WO2023171725A1 - エレクトロクロミック素子用酸化タングステン塗料、酸化タングステン薄膜および調光部材 - Google Patents

エレクトロクロミック素子用酸化タングステン塗料、酸化タングステン薄膜および調光部材 Download PDF

Info

Publication number
WO2023171725A1
WO2023171725A1 PCT/JP2023/008904 JP2023008904W WO2023171725A1 WO 2023171725 A1 WO2023171725 A1 WO 2023171725A1 JP 2023008904 W JP2023008904 W JP 2023008904W WO 2023171725 A1 WO2023171725 A1 WO 2023171725A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten oxide
thin film
paint
electrochromic
nanoparticles
Prior art date
Application number
PCT/JP2023/008904
Other languages
English (en)
French (fr)
Inventor
一樹 田嶌
大輔 福士
秀一 齋藤
Original Assignee
国立研究開発法人産業技術総合研究所
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 東芝マテリアル株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023171725A1 publication Critical patent/WO2023171725A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds

Definitions

  • the present invention is a technology related to a tungsten oxide thin film used in an electrochromic element that changes color due to an electrochemical redox reaction.
  • An electrochromic device (hereinafter also referred to as "ECD") is a color variable element using an electrochromic material (hereinafter also referred to as "EC material”) that changes color by electrochemical redox reaction.
  • ECDs electrochromic devices
  • ECDs electrochromic devices
  • An ECD includes, for example, an EC material and a solid electrolyte.
  • EC materials used in light control glass include metal oxides such as tungsten oxide (Patent Document 1), small molecules such as viologen (Patent Document 2), and polymers such as PEDOT-PSS. (Patent Document 3), and coordination polymers represented by metal cyano complex nanoparticles (Patent Document 4).
  • ECDs using organic polymer materials and silver nanoparticles have recently been developed.
  • organic polymer materials generally often have problems with light resistance and are not suitable for use in light control glass.
  • development of ECD using silver nanoparticles has just begun, and light resistance and other properties have not been sufficiently evaluated.
  • inorganic materials are considered to have a certain advantage.
  • metal oxides and metal cyano complex nanoparticles have already been commercialized.
  • Patent Document 4 a flexible light control film using resin or the like as a transparent base material is being developed (Patent Document 4).
  • the technology of Patent Document 4 requires a cooling device to suppress damage to the resin base material due to the amount of heat input during film formation, especially due to the solid electrolyte manufacturing method, which requires a cooling device for process equipment.
  • the cost is also high due to dependence on Therefore, it is difficult to commercialize flexible light control films using resin base materials.
  • Non-Patent Document 1 the market size of Smart Glass, which is a generic term for light control glass, is expanding.
  • Smart Glass is manufactured using a batch process using vapor deposition or sputtering methods. Therefore, manufacturing costs and introduction/running costs are barriers to widespread use, and cost reduction through material and process development is strongly desired.
  • the present invention has been made in view of the above circumstances, and by providing a new EC material, an electrochromic thin film that enables high-speed response and high-contrast color change, and an electrochromic thin film using the same.
  • An object of the present invention is to provide a light control member as an electrochromic element.
  • tungsten oxide nanoparticles as an EC material, which have various characteristics such as crystallinity, amorphism, and oxygen defect introduction. Then, in a solvent, tungsten oxide nanoparticles whose half width of the peak detected at 29° ⁇ 1° in X-ray diffraction analysis (2 ⁇ ) is 2° or less and whose primary particle size is 5 to 25 nm are used.
  • the present invention was completed by discovering that the dispersed liquid was made into a paint by adding a binder, and a thin film formed using the paint had physical properties suitable for application to electrochromic devices.
  • a paint for forming a tungsten oxide thin film having electrochromic properties comprising a solvent, tungsten oxide nanoparticles dispersed in the solvent, and a binder, the tungsten oxide nanoparticles being A tungsten oxide paint for an electrochromic device, characterized in that the half width of a peak detected at 29° ⁇ 1° when subjected to diffraction analysis (2 ⁇ ) is 2° or less, and the primary particle size is 5 to 25 nm.
  • the tungsten oxide paint for an electrochromic device according to claim 1, wherein the content of the tungsten oxide nanoparticles is from 5% by mass to 30% by mass based on the mass of the paint.
  • the binder is one or more types selected from polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), and hydroxyethyl cellulose (HEC), and the content of the binder is
  • PVA polyvinyl alcohol
  • CMC sodium carboxymethyl cellulose
  • HPC hydroxypropyl cellulose
  • HEC hydroxyethyl cellulose
  • the tungsten oxide paint for an electrochromic device according to [1] or [2], wherein the tungsten oxide paint is 0.1% by mass or more and 10% by mass or less based on the mass of the paint.
  • the pH adjuster is selected from potassium chloride (KCl), sodium chloride (NaCl), lithium chloride (LiCl), potassium hydroxide (KOH), sodium hydroxide (NaOH), and lithium hydroxide (LiOH).
  • One or more (trifluoromethanesulfonyl)imides of bis(trifluoromethanesulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, potassium bis(trifluoromethanesulfonyl)imide, and sodium bis(trifluoromethanesulfonyl)imide The tungsten oxide thin film according to [8] or [9], which causes an electrochromic reaction in an electrolyte containing salt.
  • the dispersion liquid is a mixture of tungsten oxide nanoparticles and a solvent.
  • the paint of the present invention has a binder added to the dispersion. Therefore, a distinction is made between a dispersion and a paint.
  • Electrochromic devices can be manufactured and provided.
  • FIG. 1 is a cross-sectional view showing an example of an electrochromic device according to an embodiment.
  • FIG. 3 is a diagram showing the results of X-ray diffraction of tungsten oxide nanoparticles used in Examples. It is a transmission electron micrograph of tungsten oxide nanoparticles used in Examples. 1 is a field emission scanning electron micrograph of a tungsten oxide thin film according to an example and a comparative example. 3 is a cyclic voltammogram of tungsten oxide thin films according to Examples and Comparative Examples. It is a visible light transmission spectrum change of the tungsten oxide thin film based on an Example and a comparative example. It is a comparison of cyclic voltammograms of tungsten oxide thin films according to Examples.
  • ECD1 It is a cyclic voltammogram of ECD1 concerning an example. It is a visible light transmission spectrum of ECD1 according to an example. It is a photograph of the color change of ECD1 concerning an example. It is a total light transmission spectrum of ECD1 according to an example. It is a photograph of the color change of ECD2 concerning an example. It is a total light transmission spectrum of ECD2 according to an example. It is a total light transmission spectrum of ECD3 based on an example. It is a total light transmission spectrum of ECD4 according to an example. 2 is a graph showing the relationship between the amount of tungsten oxide nanoparticles 1 added and the pH of the paint for paints according to Examples.
  • 3 shows a change in visible light transmission spectrum of a tungsten oxide thin film according to an example. It is a graph which shows the result of the cycle test of ECD5 based on an Example. It is a graph which shows the result of the cycle test of ECD5 based on an Example. 3 shows changes in visible light transmission spectra when voltage resistance characteristics were measured for ECD5 and ECD6 according to Examples. It is a graph which shows the result of the cycle test of ECD7 based on an Example.
  • the tungsten oxide (WO 3 ) paint for electrochromic devices will be explained.
  • the tungsten oxide paint for electrochromic elements (hereinafter also simply referred to as "paint") according to the present invention is a paint for forming a tungsten oxide thin film having electrochromic properties, and is used for electrochromic elements.
  • the coating material of the present invention includes a solvent, tungsten oxide nanoparticles dispersed in the solvent, and a binder.
  • Tungsten oxide nanoparticles used in paints must have a peak half width of 2° or less at 29° ⁇ 1° when analyzed by X-ray diffraction (2 ⁇ ), and a primary particle size of 5 to 25 nm. It is characterized by
  • X-ray diffraction analysis uses, for example, Cu-K ⁇ rays (wavelength 1.54184 ⁇ ), tube voltage 40 kV, tube current 40 mA, operating axis 2 ⁇ / ⁇ , scanning range (2 ⁇ ) 10° to 60°, scanning speed 0. .1°/sec with a step width of 0.02°.
  • the peak detected at 29° ⁇ 1° used for specifying the half width is typically the strongest peak within the range of 29° ⁇ 1°.
  • the strongest peak is the peak with the largest intensity ratio.
  • the smaller value of the values at the base of both ends of the peak is used as a reference value.
  • the position from the reference value to the peak top is defined as the peak height.
  • the width of the peak at a position half the peak height is defined as the half width. Note that if there are two peaks at 29° ⁇ 1° and the bases of the peaks overlap, the half-width may be determined by analysis using software of an X-ray diffraction apparatus.
  • X-ray diffraction shows the crystallinity of tungsten oxide nanoparticles. If the crystallinity is good, a sharp peak with a small half width can be obtained.
  • the fact that the half width of the peak detected at 29° ⁇ 1° in X-ray diffraction analysis (2 ⁇ ) is 2° or less indicates that crystal defects are suppressed. Crystal defects are disturbances in crystal alignment. The introduction of crystal defects creates defects at the lower end of the bandgap conductor, narrowing the apparent bandgap. This creates absorption in the visible light range.
  • the upper limit of the half-width of the peak detected at 29° ⁇ 1° in X-ray diffraction analysis (2 ⁇ ) is 2° or less.
  • the lower limit of the half width is not particularly limited, but is preferably 0.1° or more.
  • the half width is less than 0.1°, it means that the repeatability of the crystal is high. This indicates that many of the primary particles have a primary particle size exceeding 25 nm. As the primary particle size increases, transmitted light is scattered, resulting in a decrease in transmittance at all wavelengths. Therefore, the lower limit of the half-value width of the peak detected at 29° ⁇ 1° when subjected to X-ray diffraction analysis (2 ⁇ ) is preferably 0.1° or more.
  • the primary particle size of tungsten oxide nanoparticles is the diameter of the primary particles, and can be identified, for example, from structural analysis using a transmission electron microscope (TEM). Note that when a ligand or the like is adsorbed on the surface of the tungsten oxide nanoparticle, the primary particle size is derived as the primary particle excluding the ligand.
  • the primary particle size is defined as the length of the longest diagonal of the particle. The longest diagonal line of primary particles present in a TEM image with a field of view of 60 nm x 60 nm shall be measured. In addition, only particles whose outlines of primary particles can be seen are counted. Furthermore, 10 or more primary particles shall be observed. For example, primary particles that overlap and whose outline cannot be observed are not counted.
  • the upper limit of the primary particle size of tungsten oxide nanoparticles is 25 nm or less from the viewpoint of increasing the specific surface area and improving the electrochemical response speed (i.e., the color change speed for switching between coloring and decoloring) and from the viewpoint of forming a smooth thin film. It is.
  • the lower limit of the primary particle size of tungsten oxide nanoparticles is not particularly limited, but is, for example, 5 nm or more.
  • the lower limit of the content of tungsten oxide nanoparticles is 5% by mass or more, preferably 10% by mass or more based on the mass of the paint (that is, when the entire paint is 100% by mass).
  • the upper limit of the content of tungsten oxide nanoparticles is 30% by mass or less, preferably 25% by mass or less, based on the mass of the paint.
  • any known production technique may be employed.
  • An example of a method for producing tungsten oxide nanoparticles is as follows.
  • the method for producing tungsten oxide (WO 3 ) particles includes a sublimation process.
  • the sublimation process is a process of manufacturing tungsten oxide nanoparticles by sublimating a tungsten oxide nanoparticle precursor or a precursor solution in an oxygen atmosphere.
  • the precursor of tungsten oxide nanoparticles is a metal tungsten powder or tungsten compound powder
  • the precursor solution of tungsten oxide nanoparticles is a solution in which these precursors are dissolved in a solvent (for example, water or alcohol).
  • tungsten compound known compounds capable of producing tungsten oxide (WO 3 ) particles can be used, such as various tungsten oxides (e.g. WO 3 , WO 2 ), tungsten carbide, ammonium tungstate, calcium tungstate. , tungstic acid, etc.
  • the tungsten oxide nanoparticle precursor or precursor solution is sublimated in an oxygen atmosphere using any known technique.
  • any one of plasma treatment, arc discharge treatment, laser treatment, and electron beam treatment is used, and among these, inductively coupled plasma treatment is preferably used.
  • X-ray diffraction can be achieved by appropriately setting the various conditions of the treatments (plasma treatment, arc discharge treatment, laser treatment, or electron beam treatment) performed in the sublimation process and the average particle size of the metallic tungsten powder and tungsten compound powder. It is possible to produce tungsten oxide nanoparticles whose half width of the peak detected at 29° ⁇ 1° when analyzed (2 ⁇ ) is 2° or less and whose primary particle size is 5 to 25 nm.
  • the manufacturing method may include steps other than the sublimation step.
  • a heat treatment step may be included after the sublimation step in order to improve the proportion of tungsten oxide (WO 3 ) in the powder after the sublimation step.
  • any solvent that can disperse the tungsten oxide nanoparticles and does not affect the tungsten oxide nanoparticles is used.
  • water or alcohol is used as a solvent.
  • the alcohol one or more types are selected from isopropanol, ethanol, methanol, n-propanol, isobutanol, n-butanol, and the like. From the viewpoint of improving the dispersibility of tungsten oxide nanoparticles, for example, only water is preferable.
  • the binder used in the paint is not particularly limited, but one or more binders selected from organic binders and inorganic binders may be used.
  • organic binder for example, cellulose derivatives, vinyl resins, fluororesins, silicone resins, acrylic resins, epoxy resins, polyester resins, melamine resins, urethane resins, alkyd resins, etc. are used.
  • inorganic binders include products obtained by decomposing hydrolyzable silicon compounds such as alkyl silicates, silicon halides, and partial hydrolysates thereof, organic polysiloxane compounds and their polycondensates, silica, and colloidal silica. , water glass, silicon compounds, phosphates such as zinc phosphate, metal oxides such as zinc oxide and zirconium oxide, biphosphates, cement, plaster, lime, frit for enamel, etc. are used.
  • tungsten oxide thin film for example, one or more types selected from polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), and hydroxyethyl cellulose (HEC) can be used as a binder. It is preferable to use it as PVA, sodium carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), and hydroxyethyl cellulose (HEC) can be used as a binder. It is preferable to use it as
  • the lower limit of the content of the binder is 0.1% by mass or more, preferably 0.15% by mass or more based on the mass of the paint (that is, when the entire paint is 100% by mass).
  • the upper limit of the content of the binder is 10% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less based on the mass of the paint.
  • the coating material of the present invention may further contain a pH adjuster.
  • the pH adjuster used in the paint is not particularly limited, but one or more pH adjusters selected from pH adjusters that do not inhibit electrochemical reactions may be arbitrarily used. Since the electrochromic device according to the present invention is driven by a redox reaction related to lithium, potassium, or sodium, for example, potassium chloride (KCl), sodium chloride (NaCl), lithium chloride (LiCl), potassium hydroxide (KOH), etc. ), sodium hydroxide (NaOH), and lithium hydroxide (LiOH).
  • potassium chloride KCl
  • NaCl sodium chloride
  • LiCl lithium chloride
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • LiOH lithium hydroxide
  • the content of the pH adjuster in the paint is appropriately controlled depending on the solid amount of tungsten oxide nanoparticles.
  • the pH of the paint containing the pH adjuster is, for example, 2 to 8. However, from the viewpoint of improving durability, the pH of the paint is preferably 3 or more, more preferably 5 to 7, and even more preferably about 5.
  • the paint may contain various other additives in addition to the binder and pH adjuster.
  • additives include antifoaming agents, crosslinking agents, curing catalysts, pigment dispersants, emulsifiers, film forming aids, thickeners, neutralizing agents, preservatives, and the like.
  • Electrochromic elements are used as light control members that can adjust light.
  • FIG. 1 is a cross-sectional view showing an example of an ECD 100 according to the present embodiment.
  • the ECD 100 includes a first electrochromic layer 10 (an example of a "tungsten oxide thin film"), a second electrochromic layer 20 (an example of a "metal cyano complex thin film"), and an electrolyte layer 30. , a first transparent electrode layer 40, a second transparent electrode layer 50, a first insulating layer 60, and a second insulating layer 70.
  • the ECD 100 is configured by laminating these layers (10, 20, 30, 40, 50, 60, 70).
  • the electrolyte layer 30 is located between the first electrochromic layer 10 and the second electrochromic layer 20.
  • the first transparent electrode layer 40 is located on the surface of the first electrochromic layer 10 opposite to the electrolyte layer 30.
  • the second transparent electrode layer 50 is located on the surface of the second electrochromic layer 20 opposite to the electrolyte layer 30.
  • the first insulating layer 60 is located on the surface of the first transparent electrode layer 40 opposite to the first electrochromic layer 10 .
  • the second insulating layer 70 is located on the surface of the second transparent electrode layer 50 opposite to the second electrochromic layer 20.
  • the first electrochromic layer 10 and the second electrochromic layer 20 are layers having electrochromic properties, and their colors change reversibly through redox reactions (they reversibly change between a colored state and a decolored state). .
  • the first electrochromic layer 10 is colored in a reduced state and decolored in an oxidized state.
  • the second electrochromic layer 20 is decolored in a reduced state and colored in an oxidized state.
  • the ECD 100 is driven by applying a voltage between the first transparent electrode layer 40 and the second transparent electrode layer 50. Specifically, the ECD 100 changes between the first state and the second state when a voltage is applied between the first transparent electrode layer 40 and the second transparent electrode layer 50.
  • the first electrochromic layer 10 In the first state, the first electrochromic layer 10 is in an oxidized state (that is, a decolored state), and the second electrochromic layer 20 is in a reduced state (that is, a decolored state).
  • the first electrochromic layer 10 In the second state, the first electrochromic layer 10 is in a reduced state (that is, a colored state), and the second electrochromic layer 20 is in an oxidized state (that is, a colored state).
