WO2023171761A1 - ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子 - Google Patents

ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2023171761A1
WO2023171761A1 PCT/JP2023/009107 JP2023009107W WO2023171761A1 WO 2023171761 A1 WO2023171761 A1 WO 2023171761A1 JP 2023009107 W JP2023009107 W JP 2023009107W WO 2023171761 A1 WO2023171761 A1 WO 2023171761A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dicarbazolyl
organic
mmol
structural formula
Prior art date
Application number
PCT/JP2023/009107
Other languages
English (en)
French (fr)
Inventor
中村正治
松田博
ラモン フランシスコ ベルナルディノ アベナ
奥本健二
ウンチョル ソン
松浦良介
Original Assignee
国立大学法人京都大学
株式会社Tsk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 株式会社Tsk filed Critical 国立大学法人京都大学
Priority to KR1020247002001A priority Critical patent/KR20240023619A/ko
Priority to JP2023562803A priority patent/JP7445249B2/ja
Publication of WO2023171761A1 publication Critical patent/WO2023171761A1/ja
Priority to JP2024019891A priority patent/JP2024059700A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to dicarbazolyl compounds and organic electroluminescent devices.
  • an electron transport layer, a light emitting layer, and a hole transport layer are sandwiched between an anode and a cathode. It is desirable that the organic EL element configured in this manner has a long life. From this point of view, an organic substance suitable as a material for an electron transport layer, a light emitting layer, or a hole transport layer is required.
  • JP 2021-172592A proposes a compound containing a nitrogen-containing heterocycle. In JP-A-2021-172592, the compound is used as a material for an electron transport layer, a light emitting layer, or a hole transport layer.
  • the present invention aims to solve the above-mentioned problems.
  • the dicarbazolyl compound has as a basic skeleton a dicarbazolyl group in which two carbazolyl groups are bonded, or a substituted dicarbazolyl group in which one or more substituents are bonded to the dicarbazolyl group.
  • the functional group has at least one of an aryl group, a substituted nitrogen-containing aromatic heterocyclic group, or an unsubstituted nitrogen-containing aromatic heterocyclic group,
  • INT an aryl group
  • FG a dicarbazolyl compound represented by the following structural formula
  • R2 to R5 in the above structural formula represent a substituent bonded to any position of the benzene ring constituting the carbazolyl group.
  • R2 to R5 may be hydrogen.
  • m is 0 or 1.
  • hydrogen in each compound may be replaced with deuterium.
  • “Hydrogen” in this specification includes “deuterium.”
  • the deuteration rate may be high.
  • the deuteration rate may be about 80%.
  • an organic electroluminescent device that includes a layer containing the dicarbazolyl compound described above.
  • the energy of the first excited triplet state (T1) is high.
  • the highest occupied level (HOMO) and lowest unoccupied level (LUMO) of the above-mentioned compound are within appropriate ranges when used as a charge transport material, especially when a blue light emitting material is included in the light emitting layer.
  • the charge easily moves within the molecule, so that it is difficult for the charge to become delocalized. Therefore, the molecular structure is stabilized. Furthermore, since intramolecular rotation is suppressed based on the molecular structure, thermal stability is good.
  • an organic electroluminescent element including a layer containing the above compound has a longer lifespan.
  • FIG. 1 is a schematic side view of an organic EL element.
  • FIG. 2 is a chart showing various physical properties of dicarbazolyl compounds.
  • FIG. 3 is a chart showing various physical properties of dicarbazolyl compounds different from that shown in FIG. 2.
  • FIG. 4 is a chart showing various characteristics of an organic EL element having a light emitting layer containing an organic substance.
  • FIG. 5 is a chart showing various characteristics of an organic EL element having a layer containing an organic substance.
  • FIG. 1 is a schematic side view of an organic electroluminescence (EL) element 10.
  • the organic EL element 10 includes a glass substrate 12, an anode 14, a hole transport layer 16, a light emitting layer 18, an electron transport layer 20, and a cathode 22.
  • EL organic electroluminescence
  • At least one of the hole transport layer 16, the light emitting layer 18, or the electron transport layer 20 contains a dicarbazolyl compound.
  • the dicarbazolyl compound refers to a compound containing as a basic skeleton a dicarbazolyl group to which two carbazolyl groups are bonded.
  • a dicarbazolyl compound refers to a compound containing as a basic skeleton a substituted dicarbazolyl group in which one or more substituents are bonded to the dicarbazolyl group.
  • a functional group is bonded to the N atom in the basic skeleton.
  • the functional group is, for example, directly bonded to the N atom in the basic skeleton.
  • a substituent may be present between the basic skeleton and the functional group.
  • the functional group is indirectly bonded to the N atom in the basic skeleton via the mediating group. Therefore, when the mediating group is represented by INT and the functional group is represented by FG, the structural formula of the dicarbazolyl compound according to this embodiment is represented as follows.
  • R2 to R5 in the above structural formula represent hydrogen or a substituent bonded to any position of the benzene ring constituting the carbazolyl group.
  • m is 0 or 1. When m is 0, it means that the functional group is directly bonded to the N atom in the basic skeleton. When m is 1, it means that the functional group is indirectly bonded to the N atom in the basic skeleton via a mediating group.
  • the mediating group is, for example, a phenyl group or a triazine group.
  • the mediating group is a phenyl group
  • a typical example of the structural formula of the dicarbazolyl compound is shown below.
  • the functional group is at least one of an aryl group, a substituted nitrogen-containing aromatic heterocyclic group, or an unsubstituted nitrogen-containing aromatic heterocyclic group.
  • the functional group is an aryl group
  • the functional group (aryl group) has, for example, a structure (group) shown in the following structural formula.
  • R6 and R7 in the above structural formula represent a substituted or unsubstituted aromatic hydrocarbon group.
  • R6 and R7 may be substituted or unsubstituted nitrogen-containing aromatic heterocyclic groups.
  • Representative examples of the nitrogen-containing aromatic heterocyclic group include a nitrogen-containing 5-membered ring group, a nitrogen-containing 6-membered ring group, a nitrogen-containing aromatic condensed two-ring group, and a nitrogen-containing aromatic condensed three-ring group.
  • Specific examples of the nitrogen-containing 5-membered cyclic group include a pyrrolyl group
  • specific examples of the nitrogen-containing 6-membered cyclic group include a pyridinyl group or a pyrimidyl group.
  • nitrogen-containing aromatic condensed two rings include an indolyl group and a quinolyl group
  • specific examples of the nitrogen-containing aromatic condensed three rings include a carbazolyl group and a phenanthrolyl group.
  • the nitrogen-containing aromatic heterocyclic group is not particularly limited to the above-mentioned substituents.
  • the functional group has a structure (group) shown in the structural formula below.
  • R8 in the above structural formula represents a substituted or unsubstituted aromatic hydrocarbon group.
  • R8 may be a substituted or unsubstituted nitrogen-containing aromatic heterocyclic group.
  • the functional group has a structure (group) shown in the structural formula below.
  • R11 and R12 in the above structural formula are, for example, hydrogen.
  • R11 and R12 may be substituted or unsubstituted aromatic hydrocarbon groups.
  • the functional group is a substituted nitrogen-containing aromatic heterocyclic group or an unsubstituted nitrogen-containing aromatic heterocyclic group
  • the functional group (substituted nitrogen-containing aromatic heterocyclic group or unsubstituted nitrogen-containing aromatic heterocyclic group) is, for example, , has a structure (group) shown in the following structural formula.
  • R9 and R10 in the above structural formula are, for example, hydrogen.
  • R9 and R10 may be substituted or unsubstituted aromatic hydrocarbon groups.
  • R2 to R5 may be hydrogen. Specific examples of the functional groups in this case will be shown below.
  • two or more functional groups may be bonded to the phenyl group.
  • Me represents a methyl group.
  • the dicarbazolyl compound may have a dicarbazolyl group or a substituted dicarbazolyl group as a functional group.
  • the dicarbazolyl compound has a dicarbazolyl group or a substituted dicarbazolyl group in its basic skeleton, and at the same time, it has a dicarbazolyl group or a substituted dicarbazolyl group in its functional group.
  • the basic skeleton and the functional group are bonded to each other using a phenyl group as a mediating group. Furthermore, it is preferable that a carbazolyl group or a substituted carbazolyl group is bonded to the phenyl group as a second functional group.
  • the structural formula of this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolyl groups and one carbazolyl group are bonded to a benzene ring. That is, in this compound, hydrogen contained in the dicarbazolyl group and the carbazolyl group is not substituted with a substituent.
  • the basic skeleton and the functional group are in a positional relationship at the ortho position (o-position) in the phenyl group.
  • the structural formula of this compound is illustrated below. Note that, similarly to the above, hydrogen contained in the basic skeleton and the functional group (both are dicarbazolyl groups) is not substituted with a functional group. Further, the basic skeleton and the functional group are in a positional relationship such that they are at the o-position in the phenyl group.
  • a dicarbazolyl group having a phenyl group may be bonded to the phenyl group that is the mediating group.
  • the dicarbazolyl compound is a compound in which two dicarbazolylbenzenes are bonded to each other.
  • one dicarbazolylbenzene is a compound in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a benzene ring. Therefore, the dicarbazolyl compound in this case has a functional group containing a phenyl group bonded to dicarbazolylbenzene.
  • a functional group containing a phenyl group refers to a functional group in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a phenyl group.
  • the dicarbazolyl group or substituted dicarbazolyl group in dicarbazolylbenzene and the functional group containing a phenyl group are preferably o-positioned in the phenyl group constituting the dicarbazolylbenzene.
  • this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolylbenzenes are bonded to each other. That is, in this compound, hydrogen contained in the dicarbazolyl group is not substituted with a functional group. Furthermore, the dicarbazolyl group that is the basic skeleton and the functional group containing the phenyl group are in a positional relationship such that they are at the o-position in the phenyl group that is the mediating group (the phenyl group that constitutes dicarbazolylbenzene).
  • R2 to R5 may be monovalent aromatic hydrocarbon groups.
  • the functional group is a monovalent substituted aromatic hydrocarbon group or a monovalent unsubstituted aromatic hydrocarbon group.
  • the functional group may be a monovalent substituted aromatic heterocyclic group or a monovalent unsubstituted aromatic heterocyclic group.
  • the organic EL element 10 having the layer is different from the organic EL element according to the prior art. It is recognized that the lifespan is longer than that of
  • T1 the energy of the first excited triplet state
  • HOMO highest occupied level
  • LUMO lowest unoccupied level
  • hydrogen in the organic compound described above may be replaced with deuterium.
  • the deuteration rate may be high, for example, about 80%.
  • dicarbazolyl compounds can have various structures by bonding substituted aromatic hydrocarbon groups or substituted aromatic heterocyclic groups.
  • Example 1 For 5 ml of mesitylene, 2 mmol of dicarbazole, 2 mmol of 9-(3-bromophenyl)-9H-carbazole, 0.04 mmol of Pd(OAc) 2 and 0.16 mmol of t- Bu 3 P and 3 mmol of NaO(t-Bu) were added to prepare a mixed solution. The mixture was stirred for 4 hours while being maintained at 150° C. under an argon atmosphere. The mixture was quenched by adding 3 milliliters of 1 mol/liter HCl, and the organic matter was extracted from the mixture using EtOAc. After washing the organic matter with saturated brine, the organic matter was dried with MgSO 4 . The solvent was removed under reduced pressure to obtain the crude product.
  • the crude product was passed through Florisil using ethyl acetate as a developing solvent, and then the solvent was removed under reduced pressure and recrystallized using 2-propanol to obtain a whitish-brown organic substance.
  • the yield was 1.13 g, and the yield was 98%.
  • DCZ-1 the organic substance that is the product
  • Example 2 For 2.7 ml of mesitylene, 0.33 g of dicarbazole, 0.49 g of Ar-Br (aryl bromide), 4.5 mg of Pd(OAc) 2 and 16.2 mg of t-Bu 3 P and 0.144 g of NaO(t-Bu) were added to prepare a mixed solution. The mixture was maintained at 150°C and stirred under an argon atmosphere. The aryl bromide used was 9,9'-(5-bromo-1,3-phenylene)bis(9H-carbazole), and its structural formula is as follows.
  • the mixture was quenched by adding 1.5 milliliters of 1 mol/liter HCl, and the organic matter was extracted from the mixture using EtOAc. After washing the organic matter with saturated brine, the organic matter was dried with MgSO 4 . The solvent was removed under reduced pressure to obtain the crude product. Next, the crude product was purified by silica gel column using ethyl acetate as a developing solvent. The obtained purified product was reprecipitated with ethanol to obtain a white solid organic substance. The yield was 0.66 g, and the yield was 89%. After washing the organic matter with pure water and saturated brine, the organic matter was dried with MgSO 4 .
  • DCZ-2 this organic substance will be referred to as DCZ-2.
  • Example 3 A white color was prepared in the same manner as in Example 2 except that 0.47 g of 9-(3-bromophenyl)-3,6-diphenyl-9H-carbazole whose structural formula is shown below was used and hexane and EtOAc were used as the developing solvents. A solid organic material was obtained. The yield was 0.33 g, and the yield was 75%.
  • DCZ-3 this organic substance will be referred to as DCZ-3.
  • Example 4 A white solid organic substance was obtained in the same manner as in Example 3 except that 0.66 g of 1,3-dibromobenzene was used. Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) were 0.66 g, 9 mg, 32.4 mg, and 0.29 g, respectively, and mesitylene was 4 ml. In addition, chloroform was used for extraction. Chloroform was also used as the developing solvent. The yield was 0.44 g, and the yield was 59%.
  • DCZ-4 this organic substance will be referred to as DCZ-4.
  • Example 5 A white solid organic substance was obtained in the same manner as in Example 1, except that 1 mmol of 9-(3,5-dibromophenyl)-9H-carbazole having the structural formula shown below was used. Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) were set at 2 mmol, 0.04 mmol, 0.16 mmol, and 3 mmol, respectively, and mesitylene was set at 5 ml. . The yield was 0.81 g, and the yield was 90%.
  • DCZ-6 this organic substance will be referred to as DCZ-6.
  • Example 6 A white solid organic substance was obtained in the same manner as in Example 4, except that 1 mmol of N,N-bis(4-biphenylyl)-N-(4-bromophenyl)amine whose structural formula is shown below was used. . Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) are 1 mmol, 0.02 mmol, 0.08 mmol, and 1.5 mmol, respectively, and mesitylene is 4 ml. And so. The yield was 0.46 g, and the yield was 63%.
  • DCZ-9 this organic substance will be referred to as DCZ-9.
  • Example 7 A white solid organic substance was obtained in the same manner as in Example 5 except that 4'-bromotri(4-biphenylyl)amine having the structural formula shown below was used.
  • the molar ratios of dicarbazole, 4'-bromotri(4-biphenylyl)amine, Pd(OAc) 2 , t-Bu 3 P and NaO(t-Bu) are the same as in Example 5. Note that the amount of mesitylene was 2.5 ml. The yield was 0.72 g, and the yield was 89%.
