示的B-B’方向的截面图,即图14示出的截面为垂直于第二方向Y的平面;图15示出了本申请实施例的绝缘结构24的另一截面示意图,该图15可以为图13所示的C-C’方向的截面图,即图15示出的截面为垂直于第一方向X的平面。
在本申请实施例中,该绝缘结构24可以为任意规则或者不规则的形状。为了便于说明,本申请主要以长方体的绝缘结构24为例,一方面长方体的绝缘结构24便于加工,另一方面,在长方体外壳21内部,以及近似于长方体的两个电极组件22之间,长方体的绝缘结构24更加节省空间,能够提高电池单体20内部的空间利用率。
如图11至图15所示,与第一表面243相对应,绝缘结构24还包括第二表面244,第二表面244远离第一壁213且与第一表面243相对设置。进一步地,该第二表面244设置有第四通孔,第四通孔用于绝缘结构24的内部的电解液通过第四通孔流向第一电极组件221和第二电极组件222,以进一步加快绝缘结构24内的电解液的流出速度,即加快电解液浸润第一电极组件221和第二电极组件222的浸润速度。或者,与 之不同的,该第二表面244也可以为该绝缘结构24的一个壁,即该第二表面244上可以不设置该第四通孔,则绝缘结构24内的电解液仅通过第二壁241上的第一通孔2411和第三壁242上的第二通孔2421流出。
应理解,本申请实施例的绝缘结构24为中空结构,该绝缘结构24可以通过多种方式实现。例如,该绝缘结构24可以通过在实心的绝缘材料上贯穿通孔形成。具体地,如图11至图15所示,本申请实施例的绝缘结构24可以采用实心的板状绝缘材料进行加工处理。
例如,如图11至图15所示,可以在该实心绝缘材料上设置通孔,该通孔自第一表面243向第二表面244贯穿整个绝缘材料,则可以使该实心绝缘材料变为中空结构,并形成相对设置的第二壁241和第三壁242,进而可以在该第二壁241上设置第一通孔2411,以及在第三壁242上设置第二通孔2421;同时,该贯穿的通孔在第一表面243上形成第三通孔2431,在第二表面244上形成第四通孔2441。
再例如,还可以在该实心绝缘材料上设置深度较大的凹槽,该凹槽自第一表面243向第二表面244延伸,但未贯穿第二表面244,同样可以使得该实心绝缘材料变为中空结构,并且凹槽的侧壁包括相对设置的第二壁241和第三壁242,进而可以在该第二壁241上设置第一通孔2411,以及在第三壁242上设置第二通孔2421。另外,该凹槽的开口在第一表面243上形成第三通孔2431,而该凹槽的底壁可以用于形成该绝缘结构24的一个壁,此时,该绝缘结构24的第二表面244上未设置第四通孔2441。
应理解,在上述两个实施例中,第一表面243的第三通孔2431的大小与该绝缘结构24的中空部分的大小相关。例如,若自第一表面243向第二表面244延伸的凹槽或者通孔的直径是固定值,则该第三通孔2431的大小等于该凹槽或者通孔的直径;再例如,若自第一表面243向第二表面244延伸的凹槽或者通孔的直径不是固定值,例如,该凹槽或者通孔的直径自第一表面243向第二表面244逐渐增加,则该第三通孔2431的大小等于该凹槽或者通孔的直径的最小值,但本申请实施例并不限于此。
在一些实施例中,不同于上述两个实施例,本申请实施例的绝缘结构24还可以包括与第一壁213相对的第四壁,该第四壁的外表面为第一表面2431,则可以通过在该第四壁上设置贯穿第四壁的通孔作为第三通孔2431;与之类似的,该绝缘结构24还可以包括与第四壁相对设置的第五壁,该第五壁远离第一壁213,该第五壁的外表面为第二表面244,则可以通过在该第五壁上设置贯穿第五壁的通孔作为第四通孔,但本申请实施例并不限于此。
应理解,本申请实施例的第二壁241上设置的第一通孔2411的数量、位置、形状以及大小均可以根据实际应用灵活设置;第三壁242上设置的第二通孔2421的数量、位置、形状以及大小也可以根据实际应用灵活设置。并且,对于第二壁241上设置的第一通孔2411和第三壁242上设置的第二通孔2421,其数量可以相同或者不同,其位置可以相同或者不同,其形状可以相同或者不同,以及其大小可以相同或者不同,本申请实施例并不限于此。