  • the first electrochromic layer 10 includes the above-described tungsten oxide (WO 3 ) particles and a binder. That is, the first electrochromic layer 10 is a tungsten oxide thin film. Tungsten oxide nanoparticles are colorless (almost colorless and transparent) in an oxidized state, and colored blue in a reduced state.
  • tungsten oxide WO 3
  • the thickness of the first electrochromic layer 10 is appropriately set depending on the purpose, and is, for example, 500 to 1500 nm. Note that the thickness of the first electrochromic layer 10 may or may not be constant (that is, it may vary depending on the position in the plane direction).
  • the present invention is a thin film having electrochromic properties and containing tungsten oxide nanoparticles and a binder, wherein the tungsten oxide nanoparticles are detected at an angle of 29° ⁇ 1° when subjected to X-ray diffraction analysis (2 ⁇ ). It can also be considered as a tungsten oxide thin film in which the half width of the peak is 2° or less and the primary particle size is 5 to 25 nm. Furthermore, the tungsten oxide thin film according to the present invention may contain the above-mentioned pH adjuster.
  • the second electrochromic layer 20 contains a material whose coloring and decoloring changes due to redox reactions are opposite to that of tungsten oxide used in the first electrochromic layer 10, and preferably metal cyano complex nanoparticles or oxides. They are nanoparticles. Note that the second electrochromic layer 20 containing metal cyano complex nanoparticles is an example of a metal cyano complex thin film, and the second electrochromic layer 20 containing oxide nanoparticles is an example of an oxide thin film.
  • metal cyano complex nanoparticles or oxide nanoparticles are used in the second electrochromic layer 20, any type can be used as long as they cause a redox reaction reversibly.
  • Metal cyano complexes or oxide nanoparticles are materials that are colored in an oxidized state and decolorized in a reduced state.
  • metal cyano complex particles particles of a Prussian blue type metal cyano complex represented by the general formula "AxM ⁇ [M ⁇ (CN) 6 ]y ⁇ zH 2 O" are preferably used.
  • A is an atom selected from the group consisting of hydrogen, lithium, sodium, and potassium.
  • M ⁇ is selected from the group consisting of vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium, and calcium. It is one or more metal atoms.
  • M ⁇ is one or more metal atoms selected from the group consisting of vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, nickel, platinum, and copper. Note that x is 0 to 3, y is 0.3 to 1.5, and z is 0 to 30.
  • metal cyano complex one type represented by the above general formula may be used, or a mixture of multiple types may be used.
  • the upper limit of the primary particle size of the metal cyano complex nanoparticles is 300 nm or less, preferably 100 nm or less, from the viewpoint of increasing the specific surface area and improving the electrochemical response speed and from the viewpoint of forming a smooth thin film. Preferably it is 50 nm or less.
  • the lower limit of the primary particle size of the metal cyano complex nanoparticles is not particularly limited, but is, for example, 4 nm or more, preferably 5 nm or more, and more preferably 6 nm or more. Note that the method for measuring the primary particle size of the metal cyano complex nanoparticles is the same as that described above for the primary particle size of the tungsten oxide nanoparticles.
  • the thickness of the second electrochromic layer 20 is appropriately set depending on the purpose, and is, for example, 500 to 3000 nm. Note that the thickness of the second electrochromic layer 20 may or may not be constant (that is, it may vary depending on the position in the plane direction).
  • Electrolyte layer 30 is a layer containing an electrolyte. The first electrochromic layer 10 and the second electrochromic layer 20 undergo an electrochromic reaction in the electrolyte.
  • the electrolyte used in the electrolyte layer 30 preferably contains (trifluoromethanesulfonyl)imide salt.
  • the (trifluoromethanesulfonyl)imide salt includes one or more types from bis(trifluoromethanesulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, potassium bis(trifluoromethanesulfonyl)imide, and sodium bis(trifluoromethanesulfonyl)imide. . Among these, potassium bis(trifluoromethanesulfonyl)imide is preferred.
  • the content of the electrolyte in the electrolyte layer 30 is not particularly limited, but from the viewpoint of improving the electrochemical response speed in the ECD 100, it is, for example, 0.1 to 1.5 mol/kg, preferably 0.5 to 1.5 mol. /kg.
  • the electrolyte layer 30 may contain a solvent or a resin in addition to the electrolyte.
  • a solvent contained in the electrolyte layer 30
  • known solvents capable of dissolving the electrolyte contained in the electrolyte layer 30 can be used, such as chain carbonic acid esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and ethylene carbonate.
  • cyclic carbonates such as propylene carbonate and butylene carbonate
  • aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate, methyl benzoate, and benzoic acid.
  • Aromatic carboxylic acid esters such as ethyl, lactones such as ⁇ -butyrolactone and ⁇ -valerolactone, lactams such as ⁇ -caprolactam and N-methylpyrrolidone, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, and 1,3-dioxolane.
  • Cyclic ethers chain ethers such as 1,2-diethoxyethane, ethoxymethoxyethane, sulfones such as ethylmethylsulfone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, acetonitrile, propionitrile, methoxypropio Nitriles such as nitrile, phosphoric acid esters such as trimethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, and triethyl phosphate, alcohols such as ethanol and 2-propanol, glycols such as ethylene glycol, propylene glycol, and polyethylene glycol, and water.
  • One or more types can be selected from the following.
  • the resin contained in the electrolyte layer 30 is not particularly limited, and includes acrylic resin, urethane resin, silicone resin, epoxy resin, vinyl chloride resin, ethylene resin, melamine resin, phenol resin, methyl methacrylate resin, polyvinyl alcohol resin, and polyvinyl.
  • One or more types of resins can be selected from known resins such as acetal resins and polyethylene oxide resins.
  • the electrolyte layer 30 contains resin, the mechanical strength of the electrolyte layer 30 can be improved.
  • the electrolyte layer 30 may optionally contain various other additives as long as the functions of the electrolyte layer 30 are not impaired.
  • additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, tackifiers, color inhibitors, flame retardants, and antistatic agents.
  • the thickness of the electrolyte layer 30 is appropriately set depending on the purpose, and is, for example, 50 ⁇ m to 0.3 mm. Note that the thickness of the electrolyte layer 30 may or may not be constant (that is, it may vary depending on the position in the plane direction).
  • electrolyte layer 30 may be colored or colorless (transparent). The color of the electrolyte layer 30 can be changed as appropriate depending on the purpose.
  • First transparent electrode layer 40 and second transparent electrode layer 50 are layers made of a transparent conductive material.
  • conductive materials such as indium tin oxide (ITO), zinc oxide, and those doped with metals such as aluminum, silver, and titanium, noble metals such as gold and platinum, and non-conductive materials such as stainless steel and aluminum. Alloys and metals that have corrosion resistance due to their functional films, and carbon materials such as graphene and carbon nanotubes can be used. From the viewpoint of durability, it is particularly preferable to use FTO (fluorine-doped tin) or TCO (transparent conductive oxide) as the transparent electrode layer (40, 50).
  • FTO fluorine-doped tin
  • TCO transparent conductive oxide
  • the thickness of the first transparent electrode layer 40 and the second transparent electrode layer 50 is appropriately set depending on the purpose, and is, for example, 100 to 300 nm. Note that the thicknesses of the first transparent electrode layer 40 and the second transparent electrode layer 50 may or may not be constant (that is, they may differ depending on the position in the plane direction).
  • the thickness of the first transparent electrode layer 40 is intentionally made to be non-uniform. Good too. Specifically, the surface of the first transparent electrode layer 40 is made to have irregularities (that is, the smoothness of the surface is reduced). The convex portion on the surface of the first transparent electrode layer 40 is made of, for example, a conductive material. Similarly, from the viewpoint of increasing the contact area between the second electrochromic layer 20 and the second transparent electrode layer 50 and improving the response speed, the thickness of the second transparent electrode layer 50 may not be constant. .
  • the first transparent electrode layer 40 may contain known additives for the purpose of improving adhesion with the first electrochromic layer 10 and suppressing corrosion.
  • the second transparent electrode layer 50 may contain known additives for the purpose of improving adhesion with the second electrochromic layer 20 and suppressing corrosion.
  • known additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, tackifiers, color inhibitors, flame retardants, and antistatic agents.
  • First insulating layer 60 and second insulating layer 70 are layers made of a transparent insulating material.
  • the first insulating layer 60 and the second insulating layer 70 are formed of resin, glass, or the like.
  • the resin include polyethylene terephthalate (PET), polycarbonate, and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the first insulating layer 60 and the second insulating layer 70 may contain known agents such as ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, tackifiers, anti-coloring agents, flame retardants, and antistatic agents. It may contain additives.
  • the thickness of the first insulating layer 60 and the second insulating layer 70 is, for example, 50 ⁇ m to 1.1 mm. Note that the thicknesses of the first insulating layer 60 and the second insulating layer 70 may or may not be constant (that is, they may differ depending on the position in the planar direction).
  • the ECD 100 changes between the first state and the second state by applying voltage.
  • Prussian blue type metal complex particles for example, iron-iron cyano complex particles
  • a transparent material is used in the electrolyte layer 30.
  • the ECD 100 exhibits a color change from dark blue to colorless and transparent.
  • Tungsten oxide is almost colorless and transparent in an oxidized state
  • iron-iron cyano complex particles are almost colorless and transparent in a reduced state. Therefore, the ECD 100 becomes colorless and transparent in the first state.
  • tungsten oxide is colored blue in a reduced state
  • iron-iron cyano complex nanoparticles are colored blue in an oxidized state. Therefore, the ECD 100 exhibits dark blue color when in the second state.
  • the ECD 100 is not limited to the above configuration.
  • the first insulating layer 60 and the second insulating layer 70 may be omitted in the ECD 100.
  • the ECD 100 may include layers other than the layers (10, 20, 30, 40, 50, 60, 70) explained above.
  • another layer for example, an insulating layer
  • other layers may be provided between the second transparent electrode and the second insulating layer 70.
  • the ECD according to the present embodiment by combining the first electrochromic layer 10 containing tungsten oxide (WO 3 ) nanoparticles and the second electrochromic layer 20 containing metal cyano complex nanoparticles, It enables high-speed response and high-contrast color changes.
  • tungsten oxide (WO 3 ) nanoparticles tungsten oxide (WO 3 ) nanoparticles
  • metal cyano complex nanoparticles metal cyano complex nanoparticles
  • first transparent electrode layer 40 and second transparent electrode layer 50 in FIG. Applicable are used as base materials.
  • ITO coated glass is used as a base material
  • first transparent electrode layer 40 and second transparent electrode layer 50 in FIG. Applicable are used as base materials.
  • first substrate second transparent electrode layer 50+second insulating layer 70
  • second substrate first transparent electrode layer 40+first insulating layer 60
  • the second electrochromic layer 20 (metallic A first film-forming substrate is manufactured by forming a cyano complex thin film).
  • a second film-forming substrate is manufactured by forming the first electrochromic layer 10 (tungsten oxide thin film) on the second substrate using the same method using the tungsten oxide paint according to the present invention.
  • An electrolyte layer 30 is formed on the first film forming substrate using a dispenser.
  • a sealing structure is formed on the outer periphery using UV curing resin. Alternatively, this sealing structure can be formed using a commercially available electronic device sealing tape.
  • the second film-forming substrate is placed on top of the first film-forming substrate, and pressed and bonded together in a vacuum chamber. If a sealing tape is used, there is no problem even if the bonding is performed at room temperature and atmospheric pressure. In this way, the structure of the first insulating layer 60 / first transparent electrode layer 40 / first electrochromic layer 10 / electrolyte layer 30 / second electrochromic layer 20 / second transparent electrode layer 50 / second insulating layer 70 is obtained. An ECD consisting of is obtained.
  • Tungsten oxide nanoparticles Tungsten oxide nanoparticles 1-4 were produced as follows.
  • FIG. 2 shows the analysis results of tungsten oxide nanoparticles 1-4 by powder X-ray diffraction method.
  • the X-ray diffraction method was performed using Cu-K ⁇ rays (wavelength: 1.54184 ⁇ ). Note that tungsten oxide nanoparticles 1-4 matched the diffraction information of tungsten oxide nanoparticles searched from the standard sample database.
  • Tungsten oxide nanoparticles 1 0.9° Tungsten oxide nanoparticles 2: 0.7° Tungsten oxide nanoparticles 3: 0.7° Tungsten oxide nanoparticles 4: 0.6°
  • FIG. 3 is a transmission electron micrograph of tungsten oxide nanoparticles 1 and tungsten oxide nanoparticles 4. It was confirmed that both tungsten oxide nanoparticles 1 and tungsten oxide nanoparticles 4 had a primary particle size within the range of 5 to 25 nm. Specifically, tungsten oxide nanoparticles 1 are aggregates of nanoparticles (primary particles) with a diameter of about 10 nm or less, and tungsten oxide nanoparticles 4 are aggregates of nanoparticles with a diameter of about 20 nm. Ta.
  • tungsten oxide paint for electrochromic devices A tungsten oxide paint for an electrochromic device according to an example and a dispersion liquid according to a comparative example were prepared as follows.
  • Example 1 After suspending 25 g of tungsten oxide nanoparticles 1 (powder sample) in 75 mL of water, PVA was added as a binder to lower the surface tension, and the paint according to Example 1 was obtained by stirring. PVA was added so that the solid amount of PVA based on the entire paint was 0.63% by mass.
  • Example 2 The procedure was the same as in Example 1 except that PVA was added so that the solid amount of PVA based on the entire paint was 0.15% by mass.
  • Example 3 The procedure was the same as in Example 1 except that PVA was added so that the solid amount of PVA based on the entire paint was 1.29% by mass.
  • Example 4 It is the same as Example 1 except that CMC was added instead of PVA as a binder. CMC was added so that the solid amount of CMC was 1.32% by mass based on the entire paint.
  • Example 5 It is the same as Example 1 except that HPC was added instead of PVA as a binder. The HPC was added so that the solid amount of HPC was 0.68% by mass based on the entire paint.
  • Example 6 It is the same as Example 1 except that HEC was added as a binder instead of PVA. The HEC was added so that the solid amount of HEC was 0.83% by mass based on the entire paint.
  • Comparative Example 1 The same as Example 1 except that no binder was added. That is, Comparative Example 1 is not a paint but simply a dispersion.
  • Tungsten oxide thin film Tungsten oxide thin films (first electrochromic layer) according to Examples and Comparative Examples were produced as follows.
  • Example 1-A A tungsten oxide thin film according to Example 1-A was produced using the paint of Example 1 on an ITO-coated glass substrate made of glass (first insulating layer) coated with ITO (first transparent electrode layer). A spin coating method was used to form the tungsten oxide thin film.
  • Example 1 the viscosity of the paint of Example 1 was adjusted to about 15 mPa ⁇ s by filtering it before use. 2 ml was weighed out with a micropipette, dropped onto a 100 mm square ITO coated glass substrate placed in a spin coater, rotated at 400 rpm for 10 seconds, and then rotated at 800 rpm for 10 seconds to form a thin film.
  • Example 1-A was obtained by naturally drying the produced thin film.
  • the thickness of the tungsten oxide thin film according to Example 1-A is approximately 1000 nm.
  • Example 1-B Tungsten oxide according to Example 1-B was applied to an ITO-coated polyethylene terephthalate (PET) substrate made of polyethylene terephthalate (first insulating layer) coated with ITO (first transparent electrode layer) using the paint according to Example 1. A thin film was formed. A spin coating method was used to form the tungsten oxide thin film.
  • PET polyethylene terephthalate
  • first insulating layer polyethylene terephthalate
  • ITO first transparent electrode layer
  • Example 1 the viscosity of the paint according to Example 1 was adjusted to about 15 mPa ⁇ s by filtering it before use. 500 ⁇ l was weighed out with a micropipette, dropped onto a 50 mm square ITO coated PET substrate placed in a spin coater, and rotated at 400 rpm for 10 seconds, then at 800 rpm for 10 seconds to form a thin film.
  • Example 1-B was obtained by naturally drying the produced thin film.
  • the thickness of the tungsten oxide thin film according to Example 1-B is approximately 1000 nm.
  • Example 1-C Example 1-B except that the tungsten oxide thin film according to Example 1-C was formed on an ITO-coated polycarbonate substrate made of polycarbonate (first insulating layer) coated with ITO (first transparent electrode layer). The same is true.
  • the thickness of the tungsten oxide thin film according to Example 1-C is approximately 1000 nm.
  • Example 1-D Except that the tungsten oxide thin film according to Example 1-D was formed on an ITO-coated polyethylene naphthalate (PEN) substrate consisting of polyethylene naphthalate (first insulating layer) coated with ITO (first transparent electrode layer). , similar to Example 1-B.
  • the thickness of the tungsten oxide thin film according to Example 1-D is approximately 1000 nm.
  • Example 2-A A tungsten oxide thin film according to Example 2-A was formed using the paint according to Example 2 on an ITO-coated glass substrate similar to that used in Example 1-A. A spin coating method was used to form the tungsten oxide thin film.
  • Example 2 the viscosity of the paint according to Example 2 was adjusted to about 15 mPa ⁇ s by filtering it before use. 500 ⁇ l was weighed out with a micropipette, dropped onto a 50 mm square ITO coated glass substrate placed in a spin coater, and rotated at 400 rpm for 10 seconds, then at 800 rpm for 10 seconds to form a thin film.
  • Example 2-A was obtained by naturally drying the produced thin film.
  • the thickness of the tungsten oxide thin film according to Example 2-A is approximately 1000 nm.
  • Example 3-A It is the same as Example 2-A except that the paint according to Example 3 was used.
  • the thickness of the tungsten oxide thin film according to Example 3-A is approximately 1000 nm.
  • Example 4-A A tungsten oxide thin film according to Example 4-A was formed using the paint according to Example 4 on an ITO-coated glass substrate similar to that used in Example 1-A. A spin coating method was used to form the tungsten oxide thin film.
  • Example 4 the viscosity of the paint according to Example 4 was adjusted to about 15 mPa ⁇ s by filtering it before use. 400 ⁇ l was weighed out with a micropipette, dropped onto a 50 mm square ITO coated glass substrate placed in a spin coater, rotated at 350 rpm for 5 minutes, and then rotated at 1000 rpm for 5 seconds to form a thin film.