  • DCZ-10 this organic substance will be referred to as DCZ-10.
  • Example 8 A white solid organic substance was prepared in the same manner as in Example 2 except that 1 mmol of N-(4-bromophenyl)-N-(naphthalen-2-yl)naphthalen-2-amine whose structural formula is shown below was used. Obtained. Note that the amount of ethylene was 2.7 ml. The yield was 0.60 g, and the yield was 88%.
  • DCZ-11 this organic substance will be referred to as DCZ-11.
  • Example 9 Except for using 1 mmol of N-(4'-bromo-[1,1'-biphenyl]-4-yl)-N-(naphthalen-2-yl)-naphthalen-2-amine whose structural formula is shown below. A white solid organic substance was obtained in the same manner as in Example 8, including the amount of mesitylene. The yield was 0.65 g, and the yield was 87%.
  • DCZ-12 this organic substance will be referred to as DCZ-12.
  • Example 10 The amount of mesitylene was also included, except that 0.474 g, equivalent to 1 mmol, of 9-(4-bromophenyl)-3,6-diphenyl-9H-carbazole, whose structural formula is shown below, was used as the aryl bromide. In the same manner as in Example 9, a white solid organic substance was obtained. The yield was 0.52 g, and the yield was 71%.
  • DCZ-13 this organic substance will be referred to as DCZ-13.
  • Example 11 1 mmol of 9-(4'-bromo-[1,1'-biphenyl]-4-yl)-3,6-diphenyl-9H-carbazole whose structural formula is shown below was used, and ethylene was set at 5 ml. A white solid organic substance was obtained in the same manner as in Example 10 except for this. The yield was 0.70 g, and the yield was 88%.
  • DCZ-14 this organic substance will be referred to as DCZ-14.
  • DCZ-15 this organic substance will be referred to as DCZ-15.
  • Example 13 1 mmol of phenyl-dicarbazole, 1 mmol of 2-(4-bromophenyl)pyridine, and 0.02 mmol of Pd(OAc) 2 to 2.5 ml of mesitylene under an inert atmosphere.
  • a mixture was prepared by adding 0.08 mmol of t-bromoP and 1.5 mmol of NaO(t-Bu). The mixture was stirred for 4 hours while being maintained at 150°C. The mixture was quenched by adding 1 mol/liter HCl and extracted with CHCl 3 .
  • the crude product was purified by silica gel column chromatography. At this time, a mixture of toluene/hexane in a ratio of 1:2 was used.
  • DCZ-16 this organic substance will be referred to as DCZ-16.
  • Example 14 Under an inert atmosphere, 4.1 mmol of dicarbazole was added to 4 ml of Bu 2 O and stirred. Thereafter, 4.1 mmol of BuMgBr in Bu 2 O was added and the mixture was stirred at room temperature for 30 minutes. As a result, formation of a white precipitate was observed.
  • DCZ-17 the organic substance that is the product
  • Example 15 5 mmol of 4-bromo-N,N-bis(4-chlorophenyl)aniline, 5 mmol of dicarbazole, 0.1 mmol of Pd(OAc) 2 , 0.4 mmol of t-Bu 3 in 20 ml of mesitylene. P, 7.5 mmol of NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 135° C. for 5 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a mixture of toluene/hexane in a ratio of 5:1 was used. Further, the product was stirred in ethanol at 80°C to obtain a white precipitate. After cooling this liquid, it was filtered. This gave the intermediate N-(4-(9H-[1,9'-bicarbazol]-9-yl)phenyl)-4-chloro-N-(4-chlorophenyl)aniline as a white solid. . The yield was 2.67 g, and the yield was 79%.
  • the above chemical reaction formula is shown below.
  • the reaction was quenched with water at room temperature and the organic components were extracted with chloroform. The extracts were washed with brine and then dried with MgSO4 . Further, the solvent was removed in vacuo to obtain the crude product.
  • the crude product was purified by silica gel column chromatography. At this time, a chloroform mixture containing 2% triethylamine was used. Further, the product was stirred in ethyl acetate at 80° C. to obtain a white precipitate. After cooling this liquid, it was filtered. As a result, a white solid organic substance was obtained. The yield was 700 mg, 64%.
  • DCZ-18 the organic substance that is the product
  • Example 16 For 4.5 ml of mesitylene, 2 mmol of dicarbazole, 1 mmol of 4,4'-sulfonylbis(bromobenzene), 0.04 mmol of Pd(OAc) 2 , 0.16 mmol of t-Bu 3 P , 3 mmol of NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 6 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a mixture of hexane/dichloromethane in a ratio of 1:1 was used. Further, the product was stirred in toluene at 110° C. to obtain a white precipitate. After cooling this liquid, it was filtered to obtain a white solid organic substance. The yield was 810 mg, 92%.
  • the organic matter was analyzed using an organic trace element analyzer, the C, H, and N content in the molecule was 81.75%, 4.35%, and 6.29%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-19 the organic substance that is the product
  • Example 17 A mixed solution was prepared in the same manner as in Example 1 except that 1 mmol of 3,3'-dibromobiphenyl was used in place of 9-(3-bromophenyl)-9H-carbazole. The mixture was stirred for 4 hours while being maintained at 150° C. under an argon atmosphere. The mixture was quenched by adding 1 mol/liter of HCl, and extracted with chloroform. After washing the organic layer with water, the organic layer was washed with saturated brine. The organics were then dried with MgSO4 . The solvent was removed under reduced pressure to obtain the crude product.
  • the crude product was purified on a silica gel column using a 5:1 mixture of hexane/ethyl acetate as a developing solvent to obtain a white solid organic substance.
  • the yield was 0.55 g, and the yield was 68%.
  • DCZ-20 the organic substance that is the product
  • Example 18 For 2 ml of mesitylene, 0.8 mmol of t-Bu-dicarbazole, 0.8 mmol of N,N-bis(4-biphenyl)-N-(4-bromophenyl)amine, 0.016 mmol of Pd(OAc) 2 , 0.064 mmol t-Bu 3 P, and 1.2 mmol NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 4 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, CHCl 3 was used. The product was further recrystallized from toluene and EtOH to give a pale yellow solid. The yield was 0.53 g, and the yield was 70%.
  • the organic substance was analyzed using an organic trace element analyzer, the C, H, and N content in the molecule was 88.38%, 7.45%, and 4.35%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-21 the organic substance that is the product
  • Example 19 For 2 ml of mesitylene, 0.64 mmol of 9-(4-bromophenyl)-9H-1,9'-bicarbazole, 0.64 mmol of N,9-diphenyl-9H-carbazol-3-amine, A mixture was obtained by adding 0.013 mmol Pd(OAc) 2 , 0.051 mmol t-Bu 3 P, and 0.96 mmol NaO(t-Bu). The mixture was stirred at 150° C. for 4 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 1:1 mixture of toluene/hexane was used. Further, the product was recrystallized from EtOH to obtain a white solid organic material. The yield was 0.24 g, and the yield was 51%.
  • DCZ-22 the organic substance that is the product
  • Example 20 For 2.5 ml of mesitylene, 1 mmol of 9-(4-bromophenyl)-9H-1,9'-bicarbazole, 1 mmol of N,9-diphenylcarbazol-2-amine, 0.02 mmol of Pd(OAc) 2 , 0.08 mmol t-Bu 3 P, and 1.5 mmol NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 8 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 50:1 mixture of hexane/ethyl acetate was used. Further, the product was recrystallized from ethyl acetate and EtOH to obtain a white solid organic material. The yield was 0.24 g, and the yield was 51%.
  • C, H and N in the molecule were 87.40%, 5.00% and 7.30%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-23 the organic substance that is the product
  • Example 21 For 2.5 ml of mesitylene, 1 mmol of 9-(4-bromophenyl)-9H-1,9'-bicarbazole, 1 mmol of bis(9,9-dimethyl-9H-fluoren-2-yl) A mixture was obtained by adding amine, 0.02 mmol Pd(OAc) 2 , 0.08 mmol t-Bu 3 P, and 1.5 mmol NaO(t-Bu). The mixture was stirred at 150° C. for 5.5 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 50:1 mixture of hexane/ethyl acetate was used. Further, the product was recrystallized from EtOH to obtain a white solid organic material. The yield was 0.38 g, and the yield was 47%.
  • C, H and N in the molecule were 88.50%, 5.70% and 4.98%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-24 the organic substance that is the product
  • Example 22 For 2.5 ml of mesitylene, 1 mmol of dicarbazole, 1 mmol of N-([1,1'-biphenyl]-4-yl)-N-(3-bromophenyl)-[1,1'- Biphenyl]-4-amine, 0.02 mmol Pd(OAc) 2 , 0.08 mmol t-Bu 3 P, 1.5 mmol NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 6 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 25:1 mixture of hexane/ethyl acetate was used. Further, the product was recrystallized from EtOH to obtain a white solid organic material. The yield was 0.60 g, and the yield was 82%.
  • C, H and N in the molecule were 89.36%, 5.14% and 5.43%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-25 the organic substance that is the product
  • Example 23 For 3 ml of mesitylene, 1.1 mmol of dicarbazole, 1.1 mmol of N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)naphthalen-2-amine , 0.022 mmol Pd(OAc) 2 , 0.088 mmol t-Bu 3 P, and 1.65 mmol NaO(t-Bu) to obtain a mixture. The mixture was stirred at 150° C. for 6 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, chloroform was used. Furthermore, the product was recrystallized from toluene to obtain a white solid organic material. The yield was 0.67 g, and the yield was 87%.
  • C, H and N in the molecule were 89.15%, 5.02% and 5.92%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-26 the organic substance that is the product
  • Example 24 For 3.5 ml of mesitylene, 1.33 mmol of dicarbazole, 1.33 mmol of N-(4-bromophenyl)-N-phenylnaphthalen-1-amine, and 0.0266 mmol of Pd(OAc) 2 , 0.106 mmol of t-Bu 3 P, and 2 mmol of NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 6 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, chloroform was used. Furthermore, the product was recrystallized from toluene to obtain a white solid organic material. The yield was 0.78 g, and the yield was 94%.
  • the organic substance was analyzed using an organic trace element analyzer, the C, H, and N content in the molecule was 88.54%, 4.98%, and 6.88%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-27 the organic substance that is the product
  • Example 25 For 3.5 ml of mesitylene, 1.33 mmol of dicarbazole, 1.33 mmol of N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-9, 9-dimethyl-9H-fluoren-2-amine, 0.0266 mmol Pd(OAc) 2 , 0.106 mmol t-Bu 3 P, 2 mmol NaO(t-Bu) were added to obtain a mixture. Ta. The mixture was stirred at 150° C. for 6 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 2:1 mixture of hexane/toluene was used. Further, the product was stirred in ethanol at 80°C to obtain a white precipitate. The liquid was cooled and filtered to separate the white precipitate (organic material) from the ethanol. The yield was 990 mg, 97%.
  • C, H and N in the molecule were 89.33%, 5.42% and 5.56%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-28 the organic substance that is the product
  • Example 26 For 2.5 ml of mesitylene, 1 mmol of 9-(4-bromophenyl)-9H-1,9'-bicarbazole, 1 mmol of 5,7-dihydro-5-phenyl-indolo[2,3- b] Carbazole, 0.02 mmol Pd(OAc) 2 , 0.08 mmol t-Bu 3 P, 1.5 mmol NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 7 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 10:1 mixture of hexane/ethyl acetate was used. Further, the product was recrystallized from EtOH to obtain a white solid organic material. The yield was 0.33 g, and the yield was 45%.
  • the organic matter was analyzed using an organic trace element analyzer, the C, H, and N content in the molecule was 87.64%, 4.67%, and 7.39%, respectively. Further, the results of NMR analysis are as follows. 1 HNMR (CDCl 3 , 392 MHz); 6.73-6.75 (m, 2H), 6.84-6.86 (m, 2H), 7.02-7.12 (m, 7H), 7. 22-7.59 (m, 16H), 7.79-7.81 (m, 2H), 8.21-8.28 (m, 3H), 8.35-8.37 (m, 1H), 8.78 (s, 1H).
  • DCZ-29 the organic substance that is the product
  • Example 27 For 2.5 ml of mesitylene, 1 mmol of dicarbazole, 1 mmol of 2-bromo-9,9-diphenylfluorene, 0.02 mmol of Pd(OAc) 2 , 0.08 mmol of t-Bu 3 P , 1.5 mmol of NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 4 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 10:1 mixture of hexane/ethyl acetate was used. Further, the product was recrystallized from toluene and EtOH to obtain a white solid organic material. The yield was 0.55 g, and the yield was 85%.
  • C, H and N in the molecule were 90.92%, 5.02% and 4.47%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-30 the organic substance that is the product
  • Example 28 For 2 ml of mesitylene, 0.75 mmol of phenyl-dicarbazole, 0.75 mmol of 2-bromo-9,9-diphenylfluorene, 0.015 mmol of Pd(OAc) 2 , 0.06 mmol of t. -Bu 3 P, 1.13 mmol of NaO(t-Bu) were added to obtain a mixture. The mixture was stirred at 150° C. for 4 hours under an inert atmosphere.
  • the crude product was purified by silica gel column chromatography. At this time, a 10:1 mixture of hexane/ethyl acetate was used. Further, the product was recrystallized from toluene and EtOH to obtain a white solid organic material. The yield was 0.51 g, and the yield was 81%.
  • C, H and N in the molecule were 90.99%, 5.35% and 3.40%, respectively. Further, the results of NMR analysis are as follows.
  • DCZ-31 the organic substance that is the product
  • DCZ-16 to DCZ-31 Glass transition temperature (Tg), HOMO, LUMO, S1, T1, absorption edge, and oxidation potential were similarly determined for DCZ-16 to DCZ-31. The results are collectively shown in FIG. DCZ-16 to DCZ-31 also have glass transition temperatures of 100°C or higher. Therefore, DCZ-16 to DCZ-31 are also suitable as materials for each layer of an organic EL element.
  • the energy of the first excited triplet state (T1) of each compound is high.
  • the HOMO energy (EHOMO) and lowest unoccupied level energy (ELUMO) of each compound are within appropriate ranges, especially when used as a charge transport material when a blue light emitting material is included in the light emitting layer.
  • Organic EL devices each having a structure shown in FIG. 1 and having a light emitting layer containing DCZ-9 or DCZ-10 as a host material were manufactured.
  • an organic EL element having the structure shown in FIG. 1 was prepared, including a light-emitting layer containing URP or 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl as a host material.
  • m-CBP 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl
  • each organic EL element was evaluated by causing it to emit fluorescence, phosphorescence, or thermally activated delayed fluorescence (TADF). Note that the lifetime is the time until the emission intensity decreases to 90% of the initial characteristic.
  • TADF thermally activated delayed fluorescence
  • an organic EL device using DCZ-9 or DCZ-10 as the host material of the emitting layer is different from an organic EL device using URP as the host material of the emitting layer. It showed better efficiency than EL devices.
  • Element evaluation part 2 Nine types of organic EL devices having a hole injection layer (HIL), a hole transport layer (HTL), an electron block layer (EBL), and a hole block layer (HBL) were fabricated.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron block layer
  • HBL hole block layer
  • evaluation elements 1 to 9 The substances shown in FIG. 5 were used as organic compounds contained in HIL, HTL, EBL, and HBL in Evaluation Elements 1 to 9.
  • DCZ-9 or DCZ-10 is included in at least one of the HIL, HTL, EBL, and HBL layers.
  • OPDA-10 contained in HTL of evaluation element 2 and HIL of evaluation element 5, respectively, is an organic compound whose chemical structural formula is shown below.
  • control element 1 the two types of organic EL elements
  • control element 2 the two types of organic EL elements
  • the organic compounds contained in HIL, HTL, EBL, and HBL in control element 1 and control element 2 are shown in FIG.
  • Control element 1 and control element 2 were also evaluated for voltage (V), efficiency, lifetime, and voltage change ( ⁇ V). The results are also shown in FIG.
  • Evaluation Elements 1 to 9 having layers containing DCZ-9 or DCZ-10 have superior lifetimes than Control Elements 1 and 2 that do not have layers containing DCZ-9 or DCZ-10. It can be seen that this shows that Furthermore, the efficiency of Evaluation Elements 1 to 9 is approximately equal to or higher than that of Comparative Element 1 and Comparative Element 2. As described above, the organic EL elements (Evaluation Elements 1 to 9) having layers containing DCZ-9 or DCZ-10 are equivalent to the organic EL elements according to the prior art (Control Element 1 and Control Element 2). Demonstrates efficiency and excellent longevity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Indole Compounds (AREA)