在一些实施例中,如图11至图15所示,第二壁241设置有多个第一通孔2411,和/或,第三壁242设置有多个第二通孔2421。在第二壁241上的不同位置设置多个第 一通孔2411,有利于绝缘结构24的内部的电解液通过不同位置处的不同第一通孔2411分别流向第一电极组件221,进而从多个位置浸润该第一电极组件221,既可以加快浸润速度,还可以提高浸润的效果,尽量均匀浸润第一电极组件221;类似的,在第三壁242上的不同位置设置多个第二通孔2421,有利于绝缘结构24的内部的电解液通过不同位置处的不同第二通孔2421分别流向第二电极组件222,进而从多个位置浸润该第二电极组件222,既可以加快浸润速度,还可以提高浸润的效果,尽量均匀浸润第二电极组件222。
在一些实施例中,如图11至图15所示,第二壁241设置的第一通孔2411的数量与第三壁242设置的第二通孔2421的数量相等,第二壁241设置的第一通孔2411的位置与第三壁242设置的第二通孔2421的位置相对应。在第二壁241和第三壁242上分别设置数量相等,且位置对应的第一通孔2411和第二通孔2421,既便于加工,又可以提高浸润效率。具体地,在加工时,可以通过设置同时贯穿第二壁241和第三壁242的通孔,获得第二壁241上的第一通孔2411和第三壁242上的第二通孔2421,以提高加工效率。在浸润的过程中,由于第一通孔2411和第二通孔2421的数量相等,且位置对应,那么绝缘结构24的内部的电解液流向第一电极组件221和第二电极组件222的位置是完全对应的,进而使得第一电极组件221和第二电极组件222的浸润效果基本一致,进而可以提高了浸润效率。
在一些实施例中,如图11至图15所示,第一通孔2411可以在第二壁241上按照一定规则分布,类似的,第二通孔2421也可以在第三壁242上按照一定规则分布,既可以提高加工效率,又可以提高浸润的均匀性。
例如,如图11至图15所示,第二壁241设置有沿第二方向Y排列的多列第一通孔2411,多列第一通孔2411中每列第一通孔2411包括沿第三方向Z排列的多个第一通孔2411,第一方向X、第二方向Y和第三方向Z两两垂直。即该第一通孔2411可以在第二壁241上按照矩阵的方式分布。进一步地,多列第一通孔2411之间的间距可以设置为相等,同一列的多个第一通孔2411之间的间距也可以设置为相等,以使得多个第一通孔2411在第二壁241上的第二方向Y上呈均匀分布,在第三方向Z上也呈均匀分布,尽可能保证第一电极组件221的第一端面2211的不同区域均有电解液进入,提高该第一电极组件221的浸润的均匀性。
与第二壁241类似,该第二通孔2421也可以在第三壁242上按照矩阵的方式分布。如图11至图15所示,第三壁242设置有沿第二方向Y排列的多列第二通孔2421,多列第二通孔2421中每列第二通孔2421包括沿第三方向Z排列的多个第二通孔2421,第一方向X、第二方向Y和第三方向Z两两垂直。进一步地,多列第二通孔2421之间的间距可以设置为相等,同一列的多个第二通孔2421之间的间距也可以设置为相等,以使得多个第二通孔2421在第三壁242上的第二方向Y上呈均匀分布,在第三方向Z上也呈均匀分布,尽可能保证第二电极组件222的第二端面2221的不同区域均有电解液进入,提高该第二电极组件222的浸润的均匀性。
因此,本申请实施例的电池单体20在注液时,电解液经过注液孔2131流入电池单体20内部,首先由积液槽231收集该电解液,并通过通孔232流向第一电极组件 221和第二电极组件222之间。由于第一电极组件221和第二电极组件222之间设置有中空的绝缘结构24,该绝缘结构24朝向第一壁213的第一表面243设置有第三通孔2431,因此,通孔232流出的电解液可以通过该第三通孔2431流入中空的绝缘结构24内部。这样,在绝缘结构24内部的电解液可以进一步通过第一通孔2411流向第一电极组件221,该部分电解液经过第一电极组件221的第一端面2211浸润第一电极组件221;另外,在绝缘结构24内部的电解液还可以进一步通过第二通孔2421流向第二电极组件222,该部分电解液经过第二电极组件222的第二端面2221浸润第二电极组件222,进而达到均匀快速浸润两个电极组件22的效果,提高了电池单体20的浸润效率。
上文描述了本申请实施例的电池单体、电池和用电设备,下面将描述本申请实施例的制备电池单体的方法和设备,其中未详细描述的部分可参见前述各实施例。