  • Example 4-A was obtained by naturally drying the produced thin film. The thickness of the tungsten oxide thin film according to Example 4-A is approximately 1000 nm.
  • Example 5-A A tungsten oxide thin film according to Example 5-A was formed using the paint according to Example 5 on an ITO-coated glass substrate similar to that used in Example 1-A. A spin coating method was used to form the tungsten oxide thin film.
  • Example 5 the viscosity of the paint according to Example 5 was adjusted to about 15 mPa ⁇ s by filtering it before use. 400 ⁇ l was weighed out with a micropipette, dropped onto a 50 mm square ITO-coated glass substrate set in a spin coater, rotated at 250 rpm for 5 minutes, and then rotated at 1000 rpm for 5 seconds to form a thin film.
  • Example 5-A was obtained by naturally drying the produced thin film. The thickness of the tungsten oxide thin film according to Example 5-A is approximately 1000 nm.
  • Example 6-A The same as Example 5-A except that the paint according to Example 6 was used.
  • the thickness of the tungsten oxide thin film according to Example 6-A is approximately 1000 nm.
  • ⁇ Comparative example 1-A> It is the same as Example 2-A except that the dispersion according to Comparative Example 1 was used instead of the paint.
  • the thickness of the tungsten oxide thin film according to Comparative Example 1-A is approximately 1000 nm.
  • FIG. 4 is a field emission scanning electron micrograph of Examples 1-A, 2-A, 3-A and Comparative Example 1-A. As shown in FIG. 4, Comparative Example 1-A in which no binder was added had poor adhesion to the ITO-coated glass substrate, and peeling of the film and large cracks were also observed. On the other hand, in Examples 1-A, 2-A, and 3-A in which PVA was added, the adhesion was good, and no peeling of the film or large cracks were observed.
  • Examples 1-A, 2-A, 3-A and Comparative Example 1-A were evaluated by cyclic voltammetry. Specifically, we used a platinum wire as the counter electrode, a saturated silver/silver chloride electrode as the reference electrode, and a potassium bis(trifluoromethanesulfonyl)imide (KTFSI)-propylene carbonate solution with a concentration of 1.5 mol/kg as the electrolyte. Cyclic voltammograms were acquired at 5 millivolts/second. FIG. 5 shows cyclic voltammograms of Examples 1-A, 2-A, 3-A and Comparative Example 1-A.
  • KTFSI potassium bis(trifluoromethanesulfonyl)imide
  • Example 1-A, 2-A, 3-A and Comparative Example 1-A the end potentials were measured by chronocoulometry at -1.2 V (reduced state) and +1.0 V (oxidized state). The visible light transmission spectrum was obtained.
  • FIG. 6 shows visible light transmission spectra of Examples 1-A, 2-A, 3-A and Comparative Example 1-A.
  • the amount of PVA added is preferably 0.1 to 1.0% by mass based on the entire paint.
  • Examples 4-A, 5-A, and 6-A were evaluated. Specifically, a platinum wire was used as the counter electrode, a saturated silver/silver chloride electrode was used as the reference electrode, a potassium bis(trifluoromethanesulfonyl)imide (KTFSI)-propylene carbonate solution with a concentration of 1.5 mol/kg was used as the electrolyte, and the scan rate was 5. Cyclic voltammograms were acquired at millivolts/second. FIG. 7 shows cyclic voltammograms of Examples 4-A, 5-A, and 6-A. As shown in FIG. 7, it was found that the tungsten oxide thin film produced a good redox reaction no matter which binder was used.
  • KTFSI potassium bis(trifluoromethanesulfonyl)imide
  • Metal cyano complex thin film A coating material of metal cyano complex nanoparticles (Preparation Example 1) was adjusted as follows to produce iron-iron cyano complex thin films (second electrochromic layer) according to Preparation Examples 1-A to D.
  • the yield at this time was 11.0 g, and the yield was 97.4% as Fe[Fe(CN) 6 ] 0.75 ⁇ 3.75H 2 O.
  • the precipitate of the prepared iron-iron cyano complex nanoparticles AFe1 was analyzed using a powder X-ray diffractometer, the diffraction information matched the diffraction information of Fe 4 [Fe(CN) 6 ] 3 , which is Prussian blue, searched from the standard sample database. did.
  • the iron-iron cyano complex nanoparticles were aggregates of nanoparticles (primary particles) with a diameter of 5 to 25 nm.
  • an iron-iron cyano complex nanoparticle thin film according to Preparation Example 1-A was prepared on an ITO-coated glass substrate by a spin coating method. Specifically, a 50 mm square ITO-coated glass substrate was placed in a spin coater, 500 ⁇ L of a mixture of 10 mass % PVA as a binder added to the paint of Adjustment Example 1 adjusted to 9 mass % was added, and the spin coater was rotated at 400 rpm for 10 seconds. Then, it was rotated at 900 rpm for 10 seconds to produce Adjustment Example 1-A on an ITO-coated glass substrate.
  • the thickness of the iron-iron cyano complex nanoparticle thin film according to Preparation Example 1-A is about 1000 nm.
  • ⁇ Adjustment example 1-B> This is the same as Preparation Example 1-A except that an ITO-coated polyethylene naphthalate (PET) substrate was used instead of the ITO-coated glass substrate.
  • PET polyethylene naphthalate
  • the thickness of the iron-iron cyano complex nanoparticle thin film according to Preparation Example 1-B is about 1000 nm.
  • ⁇ Adjustment example 1-C> It is the same as Preparation Example 1-A except that an ITO-coated glass polycarbonate substrate was used instead of an ITO-coated glass substrate.
  • the thickness of the iron-iron cyano complex nanoparticle thin film according to Preparation Example 1-C is about 1000 nm.
  • Adjustment Example 1-D It is the same as Adjustment Example 1-A except that an ITO-coated polyethylene terephthalate (PEN) substrate was used in place of the ITO-coated glass substrate.
  • the thickness of the iron-iron cyano complex nanoparticle thin film according to Preparation Example 1-D is about 1000 nm.
  • ECD1-4 according to the example was prepared by combining a tungsten oxide thin film (first electrochromic layer) and a metal cyano complex thin film (second electrochromic layer). Then, each ECD produced was evaluated.
  • Tungsten oxide/iron-iron cyano complex nanoparticle ECD was prepared as dark blue-colorless and transparent ECD1. Specifically, between the ITO coated glass substrate on which the tungsten oxide thin film according to Example 1-A was formed and the ITO coated glass substrate on which the iron-iron cyano complex nanoparticle thin film according to Adjustment Example 1-A was formed. An electrolyte layer was sandwiched between the two to produce ECD1. The electrolyte layer was prepared by adding 30 parts by weight of methyl methacrylate polymer to 100 parts by weight of propylene carbonate to a potassium bis(trifluoromethanesulfonyl)imide (KTFSI)-propylene carbonate solution with a concentration of 1.5 mol/kg. The viscosity was increased by heating from .degree. C. to 80.degree. C. for about 24 hours. For ECD1, the potential was defined with the working electrode facing the tungsten oxide thin film side.
  • KTFSI potassium bis(trifluoromethanesulfony
  • FIG. 8 shows the results of measuring the cyclic voltammogram of ECD1 at a scan rate of 5 millivolts/second. As shown in FIG. 8, it can be seen that ECD1 exhibits a good redox reaction.
  • FIG. 9 shows the results of acquiring the visible light transmission spectrum of ECD1.
  • ECD1 exhibited a deep colored state when a voltage of -0.8V was applied, and returned to a colorless and transparent state when a voltage of +1.2V was applied.
  • FIG. 10 shows a photograph of how the color of ECD1 changes.
  • FIG. 11 shows the results of acquiring the total light transmission spectrum of ECD1.
  • a dry battery of plus or minus 1.5V was used.
  • the ECD 1 can switch the transmittance in a wide wavelength range not only in the visible light range but also in the near-infrared range.
  • visible light transmittance and solar radiation transmittance were calculated from the obtained measurement data using JIS R 3106:1998 (ISO 9050:2003).
  • the visible light transmittance was 71.71% in the transparent state and 7.73% in the colored state.
  • the solar transmittance was 55.13% in the transparent state and 6.12% in the colored state. From the above results, it can be seen that the glass has effective performance as a light control glass.
  • ECD2> In ECD2, the ITO coated PET substrate on which the tungsten oxide thin film according to Example 1-B was formed and the ITO coated PET substrate on which the iron-iron cyano complex nanoparticle thin film according to Adjustment Example 1-B was formed were used. Other than this, it is the same as ECD1.
  • ECD2 the potential was defined with the working electrode facing the tungsten oxide thin film side.
  • FIG. 12 shows photographs of changes in ECD2.
  • ECD2 exhibited a deep colored state when a voltage of -0.8V was applied, and returned to a colorless and transparent state when a voltage of +1.2V was applied.
  • FIG. 13 shows the results of acquiring the total light transmission spectrum of ECD2.
  • a dry battery of plus or minus 1.5V was used.
  • the ECD 2 can switch the transmittance in a wide wavelength range not only in the visible light region but also in the near-infrared region.
  • visible light transmittance and solar radiation transmittance were calculated from the obtained measurement data using JIS R 3106:1998 (ISO 9050:2003).
  • the visible light transmittance was 78.98% in the transparent state and 1.64% in the colored state.
  • the solar transmittance was 55.81% in the transparent state and 2.86% in the colored state. From the above results, it can be seen that the film has effective performance as a light control film.
  • ECD3> an ITO coated polycarbonate substrate on which a tungsten oxide thin film according to Example 1-C was formed and an ITO coated polycarbonate substrate on which an iron-iron cyano complex nanoparticle thin film according to Adjustment Example 1-C was formed were used. Other than this, it is the same as ECD1.
  • ECD3 the potential was defined with the working electrode facing the tungsten oxide thin film side.
  • FIG. 14 shows the results of acquiring the total light transmission spectrum of ECD3.
  • a dry battery of plus or minus 1.5V was used.
  • the ECD 3 can switch the transmittance in a wide wavelength range not only in the visible light range but also in the near-infrared range.
  • visible light transmittance and solar radiation transmittance were calculated from the obtained measurement data using JIS R 3106:1998 (ISO 9050:2003).
  • the visible light transmittance was 72.63% in the transparent state and 6.75% in the colored state.
  • the solar transmittance was 67.49% in the transparent state and 4.80% in the colored state. From the above results, it can be seen that the film has effective performance as a light control film.
  • ECD4> In ECD4, the ITO coated PEN substrate on which the tungsten oxide thin film according to Example 1-D was formed and the ITO coated PEN substrate on which the iron-iron cyano complex nanoparticle thin film according to Adjustment Example 1-D was formed were used. Other than this, it is the same as ECD1.
  • ECD4 the potential was defined with the working electrode facing the tungsten oxide thin film side.
  • FIG. 15 shows the results of acquiring the total light transmission spectrum of ECD4.
  • a dry battery of plus or minus 1.5V was used.
  • the ECD 4 can switch the transmittance in a wide wavelength range not only in the visible light range but also in the near-infrared range.
  • visible light transmittance and solar radiation transmittance were calculated from the obtained measurement data using JIS R 3106:1998 (ISO 9050:2003).
  • the visible light transmittance was 67.90% in the transparent state and 4.47% in the colored state.
  • the solar transmittance was 47.81% in the transparent state and 3.19% in the colored state. From the above results, it can be seen that the film has effective performance as a light control film.
  • Example 7 After suspending tungsten oxide nanoparticles 1 (powder sample) in water so that the amount added is 0.10% by mass based on the entire paint, 0.01% by mass of PVA was added as a binder to lower the surface tension. A paint was obtained by adding and stirring so that Similarly, a paint was obtained in which the amount of tungsten oxide nanoparticles 1 added was 1% by mass and the amount of PVA added was 0.1% by mass with respect to the entire paint. Similarly, a paint was obtained in which the amount of tungsten oxide nanoparticles 1 added was 10% by mass and the amount of PVA added was 1% by mass with respect to the entire paint.
  • a paint was obtained in which the amount of tungsten oxide nanoparticles 1 added was 20% by mass and the amount of PVA added was 2% by mass with respect to the entire paint.
  • the case where the amount of tungsten oxide nanoparticles 1 added is 0% by mass refers to pure water produced from Milli-Q (registered trademark).
  • FIG. 16 is a graph showing the relationship between the amount of tungsten oxide nanoparticles 1 added (mass %) and the pH of the paint for Example 7.
  • the pH of the paint is relatively attenuated depending on the amount of tungsten oxide nanoparticles 1 added. Specifically, when it is 0.10% by mass, the pH is 4.83, when it is 1% by mass, it is pH 4.11, when it is 10% by mass, it is pH 3.15, and when it is 20% by mass, it is pH 4.11. %, the pH is 2.87.
  • Example 8 Adjust the pH with HCl or NaOH for 20 mL of the paint, which has been adjusted so that the solid amount of tungsten oxide nanoparticles 1 is 0.1% by mass based on the entire paint and PVA as a binder is 0.01% by mass. As a result, a paint having a pH of 2 to 7 was obtained.
  • Table 1 shows the type and amount of the pH adjuster used in Example 8, and the adjusted pH.
  • the pH is relatively attenuated depending on the amount of tungsten oxide nanoparticles added. Specifically, when the amount of tungsten oxide nanoparticles added was 0.1% by mass, the pH was about 4.83. As understood from Table 1, it is possible to adjust the pH of the paint using a pH adjuster. Specifically, by adding an acidic solvent (HCL) or a basic solvent (NaOH) to the paint, the pH of the paint could be arbitrarily adjusted.
  • HCL acidic solvent
  • NaOH basic solvent
  • Example 9 The solid amount of tungsten oxide nanoparticles 1 was adjusted to 7.9% by mass or 20% by mass based on the entire paint, and 20mL of paint was added with 0.79% by mass and 2% by mass of PVA as a binder, respectively. On the other hand, a paint according to Example 9 was prepared by adjusting the pH with 0.1M NaOH.
  • FIG. 17 is a graph showing the relationship between the amount of 0.1M NaOH added and the pH of the paint for the paint of Example 9. As in the case of FIG. 16, the higher the concentration of tungsten oxide nanoparticles, the more acidic the pH. The pH could be adjusted by adjusting the amount of NaOH added for each concentration of tungsten oxide nanoparticles.
  • Example 10 The solid amount of tungsten oxide nanoparticles 1 was adjusted to 20% by mass based on the entire paint, and 0.1M NaOH was added to 20mL of the paint, in which PVA was added as a binder to 2% by weight.
  • a tungsten oxide thin film was prepared using a paint whose pH was adjusted using A plurality of tungsten oxide thin films were fabricated with different amounts of 0.1M NaOH added (ie, pH). 400 ⁇ l of the paint was weighed out with a micropipette, dropped onto a 50 mm square ITO coated glass substrate placed in a spin coater, rotated at 500 rpm for 10 seconds, and then rotated at 1000 rpm for 10 seconds to form a thin film.
  • a tungsten oxide thin film according to Example 10 was obtained by naturally drying the produced thin film. It was confirmed that the thickness of the tungsten oxide thin film according to Example 10 was influenced by the pH of the paint. Specifically, it is about 0.57 nm when the pH is 3 (the amount of 0.1M NaOH added is 1ml to 20mL of the paint), and it is about 0.57nm when the pH is 4 (the amount of 0.1M NaOH added is 3ml to 20mL of the paint).
  • FIG. 18 shows changes in the visible light transmission spectrum of the tungsten oxide thin film according to Example 10.
  • the broken line (1) shows the visible light transmission spectrum change in the initial state
  • the solid line (2) shows the visible light transmission spectrum change when changing from the initial state to the colored state
  • (3) shows the change in the visible light transmission spectrum when changing from the initial state to the colored state.
  • the broken line shown is the visible light transmission spectrum change when returning from the colored state to the transparent state.
  • ECD comprising a tungsten oxide thin film made of pH-adjusted paint was produced. Note that comparisons were also made regarding the base materials, using soda glass and PET film as the base materials, and using ITO, FTO (fluorine-doped tin), and highly durable TCO (transparent conductive oxide) as the transparent electrode materials.
  • ECD5 is a tungsten oxide film made from a paint with a pH of 2.2 (paint adjusted so that the solid amount of tungsten oxide nanoparticles 1 is 13.9% by mass and the amount of PVA added is 0.7% by weight relative to the entire paint).
  • This is an electrochromic device (using a glass substrate) that includes a thin film.
  • a cycle test was conducted under the measurement conditions shown in Table 2 to examine changes in transmittance between light of 550 nm and 700 nm. As shown in Table 2, a cycle of alternately applying a voltage of -1.2V (30 seconds) and a voltage of +1.0V (30 seconds) was repeated 1000 times (continuous measurement: approximately 16.6 hours). ). The results of the cycle test are shown in FIG.
  • highly durable TCO and FTO exhibited stable cycle resistance, but rapid deterioration was observed in ITO. It is suggested that the cause of this is that the acidic tungsten oxide thin film attacks the ITO and corrodes the ITO.
  • the highly durable TCO and FTO which are transparent electrode materials, have excellent chemical resistance and corrosion resistance, and have high stability compared to ITO, and therefore have good durability.
  • ECD6 is a paint with a pH of 5.0 (0.1 M NaOH for 20 mL of paint adjusted so that the solid amount of tungsten oxide nanoparticles 1 is 14.0% by mass and the amount of PVA added is 0.7% by weight with respect to the entire paint).
  • This is an electrochromic element (using a glass substrate) comprising a tungsten oxide thin film made from a tungsten oxide thin film (paint containing 5 ml of additive).
  • ECD6 was also subjected to a cycle test under the measurement conditions shown in Table 2 to examine changes in transmittance between 550 nm and 700 nm light. The results of the cycle test are shown in FIG. As shown in FIG.
  • FIG. 21 shows changes in visible light transmission spectra when voltage resistance characteristics were measured under the conditions shown in Table 3 for ECD5 and ECD6.
  • coloring is performed by applying a negative potential while raising and lowering the voltage at a pitch of 0.5 V using the multipotential step (MPS) method.
  • Reaction ⁇ Device color (discoloration of the transparent conductive film and color change state of the light control film) was monitored when a decoloring reaction was performed by applying a positive potential.
  • an electrochromic element using a tungsten oxide thin film made of a pH 2.4 paint deteriorates quickly, whereas a pH 4. It can be seen that an electrochromic element using a tungsten oxide thin film made of a paint adjusted to a temperature of 9 exhibits high durability. As understood from the above explanation, adjusting the pH of the paint is an effective method for improving durability.
  • the ECD according to the present invention has a large range of change in transmittance.
  • This element is expected to be used in photochromic glass/films, displays, indicators, etc., and since it also has the ability to control particularly long wavelength components, it can be used in applications such as automobile window glass and building material window glass, where infrared rays are the thermal component of solar energy. It is also expected to be used as an energy-saving light control member that can optimize the amount of inflow.
  • Electrolyte layer 40 First transparent electrode layer 50: Second transparent electrode layer 60: First insulating layer 70: Second insulating layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