Abstract

ジカルバゾリル類化合物は、2個のカルバゾリル基が結合したジカルバゾリル基か、又は、ジカルバゾリル基に対して1個以上の置換基が結合した置換ジカルバゾリル基を基本骨格として有する。基本骨格に含まれるN原子には、官能基が結合する。官能基は、アリール基、置換窒素含有芳香族複素環基又は無置換窒素含有芳香族複素環基の少なくともいずれか1個を有する。官能基をFGと表すとき、ジカルバゾリル類化合物は、下記の構造式に示される構造を有する。なお、INTは媒介基を表し、mは0又は1である。 【化1】

Description

ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子
 本発明は、ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス(EL)素子においては、アノードとカソードとの間に、電子輸送層、発光層及び正孔輸送層が挟まれる。このように構成される有機EL素子は、長寿命化であることが望ましい。この観点から、電子輸送層、発光層又は正孔輸送層の素材として適切な有機物が求められている。この要請に対応するため、例えば、特開2021-172592号公報において、窒素を有する複素環を含んだ化合物が提案されている。特開2021-172592号公報では、前記化合物は、電子輸送層、発光層又は正孔輸送層の素材として用いられている。
 有機ELのさらなる長寿命化が要請されている。
 本発明は、上述した課題を解決することを目的とする。
 本発明の一実施形態によれば、2個のカルバゾリル基が結合したジカルバゾリル基か、又は、ジカルバゾリル基に対して1個以上の置換基が結合した置換ジカルバゾリル基を基本骨格として有するジカルバゾリル類化合物であって、
 前記基本骨格に含まれるN原子に対して直接結合するか、又は、前記N原子に対して媒介基を介して間接的に結合した官能基を有し、
 前記官能基は、アリール基、置換窒素含有芳香族複素環基又は無置換窒素含有芳香族複素環基の少なくともいずれか1個を有し、
 前記媒介基をINTと表し、前記官能基をFGと表すとき、下記の構造式で示される、ジカルバゾリル類化合物が提供される。
Figure JPOXMLDOC01-appb-C000006
 ここで、上記構造式中のR2~R5は、カルバゾリル基を構成するベンゼン環の任意の位置に結合した置換基を表す。R2~R5は、水素であってもよい。また、mは0又は1である。
 なお、各化合物中の水素が重水素に置換されていてもよい。本明細書における「水素」には「重水素」が含まれる。重水素化率は高くてもよい。例えば、重水素化率は80%程度であってもよい。
 本発明の別の一実施形態によれば、上記したジカルバゾリル類化合物を含む層を備える有機エレクトロルミネッセンス素子が提供される。
 上記の化合物では、第一励起三重項状態(T1)のエネルギが高い。また、上記の化合物における最高占有準位(HOMO)及び最低非占有準位(LUMO)は、特に青色発光材料を発光層に含む場合の電荷輸送材として用いるに当たって、適切な範囲内である。また、この化合物においては、分子内で電荷が移動することが容易であるために電荷が非局在化し難い。従って、分子構造が安定する。さらに、分子の構造に基づいて分子内回転が抑制されるので、熱安定性が良好である。
 以上のような理由から、上記の化合物を含む層を備える有機エレクトロルミネッセンス素子では、寿命が長期化する。
図1は、有機EL素子の模式的側面図である。 図2は、ジカルバゾリル類化合物の諸物性を示す図表である。 図3は、図2とは別のジカルバゾリル類化合物の諸物性を示す図表である。 図4は、有機物を含んだ発光層を有する有機EL素子の諸特性を示す図表である。 図5は、有機物を含んだ層を有する有機EL素子の諸特性を示す図表である。
 図1は、有機エレクトロルミネッセンス(EL)素子10の模式的側面図である。有機EL素子10は、ガラス基板12と、アノード14と、正孔輸送層16と、発光層18と、電子輸送層20と、カソード22とを備える。ガラス基板12、アノード14及びカソード22の素材としては、公知の素材を採用することができる。
 正孔輸送層16、発光層18又は電子輸送層20の少なくとも1つは、ジカルバゾリル類化合物を含む。本実施形態において、ジカルバゾリル類化合物とは、2個のカルバゾリル基が結合したジカルバゾリル基を基本骨格として含む化合物を指す。又は、ジカルバゾリル類化合物とは、ジカルバゾリル基に1個以上の置換基が結合した置換ジカルバゾリル基を基本骨格として含む化合物を指す。いずれの化合物においても、基本骨格中のN原子に対して官能基が結合する。
 官能基は、基本骨格中のN原子に対し、例えば、直接結合する。基本骨格と官能基との間に、置換基(媒介基)が介在してもよい。この場合、官能基は、基本骨格中のN原子に対し、媒介基を介して間接的に結合する。従って、媒介基をINTと表し、且つ官能基をFGと表すとき、本実施形態に係るジカルバゾリル類化合物の構造式は、以下のように表される。
Figure JPOXMLDOC01-appb-C000007
 上記構造式中のR2~R5は、水素か、又は、カルバゾリル基を構成するベンゼン環の任意の位置に結合した置換基を表す。また、mは0又は1である。mが0であるとき、官能基が基本骨格中のN原子に対して直接結合していることを意味する。mが1であるとき、官能基が基本骨格中のN原子に対して媒介基を介して間接的に結合していることを意味する。
 媒介基は、例えば、フェニル基又はトリアジン基である。媒介基がフェニル基である場合、ジカルバゾリル類化合物の構造式の典型例を以下に示す。
Figure JPOXMLDOC01-appb-C000008
 官能基は、アリール基か、置換窒素含有芳香族複素環基又は無置換窒素含有芳香族複素環基の少なくともいずれか1個である。官能基がアリール基である場合、官能基(アリール基)は、例えば、下記の構造式に示される構造(基)を有する。
Figure JPOXMLDOC01-appb-C000009
 上記構造式におけるR6及びR7は、置換もしくは無置換の芳香族炭化水素基を表す。代替的に、R6及びR7は、置換もしくは無置換の窒素含有芳香族複素環基であってもよい。窒素含有芳香族複素環基の代表例としては、窒素含有5員環基、窒素含有6員環基、窒素含有芳香族縮合2環又は窒素含有芳香族縮合3環等が挙げられる。窒素含有5員環基の具体例としてはピロリル基等が挙げられ、窒素含有6員環基の具体例としてはピリジニル基又はピリミジル基等が挙げられる。窒素含有芳香族縮合2環の具体例としてはインドリル基又はキノリル基等が挙げられ、窒素含有芳香族縮合3環の具体例としては、カルバゾリル基又はフェナントロリル基等が挙げられる。窒素含有芳香族複素環基は、上記した置換基に特に限定されない。
 又は、官能基は、下記の構造式に示される構造(基)を有する。
Figure JPOXMLDOC01-appb-C000010
 上記構造式におけるR8は、置換もしくは無置換の芳香族炭化水素基を表す。代替的に、R8は、置換もしくは無置換の窒素含有芳香族複素環基であってもよい。
 又は、官能基は、下記の構造式に示される構造(基)を有する。
Figure JPOXMLDOC01-appb-C000011
 上記構造式中のR11及びR12は、例えば、水素である。R11及びR12は、置換もしくは無置換の芳香族炭化水素基であってもよい。
 官能基が置換窒素含有芳香族複素環基又は無置換窒素含有芳香族複素環基である場合、官能基(置換窒素含有芳香族複素環基又は無置換窒素含有芳香族複素環基)は、例えば、下記構造式に示される構造(基)を有する。
Figure JPOXMLDOC01-appb-C000012
 上記構造式におけるR9及びR10は、例えば、水素である。代替的に、R9及びR10は、置換もしくは無置換の芳香族炭化水素基であってもよい。
 R2~R5の全てが水素であってもよい。以下、この場合における官能基の具体例を示す。なお、基本骨格と官能基との間にフェニル基が介在する場合、フェニル基に対して2個以上の官能基が結合してもよい。
[1 1個の官能基がフェニル基のメタ位(m-位)に結合する場合の官能基の例]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
[2 2個の同一の官能基がフェニル基の2-位及び4-位に結合する場合の官能基の例]
Figure JPOXMLDOC01-appb-C000018
[3 1個の官能基がフェニル基の4-位に結合する場合の官能基の例]
Figure JPOXMLDOC01-appb-C000019
[4 1個の官能基がフェニル基のパラ位(p-位)に結合する場合の官能基の例]
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 なお、Meはメチル基を表す。
 ジカルバゾリル類化合物は、官能基としてジカルバゾリル基又は置換ジカルバゾリル基を有していてもよい。この場合、ジカルバゾリル類化合物は、基本骨格にジカルバゾリル基又は置換ジカルバゾリル基を有すると同時に、官能基にジカルバゾリル基又は置換ジカルバゾリル基を有する。
 この場合において、基本骨格と官能基とは、フェニル基を媒介基として結合することが好ましい。さらに、フェニル基に対し、カルバゾリル基又は置換カルバゾリル基が第2の官能基として結合することが好ましい。この化合物の構造式を以下に例示する。なお、この構造式では、ベンゼン環に対し、2個のジカルバゾリル基と、1個のカルバゾリル基とが結合した化合物を例示している。すなわち、この化合物において、ジカルバゾリル基及びカルバゾリル基に含まれる水素は、置換基に置換されていない。
Figure JPOXMLDOC01-appb-C000041
 又は、基本骨格と官能基とがフェニル基においてオルト位(o-位)の位置関係にあることが好ましい。この化合物の構造式を以下に例示する。なお、上記と同様に、基本骨格及び官能基(いずれもジカルバゾリル基)に含まれる水素は官能基に置換されていない。また、基本骨格及び官能基は、フェニル基においてo-位となる位置関係である。
Figure JPOXMLDOC01-appb-C000042
 媒介基であるフェニル基に対し、フェニル基を有するジカルバゾリル基が結合してもよい。この場合、ジカルバゾリル類化合物は、2個のジカルバゾリルベンゼンが互いに結合した化合物となる。ここで、1個のジカルバゾリルベンゼンは、ジカルバゾリル基又は置換ジカルバゾリル基がベンゼン環に結合した化合物である。従って、この場合のジカルバゾリル類化合物は、ジカルバゾリルベンゼンに対し、フェニル基を含む官能基が結合した形態となる。フェニル基を含む官能基とは、ジカルバゾリル基又は置換ジカルバゾリル基がフェニル基に結合した官能基を指す。ジカルバゾリルベンゼンにおけるジカルバゾリル基又は置換ジカルバゾリル基と、フェニル基を含む官能基とは、ジカルバゾリルベンゼンを構成するフェニル基においてo-位の位置関係であることが好ましい。
 この化合物の構造式を以下に例示する。なお、この構造式では、2個のジカルバゾリルベンゼンが互いに結合した化合物を例示している。すなわち、この化合物において、ジカルバゾリル基に含まれる水素は官能基に置換されていない。また、基本骨格であるジカルバゾリル基と、フェニル基を含む官能基とは、媒介基であるフェニル基(ジカルバゾリルベンゼンを構成するフェニル基)においてo-位となる位置関係である。
Figure JPOXMLDOC01-appb-C000043
 R2~R5は、1価の芳香族炭化水素基であってもよい。この場合、官能基は、1価の置換芳香族炭化水素基もしくは1価の無置換芳香族炭化水素基である。官能基は、1価の置換芳香族複素環基もしくは1価の無置換芳香族複素環基であってもよい。
 以上のような構造を有するジカルバゾリル類化合物を素材として含む正孔輸送層16、発光層18又は電子輸送層20を形成した場合、該層を有する有機EL素子10では、従来技術に係る有機EL素子よりも寿命が長期化することが認められる。
 このように寿命が長期化する理由は、以下のようであると考えられる。第1に、これらの化合物では、第一励起三重項状態(T1)のエネルギが高く、且つ最高占有準位(HOMO)及び最低非占有準位(LUMO)が適切である。第2に、構造式によれば、分子内で電荷が移動することが容易であり、電荷が非局在化し難いために分子構造が安定する。第3に、分子の構造に基づいて分子内回転が抑制されるので、熱安定性が良好となりホストとして適切である。
 さらに、基本骨格と官能基とが、媒介基であるフェニル基においてo-位の位置関係となるとき、分子が立体的に捻れた構造となる。このためにπ共役の延びが限定される。その結果として、エネルギにワイドギャップが生じ易くなる。このような化合物は、青色発光用の素材として一層適切であると考えられる。
 なお、本発明は、上述した開示に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得る。
 例えば、上記した有機化合物中の水素が重水素に置換されていてもよい。重水素化率は高くてもよく、例えば、80%程度であってもよい。
 また、ジカルバゾリル類化合物は、置換芳香族炭化水素基又は置換芳香族複素環基が結合することにより、様々な構造となり得る。
[化合物の合成]
 以下におけるAc、Bu、Et及びArは、それぞれ、アセチル基、ブチル基、エチル基及びアリール基を表す。また、t-Buは三級ブチル基を意味する。さらに、H、C及びNの「%」は質量%である。
[実施例1]
 5ミリリットルのメシチレンに対し、2ミリモルのジカルバゾールと、2ミリモルの9-(3-ブロモフェニル)-9H-カルバゾールと、0.04ミリモルのPd(OAc)2と、0.16ミリモルのt-Bu3Pと、3ミリモルのNaO(t-Bu)とを添加し、混合液を調製した。該混合液を、アルゴン雰囲気下で150℃に保持した状態で、4時間撹拌した。混合液に1モル/リットルのHClを3ミリリットル添加してクエンチを行い、EtOAcを用いて混合液から有機物を抽出した。飽和食塩水で有機物を洗浄した後、該有機物をMgSO4で乾燥した。溶媒を減圧下で除去して、粗生成物を得た。
 酢酸エチルを展開溶媒として粗生成物をフロリジルに通し、さらに、溶媒を減圧下で除去した2-プロパノールを用いた再結晶により、白茶色の有機物を得た。収量は1.13gであり、収率は98%であった。
 得られた有機物につき、有機微量元素分析装置を用いて分析を行った。分子中のC、H及びNは、それぞれ87.82%、5.07%及び約6.93%であった。また、核磁気共鳴(NMR)による分析結果は、下記のとおりであった。
1HNMR(DMSO-d6,392MHz);δ=6.64-6.71(m,3H)、6.80-6.92(m,4H)、7.00-7.03(m,2H)、7.13-7.25(m,5H)、7.33-7.52(m,7H)、7.59(d,J=7.6Hz,1H)、8.03(d,J=7.6Hz,1H)、8.12(d,J=7.6Hz,2H)、8.37(d,J=7.6Hz,1H)、8.5(d,J=7.6Hz,1H)。
 以上の結果から、得られた有機物の示性式はC42273であり、分子量は573.7であると判断された。
 この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000044
 以下、生成物である有機物をDCZ-1という。
[実施例2]
 2.7ミリリットルのメシチレンに対し、0.33gのジカルバゾールと、0.49gのAr-Br(臭化アリール)と、4.5mgのPd(OAc)2と、16.2mgのt-Bu3Pと、0.144gのNaO(t-Bu)とを添加し、混合液を調製した。該混合液を150℃に保持し、アルゴン雰囲気下で撹拌した。なお、用いた臭化アリールは9,9’-(5-ブロモ-1,3-フェニレン)ビス(9H-カルバゾール)であり、その構造式は以下のとおりである。
Figure JPOXMLDOC01-appb-C000045
 混合液に1モル/リットルのHClを1.5ミリリットル添加してクエンチを行い、EtOAcを用いて混合液から有機物を抽出した。飽和食塩水で有機物を洗浄した後、該有機物をMgSO4で乾燥した。溶媒を減圧下で除去して、粗生成物を得た。次に、酢酸エチルを展開溶媒として粗生成物につきシリカゲルカラム精製を行った。得られた精製物をエタノールで再沈殿させ、白色固体の有機物を得た。収量は0.66gであり、収率は89%であった。純水及び飽和食塩水で有機物を洗浄した後、該有機物をMgSO4で乾燥した。
 以降は実施例1と同様にして、得られた有機物につき分析を行った。分子中のC、H及びNは、それぞれ、87.63%、4.60%及び7.51%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(DMSO-d6,392MHz);δ=6.67-6.70(m,2H)、6.83-6.88(m,4H)、7.11-7.13(m,4H)、7.22-7.23(m,2H)、7.25-7.33(m,5H)、7.39-7.60(m,11H)、8.17-8.19(m,4H)、8.44-8.46(m,1H)、8.55-8.57(m,1H)。
