WO2023171654A1 - ダンパー装置 - Google Patents

ダンパー装置 Download PDF

Info

Publication number
WO2023171654A1
WO2023171654A1 PCT/JP2023/008514 JP2023008514W WO2023171654A1 WO 2023171654 A1 WO2023171654 A1 WO 2023171654A1 JP 2023008514 W JP2023008514 W JP 2023008514W WO 2023171654 A1 WO2023171654 A1 WO 2023171654A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction member
cylinder
damper
seal ring
piston
Prior art date
Application number
PCT/JP2023/008514
Other languages
English (en)
French (fr)
Inventor
淳 斎藤
Original Assignee
株式会社パイオラックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パイオラックス filed Critical 株式会社パイオラックス
Priority to CN202380024577.3A priority Critical patent/CN118786295A/zh
Priority to GBGB2412724.3A priority patent/GB202412724D0/en
Publication of WO2023171654A1 publication Critical patent/WO2023171654A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/08Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other
    • F16F7/09Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other in dampers of the cylinder-and-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details

Definitions

  • Such a damper device is disclosed in Patent Document 1 below, which includes a piston equipped with a rod and a housing housing the piston, and the piston is equipped with a sealing member for the inner wall of the housing and a member slidable relative to the piston. and a slider in contact with the inner wall of the housing, so that when braking force is generated, the slider comes into pressure contact with the seal member, and the portion of the seal member in contact with the inner wall of the housing is deformed toward the outside of the housing.
  • the damper is listed.
  • the present invention provides a damper device that is attached between a pair of members that move closer to each other and applies a braking force when the pair of members move closer to each other or move away from each other, the damper device having an opening at one end.
  • a cylinder provided with a section, a rod movably inserted into the cylinder through the opening, a piston connected to the rod and having an annular groove formed on its outer periphery, and a side of the annular groove in the damper braking direction.
  • a seal ring disposed to be movable in the axial direction and pressed against the inner circumferential surface of the cylinder; and a seal ring disposed in the annular groove on the return direction side opposite to the damper braking direction with respect to the seal ring.
  • a sealing portion is formed between the cylinder and the piston by the seal ring and the friction member or the seal ring, and the sealing portion is provided within the cylinder.
  • An air chamber is formed through the seal ring, and when the piston moves in the damper braking direction, the seal ring presses the friction member to expand its diameter, and the outer circumferential surface of the friction member is pressed against the inner circumference of the cylinder.
  • the friction member is brought into pressure contact with the cylinder surface, and the friction member is configured to have a size smaller than the inner peripheral surface of the cylinder when no pressing force from the seal ring is applied.
  • the friction member when the piston moves in the damper braking direction, the friction member is pressed against the seal ring by the pressure change in the air chamber and the friction force of the seal ring against the inner peripheral surface of the cylinder, and the friction member is sufficiently pressed against the seal ring. Since it can be deformed, the outer circumferential surface of the friction member can be brought into pressure contact with the inner circumferential surface of the cylinder. As a result, in addition to the frictional force of the seal ring against the inner peripheral surface of the cylinder, the frictional force of the friction member can be generated against the inner peripheral surface of the cylinder, and a high damper braking force can be obtained.
  • FIG. 1 is an exploded perspective view showing one embodiment of a damper device according to the present invention. It is a perspective view of the damper device in a state where the rod is pushed in. It is an enlarged perspective view of the piston which constitutes the same damper device.
  • FIG. 2 is an enlarged perspective view of a seal ring that constitutes the damper device.
  • 5 is a cross-sectional view taken along the line of arrow BB in FIG. 4.
  • FIG. FIG. 3 is an enlarged perspective view of a friction member that constitutes the damper device.
  • FIG. 6 is an enlarged perspective view of the friction member constituting the damper device, viewed from a direction different from that of FIG. 5.
  • FIG. 7 is a sectional view taken along the line EE in FIG. 6.
  • FIG. 3 is a cross-sectional view of the same damper device when the piston moves in the return direction opposite to the damper braking direction.
  • (Type) is an enlarged sectional view of the J part in Figure 14
  • (b) is an enlarged sectional view of a different cross section from ( Corporation)
  • (c) is an enlarged cross sectional view of a different cross section from ( réelle) and (b). It is a diagram.
  • FIG. 3 is a cross-sectional view of the same damper device when the piston moves in the return direction opposite to the damper braking direction.
  • FIG. 7 is an enlarged cross-sectional view of a main part showing a modification of a structure in which the diameter of a friction member is increased by a seal ring. It is a sectional view showing another embodiment of the damper according to the present invention.
  • FIG. 18 is an enlarged cross-sectional view of section M in FIG. 17;
  • the damper device 10 shown in FIGS. 1 and 2 is attached to a pair of members that approach each other and move away from each other, and applies a braking force when the pair of members approach or move away from each other.
  • the present invention can be used for braking a glove box, a lid, etc., which is attached to the opening of the storage section provided in the maintenance panel so as to be openable and closable.
  • one member is a fixed body such as an instrument panel accommodating part
  • the other member is a glove box, a lid, etc. that is attached to the opening of the fixed body so that it can be opened and closed. This will be explained as an opening/closing body.
  • the damper device 10 of this embodiment includes a cylinder 20 having an opening 23 at one end, a rod 30 movably inserted into the cylinder 20, and a cylinder 20 connected to the rod 30. , a piston 40 having an annular groove 50 formed on its outer periphery; a seal ring 60 that is disposed movably in the axial direction on the damper braking direction F1 side of the annular groove 50 and is pressed against the inner circumferential surface of the cylinder 20; In the annular groove 50, a friction member 70 is arranged on the return direction F2 side opposite to the damper braking direction F1 with respect to the seal ring 60, and a detachment prevention cap 90 is attached to the opening 23 on the one end side of the cylinder 20. It is mainly composed of.
  • the other axial end surface of the friction member 70 (a contact surface 78 to be described later) is connected to the inner surface of the other axial end of the annular groove 50 (to be described later).
  • the piston 40 moves in the damper braking direction F1 as shown in FIG. 11, the other end of the seal ring 60 in the axial direction portion comes into contact with one end surface of the friction member 70 in the axial direction (a pressing force receiving surface 80 to be described later).
  • a seal portion is formed between the cylinder 20 and the piston 40 to seal a gap therebetween.
  • the three seal portions described above allow the internal space R within the annular groove 50 to be sealed when the piston 40 moves in the damper braking direction F1 (see FIG. 11). Note that the internal space R of this annular groove 50 communicates with the first air chamber V1.
  • One end of the wall 21 in the axial direction is open, and an opening 23 is provided.
  • locking holes 23a, 23a are formed in the long axis wall portions 21a, 21a, which are located at the periphery of the opening 23 and are arranged to face each other, respectively.
  • an end wall 25 is arranged at the other end of the wall 21 in the axial direction (it can also be said that the end wall 25 is arranged on the opposite side of the wall 21 from the opening 23), The other end of the wall portion 21 is closed.
  • the detachment prevention cap 90 has a rod insertion opening 91 formed in its center to allow the shaft 31 of the rod 30 to be inserted therethrough with its rotation restricted. It can be inserted into the cylinder 20 with rotation restricted. Further, a plurality of locking protrusions 92 are protruded from predetermined locations on the outer periphery of the detachment prevention cap 90, and each locking protrusion 92 can be respectively locked in each corresponding locking hole 23a of the cylinder 20. (See FIG. 2), and a detachment prevention cap 90 is attached to the opening 23 of the cylinder 20 (see FIG. 10). The detachment prevention cap 90 comes into contact with the piston 40 when the rod 30 is pulled out to the maximum extent from the opening 23 of the cylinder 20, and prevents the rod 30 and the piston 40 from detaching from the cylinder 20.
  • the rod 30 of this embodiment has a prismatic shaft portion 31 that extends in one direction.
  • a connecting piece 33 having a connecting hole 33a is provided at one end in the longitudinal direction of this shaft portion 31.
  • a connecting shaft (not shown) of the other member mentioned above is inserted into the connecting hole 33a, so that the rod 30 is rotatably connected to the other member.
  • the piston 40 of this embodiment is connected to the other end of the rod 30 in the longitudinal direction, and has an annular groove 50 formed on its outer periphery. It is integrally formed.
  • the surface of the first side wall portion 41 facing the second side wall portion 42 is referred to as the inner surface 41a of the first side wall portion 41
  • the surface of the second side wall portion 42 facing the first side wall portion 41 is referred to as the inner surface 41a of the first side wall portion 41.
  • a plurality of spaces K defined by partition walls 45 are provided inside the both side walls 41 and 42 and the connecting wall 43, and each space K is defined by the second side wall.
  • the 42 side is open.
  • at a predetermined position of the first side wall part 41 here, at one end side in the axial direction of the first side wall part 41 and at the center position in the width direction, it communicates with a predetermined space K.
  • An orifice 47 in the form of a small diameter round hole is formed. This orifice 47 allows the first air chamber V1 and the second air chamber V2 in the cylinder 20 to communicate with each other via the space K. Note that the damper braking force is adjusted by the flow resistance of the air passing through the orifice 47.
  • the piston 40 has two parts on both sides in the longitudinal direction (long axis direction of the first side wall part 41) with the rod 30 in between, and a width direction (first part with the rod 30 in between).
  • Notch grooves 48 are formed at a predetermined depth by cutting out the first side wall part 41 and the connecting wall part 43 (four notches in total) on both sides of the first side wall part 41 (short axis direction). (notch groove 48 is formed). This notch groove 48 forms an exhaust flow path that exhausts the air in the first air chamber V1 to the second air chamber V2 side when the piston 40 moves in the damper return direction F2 (this will be described later). do).
  • a space surrounded by the pair of side walls 41 and 42 and the connecting wall 43 forms an annular groove 50.
  • the outer circumferential surface of the connecting wall portion 43 forms the bottom surface 51 of the annular groove 50.
  • the bottom surface 51 is formed parallel to the axial direction of the piston 40 (the direction along the axis C of the piston 40).
  • the axial width of the annular groove 50 (the length between the inner surface 41a of the first side wall portion 41 and the inner surface 42a of the second side wall portion 42) is determined by the axial length W1 of the seal ring 60 (see FIG. 5) and the friction It is formed to be larger than the axial length W2 (see FIG. 8) of the member 70, so that the seal ring 60 and the friction member 70 can be received within the annular groove 50.
