WO2023171691A1 - 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像 - Google Patents

導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像 Download PDF

Info

Publication number
WO2023171691A1
WO2023171691A1 PCT/JP2023/008703 JP2023008703W WO2023171691A1 WO 2023171691 A1 WO2023171691 A1 WO 2023171691A1 JP 2023008703 W JP2023008703 W JP 2023008703W WO 2023171691 A1 WO2023171691 A1 WO 2023171691A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive composition
conductive
group
compound
metal particles
Prior art date
Application number
PCT/JP2023/008703
Other languages
English (en)
French (fr)
Inventor
大輝 渡部
真範 関
遊磨 小林
真野 八島
大平 向出
Original Assignee
キヤノン株式会社
キヤノンバージニア, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023023925A external-priority patent/JP2023133162A/ja
Application filed by キヤノン株式会社, キヤノンバージニア, インコーポレイテッド filed Critical キヤノン株式会社
Publication of WO2023171691A1 publication Critical patent/WO2023171691A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a conductive composition, a method for producing the same, a method for recording a conductive image, and a conductive image.
  • a liquid conductive composition containing metal particles is used as a material for recording and forming a film-like conductive image such as a pattern or circuit that exhibits conductivity.
  • a processing agent that can be adsorbed to the metal particles.
  • processing agents do not contribute to conductivity, they had to be removed from recorded conductive images by baking at high temperatures or cleaning with a solvent. .
  • conductive compositions that do not require firing treatment at high temperatures.
  • Patent Document 1 a transparent electrode containing metal particles and a ⁇ -conjugated polymer such as polythiophene has been proposed (Patent Document 1). Further, an ink for wiring materials containing a metal colloid produced by reducing metal ions from a mixed solution of metal ions and an aqueous solution of a conductive polymer such as polyaniline has been proposed (Patent Document 2).
  • the dispersion state of the metal particles tends to be unstable, and the dispersion stability is insufficient.
  • the conductive image contained many aggregated metal particles.
  • simple post-processing such as drying without baking at high temperatures after applying to the substrate cannot sufficiently remove components that do not contribute to conductivity, and it is difficult to record images with excellent conductivity. That was difficult.
  • the metal colloid proposed in Patent Document 2 has weak interaction with conductive polymers, the dispersion stability of metal particles is insufficient, and it is difficult to record images with excellent conductivity. Met.
  • an object of the present invention is to provide a conductive composition that has excellent dispersion stability of metal particles and that can easily record conductive images with excellent conductivity even by simple post-processing. There is a particular thing.
  • Another object of the present invention is to provide a method for producing this conductive composition, a method for recording a conductive image using this conductive composition, and a conductive image.
  • the metal particles contain a compound having a repeating structure represented by the following general formula (1) and a weight average molecular weight of 1,000 to 100,000, and the metal particles have a repeating structure represented by the following general formula (1).
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or a hydrophilic group, and at least one of R 1 to R 4 is the hydrophilic group.
  • R 5 to R 8 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or the above hydrophilic group, and at least one of R 5 to R 8 is the above hydrophilic group.
  • the functional group is at least one selected from the group consisting of a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphonic acid group.
  • a conductive composition that has excellent dispersion stability of metal particles and can easily record a conductive image with excellent conductivity even by simple post-processing. can. Further, according to the present invention, it is possible to provide a method for manufacturing this conductive composition, a method for recording a conductive image using this conductive composition, and a conductive image.
  • IR infrared absorption
  • IR infrared absorption
  • IR infrared absorption
  • IR infrared absorption
  • IR infrared absorption
  • IR ultraviolet-visible
  • UV-vis ultraviolet-visible spectra of Ink 1 before and after storage.
  • UV-vis ultraviolet-visible spectra of ink 25 before and after storage.
  • the present invention will be further described in detail below by citing preferred embodiments.
  • the salt when a compound is a salt, the salt is dissociated into ions and exists in the composition, but for convenience, it is expressed as "containing a salt.”
  • the conductive composition may be simply referred to as a “composition” or "ink.”
  • image in the present invention includes characters, photographs, line drawings, wiring, patterns, etc., and expressing a desired "image” on a substrate is referred to as “recording” or "formation”.
  • Physical property values are values at room temperature (25° C.) unless otherwise specified.
  • a specific compound having a specific structure that functions as an adsorption or chemical bonding site to metal particles and a hydrophilic group for dispersing metal particles can be used to treat metal particles. It has been found that it is effective to use it as an agent. Then, they discovered a repeating structure represented by the following formula (2) as a specific structure that functions as a site for adsorption to metal particles or as a chemical bond (covalent bond). That is, metal particles and a compound having a repeating structure represented by the following formula (2) and having a hydrophilic group are used together.
  • the conductive composition of the present invention contains metal particles and a compound having a repeating structure represented by general formula (1) and a weight average molecular weight of 1,000 to 100,000. At least a portion of the surface of the metal particles is coated with this compound, and the metal atoms contained in the metal particles and the nitrogen atoms contained in the compound are chemically bonded.
  • the conductive composition is liquid at 25°C.
  • Each component constituting the conductive composition will be explained below.
  • the conductive composition contains metal particles.
  • the metal particles are preferably made of at least one metal selected from the group consisting of nickel, palladium, platinum, copper, silver, and gold. Among these, platinum, copper, silver, and gold are preferred, silver and gold are more preferred, and gold is particularly preferred.
  • the content (mass%) of metal particles in the conductive composition is preferably 1.0% by mass or more and 50.0% by mass or less, based on the total mass of the composition.
  • the metal particles are present in the conductive composition in a dispersed state.
  • the volume-based cumulative 50% particle diameter of the metal particles in the conductive composition is preferably 1 nm or more and 100 nm or less, more preferably 5 nm or more and 50 nm or less, from the viewpoint of dispersion stability of the metal particles.
  • the "volume-based cumulative 50% particle diameter" will also be simply referred to as the "average particle diameter.”
  • the average particle diameter of the metal particles is less than 5 nm, the number of metal particles per unit mass increases in the conductive composition, making it easy for multiple metal particles to collide and aggregate, resulting in a stable dispersion of the metal particles. There may be a tendency for sexual performance to decline.
  • the average particle diameter of the metal particles is more than 100 nm, they tend to settle in the conductive composition, and the dispersion stability of the metal particles may tend to decrease.
  • the volume-based cumulative 50% particle diameter (average particle diameter) of the metal particles can be measured by a dynamic light scattering method.
  • the particle size of the metal particles can be easily determined by measuring the ultraviolet-visible absorption spectrum.
  • the shape of the metal particles is preferably approximately spherical.
  • the ratio of the short axis b/long axis a of the metal particles is 0.9 or more, the shape of the metal particles is described as being approximately spherical.
  • the ratio of the short axis b/long axis a of the metal particles is used as an index indicating that the metal particles are approximately spherical.
  • the long axis a and the short axis b of the metal particles are measured.
  • the conductive composition (dispersion liquid or ink) with water
  • metal particles are photographed using a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • the longest axis passing through the center of gravity of the smallest unit particle forming the metal particle is defined as the major axis a
  • the shortest axis is the minor axis b.
  • the ratio of short axis b/long axis a is calculated.
  • the average value of the ratio of the short axis b/long axis a of the 30 metal particles is taken as the ratio of the short axis b/long axis a of the metal particle.
  • the ratio of the short axis b/long axis a of the metal particles is preferably 0.9 or more.
  • the ratio of short axis b/long axis a is theoretically 1.0 or less.
  • the conductive composition has a repeating structure represented by the following general formula (1) and contains a compound (hereinafter also simply referred to as "compound") having a weight average molecular weight of 1,000 to 100,000.
  • This compound is a "processing agent” for dispersing metal particles.
  • the weight average molecular weight of the compound is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the number (n) of repeating structures represented by general formula (1) in the compound is preferably 1 or more and 500 or less, more preferably 2 or more and 400 or less.
  • the compound is water-soluble.
  • the compound being "water-soluble” refers to the compound existing in a liquid composition at 25° C. without forming particles whose particle size can be measured.
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or a hydrophilic group, and at least one of R 1 to R 4 is the hydrophilic group.
  • R 5 to R 8 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or the above hydrophilic group, and at least one of R 5 to R 8 is the above hydrophilic group.
  • the functional group is at least one selected from the group consisting of a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphonic acid group.
  • the repeating structure represented by general formula (1) in a compound can be confirmed by measuring the infrared absorption spectrum of the compound.
  • the hydrophilic group is a carboxylic acid group
  • the hydrophilic group is a sulfonic acid group
  • the S The absorption peak derived from O bonds exists around 1,200 cm ⁇ 1 .
  • the repeating structure represented by the general formula (1) interacts with the surface of the metal particle using the electrons on the nitrogen atom of the quinone diimine or using the reactivity of nitrogen. It is known that when metal particles have a positive charge, a chemical bond between the metal and the nitrogen atoms on the imine occurs, which is called a metal dope. Regarding this chemical bond, for example, Journal of Molecular Structure, 1122 (2016), pp. It is described in documents such as 117-122. According to this document, in the infrared absorption spectrum, absorption in the vicinity of 450 to 600 cm -1 is derived from the bond between the metal atom (M) and the nitrogen atom (N) of imine (hereinafter also referred to as "MN bond"). The presence or absence of an MN bond can be confirmed by the presence or absence of a peak.
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or a hydrophilic group
  • R 5 to R 8 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group may be linear or branched, and preferably has 1 to 5 carbon atoms. Examples of the alkyl group include methyl group, ethyl group, propyl group, and isopropyl group.
  • the alkoxy group may be linear or branched, and preferably has 1 to 5 carbon atoms. Examples of the alkoxy group include a methoxy group and an ethoxy group.
  • the hydrophilic group is at least one selected from the group consisting of a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphonic acid group. These hydrophilic groups may form a salt. Examples of cations that form salts include alkali metal ions, ammonium ions, and organic ammonium ions. Examples of alkali metal ions include ions such as lithium, sodium, and potassium. Examples of organic ammonium ions include ions such as alkylamines and alkanolamines. When at least one of R 1 to R 4 is a hydrophilic group and at least one of R 5 to R 8 is a hydrophilic group, these hydrophilic groups may be the same or different.
  • Hydrogen atoms bonded to carbon atoms constituting the alkyl groups and alkoxy groups represented by R 1 to R 4 and R 5 to R 8 are substituted with substituents such as halogen atoms, hydroxy groups, and alkylsiloxane groups. It's okay. However, if the imine becomes too large sterically or the electron donating property of the substituent is too strong, the properties of the nitrogen atom of the imine may become unsuitable for chemical bonding with metal particles.
  • any one of R 1 to R 4 is preferably a carboxylic acid group or a sulfonic acid group, and all the remaining are hydrogen atoms. Furthermore, in general formula (1), it is preferable that R 2 is a carboxylic acid group or a sulfonic acid group, and R 1 , R 3 and R 4 are hydrogen atoms.
  • the compound only needs to have a repeating structure represented by the general formula (1), and there are no particular limitations on the terminal or other structures it may have.
  • the proportion (mass %) of the repeating structure represented by general formula (1) in the compound is preferably 50.0 mass % or more based on the total mass of the compound.
  • one end has a structure represented by the following general formula (1a), includes a structure represented by the following general formula (1b) and a repeating structure represented by general formula (1), and the other end has a structure represented by the following general formula (1a).
  • An example is a compound having a structure represented by the following general formula (1d).
  • GPC gel permeation chromatography
  • the molecular weight of the repeating structure represented by general formula (1b) and the molecular weight of the repeating structure represented by general formula (1) can be determined based on the ratio obtained above. can. From these molecular weights, the proportion (mass %) of the repeating structure represented by general formula (1) in the compound can be calculated.
  • the terminal of the compound preferably has a structure corresponding to a part of the repeating structure represented by general formula (1).
  • a structure represented by the following general formula (1a) and a structure represented by the following general formula (1d) can be mentioned.
  • a structure represented by the following general formula (1b) may exist between one end and the repeating structure represented by general formula (1).
  • a structure represented by the following general formula (1c) may exist between the repeating structure represented by general formula (1) and the other end. It is preferable that m and m' representing the number of repeating structures of general formula (1b) and general formula (1c) are each independently from 0 to 100.
  • aniline black having a repeating structure represented by the following formula (3) is known as a compound containing quinone diimine.
  • Aniline black represented by the above formula (3) is an insulator.
  • the proton type form (emeraldine salt) represented by the following general formulas (4) and (5) is a conductor.
  • a chemical reaction between the metal atom (M) (metal atom with a positive charge) and the nitrogen atom (N) in the quinone diimine forms an electrically conductive compound having a morphology similar to the proton type.
  • MN bond The bond between a metal atom (M) and a nitrogen atom (N) (hereinafter also referred to as "MN bond”) can be identified by measuring an infrared absorption spectrum. If an MN bond is formed, an absorption peak in the infrared absorption spectrum resulting from the MN stretching vibration will appear in the wavelength range of 450 to 600 cm -1 .
  • MN bond For the method of identifying the MN bond, see, for example, Tohoku Industrial Research Institute Report, No. 4, October 1970, p. 15-19.
  • the compound having a repeating structure represented by the general formula (1) commercially available products or compounds synthesized by known methods can be used. Suitable commercially available products include, for example, the product name "Aquapass” series (manufactured by Mitsubishi Chemical, water-soluble conductive polymer (sulfonic acid-substituted aniline polymer)).
  • a compound having a desired substituent (groups represented by R 1 to R 4 and R 5 to R 8 in general formula (1)) can be obtained by synthesis.
  • methods for synthesizing the compound include known synthesis methods such as oxidative polymerization and electrolytic polymerization of compounds having an aminobenzene skeleton. For details on oxidative polymerization, see Journal of Molecular Structure, 1122 (2016), pp. 117-122, etc.
  • Examples of the oxidizing agent used in oxidative polymerization of a compound having an aminobenzene skeleton include persulfates, redox initiators, and the like. Specifically, persulfates such as ammonium persulfate, persulfate, sodium persulfate, and potassium persulfate; hydrogen peroxide, ferric chloride, ferric sulfate, potassium dichromate, potassium permanganate, and peroxide. Redox initiators such as hydrogen-ferrous salts; and the like.
  • the amount of the oxidizing agent used is preferably 0.01 mol or more and 10 mol or less, for example, per 1 mol of the compound having an aminobenzene skeleton.
  • control agent for controlling the molecular weight of the obtained compound for example, a compound having a benzene skeleton having a substituent at the 4-position, a thiol compound, a disulfide compound, an ⁇ -methylstyrene dimer, etc. can be used.
  • anthranilic acid is dissolved in hydrochloric acid, and then an aqueous ammonium persulfate solution is added dropwise at 25°C (room temperature), followed by stirring at 25°C for 4 days.
  • a black solid can be obtained by filtering, washing with water, and drying the generated solid.
  • GPC gel permeation chromatography
  • the content (mass%) of the compound in the conductive composition is preferably 0.00001% by mass or more and 1.0% by mass or less, and 0.001% by mass or more and 0.00% by mass or less, based on the total mass of the composition. More preferably, it is 1% by mass or less.
  • the metal atoms contained in the metal particles and the nitrogen atoms contained in the compound form a chemical bond and that the metal particles are appropriately coated with the compound.
  • the surfaces of the metal particles are uniformly covered with the compound.
  • the content (mass%) of the compound in the conductive composition is preferably 0.001 times or more and 0.100 times or less relative to the metal particle content (mass%). , more preferably 0.005 times or more and 0.075 times or less. If the above mass ratio is less than 0.005 times, there will be too little compound to cover the surface of the metal particles sufficiently, and there will likely be areas on the surface of the metal particles where no compound is attached. Become.
  • the surface area per metal particle can be calculated. Therefore, if the area occupied by one molecule of a compound can be roughly estimated, the number of molecules to coat the surface of one metal particle can be calculated.
  • the occupied area may be approximated by calculating the cross-sectional area assuming the diameter of the atom as 1.5 ⁇ , and multiplying the cross-sectional area by the number of atoms of the compound.
  • the saturated adsorption amount that coats the metal particles may be estimated and used as a guideline for the addition amount. Specifically, the amount of adsorption is plotted against the amount of compound added. If the obtained plot (adsorption isotherm) is a curve that follows the Langmuir type adsorption isotherm, there is a region where the adsorption amount does not increase even if the amount added is increased and is saturated, so the adsorption in this region The amount can be regarded as the saturated adsorption amount.
  • the metal atoms contained in the metal particles and the nitrogen atoms contained in the compound are chemically bonded, and whether or not at least a portion of the surface of the metal particles is coated with the compound is confirmed from the zeta potential of the metal particles. be able to.
  • the zeta ( ⁇ ) potential of metal particles that are not coated with a compound is usually 0 mV or more, that is, the zeta potential is zero or a positive value with a small absolute value (a value of about 0 to +3 mV).
  • the zeta potential of metal particles whose particle surfaces are at least partially coated with a compound is less than 0, that is, the zeta potential exhibits a negative value (specifically, a value of -1 mV or less).
  • Zeta potential can be measured with a zeta potential measuring device.
  • the conductive composition is centrifuged and the supernatant is removed to obtain a wet cake, which is then diluted with water. It is preferable to use a sample that has been tested.
  • the zeta potential of the chemically bonded metal particles is preferably ⁇ 30 mV or less (a negative value and an absolute value of 30 mV or more). If the zeta potential is more than -30 mV (negative value and less than 30 mV in absolute value), the metal particles are likely to aggregate due to less coverage of the metal particles with the compound, and sufficient dispersion stability cannot be obtained. There is.
  • a zeta potential chart has a single peak top, the shape of the peak is sharp, and the half width of the peak also tends to be small.
  • the conductive composition may further contain a liquid medium.
  • a liquid medium both non-aqueous media and aqueous media can be used.
  • non-aqueous media include liquid media composed of organic solvents such as heptane and petroleum ether.
  • Non-aqueous media do not contain water.
  • the aqueous medium contains water and may further contain various organic solvents. It is preferable that the conductive composition further contains an aqueous medium.
  • the aqueous medium is water or a mixed medium containing water as a main component and a protic organic solvent or an aprotic organic solvent.
  • the organic solvent it is preferable to use one that is miscible with water in any proportion (water-miscible organic solvent) or one that is soluble in water (water-soluble organic solvent) in any proportion.
  • a homogeneous mixed medium containing 50% by mass or more of water as the aqueous medium.
  • water it is preferable to use deionized water (ion-exchanged water) or ultrapure water.
  • a protic organic solvent is an organic solvent that has a hydrogen atom (acidic hydrogen atom) bonded to an oxygen atom or a nitrogen atom.
  • Aprotic organic solvents are organic solvents that do not have acidic hydrogen atoms. Examples of organic solvents include alcohols, (poly)alkylene glycols, glycol ethers, glycol ether esters, carboxylic acid amides, ketones, keto alcohols, cyclic ethers, nitrogen-containing solvents, and sulfur-containing solvents. etc. can be mentioned.
  • aqueous medium examples include water, a mixed solvent of water/alcohol, a mixed solvent of water/(poly)alkylene glycol, and a mixed solvent of water/nitrogen-containing solvents.
  • the content (mass%) of water in the conductive composition is preferably 10.0% by mass or more and 90.0% by mass or less, and 50.0% by mass or more, based on the total mass of the conductive composition. More preferably, it is 90.0% by mass or less.
  • the content (mass%) of the water-soluble organic solvent in the conductive composition is preferably 5.0% by mass or more and 90.0% by mass or less, based on the total mass of the conductive composition, and 10.0% by mass or less. It is more preferable that the amount is from 50.0% by mass to 50.0% by mass.
  • the conductive composition may further contain a resin.
  • This resin has a repeating structure represented by general formula (1) and has a weight average molecular weight of 1,000 to 100,000, which is different from other compounds.
  • a resin By adding a resin to the conductive composition, physical properties such as viscosity and surface tension of the conductive composition can be easily adjusted.
  • a resin By adding a resin to the conductive composition, it is also possible to adjust the performance of the conductive image recorded by the conductive composition, such as hardness, flexibility, and adhesion to the substrate.
  • the type of resin contained in the conductive composition is preferably selected in accordance with the material forming the base material to which the conductive composition is applied.
  • the resin added to the conductive composition and the resin material forming the base material are selected to have so-called "SP values" close to each other, the adhesion of the conductive image to the base material can be improved. Suitable resin combinations will be described later.
  • the content (mass%) of the resin in the conductive composition is preferably 0.01% by mass or more and 20.0% by mass or less, and 0.05% by mass or more, based on the total mass of the conductive composition. More preferably, it is 20.0% by mass or less. Among these, it is particularly preferable that the content is 0.1% by mass or more and 10.0% by mass or less. If the content of the resin in the conductive composition is too small, the degree of adjustment of the physical properties of the conductive composition and the degree of adjustment of the performance of the conductive image by adding the resin may become low. On the other hand, if the content of the resin in the conductive composition is too large, sufficient conductivity of the conductive image may not be obtained.
  • the resin examples include polyester, polyurethane, polyolefin, polystyrene, acrylic, polyvinyl chloride, polyvinyl acetate, polyvinylpyrrolidone, polyamide, polyimide, epoxy, polyvinyl alcohol, polysaccharide, and the like.
  • at least one resin selected from the group consisting of polyester, polyurethane, polyolefin, polyvinyl acetate, and polyamide is more preferred.
  • the resin may be a resin (copolymer, composite resin, etc.) formed of multiple types of resins among these.
  • the resin may have an ionic group (anionic group, cationic group) or may not have an ionic group.
  • the above-mentioned compounds do not easily affect the repulsion of negative charges possessed by chemically bonded metal particles, and can stably coexist with metal particles in a conductive composition.
  • the resin has no.
  • a resin having an anionic group or a resin having no ionic group can be particularly preferably used.
  • the weight average molecular weight of the resin is preferably 2,000 or more and 100,000 or less.
  • the weight average molecular weight of the resin is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the resin may be a soluble resin that can be dissolved in a liquid medium, or may be resin particles that are dispersed in the liquid medium, but it is more preferably resin particles.
  • the resin is soluble means that when the resin is neutralized with an alkali equivalent to the acid value, the resin does not form particles whose particle size can be measured by dynamic light scattering. means present in the medium. Whether or not a resin is soluble can be determined according to the method shown below.
  • a conductive composition containing an aqueous liquid medium and a resin having an anionic group will be explained as examples, but cases where the liquid medium is non-aqueous or a resin having a cationic group will also be explained. Judgments can be made in the same way except for replacing with corresponding components.
  • a liquid (resin solid content: 10% by mass) containing a resin neutralized with an alkali equivalent to an acid value (sodium hydroxide, potassium hydroxide, etc.) is prepared.
  • the prepared liquid is diluted 10 times (by volume) with pure water to prepare a sample solution.
  • the measurement conditions at this time can be, for example, Set Zero: 30 seconds, number of measurements: 3 times, and measurement time: 180 seconds.
  • a particle size analyzer using a dynamic light scattering method for example, trade name "UPA-EX150", manufactured by Nikkiso Co., Ltd.
  • the particle size distribution measuring device and measurement conditions used are not limited to those described above.
  • the conductive composition further contains an organic compound that is solid at room temperature (25°C), as necessary, such as polyhydric alcohols such as trimethylolpropane and trimethylolethane; urea derivatives such as urea and ethylene urea; You may.
  • the conductive composition may also contain surfactants, pH adjusters, rust preventives, preservatives, fungicides, antioxidants, reduction inhibitors, evaporation accelerators, chelating agents, etc., as necessary. It may further contain various additives.
  • the content (mass%) of the surfactant in the conductive composition is preferably 0.1% by mass or more and 5.0% by mass or less, based on the total mass of the conductive composition, and 0.1% by mass. % or more and 2.0% by mass or less is more preferable.
  • nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene/polyoxypropylene block copolymer, and acetylene glycol compounds are used. It is preferable to use
  • the conductive composition in which the metal atoms contained in the metal particles and the nitrogen atoms contained in the compound are chemically bonded can be preferably produced by the following method.
  • the method for producing a conductive composition is to heat a metal salt and a compound in an aqueous medium to a temperature of 40°C or higher and 150°C or lower to form a precursor in which a metal atom contained in the metal salt and a nitrogen atom contained in the compound are chemically bonded. and a second step of reducing the formed precursor.
  • the metal salt and the compound are heated to a temperature of 40° C. or more and 150° C. or less in an aqueous medium to cause them to react. Specifically, after adding a compound to an aqueous solution of a metal salt, the mixture is heated to a temperature of 40° C. or more and 150° C. or less while stirring.
  • the heating temperature can be determined depending on the liquid medium. When using a liquid medium consisting only of water, the heating temperature is preferably 40°C or higher, more preferably 50°C or higher, and 100°C or lower, which is the boiling point of water, taking into account the reflux temperature.
  • the heating temperature should be 40°C or higher and 150°C in consideration of the azeotropy of the water and organic solvent.
  • the heating temperature should be 40°C or higher and 150°C in consideration of the azeotropy of the water and organic solvent. The following is preferable.
  • the precursor formed is a compound in which a metal atom (M) and a nitrogen atom (N) are chemically bonded.
  • the precursor has, for example, a structure represented by the following general formula (6) or (7).
  • M each independently represents a metal atom
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or a hydrophilic group
  • R At least one of 1 to R 4 is a hydrophilic group
  • R 5 to R 8 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or a hydrophilic group
  • at least one of R 5 to R 8 is a hydrophilic group.
  • the hydrophilic group is at least one selected from the group consisting of a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphonic acid group.
  • Whether or not a precursor has been formed can be confirmed by the presence or absence of a bond between a metal atom (M) and a nitrogen atom (N).
  • the bond between a metal atom (M) and a nitrogen atom (N) (hereinafter also referred to as "MN bond”) can be identified by measuring an infrared absorption spectrum. When a new MN bond is formed, an absorption peak in the infrared absorption spectrum resulting from the MN stretching vibration appears in the wavelength range of 450 to 600 cm -1 . Based on the presence or absence of this absorption peak, it can be determined whether a precursor has been formed or not.
  • the precursor obtained in the first step is reduced. Thereby, it is possible to obtain a conductive composition containing the desired metal particles in which the metal atoms contained in the metal particles and the nitrogen atoms contained in the compound are chemically bonded.
  • aqueous medium As the aqueous medium, the above-mentioned aqueous medium that can be included in the conductive composition can be used. That is, water alone or a mixed medium containing water as a main component and a protic organic solvent or an aprotic organic solvent can be used.
  • the organic solvent it is preferable to use one that is miscible with water in any proportion (water-miscible organic solvent) or one that is soluble in water (water-soluble organic solvent) in any proportion. Among these, it is preferable to use a homogeneous mixed medium containing 50% by mass or more of water as the aqueous medium.
  • water it is preferable to use deionized water (ion-exchanged water) or ultrapure water.
  • metal salts examples include metal salts composed of metal ions and inorganic anion species, metal salts composed of metal ions and organic anion species, and metal salts composed of metal ions and inorganic organic anion species.
  • metal ions examples include metal salts composed of metal ions and inorganic anion species, metal salts composed of metal ions and organic anion species, and metal salts composed of metal ions and inorganic organic anion species.
  • metal ions ions of metals such as nickel, palladium, platinum, copper, silver, and gold, which can form metal particles, can be used.
  • inorganic anion species include anions such as oxides, halogens, carbonic acid, and nitric acid.
  • organic anion species examples include anions of carboxylic acids such as formic acid and acetic acid.
  • metal salts include nickel compounds such as nickel (II) chloride and nickel (II) nitrate; palladium compounds such as palladium (II) chloride, palladium (II) acetate, and palladium (II) oxide; and platinum (II) chloride.
  • platinum compounds such as platinum(IV) oxide
  • copper compounds such as copper(I) chloride, copper(II) chloride, copper(I) oxide, copper(II) oxide
  • the gold regeneration method involves removing other metals from the collected waste products, dissolving and leaching the gold with aqua regia or an organic solvent, recrystallizing the gold with a reducing agent to increase its purity, and then melting it again. There are methods such as removing organic matter and turning it into lumps. If recovered precious metals are to be reused as products, purity guarantees are required. For example, in the case of gold, it is necessary to guarantee a high purity of 99.99%.
  • a recovered metal salt recovered from metal waste liquid as the metal salt.
  • chloroauric(III) acid using recovered gold can be used.
  • Au(III) chloride acid can be prepared by drying a gold-regia solution produced during the above gold regeneration method.
  • regenerated chloroauric (III) acid When producing a conductive composition containing gold particles as metal particles, regenerated chloroauric (III) acid can be used as one of the starting materials. Since gold is highly reducible, gold particles are preferentially formed even if the regenerated chloroauric(III) acid contains other metal impurities. Therefore, high purity guarantees are not required for the regenerated chloroauric(III) acid.
  • the purity of the chloroauric (III) acid is preferably 90% or more, more preferably 95% or more. In the gold regeneration process, steps related to purity assurance can be omitted and raw material costs can be reduced.
  • the purity of silver (I) nitrate is preferably 90% or more, more preferably 95% or more. In the silver recycling process, steps related to purity assurance can be omitted, reducing raw material costs.
  • Silver (I) nitrate can be recovered from waste according to known methods. For example, if nitric acid is added to a silver-containing waste solution to make it acidic, and a dichromate is added to the filtrate obtained by separating the precipitate, a silver dichromate precipitate is generated. Silver (I) nitrate can be recovered by dissolving the silver dichromate precipitate in hot dilute nitric acid and then treating it with an NO 3 type anion exchange resin.