 以上の結果から、得られた有機物の示性式はC54344であり、分子量は738.89であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000046
 以下、この有機物をDCZ-2という。
[実施例3]
 構造式が下記に示される9-(3-ブロモフェニル)-3,6-ジフェニル-9H-カルバゾールを0.47g用い、ヘキサンとEtOAcを展開溶媒とした以外は実施例2と同様にして、白色固体の有機物を得た。収量は0.33gであり、収率は75%であった。
Figure JPOXMLDOC01-appb-C000047
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.20%、4.91%及び5.72%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(DMSO-d6,392MHz);δ=6.70-7.32(m,12H)、7.39-7.45(m,4H)、7.49-7.56(m,7H)、7.70-7.73(m,1H)、7.80-7.86(m,6H)、8.12-8.15(m,1H)、8.42-8.44(m,1H),8.54-8.56(m,1H)、8.65-8.66(m,2H)。
 以上の結果から、得られた有機物の示性式はC54353であり、分子量は725.9であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000048
 以下、この有機物をDCZ-3という。
[実施例4]
 1,3-ジブロモベンゼンを0.66g用いた以外は実施例3と同様にして、白色固体の有機物を得た。なお、ジカルバゾール、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)は、それぞれ、0.66g、9mg、32.4mg及び0.29gとし、メシチレンは4ミリリットルとした。また、抽出にはクロロホルムを用いた。展開溶媒もクロロホルムを用いた。収量は0.44gであり、収率は59%であった。
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、87.73%、4.76%及び7.58%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=5.86-5.87(m,1H)、6.34-6.38(m,3H)、6.50-6.62(m,6H)、6.74-6.78(m,4H)、6.90-7.00(m,6H)、7.19-7.32(m,4H)、7.48-7.60(m,6H),8.18-8.22(m,4H)。
 以上の結果から、得られた有機物の示性式はC54344であり、分子量は738.89であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000049
 以下、この有機物をDCZ-4という。
[実施例5]
 構造式が下記に示される9-(3,5-ジブロモフェニル)-9H-カルバゾールを1ミリモル用いた以外は実施例1と同様にして、白色固体の有機物を得た。なお、ジカルバゾール、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)は、それぞれ、2ミリモル、0.04ミリモル、0.16ミリモル、3ミリモルとし、メシチレンは5ミリリットルとした。収量は0.81gであり、収率は90%であった。
Figure JPOXMLDOC01-appb-C000050
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、87.98%、4.69%及び7.65%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.09(s,1H)、6.35(dd,J=7.2,7.2Hz,2H)、6.54-6.64(m,6H)、6.74-6.81(m,4H)、6.9(s,2H)、7.00-7.06(m,6H)、7.21-7.29(m,4H)、7.35-7.38(m,8H)、7.56(d,J=7.2Hz,2H)、8.05(d,J=7.2Hz,2H)、8.20-8.23(m,4H)。
 以上の結果から、得られた有機物の示性式はC66415であり、分子量は904.09であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000051
 以下、この有機物をDCZ-6という。
[実施例6]
 構造式が下記に示されるN,N-ビス(4-ビフェニルイル)-N-(4-ブロモフェニル)アミンを1ミリモル用いた以外は実施例4と同様にして、白色固体の有機物を得た。なお、ジカルバゾール、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)は、それぞれ、1ミリモル、0.02ミリモル、0.08ミリモル、1.5ミリモルとし、メシチレンは4ミリリットルとした。収量は0.46gであり、収率は63%であった。
Figure JPOXMLDOC01-appb-C000052
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.19%、5.20%及び5.56%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.30(d,J=8.5Hz,2H)、6.58(d,J=8.5Hz,2H)、6.84(d,J=8.5Hz,4H)、7.04(d,J=8.5Hz,2H)、7.11(d,J=8.5Hz,1H)、7.20-7.24(m,2H)、7.25-7.50(m,16H)、7.59(d,J=7.2Hz,4H)、8.08(d,J=7.6Hz,2H)、8.22(d,J=7.6Hz,1H)、8.32(d,J=7.2Hz,1H)。
 以上の結果から、得られた有機物の示性式はC54373であり、分子量は727.91であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000053
 以下、この有機物をDCZ-9という。
[実施例7]
 構造式が下記に示される4’-ブロモトリ(4-ビフェニルイル)アミンを用いた以外は実施例5と同様にして、白色固体の有機物を得た。ジカルバゾール、4’-ブロモトリ(4-ビフェニルイル)アミン、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)のモル比は実施例5と同様である。なお、メシチレンは2.5ミリリットルとした。収量は0.72gであり、収率は89%であった。
Figure JPOXMLDOC01-appb-C000054
 有機微量元素分析装置による分子中のH、C及びNは、それぞれ、5.27%、89.67%及び5.43%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.51(s,4H)、7.01(d,J=8.1Hz,2H)、7.06-7.23(m,8H)、7.26-7.37(m,8H),7.42-7.63(m,15H)、7.77(d,J=7.6Hz,2H),8.23(d,J=7.2Hz,1H)、8.34(d,J=8.1Hz,1H)。
 以上の結果から、得られた有機物の示性式はC60413であり、分子量は804.01であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000055
 以下、この有機物をDCZ-10という。
[実施例8]
 構造式が下記に示されるN-(4-ブロモフェニル)-N-(ナフタレン-2-イル)ナフタレン-2-アミンを1ミリモル用いた以外は実施例2と同様にして、白色固体の有機物を得た。なお、エチレンは2.7ミリリットルとした。収量は0.60gであり、収率は88%であった。
Figure JPOXMLDOC01-appb-C000056
 有機微量元素分析装置による分子中のH、C及びNは、それぞれ、89.03%、4.96%及び6.05%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.25-6.29(m,2H),6.53-6.57(m,2H)、7.03-7.06(m,4H)、7.10-7.50(m,15H)、7.60-7.63(m,2H)、7.76-7.81(m,4H)、8.12-8.14(m,2H)、8.22-8.24(m,1H)、8.32-8.34(m,1H)。
 以上の結果から、得られた有機物の示性式はC50353であり、分子量は675.84であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000057
 以下、この有機物をDCZ-11という。
[実施例9]
 構造式が下記に示されるN-(4’-ブロモ-[1、1’-ビフェニル]-4-イル)-N-(ナフタレン-2-イル)-ナフタレン-2-アミンを1ミリモル用いた以外は、メシチレンの量も含めて実施例8と同様にして、白色固体の有機物を得た。収量は0.65gであり、収率は87%であった。
Figure JPOXMLDOC01-appb-C000058
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.54%、5.04%及び5.29%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.52-6.53(m,4H)、6.99-7.02(m,2H)、7.08-7.19(m,8H)、7.25-7.58(m,13H)、7.64-7.66(m,2H)、7.77-7.83(m,6H)、8.22-8.24(m,1H)、8.33-8.36(m,1H)。
 以上の結果から、得られた有機物の示性式はC56373であり、分子量は751.93であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000059
 以下、この有機物をDCZ-12という。
[実施例10]
 臭化アリールとして、構造式が下記に示される9-(4-ブロモフェニル)-3,6-ジフェニル-9H-カルバゾールを、1ミリモルに相当する0.474g用いた以外は、メシチレンの量も含めて実施例9と同様にして、白色固体の有機物を得た。収量は0.52gであり、収率は71%であった。
Figure JPOXMLDOC01-appb-C000060
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.43%、4.98%及び5.87%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.78-6.80(m,2H)、6.94-6.96(m,2H)、7.12-7.62(m,19H)、7.71-7.77(m,6H)、7.95-7.97(m,2H)、8.28-8.39(m,4H)。
 以上の結果から、得られた有機物の示性式はC54353であり、分子量は725.9であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000061
 以下、この有機物をDCZ-13という。
[実施例11]
 構造式が下記に示される9-(4’-ブロモ-[1,1’-ビフェニル]-4-イル)-3,6-ジフェニル-9H-カルバゾールを1ミリモル用い、且つエチレンを5ミリリットルとした以外は実施例10と同様にして、白色固体の有機物を得た。収量は0.70gであり、収率は88%であった。
Figure JPOXMLDOC01-appb-C000062
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.93%、4.99%及び5.03%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.61-6.66(m,4H)、7.04-7.21(m,4H)、7.31-7.86(m,27H)、8.25-8.44(m,4H)。
 以上の結果から、得られた有機物の示性式はC60393であり、分子量は801.99であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000063
 以下、この有機物をDCZ-14いう。
[実施例12]
 ジカルバゾール化合物として、構造式が下記に示される3,3’,6,6’-テトラフェニル-9H-1,9’-ビカルバゾールを、1ミリモルに相当する0.64g用いた。
Figure JPOXMLDOC01-appb-C000064
 また、臭化アリールとして、構造式が下記に示される4-ブロモビフェニルを1ミリモルに相当する0.233g用いた。
Figure JPOXMLDOC01-appb-C000065
 その後、エチレンを2.5ミリリットルとした以外は実施例11と同様にして、白色固体の有機物を得た。収量は0.48gであり、収率は61%であった。
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、91.19%、5.16%及び3.49%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.62-6.67(m,4H)、7.14-7.64(m,27H)、7.73-7.75(m,2H)、7.83-7.85(m,2H)、7.92-7.93(m,1H),8.01-8.02(m,2H)、8.50-8.51(m,1H)、8.65-8.66(m,1H)。
 以上の結果から、得られた有機物の示性式はC60402であり、分子量は788.99であると判断された。この場合の有機物の構造式を、下記に示す。
Figure JPOXMLDOC01-appb-C000066
 以下、この有機物をDCZ-15という。
[実施例13]
 不活性雰囲気下で、2.5ミリリットルのメシチレンに対し、1ミリモルのフェニル-ジカルバゾールと、1ミリモルの2-(4-ブロモフェニル)ピリジンと、0.02ミリモルのPd(OAc)2と、0.08ミリモルのt-ブロモPと、1.5ミリモルのNaO(t-Bu)とを添加し、混合物を調製した。該混合液を150℃に保持した状態で、4時間撹拌した。混合液に1モル/リットルのHClを添加してクエンチを行い、CHCl3で抽出した。
 有機層をブラインで洗浄した後、該有機層をMgSO4で乾燥して粗生成物を得た。粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、トルエン/ヘキサンが1:2の割合で混合された混合物を用いた。
 生成物をトルエン及びEtOHから再結晶化して、白色固体の有機物を得た。収量は0.47gであり、収率は59%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、89.66%、5.10%及び5.14%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(CDCl3,392MHz);6.66-6.69(m,2H)、7.03-7.05(m,2H)、7.13-7.70(m,25H)、7.73-7.75(m,2H)、7.83-7.85(m,2H)、7.94-7.96(m,3H)、8.49-8.50(m,1H)、8.62-8.65(m,2H)。
 以上の結果から、得られた有機物の示性式はC59393であり、分子量は790と判断された。この場合の化学反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000067
 以下、この有機物をDCZ-16という。
[実施例14]
 不活性雰囲気下で、4ミリリットルのBu2Oに4.1ミリモルのジカルバゾールを添加して撹拌した。その後、Bu2Oに4.1ミリモルのBuMgBrを添加し、混合物を室温で30分間撹拌した。その結果、白色沈殿物の生成が観察された。
 Bu2Oに2ミリモルの塩化シアヌルをさらに添加し、混合物を130℃で18時間撹拌した。室温にてNH4Cl溶液で反応物をクエンチした後、有機成分をクロロホルムで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。溶媒を真空中で除去し、粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、トルエン/ヘキサンが1:1の割合で混合された混合物を用いた。これにより、中間体である9,9’-(6-クロロ-1,3,5-トリアジン-2,4-ジイル)ビス(9H-1,9’-ビカルバゾール)を淡黄色固体として得た。以上の化学反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000068
 また、NMRによる9,9’-(6-クロロ-1,3,5-トリアジン-2,4-ジイル)ビス(9H-1,9’-ビカルバゾール)の分析結果は、下記のとおりである。
1HNMR(392MHz,CDCl3);6.91(s,ブロードピーク,5H)、7.32-7.72(m,15H)、7.76-7.86(m,3H)、7.92-7.99(m,2H)、8.038.17(m,4H)、8.29-8.36(m,1H)。