图16示出了本申请一个实施例的电池单体20的制造方法300的示意性流程图。如图16所示,该方法300可以包括:S310,提供外壳21,该外壳21具有容纳腔,该外壳21具有第一壁213,该第一壁213设置有注液孔2131;S320,提供电极组件22;S330,提供导流件23,该导流件23设置有积液槽231;S340,将该电极组件22、该导流件23容纳于该容纳腔中,使该导流件23设置在该第一壁213与该电极组件22之间,该积液槽231的开口朝向该第一壁213,该积液槽231的底壁2311设置有通孔232,该积液槽231用于收集通过该注液孔2131注入的电解液,且该积液槽231内的该电解液通过该通孔232流向该电极组件22。
图17示出了本申请一个实施例的电池单体20的制造设备400的示意性框图。如图17所示,该设备400可以包括:提供模块410。具体地,该提供模块410用于:提供外壳21,该外壳21具有容纳腔,该外壳21具有第一壁213,该第一壁213设置有注液孔2131;提供电极组件22;提供导流件23,该导流件23设置有积液槽231;将该电极组件22、该导流件23容纳于该容纳腔中,使该导流件23设置在该第一壁213与该电极组件22之间,该积液槽231的开口朝向该第一壁213,该积液槽231的底壁2311设置有通孔232,该积液槽231用于收集通过该注液孔2131注入的电解液,且该积液槽231内的该电解液通过该通孔232流向该电极组件22。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池单体,包括:
    外壳(21),具有容纳腔,所述外壳(21)具有第一壁(213),所述第一壁(213)设置有注液孔(2131);
    电极组件(22),容纳于所述容纳腔中;
    导流件(23),设置在所述第一壁(213)与所述电极组件(22)之间,所述导流件(23)设置有积液槽(231),所述积液槽(231)的开口朝向所述第一壁(213),所述积液槽(231)的底壁(2311)设置有通孔(232),所述积液槽(231)用于收集通过所述注液孔(2131)注入的电解液,且所述积液槽(231)内的所述电解液通过所述通孔(232)流向所述电极组件(22)。
  2. 根据权利要求1所述的电池单体,其中,所述注液孔(2131)的朝向所述导流件(23)的正投影位于所述积液槽(231)的底壁(2311)。
  3. 根据权利要求2所述的电池单体,其中,所述积液槽(231)的底壁(2311)相对于第一平面(2312)为倾斜的,以使所述积液槽(231)内的所述电解液朝向所述通孔(232)汇聚,所述第一平面(2312)垂直于所述注液孔(2131)的轴线。
  4. 根据权利要求3所述的电池单体,其中,所述积液槽(231)的底壁(2311)相对于所述第一平面(2312)倾斜的角度大于0°,且小于1°。
  5. 根据权利要求1至4中任一项所述的电池单体,其中,所述电池单体包括沿第一方向排列的两个电极组件(22),所述通孔(232)对应所述两个电极组件(22)之间的位置,以使所述积液槽(231)内的所述电解液通过所述通孔(232)流向所述两个电极组件(22)之间,所述第一方向垂直于所述注液孔(2131)的轴向。
  6. 根据权利要求5所述的电池单体,其中,所述两个电极组件(22)包括第一电极组件(221)和第二电极组件(222),所述第一电极组件(221)的第一端面(2211)朝向所述第二电极组件(222);
    所述第一电极组件(221)包括第一极片和第二极片,所述第一极片与所述第二极片绕卷绕轴线卷绕设置,所述卷绕轴线平行于所述第一方向,所述第一端面(2211)垂直于所述卷绕轴线,或者,
    所述第一电极组件(221)包括多个第一极片和多个第二极片,所述多个第一极片和所述多个第二极片沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面(2211)垂直于所述第一方向,或者,
    所述第一电极组件(221)包括第一极片和多个第二极片,所述第一极片包括多个层叠段和多个折弯段,所述折弯段用于连接相邻的两个所述层叠段,所述多个第二极片与多个所述层叠段沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面(2211)垂直于所述第一方向。