  • annular groove 50 is provided with a friction member movement restricting portion that restricts the friction member 70 from moving in the axial direction when the piston 40 moves in the damper return direction F2.
  • Both axial side surfaces of the protrusion 52 that is, one axial side surface on the damper braking direction F1 side and the other axial side surface on the damper return direction F2 side form slopes 54 and 55, respectively.
  • the first slope 54 of the protrusion 52 gradually decreases in height from the top 53 that protrudes highest from the bottom surface 51 toward the damper braking direction F1 side, and the top 53 of the protrusion 52 There is a second slope 55 whose height gradually decreases toward the damper return direction F2 side.
  • the first slope 54 on the damper braking direction F1 side is formed to have a shorter axial length than the second slope 55 on the damper return direction F2 side.
  • one of the bottom surface 51 of the annular groove 50 and the friction member 70 is provided with a slope, and the other is provided with a slope abutting portion that contacts the slope.
  • the first slope 54 of the protrusion 52 constitutes the "slope" of the protrusion 52 in the present invention.
  • the base 61 has an annular shape that matches the outer peripheral shape of the annular groove 50. Further, each of the protrusions 63, 65, and 67 continues in the circumferential direction from the inner peripheral surface and the outer peripheral surface of the base 61 toward the radially inward or outward of the base 61 so as to form an annular shape. In other words, the base portion 61 has an annular protrusion that is not interrupted midway in the circumferential direction.
  • Each of the inner diameter protrusions 63, 65 has inner surfaces 63c, 65c that are substantially perpendicular and outer surfaces 63b, 65b that gradually become wider from the apex 63a, 65a at the tip in the protruding direction toward the inner circumferential surface of the base 61.
  • the outer diameter side protrusion 67 has a cross-sectional shape of a substantially equilateral triangular mountain shape (which can also be said to be a widened bottom shape) that gradually becomes wider from the apex 67a at the tip in the protrusion direction toward the outer circumferential surface of the base 61. It is showing. Note that the top portions 63a, 65a, 67a of each of the protrusions 63, 65, 67 have a rounded shape.
  • the axial length W1 of the seal ring 60 is smaller than the length of one axial end surface of the annular groove 50 (inner surface 41a of the first side wall portion 41) and a pressing force receiving surface 80 of the friction member 70, which will be described later. It is formed. Thereby, the seal ring 60 is movable in the axial direction in the space between the one axial end of the friction member 70 and the one axial end surface of the annular groove 50, and the friction member 70 13 and 15).
  • the seal ring 60 moves axially within the annular groove 50 so as to separate from one axial end of the friction member 70 (FIG. 15). reference).
  • the seal ring 60 is moved in a direction approaching the friction member 70 by a suction force F3 (see FIG. 13(b)) from the first air chamber V1, which will be described later. It moves within the annular groove 50 in the damper return direction F2 side so as to be drawn in, and comes into contact with one axial end of the friction member 70.
  • the friction member 70 is pressed and expanded in diameter, and its outer circumferential surface is brought into pressure contact with the inner circumferential surface of the cylinder 20 (this will be explained in detail in the operation description below).
  • the outer diameter side protrusion 67 is pressed against the inner peripheral surface of the cylinder 20, and the seal ring 60 is bent and deformed as shown in FIGS. 11, 13, and 15.
  • both side portions of the outer diameter side protrusion 67 of the base portion 61 are bent and deformed so as to be slightly curved inward in the radial direction of the seal ring 60, and accordingly, the inner diameter side protrusions 63, 65 are bent.
  • the seal ring 60 is deflected and deformed so as to spread toward both ends in the axial direction.
  • the entirety of the seal ring 60 described above has the following characteristics with respect to the axial center line S passing through the center in the axial direction (a line perpendicular to the axial direction of the seal ring 60 and passing through the top 67a of the outer diameter side protrusion 67). It has a line-symmetrical cross-sectional shape (see FIG. 5). Further, each part constituting the seal ring 60, that is, the base portion 61, the inner diameter side protrusions 63, 65, and the outer diameter side protrusion 67 are all integrally formed.
  • the friction member 70 is made of an elastic material such as rubber or elastomer and can be flexibly deformed.
  • the friction member 70 has an annular shape that conforms to the outer peripheral shape of the annular groove 50 and has a base 71 disposed within the annular groove 50. have.
  • the base portion 71 has an annular shape having a long axis and a short axis, like the wall portion 21 of the cylinder 20, and has a pair of long lengths extending linearly along the long axis direction and facing each other in parallel. It has shaft portions 71a, 71a, and a pair of short shaft portions 71b, 71b which connect both ends of these long shaft portions 71a, 71a and are curved in an arc shape. Further, one axial end surface 71 c and the other axial end surface 71 d of the base 71 are provided perpendicularly to the axial direction of the friction member 70 .
  • an annular gap 73 is formed over the entire periphery of the base, into which the protrusion 52 provided in the annular groove 50 is inserted.
  • the friction member 70 is installed in the annular groove 50 by arranging the friction member 70 on the outer periphery of the bottom surface 51 of the annular groove 50 so that the protrusion 52 is inserted into the gap 73. It looks like this.
  • a slope contact portion 81 which will be described later, are arranged to face each other.
  • a first annular protrusion 75 that annularly protrudes radially inward from a position on the inner periphery of the base 71 on the one end side in the axial direction through the gap 73 is provided around the entire circumference of the base. It is set up over .
  • a second annular protrusion 77 annularly protrudes radially inward from a position on the other end side in the axial direction on the inner circumference of the base 71 via the gap 73. It is placed around the circumference. Note that the second annular protrusion 77 projects more radially inward than the first annular protrusion 75 .
  • the tip surface 77a of the second annular protrusion 77 in the protruding direction is a surface parallel to the axial direction of the friction member 70.
  • the outer surface 77b (the side surface located on the other end side in the axial direction) of the second annular protrusion 77 is a surface perpendicular to the axial direction of the friction member 70.
  • the outer surface 77b of the second annular protrusion 77 and the other end surface 71d of the base 71 are continuous surfaces (flush) with no steps, and these surfaces are the other axial end of the annular groove 50. It forms a contact surface 78 that comes into contact with the inner surface (inner surface 42a of the second side wall portion 42) on the side. Note that this contact surface 78 is a surface perpendicular to the axial direction of the friction member 70.
  • the tip surface 77a of the second annular protrusion 77 abuts the bottom surface 51 of the annular groove 50, and the The contact surface 78 is adapted to contact the inner surface of the annular groove 50 on the other axial end side. Further, in this state, the tip end surface of the first annular protrusion 75 in the protruding direction is spaced apart from the bottom surface 51 of the annular groove 50.
  • the outer surface 75a (the side surface located on the one end side in the axial direction) of the first annular protrusion 75 is provided perpendicular to the axial direction of the friction member 70.
  • the outer surface 75a of the first annular protrusion 75 and the one end surface 71c of the base 71 are continuous surfaces (flush) with no steps, and these surfaces are connected to the other end of the seal ring 60 in the axial direction. It forms a pressing force receiving surface 80 that receives the pressing force F4 (see FIG. 13) from the section. Note that this pressing force receiving surface 80 is a surface perpendicular to the axial direction of the friction member 70.
  • this slope contact portion 81 is separated from the first slope 54 when the piston 40 starts moving in the damper braking direction F1, but when the piston 40 starts moving in the damper braking direction F1,
  • the seal ring 60 is pulled in by the suction force F3 (see FIG. 13(b)) from the first air chamber V1 after moving a predetermined distance after the start of movement, and the pressing force F4 from the seal ring 60 is applied.
  • the seal ring 60 comes into contact with a first slope 54 provided on the protrusion 52.
  • the slope abutting portion 81 also separates from the first slope 54 of the protrusion 52 when the piston 40 moves in the damper return direction F2 as shown in FIG.
  • the axial length W2 of the friction member 70 is the axial width of the annular groove 50 (the length between the inner surface 41a of the first side wall portion 41 and the inner surface 42a of the second side wall portion 42).
  • the seal ring 60 is formed to be smaller than the seal ring 60 and larger than the axial length W1 of the seal ring 60, and is mounted in the annular groove 50 via the protrusion 52.
  • a seal ring 60 is arranged to be axially movable.
  • the friction member 70 is moved in the damper return direction F2 by the piston 40 moving in the damper braking direction F1 and the seal ring 60 moved in the damper return direction F2 by the suction force F3 from the first air chamber V1 (see FIG. 13(b)).
  • the pressing force F4 is applied to the pressing force receiving surface 80
  • the damper moves in the damper return direction F2 within the annular groove 50, and the slope contact portion 81 slides on the first slope 54 of the protrusion 52.
  • the cylinder 20 is configured to expand in diameter by moving, and its outer circumferential surface comes into pressure contact with the inner circumferential surface of the cylinder 20 (see FIG. 13).
  • the friction member 70 has a tapered surface 83 formed on the outer circumferential surface of the end located on the damper return direction F2 side, the diameter of which decreases toward the damper return direction F2 side.
  • a tapered surface 83 is formed on the outer circumferential surface of the other axial end of the base 71 located on the damper return direction F2 side, and is inclined so as to gradually reduce in diameter toward the damper return direction F2 side. ing. Note that, as shown in FIG. 8, this tapered surface 83 is inclined so as to be substantially parallel to the friction member side slope 82 formed on the second annular protrusion 77.
  • the top portion 67a of the outer diameter side protrusion 67 comes into pressure contact with the inner circumferential surface of the cylinder 20, and the top portions 63a, 65a of the inner diameter side protrusions 63, 65 contact the bottom surface 51 of the annular groove 50.
  • the other axial end of the friction member 70 is spaced apart from the pressing force receiving surface 80 of the friction member 70, forming a gap G (see FIG. 15).
  • This gap G communicates with the internal space R of the annular groove 50 and the notch groove 48 provided in the piston 40 (see FIG. 15(c)).
  • the suction force F3 from the first air chamber V1 is generated by the air in the first air chamber V1 flowing through the internal space R of the annular groove 50 and the pair of ventilation grooves 85, 85 provided in the friction member 70. It is applied to the seal ring 60.
  • the diameter of the friction member 70 is expanded, and its outer peripheral surface is brought into pressure contact with the inner peripheral surface of the cylinder 20 as shown by arrow F5 (at this time, the force directed in arrow F5, i.e. , the pressure force of the friction member 70 against the inner peripheral surface of the cylinder 20 is also referred to as "pressure force F5").