 1.05ミリモルの9,9’-(6-クロロ-1,3,5-トリアジン-2,4-ジイル)ビス(9H-1,9’-ビカルバゾール)、1.575ミリモルのフェニルボロン酸、0.021ミリモルのPd(PPh34、2.1ミリモルのK2CO3、3ミリリットルのジオキサン、1ミリリットルのトルエン、及び1ミリリットルの水の混合物を調製し、該混合物を、不活性雰囲気下で110℃で8時間撹拌した。
 反応物を室温にて水でクエンチした後、有機成分をクロロホルムで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。さらに、溶媒を真空中で除去し、粗生成物を得た。粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、トルエン/ヘキサンが1:1の割合で混合された混合物を用いた。生成物をトルエンから再結晶させ、白色固体の有機物を得た。収量は0.55gであり、収率は67%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、83.96%、4.41%及び11.94%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(392MHz,CDCl3);6.27(s,ブロードピーク,2H)、6.51(s,ブロードピーク,4H)、6.70(s,ブロードピーク,6H)、7.21-7.23(m,2H)、7.30-7.46(m,6H)、7.43-7.50(m,2H)、7.51-7.66(m,5H)、7.79-7.86(m,2H)、7.96(dd,J=7.2,1.7Hz,2H)、8.08-8.15(m,4H)。
 以上の結果から、得られた有機物の示性式はC57357であり、分子量は818と判断された。この場合の化学反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000069
 以下、生成物である有機物をDCZ-17という。
[実施例15]
 20ミリリットルのメシチレンに5ミリモルの4-ブロモ-N,N-ビス(4-クロロフェニル)アニリン、5ミリモルのジカルバゾール、0.1ミリモルのPd(OAc)2、0.4ミリモルのt-Bu3P、7.5ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で135℃で5時間撹拌した。
 反応物を室温にて水でクエンチした後、有機成分を酢酸エチルで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。溶媒を真空中で除去し、粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、トルエン/ヘキサンが5:1の割合で混合された混合物を用いた。さらに、生成物を80℃でエタノール中で撹拌し、白色沈殿物を得た。この液を冷却した後に濾過した。これにより、中間体であるN-(4-(9H-[1,9’-ビカルバゾール]-9-イル)フェニル)-4-クロロ-N-(4-クロロフェニル)アニリンを白色固体として得た。収量は2.67gであり、収率は79%であった。以上の化学反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000070
 また、NMRによるN-(4-(9H-[1,9’-ビカルバゾール]-9-イル)フェニル)-4-クロロ-N-(4-クロロフェニル)アニリンの分析結果は、下記のとおりである。
1HNMR(392MHz,DMSO-D6);5.90-6.13(m,2H)、6.66(dt,J=55.6,11.1Hz,5H)、6.86-7.09(m,3H)、7.097.63(m,13H)、8.068.57(m,4H)。
 8ミリリットルの1-ブタノールに1.5ミリモルのN-(4-(9H-[1,9’-ビカルバゾール]-9-イル)フェニル)-4-クロロ-N-(4-クロロフェニル)アニリン、4.5ミリモルの4-ピリジニルボロン酸、0.03ミリモルPd2(dba)3、0.12ミリモルのXphos、6ミリモルのK3PO4を添加し、混合物を得た。該混合物を、不活性雰囲気下で120℃で24時間撹拌した。
 反応物を室温にて水でクエンチし、有機成分をクロロホルムで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。さらに、溶媒を真空中で除去し、粗生成物を得た。粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、2%のトリエチルアミンを含むクロロホルム混合物を用いた。さらに、生成物を80℃で酢酸エチル中で撹拌し、白色沈殿物を得た。この液を冷却した後に濾過した。これにより、白色固体の有機物を得た。収量は700mg、収率は64%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、81.41%、4.85%及び9.49%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(392MHz,CDCl3);6.29-6.37(m,2H)、6.61-6.70(m,2H)、6.92-7.00(m,4H)、7.09(dd,J=18.1,8.0Hz,3H)、7.18-7.60(m,16H)、8.08(d,J=7.6Hz,2H)、8.21-8.28(m,1H)、8.34(dd,J=6.3,2.7Hz,1H)、8.63-8.70(m,4H)。
 以上の結果から、得られた有機物の示性式はC52355であり、分子量は730と判断された。この場合の化学反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000071
 以下、生成物である有機物をDCZ-18という。
[実施例16]
 4.5ミリリットルのメシチレンに対し、2ミリモルのジカルバゾール、1ミリモルの4,4’-スルホニルビス(ブロモベンゼン)0.04ミリモルのPd(OAc)2、0.16ミリモルのt-Bu3P、3ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で6時間撹拌した。
 反応物を室温にて水でクエンチした後、有機成分をクロロホルムで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。溶媒を真空中で除去し、粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/ジクロロメタンが1:1の割合で混合された混合物を用いた。さらに、生成物を110℃でトルエン中で撹拌し、白色沈殿物を得た。この液を冷却した後に濾過し、白色固体の有機物を得た。収量は810mg、収率は92%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、81.75%、4.35%及び6.29%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(392MHz,CDCl3);6.67(s,4H)、7.12-7.30(m,7H)、7.33-7.43(m,5H)、7.40-7.46(m,1H)、7.43-7.49(m,1H)、7.60(dd,J=8.5,1.8Hz,2H)、7.66(dd,J=8.5,1.8Hz,1H)、7.83(dt,J=8.0,2.1Hz,2H)、7.91(d,J=1.8Hz,1H)、8.03(dd,J=6.3,1.8Hz,3H)、8.11(dt,J=8.0,1.8Hz,1H)、8.52(d,J=1.7Hz,1H)、8.57-8.71(m,5H)、8.85(d,J=2.7Hz,2H)、9.01(d,J=2.4Hz,1H)、9.11(d,J=2.3Hz,1H)。
 以上の結果から、得られた有機物の示性式はC60384SO2であり、分子量は879と判断された。この場合の化学反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000072
 以下、生成物である有機物をDCZ-19という。
[実施例17]
 9-(3-ブロモフェニル)-9H-カルバゾールに代替して1ミリモルの3、3’-ジブロモビフェニルを用いた以外は実施例1と同様にして混合液を調製した。該混合液を、アルゴン雰囲気下で150℃に保持した状態で、4時間撹拌した。混合液に1モル/リットルのHClを添加してクエンチを行い、クロロホルムで抽出した。有機層を水で洗浄した後、該有機層を飽和食塩水で洗浄した。その後、有機物をMgSO4で乾燥した。溶媒を減圧下で除去して、粗生成物を得た。
 ヘキサン/酢酸エチルの5:1混合液を展開溶媒として粗生成物のシリカゲルカラム精製を行い、白色固体の有機物を得た。収量は0.55gであり、収率は68%であった。
 得られた有機物についてのNMRによる分析結果は、下記のとおりであった。
1HNMR(DMSO-d6,392MHz);δ=4.67(s,2H)、5.05(t,J=7.3Hz,2H)、5.64(t,J=7.6Hz,2H)、6.59-6.90(m,12H)、7.07-7.23(m,6H)、7.45-7.59(m,10H)、8.55-8.66(m,4H)。
 以上の結果から、得られた有機物の示性式はC60384であり、分子量は815であると判断された。
 この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000073
 以下、生成物である有機物をDCZ-20という。
[実施例18]
 2ミリリットルのメシチレンに対し、0.8ミリモルのt-Bu-ジカルバゾール、0.8ミリモルのN,N-ビス(4-ビフェニル)-N-(4-ブロモフェニル)アミン、0.016ミリモルのPd(OAc)2、0.064ミリモルのt-Bu3P、1.2ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で4時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分をCHCl3で抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、CHCl3を用いた。さらに、生成物をトルエン及びEtOHから再結晶化し、淡黄色固体を得た。収量は0.53g、収率は70%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、88.38%、7.45%及び4.35%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(CdCl3,3392MHz);1.37(s,18H)、1.49(s,18H)、6.23(d,J=8.5Hz,2H)、6.51(d,J=8.5Hz,2H)、6.95-7.07(m,8H)、7.29-7.62(m,15H)、8.07(d,J=1.8Hz,2H)、8.07(d,J=1.8Hz,2H)、8.21(d,J=1.8Hz,1H)、8.28(d,J=1.8Hz,1H)。
 以上の結果から、得られた有機物の示性式はC70693であり、分子量は925であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000074
 以下、生成物である有機物をDCZ-21という。
[実施例19]
 2ミリリットルのメシチレンに対し、0.64ミリモルの9-(4-ブロモフェニル)-9H-1,9’-ビカルバゾール、0.64ミリモルのN,9-ジフェニル-9H-カルバゾール-3-アミン、0.013ミリモルのPd(OAc)2、0.051ミリモルのt-Bu3P、0.96ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で4時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分をCHCl3で抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、トルエン/ヘキサンの1:1混合物を用いた。さらに、生成物をEtOHから再結晶化し、白色固体の有機物を得た。収量は0.24g、収率は51%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、87.48%、5.06%及び7.19%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(DMSO-d6,392MHz);5.98(d,J=8.5Hz,2H)、6.49(d,J=8.5Hz,2H)、6.82(d,J=7.2Hz,2H)、6.95-7.05(m,5H)、7.15-7.74(m,19H)、7.89-7.90(m,1H)、8.21-8.26(m,3H)、8.36-8.37(m,1H)、8.49-8.50(m,1H)。
 以上の結果から、得られた有機物の示性式はC54364であり、分子量は741であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000075
 以下、生成物である有機物をDCZ-22という。
[実施例20]
 2.5ミリリットルのメシチレンに対し、1ミリモルの9-(4-ブロモフェニル)-9H-1,9’-ビカルバゾール、1ミリモルのN,9-ジフェニルカルバゾール-2-アミン、0.02ミリモルのPd(OAc)2、0.08ミリモルのt-Bu3P、1.5ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で8時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分をCHCl3で抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/酢酸エチルの50:1混合物を用いた。さらに、生成物を酢酸エチル及びEtOHから再結晶化し、白色固体の有機物を得た。収量は0.24g、収率は51%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、87.40%、5.00%及び7.30%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(DMSO-d6,392MHz);6.03-6.05(m,2H)、6.50-6.52(m,2H)、6.73-7.79(m,26H)、8.08-8.09(m,2H)、8.19-8.21(m,2H)、8.36-8.38(m,1H)、8.49-8.52(m,1H)。
 以上の結果から、得られた有機物の示性式はC54364であり、分子量は741であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000076
 以下、生成物である有機物をDCZ-23という。
[実施例21]
 2.5ミリリットルのメシチレンに対し、1ミリモルの9-(4-ブロモフェニル)-9H-1,9’-ビカルバゾール、1ミリモルのビス(9,9-ジメチル-9H-フルオレン-2-イル)アミン、0.02ミリモルのPd(OAc)2、0.08ミリモルのt-Bu3P、1.5ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で5.5時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分をCHCl3で抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/酢酸エチルの50:1混合物を用いた。さらに、生成物をEtOHから再結晶化し、白色固体の有機物を得た。収量は0.38g、収率は47%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、88.50%、5.70%及び4.98%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(DMSO-d6,392MHz);1.31(s,12H)、6.14(d,J=8.5Hz,2H)、6.59(d,J=9.0Hz,2H)、6.70(dd,J=8.1及び2.2Hz,2H)、6.99(d,J=7.6Hz,2H)、7.06-7.08(m,3H)、7.24-7.53(m,14H)、7.81-7.85(m,4H)、8.27(d,J=7.2Hz,2H)、8.38(d,J=7.6Hz,1H)、8.49-8.52(m,1H)。
 以上の結果から、得られた有機物の示性式はC60453であり、分子量は808であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000077
 以下、生成物である有機物をDCZ-24という。
[実施例22]