  • reducing agent it is preferable to use a reducing agent to reduce the metal salt.
  • reducing agents alcohols having a primary hydroxyl group such as methanol, ethanol, 1-propanol, and ethylene glycol; alcohols having a secondary hydroxyl group such as 2-propanol and 2-butanol; primary hydroxyl such as glycerin; and secondary hydroxyl groups; thiols; aldehydes such as formaldehyde and acetaldehyde; sugars such as glucose, fructose, glyceraldehyde, lactose, arabinose, and maltose; organics such as citric acid, tannic acid, and ascorbic acid.
  • Examples include acids and salts thereof; borohydrides and salts thereof; hydrazines such as hydrazine, alkylhydrazine, and hydrazine sulfate; and the like.
  • Examples of anions that form salts of organic acids and boron hydrides include ions of alkali metals such as lithium, sodium, and potassium, ions of alkaline earth metals such as calcium and magnesium, ammonium ions, and organic ammonium ions. I can do it.
  • organic acids or their salts can reduce the metal salts and adhere to the surfaces of the formed metal particles to generate a repulsive force to the extent that the metal particles do not agglomerate or coalesce.
  • organic acids and their salts ascorbic acid and its salts, citric acid and its salts, etc. are preferable. Among these, ascorbate, citrate, and the like are more preferred.
  • a reducing agent compounds such as polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, gelatin, starch, dextrin, carboxymethylcellulose, methylcellulose, and ethylcellulose can be used.
  • these compounds also reduce metal salts and adhere to the surface of the metal particles that are formed to prevent agglomeration and coalescence of the metal particles. A supplementary repulsive force can be generated.
  • the amount of the reducing agent to be used may be set as appropriate depending on the type of metal, the concentration of the metal salt, the size (particle size) of the metal particles to be formed, the temperature and stirring power when adding the reducing agent, etc. .
  • it is preferable to reduce the metal salt under heating conditions and it is more preferable to reduce the metal salt while refluxing the liquid medium.
  • the temperature of the bath e.g., oil bath
  • the reaction vessel is adjusted to 115°C or more and 200°C or less. It is preferable to set the temperature below °C.
  • Metal particles that have only been reduced by a reducing agent and are not coated with a processing agent exhibit a zeta potential value depending on the type of reducing agent.
  • gold particles are formed using citric acid as a reducing agent.
  • the zeta potential of gold particles to which citric acid is attached is about -40 mV.
  • a reducing agent such as citric acid has a weak adhesion force to metal particles, simply attaching a reducing agent such as citric acid does not result in a conductive composition in which metal particles are continuously and stably dispersed.
  • the conductive image recording method of the present invention includes the step of applying the above-described conductive composition to a base material.
  • a desired conductive image can be obtained by applying the conductive composition to the base material.
  • the method for applying the conductive composition to the base material include an inkjet method, a flexo method, and a spin coating method. Among these, it is preferable to apply the conductive composition to the base material by an inkjet method.
  • the inkjet method is a method in which a conductive composition is ejected from an inkjet ejection head and applied to a base material such as a recording medium.
  • Methods of discharging the conductive composition from a discharge head include a method of imparting mechanical energy to the conductive composition and a method of imparting thermal energy to the conductive composition.
  • a known method may be used for applying the conductive composition to the base material by an inkjet method.
  • the content (mass%) of metal particles in the conductive composition is preferably 5.0% by mass or more and 30.0% by mass or less based on the total mass of the composition. . If the content of metal particles in the conductive composition is less than 5.0% by mass, it may be necessary to apply the conductive composition multiple times in order to record a film-like conductive image. be.
  • the content of metal particles in the conductive composition exceeds 30.0% by mass, when the conductive composition is discharged from an inkjet discharge head, the discharge port is likely to be clogged due to the high viscosity. There are cases.
  • the surface tension of the conductive composition at 25° C. is preferably 10 mN/m or more and 60 mN/m or less, more preferably 20 mN/m or more and 60 mN/m or less, and 30 mN/m or more and 50 mN/m or less. It is particularly preferable that there be.
  • the viscosity of the conductive composition at 25° C. is preferably 1.0 mPa ⁇ s or more and 10 mPa ⁇ s or less, and more preferably 1.0 mPa ⁇ s or more and 5 mPa ⁇ s or less.
  • the pH of the conductive composition at 25° C. is preferably 3.0 or more and 9.0 or less, and preferably 5.0 or more and 9.0 or less.
  • the method for recording a conductive image may further include the step of drying the conductive composition applied to the base material. If the above-mentioned conductive composition is used, a conductive image having excellent conductivity can be recorded simply by drying at a low temperature such as room temperature (25 °C) without drying at a high temperature of 100 °C or higher, for example. I can do it.
  • the conductive composition applied to the base material may be dried by blowing air or heating, but it may be dried without using these methods, that is, it may be dried naturally.
  • the temperature at which the conductive composition applied to the base material is dried is preferably 20°C or higher and 120°C or lower, and more preferably 20°C or higher and 50°C or lower.
  • the drying temperature is less than 20°C, the time required for drying may become longer. By shortening the drying time, the conductivity of the recorded conductive image tends to increase.
  • the base material has a high heat-resistant temperature, it is also possible to raise the drying temperature to the heat-resistant temperature. However, if the drying temperature is too high, the base material may be deformed.
  • the recording method of the present invention after applying the conductive composition to the base material, it is not necessary to carry out a step of heating or sintering, or a step of curing by irradiation with active energy rays or the like.
  • the conductive image of the present invention includes a base material and a conductive layer formed on the base material.
  • the conductive layer contains metal particles and the above-mentioned compound, and at least a part of the surface of the metal particles is coated with the compound, and the metal atoms contained in the metal particles and the nitrogen atoms contained in the compound are chemically bonded. are combined.
  • the conductive image of the present invention is a conductive image recorded on a substrate, and is an image formed by the conductive composition described above.
  • the substrate may be any material as long as it can record a conductive image by drying the applied conductive composition. Since the conductive composition exhibits conductivity even when dried at a low temperature, a base material with a low heat resistance temperature can also be used.
  • the base material it is preferable to use glass, paper, resin materials, ceramics, silicon, etc. Examples of the resin material include biocompatible materials and synthetic resins.
  • the resin material is in the form of a plate or a sheet.
  • Biocompatible materials refer to materials that do not have a harmful effect on living organisms; they are inert to chemical reactions and biological defense reactions, are difficult to decompose, deteriorate, or elute in living organisms, are difficult to adsorb other components, and are flexible. It is a material that has properties such as being both durable and strong. Biocompatible materials include polyhydroxybutyric acid, poly( ⁇ -hydroxyester), poly( ⁇ -hydroxyester), polycyanoacrylate, polyanhydride, polyketone, poly(orthoester), poly- ⁇ -caprolactone, and polyacetal.
  • biodegradable plastics such as , poly(iminocarbonate), and polyphosphazene; proteins such as polypeptides, gelatin, collagen, and fibroin; polysaccharides such as cellulose and chitosan; and the like.
  • biocompatible materials formed from at least one member selected from the group consisting of gelatin, collagen, fibroin, cellulose, and chitosan are preferred.
  • synthetic resin can be used as the resin material.
  • Preferred synthetic resins include resins such as polyester, polyurethane, polyolefin, polystyrene, acrylic, polyvinyl chloride, polyvinyl acetate, polyamide, polyimide, polycarbonate, epoxy, and acrylonitrile-butadiene-styrene copolymer (ABS).
  • a synthetic resin material made of at least one member selected from the group consisting of polyester, polyolefin, polyimide, and polycarbonate is preferred.
  • These synthetic resin materials are also suitable as resins used for substrates such as flat panels, and are particularly preferably in the form of plates or sheets.
  • the type of resin contained in the conductive composition is preferably selected in accordance with the material forming the base material to which the conductive composition is applied. For example, it is thought that if the resin added to the conductive composition and the resin material forming the base material are selected to have so-called "SP values" close to each other, the adhesion of the conductive image to the base material can be improved.
  • the resin to be contained in the conductive composition is preferably a resin such as polyester, polyolefin, acrylic, polyvinyl acetate, or polyamide.
  • the resin to be included in the conductive composition is preferably a resin such as polyamide.
  • the resin to be included in the conductive composition is preferably a resin such as polyurethane, polyolefin, acrylic, or polyvinyl acetate.
  • the resin to be included in the conductive composition is preferably a resin such as polyester, polyolefin, polyvinyl acetate, or polyimide.
  • the resin to be included in the conductive composition is preferably a resin such as polyurethane, acrylic, or polyamide.
  • the resin to be included in the conductive composition is preferably a resin such as polyamide.
  • the resin to be included in the conductive composition is preferably a resin such as polyurethane, polyolefin, acrylic, or polyvinyl acetate.
  • the resin to be contained in the conductive composition is preferably a resin such as acrylic.
  • the resin to be included in the conductive composition is preferably a resin such as polyamide.
  • the resin to be contained in the conductive composition is preferably a resin such as polyamide.
  • Compound CA1 J. Mol. Struct. , Vol. 1122, 2016, pp.
  • Compound CA1 having a repeating structure represented by formula (8) was synthesized according to the method described in No. 117-122. 5.76 g of anthranilic acid (manufactured by Kishida Chemical Co., Ltd.), 15 mL of concentrated hydrochloric acid (manufactured by Kishida Chemical Co., Ltd.), and 90 mL of ion-exchanged water were placed in a 300 mL eggplant flask, and the anthranilic acid was dissolved to obtain a mixed solution.
  • FIG. 1 shows the infrared absorption spectrum of compound CA1.
  • Compound CA2 The repeating structure represented by formula (9) was prepared in the same manner as in the case of compound CA1 described above, except that 2-amino-4-methyl-benzoic acid (manufactured by Kishida Chemical Co., Ltd.) was used instead of anthranilic acid.
  • Compound CA2 was obtained.
  • the weight average molecular weight of the obtained compound CA2 was 20,000.
  • Compound PA The repeating structure represented by formula (10) was prepared in the same manner as in the case of compound CA1 described above, except that p-(2-aminophenyl)phosphonic acid (manufactured by Kishida Chemical Co., Ltd.) was used instead of anthranilic acid.
  • a compound PA having the following properties was obtained.
  • the weight average molecular weight of the obtained compound PA was 20,000.
  • Compound SA Expressed by formula (11) in the same manner as in the case of the above-mentioned compound CA1 except that 2-amino-4-methoxy-p-benzenesulfonic acid (manufactured by Kishida Chemical Co., Ltd.) was used in place of anthranilic acid.
  • Compound SA having a repeating structure was obtained.
  • the weight average molecular weight of the obtained compound SA was 20,000.
  • the zeta potential of the metal particles in the conductive composition was measured using a zeta electrometer (trade name "Zetasizer Nano", manufactured by Malvern). At this time, the manufactured conductive composition was centrifuged to remove the supernatant to obtain a wet cake, and then a sample was prepared by diluting it with ultrapure water to a concentration suitable for measurement. It was used as a measurement target.
  • the zeta potential of gold particles and silver particles produced by reducing gold (III) chloride tetrahydrate and silver (I) nitrate (both manufactured by Kishida Chemical) with trisodium citrate dihydrate is , were 1 mV and 0 mV, respectively.
  • a conductive composition (dispersion) was manufactured by the method shown below.
  • the metal particles in the conductive compositions (dispersions) produced in Examples D1 to D26 had a "substantially spherical" shape.
  • the mass ratio of the compound to the metal particles may be referred to as "compound/metal particles.”
  • Example D1 Conductive composition D1
  • Example D2 Conductive composition D2
  • a reaction solution containing Precursor 2 was obtained in the same manner as in the case of Precursor 1 described above, except that Compound CA2 was used instead of Compound CA1.
  • Conductive composition D2 was obtained in the same manner as in the case of conductive composition D1 described above, except that the reaction solution containing precursor 2 was used instead of the reaction solution containing precursor 1.
  • Example D3 Conductive composition D3
  • a reaction solution containing Precursor 3 was obtained in the same manner as in the case of Precursor 1 described above, except that Compound PA was used instead of Compound CA1.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 3, there was an absorption peak around 555 cm ⁇ 1 originating from the MN (Au (gold atom)-N) bond, and an absorption peak of 1, originating from the C C bond.
  • An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D3 was obtained in the same manner as in the case of conductive composition D1 described above, except that the reaction solution containing precursor 3 was used instead of the reaction solution containing precursor 1.
  • Example D4 Conductive composition D4
  • a reaction solution containing Precursor 4 was obtained in the same manner as in the case of Precursor 1 described above, except that Compound SA was used instead of Compound CA1.
  • Conductive composition D4 was obtained in the same manner as in the case of conductive composition D1 described above, except that the reaction solution containing precursor 4 was used instead of the reaction solution containing precursor 1.
  • Example D5 Conductive composition D5
  • a water-soluble conductive polymer (trade name "Aquapass-01X", weight average molecular weight 15,000, manufactured by Mitsubishi Chemical) was used in place of compound CA1.
  • a reaction solution containing Precursor 5 was obtained.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 5, there was an absorption peak around 565 cm ⁇ 1 originating from the M--N (Au (gold atom)--N) bond, and an absorption peak of 1, originating from the C C bond.
  • An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D5 was obtained in the same manner as in the case of conductive composition D1 described above, except that a reaction solution containing precursor 5 was used instead of the reaction solution containing precursor 1.
  • Example D6 Conductive composition D6
  • a reaction solution was obtained.
  • reaction solution containing the precursor 6 obtained above was heated to reflux, 2.37 g of trisodium citrate dihydrate was added, and the mixture was stirred for 2 hours. It was visually confirmed that the color of the aqueous solution changed from yellow to red.
  • This aqueous solution was divided into 250 mL centrifuge tubes, centrifuged at 9,000 rpm for 30 minutes using a centrifuge, and the solid-liquid supernatant was removed for purification. Furthermore, ultrapure water was added and the above-mentioned purification by centrifugation treatment was repeated twice to obtain conductive composition D6.
  • Example D7 Conductive composition D7
  • a reaction solution containing Precursor 7 was obtained in the same manner as in the case of Precursor 6, except that Compound PA was used instead of Compound CA1.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 7, there was an absorption peak around 555 cm ⁇ 1 originating from the M--N (Au (gold atom)--N) bond, and an absorption peak of 1, originating from the C C bond.
  • An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D7 was obtained in the same manner as in the case of conductive composition D6 described above, except that a reaction solution containing precursor 7 was used instead of the reaction solution containing precursor 6.
  • Example D8 Conductive composition D8
  • a reaction solution containing Precursor 8 was obtained in the same manner as in the case of Precursor 6, except that Compound SA was used instead of Compound CA1.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 8, there was an absorption peak around 590 cm ⁇ 1 originating from the M--N (Au (gold atom)--N) bond, and an absorption peak of 1, originating from the C C bond.
  • An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D8 was obtained in the same manner as in the case of conductive composition D6 described above, except that a reaction solution containing precursor 8 was used instead of the reaction solution containing precursor 6.
  • Example D9 Conductive composition D9
  • a water-soluble conductive polymer (trade name "Aquapass-01X", weight average molecular weight 15,000, manufactured by Mitsubishi Chemical) was used instead of compound CA1.
  • a reaction solution containing precursor 9 was obtained.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 9, there was an absorption peak around 590 cm ⁇ 1 derived from the M--N (Au (gold atom)--N) bond, and an absorption peak of 1, derived from the C C bond. An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D9 was obtained in the same manner as in the case of conductive composition D6 described above, except that a reaction solution containing precursor 9 was used instead of the reaction solution containing precursor 6.
  • Example D10 Conductive composition D10
  • a reaction solution was obtained.
  • reaction solution containing the precursor 10 obtained above was heated to reflux, 2.37 g of trisodium citrate dihydrate was added, and the mixture was stirred for 2 hours. It was visually confirmed that the color of the aqueous solution changed from yellow to red.
  • This aqueous solution was divided into 250 mL centrifuge tubes, centrifuged at 9,000 rpm for 30 minutes using a centrifuge, and the solid-liquid supernatant was removed for purification. Further, ultrapure water was added and the above-described purification by centrifugation treatment was repeated twice to obtain conductive composition D10.
  • Example D11 Conductive composition D11
  • reaction solution containing the precursor 11 obtained above was heated to reflux, 2.37 g of trisodium citrate dihydrate was added, and the mixture was stirred for 2 hours. It was visually confirmed that the color of the aqueous solution changed from yellow to red.
  • This aqueous solution was divided into 250 mL centrifuge tubes, centrifuged at 9,000 rpm for 30 minutes using a centrifuge, and the solid-liquid supernatant was removed for purification. Further, ultrapure water was added and the above-described purification by centrifugation treatment was repeated twice to obtain conductive composition D11.
  • Example D12 Conductive composition D12
  • reaction solution containing the precursor 12 obtained above was heated to reflux at 100°C, 2.37 g of trisodium citrate dihydrate was added, and the mixture was stirred for 2 hours. It was visually confirmed that the color of the aqueous solution changed from yellow to red.
  • This aqueous solution was divided into 250 mL centrifuge tubes, centrifuged at 9,000 rpm for 30 minutes using a centrifuge, and the solid-liquid supernatant was removed for purification. Further, ultrapure water was added and the above-described purification by centrifugation treatment was repeated twice to obtain conductive composition D12.
  • Example D13 Conductive composition D13
  • a reaction solution containing Precursor 13 was obtained in the same manner as in the case of Precursor 12 described above, except that Compound PA was used instead of Compound CA1.
  • Conductive composition D13 was obtained in the same manner as in the case of conductive composition D12 described above, except that a reaction solution containing precursor 13 was used instead of the reaction solution containing precursor 12.
  • Example D14 Conductive composition D14
  • a reaction solution containing precursor 14 was obtained in the same manner as in the case of precursor 12 described above, except that compound SA was used instead of compound CA1.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 14, there was an absorption peak around 590 cm ⁇ 1 originating from the MN (Au (gold atom)-N) bond, and an absorption peak of 1, originating from the C C bond.
  • An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D14 was obtained in the same manner as in the case of conductive composition D12 described above, except that a reaction solution containing precursor 14 was used instead of the reaction solution containing precursor 12.
  • Example D15 Conductive composition D15
  • a water-soluble conductive polymer (trade name "Aquapass-01X", weight average molecular weight 15,000, manufactured by Mitsubishi Chemical) was used in place of compound CA1.
  • a reaction solution containing precursor 15 was obtained.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 15, there was an absorption peak around 590 cm ⁇ 1 derived from the M--N (Au (gold atom)--N) bond, and an absorption peak of 1, derived from the C C bond. An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D15 was obtained in the same manner as in the case of conductive composition D12 described above, except that a reaction solution containing precursor 15 was used instead of the reaction solution containing precursor 12.
  • Example D16 Conductive composition D16
  • a conductive composition was manufactured using gold recovered from the substrate as a raw material.
  • the gold-plated base material was cut out and crushed into pieces approximately 5 mm x 5 mm in size to facilitate chemical treatment.
  • the obtained crushed pieces were immersed in 10% dilute nitric acid for 2 hours to dissolve the copper and nickel and float the gold-plated foil from the base material, and then pass dilute nitric acid through a filter lined with filter paper to separate the gold-plated foil.
  • the dilute nitric acid had a blue-green color with dissolved copper and nickel.
  • Dilute nitric acid was added to the gold-plated foil on the filter paper to wash away copper and nickel remaining on the surface of the gold-plated foil.
  • the obtained gold-plated foil was transferred together with the filter paper to another container, and an aqua regia solution containing a mixture of 35% hydrochloric acid and 60% nitric acid at a ratio of 3:1 (by volume) was dropped little by little to dissolve the gold.
  • an aqua regia solution containing a mixture of 35% hydrochloric acid and 60% nitric acid at a ratio of 3:1 (by volume) was dropped little by little to dissolve the gold.
  • the filter paper was removed, and the resulting gold-aqua regia solution was filtered to remove fragments of the base material.
  • the filtrate was distilled under reduced pressure while being heated using an acid-resistant rotary evaporator, and nitric acid, hydrochloric acid, and water were removed in this order to obtain chloroauric (III) acid tetrahydrate.
  • a reaction solution containing precursor 16 was obtained in the same manner as in the case of conductive composition D12 described above, except that the obtained gold(III) chloride tetrahydrate was used.
  • Conductive composition D16 was obtained in the same manner as in the case of conductive composition D12 described above, except that a reaction solution containing precursor 16 was used instead of the reaction solution containing precursor 12.
  • Example D17 Conductive composition D17
  • Example D18 Conductive composition D18
  • a water-soluble conductive polymer (trade name "Aquapass-01X", weight average molecular weight 15,000, manufactured by Mitsubishi Chemical) was used in place of compound CA1.
  • a reaction solution containing precursor 18 was obtained.
  • As a result of measuring the infrared absorption spectrum of the obtained precursor 18, there was an absorption peak around 545 cm ⁇ 1 derived from the MN (Ag (silver atom)-N) bond, and 1, derived from the C C bond. An absorption peak near 550 cm ⁇ 1 was confirmed.
  • Conductive composition D18 was obtained in the same manner as in the case of conductive composition D17 described above, except that a reaction solution containing precursor 18 was used instead of the reaction solution containing precursor 17.
  • Example D19 Conductive composition D19
  • Example D20 Conductive composition D20
  • Conductive composition D20 was obtained in the same manner as in the case of conductive composition D19 described above, except that a reaction solution containing precursor 20 was used instead of the reaction solution containing precursor 19.
  • Example D21 Conductive composition D21
  • Example D22 Conductive composition D22
  • Example D23 Conductive composition D23
  • Example D24 Conductive composition D24
  • Example D25 Conductive composition D25
  • Conductive composition D25 was obtained in the same manner as in the case of conductive composition D19 described above, except that a reaction solution containing precursor 25 was used instead of the reaction solution containing precursor 19.
  • Example D26 Conductive composition D26
  • a conductive composition was manufactured using polypyrrole (manufactured by Aldrich) with reference to the description in Patent Document 1.
  • Conductive composition D29 was obtained in the same manner as in the case of conductive composition D1 described above, except that a reaction solution containing precursor 29 was used instead of the reaction solution containing precursor 1. The zeta potential of the metal particles in conductive composition D29 could not be measured. Further, when the maximum absorption wavelength of the conductive composition D29 was measured, broad absorption was observed at 720 nm, but the maximum absorption wavelength was not clear.
  • a conductive composition was manufactured using polyaniline (manufactured by Aldrich) with reference to the description in Patent Document 1.
  • Conductive composition D30 was obtained in the same manner as in the case of conductive composition D1 described above, except that a reaction solution containing precursor 30 was used instead of the reaction solution containing precursor 1.
  • a conductive composition was produced using polythiophene (poly(3,4-ethylenedioxythiophene), manufactured by Aldrich) with reference to the description in Patent Document 1.
  • Conductive composition D33 was obtained in the same manner as in the case of conductive composition D32 described above, except that a reaction solution containing precursor 33 was used instead of the reaction solution containing precursor 32.
  • Comparative Example D8 Conductive composition D34
  • a conductive composition was manufactured using polypyrrole (manufactured by Aldrich) with reference to the description in Patent Document 1.
  • the resulting reaction solution was white and contained aggregates.
  • an absorption peak around 575 cm -1 derived from the MN (Ag (silver atom) - N) bond was not confirmed, and the target precursor was It turned out that it could not be synthesized. From this result, it was confirmed that chemical bonds between metal atoms and nitrogen atoms do not occur when polyaniline without sulfonic acid groups is used.
  • Conductive composition D34 was obtained in the same manner as in the case of conductive composition D17 described above, except that a reaction solution containing precursor 34 was used instead of the reaction solution containing precursor 17. The zeta potential of the metal particles in conductive composition D34 could not be measured. Further, when the maximum absorption wavelength of the conductive composition D34 was measured, broad absorption was observed at 730 nm, but the maximum absorption wavelength was not clear.
  • Comparative Example D9 Conductive composition D35
  • a conductive composition was manufactured using polyaniline (manufactured by Aldrich) with reference to the description in Patent Document 1.
  • the resulting reaction solution contained brown suspended matter.
  • an absorption peak around 575 cm -1 derived from the MN (Ag (silver atom) - N) bond was not confirmed, indicating that the desired precursor was It turned out that it could not be synthesized. From this result, it was confirmed that chemical bonds between metal atoms and nitrogen atoms do not occur when polyaniline without sulfonic acid groups is used.
  • Conductive composition D35 was obtained in the same manner as in the case of conductive composition D17 described above, except that a reaction solution containing precursor 35 was used instead of the reaction solution containing precursor 17.
  • Comparative Example D10 Conductive composition D36
  • a conductive composition was produced using polythiophene (poly(3,4-ethylenedioxythiophene), manufactured by Aldrich) with reference to the description in Patent Document 1.
  • Conductive composition D36 was obtained in the same manner as in the case of conductive composition D17 described above, except that a reaction solution containing precursor 36 was used instead of the reaction solution containing precursor 17. The zeta potential of the metal particles in conductive composition D36 could not be measured. Furthermore, when the maximum absorption wavelength of the conductive composition D36 was measured, broad absorption was observed at 725 nm, but the maximum absorption wavelength was not clear.
  • Conductive composition D37 was obtained in the same manner as in the case of conductive composition D1 described above, except that a reaction solution containing precursor 37 was used instead of the reaction solution containing precursor 1.
  • Conductive composition D38 was obtained in the same manner as in the case of conductive composition D1 described above, except that a reaction solution containing precursor 38 was used instead of the reaction solution containing precursor 1.
  • aqueous ink containing an aqueous medium and a surfactant was manufactured by the method shown below.
  • the average particle diameter of the metal particles in the obtained ink was within the range of ⁇ 1 nm of the average particle diameter of the metal particles in the conductive composition (dispersion) used as a raw material. This revealed that the metal particles were stably dispersed in the conductive composition and ink.
  • the conductive composition (dispersion liquid) obtained above is concentrated using an ultrafiltration device (trade name "TFF Minimate Ultrafiltration System", filter: 30K, manufactured by Pall) to remove the metal particles. A concentrated solution of the conductive composition having an amount of 14.85% was obtained. Then, each component was mixed to have the formulation shown below to obtain each ink having a metal particle content of 10.0%.
  • an acetylene glycol surfactant (trade name "OLFINE PD-005", manufactured by Nissin Chemical Industry Co., Ltd.) was used.
  • ⁇ Resin 1 Aqueous dispersion of polyester resin (trade name "Vylonal MD-2000", resin particle content 40%, manufactured by Toyobo)
  • ⁇ Resin 2 Water-soluble nylon resin (polyamide) resin (product name "AQ Nylon A-90", manufactured by Toray Industries)
  • ⁇ Resin 3 Aqueous dispersion of polyvinyl chloride/polyvinyl acetate copolymer resin (trade name "Vinibran 603", resin particle content 50%, manufactured by Nissin Chemical Industries)
  • ⁇ Resin 4 Aqueous dispersion of polyamide resin (trade name "Sepolsion NE205", resin particle content 40%, manufactured by Sumitomo Seika Chemicals)
  • ⁇ Resin 5 Aqueous dispersion of polyolefin resin (trade name "Sumifit WR101", resin particle content 31%, manufactured by Sumitomo Chemical)
  • ⁇ Resin 6 Aqueous dispersion of polyolefin resin (trade
  • Aggregates were formed in the conductive compositions (inks) prepared using conductive compositions (dispersions) D29 to D31 and D34 to D36, and subsequent evaluation could not be performed.
  • ink (conductive composition) conductive composition
  • inkjet recording device (trade name "LaboJet-500", manufactured by MicroJet) that ejects ink from an ejection head by the action of physical energy from a piezo element.
  • ink (conductive composition) is applied to a unit area of 1/600 inch x 1/600 inch on the following sheet-like base material under an environment of a temperature of 25°C and a relative humidity of 50%.
  • a solid image was recorded with the applied amount of 20 ng to obtain a recorded matter.
  • the obtained recorded matter was dried in an environment with a drying temperature shown in Table 3 and a relative humidity of 50% for a time shown in Table 3 to obtain each conductive image (rectangular image of 2 mm x 3 cm).
  • ⁇ PET PET film
  • product name ⁇ Panacrea ACX'' manufactured by Panac
  • ⁇ PI Polyimide film
  • product name ⁇ Kapton H'' manufactured by Toray DuPont
  • ⁇ PP Polypropylene film
  • product name ⁇ Torephan #40-2500'' Toray Manufactured by: PC: Polycarbonate film, trade name "Pure Ace D", manufactured by Teijin Gelatin sheet: 0.1% gelatin solution manufactured by Fuji Film Wako Pure Chemical was applied to PET film using a bar coater and dried.
  • ⁇ Fibroin sheet 5% fibroin aqueous solution manufactured by Millipore Sigma applied to PET film using a bar coater and dried.
  • ⁇ Conductivity evaluation> The film thickness of the obtained conductive image was measured using a stylus-type film thickness meter (manufactured by Tencor). The cross-sectional area of the conductive image was calculated from the measured film thickness, and the volume resistivity was measured and calculated by the four-point needle method. Further, the conductivity of the conductive image was evaluated according to the evaluation criteria shown below. In the evaluation criteria shown below, "A” was defined as an acceptable level, and "C” was defined as an unacceptable level. The results are shown in Table 3. A: Volume resistivity was less than 1 ⁇ 10 ⁇ 3 ⁇ cm. C: Volume resistivity was 1 ⁇ 10 ⁇ 3 ⁇ cm or more, or conductivity was not exhibited.
  • a conductive image (width 3.5 cm ⁇ height 3.5 cm ⁇ thickness 1 ⁇ m) was obtained under the same conditions as those used for the above conductivity evaluation.
  • this conductive image incisions were made vertically and horizontally along a cross-cut plate (trade name: "Cross-cut plate", cut width: 2 mm, manufactured by Allgood) with a cutter knife to create a grid-like cross-cut.
  • Adhesive tape (Cellotape (registered trademark) CT-24, manufactured by Nichiban, adhesive force 4.01 N/10 mm) was applied to the cross-cut portion and instantly peeled off at an angle of 60°.
  • -Category 2 The paint film was peeled off along the cut line and/or at the intersection. More than 5% and less than 15% of the cross-cut portions were affected.
  • -Category 3 The paint film was partially or completely peeled off along the cut line, and/or the eye area was partially or completely peeled off. More than 15% and less than 35% of the crosscuts were affected.
  • ⁇ Category 4 The paint film was partially or completely peeled off along the cut line, and/or several spots were partially or completely peeled off. More than 35% and less than 65% of the cross-cut portions were affected.
  • -Category 5 The degree of peeling was such that it could not be classified even in Category 4. (Evaluation criteria) A: Category 0, Category 1, or Category 2 B: Category 3, Category 4, or Category 5
  • Example E44 In the conductive image of Example E44 where the drying temperature was 120° C., the base material was deformed by heat and warped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