  • the seal ring 60 moves toward the damper return direction F2 due to the suction force F3 from the first air chamber V1 accompanying a pressure change in the first air chamber V1, and the friction member 70 is pressed. Since the outer peripheral surface is pressed against the inner peripheral surface of the cylinder 20, a frictional force of the friction member 70 is generated against the inner peripheral surface of the cylinder 20.
  • the wall portion 21 of the cylinder 20 in this embodiment has a substantially thin box-tube shape
  • the wall portion of the cylinder may have a substantially rectangular tube shape or a substantially cylindrical shape, for example.
  • the rod, piston, seal ring, seal cap, detachment prevention cap, etc. also have a shape that corresponds to the wall of the cylinder.
  • the cylinder 20 of this embodiment is closed with an end wall 25 disposed at the other end in the axial direction, but for example, a through hole is formed in the end wall disposed at the other end of the cylinder. It is also possible to form a structure in which the through hole is opened and closed by a seal cap.
  • the friction member may be brought into contact with the other end surface in the axial direction of the annular groove, but it may be configured such that it is not brought into contact with the other end surface in the axial direction.
  • the notch groove 48 etc. in the above embodiment are not provided on the bottom surface of the annular groove, and instead, an exhaust hole communicating with the air chamber is formed at a predetermined location of the cylinder, and at the periphery of this exhaust hole, Attach a seal cap that allows the exhaust hole to be opened and closed. Then, when the piston moves in the damper return direction, the seal cap opens the exhaust hole, so that the air in the air chamber is exhausted and the damper braking force is released.
  • the friction member 70 of this embodiment has a structure in which a first annular protrusion 75 and a second annular protrusion 77 are provided on the inner periphery with a gap 73 interposed therebetween, and there is only one annular protrusion. However, there may be three or more.
  • the one end surface 71c and the other end surface 71d of the base 71 in the axial direction are flush with the outer surface 75a of the first annular protrusion 75 and the outer surface 77b of the second annular protrusion 77 without a step, There may be steps.
  • the contact surface 78 and the pressing force receiving surface 80 are surfaces perpendicular to the axial direction of the friction member 70, but are inclined at a predetermined angle other than 90° with respect to the axial direction of the friction member. It's okay.
  • the seal ring 60 attracted by the suction force F3 from the first air chamber V1 applies a pressing force F4 to the friction member 70, so that the first part of the protrusion 52 provided in the annular groove 50 1.
  • the slope abutting portion 81 of the friction member 70 slides on the slope 54 to expand the diameter of the friction member 70.
  • this configuration is not suitable for expanding the diameter of the friction member using a seal ring. Not limited.
  • FIG. 16 shows a modification thereof.
  • annular concave groove 56 is formed in the bottom surface 51 of the annular groove 50.
  • a slope 57 is formed on the inner surface of the concave groove 56 on the damper return direction F2 side. This slope 57 is an inclined surface that projects from the bottom surface 56a of the concave groove 56 so as to gradually become higher toward the damper return direction F2 side.
  • the first annular protrusion 75A of the friction member 70 projects more radially inward than the second annular protrusion 77. The tip of the first annular protrusion 75A in the protruding direction enters into the concave groove 56, and the slope abutting portion 81 provided on the inner surface of the first annular protrusion 75A contacts the slope 57 of the concave groove 56. is placed opposite.
  • the control is performed by reducing the pressure in the first air chamber V1.
  • the damper braking force acts, and the piston 40 moves in the direction away from the end wall 25 of the cylinder 20.
  • the damper braking force may be released when the vehicle moves (this will be explained in other embodiments later).
  • the seal between the contact surface 78 of the friction member 70 and the inner surface 42a of the annular groove 50 is released, and the contact surface 78 of the friction member 70 and the inner surface 42a of the annular groove 50 is separated from each other.
  • the gap may be used as an air flow path.
  • the air in the first air chamber V1 in the cylinder 20 passes through the internal space R of the annular groove 50, the above-mentioned gap, and the number of notched grooves 48 in sequence. The air then flows out into the second air chamber V2.
  • the seal ring 60 is moved in the damper return direction F2 by the suction force F3 from the first air chamber V1, but for example, by the pressurizing force from the first air chamber,
  • the seal ring may be moved in the damper return direction (this will be explained in other embodiments), and the seal ring may be moved in the damper return direction as the pressure in the air chamber changes. That's fine.
  • an air chamber (first air chamber V1) is formed in the cylinder 20 on the side in the insertion direction of the rod 30 from the seal portion, but in the cylinder 20, an air chamber (first air chamber V1) is formed in the opposite direction to the rod insertion direction.
  • An air chamber may be provided on the side.
  • an exhaust hole is formed in the end wall of the cylinder, and a seal cap that allows the exhaust hole to be opened and closed is attached to the periphery of the exhaust hole.
  • the cap attached to the opening at one end of the cylinder has a structure that can seal the periphery of the opening and also seal the gap between the rod insertion port and the rod inserted into the rod insertion port.
  • a sealed air chamber is provided inside the cylinder on the opposite side of the rod insertion direction. Then, when the piston moves away from the end wall of the cylinder (when it moves in the opposite direction to the direction in which the rod is inserted), the air chamber is pressurized, so that damper braking force is exerted. It has become. Note that when the piston moves close to the end wall of the cylinder (moves in the rod insertion direction), the seal cap opens the exhaust hole, the air in the air chamber is exhausted, and the damper braking force is released. be done.
  • the piston 40 is stationary within the cylinder 20 when one member (fixed body, etc.) and the other member (opening/closing body, etc.) are close to each other.
  • the top 67a of the outer protrusion 67 is in contact with the inner circumferential surface of the cylinder 20, and the tops 63a, 65a of the inner protrusions 63, 65 are in contact with the bottom 51 of the annular groove 50.
  • a seal ring 60 is disposed within the annular groove 50.
  • the friction member 70 constituting this damper device 10 is configured to be smaller than the inner peripheral surface of the cylinder 20 when the pressing force F4 from the seal ring 60 is not applied. Effects such as (1) to (3) can be obtained.
  • the friction member 70 when the friction member 70 receives the pressing force F4 from the seal ring 60 during damper braking, it is possible to more easily expand the diameter of the friction member 70 radially outward. . As a result, the frictional force exerted by the friction member 70 on the inner circumferential surface of the cylinder 20 can be further increased, and higher damper braking force can be obtained.
  • a circumferentially extending protrusion 52 is provided on the bottom surface 51 of the annular groove 50, and the damper braking direction F1 side of the protrusion 52 is provided on the bottom surface 51 of the annular groove 50.
  • the surface forms a slope (first slope 54), and a gap 73 is provided in a portion of the friction member 70 adjacent to the slope contact portion 81.
  • the gap 73 provided in the portion of the friction member 70 adjacent to the slope contact portion 81 allows the friction member 70 to 70 can be made easier to expand in diameter, and even higher damper braking force can be obtained.
  • the friction member 70 can be easily attached to the annular groove 50 by using the protrusion 52 provided on the bottom surface 51 of the annular groove 50 and the gap 73 provided in the friction member 70. That is, when trying to enclose the friction member 70 in the annular groove 50 while expanding its diameter, the friction member 70 is placed in the annular groove 50 so that the protrusion 52 is inserted into the gap 73, thereby creating a gap in the protrusion 52. 73 is caught and the friction member 70 is less likely to shift its position, making it easier to attach the friction member 70 to the annular groove 50.
  • a ventilation groove 85 extending along the axial direction is formed on the outer circumferential surface of the friction member 70, and the ventilation groove 85 allows the piston 40 to Even when the outer circumferential surface of the friction member 70 is pressed against the inner circumferential surface of the cylinder 20 by being pressed by the seal ring 60 when the damper moves in the damper braking direction F1, its ventilation is maintained. (See FIG. 13(b)).
  • the air permeability of the ventilation groove 85 is maintained.
  • a ventilation path communicating with the first air chamber V1 (here, also communicating with the internal space R of the annular groove 50) can be secured, and the suction force from the first air chamber V1 is applied to the seal ring 60. F3 can be reliably added.
  • the annular groove 50 also includes a friction member movement restriction portion (here, a protrusion) that restricts the friction member 70 from moving in the axial direction when the piston 40 moves in the damper return direction F2. 52 second slopes 55) are provided.
  • a friction member movement restriction portion here, a protrusion
  • a protrusion 52 is provided protruding from the bottom surface 51 of the annular groove 50 at a position closer to the first side wall portion 41.
  • the side surface of this protrusion 52 facing toward the second side wall portion 42 forms a first slope 54
  • the slope facing toward the first side wall portion 41 side forms a second slope 55 .
  • the friction member 70 is attached to the annular groove 50 via the protrusion 52 so that the pressing force receiving surface 80 faces the second side wall portion 42 side.
  • the seal ring 60 is disposed so as to be axially movable within the annular groove 50, with one axial end facing the friction member 70 and the other axial end facing the second side wall 42. One axial end of the seal ring 60 presses against a pressing force receiving surface 80 of the friction member 70.