 2.5ミリリットルのメシチレンに対し、1ミリモルのジカルバゾール、1ミリモルのN-([1,1’-ビフェニル]-4-イル)-N-(3-ブロモフェニル)-[1,1’-ビフェニル]-4-アミン、0.02ミリモルのPd(OAc)2、0.08ミリモルのt-Bu3P、1.5ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で6時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分をCHCl3で抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/酢酸エチルの25:1混合物を用いた。さらに、生成物をEtOHから再結晶化し、白色固体の有機物を得た。収量は0.60g、収率は82%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、89.36%、5.14%及び5.43%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(DMSO-d6,392MHz);δ6.32-6.38(m,3H),6.50-6.52(m,1H),6.77-6.83(m,4H),7.02-7.04(m,1H),7.14-7.53(m,16H),7.61-7.68(m,8H),8.17-8.22(m,2H),8.34-8.36(m,1H),8.47-8.49(m,1H)。
 以上の結果から、得られた有機物の示性式はC54373であり、分子量は728であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000078
 以下、生成物である有機物をDCZ-25という。
[実施例23]
 3ミリリットルのメシチレンに対し、1.1ミリモルのジカルバゾール、1.1ミリモルのN-([1,1’-ビフェニル]-4-イル)-N-(4-ブロモフェニル)ナフタレン-2-アミン、0.022ミリモルのPd(OAc)2、0.088ミリモルのt-Bu3P、1.65ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で6時間撹拌した。
 反応物を室温にて1規定のHClでクエンチした後、有機成分をクロロホルムで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。さらに、溶媒を真空中で除去して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、クロロホルムを用いた。さらに、生成物をトルエンから再結晶化し、白色固体の有機物を得た。収量は0.67g、収率は87%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、89.15%、5.02%及び5.92%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(392MHz,CDCl3);6.25-6.32(m,2H)、6.52-6.59(m,2H)、6.81(dd,J=8.3,2.0Hz,1H)、6.91(d,J=8.5Hz,2H)、7.04(d,J=8.3Hz,3H)、7.11(d,J=8.2 Hz,1H)、7.15-7.53(m,15H)、7.58-7.70(m,5H)、8.068.13(m,2H)、8.22(d,J=7.7Hz,1H)、8.32(dd,J=7.2,1.8Hz,1H)。
 以上の結果から、得られた有機物の示性式はC52353であり、分子量は702であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000079
 以下、生成物である有機物をDCZ-26という。
[実施例24]
 3.5ミリリットルのメシチレンに対し、1.33ミリモルのジカルバゾール、1.33ミリモルのN-(4-ブロモフェニル)-N-フェニルナフタレン-1-アミン、0.0266ミリモルのPd(OAc)2、0.106ミリモルのt-Bu3P、2ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で6時間撹拌した。
 反応物を室温にて1規定のHClでクエンチした後、有機成分をクロロホルムで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。さらに、溶媒を真空中で除去して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、クロロホルムを用いた。さらに、生成物をトルエンから再結晶化し、白色固体の有機物を得た。収量は0.78g、収率は94%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、88.54%、4.98%及び6.88%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(392MHz,CDCl3);6.12(d,J=8.6Hz,2H)、6.45(d,J=8.9Hz,2H)、6.76(d,J=7.8Hz,2H)、6.88-6.96(m,1H)、6.96-7.07(m,3H)、7.12-7.56(m,14H)、7.76(dd,J=16.8,8.3Hz,2H)、7.87(d,J=8.1Hz,1H)、8.05(dd,J=7.5,1.2Hz,2H)、8.21(d,J=7.7Hz,1H)、8.31(dd,J=7.4,1.5Hz,1H)。
 以上の結果から、得られた有機物の示性式はC46313であり、分子量は626であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000080
 以下、生成物である有機物をDCZ-27という。
[実施例25]
 3.5ミリリットルのメシチレンに対し、1.33ミリモルのジカルバゾール、1.33ミリモルのN-([1,1’-ビフェニル]-4-イル)-N-(4-ブロモフェニル)-9,9-ジメチル-9H-フルオレン-2-アミン、0.0266ミリモルのPd(OAc)2、0.106ミリモルのt-Bu3P、2ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で6時間撹拌した。
 反応物を室温にて1規定のHClでクエンチした後、有機成分を酢酸エチルで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥した。さらに、溶媒を真空中で除去して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/トルエンの2:1混合物を用いた。さらに、生成物を80℃にてエタノール中で撹拌し、白色沈殿物を得た。この液を冷却して濾過し、白色沈殿物(有機物)をエタノールから分離した。収量は990mg、収率は97%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、89.33%、5.42%及び5.56%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(392MHz,CDCl3);1.41(s,6H)、6.26-6.33(m,2H)、6.53-6.60(m,2H)、6.82(dd,J=8.3,2.0Hz,1H)、6.92(d,J=8.5Hz,2H)、7.05(d,J=8.3Hz,3H)、7.12(d,J=8.2Hz,1H)、7.16-7.54(m,16H)、7.59-7.71(m,4H)、8.078.14(m,2H)、8.24(d,J=7.7Hz,1H)、8.33(dd,J=7.2,1.8Hz,1H)。
 以上の結果から、得られた有機物の示性式はC57413であり、分子量は768であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000081
 以下、生成物である有機物をDCZ-28という。
[実施例26]
 2.5ミリリットルのメシチレンに対し、1ミリモルの9-(4-ブロモフェニル)-9H-1,9’-ビカルバゾール、1ミリモルの5,7-ジヒドロ-5-フェニル-インドロ[2,3-b]カルバゾール、0.02ミリモルのPd(OAc)2、0.08ミリモルのt-Bu3P、1.5ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で7時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分をCH3Clで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/酢酸エチルの10:1混合物を用いた。さらに、生成物をEtOHから再結晶させ、白色固体の有機物を得た。収量は0.33g、収率は45%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、87.64%、4.67%及び7.39%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(CDCl3,392MHz);6.73-6.75(m,2H)、6.84-6.86(m,2H)、7.02-7.12(m,7H)、7.22-7.59(m,16H)、7.79-7.81(m,2H)、8.21-8.28(m,3H)、8.35-8.37(m,1H)、8.78(s,1H)。
 以上の結果から、得られた有機物の示性式はC54344であり、分子量は739であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000082
 以下、生成物である有機物をDCZ-29という。
[実施例27]
 2.5ミリリットルのメシチレンに対し、1ミリモルのジカルバゾール、1ミリモルの2-ブロモ-9,9-ジフェニルフルオレン、0.02ミリモルのPd(OAc)2、0.08ミリモルのt-Bu3P、1.5ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で4時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分を酢酸エチルで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/酢酸エチルの10:1混合物を用いた。さらに、生成物をトルエン及びEtOHから再結晶させ、白色固体の有機物を得た。収量は0.55g、収率は85%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、90.92%、5.02%及び4.47%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(DMSO-d6,392MHz);6.48-6.61(m,3H)、6.69-6.94(m,7H)、7.18-7.34(m,13H)、7.46-7.56(m,5H)、7.84(d,J=7.6Hz,1H)、8.12(d,J=7.6Hz,1H)、8.35(d,J=7.6Hz,1H)、8.48-8.50(m,1H)。
 以上の結果から、得られた有機物の示性式はC49322であり、分子量は849であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000083
 以下、生成物である有機物をDCZ-30という。
[実施例28]
 2ミリリットルのメシチレンに対し、0.75ミリモルのフェニル-ジカルバゾール、0.75ミリモルの2-ブロモ-9,9-ジフェニルフルオレン、0.015ミリモルのPd(OAc)2、0.06ミリモルのt-Bu3P、1.13ミリモルのNaO(t-Bu)を添加して混合物を得た。この混合物を、不活性雰囲気下で150℃で4時間撹拌した。
 反応物を室温にて1モル/リットルのHClでクエンチした後、有機成分を酢酸エチルで抽出した。抽出物をブラインで洗浄し、その後、MgSO4で乾燥して粗生成物を得た。
 粗生成物を、シリカゲルカラムクロマトグラフィーによって精製した。このとき、ヘキサン/酢酸エチルの10:1混合物を用いた。さらに、生成物をトルエン及びEtOHから再結晶させ、白色固体の有機物を得た。収量は0.51g、収率は81%であった。該有機物につき、有機微量元素分析装置を用いて分析を行ったところ、分子中のC、H及びNは、それぞれ、90.99%、5.35%及び3.40%であった。また、NMRによる分析結果は、下記のとおりである。
1HNMR(DMSO-d6,392MHz);0.59(s,3H)、1.16(s,3H)、6.86-6.87(m,1H)、7.00-7.05(m,1H)、7.20-7.94(m,32H)、8.26-8.35(m,2H)、8.92-8.93(m,1H)、9.08-9.09(m,1H)。
 以上の結果から、得られた有機物の示性式はC63442であり、分子量は829であると判断された。この場合の化学反応式を、下記に示す。
Figure JPOXMLDOC01-appb-C000084
 以下、生成物である有機物をDCZ-31という。
[有機物(ジカルバゾリル類化合物)の物性評価]
 DCZ-1、DCZ-2、DCZ-3、DCZ-4、DCZ-9、DCZ-10、DCZ-11、DCZ-12、DCZ-13、DCZ-14及びDCZ-15につき、ガラス転移温度(Tg)、HOMO、LUMO、S1、T1、吸収端、蛍光極大波長、量子収率及び酸化電位を求めた。結果を、図2に一括して示す。上記の化合物のガラス転移温度は、全て100℃以上である。従って、これらの化合物は、有機EL素子の各層の素材として好適である。
 DCZ-16~DCZ-31についても同様に、ガラス転移温度(Tg)、HOMO、LUMO、S1、T1、吸収端及び酸化電位を求めた。結果を、図3に一括して示す。DCZ-16~DCZ-31もまた、100℃以上のガラス転移温度を有する。従って、DCZ-16~DCZ-31も、有機EL素子の各層の素材として好適である。
 図2及び図3から、各化合物の第一励起三重項状態(T1)のエネルギが高いことが分かる。また、各化合物におけるHOMOエネルギ(EHOMO)及び最低非占有準位エネルギ(ELUMO)は、特に青色発光材料を発光層に含む場合の電荷輸送材として用いるに当たって、適切な範囲内である。
[素子の評価その1]
 DCZ-9又はDCZ-10をホスト材料として含む発光層を備え、図1に示される構造を有する有機EL素子をそれぞれ作製した。比較のため、URP又は3,3’-ジ(9H-カルバゾール-9-イル)-1,1’-ビフェニルをホスト材料として含む発光層を備え、図1に示される構造を有する有機EL素子をそれぞれ作製した。以下、3,3’-ジ(9H-カルバゾール-9-イル)-1,1’-ビフェニルをm-CBPと表記する。
 各有機EL素子に蛍光、燐光又は熱活性化遅延蛍光(TADF)を発光させて寿命を評価した。なお、寿命は、発光強度が初期特性の90%に低下するまでの時間である。結果を、図4に併せて示す。この図4から、DCZ-9又はDCZ-10を発光層のホスト材料とする有機EL素子の寿命が、URP又はm-CBPを発光層のホスト材料とする有機EL素子の寿命に比べて優れていることが分かる。
 また、図4には特に示していないが、蛍光を発光させた場合では、DCZ-9又はDCZ-10を発光層のホスト材料とする有機EL素子は、URPを発光層のホスト材料とする有機EL素子よりも優れた効率を示した。
[素子の評価その2]
 正孔注入層(HIL)、正孔輸送層(HTL)、電子ブロック層(EBL)及び正孔ブロック層(HBL)を有する9種類の有機EL素子を作製した。以下、9種類の有機EL素子を、それぞれ、評価素子1~評価素子9と表記する。評価素子1~評価素子9におけるHIL、HTL、EBL及びHBLに含まれる有機化合物として、図5に示す物質を用いた。図5に示すように、評価素子1~評価素子9においては、HIL、HTL、EBL又はHBLの少なくともいずれかの層にDCZ-9又はDCZ-10が含まれている。
 なお、評価素子2のHTLと、評価素子5のHILとにそれぞれ含まれているOPDA-10とは、化学構造式が以下のように示される有機化合物である。
Figure JPOXMLDOC01-appb-C000085
 これら評価素子1~評価素子9につき、電圧(V)と、効率と、発光強度が初期特性の90%に低下するまでの時間(寿命)と、発光強度が初期特性の90%に低下するまでの電圧の変化(ΔV)とを評価した。結果を、図5に併せて示す。
 比較のため、DCZ-1等の有機化合物を含んだ層を全く有しない2種類の有機EL素子を作製した。以下、2種類の有機EL素子を、それぞれ、対照素子1及び対照素子2と表記する。なお、対照素子1及び対照素子2におけるHIL、HTL、EBL及びHBLに含まれる有機化合物は、図5に示されている。
 対照素子1及び対照素子2についても、電圧(V)、効率、寿命及び電圧の変化(ΔV)を評価した。結果を、図5に併せて示す。
 図5から、DCZ-9又はDCZ-10を含む層を有する評価素子1~評価素子9が、DCZ-9又はDCZ-10を含む層を有しない対照素子1及び対照素子2よりも優れた寿命を示すことが分かる。また、評価素子1~評価素子9の効率は、対照素子1及び対照素子2と略同等であるか、又は上回っている。以上のように、DCZ-9又はDCZ-10を含む層を有する有機EL素子(評価素子1~評価素子9)は、従来技術に係る有機EL素子(対照素子1及び対照素子2)と同等の効率を示し、且つ優れた寿命を示す。
10…有機EL素子          12…ガラス基板
14…アノード            16…正孔輸送層
18…発光層             20…電子輸送層
22…カソード