エレクトロクロミック特性を有する酸化タングステン薄膜を形成するための塗料であって、溶媒と、当該溶媒に分散された酸化タングステンナノ粒子と、バインダーとを含み、前記酸化タングステンナノ粒子は、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、一次粒径が5~25nmであることを特徴とするエレクトロクロミック素子用酸化タングステン塗料。

Description

エレクトロクロミック素子用酸化タングステン塗料、酸化タングステン薄膜および調光部材
 本発明は、電気化学的な酸化還元反応により色変化するエレクトロクロミック素子に使用される酸化タングステン薄膜に関する技術である。
 エレクトロクロミック素子(以下「ECD」ともいう)は、電気化学的な酸化還元反応により色が変化するエレクトロクロミック材料(以下「EC材料」ともいう)を用いた色可変素子である。ECD(electrochromic device)は、色の変化によって反射率を制御する車載用ミラーや、光の透過率を制御して空調効率を高めことのできる車や建物の窓への使用が検討されている。さらには、ECDは、ディスプレイやサングラスなどへの使用も検討されている。ECDは、例えばEC材料と固体電解質とを具備する。
 近年では、特に建物用や乗り物用の調光ガラスへのECDの応用が盛んに検討されている。調光ガラスに用いられるEC材料としては、例えば、酸化タングステンに代表される金属酸化物(特許文献1)、ビオロゲンに代表される小分子(特許文献2)、PEDOT-PSSに代表される高分子(特許文献3)、金属シアノ錯体ナノ粒子に代表される配位高分子(特許文献4)などが挙げられる。
 また、最近では有機高分子材料や銀ナノ粒子を利用したECDも開発されている。しかしながら、有機高分子材料は、一般的に耐光性に課題を抱えることが多く、調光ガラス用途には向いていない。また、銀ナノ粒子を利用したECDは、開発が始まったばかりであり、耐光性などの評価も十分になされていない。
 このように耐光性などの観点からは、無機材料に一定の優位性があると考えられる。無機材料のなかでは金属酸化物と金属シアノ錯体ナノ粒子がすでに商用化されている。
 しかしながら、主要なEC材料である酸化タングステンを用いたアプリケーションにおいては、固体電解質を含む種々の材料は、マグネトロンスパッタ法等による物理プロセスで主に製造されている。つまり、基材としてガラスを用いたバッチプロセスであるために大量生産に課題がある。
 また、利便性・可搬性・可撓性・コスト等の兼ね合いから、透明な基材として樹脂等を用いたフレキシブル調光フィルムの開発が行われている(特許文献4)。しかし、特許文献4の技術では、特に固体電解質の作製方法により成膜時の投入熱量等による樹脂基材のダメージを抑制するために冷却装置が必要となるなどの理由から、プロセス上の設備にも依存して高コストとなっている。したがって、樹脂基材を用いたフレキシブル調光フィルムについては商業化が困難な実態がある。
 例えば、調光ガラスの総称であるSmart Glassは、市場規模を拡大しつつある。しかし、Smart Glassは、Low-Eガラス等と同様に、蒸着あるいはスパッタ法によるバッチプロセスでの製造を前提としている。したがって、製造コストと導入・ランニングコストの面で普及の障壁となっており、材料・プロセス開発による低コスト化が強く望まれている(非特許文献1)。
 低コスト化を図る観点から、無機EC材料として、プルシアンブルー型金属シアノ錯体ナノ粒子を水に分散させた分散液を塗布などの手法により形成した電極と、酸化タングステンナノ粒子を水に分散させた分散液を塗布などの手法により形成した電極とを組み合わせ、着色-透明の変化を生じるエレクトロクロミック素子が報告されている(特許文献5)。
特開平08-254717号 特開2009-215166号 特表2005-519316号 特開2011-180469号 特開2018-021113号
QUADRENNIAL TECHNOLOGY REVIEW, Chapter5, p.160, DOE, 2015
 調光材料としての酸化タングステンと金属シアノ錯体との組み合わせは注目されるところではある。しかし、酸化タングステンと金属シアノ錯体との組み合わせを用いた多種多様なアプリケーションの普及のためには、多用途のニーズに対応出来る生産性(低コスト化、量産性)、耐久性(回数、使用環境)、導入・制御システムの簡便さ、エネルギー使用量の低減が課題として挙げられる。特に着色時と無色透明時との間で高コントラストとなる色変化および高速応答の可能なEC材料が望まれており、また、このようなEC材料を利用したエレクトロクロミック素子が望まれている。さらに、省エネルギー用窓材への応用においては、熱エネルギーの高効率制御性の付与に関して、耐光性などの観点から新しいEC材料を具備する形で実現することが望まれている。
 本発明は、以上の事情を鑑みてなされたものであって、新しいEC材料を提供することによって、高速応答化を可能とし、高コントラストとなる色変化を得られるエレクトロクロミック薄膜及びそれを用いたエレクトロクロミック素子としての調光部材を提供することを課題とする。
 発明者らは、鋭意検討を重ねた結果、EC材料としての酸化タングステンナノ粒子について、結晶性、非結晶性、酸素欠陥導入など様々な特徴を有するナノ粒子の製造方法および物性検討を行った。そして、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、かつ、一次粒径が5~25nmである酸化タングステンナノ粒子を溶媒に分散させた分散液にバインダーを添加することで塗料化し、該塗料を用いて形成した薄膜がエレクトロクロミック素子応用に適する物性を有することを見出して本発明を完成した。
[1]エレクトロクロミック特性を有する酸化タングステン薄膜を形成するための塗料であって、溶媒と、当該溶媒に分散された酸化タングステンナノ粒子と、バインダーとを含み、前記酸化タングステンナノ粒子は、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、一次粒径が5~25nmであることを特徴とするエレクトロクロミック素子用酸化タングステン塗料。
[2]前記酸化タングステンナノ粒子の含有量は、塗料質量に対して5質量%以上30質量%以下であることを特徴とする請求項1に記載のエレクトロクロミック素子用酸化タングステン塗料。
[3]前記バインダーは、ポリビニルアルコール(PVA)、カルボキシメチルセルロースナトリウム(CMC)、ヒドロキシプロピルセルロース(HPC)、および、ヒドロキシエチルセルロース(HEC)から選択される1種類以上であり、前記バインダーの含有量は、塗料質量に対して0.1質量%以上10質量%以下であることを特徴とする[1]または[2]に記載のエレクトロクロミック素子用酸化タングステン塗料。
[4]pH調整剤を含む[1]から[3]に記載のエレクトロクロミック素子用酸化タングステン塗料。
[5]前記pH調整剤は、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化リチウム(LiCl)、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)から選択される1種類以上であることを特徴とする[4]に記載のエレクトロクロミック素子用酸化タングステン塗料。
[6]pHが5~7である[4]または[5]に記載のエレクトロクロミック素子用酸化タングステン塗料。
[7]塗布法により酸化タングステン薄膜を形成可能であることを特徴とする[1]から[6]に記載のエレクトロクロミック素子用酸化タングステン塗料。
[8]エレクトロクロミック特性を有し、酸化タングステンナノ粒子とバインダーとを含む薄膜であって、前記酸化タングステンナノ粒子は、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、一次粒径が5~25nmであることを特徴とする酸化タングステン薄膜。
[9]pH調整剤を含む[8]に記載の酸化タングステン薄膜。
[10]ビス(トリフルオロメタンスルホニル)イミド、リチウム ビス(トリフルオロメタンスルホニル)イミド、カリウム ビス(トリフルオロメタンスルホニル)イミド、ナトリウム ビス(トリフルオロメタンスルホニル)イミドのいずれか一種類以上の(トリフルオロメタンスルホニル)イミド塩を含む電解質中でエレクトロクロミック反応を生じることを特徴とする[8]または[9]に記載の酸化タングステン薄膜。
[11][8]から[10]に記載の酸化タングステン薄膜と、
 酸化タングステンとは酸化還元反応による着色および消色の変化が逆である、金属シアノ錯体ナノ粒子を含む金属シアノ錯体薄膜または酸化物ナノ粒子を含む酸化物薄膜と、 前記酸化タングステン薄膜と、前記金属シアノ錯体薄膜または前記酸化物薄膜との間に位置する電解質層とを具備することを特徴とする
 調光部材。
 分散液は、酸化タングステンナノ粒子と溶媒とを混合したものである。それに対して、本発明の塗料は、分散液にバインダーを添加したものである。そのため、分散液と塗料とは区別される。
 本発明によれば、前記酸化タングステンナノ粒子を用いた薄膜と金属シアノ錯体ナノ粒子を用いた薄膜とを適切に組み合わせることで、高コントラストに、かつ、高速に着色及び消色を切り替えることができるエレクトロクロミック素子を製造・提供することができる。
実施形態に係るエレクトロクロミック素子の一例を示す断面図である。 実施例で使用した酸化タングステンナノ粒子のX線回折結果を示す図である。 実施例で使用した酸化タングステンナノ粒子の透過電子顕微鏡写真である。 実施例および比較例に係る酸化タングステン薄膜の電界放出型走査電子顕微鏡写真である。 実施例および比較例に係る酸化タングステン薄膜のサイクリックボルタモグラムである。 実施例および比較例に係る酸化タングステン薄膜の可視光透過スペクトル変化である。 実施例に係る酸化タングステン薄膜のサイクリックボルタモグラムの比較である。 実施例に係るECD1のサイクリックボルタモグラムである。 実施例に係るECD1の可視光透過スペクトルである。 実施例に係るECD1の色変化の写真である。 実施例に係るECD1の全光線透過スペクトルである。 実施例に係るECD2の色変化の写真である。 実施例に係るECD2の全光線透過スペクトルである。 実施例に係るECD3の全光線透過スペクトルである。 実施例に係るECD4の全光線透過スペクトルである。 実施例に係る塗料について酸化タングステンナノ粒子1の添加量と塗料のpHとの関係とを示すグラフである。 実施例に係る塗料について0.1M NaOHの添加量と塗料のpHと関係を示すグラフである。 実施例に係る酸化タングステン薄膜の可視光透過スペクトル変化を示す。 実施例に係るECD5のサイクル試験の結果を示すグラフである。 実施例に係るECD5のサイクル試験の結果を示すグラフである。 実施例に係るECD5とECD6とについて、耐電圧特性を測定した際の可視光透過スペクトル変化を示す。 実施例に係るECD7のサイクル試験の結果を示すグラフである。
[エレクトロクロミック素子用酸化タングステン塗料]
 本発明に係るエレクトロクロミック素子用酸化タングステン(WO3)塗料について説明する。本発明に係るエレクトロクロミック素子用酸化タングステン塗料(以下、単に「塗料」とも表記する)は、エレクトロクロミック特性を有する酸化タングステン薄膜を形成するための塗料であり、エレクトロクロミック素子に用いられる。具体的には、本発明の塗料は、溶媒と、当該溶媒に分散された酸化タングステンナノ粒子と、バインダーとを含む。
 なお、以下の説明において、数値範囲を示す「A~B」は、「A以上B以下」と同義である。
 塗料に用いられる酸化タングステンナノ粒子は、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、一次粒径が5~25nmであることを特徴とする。
 X線回折分析(2θ)は、例えばCu-Kα線(波長1.54184Å)を用い、管電圧40kV、管電流40mA、操作軸2θ/θ、走査範囲(2θ)10°~60°、走査スピード0.1°/秒、ステップ幅0.02°で行うことができる。
 半値幅の特定に用いられる29°±1°に検出されるピークは、典型的には29°±1°の範囲内で最強のピークを使用するものとする。最強のピークとは、強度比が最も大きなピークのことである。半値幅の測定は、ピークにおける両端部の根元部分の値のうち、小さい方の値を基準値とする。基準値からピークトップまでの位置をピーク高さとする。そして、ピーク高さの半分の位置のピークの幅を半値幅とする。なお、29°±1°にピークが2つあり、ピークのすそのが重なっている場合は、X線回折装置のソフトによる解析で半値幅を求めてもよい。
 X線回折は、酸化タングステンナノ粒子の結晶性を示すものである。結晶性が良いと半値幅が小さいシャープなピークが得られる。X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であるということは、結晶欠陥が抑制されていることを示している。結晶欠陥とは、結晶配列の乱れである。結晶欠陥が入ることで、バンドギャップの伝導体の下端に欠陥が入り、見かけのバンドギャップが狭まる。これにより、可視光域に吸収が生まれる。以上の理由により、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅の上限値は、2°以下である。
 半値幅の下限値は、特に限定されるものではないが、0.1°以上であることが好ましい。半値幅が0.1°未満である場合は結晶の繰り返し性が高いことを意味している。これは一次粒子の一次粒径が25nmを超えるものが多いことを示している。一次粒径が大きくなると、透過光が散乱するため、透過率が全波長で低下する。このため、X線回折分析(2θ)したとき29°±1°に検出されるピークの半値幅の下限値は、0.1°以上が好ましい。
 酸化タングステンナノ粒子の一次粒径とは、一次粒子の直径であり、例えば透過電子顕微鏡(TEM)を用いた構造解析から同定できる。なお、酸化タングステンナノ粒子の表面に配位子などが吸着している場合には、一次粒径は、配位子を除いたものを一次粒子として導出する。一次粒径は粒子の最も長い対角線の長さとする。視野60nm×60nmのTEM画像中に存在する一次粒子の最も長い対角線を測定するものとする。また、一次粒子の輪郭が分かる粒子のみをカウントするものとする。また、一次粒子は10粒以上を観察するものとする。例えば、一次粒子同士が重なって輪郭が観察できないものはカウントしない。
 酸化タングステンナノ粒子における一次粒径の上限値は、比表面積を高めて電気化学応答速度(すなわち着色および消色を切り替える色変化速度)を向上する観点や平滑な薄膜を形成する観点から、25nm以下である。酸化タングステンナノ粒子における一次粒径の下限値は、特に制限はないが、例えば5nm以上である。
 酸化タングステンナノ粒子の含有量の下限値は、塗料質量に対して(すなわち塗料全体を100質量%としたときに)5質量%以上であり、好ましくは10質量%以上である。酸化タングステンナノ粒子の含有量の上限値は、塗料質量に対して30質量%以下であり、好ましくは25質量%以下である。酸化タングステンナノ粒子の含有量を上記の範囲内にすることで、均質な酸化タングステン薄膜を製造することができる。
 本発明に係る塗料に使用される酸化タングステンナノ粒子の製造方法については、公知の製造技術が任意に採用される。酸化タングステンナノ粒子の製造方法の一例は、以下の通りである。
 酸化タングステン(WO3)粒子の製造方法は、昇華工程を含む。昇華工程は、酸化タングステンナノ粒子の前駆体または前駆体溶液を酸素雰囲気中で昇華させることで酸化タングステンナノ粒子を製造する工程である。酸化タングステンナノ粒子の前駆体としては、金属タングステン粉末またはタングステン化合物粉末であり、酸化タングステンナノ粒子の前駆体溶液としては、これら前駆体を溶媒(例えば水やアルコール)で溶解した溶液である。
 なお、タングステン化合物としては、酸化タングステン(WO3)粒子を製造可能な公知の化合物が使用でき、例えば、各種の酸化タングステン(例えばWO3、WO2)、炭化タングステン、タングステン酸アンモニウム、タングステン酸カルシウム、タングステン酸等が例示される。
 昇華工程では、公知の任意の技術を用いて、酸素雰囲気中で酸化タングステンナノ粒子の前駆体または前駆体溶液を昇華する。例えば、昇華工程においては、プラズマ処理、アーク放電処理、レーザー処理および電子線処理の何れかが使用され、これらの中でも誘導結合型プラズマ処理が好適に使用される。