  • the present invention is not limited to the embodiments described above, and various modified embodiments are possible within the scope of the gist of the present invention, and such embodiments are also included within the scope of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

ピストンがダンパー制動方向に移動するとき、摩擦部材を径方向に十分に変形させ高いダンパー制動力を得るダンパー装置を提供する。このダンパー装置10は、シリンダー20と、ロッド30と、環状溝50を設けたピストン40と、シールリング60と、摩擦部材70と、シール部とを有し、シールリング60は、ピストン40がダンパー制動方向F1に移動するときに、摩擦部材70を押圧して拡径させ、該摩擦部材70の外周面をシリンダー20の内周面に圧接させ、摩擦部材70は、シールリング60からの押圧力が作用しないときに、シリンダー20の内周面の寸法よりも小さくなるように構成されている。

Description

ダンパー装置
 本発明は、例えば、自動車のグローブボックスの開閉動作等の制動に用いられる、ダンパー装置に関する。
 例えば、自動車のグローブボックスには、リッドが急に開くのを抑制して緩やかに開かせるために、ダンパー装置が用いられることがある。
 このようなダンパー装置として、下記特許文献1には、ロッドを備えたピストンと、このピストンを納めるハウジングとからなり、ピストンは、ハウジングの内壁に対するシール部材と、ピストンに対して摺動可能に備えられると共に、ハウジングの内壁に接するスライダとを備えており、制動力発生時に、スライダがシール部材に圧接して、シール部材におけるハウジングの内壁に接する部分がハウジングの外側に向けて変形するようになっている、ダンパーが記載されている。
 また、シール部材は、前記ハウジングの開放端側に向けて延出されたスカート状部を有しており、このスカート状部がハウジングの内壁に接する部分となっている。更に、スライダは、ロッド外周に配置されるベースと、該ベースから、ハウジングの開放端に向けて斜め外方に延出するリップとを有している。そして、ピストンが往動されるときは(ダンパー制動方向に移動するとき)、スライダは、リップの形状によりこの往動方向に移動し難くなるため、スライダの肩部がシール部材のスカート状部の端末に圧接されるようになっている(特許文献1の段落0026参照)。
WO2015/093548
 上記特許文献1のダンパーの場合、ピストンの往動時に、斜め外方に延出したリップの先端部が、ハウジング内壁に接することで、スライダが往動方向に移動し難くなる。すなわち、スライダは、ハウジング内壁に対するリップ先端部の摩擦力のみによって、シール部材に圧接するため、シール部材を十分に変形しづらく、高い制動力を得られにくい。
 したがって、本発明の目的は、ピストンがダンパー制動方向に移動するときに、摩擦部材を径方向に十分に変形させて、高いダンパー制動力を得ることができる、ダンパー装置を提供することにある。
 上記目的を達成するため、本発明は、互いに近接離反する一対の部材の間に取付けられ、該一対の部材が近接又は離反するときに制動力を付与するダンパー装置であって、一端部に開口部を設けたシリンダーと、前記開口部を通して前記シリンダー内に移動可能に挿入されるロッドと、前記ロッドに連設され、外周に環状溝を形成したピストンと、前記環状溝の、ダンパー制動方向側に、軸方向移動可能に配置されると共に、前記シリンダーの内周面に圧接されるシールリングと、前記環状溝において、前記シールリングに対してダンパー制動方向とは反対の戻り方向側に配置された摩擦部材とを有しており、前記シールリング及び前記摩擦部材、又は、前記シールリングによって、前記シリンダーと前記ピストンとの間にシール部が形成されており、前記シリンダー内に前記シール部を介して空気室が形成されており、前記シールリングは、前記ピストンがダンパー制動方向に移動するときに、前記摩擦部材を押圧して拡径させ、該摩擦部材の外周面を前記シリンダーの内周面に圧接させ、前記摩擦部材は、前記シールリングからの押圧力が作用しないときに、前記シリンダーの内周面の寸法よりも小さくなるように構成されていることを特徴とする。
 本発明においては、ピストンがダンパー制動方向に移動すると、空気室の圧力変化と、シリンダーの内周面に対するシールリングの摩擦力とによって、摩擦部材がシールリングに押圧されて、摩擦部材を十分に変形させることができるため、シリンダーの内周面に対して摩擦部材の外周面を圧接させることができる。その結果、シリンダーの内周面に対するシールリングの摩擦力に加えて、シリンダーの内周面に対して摩擦部材の摩擦力を発生させることができ、高いダンパー制動力を得ることができる。
本発明に係るダンパー装置の、一実施形態を示す分解斜視図である。 同ダンパー装置であって、ロッドが押し込まれた状態の斜視図である。 同ダンパー装置を構成するピストンの拡大斜視図である。 同ダンパー装置を構成するシールリングの拡大斜視図である。 図4のB-B矢視線における断面図である。 同ダンパー装置を構成する摩擦部材の拡大斜視図である。 同ダンパー装置を構成する摩擦部材であって、図5とは異なる方向から見た場合の拡大斜視図である。 図6のE-E矢視線における断面図である。 同ダンパー装置において、ピストン外周の環状溝に、シールリング及び摩擦部材を配置した状態の斜視図である。 図2のA-A矢視線での断面図である。 (а)は図10のH部における拡大断面図、(b)は(а)とは異なる断面での拡大断面図、(c)は(а),(b)とは異なる断面での拡大断面図である。 同ダンパー装置において、ピストンがダンパー制動方向に移動した場合の断面図である。 (а)は図12のI部における拡大断面図、(b)は(а)とは異なる断面での拡大断面図、(c)は(а),(b)とは異なる断面での拡大断面図である。 同ダンパー装置において、ピストンがダンパー制動方向とは反対の戻り方向に移動した場合の断面図である。 (а)は図14のJ部における拡大断面図、(b)は(а)とは異なる断面での拡大断面図、(c)は(а),(b)とは異なる断面での拡大断面図である。 シールリングによる摩擦部材の拡径構造の変形例を示す要部拡大断面図である。 本発明に係るダンパーの、他の実施形態を示しており、その断面図である。 図17のM部における拡大断面図である。
 (ダンパー装置の一実施形態)
 以下、図面を参照して、本発明に係るダンパー装置の一実施形態について説明する。
 図1や図2に示されるダンパー装置10は、互いに近接離反する一対の部材に取付けられ、該一対の部材が近接又は離反するときに制動力を付与するものであって、例えば、自動車のインストルメントパネルに設けられた収容部の開口部に、開閉可能に取付けられたグローブボックスやリッド等の、制動用として用いることができる。なお、以下の実施形態においては、一方の部材を、インストルメントパネルの収容部等の固定体とし、他方の部材を、固定体の開口部に開閉可能に取付けられた、グローブボックスやリッド等の開閉体として説明する。
 図1に示すように、この実施形態のダンパー装置10は、一端部に開口部23を設けたシリンダー20と、シリンダー20内に移動可能に挿入されるロッド30と、このロッド30に連設され、外周に環状溝50を形成したピストン40と、環状溝50の、ダンパー制動方向F1側に、軸方向移動可能に配置されると共に、シリンダー20の内周面に圧接されるシールリング60と、環状溝50において、シールリング60に対してダンパー制動方向F1とは反対の戻り方向F2側に配置された摩擦部材70と、シリンダー20の一端部側の開口部23に装着された外れ防止キャップ90とから、主として構成されている。
 また、シールリング60は、ピストン40がダンパー制動方向F1に移動するときに、摩擦部材70を押圧して拡径させ、該摩擦部材70の外周面をシリンダー20の内周面に圧接させ、摩擦部材70は、シールリング60からの押圧力が作用しないときに、シリンダー20の内周面の寸法よりも小さくなるように構成されている(これについては後述の動作説明で詳述する)。なお、シリンダー20の内周面とは、この実施形態の場合、シリンダー20を構成する壁部21の内周面を意味しており、これは以下の説明においても同様である。
 また、以下の説明においては、「一端部」又は「一端」とは、ダンパー装置10のダンパー制動方向側の一端部又は一端を意味し、「他端部」又は「他端」とは、ダンパー制動方向とは反対の戻り方向側の他端部又は他端を意味する。更に、この実施形態における「ダンパー制動方向」とは、シリンダー20の端部壁25(図10参照)からピストン40が離反して、シリンダー20の開口部23からの、ロッド30の引出し量が増大する方向を意味する(図10の矢印F1参照)。また、この実施形態における「ダンパー制動方向とは反対の戻り方向」(以下、単に「ダンパー戻り方向」ともいう)とは、ピストン40がシリンダー20の端部壁25に近接して、シリンダー20内への、ロッド30の押し込み量が増大する方向を意味する(図10の矢印F2参照)。
 更に、このダンパー装置10は、シールリング60及び摩擦部材70によって、シリンダー20とピストン40との間にシール部が形成されている。また、シリンダー20内には、シール部を介して空気室が形成されている。この実施形態の場合、シリンダー20内の、シール部よりロッド30の挿入方向側に、空気室が形成されている。
 この実施形態の場合、図11に示すように、ピストン40がシリンダー20内に挿入されることで、シールリング60の後述する外径側突部67がシリンダー20の内周面に圧接されて、シリンダー20とピストン40との間に両者の隙間をシールする、シール部が形成されるようになっている。すなわち、シールリング60の外径側突部67とシリンダー20の内周面とが本発明における「シール部」をなしている。
 また、環状溝50に摩擦部材70が装着された状態で、摩擦部材70の軸方向の他端面(後述する当接面78)が、環状溝50の軸方向他端部側の内面(後述する第2側壁部42の内面42a)に当接すると共に(図11,13,15参照)、図11に示すように、ピストン40がダンパー制動方向F1に移動すると、シールリング60の軸方向の他端部が、摩擦部材70の軸方向の一端面(後述する押圧力受け面80)に当接する。それによって、シリンダー20とピストン40との間に両者の隙間をシールする、シール部が形成されるようになっている。すなわち、シールリング60の軸方向他端部と摩擦部材70の軸方向一端面、及び、摩擦部材70の軸方向他端面と環状溝50の軸方向他端部側の内面も、本発明における「シール部」をなしている。
 そして、この実施形態のダンパー装置10においては、上記のような複数のシール部を境にして、シリンダー20の、ロッド30の挿入方向側に、第1空気室V1が形成され、シリンダー20の開口部23側に、第2空気室V2が形成されるようになっている(図10参照)。なお、上記の第1空気室V1が本発明における「空気室」をなしている。