Claims (12)

  1.  2個のカルバゾリル基が結合したジカルバゾリル基か、又は、ジカルバゾリル基に対して1個以上の置換基が結合した置換ジカルバゾリル基を基本骨格として有するジカルバゾリル類化合物であって、
     前記基本骨格に含まれるN原子に対して直接結合するか、又は、前記N原子に対して媒介基を介して間接的に結合した官能基を有し、
     前記官能基は、アリール基、置換窒素含有芳香族複素環基又は無置換窒素含有芳香族複素環基の少なくともいずれか1個を有し、
     前記媒介基をINTと表し、前記官能基をFGと表すとき、下記の構造式で示される、ジカルバゾリル類化合物。
    Figure JPOXMLDOC01-appb-C000001
     上記構造式中のR2~R5は、水素か、又は、カルバゾリル基を構成するベンゼン環の任意の位置に結合した置換基を表し、且つmは0又は1である。
  2.  請求項1記載のジカルバゾリル類化合物において、前記官能基は、以下の構造式に示される構造を有する、ジカルバゾリル類化合物。
    Figure JPOXMLDOC01-appb-C000002
     上記構造式中のR6及びR7は、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基か、又は、置換窒素含有芳香族複素環基もしくは無置換窒素含有芳香族複素環基である。
  3.  請求項1記載のジカルバゾリル類化合物において、前記官能基は、以下の構造式に示される構造を有する、ジカルバゾリル類化合物。
    Figure JPOXMLDOC01-appb-C000003
     上記構造式中のR8は、水素か、又は、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基である。
  4.  請求項3記載のジカルバゾリル類化合物において、前記官能基はNを含む、ジカルバゾリル類化合物。
  5.  請求項1記載のジカルバゾリル類化合物において、前記官能基は、以下の構造式に示される構造を有する、ジカルバゾリル類化合物。
    Figure JPOXMLDOC01-appb-C000004
     上記構造式中のR11及びR12は、水素か、又は、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基である。
  6.  請求項1記載のジカルバゾリル類化合物において、前記官能基は、以下の構造式に示される構造を有する、ジカルバゾリル類化合物。
    Figure JPOXMLDOC01-appb-C000005
     上記構造式中のR9及びR10は、水素か、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基か、又は、置換窒素含有芳香族複素環基もしくは無置換窒素含有芳香族複素環基である。
  7.  請求項6記載のジカルバゾリル類化合物において、前記官能基は、ジカルバゾリル基又は置換ジカルバゾリル基を有する、ジカルバゾリル類化合物。
  8.  請求項7記載のジカルバゾリル類化合物において、前記ジカルバゾリル類化合物が前記媒介基を有し、且つ前記媒介基はフェニル基である、ジカルバゾリル類化合物。
  9.  請求項8記載のジカルバゾリル類化合物において、前記基本骨格と前記官能基とが、前記フェニル基においてo-位の位置関係にあるジカルバゾリル類化合物。
  10.  請求項8記載のジカルバゾリル類化合物において、前記フェニル基に対してカルバゾリル基又は置換カルバゾリル基がさらに結合した、ジカルバゾリル類化合物。
  11.  請求項1記載のジカルバゾリル類化合物において、前記ジカルバゾリル類化合物が前記媒介基を有するとき、前記媒介基は、フェニル基又はトリアジン基である、ジカルバゾリル類化合物。
  12.  請求項1~11のいずれか1項に記載されたジカルバゾリル類化合物を含む層を備える有機エレクトロルミネッセンス素子(10)。
PCT/JP2023/009107 2022-03-10 2023-03-09 ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子 WO2023171761A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247002001A KR20240023619A (ko) 2022-03-10 2023-03-09 디카르바졸릴류 화합물 및 유기전계발광소자
JP2023562803A JP7445249B2 (ja) 2022-03-10 2023-03-09 ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子
JP2024019891A JP2024059700A (ja) 2022-03-10 2024-02-14 ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/010682 WO2023170880A1 (ja) 2022-03-10 2022-03-10 ジカルバゾリルベンゼン類化合物及び有機エレクトロルミネッセンス素子
JPPCT/JP2022/010682 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171761A1 true WO2023171761A1 (ja) 2023-09-14