 昇華工程で実行される処理(プラズマ処理、アーク放電処理、レーザー処理または電子線処理)の各種の条件や、金属タングステン粉末およびタングステン化合物粉末の平均粒径を適宜に設定することで、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、一次粒径が5~25nmである酸化タングステンナノ粒子が製造可能である。
 なお、製造方法は、昇華工程以外の他の工程を含んでもよい。例えば、昇華工程後の粉末中における酸化タングステン(WO3)の割合を向上させる目的で昇華工程の後に熱処理工程を含んでもよい。
 塗料に使用される溶媒としては、酸化タングステンナノ粒子を分散させることが可能であり、酸化タングステンナノ粒子に影響がない任意の溶媒が使用される。例えば、水やアルコールが溶媒として使用される。アルコールとしては、イソプロパノール、エタノール、メタノール、n-プロパノール、イソブタノール、n-ブタノールなどから1種以上が選択される。酸化タングステンナノ粒子の分散性を向上させる観点からは、例えば水のみが好ましい。
 塗料に使用されるバインダーとしては、特に限定されないが、有機バインダーあるいは無機バインダーから選択される1種以上のバインダーが任意に使用される。有機バインダーとしては、例えばセルロース誘導体、ビニル樹脂、フッ素系樹脂、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂等が用いられる。無機バインダーとしては、例えばアルキルシリケート、ハロゲン化ケイ素、およびこれらの部分加水分解物等の加水分解性ケイ素化合物を分解して得られる生成物、有機ポリシロキサン化合物とその重縮合物、シリカ、コロイダルシリカ、水ガラス、ケイ素化合物、リン酸亜鉛等のリン酸塩、酸化亜鉛、酸化ジルコニウム等の金属酸化物、重リン酸塩、セメント、石膏、石灰、ほうろう用フリット等が用いられる。
 均質な酸化タングステン薄膜を作製する観点からは、例えば、ポリビニルアルコール(PVA)、カルボキシメチルセルロースナトリウム(CMC)、ヒドロキシプロピルセルロース(HPC)、および、ヒドロキシエチルセルロース(HEC)から選択される1種類以上をバインダーとして用いることが好ましい。
 バインダーの含有量の下限値は、塗料質量(すなわち塗料全体を100質量%としたときに)に対して0.1質量%以上であり、好ましくは0.15質量%以上である。バインダーの含有量の上限値は、塗料質量に対して10質量%以下であり、好ましくは5質量%以下であり、さらに好ましくは2質量%以下である。バインダーの含有量を上記の範囲内にすることで、該塗料のポットライフが伸び、成膜した酸化タングステン薄膜はバインダーを含有しているにもかかわらず粗大な凝集物は見られなくなる。
 本発明の塗料は、さらにpH調整剤を含んでもよい。
 塗料に使用されるpH調整剤としては、特に限定されないが、電気化学反応を阻害しないpH調整剤から選択される1種以上のpH調整剤が任意に使用される。本発明に係るエレクトロクロミック素子は、例えば、リチウム、カリウムやナトリウムに関連する酸化還元反応により駆動するため、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化リチウム(LiCl)、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)から選択される1種類以上である。
 塗料中のpH調整剤の含有量としては、酸化タングステンナノ粒子の固形量に応じて適宜にコントロールされる。pH調整剤を含む塗料のpHは、例えば2~8である。ただし、耐久性を良好にする観点からは、塗料のpHは、3以上が好ましく、5~7がより好ましく、5程度がさらに好ましい。
 塗料には、バインダーおよびpH調整剤以外にその他の各種の添加剤を配合してもよい。その他の添加剤としては、例えば、消泡剤、架橋剤、硬化触媒、顔料分散剤、乳化剤、造膜助剤、増粘剤、中和剤、防腐剤等である。
[ECD]
 以下、本発明に係るエレクトロクロミック素子(以下「ECD」という)について説明する。エレクトロクロミック素子は、光を調整可能な調光部材として使用される。
 図1は、本実施形態に係るECD100の一例を示す断面図である。図1に例示される通り、ECD100は、第1エレクトロクロミック層10(「酸化タングステン薄膜」の例示)と、第2エレクトロクロミック層20(「金属シアノ錯体薄膜」の例示)と、電解質層30と、第1透明電極層40と、第2透明電極層50と、第1絶縁層60と、第2絶縁層70とを含む。これらの層(10,20,30,40,50,60,70)の積層でECD100が構成される。
 電解質層30は、第1エレクトロクロミック層10と第2エレクトロクロミック層20との間に位置する。第1透明電極層40は、第1エレクトロクロミック層10における電解質層30とは反対側の表面に位置する。第2透明電極層50は、第2エレクトロクロミック層20における電解質層30とは反対側の表面に位置する。第1絶縁層60は、第1透明電極層40における第1エレクトロクロミック層10とは反対側の表面に位置する。第2絶縁層70は、第2透明電極層50における第2エレクトロクロミック層20とは反対側の表面に位置する。
 第1エレクトロクロミック層10および第2エレクトロクロミック層20は、エレクトロクロミック特性を有する層であり、酸化還元反応により色が可逆的に変化する(着色状態と消色状態とを可逆的に変化させる)。第1エレクトロクロミック層10は、還元状態では着色し、酸化状態では消色する。一方で、第2エレクトロクロミック層20は、還元状態では消色し、酸化状態では着色する。
 概略的には、ECD100は、第1透明電極層40と第2透明電極層50との間に電圧を印加することによって駆動する。具体的には、ECD100は、第1透明電極層40と第2透明電極層50との間に電圧が印加されると、第1状態と第2状態との間で変化する。
 第1状態では、第1エレクトロクロミック層10が酸化状態(すなわち消色状態)にあり、第2エレクトロクロミック層20が還元状態(すなわち消色状態)にある。一方で、第2状態は、第1エレクトロクロミック層10が還元状態(すなわち着色状態)にあり、第2エレクトロクロミック層20が酸化状態(すなわち着色状態)にある。以上の説明から理解される通り、電圧の印加に応じてECD100における色の変化を制御することが可能である。
(1)第1エレクトロクロミック層10
 第1エレクトロクロミック層10は、上述した酸化タングステン(WO3)粒子とバインダーとを含む。すなわち、第1エレクトロクロミック層10は、酸化タングステン薄膜である。酸化タングステンナノ粒子は、酸化状態においては消色し(ほぼ無色透明であり)、還元状態においては青く着色する。
 第1エレクトロクロミック層10の厚さは、目的に応じて適宜に設定され、例えば500~1500nmである。なお、第1エレクトロクロミック層10の厚さは、一定であってもよいし、一定でなくてもよい(すなわち面方向における位置に応じて相違してもよい)。
 本発明は、エレクトロクロミック特性を有し、酸化タングステンナノ粒子とバインダーとを含む薄膜であって、当該酸化タングステンナノ粒子は、X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、一次粒径が5~25nmである酸化タングステン薄膜としても観念できる。さらに、本発明に係る酸化タングステン薄膜は、上述したpH調整剤を含んでもよい。
(2)第2エレクトロクロミック層20
 第2エレクトロクロミック層20は、第1エレクトロクロミック層10に使用される酸化タングステンとは酸化還元反応による着色および消色の変化が逆である材料を含み、好ましくは金属シアノ錯体ナノ粒子あるいは酸化物ナノ粒子である。なお、金属シアノ錯体ナノ粒子を含む第2エレクトロクロミック層20は、金属シアノ錯体薄膜の例示であり、酸化物ナノ粒子を含む第2エレクトロクロミック層20は、酸化物薄膜の例示である。
 第2エレクトロクロミック層20に、金属シアノ錯体ナノ粒子あるいは酸化物ナノ粒子を使用する場合、酸化還元反応を可逆的に起こすのであればその種類は任意である。金属シアノ錯体あるいは酸化物ナノ粒子は、酸化状態において着色し、還元状態においては消色する材料である。
 以下、第2エレクトロクロミック層20に金属シアノ錯体ナノ粒子を用いる場合の詳細について説明する。金属シアノ錯体粒としては、一般式「AxMα[Mβ(CN)6]y・zH2O」で表されるプルシアンブルー型の金属シアノ錯体の粒子が好適に使用される。
 Aとしては、水素、リチウム、ナトリウム、カリウムからなる群より選ばれる原子である。
 Mαとしては、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、亜鉛、ランタン、ユーロピウム、ガドリニウム、ルテチウム、バリウム、ストロンチウム、及びカルシウムからなる群より選ばれる一種以上の金属原子である。
 Mβとしては、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、コバルト、ニッケル、白金、及び銅からなる群より選ばれる一種以上の金属原子である。なお、xは0~3であり、yは0.3~1.5であり、zは0~30である。
 なお、金属シアノ錯体としては、上記の一般式で表される1種を使用してもよいし、複数種を混合して使用してもよい。
 金属シアノ錯体ナノ粒子における一次粒径の上限値は、比表面積を高めて電気化学応答速度を向上する観点や平滑な薄膜を形成する観点から、300nm以下であり、好ましくは100nm以下であり、さらに好ましくは50nm以下である。金属シアノ錯体ナノ粒子における一次粒径の下限値は、特に制限はないが、例えば4nm以上であり、好ましくは5nm以上であり、さらに好ましくは6nm以上である。なお、金属シアノ錯体ナノ粒子における一次粒径の測定方法は、酸化タングステンナノ粒子の一次粒径について上述したのと同様である。
 第2エレクトロクロミック層20の厚さは、目的に応じて適宜に設定され、例えば500~3000nmである。なお、第2エレクトロクロミック層20の厚さは、一定であってもよいし、一定でなくてもよい(すなわち面方向における位置に応じて相違してもよい)。
(3)電解質層30
 電解質層30は、電解質を含む層である。第1エレクトロクロミック層10および第2エレクトロクロミック層20は、電解質中でエレクトロクロミック反応を生じる。
 電解質層30に使用される電解質としては、(トリフルオロメタンスルホニル)イミド塩を含むことが好ましい。(トリフルオロメタンスルホニル)イミド塩としては、ビス(トリフルオロメタンスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、カリウムビス(トリフルオロメタンスルホニル)イミド、ナトリウムビス(トリフルオロメタンスルホニル)イミドから一種類以上を含む。これらの中でもカリウムビス(トリフルオロメタンスルホニル)イミドが好ましい。
 電解質層30における電解質の含有量は、特に制限されないが、ECD100における電気化学応答速度を向上させる観点からは、例えば0.1~1.5mol/kgであり、好ましくは0.5~1.5mol/kgである。
 また、電解質層30は、電解質以外に溶媒や樹脂を含んでもよい。電解質層30が含有する溶媒としては、電解質層30が含有する電解質を溶解可能な公知の溶媒を用いることができ、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等の鎖状炭酸エステル、炭酸エチレン、炭酸プロピレン、炭酸ブチレン等の環状炭酸エステル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル等の脂肪族カルボン酸エステル、安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル、γ-ブチロラクトン、γ-バレロラクトン等のラクトン、ε-カプロラクタム、N-メチルピロリドン等のラクタム、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等の環状エーテル、1,2-ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル、エチルメチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホン、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル等のニトリル、リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル、エタノール、2-プロパノール等のアルコール、エチレングリコール、プロピレングリコール、ポリエチレングリコール等のグリコール、水等から一種類以上を選択し得る。
 電解質層30が含有する樹脂としては、特に限定されず、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、塩化ビニル樹脂、エチレン樹脂、メラミン樹脂、フェノール樹脂、メタクリル酸メチル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリエチレンオキサイド樹脂等の公知の樹脂から一種類以上を選択し得る。電解質層30が樹脂を含有することで、電解質層30の機械的強度を向上させることができる。
 電解質層30は、電解質層30の機能を損なわない範囲で、その他の各種の添加剤を任意に含有してもよい。公知の添加剤としては、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、粘着付与剤、着色防止剤、難燃剤、帯電防止剤等が例示される。
 電解質層30の厚さは、目的に応じて適宜に設定され、例えば50μm~0.3mmである。なお、電解質層30の厚さは、一定であってもよいし、一定でなくてもよい(すなわち面方向における位置に応じて相違してもよい)。
 なお、電解質層30は、有色であっても無色(透明)であってもよい。電解質層30の色は、目的に応じて適宜に変更し得る。
(4)第1透明電極層40および第2透明電極層50
 第1透明電極層40および第2透明電極層50は、透明である導電性材料からなる層である。第1透明電極層40および第2透明電極層50を構成する導電性材料としては、電気化学素子として使用して腐食などの劣化が実用上問題のある程度に発生しないものであれば特に制限はなく、例えば、インジウム錫酸化物(ITO)や酸化亜鉛、および、それらにアルミニウムや銀、チタンなどの金属をドープしたものなどの導電性酸化物、金や白金などの貴金属、ステンレスやアルミニウムなどの不働態被膜による耐腐食性を有する合金や金属、グラフェンやカーボンナノチューブなどカーボン材料などが利用できる。耐久性の観点からは、FTO(フッ素ドープスズ)やTCO(Transparent conductive oxide)を透明電極層(40,50)とすることが特に好ましい。
 第1透明電極層40および第2透明電極層50の厚さは、目的に応じて適宜に設定され、例えば100~300nmである。なお、第1透明電極層40および第2透明電極層50の厚さは、一定であってもよいし、一定でなくてもよい(すなわち面方向における位置に応じて相違してもよい)。
 ただし、第1エレクトロクロミック層10と第1透明電極層40との接触面積を増加させて、電気化学応答速度を向上させる観点からは、敢えて第1透明電極層40の厚さを一定でなくしてもよい。具体的には、第1透明電極層40の表面に凹凸が構成されるようにする(すなわち表面の平滑性を低下させる)。第1透明電極層40の表面における凸部分は、例えば導電性材料により形成される。同様に、第2エレクトロクロミック層20と第2透明電極層50との接触面積を増加させて、応答速度を向上させる観点からは、第2透明電極層50の厚さを一定でなくしてもよい。
 第1透明電極層40は、第1エレクトロクロミック層10との密着性を向上させる目的や、腐食を抑制する目的から、公知の添加剤を含有してもよい。同様に、第2透明電極層50は、第2エレクトロクロミック層20との密着性を向上させる目的や、腐食を抑制する目的から、公知の添加剤を含有してもよい。公知の添加剤としては、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、粘着付与剤、着色防止剤、難燃剤、帯電防止剤等が例示される。
(5)第1絶縁層60および第2絶縁層70
 第1絶縁層60および第2絶縁層70は、透明である絶縁性材料からなる層である。例えば、樹脂やガラスなどで第1絶縁層60および第2絶縁層70が形成される。樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリエチレンナフタレート(PEN)などが例示される。なお、第1絶縁層60および第2絶縁層70は、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、粘着付与剤、着色防止剤、難燃剤、帯電防止剤等の公知の添加剤を含有していてもよい。