金属粒子の分散安定性に優れるとともに、簡易な後処理を行うだけでも導電性に優れた導電性画像を容易に記録することが可能な導電性組成物を提供する。 金属粒子、及び下記一般式(1)で表される繰り返し構造を有するとともに、重量平均分子量が1,000~100,000である化合物を含有し、金属粒子の表面の少なくとも一部が、化合物で被覆されているとともに、金属粒子に含まれる金属原子と化合物に含まれる窒素原子とが化学結合している導電性組成物である。 (R1~R4は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R1~R4の少なくとも1つは親水性基である。R5~R8は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R5~R8の少なくとも1つは親水性基である。親水性基は、カルボン酸基、スルホン酸基、リン酸基、及びホスホン酸基からなる群より選択される少なくとも1種である。)

Description

導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
 本発明は、導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像に関する。
 導電性を示すパターンや回路などの膜状の導電性画像を記録及び形成する材料として、金属粒子を含有する液状の導電性組成物が用いられている。このような導電性組成物中で金属粒子を安定して分散させて、分散安定性を保つには、金属粒子に吸着しうる処理剤を用いる必要がある。但し、このような処理剤は導電性に寄与しない成分であることから、高温での焼成処理や溶剤を用いた洗浄処理などを施すことで、記録された導電性画像から除去する必要があった。しかし、導電性画像を記録する基材の多様化に伴い、高温での焼成処理を必要としない導電性組成物が求められている。
 例えば、金属粒子及びポリチオフェンなどのπ共役系高分子を含有する透明電極が提案されている(特許文献1)。また、金属イオン、及びポリアニリンなどの導電性高分子水溶液の混合溶液から、前記金属イオンを還元して生成した金属コロイドを含有する配線材用のインクが提案されている(特許文献2)。
特開2005-327910号公報 特開2008-081550号公報
 しかし、特許文献1で提案されたπ共役系高分子で被覆した金属粒子を用いて調製したインクは、金属粒子の分散状態が不安定になりやすく、分散安定性が不十分であるとともに、記録した導電性画像中に凝集した金属粒子が多く含まれていた。また、基材への付与後に高温で焼成せず、乾燥させるといった簡易な後処理を行うだけでは導電性に寄与しない成分を十分に除去することができず、導電性に優れた画像を記録することは困難であった。また、特許文献2で提案された金属コロイドは導電性高分子との相互作用が弱いために、金属粒子の分散安定性が不十分であるとともに、導電性に優れた画像を記録することも困難であった。
 したがって、本発明の目的は、金属粒子の分散安定性に優れるとともに、簡易な後処理を行うだけでも導電性に優れた導電性画像を容易に記録することが可能な導電性組成物を提供することにある。また、本発明の別の目的は、この導電性組成物の製造方法、この導電性組成物を用いた導電性画像の記録方法、及び導電性画像を提供することにある。
 すなわち、本発明によれば、金属粒子、及び下記一般式(1)で表される繰り返し構造を有するとともに、重量平均分子量が1,000~100,000である化合物を含有し、前記金属粒子の表面の少なくとも一部が、前記化合物で被覆されているとともに、前記金属粒子に含まれる金属原子と、前記化合物に含まれる窒素原子とが化学結合していることを特徴とする導電性組成物が提供される。
(前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R~Rの少なくとも1つは前記親水性基である。R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は前記親水性基を表し、R~Rの少なくとも1つは前記親水性基である。前記親水性基は、カルボン酸基、スルホン酸基、リン酸基、及びホスホン酸基からなる群より選択される少なくとも1種である。)
 本発明によれば、金属粒子の分散安定性に優れるとともに、簡易な後処理を行うだけでも導電性に優れた導電性画像を容易に記録することが可能な導電性組成物を提供することができる。また、本発明によれば、この導電性組成物の製造方法、この導電性組成物を用いた導電性画像の記録方法、及び導電性画像を提供することができる。
化合物CA1、前駆体1、及び前駆体27の赤外吸収(IR)スペクトルである。 化合物CA1及び前駆体12の赤外吸収(IR)スペクトルである。 化合物CA1及び前駆体17の赤外吸収(IR)スペクトルである。 ポリアニリンスルホン酸、並びに、前駆体37及び38の赤外吸収(IR)スペクトルである。 保存前後のインク1の紫外可視分光(UV-vis)スペクトルである。 保存前後のインク25の紫外可視分光(UV-vis)スペクトルである。
 以下に、好ましい実施の形態を挙げて、さらに本発明を詳細に説明する。本発明において、化合物が塩である場合は、組成物中では塩はイオンに解離して存在しているが、便宜上、「塩を含有する」と表現する。本発明においては、導電性組成物のことを、単に「組成物」又は「インク」と記載することがある。また、本発明における「画像」とは、文字、写真、線画、配線、パターンなどを含むものであり、基材に所望の「画像」を表現することを「記録」「形成」と記載する。物性値は、特に断りのない限り、常温(25℃)における値である。
 種々検討した結果、本発明者らは、金属粒子への吸着又は化学結合部位として機能する特定の構造と、金属粒子を分散させるための親水性基と、を有する特定の化合物を金属粒子の処理剤として用いることが有効であることを見出した。そして、金属粒子への吸着又は化学結合(共有結合)部位として機能する特定の構造として、下記式(2)で表される繰り返し構造を見出した。すなわち、金属粒子と、親水性基を持った下記式(2)で表される繰り返し構造を有する化合物とを併用する。これにより、乾燥などの簡易な後処理を行うだけで導電性に優れた導電性画像を記録しうる、金属粒子の分散安定性に優れた導電性組成物が得られることを見出し、本発明に至った。
<導電性組成物>
 本発明の導電性組成物は、金属粒子、及び一般式(1)で表される繰り返し構造を有するとともに、重量平均分子量が1,000~100,000である化合物を含有する。そして、金属粒子の表面の少なくとも一部は、この化合物で被覆されており、前記金属粒子に含まれる金属原子と、前記化合物に含まれる窒素原子とが化学結合している。導電性組成物は25℃において液体であることが好ましい。以下、導電性組成物を構成する各成分について、それぞれ説明する。
(金属粒子)
 導電性組成物は金属粒子を含有する。金属粒子は、ニッケル、パラジウム、白金、銅、銀、及び金からなる群より選択される少なくとも1種の金属で形成されていることが好ましい。なかでも、白金、銅、銀、金が好ましく、銀、金がさらに好ましく、金が特に好ましい。導電性組成物中の金属粒子の含有量(質量%)は、組成物全質量を基準として、1.0質量%以上50.0質量%以下であることが好ましい。
 金属粒子は、分散した状態で導電性組成物中に存在する。導電性組成物中の金属粒子の体積基準の累積50%粒子径は、金属粒子の分散安定性の観点から、1nm以上100nm以下であることが好ましく、5nm以上50nm以下がさらに好ましい。以下、「体積基準の累積50%粒子径」のことを、単に「平均粒子径」とも記す。金属粒子の平均粒子径が5nm未満であると、導電性組成物中で単位質量当たりの金属粒子の数が多くなるため、複数の金属粒子が衝突して凝集しやすくなり、金属粒子の分散安定性が低下しやすくなる場合がある。一方、金属粒子の平均粒子径が100nm超であると、導電性組成物中で沈降しやすくなり、金属粒子の分散安定性が低下しやすくなる場合がある。金属粒子の体積基準の累積50%粒子径(平均粒子径)は、動的光散乱法により測定することができる。金属粒子が金又は銀で形成されている場合には、紫外-可視吸収スペクトルを測定することで、金属粒子の粒径を簡便に判断することができる。
 金属粒子の形状は略球形であることが好ましい。本発明においては、金属粒子の短径b/長径aの比が0.9以上である場合、金属粒子の形状が略球形である、と記載する。金属粒子が略球形であることを表す指標として、金属粒子の短径b/長径aの比を用いる。金属粒子の短径b/長径aの比を求めるためには、まず、金属粒子の長径aと短径bを測定する。具体的には、導電性組成物(分散液やインク)を水により適宜希釈した後、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を使用して、金属粒子を撮影する。そして、金属粒子を形成する最小単位の粒子の重心を通る最長径を長径a、及び最短径を短径bとする。このようにして測定した長径a及び短径bから、短径b/長径aの比を算出する。そして、30個の金属粒子についての短径b/長径aの比の平均値を、その金属粒子の短径b/長径aの比とする。金属粒子の短径b/長径aの比は0.9以上であることが好ましい。また、短径b/長径aの比は、理論上1.0以下である。
(一般式(1)で表される繰り返し構造を有する化合物)
 導電性組成物は、下記一般式(1)で表される繰り返し構造を有するとともに、重量平均分子量が1,000~100,000である化合物(以下、単に「化合物」とも記す)を含有する。この化合物は、金属粒子を分散させるための「処理剤」である。化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算の値である。化合物における一般式(1)で表される繰り返し構造の数(n)は、1以上500以下であることが好ましく、2以上400以下であることがさらに好ましい。また、化合物は水溶性であることが好ましい。本明細書において、化合物が「水溶性」であることとは、25℃で、液体の組成物中において当該化合物が粒子径を測定しうる粒子を形成しない状態で存在することを指す。
(前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R~Rの少なくとも1つは前記親水性基である。R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は前記親水性基を表し、R~Rの少なくとも1つは前記親水性基である。前記親水性基は、カルボン酸基、スルホン酸基、リン酸基、及びホスホン酸基からなる群より選択される少なくとも1種である。)
 化合物中の一般式(1)で表される繰り返し構造は、化合物の赤外吸収スペクトルを測定することによって確認することができる。例えば、化合物の赤外吸収スペクトルは、C=C結合に由来する1,600cm-1付近の吸収ピーク、C=N結合に由来する1,500cm-1付近の吸収ピーク、及び親水性基に由来する吸収ピークを有する。親水性基がカルボン酸基である場合、カルボン酸基のC=O結合に由来する吸収ピークは1,710cm-1付近に、親水性基がスルホン酸基である場合、スルホン酸基のS=O結合に由来する吸収ピークは1,200cm-1付近に存在する。
 一般式(1)で表される繰り返し構造は、キノンジイミンの窒素原子上の電子を利用して、又は窒素の反応性を利用して、金属粒子の表面と相互作用する。金属粒子がプラスの電荷を持つと、金属ドープと呼ばれる金属とイミン上の窒素原子との化学結合が生ずることが知られている。この化学結合については、例えば、Journal of Molecular Structure,1122(2016),pp.117-122などの文献に記載されている。この文献によれば、赤外吸収スペクトルにおいて、金属原子(M)とイミンの窒素原子(N)の結合(以下、「M-N結合」とも記す)に由来する450~600cm-1付近の吸収ピークの有無によって、M-N結合の有無を確認することができる。
 一般式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表す。アルキル基は、直鎖及び分岐鎖のいずれであってもよく、炭素数は1乃至5であることが好ましい。アルキル基としては、メチル基、エチル基、プロピル基、及びイソプロピル基などを挙げることができる。アルコキシ基は、直鎖及び分岐鎖のいずれであってもよく、炭素数は1乃至5であることが好ましい。アルコキシ基としては、メトキシ基及びエトキシ基などを挙げることができる。
 親水性基は、カルボン酸基、スルホン酸基、リン酸基、及びホスホン酸基からなる群より選択される少なくとも1種である。これらの親水性基は、塩を形成していてもよい。塩を形成するカチオンとしては、アルカリ金属イオン、アンモニウムイオン、及び有機アンモニウムイオンなどを挙げることができる。アルカリ金属イオンとしては、リチウム、ナトリウム、カリウムなどのイオンを挙げることができる。有機アンモニウムイオンとしては、アルキルアミン、アルカノールアミンなどのイオンを挙げることができる。R~Rの少なくとも1つが親水性基であり、R~Rの少なくとも1つが親水性基である場合、これらの親水性基は互いに同じであっても異なっていてもよい。
 R~R及びR~Rで表されるアルキル基やアルコキシ基を構成する炭素原子に結合した水素原子は、ハロゲン原子、ヒドロキシ基、及びアルキルシロキサン基などの置換基によって置換されていてもよい。但し、立体的に大きくなりすぎたり、置換基の電子供与性が強すぎたりすると、イミンの窒素原子の性質が金属粒子との化学結合に適しにくくなる場合がある。
 一般式(1)中、R~Rのいずれか1つが、カルボン酸基又はスルホン酸基であり、残りのすべてが水素原子であることが好ましい。さらに、一般式(1)中、Rがカルボン酸基又はスルホン酸基であり、R、R、及びRが水素原子であることが好ましい。
 化合物は、一般式(1)で表される繰り返し構造を有すればよく、末端やその他に有しうる構造は特に限定されない。化合物に占める、一般式(1)で表される繰り返し構造の割合(質量%)は、化合物全質量を基準として、50.0質量%以上であることが好ましい。このような特性を有する化合物を用いることで、金属粒子を有効に被覆して、分散安定性に優れる導電性組成物とすることができる。
 化合物に占める一般式(1)で表される繰り返し構造の割合(質量%)は、当該化合物を含有する導電性組成物の赤外吸収(IR)スペクトルから求めることができる。具体的には、IRスペクトルにおける、C=Nに由来する1,500cm-1の吸収ピーク強度、及び、C-NHに由来する1,220~1,250cm-1付近の吸収ピーク強度から、上記割合(質量%)を概ね算出することができる。
 上記割合(質量%)を求める方法を具体的に説明する。ここでは、一方の末端が下記一般式(1a)で表される構造であり、下記一般式(1b)で表される構造及び一般式(1)で表される繰り返し構造を含み、他方の末端が下記一般式(1d)で表される構造を有する化合物を例に挙げる。当該化合物を含有する導電性組成物のIRスペクトルには、C=Nに由来する吸収ピーク、及び、C-NHに由来する吸収ピークが確認される。一般式(1)で表される繰り返し構造には2つのC=Nが含まれるため、C=Nに由来する吸収ピークの強度は2倍となる。したがって、C=N及びC-NHのそれぞれに由来する吸収ピークの強度比が、例えば、2:1であると求められた化合物は、一般式(1)及び一般式(1b)のそれぞれで表される繰り返し構造の比率(質量基準)が1:1であると見積もることができる。ゲル浸透クロマトグラフィー(GPC)により測定した化合物の分子量から、末端に存在する一般式(1a)で表される構造及び一般式(1d)で表される構造の分子量を差し引いて、繰り返し構造部分の分子量を求める。この繰り返し構造部分の分子量から、上記で得られた比率に基づいて、一般式(1b)で表される繰り返し構造の分子量、及び、一般式(1)表される繰り返し構造の分子量を求めることができる。これらの分子量から、化合物に占める一般式(1)で表される繰り返し構造の割合(質量%)を算出することができる。
 化合物の末端は、一般式(1)で表される繰り返し構造の一部に対応する構造であることが好ましい。具体的には、下記一般式(1a)で表される構造、及び、下記一般式(1d)で表される構造を挙げることができる。また、一方の末端と一般式(1)で表される繰り返し構造との間に、下記一般式(1b)で表される構造が存在していてもよい。同様に、一般式(1)で表される繰り返し構造と他方の末端との間に、下記一般式(1c)で表される構造が存在していてもよい。一般式(1b)及び一般式(1c)の繰り返し構造の数を表すm及びm’は、それぞれ独立に0以上100以下であることが好ましい。
 上述の通り、金属粒子に含まれる金属原子(M)と化合物に含まれる少なくとも1つの窒素原子(N)とは化学結合していることを要する。ここで、例えば、キノンジイミンを含む化合物として、下記式(3)で表される繰り返し構造を有するアニリンブラックが知られている。
 上記式(3)で表されるアニリンブラックは、絶縁体である。一方、下記一般式(4)及び(5)で表されるプロトン型の形態(エメラルジン塩)は導電体である。金属原子(M)(プラス電荷を持った金属原子)とキノンジイミン中の窒素原子(N)との化学反応によって、プロトン型に類似した形態を有する、導電性の化合物が形成される。このような導電性の化合物と化学結合した金属粒子を用いることで、導電性に優れた導電性画像を容易に形成しうる導電性組成物とすることができる。
 金属原子(M)と窒素原子(N)との結合(以下、「M-N結合」とも記す)は、赤外吸収スペクトルを測定することによって同定することができる。M-N結合が形成されていれば、M-N伸縮振動に由来する赤外吸収スペクトルの吸収ピークが450~600cm-1の波長域に出現する。M-N結合を同定する方法については、例えば、東北工業試験所報告,第4号,昭和49年10月,p.15-19に記載されている。
 一般式(1)で表される繰り返し構造を有する化合物としては、市販品や公知の方法で合成した化合物を用いることができる。好適な市販品としては、例えば、商品名「アクアパス」シリーズ(三菱ケミカル製、水溶性の導電性ポリマー(スルホン酸置換アニリンの重合体))などを挙げることができる。例えば、「アクアパス-01X」の赤外吸収スペクトルは、C=C結合に由来する1,550cm-1~1,650cm-1における吸収ピーク、C=N結合に由来する1,200cm-1付近の吸収ピーク、及びS=O結合に由来する1,300cm-1付近の吸収ピークを有する。
 所望とする置換基(一般式(1)中のR~R及びR~Rで表される基)を有する化合物は、合成により得ることができる。化合物の合成法としては、アミノベンゼン骨格を有する化合物の酸化重合や電解重合などの既知の合成法を挙げることができる。酸化重合の詳細については、Journal of Molecular Structure,1122(2016),pp.117-122などに記載されている。
 アミノベンゼン骨格を有する化合物を酸化重合する際に用いる酸化剤としては、過硫酸類、レドックス開始剤などを挙げることができる。具体的には、過硫酸アンモニウム、過硫酸、過硫酸ナトリウム、過硫酸カリウムなどの過硫酸類;過酸化水素、塩化第二鉄、硫酸第二鉄、重クロム酸カリウム、過マンガン酸カリウム、過酸化水素-第一鉄塩などのレドックス開始剤;などを挙げることができる。酸化剤の使用量は、例えば、アミノベンゼン骨格を有する化合物1モルに対して、0.01モル以上10モル以下とすることが好ましい。得られる化合物の分子量を制御するためのコントロール剤としては、例えば、4位に置換基を有するベンゼン骨格を有する化合物、チオール化合物、ジスルフィド化合物、α-メチルスチレンダイマーなどを用いることができる。
 以下、カルボン酸基を有する化合物を酸化重合によって製造する場合の合成フローについて説明する。まず、アントラニル酸を塩酸に溶解した後、25℃(室温)で過硫酸アンモニウム水溶液を滴下し、25℃で4日間撹拌する。生成した固体をろ過、水で洗浄、及び乾燥することで、黒色固体を得ることができる。ゲルパーミエーションクロマトグラフィー(GPC)により、得られる黒色固体の分子量を測定することができるとともに、水溶性であることを確認することができる。さらに、赤外吸収スペクトルを測定し、C=C結合に由来する1,560cm-1付近の吸収ピーク、及びC=N結合に由来する1,500cm-1付近の吸収ピークにより、キノンジイミンの存在を確認することができる。さらに、C=O結合に由来する1,700cm-1付近の吸収ピークにより、カルボン酸基の存在を確認することができる。
 一般式(1)で表される繰り返し構造を有する化合物の具体例を以下に示す。勿論、本発明においては、一般式(1)の構造及びその定義に包含されるものであれば、一般式(1)で表される繰り返し構造を有する化合物は、以下に示す例示化合物に限定されない。以下、親水性基がカルボン酸基である場合を例示する。
 導電性組成物中の化合物の含有量(質量%)は、組成物全質量を基準として、0.00001質量%以上1.0質量%以下であることが好ましく、0.001質量%以上0.1質量%以下であることがさらに好ましい。
 金属粒子に含まれる金属原子と化合物に含まれる窒素原子とが化学結合するとともに、金属粒子が化合物によって適切に被覆されることが好ましい。具体的には、金属粒子の表面が化合物によって一様に覆われていることが好ましい。このためには、導電性組成物中、化合物の含有量(質量%)は、金属粒子の含有量(質量%)に対する質量比率で、0.001倍以上0.100倍以下であることが好ましく、0.005倍以上0.075倍以下であることがさらに好ましい。上記の質量比率が0.005倍未満であると、化合物が少なすぎて、金属粒子の表面を十分に被覆することができず、金属粒子の表面に化合物が付着していない領域が存在しやすくなる。すると、導電性組成物中で複数の金属粒子が衝突した際に、金属粒子が合一したり、凝集したりして、金属粒子の粒子径が大きくなり、分散安定性が十分に得られない場合がある。一方、上記の質量比率が0.075倍超であると、導電性組成物によって記録した導電性画像において、化合物が占める容積が大きくなり、導電性が十分に得られない場合がある。また、導電性組成物をインクジェット方式の液体吐出ヘッドから吐出する際に、吐出性がやや低下する場合がある。
 金属粒子の粒子径が決まれば、金属粒子1個当たりの表面積を算出することができる。したがって、化合物の1分子当たりの占有面積を概算することができれば、1個の金属粒子の表面を被覆するための分子の個数を算出することができる。占有面積は、原子の直径を1.5Åとして断面積を算出し、化合物の原子の個数を掛けて概算値としてもよい。
 また、金属粒子を被覆する飽和吸着量を概算し、それを目安の添加量としてもよい。具体的には、化合物の添加量に対して、吸着量をプロットする。得られたプロット(吸着等温線)がラングミュア型の吸着等温線に則った曲線である場合、添加量を増加しても吸着量が増加せず、飽和する領域が存在するため、この領域の吸着量を飽和吸着量とみなすことができる。
 金属粒子に含まれる金属原子と化合物に含まれる窒素原子とが化学結合しており、金属粒子の表面の少なくとも一部が化合物で被覆されているか否かについては、金属粒子のゼータ電位より確認することができる。化合物によって被覆されていない金属粒子のゼータ(ζ)電位は、通常、0mV以上である、すなわち、ゼータ電位はゼロか、プラスで絶対値の小さい値(0~+3mV程度の値)を示す。これに対し、化合物によってその粒子表面の少なくとも一部が被覆された金属粒子のゼータ電位は0未満である、すなわち、ゼータ電位はマイナスの値(具体的には、-1mV以下の値)を示す。これは、一般式(1)で表される繰り返し構造における親水性基がイオン解離を生じて、アニオンとなるためである。ゼータ電位は、ゼータ電位測定装置により測定することができる。ゼータ電位の測定に当たっては、金属粒子を被覆していない化合物を除外するため、導電性組成物について遠心分離処理を行って上澄みを除去することでウェットケーキを得た後、水で希釈して調製した試料を用いることが好ましい。
 分散安定性の観点から、化学結合した金属粒子のゼータ電位は-30mV以下(負の値、かつ、絶対値が30mV以上)であることが好ましい。ゼータ電位が-30mV超(負の値、かつ、絶対値で30mV未満)であると、化合物による金属粒子の被覆が少ないため、金属粒子が凝集しやすく、分散安定性が十分に得られない場合がある。また、ゼータ電位のチャートは、単一のピークトップを有するとともに、ピークの形状がシャープであり、ピークの半値幅も小さい傾向にある。
(液媒体)
 導電性組成物は、さらに、液媒体を含有してもよい。液媒体としては、非水性媒体及び水性媒体のいずれも用いることができる。非水性媒体としては、ヘプタン、石油エーテルなどの有機溶剤で構成される液媒体を挙げることができる。非水性媒体は水を含有しない。水性媒体としては、水を含み、さらに各種の有機溶剤が含まれていてもよい。導電性組成物は、さらに、水性媒体を含有することが好ましい。
 水性媒体は、水、又は水を主成分としてプロトン性有機溶剤や非プロトン性有機溶剤を併用した混合媒体である。有機溶剤としては、任意の割合で水と混和するもの(水混和性有機溶剤)、又は任意の割合で水に溶解するもの(水溶性有機溶剤)を用いることが好ましい。なかでも、水を50質量%以上含有する均一な混合媒体を水性媒体として用いることが好ましい。水としては、脱イオン水(イオン交換水)や超純水を用いることが好ましい。