Family

ID=87935386

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/010682 WO2023170880A1 (ja) 2022-03-10 2022-03-10 ジカルバゾリルベンゼン類化合物及び有機エレクトロルミネッセンス素子
PCT/JP2023/009107 WO2023171761A1 (ja) 2022-03-10 2023-03-09 ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010682 WO2023170880A1 (ja) 2022-03-10 2022-03-10 ジカルバゾリルベンゼン類化合物及び有機エレクトロルミネッセンス素子

Country Status (3)

Country Link
JP (2) JP7445249B2 (ja)
KR (1) KR20240023619A (ja)
WO (2) WO2023170880A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011081061A1 (ja) * 2009-12-28 2011-07-07 新日鐵化学株式会社 有機電界発光素子
JP2013523606A (ja) * 2010-03-25 2013-06-17 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
WO2013161437A1 (ja) * 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
KR20140141337A (ko) * 2013-05-31 2014-12-10 제일모직주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
US20170117486A1 (en) * 2015-10-27 2017-04-27 Samsung Display Co., Ltd. Organic light-emitting device
US20170301868A1 (en) * 2014-10-06 2017-10-19 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element comprising the same and electronic device thereof
KR20180062208A (ko) * 2016-11-30 2018-06-08 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
CN110452153A (zh) * 2018-05-08 2019-11-15 北京鼎材科技有限公司 有机电致发光材料与器件
KR20200078254A (ko) * 2018-12-21 2020-07-01 솔브레인 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20200078253A (ko) * 2018-12-21 2020-07-01 솔브레인 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20200122252A (ko) * 2019-04-17 2020-10-27 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20210210700A1 (en) * 2018-11-28 2021-07-08 Universal Display Corporation Organic electroluminescent materials and devices
KR20220054483A (ko) * 2020-10-23 2022-05-03 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US20220177492A1 (en) * 2019-10-25 2022-06-09 Universal Display Corporation Organic electroluminescent materials and devices
CN114621237A (zh) * 2020-12-14 2022-06-14 广州华睿光电材料有限公司 有机化合物、混合物、组合物及有机电子器件

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011081061A1 (ja) * 2009-12-28 2011-07-07 新日鐵化学株式会社 有機電界発光素子
JP2013523606A (ja) * 2010-03-25 2013-06-17 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
WO2013161437A1 (ja) * 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
KR20140141337A (ko) * 2013-05-31 2014-12-10 제일모직주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
US20170301868A1 (en) * 2014-10-06 2017-10-19 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element comprising the same and electronic device thereof
US20170117486A1 (en) * 2015-10-27 2017-04-27 Samsung Display Co., Ltd. Organic light-emitting device
KR20180062208A (ko) * 2016-11-30 2018-06-08 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
CN110452153A (zh) * 2018-05-08 2019-11-15 北京鼎材科技有限公司 有机电致发光材料与器件
US20210210700A1 (en) * 2018-11-28 2021-07-08 Universal Display Corporation Organic electroluminescent materials and devices
KR20200078254A (ko) * 2018-12-21 2020-07-01 솔브레인 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20200078253A (ko) * 2018-12-21 2020-07-01 솔브레인 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20200122252A (ko) * 2019-04-17 2020-10-27 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20220177492A1 (en) * 2019-10-25 2022-06-09 Universal Display Corporation Organic electroluminescent materials and devices
KR20220054483A (ko) * 2020-10-23 2022-05-03 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN114621237A (zh) * 2020-12-14 2022-06-14 广州华睿光电材料有限公司 有机化合物、混合物、组合物及有机电子器件

Also Published As

Publication number Publication date
JP2024059700A (ja) 2024-05-01
KR20240023619A (ko) 2024-02-22
JP7445249B2 (ja) 2024-03-07
JPWO2023171761A1 (ja) 2023-09-14
WO2023170880A1 (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
JP6674892B2 (ja) 有機エレクトロルミネッセンス素子
CN111205270B (zh) 嘧啶衍生物和有机电致发光器件
JP6781630B2 (ja) テトラアザトリフェニレン環構造を有する化合物、発光材料および有機エレクトロルミネッセンス素子
CN110431680B (zh) 有机电致发光元件
TWI720044B (zh) 有機電致發光元件
US10566540B2 (en) Organic electroluminescent device
WO2014129201A1 (ja) 有機エレクトロルミネッセンス素子
JP6755806B2 (ja) 有機エレクトロルミネッセンス素子
KR20210153765A (ko) 카바졸 유도체, 및 카바졸 유도체를 사용하는 발광 소자, 발광 장치 및 전자 기기
EP3176845B1 (en) Organic electroluminescent element
JP6731352B2 (ja) 有機エレクトロルミネッセンス素子
EP4095216A1 (en) Organic electroluminescent element
US11925114B2 (en) Indenocarbazole compound and organic electroluminescence device
WO2023013575A1 (ja) 有機エレクトロルミネッセンス素子
JP7445249B2 (ja) ジカルバゾリル類化合物及び有機エレクトロルミネッセンス素子
TW202334078A (zh) 芳胺化合物、有機電致發光元件、及電子設備
KR102316844B1 (ko) 유기 일렉트로 루미네센스 소자
JP5525665B1 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2018127426A (ja) フェナセン誘導体、それよりなる発光材料及びそれを用いた有機el素子
US20170244034A1 (en) Aromatic compound and organic light-emitting diode including the same
KR20220130673A (ko) 아릴아민 화합물 및 유기 일렉트로루미네센스 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023562803

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247002001

Country of ref document: KR

Kind code of ref document: A