  7. 根据权利要求5或6所述的电池单体,其中,所述电池单体为长方体,所述第一方向为所述电池单体的长度方向。
  8. 根据权利要求5至7中任一项所述的电池单体,其中,所述两个电极组件(22)电绝缘。
  9. 根据权利要求5至8中任一项所述的电池单体,其中,所述两个电极组件(22)中同一个电极组件(22)的极耳设置在同一端面,所述两个电极组件(22)的极耳朝向相反方向,且均朝向所述电池单体的外部。
  10. 根据权利要求1至9中任一项所述的电池单体,其中,所述电池单体还包括:
    绝缘件(25),所述绝缘件(25)设置在所述电极组件(22)的外表面,所述绝缘件(25)用于隔离所述电极组件(22)与所述外壳(21),所述导流件(23)与所述绝缘件(25)固定。
  11. 根据权利要求1至10中任一项所述的电池单体,其中,所述外壳(21)包括:
    壳体(211),所述壳体(211)为两端开口的中空结构,所述两端为所述壳体(211)的相对设置的两端,所述第一壁(213)为所述壳体(211)的任意一个壁;
    两个盖板(212),所述两个盖板(212)分别用于盖合所述壳体(211)的两端开口。
  12. 根据权利要求11所述的电池单体,其中,所述第一壁(213)为所述壳体(211)的面积最小的壁。
  13. 根据权利要求1至12中任一项所述的电池单体,其中,所述第一壁(213)设置有泄压机构(2133),所述泄压机构(2133)用于在所述电池单体的内部的压力或者温度达到阈值时致动,以泄放所述电池单体的内部的压力。
  14. 一种电池,包括:
    多个如权利要求1至13中任一项所述电池单体。
  15. 一种用电设备,包括:
    多个根据权利要求1至13中任一项所述的电池单体,所述电池单体用于为所述用电设备提供电能。
  16. 一种电池单体的制造方法,包括:
    提供外壳(21),所述外壳(21)具有容纳腔,所述外壳(21)具有第一壁(213),所述第一壁(213)设置有注液孔(2131);
    提供电极组件(22);
    提供导流件(23),所述导流件(23)设置有积液槽(231);
    将所述电极组件(22)、所述导流件(23)容纳于所述容纳腔中,使所述导流件(23)设置在所述第一壁(213)与所述电极组件(22)之间,所述积液槽(231)的开口朝向所述第一壁(213),所述积液槽(231)的底壁(2311)设置有通孔(232),所述积液槽(231)用于收集通过所述注液孔(2131)注入的电解液,且所述积液槽(231)内的所述电解液通过所述通孔(232)流向所述电极组件(22)。
  17. 一种电池单体的制造设备,包括:提供模块(410),用于:
    提供外壳(21),所述外壳(21)具有容纳腔,所述外壳(21)具有第一壁(213),所述第一壁(213)设置有注液孔(2131);
    提供电极组件(22);
    提供导流件(23),所述导流件(23)设置有积液槽(231);
    将所述电极组件(22)、所述导流件(23)容纳于所述容纳腔中,使所述导流件(23)设置在所述第一壁(213)与所述电极组件(22)之间,所述积液槽(231)的开口朝向所述第一壁(213),所述积液槽(231)的底壁(2311)设置有通孔(232),所述积液槽(231)用于收集通过所述注液孔(2131)注入的电解液,且所述积液槽(231)内的所述电解液通过所述通孔(232)流向所述电极组件(22)。
PCT/CN2022/081842 2022-03-18 2022-03-18 电池单体、电池、用电设备、电池单体的制造方法和设备 WO2023173443A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081842 WO2023173443A1 (zh) 2022-03-18 2022-03-18 电池单体、电池、用电设备、电池单体的制造方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081842 WO2023173443A1 (zh) 2022-03-18 2022-03-18 电池单体、电池、用电设备、电池单体的制造方法和设备