 プロトン性有機溶剤は、酸素原子や窒素原子に結合した水素原子(酸性水素原子)を有する有機溶剤である。非プロトン性有機溶剤は、酸性水素原子を有しない有機溶剤である。有機溶剤としては、アルコール類、(ポリ)アルキレングリコール類、グリコールエーテル類、グリコールエーテルエステル類、カルボン酸アミド類、ケトン類、ケトアルコール類、環状エーテル類、含窒素溶剤類、及び含硫黄溶剤類などを挙げることができる。
 水性媒体としては、水、水/アルコールの混合溶媒、水/(ポリ)アルキレングリコールの混合溶媒、及び水/含窒素溶剤類の混合溶媒などを挙げることができる。導電性組成物中の水の含有量(質量%)は、導電性組成物全質量を基準として、10.0質量%以上90.0質量%以下であることが好ましく、50.0質量%以上90.0質量%以下であることがさらに好ましい。
 導電性組成物中の水溶性有機溶剤の含有量(質量%)は、導電性組成物全質量を基準として、5.0質量%以上90.0質量%以下であることが好ましく、10.0質量%以上50.0質量%以下であることがさらに好ましい。
(樹脂)
 導電性組成物は、さらに、樹脂を含有してもよい。この樹脂は、一般式(1)で表される繰り返し構造を有するとともに、重量平均分子量が1,000~100,000である化合物とは異なるものである。導電性組成物に樹脂を添加することによって、導電性組成物の粘度や表面張力などの物性を容易に調整することができる。また、導電性組成物に樹脂を添加することによって、導電性組成物により記録される導電性画像の硬度、柔軟性、基材への密着性などの性能を調整することもできる。導電性組成物に含有させる樹脂の種類は、導電性組成物を付与する基材を形成する材料に対応させて選択することが好ましい。例えば、導電性組成物に添加する樹脂及び基材を形成する樹脂材料について、いわゆる「SP値」が互いに近いものを選択すると、導電性画像の基材への密着性を高めうると考えられる。好適な樹脂の組み合わせについては後述する。
 導電性組成物中の樹脂の含有量(質量%)は、導電性組成物全質量を基準として、0.01質量%以上20.0質量%以下であることが好ましく、0.05質量%以上20.0質量%以下であることがさらに好ましい。なかでも、0.1質量%以上10.0質量%以下であることが特に好ましい。導電性組成物中の樹脂の含有量が少なすぎると、樹脂を添加することによる導電性組成物の物性調整の程度や導電性画像の性能調整の程度が低くなる場合がある。一方、導電性組成物中の樹脂の含有量が多すぎると、導電性画像の導電性が十分に得られない場合がある。
 樹脂としては、ポリエステル、ポリウレタン、ポリオレフィン、ポリスチレン、アクリル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアミド、ポリイミド、エポキシ、ポリビニルアルコール、多糖類などを挙げることができる。なかでも、ポリエステル、ポリウレタン、ポリオレフィン、ポリ酢酸ビニル、及びポリアミドからなる群より選択される少なくとも1種の樹脂がさらに好ましい。樹脂は、これらのうち複数種の樹脂で形成される樹脂(共重合体、複合樹脂など)であってもよい。
 樹脂は、イオン性基(アニオン性基、カチオン性基)を有するものであっても、イオン性基を有しないものであってもよい。上述の化合物が化学結合した金属粒子の持つマイナス電荷の斥力に影響を及ぼしにくく、導電性組成物中で安定に金属粒子と共存することができるため、アニオン性基を有する樹脂やイオン性基を有しない樹脂が好ましい。水性の液媒体を含有する導電性組成物とする場合は、アニオン性基を有する樹脂やイオン性基を有しない樹脂を特に好適に用いることができる。また、カチオン性基を有する樹脂を用いる場合は、金属粒子との斥力を考慮して導電性組成物中の含有量を決定することが好ましい。樹脂の重量平均分子量は、2,000以上100,000以下であることが好ましい。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算の値である。
 樹脂は、液媒体に溶解しうる溶解性樹脂であってもよく、液媒体中に分散する樹脂粒子であってもよいが、樹脂粒子であることがさらに好ましい。本明細書において「樹脂が溶解性である」とは、その樹脂を酸価と当量のアルカリで中和した場合に、動的光散乱法により粒子径を測定しうる粒子を形成しない状態で液媒体中に存在することを意味する。樹脂が溶解性であるか否かについては、以下に示す方法にしたがって判断することができる。ここでは、水性の液媒体を含有する導電性組成物、及び、アニオン性基を有する樹脂を例に挙げて説明するが、液媒体が非水性である場合やカチオン性基を有する樹脂の場合も対応する成分に置き換えること以外は同様に判断することができる。
 まず、酸価相当のアルカリ(水酸化ナトリウム、水酸化カリウムなど)により中和された樹脂を含む液体(樹脂固形分:10質量%)を用意する。次いで、用意した液体を純水で10倍(体積基準)に希釈して試料溶液を調製する。そして、試料溶液中の樹脂の粒子径を動的光散乱法により測定した場合に、粒子径を有する粒子が測定されない場合に、その樹脂は溶解性であると判断することができる。この際の測定条件は、例えば、SetZero:30秒、測定回数:3回、測定時間:180秒、とすることができる。また、粒度分布測定装置としては、動的光散乱法による粒度分析計(例えば、商品名「UPA-EX150」、日機装製)などを使用することができる。勿論、使用する粒度分布測定装置や測定条件などは上記に限られるものではない。
(その他の添加剤)
 導電性組成物は、必要に応じて、トリメチロールプロパン、トリメチロールエタンなどの多価アルコール類;尿素、エチレン尿素などの尿素誘導体;などの、常温(25℃)で固体の有機化合物をさらに含有してもよい。また、導電性組成物は、必要に応じて、界面活性剤、pH調整剤、防錆剤、防腐剤、防黴剤、酸化防止剤、還元防止剤、蒸発促進剤、及びキレート化剤などの種々の添加剤をさらに含有してもよい。
 界面活性剤としては、アニオン性、カチオン性、及びノニオン性などの界面活性剤を用いることができる。導電性組成物中の界面活性剤の含有量(質量%)は、導電性組成物全質量を基準として、0.1質量%以上5.0質量%以下であることが好ましく、0.1質量%以上2.0質量%以下であることがさらに好ましい。
 界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン・ポリオキシプロピレンブロック共重合体、及びアセチレングリコール系化合物などのノニオン性界面活性剤を用いることが好ましい。
<導電性組成物の製造方法>
 次に、上述の導電性組成物を製造する方法について説明する。金属粒子に含まれる金属原子と化合物に含まれる窒素原子とが化学結合している状態の導電性組成物は、好適には、以下の方法で製造することができる。導電性組成物の製造方法は、金属塩及び化合物を水性媒体中で40℃以上150℃以下に加熱して、金属塩に含まれる金属原子と化合物に含まれる窒素原子とが化学結合した前駆体を形成する第1工程と、形成された前駆体を還元する第2工程と、を有する。
 本発明者らの検討によれば、金属原子と窒素原子とを化学結合させるためには、40℃以上150℃以下に加熱してこれらを反応させることが好ましい。これは、以下の一般的な事実と合致すると考えられる。すなわち、リチウムなどのアルカリ金属は反応性が高いため、室温(25℃)で窒素ガスと反応して、アルカリ金属の窒化物(窒化リチウムなど)を生成する。これに対し、アルカリ金属ほどに反応性の高くない金属を窒素ガスと反応させるためには、加熱が必要である。
[第1工程]
 第1工程では、水性媒体中で金属塩及び化合物を40℃以上150℃以下に加熱して、これらを反応させる。具体的には、金属塩の水溶液に化合物を添加した後、撹拌下で、40℃以上150℃以下の範囲に加熱する。加熱温度は液媒体に応じて決定することができる。水のみで構成される液媒体を用いる場合、加熱温度は40℃以上とすることが好ましく、50℃以上とすることがより好ましく、また、還流温度を考慮して水の沸点である100℃以下とすることが好ましい。また、水及び有機溶剤(好適には水よりも高沸点であるもの)の混合媒体である液媒体を用いる場合、水及び有機溶剤の共沸を考慮して、加熱温度は40℃以上150℃以下とすることが好ましい。これにより、金属塩に含まれる金属原子と化合物に含まれる窒素原子とが化学結合した前駆体を形成することができる。
 形成される前駆体は、金属原子(M)と窒素原子(N)とが化学結合した化合物である。前駆体は、例えば、下記一般式(6)又は(7)で表される構造を有する。
 一般式(6)及び(7)中、Mは、それぞれ独立に金属原子を表し、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R~Rの少なくとも1つは親水性基である。R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R~Rの少なくとも1つは親水性基である。親水性基は、カルボン酸基、スルホン酸基、リン酸基、及びホスホン酸基からなる群より選択される少なくとも1種である。
 前駆体が形成されたか否かについては、金属原子(M)と窒素原子(N)との結合の有無で確認することができる。金属原子(M)と窒素原子(N)との結合(以下、「M-N結合」とも記す)は、赤外吸収スペクトルを測定することによって同定することができる。M-N結合が新たに形成されれば、M-N伸縮振動に由来する赤外吸収スペクトルの吸収ピークが450~600cm-1の波長域に出現する。この吸収ピークの有無により、前駆体が形成されたか否か判断することができる。
[第2工程]
 第2工程では、第1工程で得た前駆体を還元する。これにより、金属粒子に含まれる金属原子と化合物に含まれる窒素原子とが化学結合している状態の、目的とする金属粒子を含有する導電性組成物を得ることができる。
[製造方法に用いる成分]
 上述の製造方法に用いる成分について説明する。
(水性媒体)
 水性媒体としては、導電性組成物に含有させうる前述の水性媒体を用いることができる。すなわち、水のみ、又は水を主成分としてプロトン性有機溶剤や非プロトン性有機溶剤を併用した混合媒体を用いることができる。有機溶剤としては、任意の割合で水と混和するもの(水混和性有機溶剤)、又は任意の割合で水に溶解するもの(水溶性有機溶剤)を用いることが好ましい。なかでも、水を50質量%以上含有する均一な混合媒体を水性媒体として用いることが好ましい。水としては、脱イオン水(イオン交換水)や超純水を用いることが好ましい。
(金属塩)
 金属塩としては、金属イオンと無機アニオン種で構成される金属塩、金属イオンと有機アニオン種で構成される金属塩、及び金属イオンと無機有機アニオン種で構成される金属塩を挙げることができる。金属イオンとしては、金属粒子を形成しうる、ニッケル、パラジウム、白金、銅、銀、及び金などの金属のイオンを用いることができる。無機アニオン種としては、酸化物、ハロゲン、炭酸、硝酸などのアニオンを挙げることができる。有機アニオン種としては、ギ酸、酢酸などのカルボン酸のアニオンを挙げることができる。
 金属塩の具体例としては、塩化ニッケル(II)、硝酸ニッケル(II)などのニッケル化合物;塩化パラジウム(II)、酢酸パラジウム(II)、酸化パラジウム(II)などのパラジウム化合物;塩化白金(II)、酸化白金(IV)などの白金化合物;塩化銅(I)、塩化銅(II)、酸化銅(I)、酸化銅(II)などの銅化合物;塩化銀(I)、硝酸銀、酸化銀、酢酸銀などの銀化合物;酸化金(III)、塩化金(I)、八塩化四金、塩化金(III)、臭化金(III)、フッ化金(III)、フッ化金(V)、水酸化金(I)、水酸化金(III)などの金化合物;などを挙げることができる。
 近年、電子機器などに用いられている貴金属やレアメタルなどの材料は、このまま使い続けると数十年のうちに資源が枯渇する可能性が指摘されている。このような材料はクリティカルマテリアルと呼ばれており、資源を枯渇させないため、使用済みの貴金属製品や廃電子機器からこれらの資源を回収して再資源化する取り組みが各国で行われている。なかでも、白金、金、銀などの貴金属の再資源化は他の資源と比較して進んでおり、再生技術も確立されつつある。金の再生方法としては、回収した廃製品から他の金属を除去し、王水や有機溶媒で金を溶解・浸出した後、還元剤で金を再結晶化して純度を高め、さらに融解して有機物を除去した塊にする方法などがある。回収した貴金属を製品として再利用する場合には純度保証が必要となる。例えば、金の場合には99.99%の高い純度を保証する必要がある。
 このような観点から、金属塩として、金属廃液から回収された回収金属塩を用いることも好ましい。例えば、金属粒子として金粒子を含有する導電性組成物を製造する場合、回収した金を利用した塩化金(III)酸を用いることができる。塩化金(III)酸は、上記の金の再生方法の途中で生成する金-王水溶液を乾燥することで調製することができる。
 金属粒子として金粒子を含有する導電性組成物を製造する場合、出発原料の1つとして、再生した塩化金(III)酸を用いることができる。金は還元性が高いことから、再生した塩化金(III)酸に他の金属不純物が含まれていても、金粒子が優先的に形成される。このため、再生した塩化金(III)酸について、高い純度保証は不要である。塩化金(III)酸の純度は、90%以上であることが好ましく、95%以上あることがさらに好ましい。金の再生過程で、純度保証に関連する工程を省略して原材料コストを抑制することができる。
 また、金属粒子として銀粒子を含有する導電性組成物を製造する場合、出発原料の1つとして使用しうる硝酸銀(I)について、高い純度保証は不要である。硝酸銀(I)の純度は、90%以上であることが好ましく、95%以上であることがさらに好ましい。銀の再生過程で、純度保証に関連する工程を省略して原材料コストを抑制することができる。
 廃棄物からは、公知の方法にしたがって硝酸銀(I)を回収することができる。例えば、銀を含有する廃液に硝酸を加えて酸性とし、沈殿物を分離して得たろ液に重クロム酸塩を添加すれば、重クロム酸銀の沈殿が生成する。重クロム酸銀の沈殿物を熱希硝酸に溶解した後、NO型陰イオン交換樹脂で処理することで、硝酸銀(I)を回収することができる。
(還元剤)
 金属塩を還元するには、還元剤を用いることが好ましい。還元剤としては、メタノール、エタノール、1-プロパノール、エチレングリコールなどの1級ヒドロキシ基を有するアルコール類;2-プロパノール、2-ブタノールなどの2級ヒドロキシ基を有するアルコール類;グリセリンなどの1級ヒドロキシ基及び2級ヒドロキシ基を有するアルコール類;チオール類;ホルムアルデヒド、アセトアルデヒドなどのアルデヒド類;グルコース、フルクトース、グリセルアルデヒド、ラクトース、アラビノース、マルトースなどの糖類;クエン酸、タンニン酸、アスコルビン酸などの有機酸類及びその塩;水素化ホウ素類及びその塩;ヒドラジン、アルキルヒドラジン、硫酸ヒドラジンなどのヒドラジン類;などを挙げることができる。有機酸類や水素化ホウ素類の塩を形成するアニオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属のイオン、カルシウム、マグネシウムなどのアルカリ土類金属のイオン、アンモニウムイオン、有機アンモニウムイオンなどを挙げることができる。
 還元剤としては、有機酸類やその塩を用いることが好ましい。有機酸類やその塩は、金属塩を還元するとともに、形成される金属粒子の表面に付着して、金属粒子同士の凝集や合一が生じない程度の斥力を生じさせることができる。有機酸類やその塩としては、アスコルビン酸やその塩、クエン酸やその塩などが好ましい。なかでも、アスコルビン酸塩、クエン酸塩などがさらに好ましい。
 また、還元剤として、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ゼラチン、デンプン、デキストリン、カルボキシメチルセルロース、メチルセルロース、エチルセルロースなどの化合物を用いることができる。これらの化合物も、上記の有機酸類やその塩と同様に、金属塩を還元するとともに、形成される金属粒子の表面に付着して、金属粒子の凝集や合一が生じさせないようにするための補助的な斥力を生じさせることができる。
 還元剤の使用量は、金属の種類、金属塩の濃度、形成しようとする金属粒子の大きさ(粒径)、還元剤を添加する際の温度や撹拌力などに応じて適宜設定すればよい。第1工程では、激しく撹拌しながら金属塩を還元することが好ましい。また、第1工程では、加熱条件下で金属塩を還元することが好ましく、液媒体を還流させながら金属塩を還元することがさらに好ましい。例えば、水のみで構成される液媒体を用いて還流する場合、加熱温度を40℃以上100℃以下に調整するため、反応容器を入れた浴(例えば、オイルバス)の温度を115℃以上200℃以下に設定することが好ましい。
 還元剤によって還元されたのみで、処理剤で被覆されていない金属粒子は、還元剤の種類に応じたゼータ電位の値を示す。例えば、後述する実施例では、還元剤としてクエン酸を用いて金粒子を形成している。クエン酸が付着した金粒子のゼータ電位は-40mV程度である。但し、クエン酸などの還元剤は金属粒子への付着力が弱いため、クエン酸などの還元剤を付着させるだけでは、金属粒子が継続して安定に分散された導電性組成物とはならない。
<導電性画像の記録方法>
 次に、導電性画像を記録する方法について説明する。本発明の導電性画像の記録方法は、上述の導電性組成物を基材に付与する工程を有する。導電性組成物を基材に付与することで、所望とする導電性画像を得ることができる。導電性組成物を基材に付与する方法としては、インクジェット法、フレキソ法、スピンコーティング法などを挙げることができる。なかでも、インクジェット法によって導電性組成物を基材に付与することが好ましい。インクジェット法は、導電性組成物をインクジェット方式の吐出ヘッドから吐出して記録媒体などの基材に付与する方法である。導電性組成物を吐出ヘッドから吐出する方式としては、導電性組成物に力学的エネルギーを付与する方式や、導電性組成物に熱エネルギーを付与する方式などがある。上述の導電性組成物を用いること以外、インクジェット法によって導電性組成物を基材に付与する方法は公知の方法とすればよい。
 導電性組成物をインクジェット方式の吐出ヘッドから吐出して基材に付与し、導電性画像を記録(形成)する場合、その表面張力や粘度を適切に制御した導電性組成物を用いることが好ましい。この場合、具体的には、導電性組成物中の金属粒子の含有量(質量%)は、組成物全質量を基準として、5.0質量%以上30.0質量%以下であることが好ましい。導電性組成物中の金属粒子の含有量が5.0質量%未満であると、膜状の導電性画像を記録するためには、複数回の導電性組成物の付与が必要になる場合がある。一方、導電性組成物中の金属粒子の含有量が30.0質量%超であると、導電性組成物をインクジェット方式の吐出ヘッドから吐出させる際に、粘度が高いため吐出口が詰まりやすくなる場合がある。
 25℃における導電性組成物の表面張力は、10mN/m以上60mN/m以下であることが好ましく、20mN/m以上60mN/m以下であることがさらに好ましく、30mN/m以上50mN/m以下であることが特に好ましい。25℃における導電性組成物の粘度は、1.0mPa・s以上10mPa・s以下であることが好ましく、1.0mPa・s以上5mPa・s以下であることがさらに好ましい。25℃における導電性組成物のpHは、3.0以上9.0以下であることが好ましく、5.0以上9.0以下であることが好ましい。
 導電性画像の記録方法は、さらに、基材に付与した導電性組成物を乾燥させる工程を有してもよい。上述の導電性組成物を用いれば、例えば100℃以上の高温で乾燥させなくても、常温(25℃)などの低温で乾燥させるだけで、優れた導電性を有する導電性画像を記録することができる。基材に付与した導電性組成物は、送風や加熱などによって乾燥させてもよいが、これらの手法を利用しないで乾燥、すなわち、自然乾燥させればよい。基材に付与した導電性組成物を乾燥させる温度は、20℃以上120℃以下とすることが好ましく、20℃以上50℃以下とすることがさらに好ましい。乾燥温度が20℃未満であると、乾燥に要する時間がより長くなる場合がある。乾燥時間を短くすることで、記録される導電性画像の導電性が高くなりやすい。基材の耐熱温度が高い場合には、耐熱温度まで乾燥温度を上げることも可能である。但し、乾燥温度を高めすぎると、基材が変形する場合がある。本発明の記録方法では、導電性組成物を基材に付与した後、加熱や焼結する工程、活性エネルギー線などの照射により硬化する工程は実施しなくてもよい。
<導電性画像>
 本発明の導電性画像は、基材と、基材に形成された導電層と、を有する導電性画像である。導電層は、金属粒子、及び上述の化合物を含有し、金属粒子の表面の少なくとも一部が、化合物で被覆されているとともに、金属粒子に含まれる金属原子と化合物に含まれる窒素原子とが化学結合している。好適には、本発明の導電性画像は、基材に記録される導電性画像であり、上述の導電性組成物によって形成された画像である。
(基材)
 基材は、付与された導電性組成物を乾燥などさせて導電性画像を記録しうるものであればよい。導電性組成物は低温での乾燥でも導電性を発現するため、耐熱温度の低い基材を用いることもできる。基材としては、ガラス、紙、樹脂材料、セラミックス、及びシリコンなどを用いることが好ましい。樹脂材料としては、生体適合性材料、合成樹脂などを挙げることができる。樹脂材料は板状又はシート状であることが好ましい。
 樹脂材料としては、生体適合性材料を用いることができる。生体適合性材料とは、生体に有害な影響を及ぼさない材料を指し、化学反応・生体防御反応に不活性、生体での分解・劣化・溶出が生じにくい、他の成分を吸着しにくい、柔軟性・強度を兼ね備える、といった特性を備える材料である。生体適合性材料としては、ポリヒドロキシ酪酸、ポリ(α-ヒドロキシエステル)、ポリ(β-ヒドロキシエステル)、ポリシアノアクリレート、ポリ無水物、ポリケトン、ポリ(オルトエステル)、ポリ-ε-カプロラクトン、ポリアセタール、ポリ(イミノカーボネート)、ポリフォスファゼンなどの生分解性プラスチック類;ポリペプチド、ゼラチン、コラーゲン、フィブロインなどのタンパク質;セルロース、キトサンなどの多糖類;などが好ましい。なかでも、ゼラチン、コラーゲン、フィブロイン、セルロース、及びキトサン、からなる群より選択される少なくとも1種で形成された生体適合性材料が好ましい。
 樹脂材料としては、合成樹脂を用いることができる。合成樹脂としては、ポリエステル、ポリウレタン、ポリオレフィン、ポリスチレン、アクリル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミド、ポリイミド、ポリカーボネート、エポキシ、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)などの樹脂が好ましい。なかでも、ポリエステル、ポリオレフィン、ポリイミド、及びポリカーボネートからなる群より選択される少なくとも1種で形成された合成樹脂材料が好ましい。これらの合成樹脂材料は、フラットパネルなどの基板に用いられる樹脂としても好適であり、板状又はシート状であることが特に好ましい。
 上述の通り、導電性組成物に含有させる樹脂の種類は、導電性組成物を付与する基材を形成する材料に対応させて選択することが好ましい。例えば、導電性組成物に添加する樹脂及び基材を形成する樹脂材料について、いわゆる「SP値」が互いに近いものを選択すると、導電性画像の基材への密着性を高めうると考えられる。
 基材を形成する樹脂と、導電性組成物に含有させる樹脂と、の好適な組み合わせを以下に挙げる。ポリエステル樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリエステル、ポリオレフィン、アクリル、ポリ酢酸ビニル、ポリアミドなどの樹脂が好ましい。ポリウレタン樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリアミドなどの樹脂が好ましい。ポリオレフィン樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリウレタン、ポリオレフィン、アクリル、ポリ酢酸ビニルなどの樹脂が好ましい。ポリ塩化ビニル樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリエステル、ポリオレフィン、ポリ酢酸ビニル、ポリイミドなどの樹脂が好ましい。ポリアミド樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリウレタン、アクリル、ポリアミドなどの樹脂が好ましい。ポリイミド樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリアミドなどの樹脂が好ましい。ポリカーボネート樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリウレタン、ポリオレフィン、アクリル、ポリ酢酸ビニルなどの樹脂が好ましい。アクリル樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、アクリルなどの樹脂が好ましい。エポキシ樹脂で形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリアミドなどの樹脂が好ましい。また、樹脂材料以外にも、ガラスで形成される基材を用いる場合、導電性組成物に含有させる樹脂としては、ポリアミドなどの樹脂が好ましい。