 また、上記の3つのシール部によって、ピストン40がダンパー制動方向F1に移動したときに、環状溝50内の内部空間Rが密閉されるようになっている(図11参照)。なお、この環状溝50の内部空間Rは、前記第1空気室V1に連通している。
 図1に示すように、前記シリンダー20の壁部21は、その軸方向に直交する断面が、長軸及び短軸を有する環状をなし、長軸側が幅広で短軸側が幅狭とされた、薄型筒状(薄箱状を呈した筒状)となっている。より具体的には、この壁部21は、長軸方向に沿って直線状に延び、互いに平行となるように対向配置された一対の長軸壁部21a,21aと、これらの長軸壁部21a,21aの両端部どうしを連結すると共に、円弧状に屈曲した形状をなす、一対の短軸壁部21b,21bとを有している。この壁部21の、軸方向の一端部側が開口して、開口部23が設けられている。また、開口部23の周縁であって、対向配置された長軸壁部21a,21aには、それぞれ係止孔23a,23aが形成されている。更に、壁部21の軸方向の他端部には、端部壁25が配置されて(壁部21の、開口部23の反対側に端部壁25が配置されている、ともいえる)、壁部21の他端部が閉塞されている。
 また、前記端部壁25の外面、及び、壁部21の外周であって軸方向一端部からは、回動孔27aを形成した回動支持片27がそれぞれ突設されている。所定の回動孔27aには、前述した一方の部材の、図示しない回動軸が回動可能に挿入されて、一方の部材にシリンダー20の外周が回動可能に連結されるようになっている。
 図1に示すように、外れ防止キャップ90は、その中央部に、ロッド30の軸部31を回転規制した状態で挿通可能とするロッド挿通口91が貫通して形成されており、ロッド30を回転規制した状態でシリンダー20内に挿入可能となっている。また、外れ防止キャップ90の外周の所定箇所からは、複数の係止突起92が突設されており、各係止突起92を、シリンダー20の対応する各係止孔23aにそれぞれ係止させることで(図2参照)、シリンダー20の開口部23に、外れ防止キャップ90が取付けられるようになっている(図10参照)。この外れ防止キャップ90は、シリンダー20の開口部23からロッド30が最大限に引き出されたときに、ピストン40に当接して、シリンダー20からロッド30やピストン40が外れることを防止する。
 次に、ロッド30について説明する。
 このロッド30は、シリンダー20の開口部23を通して、シリンダー20内に移動可能に挿入されて、シリンダー20内において、シリンダー20の軸方向にスライド動作するものである。
 図1に示すように、この実施形態のロッド30は、一方向に長く延びる角柱状をなした軸部31を有している。この軸部31の長手方向の一端部に、連結孔33aを設けた連結片33が設けられている。この連結孔33aには、前述した他方の部材の、図示しない連結軸が挿入されて、他方の部材にロッド30が回動可能に連結されるようになっている。
 次に、ピストン40について説明する。
 図1や図3に示すように、この実施形態のピストン40は、ロッド30の長手方向の他端部に連設され、その外周に環状溝50が形成されたものであって、ロッド30と一体形成されている。
 図10を併せて参照すると、このピストン40は、互いに平行となるように対向配置された第1側壁部41,第2側壁部42と、両側壁部41,42どうしを互いに連結する連結壁部43とからなる。各側壁部41,42は、シリンダー20の壁部21の内周形状に適合する形状、すなわち、長軸方向の両側面が互いに平行で短軸方向の両側面が円弧状をなしている。また、連結壁部43は、その外周が、両側壁部41,42の外周よりも小さい相似形状となっている。
 なお、第1側壁部41の、第2側壁部42に対向する面を、第1側壁部41の内面41aとし、第2側壁部42の、第1側壁部41に対向する面を、第2側壁部42の内面42aとする。
 また、ピストン40の長手方向の一端部側に配置された第1側壁部41の外面(第2側壁部42との対向面とは反対側の面)にロッド30の軸方向基端部が連結されて、ピストン40とロッド30とが一体化されている。
 更に図10に示すように、両側壁部41,42及び連結壁部43の内側には、隔壁45により画成された複数の空間Kが設けられており、各空間Kは、第2側壁部42側が開口している。また、図3を併せて参照すると、第1側壁部41の所定位置、ここでは第1側壁部41の軸方向一端部側であって幅方向中央位置には、所定の空間Kに連通する、細径丸孔状のオリフィス47が形成されている。このオリフィス47は、シリンダー20内の第1空気室V1と第2空気室V2とを、空間Kを介して互いに連通させる。なお、オリフィス47内を通過する空気の流通抵抗によって、ダンパー制動力が調整されるようになっている。
 更に図3に示すように、ピストン40には、ロッド30を挟んで長軸方向(第1側壁部41の長軸方向)の両側部分であって、且つ、ロッド30を挟んで幅方向(第1側壁部41の短軸方向)の両側部分には、第1側壁部41及び連結壁部43を切欠いてなる、切欠き溝48が所定深さで形成されている(合計で4個の切欠き溝48が形成されている)。この切欠き溝48は、ピストン40がダンパー戻り方向F2に移動するときに、第1空気室V1内の空気を第2空気室V2側へと排気させる、排気流路をなす(これについては後述する)。
 そして、一対の側壁部41,42と連結壁部43とで囲まれた空間が、環状溝50をなしている。また、上記連結壁部43の外周面が、環状溝50の底面51をなしている。なお、上記底面51は、ピストン40の軸方向(ピストン40の軸心Cに沿った方向)に対して平行となるように形成されている。また、環状溝50の軸方向幅(第1側壁部41の内面41aと第2側壁部42の内面42aとの長さ)は、シールリング60の軸方向長さW1(図5参照)及び摩擦部材70の軸方向長さW2(図8参照)よりも大きく形成されており、環状溝50内にてシールリング60及び摩擦部材70を受け入れ可能となっている。
 また、環状溝50の底面51であって、ダンパー戻り方向F2側に配置された第2側壁部42寄りの位置からは、周方向に連続して延びる環状をなした、突条52が突設されている。更に、環状溝50には、ピストン40がダンパー戻り方向F2に移動するときに、摩擦部材70が軸方向に移動するのを規制する摩擦部材移動規制部が設けられている。
 上記の突条52の軸方向両側面、すなわち、ダンパー制動方向F1側の軸方向一側面、及び、ダンパー戻り方向F2側の軸方向他側面は、それぞれ斜面54,55をなしている。図11を併せて参照すると、突条52の、底面51から最も高く突出した頂部53から、ダンパー制動方向F1側に向けて次第に高さが低くなる第1斜面54と、突条52の頂部53から、ダンパー戻り方向F2側に向けて次第に高さが低くなる第2斜面55とを有している。また、ダンパー制動方向F1側の第1斜面54の方が、ダンパー戻り方向F2側の第2斜面55よりも、軸方向長さが短く形成されている。
 また、このダンパー装置10においては、環状溝50の底面51又は摩擦部材70の一方には斜面が設けられ、他方には斜面に当接する斜面当接部が設けられた構造となっているが、この実施形態の場合、突条52の上記第1斜面54が、本発明における突条52の「斜面」をなしている。
 更に、上記の第2斜面55は、図15に示すように、ピストン40がダンパー戻り方向F2に移動するときに、摩擦部材70の後述する摩擦部材側斜面82に当接して、その軸方向移動を規制するものとなっている(摩擦部材70がダンパー制動方向F1側に軸方向移動するのを規制する)。すなわち、突条52の第2斜面55が、本発明における「摩擦部材移動規制部」をなしている。
 次に、図4や図5を参照して、シールリング60について説明する。
 このシールリング60は、ラバーやエラストマー等の弾性材料から形成されて撓み変形可能なものであって、環状をなし環状溝50内に配置される基部61と、基部61の内周面であって、軸方向両端部から突出した第1内径側突部63及び第2内径側突部65と、基部61の外周面であって、軸方向中央位置からから突出し、シリンダー20の内周面に圧接する外径側突部67とを有している。
 なお、基部61の軸方向一端部側、すなわち、ダンパー制動方向F1側に、第1内径側突部63が配置されており、基部61の軸方向他端部側、すなわち、ダンパー戻り方向F2側に、第2内径側突部65が配置されている。
 上記基部61は、環状溝50の外周形状に適合する環状をなしている。また、各突部63,65,67は、いずれも、基部61の内周面及び外周面から、基部61の径方向内方又は外方に向けて、環状をなすように周方向に連続する形状、すなわち、基部61の周方向途中で途切れることのない環状突部となっている。各内径側突部63,65は、突出方向先端の頂部63a,65aから、基部61の内周面に向けて、内側面63c,65cがほぼ垂直で外側面63b,65bが次第に幅広となる、略直角三角形の山形状をなした断面形状を呈している。一方、外径側突部67は、突出方向先端の頂部67aから、基部61の外周面に向けて次第に幅広となる、略正三角形の山形状(裾広がり形状ともいえる)をなした断面形状を呈している。なお、各突部63,65,67の頂部63a,65a,67aは、丸みを帯びた形状となっている。
 また、シールリング60の軸方向長さW1は、環状溝50の軸方向一端面(第1側壁部41の内面41a)と、摩擦部材70の後述する押圧力受け面80との長さよりも小さく形成されている。これによって、シールリング60は、環状溝50の、摩擦部材70の軸方向一端部と環状溝50の軸方向一端面との間の空間において、軸方向に移動可能となっており、摩擦部材70の軸方向一端部に対して当接したり離間したりするようになっている(図13及び図15参照)。
 具体的には、このシールリング60は、ピストン40がダンパー戻り方向F2に移動するときに、摩擦部材70の軸方向一端部から離間するように、環状溝50内で軸方向移動する(図15参照)。一方、上記シールリング60は、ピストン40がダンパー制動方向F1に移動するときに、第1空気室V1からの後述する吸引力F3(図13(b)参照)によって、摩擦部材70に近接する方向に引き込まれるように、環状溝50内をダンパー戻り方向F2側に移動して、摩擦部材70の軸方向一端部に当接し、その結果、摩擦部材70を押圧して拡径させ、その外周面をシリンダー20の内周面に圧接させる(これについては、後述の動作説明にて詳述する)。
 また、図5に示すように、環状溝50にシールリング60が装着される前の、シールリング60の自由状態における、内径側突部63,65の頂部63a,65aから、外径側突部67の頂部67aまでの径方向長さL1は、シリンダー20の内周面から環状溝50の底面51までの長さよりも大きくなっている。その結果、環状溝50にシールリング60が装着された状態で、シリンダー20内にピストン40を挿入すると、シリンダー20の内周面に、外径側突部67の頂部67aが常時圧接されるようになっている。