 第1絶縁層60および第2絶縁層70の厚さは、例えば、50μm~1.1mmである。なお、第1絶縁層60および第2絶縁層70の厚さは、一定であってもよいし、一定でなくてもよい(すなわち面方向における位置に応じて相違してもよい)。
 上述した通り、ECD100は、電圧の印加により第1状態と第2状態との間で変化する。ここで、第2エレクトロクロミック層20において金属シアノ錯体ナノ粒子としてプルシアンブルー型金属錯体粒子(例えば鉄-鉄シアノ錯体粒子)を使用して、電解質層30に透明材料を使用した構成を想定する。以上の構成では、ECD100とし・BR>トは濃紺色-無色透明の色変化を呈する。酸化タングステンは酸化状態においてほぼ無色透明であり、鉄-鉄シアノ錯体粒子は還元状態においてほぼ無色透明である。したがって、ECD100は第1状態のときに無色透明となる。一方で、酸化タングステンは還元状態において青く着色し、鉄-鉄シアノ錯体ナノ粒子は酸化状態において青く着色する。したがって、ECD100は第2状態のときに濃紺色を呈する。
 本発明に係るECD100は、以上の構成には限定されない。例えば、ECD100において第1絶縁層60および第2絶縁層70を省略してもよい。また、上記で説明した層(10,20,30,40,50,60,70)以外の層をECD100が含んでもよい。例えば、第1透明電極と第1絶縁層60との間に、その他の層(例えば絶縁層)を設けてもよい。同様に、第2透明電極と第2絶縁層70との間に、その他の層を設けてもよい。
 本実施形態に係るECDによれば、酸化タングステン(WO3)ナノ粒子を含有する第1エレクトロクロミック層10と、金属シアノ錯体ナノ粒子を含有する第2エレクトロクロミック層20とを組み合わせたことで、高速応答化を可能とし、高コントラストとなる色変化を得ることができる。
 以下、ECDの製造方法の一例について説明する。例えば、基材として市販の透明電極付き基板(例えばITO被膜ガラス)を2枚用いる。ITO被膜ガラスを基材として用いる場合には、ITOは図1において第1透明電極層40および第2透明電極層50に該当し、同様にガラスは第1絶縁層60および第2絶縁層70に該当する。2枚の基材の各々を第1基板(第2透明電極層50+第2絶縁層70)および第2基板(第1透明電極層40+第1絶縁層60)と呼ぶ。
 まず、第1基板の上に、スリットコート、スピンコート、バーコート、スプレーコート等のウェットコーティングプロセス等の塗布法を用いて、金属シアノ錯体ナノ粒子を含む塗料により第2エレクトロクロミック層20(金属シアノ錯体薄膜)を形成することで、第1成膜基板を製造する。同様に、第2基板の上に同手法を用いて、本発明に係る酸化タングステン塗料により第1エレクトロクロミック層10(酸化タングステン薄膜)を形成することで、第2成膜基板を製造する。第1成膜基板上にディスペンサを用いて電解質層30を形成する。さらに外周にUV硬化樹脂を用いて封止構造を形成する。あるいは、この封止構造は市販の電子デバイス封止用テープなどを用いて形成可能である。
 その後、第1成膜基板に第2成膜基板を上部から被せ、真空チャンバー内にてプレス、貼り合わせを行う。封止用テープを用いている場合は、室温・大気圧下で貼り合わせを行っても問題はない。このようにして、第1絶縁層60/第1透明電極層40/第1エレクトロクロミック層10/電解質層30/第2エレクトロクロミック層20/第2透明電極層50/第2絶縁層70の構造からなるECDが得られる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。
[酸化タングステンナノ粒子]
 以下の通り、酸化タングステンナノ粒子1-4を製造した。
<酸化タングステンナノ粒子1>
 昇華工程を用いて作製した酸化タングステンナノ粒子を乾式ビーズミルにより粉砕した酸化タングステンナノ粒子
<酸化タングステンナノ粒子2>
 昇華工程を用いて作製した酸化タングステンナノ粒子
<酸化タングステンナノ粒子3>
 昇華工程を用いて作製した後に大気中450℃で焼成した酸化タングステンナノ粒子
<酸化タングステンナノ粒子4>
 昇華工程を用いて作製した後に大気中550℃で焼成した酸化タングステンナノ粒子
 図2には、酸化タングステンナノ粒子1-4について粉末X線回折法による解析結果を示す。X線回折法は、Cu-Kα線(波長1.54184Å)により行った。なお、酸化タングステンナノ粒子1-4は、標準試料データベースから検索される酸化タングステンナノ粒子の回折情報と一致した。
 酸化タングステンナノ粒子1-4について、X線回折分析(2θ)における29°±1°に検出されるピーク(最強のピーク)の半値幅を特定した。特定した半値幅は、以下の通りである。
  酸化タングステンナノ粒子1:0.9°
  酸化タングステンナノ粒子2:0.7°
  酸化タングステンナノ粒子3:0.7°
  酸化タングステンナノ粒子4:0.6°
 特に、酸化タングステンナノ粒子1においてはブロードなピークも観察され、結晶性が低いことが示唆された。
 図3は、酸化タングステンナノ粒子1および酸化タングステンナノ粒子4の透過型電子顕微鏡写真である。酸化タングステンナノ粒子1および酸化タングステンナノ粒子4の双方とも一次粒径が5~25nmの範囲内にあることが確認できた。具体的には、酸化タングステンナノ粒子1は、直径約10nm以下とするナノ粒子(一次粒子)の凝集体であり、酸化タングステンナノ粒子4は、直径を約20nmとするナノ粒子の凝集体であった。
[エレクトロクロミック素子用酸化タングステン塗料]
 以下の通り、実施例に係るエレクトロクロミック素子用酸化タングステン塗料および比較例に係る分散液を調整した。
<実施例1>
 酸化タングステンナノ粒子1(粉末試料)25gを水75mLに懸濁させた後に、表面張力を下げるためにバインダーとしてPVAを添加し、攪拌することで実施例1に係る塗料を得た。塗料全体に対するPVA固形量が0.63質量%になるようにPVAを添加した。
<実施例2>
 塗料全体に対するPVA固形量が0.15質量%になるようにPVAを添加したこと以外は実施例1と同様である。
<実施例3>
 塗料全体に対するPVA固形量が1.29質量%になるようにPVAを添加したこと以外は実施例1と同様である。
<実施例4>
 バインダーとしてPVAに代えてCMCを添加したこと以外は実施例1と同様である。塗料全体に対するCMC固形量が1.32質量%になるよう添加した。
<実施例5>
 バインダーとしてPVAに代えてHPCを添加したこと以外は実施例1と同様である。塗料全体に対するHPC固形量が0.68質量%になるよう添加した。
<実施例6>
 バインダーとしてPVAに代えてHECを添加したこと以外は実施例1と同様である。塗料全体に対するHEC固形量が0.83質量%になるよう添加した。
<比較例1>
 バインダーを添加しなかったこと以外は実施例1と同様である。すなわち、比較例1は、塗料ではなくて単に分散液である。
[酸化タングステン薄膜]
 以下の通り、実施例および比較例に係る酸化タングステン薄膜(第1エレクトロクロミック層)を作製した。
<実施例1-A>
 ITO(第1透明電極層)で被覆されたガラス(第1絶縁層)からなるITO被膜ガラス基板上に、実施例1の塗料を用いて実施例1-Aに係る酸化タングステン薄膜を作製した。酸化タングステン薄膜の形成にはスピンコート法が用いられた。
 まず、実施例1の塗料を使用前にろ過することにより、粘度を約15mPa・sに調節した。2mlをマイクロピペットで量り取り、スピンコーターに設置した100mm角ITO被膜ガラス基板上に滴下し、400rpmで10秒回転させ、次いで800rpmで10秒回転させて薄膜を形成した。作製した薄膜を自然乾燥させることで実施例1-Aを得た。実施例1-Aに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例1-B>
 ITO(第1透明電極層)で被覆されたポリエチレンテレフタレート(第1絶縁層)からなるITO被膜ポリエチレンテレフタレート(PET)基板に、実施例1に係る塗料を用いて実施例1-Bに係る酸化タングステン薄膜を形成した。酸化タングステン薄膜の形成にはスピンコート法が用いられた。
 まず、実施例1に係る塗料を使用前にろ過することにより、粘度を約15mPa・sに調節した。500μlをマイクロピペットで量り取り、スピンコーターに設置した50mm角ITO被膜PET基板上に滴下し、400rpmで10秒回転させ、次いで800rpmで10秒回転させて薄膜を形成した。作製した薄膜を自然乾燥させることで実施例1-Bを得た。実施例1-Bに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例1-C>
 ITO(第1透明電極層)で被覆されたポリカーボネート(第1絶縁層)からなるITO被膜ポリカーボネート基板上に実施例1-Cに係る酸化タングステン薄膜を形成したこと以外は、実施例1-Bと同様である。実施例1-Cに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例1-D>
 ITO(第1透明電極層)で被覆されたポリエチレンナフタレート(第1絶縁層)からなるITO被膜ポリエチレンナフタレート(PEN)基板上に実施例1-Dに係る酸化タングステン薄膜を形成したこと以外は、実施例1-Bと同様である。実施例1-Dに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例2-A>
 実施例1-Aで使用したのと同様のITO被膜ガラス基板上に、実施例2に係る塗料を用いて実施例2-Aに係る酸化タングステン薄膜を形成した。酸化タングステン薄膜の形成にはスピンコート法が用いられた。
 まず、実施例2に係る塗料を使用前にろ過することにより、粘度を約15mPa・sに調節した。500μlをマイクロピペットで量り取り、スピンコーターに設置した50mm角ITO被膜ガラス基板上に滴下し、400rpmで10秒回転させ、次いで800rpmで10秒回転させて薄膜を形成した。作製した薄膜を自然乾燥させることで実施例2-Aを得た。実施例2-Aに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例3-A>
 実施例3に係る塗料を用いたこと以外は実施例2-Aと同様である。実施例3-Aに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例4-A>
 実施例1-Aで使用したのと同様のITO被膜ガラス基板上に、実施例4に係る塗料を用いて実施例4-Aに係る酸化タングステン薄膜を形成した。酸化タングステン薄膜の形成にはスピンコート法が用いられた。
 まず、実施例4に係る塗料を使用前にろ過することにより、粘度を約15mPa・sに調節した。400μlをマイクロピペットで量り取り、スピンコーターに設置した50mm角ITO被膜ガラス基板上に滴下し、350rpmで5分回転させ、次いで1000rpmで5秒回転させて薄膜を形成した。作製した薄膜を自然乾燥させることで実施例4-Aを得た。実施例4-Aに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例5-A>
 実施例1-Aで使用したのと同様のITO被膜ガラス基板上に、実施例5に係る塗料を用いて実施例5-Aに係る酸化タングステン薄膜を形成した。酸化タングステン薄膜の形成にはスピンコート法が用いられた。
 まず、実施例5に係る塗料を使用前にろ過することにより、粘度を約15mPa・sに調節した。400μlをマイクロピペットで量り取り、スピンコーターに設置した50mm角ITO被膜ガラス基板上に滴下し、250rpmで5分回転させ、次いで1000rpmで5秒回転させて薄膜を形成した。作製した薄膜を自然乾燥させることで実施例5-Aを得た。実施例5-Aに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<実施例6-A>
 実施例6に係る塗料を用いたこと以外は、実施例5-Aと同様である。実施例6-Aに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<比較例1-A>
 塗料に代えて比較例1に係る分散液を用いたこと以外は実施例2-Aと同様である。比較例1-Aに係る酸化タングステン薄膜の膜厚は、約1000nmである。
<酸化タングステン薄膜の物性評価>
 図4は、実施例1-A,2-A,3-Aおよび比較例1-Aの電界放出型走査電子顕微鏡写真である。図4に示される通り、バインダーが無添加である比較例1-Aは、ITO被膜ガラス基板との密着性が悪く、膜の剥離や大きなクラックも観察される。それに対して、PVAを添加した実施例1-A,2-A,3-Aでは、密着性が良く、膜の剥離や大きなクラックも観測されない。
 また、実施例1-A,2-A,3-Aおよび比較例1-Aについて、サイクリックボルタンメトリーによりエレクトロクロミック特性を評価した。具体的には、対極に白金線、参照極に飽和銀/塩化銀電極、電解質に濃度1.5mol/kgのカリウム ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液を用いて、スキャンレート5ミリボルト/秒でサイクリックボルタモグラムを取得した。図5に、実施例1-A,2-A,3-Aおよび比較例1-Aのサイクリックボルタモグラムを示す。
 図5に示される通り、実施例1-A,2-A,3-Aは、比較例1-Aと比較して、良好な酸化還元反応を生じることが分かった。
 さらに、実施例1-A,2-A,3-Aおよび比較例1-Aについて、クロノクーロメトリー測定で終了電位を-1.2V(還元状態)、+1.0V(酸化状態)として測定し終了時の可視光透過スペクトルを取得した。図6に、実施例1-A,2-A,3-Aおよび比較例1-Aの可視光透過スペクトルを示す。
 図6に示される通り、+1.0Vの酸化状態では無色透明であり、-1.2Vの還元状態では濃紺色を示すことがわかる。ただし、PVAの添加量が増えると相対的にタングステンナノ粒子(WO3)量が減り、酸化還元反応が乏しくなる。したがって、PVAの添加量は、より高コントラストにする観点からは、塗料全体に対して0.1~1.0質量%が好ましい。
 また、実施例4-A,5-A,6-Aについて、エレクトロクロミック特性を評価した。具体的には、対極に白金線、参照極に飽和銀/塩化銀電極、電解質に濃度1.5mol/kgのカリウム ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液を用い、スキャンレート5ミリボルト/秒でサイクリックボルタモグラムを取得した。図7に、実施例4-A,5-A,6-Aのサイクリックボルタモグラムを示す。図7に示される通り、何れのバインダーを使用した場合でも該酸化タングステン薄膜は良好な酸化還元反応を生じることが分かった。
[金属シアノ錯体薄膜]
 以下の通り、金属シアノ錯体ナノ粒子の塗料(調整例1)を調整して、調整例1-A~Dに係る鉄-鉄シアノ錯体薄膜(第2エレクトロクロミック層)を作製した。
<鉄-鉄シアノ錯体ナノ粒子(プルシアンブルー)>
 まず、フェロシアン化ナトリウム・10水和物14.5gを水60mLに溶解した水溶液に、硝酸鉄・9水和物16.2gを水に溶解した水溶液30mLを混合し、5分間攪拌した。析出した青色の鉄-鉄シアノ錯体ナノ粒子であるプルシアンブルーの沈殿物を遠心分離し、これを水で3回、続いてメタノールで1回洗浄し、減圧下で乾燥し、鉄-鉄シアノ錯体ナノ粒子を得た。このときの収量は11.0gであり、収率はFe[Fe(CN)0.75・3.75HOとして97.4%であった。作製した鉄-鉄シアノ錯体ナノ粒子AFe1の沈殿物を粉末X線回折装置で解析したところ、標準試料データベースから検索されるプルシアンブルーであるFe[Fe(CN)の回折情報と一致した。透過型電子顕微鏡で測定したところ、鉄-鉄シアノ錯体ナノ粒子は直径を5~25nmとするナノ粒子(一次粒子)の凝集体であった。
<調整例1>
 次に、鉄-鉄シアノ錯体ナノ粒子の0.40gを水8mLに懸濁させた後に、フェロシアン化ナトリウム・10水和物を80mg加え、攪拌したところ青色透明溶液へと変化した。このようにして調整例1に係る鉄-鉄シアノ錯体ナノ粒子含有塗料を得た。
<調整例1-A>
 調整例1に係る塗料を用いて、ITO被膜ガラス基板上にスピンコート法により調整例1-Aに係る鉄-鉄シアノ錯体ナノ粒子薄膜を作製した。具体的には、スピンコーターに50mm角ITO被膜ガラス基板を設置し、9質量%に調整した調整例1の塗料にバインダーとしてPVAを10質量%混ぜた物を500μL滴下し、400rpmで10秒回転させ、次いで900rpmで10秒回転させて、ITO被膜ガラス基板上に調整例1-Aを作製した。調整例1-Aに係る鉄-鉄シアノ錯体ナノ粒子薄膜の膜厚は、約1000nmである。