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、下記の実施例によって何ら限定されるものではない。成分量に関して「部」及び「%」と記載しているものは特に断らない限り質量基準である。
<化合物の合成>
 下記式(8)~(11)で表される繰り返し構造をそれぞれ有する化合物を以下の手順で合成した。赤外吸収(IR)スペクトルは、フーリエ変換赤外分光分析機(商品名「Spectrum One-B」、パーキンエルマー製)を使用して測定した。
(化合物CA1)
 J.Mol.Struct.,Vol.1122,2016,pp.117-122に記載の方法にしたがって、式(8)で表される繰り返し構造を有する化合物CA1を合成した。アントラニル酸(キシダ化学製)5.76g、濃塩酸(キシダ化学製)15mL、及びイオン交換水90mLを300mLナスフラスコに入れ、アントラニル酸を溶解させて混合溶液を得た。得られた混合溶液に、ペルオキソ二硫酸アンモニウム(キシダ化学製)11.97gをイオン交換水60mLに溶解させて得た溶液を25℃の環境で滴下し、18時間撹拌した。析出した黒色固体をろ過するとともに、水で5回洗浄して、化合物CA1 2.38gを得た。ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量は、10,000であった。赤外吸収スペクトルを測定し、カルボン酸基に由来する1,700cm-1付近の吸収ピーク、C=C結合に由来する1,585cm-1付近の吸収ピーク、及びC=N結合に由来する1,510cm-1付近の吸収ピークを確認した。化合物CA1の赤外吸収スペクトルを図1に示す。
(化合物CA2)
 アントラニル酸に代えて、2-アミノ-4-メチル-安息香酸(キシダ化学製)を用いたこと以外は、前述の化合物CA1の場合と同様にして、式(9)で表される繰り返し構造を有する化合物CA2を得た。得られた化合物CA2の重量平均分子量は、20,000であった。赤外吸収スペクトルを測定し、カルボン酸基に由来する1,700cm-1付近の吸収ピーク、C=C結合に由来する1,600cm-1付近の吸収ピーク、及びC=N結合に由来する1,500cm-1付近の吸収ピークを確認した。
(化合物PA)
 アントラニル酸に代えて、p-(2-アミノフェニル)ホスホン酸(キシダ化学製)を用いたこと以外は、前述の化合物CA1の場合と同様にして、式(10)で表される繰り返し構造を有する化合物PAを得た。得られた化合物PAの重量平均分子量は、20,000であった。赤外吸収スペクトルを測定し、ホスホン酸基に由来する1,195cm-1付近の吸収ピーク、C=C結合に由来する1,560cm-1付近の吸収ピーク、及びC=N結合に由来する1,500cm-1付近の吸収ピークを確認した。
(化合物SA)
 アントラニル酸に代えて、2-アミノ-4-メトキシ-p-ベンゼンスルホン酸(キシダ化学製)を用いたこと以外は、前述の化合物CA1の場合と同様にして、式(11)で表される繰り返し構造を有する化合物SAを得た。得られた化合物SAの重量平均分子量は、20,000であった。赤外吸収スペクトルを測定し、スルホン酸基に由来する1,200cm-1付近の吸収ピーク、C=C結合に由来する1,600cm-1付近の吸収ピーク、及びC=N結合に由来する1,500cm-1付近の吸収ピークを確認した。
<導電性組成物の分析方法>
 赤外吸収スペクトルは、フーリエ変換赤外分光分析機(商品名「Spectrum One-B」、パーキンエルマー製)を使用して測定した。導電性組成物中の金属粒子の平均粒子径(体積基準の累積50%粒子径、D50)は、小角X線散乱装置(商品名「Nano-Viewer」、リガク製)により測定した。この際の測定条件は、波長(λ):0.154nm、入射角:1.7°とした。導電性組成物の極大吸収波長は、紫外可視近赤外分光光度計(商品名「UV-3600」、島津製作所製)を使用して測定した。導電性組成物中の金属粒子のゼータ電位は、ゼータ電位計(商品名「ゼータサイザーナノ」、マルバーン製)により測定した。この際、製造した導電性組成物について、遠心分離処理を行って上澄みを除去することでウェットケーキを得た後、測定に適した濃度となるように超純水で希釈して調製した試料を測定対象とした。なお、塩化金(III)・4水和物及び硝酸銀(I)(いずれもキシダ化学製)を、クエン酸三ナトリウム・2水和物により還元して生成した金粒子及び銀粒子のゼータ電位は、それぞれ1mV及び0mVであった。
<導電性組成物(分散液)の製造>
 以下に示す方法により導電性組成物(分散液)を製造した。実施例D1~D26で製造した導電性組成物(分散液)中の金属粒子は「略球形」の形状を有するものであった。以下、金属粒子に対する化合物の質量比率を、「化合物/金属粒子」と記載することがある。
(実施例D1:導電性組成物D1)
 塩化金(III)酸・4水和物1gを超純水40mLに溶解させて塩化金酸水溶液を得た。この水溶液を50℃に加熱した後、化合物CA1 20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、50℃で15時間反応させて、前駆体1を含む反応液を得た。得られた前駆体1の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する520cm-1付近の吸収ピーク、及びC=C結合に由来する1,575cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,515cm-1付近の吸収ピーク、及びC=O結合に由来する1,710cm-1付近の吸収ピークを確認した。前駆体1の赤外吸収スペクトルを図1に示す。
 上記で得られた前駆体1を含む反応液の全量、塩化金(III)酸・4水和物1g、及び超純水1,300mLを加熱還流し、クエン酸三ナトリウム・2水和物1.16gを添加して2時間撹拌した。水溶液の色が黄色から赤色へと変化したことを目視で確認した。この水溶液を250mLの遠心管に小分けし、遠心分離機を使用して9,000rpmで30分間遠心分離処理を行い、固液分離した上澄み液を除去し、精製した。さらに、超純水を添加して、上述の遠心分離処理による精製を2回繰り返し、導電性組成物D1を得た。
(実施例D2:導電性組成物D2)
 化合物CA1に代えて、化合物CA2を用いたこと以外は、前述の前駆体1の場合と同様にして前駆体2を含む反応液を得た。得られた前駆体2の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する520cm-1付近の吸収ピーク、及びC=C結合に由来する1,570cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,510cm-1付近の吸収ピーク、及びC=O結合に由来する1,700cm-1付近の吸収ピークを確認した。前駆体1を含む反応液に代えて、前駆体2を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D2を得た。
(実施例D3:導電性組成物D3)
 化合物CA1に代えて、化合物PAを用いたこと以外は、前述の前駆体1の場合と同様にして前駆体3を含む反応液を得た。得られた前駆体3の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する555cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びP=O結合に由来する1,260cm-1付近の吸収ピークを確認した。前駆体1を含む反応液に代えて、前駆体3を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D3を得た。
(実施例D4:導電性組成物D4)
 化合物CA1に代えて、化合物SAを用いたこと以外は、前述の前駆体1の場合と同様にして前駆体4を含む反応液を得た。得られた前駆体4の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,200cm-1付近の吸収ピークを確認した。前駆体1を含む反応液に代えて、前駆体4を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D4を得た。
(実施例D5:導電性組成物D5)
 化合物CA1に代えて、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)を用いたこと以外は、前述の前駆体1の場合と同様にして前駆体5を含む反応液を得た。得られた前駆体5の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する565cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,205cm-1付近の吸収ピークを確認した。前駆体1を含む反応液に代えて、前駆体5を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D5を得た。
(実施例D6:導電性組成物D6)
 塩化金(III)酸・4水和物1gを超純水1,000mLに溶解させて塩化金酸水溶液を得た。この水溶液を50℃に加熱した後、化合物CA1 20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、50℃で15時間撹拌して反応させて、前駆体6を含む反応液を得た。得られた前駆体6の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,600cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びC=O結合に由来する1,715cm-1付近の吸収ピークを確認した。
 上記で得られた前駆体6を含む反応液の全量を加熱還流し、クエン酸三ナトリウム・2水和物2.37gを添加して2時間撹拌した。水溶液の色が黄色から赤色へと変化したことを目視で確認した。この水溶液を250mLの遠心管に小分けし、遠心分離機を使用して9,000rpmで30分間遠心分離処理を行い、固液分離した上澄み液を除去し、精製した。さらに、超純水を添加して、上述の遠心分離処理による精製を2回繰り返し、導電性組成物D6を得た。
(実施例D7:導電性組成物D7)
 化合物CA1に代えて、化合物PAを用いたこと以外は、前述の前駆体6の場合と同様にして前駆体7を含む反応液を得た。得られた前駆体7の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する555cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びP=O結合に由来する1,290cm-1付近の吸収ピークを確認した。前駆体6を含む反応液に代えて、前駆体7を含む反応液を用いたこと以外は、前述の導電性組成物D6の場合と同様にして導電性組成物D7を得た。
(実施例D8:導電性組成物D8)
 化合物CA1に代えて、化合物SAを用いたこと以外は、前述の前駆体6の場合と同様にして前駆体8を含む反応液を得た。得られた前駆体8の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する590cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,200cm-1付近の吸収ピークを確認した。前駆体6を含む反応液に代えて、前駆体8を含む反応液を用いたこと以外は、前述の導電性組成物D6の場合と同様にして導電性組成物D8を得た。
(実施例D9:導電性組成物D9)
 化合物CA1に代えて、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)を用いたこと以外は、前述の前駆体6の場合と同様にして前駆体9を含む反応液を得た。得られた前駆体9の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する590cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,205cm-1付近の吸収ピークを確認した。前駆体6を含む反応液に代えて、前駆体9を含む反応液を用いたこと以外は、前述の導電性組成物D6の場合と同様にして導電性組成物D9を得た。
(実施例D10:導電性組成物D10)
 塩化金(III)酸・4水和物1gを超純水1,000mLに溶解させて塩化金酸水溶液を得た。この水溶液を30℃に加熱した後、化合物CA1 20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、30℃で15時間撹拌して反応させて、前駆体10を含む反応液を得た。得られた前駆体10の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,600cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びC=O結合に由来する1,715cm-1付近の吸収ピークを確認した。
 上記で得られた前駆体10を含む反応液の全量を加熱還流し、クエン酸三ナトリウム・2水和物2.37gを添加して2時間撹拌した。水溶液の色が黄色から赤色へと変化したことを目視で確認した。この水溶液を250mLの遠心管に小分けし、遠心分離機を使用して9,000rpmで30分間遠心分離処理を行い、固液分離した上澄み液を除去し、精製した。さらに、超純水を添加して、上述の遠心分離処理による精製を2回繰り返し、導電性組成物D10を得た。
(実施例D11:導電性組成物D11)
 塩化金(III)酸・4水和物1gを超純水1,000mLに溶解させて塩化金酸水溶液を得た。この水溶液を40℃に加熱した後、化合物CA1 20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、40℃で15時間撹拌して反応させて、前駆体11を含む反応液を得た。得られた前駆体11の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,600cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びC=O結合に由来する1,715cm-1付近の吸収ピークを確認した。
 上記で得られた前駆体11を含む反応液の全量を加熱還流し、クエン酸三ナトリウム・2水和物2.37gを添加して2時間撹拌した。水溶液の色が黄色から赤色へと変化したことを目視で確認した。この水溶液を250mLの遠心管に小分けし、遠心分離機を使用して9,000rpmで30分間遠心分離処理を行い、固液分離した上澄み液を除去し、精製した。さらに、超純水を添加して、上述の遠心分離処理による精製を2回繰り返し、導電性組成物D11を得た。
(実施例D12:導電性組成物D12)
 塩化金(III)酸・4水和物1gを超純水1,000mLに溶解させて塩化金酸水溶液を得た。この水溶液を50℃に加熱した後、化合物CA1 20mg(「化合物/金属粒子」=0.042倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体12を含む反応液を得た。得られた前駆体12の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,575cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,510cm-1付近の吸収ピーク、及びC=O結合に由来する1,720cm-1付近の吸収ピークを確認した。前駆体12の赤外吸収スペクトルを、化合物CA1の赤外吸収スペクトルとともに図2に示す。
 上記で得られた前駆体12を含む反応液の全量を100℃で加熱還流し、クエン酸三ナトリウム・2水和物2.37gを添加して2時間撹拌した。水溶液の色が黄色から赤色へと変化したことを目視で確認した。この水溶液を250mLの遠心管に小分けし、遠心分離機を使用して9,000rpmで30分間遠心分離処理を行い、固液分離した上澄み液を除去し、精製した。さらに、超純水を添加して、上述の遠心分離処理による精製を2回繰り返し、導電性組成物D12を得た。
(実施例D13:導電性組成物D13)
 化合物CA1に代えて、化合物PAを用いたこと以外は、前述の前駆体12の場合と同様にして前駆体13を含む反応液を得た。得られた前駆体13の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する555cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びP=O結合に由来する1,295cm-1付近の吸収ピークを確認した。前駆体12を含む反応液に代えて、前駆体13を含む反応液を用いたこと以外は、前述の導電性組成物D12の場合と同様にして導電性組成物D13を得た。
(実施例D14:導電性組成物D14)
 化合物CA1に代えて、化合物SAを用いたこと以外は、前述の前駆体12の場合と同様にして前駆体14を含む反応液を得た。得られた前駆体14の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する590cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,195cm-1付近の吸収ピークを確認した。前駆体12を含む反応液に代えて、前駆体14を含む反応液を用いたこと以外は、前述の導電性組成物D12の場合と同様にして導電性組成物D14を得た。
(実施例D15:導電性組成物D15)
 化合物CA1に代えて、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)を用いたこと以外は、前述の前駆体12の場合と同様にして前駆体15を含む反応液を得た。得られた前駆体15の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する590cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,200cm-1付近の吸収ピークを確認した。前駆体12を含む反応液に代えて、前駆体15を含む反応液を用いたこと以外は、前述の導電性組成物D12の場合と同様にして導電性組成物D15を得た。
(実施例D16:導電性組成物D16)
 基板から回収した金を原料として、導電性組成物を製造した。金メッキのついた基材を切り取り、化学処理しやすくするために5mm×5mm程度の大きさに破砕して破砕片を得た。得られた破砕片を10%希硝酸に2時間浸漬し、銅とニッケルを溶解して金メッキ箔を基材から浮かせた後、ろ紙を敷いたろ過機に希硝酸を通じて、金メッキ箔を分離した。希硝酸は、銅とニッケルが溶解した青緑色を呈していた。ろ紙上の金メッキ箔に希硝酸を加え、金メッキ箔表面に残った銅やニッケルを洗い流した。得られた金メッキ箔をろ紙ごと別の容器に移し、35%塩酸及び60%硝酸を3:1(体積比)で混合した王水溶液を少しずつ滴下して金を溶解させた。金が溶解した時点でろ紙を取り出し、得られた金-王水溶液をろ過して基材の破片を除去した。耐酸性のロータリーエバポレーターを使用してろ液を加温しながら減圧蒸留し、硝酸、塩酸、水の順に除去して、塩化金(III)酸・4水和物を得た。
 得られた塩化金(III)・4水和物を用いたこと以外は、前述の導電性組成物D12の場合と同様にして前駆体16を含む反応液を得た。得られた前駆体16の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する555cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びC=O結合に由来する1,690cm-1付近の吸収ピークを確認した。前駆体12を含む反応液に代えて、前駆体16を含む反応液を用いたこと以外は、前述の導電性組成物D12の場合と同様にして導電性組成物D16を得た。
(実施例D17:導電性組成物D17)
 硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、化合物CA1 10mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体17を含む反応液を得た。得られた前駆体17の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピーク、及びC=C結合に由来する1,600cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,460~1,505cm-1の吸収ピーク、及びC=O結合に由来する1,700cm-1付近の吸収ピークを確認した。前駆体17の赤外吸収スペクトルを、化合物CA1の赤外吸収スペクトルとともに図3に示す。
 前駆体17を含む反応液の全量を100℃で加熱還流し、クエン酸三ナトリウム・2水和物0.88gを添加して1時間撹拌した。水溶液の色が薄黄色から濃黄色へと変化したことを目視で確認した。この水溶液を、限外ろ過装置(商品名「TFFミニメイト限外ろ過システム」、フィルター:30K、ポール製)を使用して、ろ液の電導度が2mS/mになるまで精製し、導電性組成物D17を得た。
(実施例D18:導電性組成物D18)
 化合物CA1に代えて、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)を用いたこと以外は、前述の前駆体17の場合と同様にして前駆体18を含む反応液を得た。得られた前駆体18の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する545cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,200cm-1付近の吸収ピークを確認した。前駆体17を含む反応液に代えて、前駆体18を含む反応液を用いたこと以外は、前述の導電性組成物D17の場合と同様にして導電性組成物D18を得た。
(実施例D19:導電性組成物D19)
 硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)10.8mg(「化合物/金属粒子」=0.0025倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体19を含む反応液を得た。得られた前駆体19の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,205cm-1付近の吸収ピークを確認した。
 前駆体19を含む反応液の全量を100℃で加熱還流し、クエン酸三ナトリウム・2水和物0.88gを添加して1時間撹拌した。水溶液の色が薄黄色から濃黄色へと変化したことを目視で確認した。この水溶液を、限外ろ過装置(商品名「TFFミニメイト限外ろ過システム」、フィルター:30K、ポール製)を使用して、ろ液の電導度が2mS/mになるまで精製し、導電性組成物D19を得た。
(実施例D20:導電性組成物D20)
 硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)21.6mg(「化合物/金属粒子」=0.005倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体20を含む反応液を得た。得られた前駆体20の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する545cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,205cm-1付近の吸収ピークを確認した。前駆体19を含む反応液に代えて、前駆体20を含む反応液を用いたこと以外は、前述の導電性組成物D19の場合と同様にして導電性組成物D20を得た。
(実施例D21:導電性組成物D21)
 硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)324.0mg(「化合物/金属粒子」=0.075倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体21を含む反応液を得た。得られた前駆体21の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する545cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,200cm-1付近の吸収ピークを確認した。前駆体19を含む反応液に代えて、前駆体21を含む反応液を用いたこと以外は、前述の導電性組成物D19の場合と同様にして導電性組成物D21を得た。
(実施例D22:導電性組成物D22)
 硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)341.2mg(「化合物/金属粒子」=0.079倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体22を含む反応液を得た。得られた前駆体22の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来る545cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,198cm-1付近の吸収ピークを確認した。前駆体19を含む反応液に代えて、前駆体22を含む反応液を用いたこと以外は、前述の導電性組成物D19の場合と同様にして導電性組成物D22を得た。