 なお、上記の「常時」とは、ピストン40が静止した状態、ピストン40がダンパー制動方向F1に移動を開始した当初の状態、ピストン40がダンパー制動方向F1に移動開始してから所定距離移動した状態、ピストン40がダンパー戻り方向F2に移動した状態の、ピストン40がシリンダー20内にて採りうる全ての状態を意味する(以下の説明でも同様)。
 また、上記状態では、外径側突部67が、シリンダー20の内周面に押圧されて、図11,13,15に示すようにシールリング60が撓み変形するようになっている。ここでは、基部61の、外径側突部67の両側部分が、シールリング60の径方向内方にやや湾曲するように撓み変形し、これに伴って、内径側突部63,65が、シールリング60の軸方向両端部側に広がるように撓み変形する。
 以上説明したシールリング60は、その全体が、軸方向の中心を通る軸中心線S(シールリング60の軸方向に直交し且つ外径側突部67の頂部67aを通る線)に対して、線対称となる断面形状をなしている(図5参照)。また、シールリング60を構成する各部分、すなわち、基部61、内径側突部63,65、外径側突部67は、全て一体形成されている。
 次に、図6~8を参照して、摩擦部材70について説明する。
 この摩擦部材70は、ラバーやエラストマー等の弾性材料から形成されて撓み変形可能なものとなっており、環状溝50の外周形状に適合する環状をなし、環状溝50内に配置される基部71を有している。
 この基部71は、シリンダー20の壁部21等と同様に、長軸及び短軸を有する環状をなしており、長軸方向に沿って直線状に延び且つ互いに平行に対向配置された一対の長軸部分71a,71aと、これらの長軸部分71a,71aの両端部どうしを連結すると共に円弧状に屈曲した形状をなす一対の短軸部分71b,71bとを有している。また、基部71の軸方向の一端面71c及び軸方向の他端面71dは、摩擦部材70の軸方向に対して直交して設けられている。
 更に、基部71の内周には、環状溝50に設けた突条52が挿入される、環状をなした空隙73が基部全周に亘って形成されている。図11に示すように、この空隙73に突条52が挿入されるように、環状溝50の底面51の外周に摩擦部材70を配置することで、環状溝50に摩擦部材70が装着されるようになっている。このように環状溝50に摩擦部材70が装着され、空隙73に突条52が挿入された状態では、図11に示すように、空隙73には隙間があり、突条52の第1斜面54と、後述する斜面当接部81とが対向して配置されるようになっている。
 また、基部71の内周であって、空隙73を介して、軸方向の一端部側の位置からは、径方向内方に向けて環状に突出した、第1環状突部75が基部全周に亘って設けられている。また、基部71の内周であって、空隙73を介して、軸方向の他端部側の位置からは、径方向内方に向けて環状に突出した、第2環状突部77が基部全周に亘って設けられている。なお、第2環状突部77は、第1環状突部75よりも、径方向内方への突出量が大きくなっている。
 また、第2環状突部77の突出方向の先端面77aは、摩擦部材70の軸方向に対して平行な面となっている。更に、第2環状突部77の外側面77b(軸方向他端部側に位置する側面)は、摩擦部材70の軸方向に対して直交した面となっている。この第2環状突部77の外側面77bと、基部71の他端面71dとは、段差のない連続した面(面一)となっており、これらの面が、環状溝50の軸方向他端部側の内面(第2側壁部42の内面42a)に当接する、当接面78をなしている。なお、この当接面78は、摩擦部材70の軸方向に対して直交する面となっている。
 そして、空隙73に突条52を挿入して、環状溝50に摩擦部材70が装着された状態では、第2環状突部77の先端面77aが環状溝50の底面51に当接すると共に、前記当接面78が環状溝50の軸方向他端部側の内面に当接するようになっている。また、この状態では、第1環状突部75の突出方向の先端面は、環状溝50の底面51から離間している。
 更に、第1環状突部75の外側面75a(軸方向一端部側に位置する側面)は、摩擦部材70の軸方向に対して直交して設けられている。この第1環状突部75の外側面75aと、基部71の一端面71cとは、段差のない連続した面(面一)となっており、これらの面が、シールリング60の軸方向他端部からの押圧力F4(図13参照)を受け止める、押圧力受け面80をなしている。なお、この押圧力受け面80は、摩擦部材70の軸方向に対して直交する面となっている。
 この押圧力受け面80には、ピストン40がダンパー制動方向F1に移動し、第1空気室V1からの吸引力F3によってシールリング60が引き込まれたときに、シールリング60の軸方向他端部が当接して、シールリング60からの押圧力F4が付与されるようになっている。
 また、第1環状突部75の内側面(軸方向他端部側に位置する側面であり、空隙73の、軸方向一端部側に位置する面、ともいえる)は、摩擦部材70の軸方向に対して直交して設けられた斜面当接部81をなしている。この斜面当接部81は、突条52を介して、環状溝50に摩擦部材70を装着した状態で、突条52の第1斜面54に対向して配置されるようになっている。また、この斜面当接部81は、図11に示すようにピストン40がダンパー制動方向F1に移動を開始した当初は、第1斜面54と離間しているが、ピストン40がダンパー制動方向F1に移動開始してから所定距離移動して、第1空気室V1からの吸引力F3(図13(b)参照)によってシールリング60が引き込まれ、シールリング60からの押圧力F4が付与されたときに、図13に示すように、突条52に設けた第1斜面54に当接するようになっている。なお、上記斜面当接部81は、図15に示すようにピストン40がダンパー戻り方向F2側に移動したときも、突条52の第1斜面54から離間する。
 また、図8に示すように、摩擦部材70の軸方向長さW2は、環状溝50の軸方向幅(第1側壁部41の内面41aと第2側壁部42の内面42aとの長さ)よりも小さく且つシールリング60の軸方向長さW1よりも大きく形成されており、環状溝50内に、突条52を介して装着されるようになっている。なお、この装着状態で、摩擦部材70の軸方向一端面(押圧力受け面80)と環状溝50の軸方向一端面(第1側壁部41の内面41a)と間に形成された空間に、シールリング60が軸方向移動可能に配置される。
 また、斜面当接部81は、上述したように、空隙73の、軸方向一端部側に位置する面である、ともいえることから、斜面当接部81に隣接する部分に、空隙73が設けられている、という構成をなしている。
 そして、上記摩擦部材70は、ピストン40がダンパー制動方向F1に移動して、第1空気室V1からの吸引力F3(図13(b)参照)により、ダンパー戻り方向F2に移動したシールリング60からの押圧力F4が、押圧力受け面80に付与されたときに、環状溝50内でダンパー戻り方向F2側に移動し、斜面当接部81が突条52の第1斜面54上を摺動することで拡径して、その外周面がシリンダー20の内周面に圧接するように構成されている(図13参照)。
 また、このダンパー装置10においては、ピストン40がダンパー制動方向F1に移動するときに、斜面当接部81が第1斜面54に押圧されながら第1斜面54上の当接位置が変化して、摩擦部材70が拡径するように構成されている。
 そして、摩擦部材70は、シールリング60からの押圧力F4が作用しないときに、シリンダー20の内周面の寸法よりも小さくなるように構成されている。
 具体的には、摩擦部材70は、図15に示すような、押圧力受け面80からシールリング60の軸方向他端部が離間して、シールリング60からの押圧力F4が作用していない状態で、外周面から第2環状突部77の先端面77aまでの径方向長さL2(図8参照)が、シリンダー20の内周面から環状溝50の底面51までの長さよりも小さくなっている。その結果、図15に示すように、摩擦部材70に対してシールリング60からの押圧力F4が作用していない状態では、摩擦部材70の外周面は、シリンダー20の内周面に当接しないように構成されている。また、図11には、押圧力受け面80にシールリング60の軸方向他端部が当接しているものの、摩擦部材70にシールリング60からの押圧力F4が作用していない状態が示されているが、摩擦部材70は、この図11に示す状態においても、シリンダー20の内周面の寸法よりも小さくなって、シリンダー20の内周面に当接しないように構成されている。
 また、第2環状突部77の内側面(軸方向一端部側に位置する側面であり、空隙73の、軸方向他端部側に位置する面、ともいえる)には、摩擦部材側斜面82が形成されている。この摩擦部材側斜面82は、第2環状突部77の突出方向の先端面77aの軸方向一端から、空隙73の底面73aに向けて斜め内方に次第に深くなるように傾斜した面となっている。更に、この摩擦部材側斜面82は、突条52の第2斜面55に適合する傾斜面となっている。そして、図11等に示すように、空隙73に突条52が挿入されて、環状溝50に摩擦部材70が装着された状態で、突条52の第2斜面55に対して、摩擦部材側斜面82が隙間なく当接する(密接する)ようになっている。
 また、摩擦部材70は、ダンパー戻り方向F2側に位置する端部の外周面に、ダンパー戻り方向F2側に向けて縮径するテーパ面83が形成されている。この実施形態では、基部71の、ダンパー戻り方向F2側に位置する軸方向他端部の外周面に、ダンパー戻り方向F2側に向けて次第に縮径するように傾斜した、テーパ面83が形成されている。なお、図8に示すように、このテーパ面83は、第2環状突部77に形成した摩擦部材側斜面82に対して、ほぼ平行となるように傾斜している。
 また、摩擦部材70の外周面には、軸方向に沿って延びる通気溝85が形成されている。この実施形態においては、基部71の、一対の長軸部分71a,71aの外周面であって、各長軸部分71aの長手方向中央に、摩擦部材70の軸方向に沿って、通気溝85がそれぞれ延設されている。各通気溝85は、基部71の軸方向の一端面71cから、テーパ面83の傾斜面途中に至るまで、一定幅で且つ一定深さで形成されている。
 各通気溝85は、ピストン40がダンパー制動方向F1に移動するときに、シールリング60に押圧されて、摩擦部材70の外周面がシリンダー20の内周面に圧接された状態となっても、その通気性が維持されるように構成されている。
 すなわち、図13(b)に示すように、ピストン40がダンパー制動方向F1に移動して、第1空気室V1からの吸引力F3により、ダンパー戻り方向F2に移動したシールリング60からの押圧力F4が付与された摩擦部材70の外周面が、シリンダー20の内周面に圧接した状態であっても、通気溝85が潰れずに、シリンダー20の内周面に圧接されることなく、その内部空間が確保されて、通気性が維持されるようになっている。
 次に、ピストン40がダンパー制動方向F1に移動するとき、及び、ダンパー戻り方向F2に移動するときの、環状溝50内におけるシールリング60及び摩擦部材70の動作について説明する。
 ピストン40が静止した状態では、基本的には、ピストン40がダンパー戻り方向F2に移動した状態と同様となっている(図14及び図15参照)。