<調整例1-B>
 ITO被膜ガラス基板に代えてITO被膜ガポリエチレンナフタレート(PET)基板を使用したこと以外は調整例1-Aと同様である。調整例1-Bに係る鉄-鉄シアノ錯体ナノ粒子薄膜の膜厚は、約1000nmである。
<調整例1-C>
 ITO被膜ガラス基板に代えてITO被膜ガポリカーボネート基板を使用したこと以外は調整例1-Aと同様である。調整例1-Cに係る鉄-鉄シアノ錯体ナノ粒子薄膜の膜厚は、約1000nmである。
<調整例1-D>
 ITO被膜ガラス基板に代えてITO被膜ポリエチレンテレフタレート(PEN)基板を使用したこと以外は調整例1-Aと同様である。調整例1-Dに係る鉄-鉄シアノ錯体ナノ粒子薄膜の膜厚は、約1000nmである。
[ECD]
 酸化タングステン薄膜(第1エレクトロクロミック層)と金属シアノ錯体薄膜(第2エレクトロクロミック層)とを組み合わせて、実施例に係るECD1-4を作製した。そして、作製した各ECDについて評価を行った。
<ECD1>
 濃紺色-無色透明のECD1として、酸化タングステン/鉄-鉄シアノ錯体ナノ粒子ECDを作製した。詳細には、実施例1-Aに係る酸化タングステン薄膜が形成されたITO被膜ガラス基板と、調整例1-Aに係る鉄-鉄シアノ錯体ナノ粒子薄膜の形成されたITO被膜ガラス基板との間に、電解質層を挟み込んで、ECD1を作製した。電解質層としては、濃度1.5mol/kgのカリウム ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液に、メタクリル酸メチルポリマーを炭酸プロピレン100重量部に対して30重量部添加して、60℃から80℃の加熱を24時間程度行って粘度を高めたものを用いた。ECD1は作用極を酸化タングステン薄膜側として電位を規定した。
 図8に、ECD1のサイクリックボルタモグラムをスキャンレート5ミリボルト/秒で測定した結果を示す。図8に示される通り、ECD1は良好な酸化還元反応を示すことが判る。
 図9に、ECD1の可視光透過スペクトルを取得した結果を示した。図9に示される通り、ECD1は、-0.8V電圧印加においては濃い着色状態を呈し、+1.2Vの電圧印加においては無色透明状態に戻った。図10には、ECD1の色の変化の様子の写真を示す。
 図11に、ECD1の全光線透過スペクトルを取得した結果を示した。この測定においてはプラスマイナス1.5Vの乾電池を用いて行った。図11に示される通り、ECD1は可視光領域のみならず近赤外線領域に至る幅広い波長領域の透過率を切り替えることが可能である。また、得られた測定データからJIS R 3106:1998(ISO 9050:2003)を用いて、可視光透過率および日射透過率を計算した。可視光透過率は、透明状態では71.71%であり、着色状態では7.73%であった。日射透過率は、透明状態では55.13%であり、着色状態では6.12%であった。以上の結果から、調光ガラスとして有効な性能を有することが分かる。
<ECD2>
 ECD2では、実施例1-Bに係る酸化タングステン薄膜の形成されたITO被膜PET基板と、調整例1-Bに係る鉄-鉄シアノ錯体ナノ粒子薄膜の形成されたITO被膜PET基板とを用いたこと以外はECD1と同様である。ECD2は作用極を酸化タングステン薄膜側として電位を規定した。
 図12に、ECD2の変化の様子の写真を示す。ECD2は、-0.8V電圧印加において濃い着色状態を呈し、+1.2Vの電圧印加においては無色透明状態に戻った。
 図13に、ECD2の全光線透過スペクトルを取得した結果を示した。この測定においてはプラスマイナス1.5Vの乾電池を用いて行った。図13に示すように、ECD2は、可視光領域のみならず近赤外線領域に至る幅広い波長領域の透過率を切り替えることが可能である。また、得られた測定データからJIS R 3106:1998(ISO 9050:2003)を用いて、可視光透過率および日射透過率を計算した。可視光透過率は、透明状態では78.98%であり、着色状態では1.64%であった。日射透過率は、透明状態では55.81%であり、着色状態では2.86%であった。以上の結果から、調光フィルムとして有効な性能を有することが分かる。
<ECD3>
 ECD3では、実施例1-Cに係る酸化タングステン薄膜の形成されたITO被膜ポリカーボネート基板と、調整例1-Cに係る鉄-鉄シアノ錯体ナノ粒子薄膜の形成されたITO被膜ポリカーボネート基板とを用いたこと以外はECD1と同様である。ECD3は、作用極を酸化タングステン薄膜側として電位を規定した。
 図14に、ECD3の全光線透過スペクトルを取得した結果を示した。この測定においてはプラスマイナス1.5Vの乾電池を用いて行った。図14に示すように、ECD3は可視光領域のみならず近赤外線領域に至る幅広い波長領域の透過率を切り替えることが可能である。また、得られた測定データからJIS R 3106:1998(ISO 9050:2003)を用いて、可視光透過率および日射透過率を計算した。可視光透過率は、透明状態では72.63%であり、着色状態では6.75%であった。日射透過率は、透明状態では67.49%であり、着色状態では4.80%であった。以上の結果から、調光フィルムとして有効な性能を有することが分かる。
<ECD4>
 ECD4では、実施例1-Dに係る酸化タングステン薄膜の形成されたITO被膜PEN基板と、調整例1-Dに係る鉄-鉄シアノ錯体ナノ粒子薄膜の形成されたITO被膜PEN基板とを用いたこと以外はECD1と同様である。ECD4は作用極を酸化タングステン薄膜側として電位を規定した。
 図15に、ECD4の全光線透過スペクトルを取得した結果を示した。この測定においてはプラスマイナス1.5Vの乾電池を用いて行った。図15に示すように、ECD4は可視光領域のみならず近赤外線領域に至る幅広い波長領域の透過率を切り替えることが可能である。また、得られた測定データからJIS R 3106:1998(ISO 9050:2003)を用いて、可視光透過率および日射透過率を計算した。可視光透過率は、透明状態では67.90%であり、着色状態では4.47%であった。日射透過率は、透明状態では47.81%であり、着色状態では3.19%であった。以上の結果から、調光フィルムとして有効な性能を有することが分かる。
 以下の説明では、本発明に係る塗料のpHと塗料の物性との関係に関する実験を行った。
<実施例7>
 塗料全体に対して添加量が0.10質量%となるように酸化タングステンナノ粒子1(粉末試料)を水に懸濁させた後に、表面張力を下げるためにバインダーとしてPVAを0.01質量%となるように添加し、攪拌することで塗料を得た。同様に、塗料全体に対して酸化タングステンナノ粒子1の添加量が1質量%になり、PVAの添加量が0.1質量%となるように塗料を得た。同様に、塗料全体に対して酸化タングステンナノ粒子1の添加量が10質量%になり、PVAの添加量が1質量%となるように塗料を得た。同様に、塗料全体に対して酸化タングステンナノ粒子1の添加量が20質量%になり、PVAの添加量が2質量%となるよう塗料を得た。ここで、酸化タングステンナノ粒子1の添加量が0質量%である場合とは、Milli-Q(登録商標)から製造された純水を示す。
 図16は、実施例7について、酸化タングステンナノ粒子1の添加量(質量%)と、塗料のpHとの関係とを示すグラフである。図16に示される通り、酸化タングステンナノ粒子1の添加量に応じて相対的に塗料のpHが減衰する。具体的には、0.10質量%の場合にはpH4.83であり、1質量%である場合にはpH4.11であり、10質量%である場合にはpH3.15であり、20質量%である場合にはpH2.87である。
<実施例8>
 酸化タングステンナノ粒子1の固形量が塗料全体に対して0.1質量%となり、バインダーとしてPVAを0.01質量%となるように調整した塗料20mLに対して、HClあるいはNaOHでpH調整を行うことで、pH2~7の塗料を得た。
 表1に、実施例8で使用したpH調整剤の種類およびその添加量と、調整後のpHとを示す。
Figure JPOXMLDOC01-appb-T000001
 実施例7で上述した通り、酸化タングステンナノ粒子の添加量に応じて相対的にpHが減衰する。具体的には、酸化タングステンナノ粒子の添加量が0.1質量%である場合には、pH4.83程度であった。表1から把握される通り、pH調整剤で塗料のpHを調整することが可能である。具体的には、酸性溶媒(HCL)や塩基性溶媒(NaOH)を塗料に添加することで、当該塗料のpHを任意に調整することができた。
<実施例9>
 酸化タングステンナノ粒子1の固形量が塗料全体に対して7.9質量%または20質量%となるように調整し、バインダーとしてPVAを各々0.79質量%および2質量%を添加した塗料20mLに対して、0.1MのNaOHでpH調整を行うことで実施例9に係る塗料を作製した。
 図17は、実施例9の塗料について、0.1M NaOHの添加量と塗料のpHと関係を示すグラフである。図16の場合と同様に、酸化タングステンナノ粒子の濃度が大きいほど、pHは酸性側になっていた。そして、酸化タングステンナノ粒子の濃度毎に、NaOHの添加量を調整することでpH調整が可能であった。
<実施例10>
 酸化タングステンナノ粒子1の固形量が塗料全体に対して20質量%となるように調整し、バインダーとしてPVAを2重量%となるように添加した塗料20mLに対して、0.1M NaOHを添加してpHを調整した塗料を用いて酸化タングステン薄膜を作製した。0.1M NaOHの添加量(すなわちpH)を相違させて、複数の酸化タングステン薄膜を作製した。塗料に対して、400μlをマイクロピペットで量り取り、スピンコーターに設置した50mm角ITO被膜ガラス基板上に滴下し、500rpmで10秒回転させ、次いで1000rpmで10秒回転させて薄膜を形成した。作製した薄膜を自然乾燥させることで実施例10に係る酸化タングステン薄膜を得た。実施例10に係る酸化タングステン薄膜の膜厚は、塗料のpHに影響されることが確認できた。具体的には、pH3(塗料20mLに対して0.1M NaOHの添加量が1ml)である場合には約0.57nmであり、pH4(塗料20mLに対して0.1M NaOHの添加量が3ml)である場合には約0.43nm、pH5(塗料20mLに対して0.1M NaOHの添加量が6ml)である場合には約0.34nmであり、pH6(塗料20mLに対して0.1M NaOHの添加量が10ml)である場合には約0.33nmであった。
 図18に実施例10に係る酸化タングステン薄膜の可視光透過スペクトル変化を示す。図18において、(1)が示す破線は初期状態における可視光透過スペクトル変化であり、(2)が示す実線は初期状態から着色状態にしたときの可視光透過スペクトル変化であり、(3)が示す破線は着色状態から透明状態に戻したときの可視光透過スペクトル変化である。
 図18に示される通り、酸化タングステン薄膜は、いずれもpH調整剤のネガティブな影響は受けておらず酸化還元反応を示した。60秒間にわたり、1.0Vの電圧印加においては濃い着色状態を呈し、-1.2Vの電圧印加においては透明状態に変位した。一方、pH3においては60秒間では完全に元の無色透明状態には戻っておらず、pH5程度が着色状態と透明状態の濃淡差が優れていることが示唆された。
 ECD1と同様の手順に基づき、pH調整した塗料からなる酸化タングステン薄膜を具備するECDを作製した。なお、基材としてソーダガラスとPETフィルムを用いて、かつ、透明電極材料としてITO、FTO(フッ素ドープスズ)および高耐久性TCO(Transparent conductive oxide)を用いて、基材に関しても比較を行った。
<ECD5>
 ECD5は、pH2.2の塗料(塗料全体に対する酸化タングステンナノ粒子1の固形量が13.9質量%、PVAの添加量が0.7重量%になるように調整した塗料)から作製した酸化タングステン薄膜を具備するエレクトロクロミック素子(ガラス基板使用)である。ECD5について、表2の測定条件でサイクル試験を行って550nmと700nmとの光における透過率の変化を調べた。表2に示される通り、-1.2Vの電圧(30秒)と、+1.0Vの電圧(30秒)とを交互に印加するサイクルを連続1000回繰り返した(連続測定:約16.6時間)。サイクル試験の結果を図19に示す。
 図19に示される通り、高耐久性TCOおよびFTOでは安定なサイクル耐性を示しているが、ITOでは速やかな劣化が観察された。この要因としては、酸性の酸化タングステン薄膜がITOにアタックすることで、ITOが腐食されたことが示唆される。透明電極材料である高耐久性TCOおよびFTOは、ITOと比較して、耐薬品性や耐食性に優れ、高安定性を有しているため、耐久性が良好となった。
<ECD6>
 ECD6は、pH5.0の塗料(塗料全体に対する酸化タングステンナノ粒子1の固形量が14.0質量%、PVA添加量0.7重量%となるように調整した塗料20mLに対して0.1M NaOH添加量5mlを添加した塗料)から作製した酸化タングステン薄膜を具備するエレクトロクロミック素子(ガラス基板使用)である。ECD6についても、表2の測定条件でサイクル試験を行って550nmと700nmとの光における透過率の変化を調べた。サイクル試験の結果を図20に示す。図20に示される通り、高耐久性TCOおよびFTOでは安定なサイクル耐性を示しており、ITOでは緩やかな劣化挙動を示している。ただし、ITOについて、ECD6はECD5よりも高耐久性を有することが分かる。以上の説明から理解される通り、塗料のpHを調整することで耐久性を向上することが可能である。
 図21は、ECD5とECD6とについて、表3の条件で耐電圧特性を測定した際の可視光透過スペクトル変化を示す。なお、ここでは、各印加電圧でCV測定(高電位⇒低電位⇒最終電位)を終了後、マルチポテンシャルステップ(MPS)法を用いて電圧を0.5Vピッチで昇降させながらマイナス電位印加により着色反応⇒プラス電位印加により消色反応させた際のデバイス色(透明導電膜の変色や調光膜の色変化状態)を監視した。
 図21に示される通り、ITO使用においては、ECD5(pH2.2)では特に高電圧印加で速やかな劣化が観察されており、ECD6(pH5.0)でも劣化は観察されているが、ある程度押さえられていることが分かる。このように塗料のpHを調整することで耐電圧特性も向上させることができる。また、透明電極材料の比較においては、高耐久性TCOおよびFTOでは高電圧でもあまり劣化が観察されず、ITOに対する優位性も示唆された。
<ECD7>
 pHを調整した塗料から作製した酸化タングステン薄膜を具備するエレクトロクロミック素子(PET基板使用)に関して、表2の条件でサイクル試験を行って550nmと700nmとの光における透過率の変化を調べた。塗料全体に対する酸化タングステンナノ粒子1の固形量が15質量%、PVA添加量が0.7重量%になるように調整した塗料に対して0.1M NaOHを添加することで、pH2.4およびpH4.9にそれぞれ調整した塗料で酸化タングステン薄膜を作成した。サイクル試験の結果を図22に示す。図22に示される通り、基材をガラス基板からPET基板に変えた場合においても、pH2.4の塗料からなる酸化タングステン薄膜を用いたエレクトロクロミック素子では、劣化が早いのに対して、pH4.9に調整した塗料からなる酸化タングステン薄膜を用いたエレクトロクロミック素子では、高耐久性を示すことが分かる。以上の説明から理解される通り、耐久性を向上させる方法として、塗料のpHを調整することは有効な方法である。
 以上の説明から理解される通り、本発明に係るECDでは、透過率の変化幅が大きいことが把握される。透過率の変化幅が大きいほどコントラストは高くなるから、本発明に係るECDよれば、有機エレクトロクロミック材料を使用することなく、高コントラストの着色-消色を行うエレクトロクロミック素子を実現することができる。この素子は、調光ガラス・フィルム、ディスプレイ、インジケータなどへの使用を想定され、特に長波長成分の制御能も有するため、自動車用窓ガラスや建材用窓ガラスなど太陽エネルギーの熱成分である赤外線などの流入量を最適化できる省エネルギー用調光部材としての使用も期待される。
 以上、本発明に係る実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例を見出すことができるであろう。
 100 :ECD
 10  :第1エレクトロクロミック層
 20  :第2エレクトロクロミック層
 30  :電解質層
 40  :第1透明電極層
 50  :第2透明電極層
 60  :第1絶縁層
 70  :第2絶縁層 