(実施例D23:導電性組成物D23)
 硝酸銀(I)(キシダ化学製)0.034gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)1mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体23を含む反応液を得た。得られた前駆体23の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,197cm-1付近の吸収ピークを確認した。前駆体19を含む反応液に代えて、前駆体23を含む反応液を用いたこと以外は、前述の導電性組成物D19の場合と同様にして導電性組成物D23を得た。
(実施例D24:導電性組成物D24)
 硝酸銀(I)(キシダ化学製)0.068gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)2mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体24を含む反応液を得た。得られた前駆体24の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,200cm-1付近の吸収ピークを確認した。前駆体19を含む反応液に代えて、前駆体24を含む反応液を用いたこと以外は、前述の導電性組成物D19の場合と同様にして導電性組成物D24を得た。
(実施例D25:導電性組成物D25)
 硝酸銀(I)(キシダ化学製)0.408gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)12mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体25を含む反応液を得た。得られた前駆体25の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,205cm-1付近の吸収ピークを確認した。前駆体19を含む反応液に代えて、前駆体25を含む反応液を用いたこと以外は、前述の導電性組成物D19の場合と同様にして導電性組成物D25を得た。
(実施例D26:導電性組成物D26)
 硝酸銀(I)(キシダ化学製)0.510gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、水溶性の導電性ポリマー(商品名「アクアパス-01X」、重量平均分子量15,000、三菱ケミカル製)15mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体26を含む反応液を得た。得られた前駆体26の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する550cm-1付近の吸収ピーク、及びC=C結合に由来する1,550cm-1付近の吸収ピークを確認した。さらに、C=N結合に由来する1,500cm-1付近の吸収ピーク、及びS=O結合に由来する1,205cm-1付近の吸収ピークを確認した。前駆体19を含む反応液に代えて、前駆体26を含む反応液を用いたこと以外は、前述の導電性組成物D19の場合と同様にして導電性組成物D26を得た。
(比較例D1:導電性組成物D27)
 塩化金(III)酸・4水和物1gを超純水40mLに溶解させて塩化金酸水溶液を得た。この水溶液を室温(25℃)に保ち、化合物CA1 20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、25℃で15時間反応させて、前駆体27を含む反応液を得た。得られた前駆体27の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する450~600cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。前駆体27の赤外吸収スペクトルを図1に示す。この結果から、反応温度が25℃(室温)である場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体1を含む反応液に代えて、前駆体27を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D27を得た。
(比較例D2:導電性組成物D28)
 特許文献2の記載を参考にして、ポリアニリンスルホン酸(アルドリッチ製、カタログ番号:52328-3、純分5%)を用いて、導電性組成物を製造した。塩化金(III)酸・4水和物1gを超純水40mLに溶解させて塩化金酸水溶液を得た。この水溶液を室温(25℃)に保ち、「化合物/金属粒子」=0.042倍となる量のポリアニリンスルホン酸(アルドリッチ製、カタログ番号:52328-3、純分5%)を添加し、撹拌下、25℃で15時間反応させて、前駆体28を含む反応液を得た。得られた前駆体28の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する450~600cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、反応温度が25℃(室温)である場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体1を含む反応液に代えて、前駆体28を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D28を得た。
(比較例D3:導電性組成物D29)
 特許文献1の記載を参考にして、ポリピロール(アルドリッチ製)を用いて、導電性組成物を製造した。塩化金(III)酸・4水和物1gを超純水40mLに溶解させて塩化金酸水溶液を得た。この水溶液を50℃に加熱した後、ポリピロール(アルドリッチ製)20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、50℃で15時間反応させて、前駆体29を含む反応液を得た。得られた反応液は黒色であり、凝集物が生じていた。得られた前駆体29の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する450~600cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、ポリピロールを用いた場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体1を含む反応液に代えて、前駆体29を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D29を得た。導電性組成物D29中の金属粒子のゼータ電位は測定不能であった。また、導電性組成物D29の極大吸収波長を測定したところ、720nmにブロードな吸収が認められたが、極大吸収波長は明瞭ではなかった。
(比較例D4:導電性組成物D30)
 特許文献1の記載を参考にして、ポリアニリン(アルドリッチ製)を用いて、導電性組成物を製造した。塩化金(III)酸・4水和物1gを超純水40mLに溶解させて塩化金酸水溶液を得た。この水溶液を50℃に加熱した後、ポリアニリン(アルドリッチ製)20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、50℃で15時間反応させて、前駆体30を含む反応液を得た。得られた反応液には茶色の浮遊物が生じていた。得られた前駆体30の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する450~600cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、スルホン酸基を有しないポリアニリンを用いた場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体1を含む反応液に代えて、前駆体30を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D30を得た。
(比較例D5:導電性組成物D31)
 特許文献1の記載を参考にして、ポリチオフェン(ポリ(3,4-エチレンジオキシチオフェン)、アルドリッチ製)を用いて、導電性組成物を製造した。塩化金(III)酸・4水和物1gを超純水40mLに溶解させて塩化金酸水溶液を得た。この水溶液を50℃に加熱した後、ポリチオフェン(ポリ(3,4-エチレンジオキシチオフェン)、アルドリッチ製)20mg(「化合物/金属粒子」=0.042倍)を添加し、撹拌下、50℃で15時間反応させて、前駆体31を含む反応液を得た。得られた反応液は黒色であり、凝集物が生じていた。得られた前駆体31の赤外吸収スペクトルを測定した結果、M-N(Au(金原子)-N)結合に由来する450~600cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、ポリチオフェンを用いた場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体1を含む反応液に代えて、前駆体31を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D31を得た。導電性組成物D31中の金属粒子のゼータ電位は測定不能であった。また、導電性組成物D31の極大吸収波長を測定したところ、750nmにブロードな吸収が認められたが、極大吸収波長は明瞭ではなかった。
(比較例D6:導電性組成物D32)
 硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を25℃(室温)に保ち、化合物CA1 10mg(「化合物/金属粒子」=0.046倍)を添加し、撹拌下、25℃で30時間撹拌して反応させて、前駆体32を含む反応液を得た。得られた前駆体32の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、反応温度が25℃(室温)である場合、金属原子及び窒素原子の化学結合が生じないことが確認された。
 前駆体32を含む反応液の全量に、25℃で、クエン酸三ナトリウム・2水和物0.88gを添加して1時間撹拌した。この水溶液を、限外ろ過装置(商品名「TFFミニメイト限外ろ過システム」、フィルター:30K、ポール製)を使用して、ろ液の電導度が2mS/mになるまで精製し、導電性組成物D32を得た。
(比較例D7:導電性組成物D33)
 特許文献2の記載を参考にして、ポリアニリンスルホン酸(アルドリッチ製、カタログ番号:52328-3、純分5%)を用いて、導電性組成物を製造した。硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を25℃(室温)に保ち、化合物CA1 10mg(「化合物/金属粒子」=0.046倍)を添加し、撹拌下、25℃で30時間撹拌して反応させて、前駆体33を含む反応液を得た。得られた前駆体33の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、反応温度が25℃(室温)である場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体32を含む反応液に代えて、前駆体33を含む反応液を用いたこと以外は、前述の導電性組成物D32の場合と同様にして導電性組成物D33を得た。
(比較例D8:導電性組成物D34)
 特許文献1の記載を参考にして、ポリピロール(アルドリッチ製)を用いて、導電性組成物を製造した。硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、ポリピロール(アルドリッチ製)10mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体34を含む反応液を得た。得られた反応液は白色であり、凝集物が生じていた。得られた前駆体34の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、スルホン酸基を有しないポリアニリンを用いた場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体17を含む反応液に代えて、前駆体34を含む反応液を用いたこと以外は、前述の導電性組成物D17の場合と同様にして導電性組成物D34を得た。導電性組成物D34中の金属粒子のゼータ電位は測定不能であった。また、導電性組成物D34の極大吸収波長を測定したところ、730nmにブロードな吸収が認められたが、極大吸収波長は明瞭ではなかった。
(比較例D9:導電性組成物D35)
 特許文献1の記載を参考にして、ポリアニリン(アルドリッチ製)を用いて、導電性組成物を製造した。硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、ポリアニリン(アルドリッチ製)10mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体35を含む反応液を得た。得られた反応液には茶色の浮遊物が生じていた。得られた前駆体35の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、スルホン酸基を有しないポリアニリンを用いた場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体17を含む反応液に代えて、前駆体35を含む反応液を用いたこと以外は、前述の導電性組成物D17の場合と同様にして導電性組成物D35を得た。
(比較例D10:導電性組成物D36)
 特許文献1の記載を参考にして、ポリチオフェン(ポリ(3,4-エチレンジオキシチオフェン)、アルドリッチ製)を用いて、導電性組成物を製造した。硝酸銀(I)(キシダ化学製)0.34gを超純水800mLに溶解させて硝酸銀水溶液を得た。この水溶液を80℃に加熱した後、ポリチオフェン(ポリ(3,4-エチレンジオキシチオフェン)、アルドリッチ製)10mg(「化合物/金属粒子」=0.046倍)を添加した。次いで、100℃に昇温してさらに30時間撹拌して反応させて、前駆体36を含む反応液を得た。得られた反応液は白色であり、凝集物が生じていた。得られた前駆体36の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、スルホン酸基を有しないポリアニリンを用いた場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体17を含む反応液に代えて、前駆体36を含む反応液を用いたこと以外は、前述の導電性組成物D17の場合と同様にして導電性組成物D36を得た。導電性組成物D36中の金属粒子のゼータ電位は測定不能であった。また、導電性組成物D36の極大吸収波長を測定したところ、725nmにブロードな吸収が認められたが、極大吸収波長は明瞭ではなかった。
(比較例D11:導電性組成物D37)
 特許文献2の記載を参考にして、ポリアニリンスルホン酸(アルドリッチ製、カタログ番号:52328-3、純分5%)を用いて、導電性組成物を製造した。「化合物/金属粒子」=0.004倍となる量のポリアニリンスルホン酸(アルドリッチ製、カタログ番号:52328-3、純分5%)を超純水800mLに溶解させて水溶液を得た。この水溶液に硝酸銀1gを添加し、25℃で20分撹拌した。さらに、撹拌下でヒドラジン水溶液(アルドリッチ製)を3滴滴下した。ヒドラジン水溶液の滴下により、水溶液の色が濃くなった後に白く濁った。25℃でさらに1時間撹拌し、前駆体37を含む水溶液を得た。得られた前駆体37の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、反応温度が25℃(室温)である場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体37の赤外吸収スペクトルを、前記ポリアニリンスルホン酸の赤外吸収スペクトルとともに図4に示す。前駆体1を含む反応液に代えて、前駆体37を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D37を得た。
(比較例D12:導電性組成物D38)
 特許文献2の記載を参考にして、ポリアニリンスルホン酸(アルドリッチ製、カタログ番号:52328-3、純分5%)を用いて、導電性組成物を製造した。「化合物/金属粒子」=0.079倍となる量のポリアニリンスルホン酸(アルドリッチ製、カタログ番号:52328-3、純分5%)を超純水800mLに溶解させて水溶液を得た。この水溶液に硝酸銀1gを添加し、25℃で20分撹拌した。さらに、撹拌下でヒドラジン水溶液(アルドリッチ製)を3滴滴下した。25℃でさらに1時間撹拌し、前駆体37を含む水溶液を得た。得られた水溶液は灰色であった。得られた前駆体38の赤外吸収スペクトルを測定した結果、M-N(Ag(銀原子)-N)結合に由来する575cm-1付近の吸収ピークは確認されず、目的とする前駆体は合成できていないことが判明した。この結果から、反応温度が25℃(室温)である場合、金属原子及び窒素原子の化学結合が生じないことが確認された。前駆体38の赤外吸収スペクトルを、前記ポリアニリンスルホン酸の赤外吸収スペクトルとともに図4に示す。前駆体1を含む反応液に代えて、前駆体38を含む反応液を用いたこと以外は、前述の導電性組成物D1の場合と同様にして導電性組成物D38を得た。
 製造した導電性組成物の詳細を表1に示す。
<導電性組成物(インク)の製造>
 以下に示す方法により、水性媒体及び界面活性剤を含有する水性のインク(導電性組成物)を製造した。得られたインク中の金属粒子の平均粒子径は、いずれも、原料として用いた導電性組成物(分散液)中の金属粒子の平均粒子径±1nmの範囲内であった。このことから、金属粒子は導電性組成物及びインク中で安定して分散していることがわかった。
 限外ろ過装置(商品名「TFFミニメイト限外ろ過システム」、フィルター:30K、ポール製)を使用して、上記で得られた導電性組成物(分散液)を濃縮して、金属粒子の含有量が14.85%である導電性組成物の濃縮液を得た。そして、以下に示す配合となるように各成分を混合して、金属粒子の含有量が10.0%である各インクを得た。界面活性剤としては、アセチレングリコール系界面活性剤(商品名「オルフィンPD-005」、日信化学工業製)を用いた。
 ・導電性組成物の濃縮液:67.4部
 ・エチレングリコール:31.0部
 ・界面活性剤:0.1部
 ・表2に示す種類の樹脂:樹脂(固形分)として1.25部となる使用量(部)
 ・超純水:成分の合計が100.0%となる使用量(部)
 表2に示す樹脂としては、以下に示す市販品を用いた。
・樹脂1:ポリエステル樹脂の水分散液(商品名「バイロナールMD-2000」、樹脂粒子の含有量40%、東洋紡製)
・樹脂2:水溶性ナイロン樹脂(ポリアミド)樹脂(商品名「AQナイロンA-90」、東レ製)
・樹脂3:ポリ塩化ビニル/ポリ酢酸ビニル共重合樹脂の水分散液(商品名「ビニブラン603」、樹脂粒子の含有量50%、日信化学工業製)
・樹脂4:ポリアミド樹脂の水分散液(商品名「セポルジョンNE205」、樹脂粒子の含有量40%、住友精化製)
・樹脂5:ポリオレフィン樹脂の水分散液(商品名「スミフィットWR101」、樹脂粒子の含有量31%、住友化学製)
・樹脂6:ポリオレフィン/ポリ酢酸ビニル共重合樹脂の水分散液(商品名「セポルジョンVA406」、樹脂粒子の含有量50%、住友精化製)
・樹脂7:ポリウレタン樹脂の水分散液(商品名「スーパーフレックス210」、樹脂粒子の含有量35%、第一工業製薬製)
 導電性組成物(分散液)D29~D31及びD34~D36を用いて調製した導電性組成物(インク)には凝集物が生じており、以降の評価を行うことができなかった。
<分散安定性の評価>
 得られたインク(導電性組成物)1mLを密閉可能なガラス瓶に入れ、60℃の恒温槽(商品名「IC602」、ヤマト科学製)中に所定期間載置して保存した。保存後のインク(導電性組成物)を超純水で1,500倍(体積基準)に希釈し、紫外可視近赤外分光光度計(商品名「UV-3600」、島津製作所製)により分析した。700nmの波長における光の吸収が保存前と比較して30%増大した際に「凝集した」と判断し、凝集するまでの保存期間により、以下に示す評価基準にしたがって分散安定性を評価した。結果を表2に示す。以下に示す評価基準のうち、「A」及び「B」を許容できるレベルとし、「C」を許容できないレベルとした。2週間の保存前後のインク1及び25についての紫外可視分光(UV-vis)スペクトルをそれぞれ図5及び図6に示す。図5及び図6より、保存前後の赤外吸収スペクトルに大きな違いはなく、分散安定性が得られていることがわかる。
 A:凝集するまでの期間が2週間以上であった。
 B:凝集するまでの期間が1週間以上2週間未満であった。
 C:凝集するまでの期間が1週間未満であった。
<導電性画像の製造>
 インク(導電性組成物)をインクカートリッジに充填し、ピエゾ素子による物理的エネルギーの作用により吐出ヘッドからインクを吐出するインクジェット記録装置(商品名「LaboJet-500」、MicroJet製)にセットした。このインクジェット記録装置を使用し、温度25℃、相対湿度50%の環境下、以下のシート状の基材に、1/600インチ×1/600インチの単位領域へのインク(導電性組成物)の付与量を20ngとしたベタ画像を記録して記録物を得た。得られた記録物を表3に示す乾燥温度、相対湿度50%の環境下で表3に示す時間乾燥させて、各導電性画像(2mm×3cmの長方形画像)を得た。
・PET:PETフィルム、商品名「パナクレアACX」、パナック製
・PI:ポリイミドフィルム、商品名「カプトンH」、東レ・デュポン製
・PP:ポリプロピレンフィルム、商品名「トレファン#40-2500」、東レ製
・PC:ポリカーボネートフィルム、商品名「ピュアエースD」、帝人製
 ・ゼラチンシート:富士フイルム和光純薬製の0.1%ゼラチン溶液を、バーコーターを用いてPETフィルムに塗布して乾燥させたもの
 ・フィブロインシート:ミリポアシグマ製の5%フィブロイン水溶液を、バーコーターを用いてPETフィルムに塗布して乾燥させたもの
<導電性評価>
 触針式膜厚計(Tencor製)を使用して得られた導電性画像の膜厚を測定した。測定した膜厚から導電性画像の断面積を算出し、4端針法によって体積抵抗率を測定及び算出した。また、以下に示す評価基準にしたがって導電性画像の導電性を評価した。以下に示す評価基準において、「A」を許容できるレベルとし、「C」を許容できないレベルとした。結果を表3に示す。
 A:体積抵抗率が1×10-3Ω・cm未満であった。
 C:体積抵抗率が1×10-3Ω・cmを以上か、導電性を示さなかった。
<密着性評価>
 上記の導電性評価に用いたものと同様の条件で導電性画像(横3.5cm×縦3.5cm×厚さ1μm)を得た。この導電性画像について、クロスカットプレート(商品名「クロスカットプレート」、カット幅;2mm、オールグッド製)に沿ってカッターナイフで縦横に切れ込みを入れて、格子状のクロスカットを作製した。クロスカット部分に粘着テープ(セロテープ(登録商標)CT-24、ニチバン製、粘着力4.01N/10mm)を貼り、60°の角度で瞬時に引き剥がした。塗膜(導電性画像)における剥がれの状態を目視で確認し、JIS-K5600、「付着性クロスカット法」に準じて)を参考にして、以下の分類0~5に当てはめ、以下の評価基準にしたがって導電性画像の密着性を評価した。以下に示す評価基準において、「A」及び「B」はいずれも許容できるレベルであり、「A」はより良好な密着性を示す。結果を表3に示す。
 (分類)
・分類0:カットの縁がなめらかで、どの格子の目もはがれがなかった
分類1:カットの交差点における塗膜の小さなはがれがあったが、クロスカットの部分で影響を受けるのは、5%未満であった。
・分類2:塗膜がカットの線に沿って、及び/又は交差点においてはがれていた。クロスカットの部分で影響を受けるのは、5%を超えて15%以下であった。
・分類3:塗膜がカットの線に沿って部分的又は全面的に大はがれを生じており、及び/又は目の部分が、部分的に又は全面的にはがれていた。クロスカットの部分で影響を受けるのは、15%を超えて35%以下であった。
・分類4:塗膜がカットの線に沿って部分的又は全面的に大はがれを生じており、及び/又は数か所の目が部分的に又は全面的にはがれていた。クロスカットの部分で影響を受けるのは、35%を超えて65%以下であった。
・分類5:分類4でも分類できないはがれの程度のいずれかであった。
 (評価基準)
A:分類0、分類1、又は分類2に該当した
B:分類3、分類4、又は分類5に該当した
 乾燥温度を120℃とした実施例E44の導電性画像は基材が熱により変形し、反りが生じていた。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2022年3月10日提出の日本国特許出願特願2022-037460および2023年2月20日提出の日本国特許出願特願2023-023925を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (25)