 すなわち、シールリング60は、外径側突部67の頂部67aが、シリンダー20の内周面に圧接すると共に、内径側突部63,65の頂部63a,65aが環状溝50の底面51に当接し、且つ、軸方向の他端部が摩擦部材70の押圧力受け面80から離間しており、隙間G(図15参照)が形成されている。この隙間Gは、環状溝50の内部空間R、及び、ピストン40に設けた切欠き溝48と連通している(図15(c)参照)。そのため、第1空気室V1と第2空気室V2とは、隙間G、内部空間R、切欠き溝48を介して互いに連通した状態となっている。また、シールリング60は、図5に示すシールリング自由状態から変形した状態で、シリンダー20内に配置されている。
 一方、摩擦部材70は、その当接面78が環状溝50の軸方向他端部側の内面(第2側壁部42の内面42a)に当接すると共に、第2環状突部77の先端面77aが環状溝50の底面51に当接している。この状態では、摩擦部材70にはシールリング60からの押圧力F4が作用しないため、摩擦部材70は拡径されておらず、その外周面がシリンダー20の内周面に当接せず離間している。
 そして、図10に示すように、ピストン40がダンパー制動方向F1に移動を開始すると、外径側突部67に、シリンダー20の内周面から、ダンパー制動方向F1とは反対方向の摩擦力(ダンパー戻り方向F2の摩擦力)が作用するので、同摩擦力によってシールリング60がダンパー戻り方向F2側に押される。その結果、図11に示すように、シールリング60の軸方向他端部が、摩擦部材70の押圧力受け面80に当接する。すると、図11(c)に示すように、シールリング60の軸方向他端部と摩擦部材70の押圧力受け面80との隙間G(図15参照)が消失して、隙間G、環状溝50の内部空間R、切欠き溝48を介しての、第1空気室V1と第2空気室V2との間の空気流通が阻害されるので、シリンダー20内の第1空気室V1が減圧されて、ダンパー制動力が発揮される。
 その後、図12に示すように、ピストン40がダンパー制動方向F1に所定距離移動すると、シリンダー20の内周面からのダンパー戻り方向F2の摩擦力によって、シールリング60がダンパー戻り方向F2側に更に押される。それと共に、ピストン40のダンパー制動方向F1側への移動によって、第1空気室V1が図10に示す状態よりも更に減圧されることによって、すなわち、第1空気室V1の圧力変化(この実施形態では減圧)に伴って、第1空気室V1からの吸引力F3(図13(b)参照)がシールリング60に作用して、シールリング60がダンパー戻り方向F2側に引き込まれるように更に移動する。なお、第1空気室V1からの吸引力F3は、第1空気室V1の空気が、環状溝50の内部空間Rや摩擦部材70に設けた一対の通気溝85,85を流通することで、シールリング60に付与される。
 その結果、図13に示すように、シールリング60の軸方向他端部が、摩擦部材70の押圧力受け面80を押圧して、斜面当接部81に押圧力F4が付与される。すると、斜面当接部81が突条52の第1斜面54を押圧しつつ、同第1斜面54上を摺動していき(第1斜面54に乗り上がって滑るように移動する)、第1斜面54上の当接位置が徐々に変化する。そうすることで、第1斜面54によって、シールリング60の、ピストン40の軸方向に沿った移動(ダンパー戻り方向F2側への移動)方向が、ピストン40の径方向外方に向かう方向へと変換される。その結果、図13に示すように、摩擦部材70を拡径させて、その外周面を、矢印F5に示すようにシリンダー20の内周面に圧接させる(この際の矢印F5に向く力、すなわち、シリンダー20の内周面に対する摩擦部材70の圧接力を「圧接力F5」ともいう)。このように、第1空気室V1の圧力変化に伴う第1空気室V1からの吸引力F3によって、シールリング60がダンパー戻り方向F2側へ移動することで、摩擦部材70が押圧されて、その外周面がシリンダー20の内周面に対して圧接されるので、シリンダー20の内周面に対して、摩擦部材70の摩擦力が発生する。
 上記のように、このダンパー装置10では、ピストン40がダンパー制動方向F1に移動すると、空気室の圧力変化と、シリンダー20の内周面に対するシールリング60の摩擦力とによって、摩擦部材70がシールリング60に押圧されることで、シリンダー20の内周面に対して摩擦部材70の摩擦力が発生するが、この際に、第1空気室V1内の圧力変化による抵抗と、シリンダー20の内周面に対するシールリング60の摩擦力と、シリンダー20の内周面に対する摩擦部材70の摩擦力とからなる、高いダンパー制動力が発揮される。すなわち、このダンパー装置10においては、第1空気室V1内の圧力変化による抵抗と、シリンダー20の内周面に対するシールリング60の摩擦力と、シリンダー20の内周面に対する摩擦部材70の摩擦力とからなる、ダンパー制動力が発揮されるようになっている。
 一方、図14に示すように、ピストン40がダンパー戻り方向F2に移動すると、シールリング60の外径側突部67に、シリンダー20の内周面から、ダンパー戻り方向F2とは反対の摩擦力が作用するので、同摩擦力によってシールリング60がダンパー制動方向F1側に押される。その結果、図15に示すように、シールリング60の軸方向一端部が、環状溝50の軸方向一端側の内面(第1側壁部41の内面41a)に当接すると共に、シールリング60の軸方向他端部が、摩擦部材70の押圧力受け面80から離反する。すると、摩擦部材70が弾性復帰して元の形状に戻って、シリンダー20の内周面に対して圧接力F5が作用しなくなると共に、シールリング60の軸方向他端部と摩擦部材70の押圧力受け面80との間に、隙間Gが再び生じる。その結果、図15(c)の矢印に示すように、シリンダー20内の第1空気室V1の空気が、環状溝50の内部空間R、摩擦部材70の一対の通気溝85,85、隙間G、複数の切欠き溝48を順次通過して、第2空気室V2へと流出される。その結果、ダンパー制動力が解除されるようになっている。
 (変形例)
 本発明におけるダンパー装置を構成する、シリンダー、ロッド、ピストン、シールリング等の形状や構造は、上記態様に限定されるものではない。
 この実施形態のシリンダー20の壁部21は、略薄箱筒状をなしているが、シリンダーの壁部としては、例えば、略角筒状にしたり、略円筒状にしたりしてもよい。この場合、ロッドや、ピストン、シールリング、シールキャップ、外れ防止キャップ等も、シリンダーの壁部に対応する形状とすることが好ましい。
 また、この実施形態のシリンダー20は、軸方向の他端部側に端部壁25が配置されて閉塞されているが、例えば、シリンダーの他端部に配置した端部壁に、貫通孔を形成して、この貫通孔をシールキャップで開閉する構造としてもよい。
 更に、この実施形態のロッド30は、角柱状の軸部31を有しているが、ロッドとしては、例えば、軸部と、その両側に複数を介して配設された一対の側壁とからなる構造としたり、長板状や円柱状等をなした軸部からなる構造としたりしてもよく、ピストンが連設可能であればよい。
 また、この実施形態のピストン40における環状溝50は、その底面51が、ピストン40の軸方向に対して平行となっているが、環状溝としては、例えば、底面が傾斜していたり段状をなしていたりしてもよい。
 更に、この実施形態のシールリング60は、内周面の軸方向両端部から内径側突部63,65が突設されているが、内径側突部としては、3個以上であってもよく、内周面の軸方向両端部よりも軸方向内側に配置されていてもよい。また、外径側突部67は、シールリング60の軸方向中央に配置されているが、位置ずれしていてもよい。ただし、外径側突部の頂部は、内径側突部の頂部に対して、軸方向に重ならずに位置ずれした位置となるように設けられていることが好ましい。
 更に、この実施形態においては、シールリング60及び摩擦部材70によって、シリンダー20とピストン40との間にシール部が形成されているが、シールリングによって、シリンダーとピストンとの間にシール部を形成してもよい。
 例えば、シールリングを断面円形状のОリングとし、これをピストン外周の環状溝に移動可能に装着して、シールリングの外周面をシリンダー内周面に圧接させると共に、シールリングの内周面を環状溝の底面に圧接させる。これによって、Оリングであるシールリングによって、シリンダーとピストンとの間の隙間をシールする「シール部」が形成されるようになっている。なお、この場合、摩擦部材は、環状溝の軸方向他端面に当接させてもよいが、当接させない構成としてもよい。また、環状溝の底面には、上記実施形態における切欠き溝48等は設けず、その代わりに、シリンダーの所定箇所に空気室に連通する排気孔を形成すると共に、この排気孔の周縁に、排気孔を開閉可能とするシールキャップを装着する。そして、ピストンがダンパー戻り方向時に移動するときに、シールキャップが排気孔を開くことで、空気室内の空気が排気されて、ダンパー制動力が解除されるようになっている。
 また、この実施形態の摩擦部材70は、その内周に、空隙73を介して、第1環状突部75や第2環状突部77を設けた構造となっており、環状突部は1個でも3個以上であってもよい。
 更に、基部71の軸方向の一端面71cや他端面71dは、第1環状突部75の外側面75aや第2環状突部77の外側面77bと段差のない面一となっているが、段差があってもよい。また、当接面78や押圧力受け面80は、摩擦部材70の軸方向に対して直交する面となっているが、摩擦部材の軸方向に対して90°以外の所定角度で傾斜していてもよい。
 更に、この実施形態の場合、第1空気室V1からの吸引力F3によって吸引されたシールリング60が摩擦部材70に押圧力F4を付与することで、環状溝50に設けた突条52の第1斜面54上を摩擦部材70の斜面当接部81が摺動して、摩擦部材70を拡径させるように構成されているが、シールリングによる摩擦部材の拡径構造としては、この態様に限定されない。
 図16には、その変形例が記載されている。
 すなわち、環状溝50の底面51に、環状をなした凹状溝56が形成されている。この凹状溝56の、ダンパー戻り方向F2側の内側面に、斜面57が形成されている。この斜面57は、凹状溝56の底面56aから、ダンパー戻り方向F2側に向けて次第に高くなるように突出する傾斜面となっている。また、摩擦部材70の第1環状突部75Aは、第2環状突部77よりも、径方向内方への突出量が大きくなっている。この第1環状突部75Aの突出方向の先端部が、上記凹状溝56内に入り込んでおり、第1環状凸部75Aの内側面に設けた斜面当接部81が、凹状溝56の斜面57に対向して配置されている。
 なお、凹状溝56の、ダンパー制動方向F1側の内側面には、ピストン40の軸方向に対して直交し、且つ、斜面57に対向して配置された対向面56bが設けられている。この対向面56bは、ピストン40がダンパー戻り方向F2に移動するときに、摩擦部材70の押圧力受け面80に当接して、摩擦部材70の軸方向移動を規制するものとなっており、本発明における「摩擦部材移動規制部」をなしている。
 そして、第1空気室V1からの吸引力F3によってシールリング60が吸引されて、シールリング60が摩擦部材70に押圧力F4を付与すると、斜面当接部81が斜面57上を摺動することで、摩擦部材70が拡径するようになっている。