Claims (11)

  1.  エレクトロクロミック特性を有する酸化タングステン薄膜を形成するための塗料であって、
     溶媒と、当該溶媒に分散された酸化タングステンナノ粒子と、バインダーとを含み、
     前記酸化タングステンナノ粒子は、
     X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、
     一次粒径が5~25nmであることを特徴とする
     エレクトロクロミック素子用酸化タングステン塗料。
  2.  前記酸化タングステンナノ粒子の含有量は、塗料質量に対して5質量%以上30質量%以下であることを特徴とする
     請求項1に記載のエレクトロクロミック素子用酸化タングステン塗料。
  3.  前記バインダーは、ポリビニルアルコール(PVA)、カルボキシメチルセルロースナトリウム(CMC)、ヒドロキシプロピルセルロース(HPC)、および、ヒドロキシエチルセルロース(HEC)から選択される1種類以上であり、
     前記バインダーの含有量は、塗料質量に対して0.1質量%以上10質量%以下であることを特徴とする
     請求項1に記載のエレクトロクロミック素子用酸化タングステン塗料。
  4.  pH調整剤を含む
     請求項1に記載のエレクトロクロミック素子用酸化タングステン塗料。
  5.  前記pH調整剤は、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化リチウム(LiCl)、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)から選択される1種類以上である
     請求項4に記載のエレクトロクロミック素子用酸化タングステン塗料。
  6.  pHが5~7である
     請求項4に記載のエレクトロクロミック素子用酸化タングステン塗料。
  7.  塗布法により酸化タングステン薄膜を形成可能であることを特徴とする
     請求項1に記載のエレクトロクロミック素子用酸化タングステン塗料。
  8.  エレクトロクロミック特性を有し、酸化タングステンナノ粒子とバインダーとを含む薄膜であって、
     前記酸化タングステンナノ粒子は、
     X線回折分析(2θ)したときの29°±1°に検出されるピークの半値幅が2°以下であり、
     一次粒径が5~25nmであることを特徴とする
     酸化タングステン薄膜。
  9.  pH調整剤を含む
     請求項8に記載の酸化タングステン薄膜。
  10.  ビス(トリフルオロメタンスルホニル)イミド、リチウム ビス(トリフルオロメタンスルホニル)イミド、カリウム ビス(トリフルオロメタンスルホニル)イミド、ナトリウム ビス(トリフルオロメタンスルホニル)イミドのいずれか一種類以上の(トリフルオロメタンスルホニル)イミド塩を含む電解質中でエレクトロクロミック反応を生じることを特徴とする
     請求項8に記載の酸化タングステン薄膜。
  11.  請求項8に記載の酸化タングステン薄膜と、
     酸化タングステンとは酸化還元反応による着色および消色の変化が逆である、金属シアノ錯体ナノ粒子を含む金属シアノ錯体薄膜または酸化物ナノ粒子を含む酸化物薄膜と、
     前記酸化タングステン薄膜と、前記金属シアノ錯体薄膜または前記酸化物薄膜との間に位置する電解質層とを具備することを特徴とする
     調光部材。 
PCT/JP2023/008904 2022-03-11 2023-03-08 エレクトロクロミック素子用酸化タングステン塗料、酸化タングステン薄膜および調光部材 WO2023171725A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-038619 2022-03-11
JP2022038619 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171725A1 true WO2023171725A1 (ja) 2023-09-14

Family

ID=87935266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008904 WO2023171725A1 (ja) 2022-03-11 2023-03-08 エレクトロクロミック素子用酸化タングステン塗料、酸化タングステン薄膜および調光部材

Country Status (1)

Country Link
WO (1) WO2023171725A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058617A (ja) * 2004-08-20 2006-03-02 Konica Minolta Holdings Inc エレクトロクロミック表示素子
JP2011517787A (ja) * 2008-04-09 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア エレクトロクロミックデバイスおよびポリマー組成物
KR20110132858A (ko) * 2010-06-03 2011-12-09 주식회사 마프로 결정성 텅스텐 산화물 나노입자 분산형 졸겔(Sol-Gel) 코팅용액을 이용한 전기변색필름 및 그 제조방법
CN107827159A (zh) * 2017-11-14 2018-03-23 中国科学院上海硅酸盐研究所 一种柠檬酸辅助一步法合成三氧化钨电致变色材料的方法
KR20180031145A (ko) * 2016-09-19 2018-03-28 주식회사 엘지화학 전기변색 소자, 그 제조방법, 및 상기 소자의 광학 특성 제어방법
JP2018185424A (ja) * 2017-04-26 2018-11-22 国立研究開発法人産業技術総合研究所 エレクトロクロミック素子及びそれを用いた調光部材
CN111534169A (zh) * 2019-12-30 2020-08-14 阜阳师范大学 一种环保型水性丙烯酸涂料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058617A (ja) * 2004-08-20 2006-03-02 Konica Minolta Holdings Inc エレクトロクロミック表示素子
JP2011517787A (ja) * 2008-04-09 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア エレクトロクロミックデバイスおよびポリマー組成物
KR20110132858A (ko) * 2010-06-03 2011-12-09 주식회사 마프로 결정성 텅스텐 산화물 나노입자 분산형 졸겔(Sol-Gel) 코팅용액을 이용한 전기변색필름 및 그 제조방법
KR20180031145A (ko) * 2016-09-19 2018-03-28 주식회사 엘지화학 전기변색 소자, 그 제조방법, 및 상기 소자의 광학 특성 제어방법
JP2018185424A (ja) * 2017-04-26 2018-11-22 国立研究開発法人産業技術総合研究所 エレクトロクロミック素子及びそれを用いた調光部材
CN107827159A (zh) * 2017-11-14 2018-03-23 中国科学院上海硅酸盐研究所 一种柠檬酸辅助一步法合成三氧化钨电致变色材料的方法
CN111534169A (zh) * 2019-12-30 2020-08-14 阜阳师范大学 一种环保型水性丙烯酸涂料的制备方法

Similar Documents

Publication Publication Date Title
Chang-Jian et al. Facile preparation of WO3/PEDOT: PSS composite for inkjet printed electrochromic window and its performance for heat shielding
EP0958526B1 (en) Electrochromic system
KR101158425B1 (ko) 결정성 텅스텐 산화물 나노입자 분산형 졸겔(Sol-Gel) 코팅용액을 이용한 전기변색필름 및 그 제조방법
KR101288300B1 (ko) 프루시안블루 함유 전기변색 소자용 전기변색층 제조방법 및 이를 포함하는 박막 전극의 제조방법
US7521005B2 (en) Electrochromic material with improved lifetime
WO2019014776A1 (en) PHOTODEPOSITION OF METAL OXIDES FOR ELECTROCHROMIC DEVICES
US20170219906A1 (en) Electrochromic system containing a bragg reflector and method for controlling photochromic darkening
Patil et al. Electrochromic properties of spray deposited TiO2-doped WO3 thin films
JP2011180469A (ja) プルシアンブルー型金属錯体ナノ粒子を具備する電気化学素子、これを用いたエレクトロクロミック素子及び二次電池
US20140009812A1 (en) Display device and color electronic paper using the same
JP7352987B2 (ja) エレクトロクロミック素子
JP2004151265A (ja) エレクトロクロミック装置及びエレクトロクロミックディスプレイ
AU2003264955B2 (en) Titanium oxide for dye-sensitized solar cells
Heusing et al. Sol-gel coatings for electrochromic devices
KR20160127866A (ko) 습식 코팅법에 의한 전기변색층 제조방법 및 그를 포함하는 전기변색소자
WO2018025939A1 (ja) エレクトロクロミック素子及びエレクトロクロミック材料
WO2023171725A1 (ja) エレクトロクロミック素子用酸化タングステン塗料、酸化タングステン薄膜および調光部材
Deng et al. Electrochromic properties of WO3 thin film onto gold nanoparticles modified indium tin oxide electrodes
JP2003255400A (ja) エレクトロクロミック装置
JP2009145458A (ja) エレクトロクロミック装置及びその製造方法
JP2006113530A (ja) 光書込み素子
JP2003248242A (ja) エレクトロクロミック装置
WO2024122611A1 (ja) 黒色エレクトロクロミック材料およびその製造方法、塗料およびその製造方法、混合塗料およびその製造方法、色可変電極およびその製造方法およびエレクトロクロミック素子
JP6968394B2 (ja) エレクトロクロミック材料、これを用いた色可変電極及び素子、色可変電極の製造方法
JP4382324B2 (ja) エレクトロクロミック装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766901

Country of ref document: EP

Kind code of ref document: A1