  1.  金属粒子、及び下記一般式(1)で表される繰り返し構造を有するとともに、重量平均分子量が1,000~100,000である化合物を含有し、
     前記金属粒子の表面の少なくとも一部が、前記化合物で被覆されているとともに、前記金属粒子に含まれる金属原子と前記化合物に含まれる窒素原子とが化学結合していることを特徴とする導電性組成物。
    (前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R~Rの少なくとも1つは前記親水性基である。R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は前記親水性基を表し、R~Rの少なくとも1つは前記親水性基である。前記親水性基は、カルボン酸基、スルホン酸基、リン酸基、及びホスホン酸基からなる群より選択される少なくとも1種である。)
  2.  前記一般式(1)中、R~Rのいずれか1つが、カルボン酸基又はスルホン酸基であり、残りのすべてが水素原子である請求項1に記載の導電性組成物。
  3.  前記一般式(1)中、Rがカルボン酸基又はスルホン酸基であり、R、R、及びRが水素原子である請求項1に記載の導電性組成物。
  4.  前記化合物の含有量(質量%)が、前記金属粒子の含有量(質量%)に対する質量比率で、0.001倍以上0.100倍以下である請求項1乃至3のいずれか1項に記載の導電性組成物。
  5.  前記化合物の含有量(質量%)が、前記金属粒子の含有量(質量%)に対する質量比率で、0.005倍以上0.075倍以下である請求項1乃至3のいずれか1項に記載の導電性組成物。
  6.  前記金属粒子が、ニッケル、パラジウム、白金、銅、銀、及び金からなる群より選択される少なくとも1種の金属で形成されている請求項1乃至5のいずれか1項に記載の導電性組成物。
  7.  前記金属粒子の体積基準の累積50%粒子径が、1nm以上100nm以下である請求項1乃至6のいずれか1項に記載の導電性組成物。
  8.  前記金属粒子の体積基準の累積50%粒子径が、5nm以上50nm以下である請求項1乃至6のいずれか1項に記載の導電性組成物。
  9.  さらに、水性媒体を含有する請求項1乃至8のいずれか1項に記載の導電性組成物。
  10.  さらに、樹脂を含有する請求項9に記載の導電性組成物。
  11.  前記樹脂が、ポリエステル、ポリウレタン、ポリオレフィン、ポリスチレン、アクリル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアミド、ポリイミド、エポキシ、ポリビニルアルコール、及び多糖類からなる群より選択される少なくとも1種の樹脂を含む請求項10に記載の導電性組成物。
  12.  前記樹脂が、ポリエステル、ポリウレタン、ポリオレフィン、ポリ酢酸ビニル、及びポリアミドからなる群より選択される少なくとも1種の樹脂を含む請求項10に記載の導電性組成物。
  13.  請求項1乃至12のいずれか1項に記載の導電性組成物の製造方法であって、
     金属塩及び前記化合物を水性媒体中で40℃以上150℃以下に加熱して、前記金属塩に含まれる金属原子と前記化合物に含まれる窒素原子とが化学結合した前駆体を形成する第1工程と、
     前記前駆体を還元する第2工程と、を有することを特徴とする導電性組成物の製造方法。
  14.  前記金属塩として、金属廃液から回収された回収金属塩を用いる請求項13に記載の導電性組成物の製造方法。
  15.  請求項1乃至12のいずれか1項に記載の導電性組成物を基材に付与する工程を有することを特徴とする導電性画像の記録方法。
  16.  前記導電性組成物をインクジェット法により前記基材に付与する請求項15に記載の導電性画像の記録方法。
  17.  さらに、前記基材に付与した前記導電性組成物を20℃以上50℃以下の温度で乾燥させる工程を有する請求項15又は16に記載の導電性画像の記録方法。
  18.  基材と、前記基材に形成された導電層と、を有する導電性画像であって、
     前記導電層が、金属粒子、及び下記一般式(1)で表される繰り返し構造を有するとともに、重量平均分子量が1,000~100,000である化合物を含有し、
     前記金属粒子の表面の少なくとも一部が、前記化合物で被覆されているとともに、前記金属粒子に含まれる金属原子と前記化合物に含まれる窒素原子とが化学結合していることを特徴とする導電性画像。
    (前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は親水性基を表し、R~Rの少なくとも1つは前記親水性基である。R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又は前記親水性基を表し、R~Rの少なくとも1つは前記親水性基である。前記親水性基は、カルボン酸基、スルホン酸基、リン酸基、及びホスホン酸基からなる群より選択される少なくとも1種である。)
  19.  基材に記録される導電性画像であって、
     請求項1乃至12のいずれか1項に記載の導電性組成物で形成されたことを特徴とする導電性画像。
  20.  前記基材が、ガラス、紙、又は樹脂材料である請求項18又は19に記載の導電性画像。
  21.  前記樹脂材料が、生体適合性材料である請求項20に記載の導電性画像。
  22.  前記生体適合性材料が、ゼラチン、コラーゲン、フィブロイン、セルロース、及びキトサンからなる群より選択される少なくとも1種を含む請求項21に記載の導電性画像。
  23.  前記樹脂材料が、合成樹脂である請求項20に記載の導電性画像。
  24.  前記合成樹脂が、ポリエステル、ポリウレタン、ポリオレフィン、ポリスチレン、アクリル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミド、ポリイミド、ポリカーボネート、エポキシ、及びアクリロニトリル-ブタジエン-スチレン共重合体からなる群より選択される少なくとも1種の樹脂を含む請求項23に記載の導電性画像。
  25.  前記合成樹脂が、ポリエステル、ポリオレフィン、ポリイミド、及びポリカーボネートからなる群より選択される少なくとも1種の樹脂を含む請求項23に記載の導電性画像。
PCT/JP2023/008703 2022-03-10 2023-03-08 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像 WO2023171691A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022037460 2022-03-10
JP2022-037460 2022-03-10
JP2023023925A JP2023133162A (ja) 2022-03-10 2023-02-20 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
JP2023-023925 2023-02-20