Publications (1)

Publication Number Publication Date
WO2023173443A1 true WO2023173443A1 (zh) 2023-09-21

Family

ID=88021987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081842 WO2023173443A1 (zh) 2022-03-18 2022-03-18 电池单体、电池、用电设备、电池单体的制造方法和设备

Country Status (1)

Country Link
WO (1) WO2023173443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117344A (zh) * 2023-10-25 2023-11-24 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037598A (zh) * 2009-03-31 2011-04-27 三菱重工业株式会社 二次电池以及电池系统
CN108023056A (zh) * 2016-11-03 2018-05-11 罗伯特·博世有限公司 电池单池
CN210576090U (zh) * 2019-09-09 2020-05-19 成都市银隆新能源产业技术研究有限公司 一种电池外壳及电池
CN213366753U (zh) * 2020-08-24 2021-06-04 上海卡耐新能源有限公司 电池卷芯及软包电池
CN213989014U (zh) * 2020-12-31 2021-08-17 蜂巢能源科技有限公司 一种盖板塑胶件及电池盖板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037598A (zh) * 2009-03-31 2011-04-27 三菱重工业株式会社 二次电池以及电池系统
CN108023056A (zh) * 2016-11-03 2018-05-11 罗伯特·博世有限公司 电池单池
CN210576090U (zh) * 2019-09-09 2020-05-19 成都市银隆新能源产业技术研究有限公司 一种电池外壳及电池
CN213366753U (zh) * 2020-08-24 2021-06-04 上海卡耐新能源有限公司 电池卷芯及软包电池
CN213989014U (zh) * 2020-12-31 2021-08-17 蜂巢能源科技有限公司 一种盖板塑胶件及电池盖板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117344A (zh) * 2023-10-25 2023-11-24 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Similar Documents

Publication Publication Date Title
WO2022088824A1 (zh) 电极组件、电池单体、电池以及用电装置
US11909066B1 (en) Battery end cover assembly, energy storage apparatus and electric device
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
CN216872160U (zh) 电池单体、电池以及用电装置
WO2023173443A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法和设备
US20230402708A1 (en) Battery cell, battery, electric apparatus, and manufacturing method and device of battery cell
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
WO2023221649A1 (zh) 电池和用电设备
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2023179236A1 (zh) 电池的箱体、电池及用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023134479A1 (zh) 电池和用电设备
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2023173444A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法和设备
WO2023060517A1 (zh) 一种极片、电极组件、电池单体、电池以及用电设备
KR20230126176A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20230126174A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2024000366A1 (zh) 电池单体、电池和用电装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
CN220400841U (zh) 电池连接巴片、电池和用电装置
WO2023193256A1 (zh) 连接构件、电池单体、电池和用电设备
WO2024040879A1 (zh) 电池单体、电池及用电设备
EP4106087B1 (en) Battery cell, battery and power-consuming device
WO2024000367A1 (zh) 电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931474

Country of ref document: EP

Kind code of ref document: A1