Publications (1)

Publication Number Publication Date
WO2023171691A1 true WO2023171691A1 (ja) 2023-09-14

Family

ID=87935159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008703 WO2023171691A1 (ja) 2022-03-10 2023-03-08 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像

Country Status (1)

Country Link
WO (1) WO2023171691A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511581A (ja) * 1997-07-25 2001-08-14 ツィッパーリンク ケスラー ウント コー.(ゲーエムベーハー ウント コー.) 固有導電性ポリマーと金属との化合物
JP2008081550A (ja) * 2006-09-26 2008-04-10 Japan Aviation Electronics Industry Ltd 配線材用インクとその製造方法
WO2011074606A1 (ja) * 2009-12-15 2011-06-23 公立大学法人大阪府立大学 金属ナノ粒子及び金属ナノ粒子の製造方法
JP2016527664A (ja) * 2013-06-14 2016-09-08 エルジー・ケム・リミテッド 金属ナノプレート、その製造方法、これを含む導電性インク組成物および伝導性フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511581A (ja) * 1997-07-25 2001-08-14 ツィッパーリンク ケスラー ウント コー.(ゲーエムベーハー ウント コー.) 固有導電性ポリマーと金属との化合物
JP2008081550A (ja) * 2006-09-26 2008-04-10 Japan Aviation Electronics Industry Ltd 配線材用インクとその製造方法
WO2011074606A1 (ja) * 2009-12-15 2011-06-23 公立大学法人大阪府立大学 金属ナノ粒子及び金属ナノ粒子の製造方法
JP2016527664A (ja) * 2013-06-14 2016-09-08 エルジー・ケム・リミテッド 金属ナノプレート、その製造方法、これを含む導電性インク組成物および伝導性フィルム

Similar Documents

Publication Publication Date Title
TWI426111B (zh) 含銀水性調配物及其用於製造電導性或反射性塗層之用途
TWI324954B (en) Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
EP2305402B1 (en) Method for producing silver-containing powder and conductive paste using the same
EP2610023A1 (en) Low-temperature sinterable silver nanoparticle composition and electronic component formed using that composition
WO2014203843A1 (ja) 無電解めっき用触媒、これを用いた金属皮膜及びその製造方法
KR102035115B1 (ko) 도전성 피막 복합체 및 그 제조방법
WO2002013999A1 (en) Colloidal metal solution, process for producing the same, and coating material containing the same
CN101835555A (zh) 铜微粒和其制造方法及铜微粒分散液
WO2007055443A1 (en) Metallic ink, and method for forming of electrode using the same and substrate
EP3118268A1 (en) Stabilized nanoparticles and dispersions of the stabilized nanoparticles and methods of application
WO2023171691A1 (ja) 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
CN109478442B (zh) 金属纳米粒子水分散液
JP7449110B2 (ja) 修飾グラフェン、修飾グラフェンの製造方法、修飾グラフェン樹脂複合体、修飾グラフェンシートおよび修飾グラフェン分散体
JP2023133162A (ja) 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
JP6598934B2 (ja) 光焼結型組成物及びそれを用いた導電膜の形成方法
Arora et al. Sol–gel based layer-by-layer deposits of lanthanum cerium molybdate nanocontainers and their anticorrosive attributes
JP2003231098A (ja) 炭素からなる骨格を持つ薄膜状粒子を含む複合体およびその作製方法
WO2023171693A1 (ja) 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
JP2023133161A (ja) 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
WO2020013188A1 (ja) 卑金属めっき膜
JP5521536B2 (ja) 金属製膜基板の製造方法及びフレキシブルプラスチック基板
Mościcki et al. Influence of different type protective layer on silver metallic nanoparticles for Ink-Jet printing technique
WO2023282006A1 (ja) 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
JP2023010589A (ja) 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
JP2023082760A (ja) 亜酸化銅粒子、その製造方法、光焼結型組成物及びそれを用いた導電膜の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766867

Country of ref document: EP

Kind code of ref document: A1