 更に、この実施形態においては、ピストン40がシリンダー20の端部壁25から離反する方向に移動したとき(ピストン40がダンパー制動方向F1に移動したとき)に、第1空気室V1の減圧による制動力が作用し、ピストン40がシリンダー20の端部壁25に近接する方向に移動したとき(ピストン40がダンパー戻り方向F2に移動したとき)に、上記制動力が解除されるように構成されている。ただし、これとは逆に、ピストン40がシリンダー20の端部壁25に近接する方向に移動したときに、ダンパー制動力が作用し、ピストン40がシリンダー20の端部壁25から離反する方向に移動したときに、ダンパー制動力が解除されるように構成してもよい(これについては後述する他の実施形態で説明する)。
 また、この実施形態においては、ピストン40がダンパー戻り方向F2に移動したとき、シールリング60の軸方向他端部と摩擦部材70の押圧力受け面80との間に、隙間Gが生じて、図15(c)の矢印に示すように、シリンダー20内の第1空気室V1の空気が第2空気室V2へと流出されるようになっている。ただし、ピストン40がダンパー戻り方向F2に移動したとき、摩擦部材70の軸方向の他端面(当接面78)が、環状溝50の軸方向他端部側の内面(第2側壁部42の内面42a)から離間する構造として、摩擦部材70の当接面78と環状溝50の内面42aとのシールを解除すると共に、摩擦部材70の当接面78と、環状溝50の内面42aとの隙間を、空気の流通路として利用してもよい。この場合、図15(c)の破線の矢印で示すように、シリンダー20内の第1空気室V1の空気は、環状溝50の内部空間R、上記隙間、数の切欠き溝48を順次通過して、第2空気室V2へと流出される。
 また、この実施形態では、第1空気室V1からの吸引力F3によって、シールリング60がダンパー戻り方向F2側へ移動するようになっているが、例えば、第1空気室からの加圧力によって、シールリングをダンパー戻り方向へと移動させるようにしてもよく(これについては他の実施形態で説明する)、空気室の圧力変化に伴って、シールリングをダンパー戻り方向へと移動させることが可能であればよい。
 なお、この実施形態においては、一方の部材を、インストルメントパネルの収容部等の固定体とし、他方の部材を、グローブボックスやリッド等の開閉体としたが、一対の部材は互いに近接離反可能なものであれば、特に限定はされない。
 また、この実施形態においては、シリンダー20内の、シール部よりロッド30の挿入方向側に、空気室(第1空気室V1)が形成されているが、シリンダー内の、ロッド挿入方向とは反対側に空気室を設けてもよい。例えば、シリンダーの端部壁に排気孔を形成し、この排気孔の周縁に、排気孔を開閉可能とするシールキャップを装着する。更に、シリンダーの一端部の開口部に装着されるキャップを、開口部周縁をシール可能な構造とすると共に、ロッド挿通口と、該ロッド挿通口に挿通されたロッドとの隙間をシール可能な構造として、シリンダー内の、ロッド挿入方向とは反対側に、密閉された空気室を設ける。そして、ピストンがシリンダーの端部壁から離反する方向に移動したとき(ロッド挿入方向とは反対側に移動したとき)、空気室が加圧されることで、ダンパー制動力が発揮されるようになっている。なお、ピストンがシリンダーの端部壁に近接する移動したとき(ロッド挿入方向側に移動したとき)は、シールキャップが排気孔を開いて、空気室内の空気が排気されて、ダンパー制動力が解除される。
 (作用効果)
 次に、上記構成からなるダンパー装置10の作用効果について説明する。
 このダンパー装置10は、一方の部材(固定体等)に対して、他方の部材(開閉体等)が互いに近接した状態では、シリンダー20内でピストン40が静止した状態となっている。この状態では、外径側突部67の頂部67aがシリンダー20の内周面に当接すると共に、内径側突部63,65の頂部63a,65aが、環状溝50の底面51に当接した状態で、環状溝50内にシールリング60が配置されている。
 上記状態から、一方の部材に対して、他方の部材が離反する方向に移動すると(固定体から開閉体が開いた場合)、すなわち、図10に示すように、ピストン40がダンパー制動方向F1に移動を開始すると、ピストン40が、シリンダー20内をダンパー制動方向F1に移動すると共に、ロッド30がシリンダー20の開口部23側から引き出されていく。すると、上述した段落0074で説明したように、シリンダー20内の第1空気室V1が減圧されるので、ピストン40にダンパー制動力が付与される。
 その後、図12に示すように、ピストン40がダンパー制動方向F1に所定距離移動すると、空気室の圧力変化(この実施形態では減圧)に伴ってシールリング60がダンパー戻り方向F2側へ移動する。すると、上述した段落0075~0077で説明したように、第1空気室V1からの吸引力F3がシールリング60に作用して、シールリング60がダンパー戻り方向F2側に移動する。その結果、図13に示すように、シールリング60が摩擦部材70に押圧力F4を付与して、摩擦部材70を拡径させるので、その外周面をシリンダー20の内周面に対して所定の圧接力F5で圧接させる。
 このように、このダンパー装置10においては、ピストン40がダンパー制動方向F1に移動すると、第1空気室V1の圧力変化と、シリンダー20の内周面に対するシールリング60の摩擦力とによって、摩擦部材70がシールリング60に押圧されて、摩擦部材を十分に変形させることができるため、シリンダー20の内周面に対して摩擦部材70の外周面を圧接させることができる。その結果、シリンダー20の内周面に対するシールリング60の摩擦力に加えて、シリンダー20の内周面に対して摩擦部材70の摩擦力を発生させることができる。このように、第1空気室V1内の圧力変化による抵抗と、シリンダー20の内周面に対するシールリング60の摩擦力と、シリンダー20の内周面に対する摩擦部材70の摩擦力とからなる、高いダンパー制動力を得ることができるので、一方の部材に対して他方の部材をゆっくりと移動させることができる(固定体から開閉体をゆっくりと開くことができる)。
 なお、このダンパー装置10を構成する摩擦部材70は、シールリング60からの押圧力F4が作用しないときに、シリンダー20の内周面の寸法よりも小さくなるように構成されているので、以下の(1)~(3)のような効果を得ることができる。
 (1)ダンパー制動時に、摩擦部材70を拡径させやすくして、シリンダー20の内周面に圧接させやすくすることができる(摩擦部材70が、シリンダー20の内周面の寸法よりも大きいと、摩擦部材70の拡径の余地がないか又は少なくなり、シールリング60により押圧されたときに、拡径させにくい)。
 (2)ダンパー制動力の解除時に(ピストン40のダンパー戻り方向F2の移動時)、空気の流通路を広く確保して、第1空気室V1の空気を第2空気室V2側へと迅速に排気できるため、ピストン40の戻し抵抗を低くして、ピストン40の操作力を低くすることができる。
 (3)ダンパー制動力の解除時に、シリンダー20の内周面に対する、摩擦部材70の摩擦力が発生しないので、ピストン40の戻し抵抗を低くすることができ、ピストン40の操作力を低くすることができる。
 また、この実施形態においては、図11や図13に示すように、環状溝50の底面51又は摩擦部材70の一方には斜面が設けられ(ここでは環状溝50の突条52に設けた第1斜面54)、他方には斜面に当接する斜面当接部が設けられており(ここでは摩擦部材70に設けた斜面当接部81)、ピストン40がダンパー制動方向F1に移動するときに、斜面当接部81が第1斜面54に押圧されながら第1斜面54上の当接位置が変化して、摩擦部材70が拡径するように構成されている。
 上記態様によれば、ダンパー制動時において、摩擦部材70がシールリング60からの押圧力F4を受けたときに、摩擦部材70を径方向外方に向けて、より拡径させやすくすることができる。その結果、摩擦部材70による、シリンダー20の内周面に対する摩擦力を、より高めることができ、より高いダンパー制動力を得ることができる。
 更に、この実施形態においては、図11や図13に示すように、環状溝50の底面51に、周方向に延びる突条52が設けられており、この突条52の、ダンパー制動方向F1側の面が斜面(第1斜面54)をなしており、摩擦部材70の斜面当接部81に隣接する部分に、空隙73が設けられている。
 上記態様によれば、摩擦部材70の斜面当接部81に隣接する部分に設けた空隙73によって、ダンパー制動時において、摩擦部材70がシールリング60からの押圧力を受けたときに、摩擦部材70を、より一層拡径させやすくすることができ、更に高いダンパー制動力を得ることができる。また、環状溝50の底面51に設けた突条52と、摩擦部材70に設けた空隙73とを利用して、環状溝50に摩擦部材70を装着しやすくすることができる。すなわち、摩擦部材70を拡径させながら環状溝50に外装しようとする際に、突条52を空隙73に挿入するように摩擦部材70を環状溝50に配置することで、突条52に空隙73が引っ掛かって、摩擦部材70が位置ずれしにくくなるので、環状溝50に摩擦部材70を装着しやすい。
 また、この実施形態においては、図6~8に示すように、摩擦部材70の外周面には、軸方向に沿って延びる通気溝85が形成されており、該通気溝85は、ピストン40がダンパー制動方向F1に移動するときに、シールリング60に押圧されて、摩擦部材70の外周面がシリンダー20の内周面に圧接された状態となっても、その通気性が維持されるように構成されている(図13(b)参照)。
 上記態様によれば、ダンパー制動時に摩擦部材70が拡径して、その外周面がシリンダー20の内周面に圧接された状態となっても、通気溝85の通気性が維持されるので、第1空気室V1に連通する通気路(ここでは環状溝50の内部空間Rに対しても連通する)を確保することができ、シールリング60に対して、第1空気室V1からの吸引力F3を確実に付与させることができる。
 また、一方の部材に対して、他方の部材を近接する方向に移動させると(固定体に対して開閉体を閉じる場合)、図14に示すように、ピストン40が、シリンダー20内をダンパー戻り方向F2に移動すると共に、ロッド30がシリンダー20内に押し込まれていく。
 すると、外径側突部67に、シリンダー20の内周面から、ダンパー戻り方向F2とは反対の摩擦力が作用するので、同摩擦力によってシールリング60がダンパー制動方向F1側に押され、上述した段落0078で説明したように、図15(c)の矢印に示すように、シリンダー20内の第1空気室V1の空気が、環状溝50の内部空間R、摩擦部材70の一対の通気溝85,85、隙間G、複数の切欠き溝48を順次通過して、第2空気室V2へと流出されて、ダンパー制動力が解除される。
 このとき、この実施形態においては、摩擦部材70は、ダンパー戻り方向F2側に位置する端部の外周面に、ダンパー戻り方向F2側に向けて縮径するテーパ面83が形成されている。
 上記態様によれば、ピストン40がダンパー戻り方向F2に移動するときに、摩擦部材70が、シリンダー20の内周面に引っ掛かることを防止することができ、ピストン40の操作力を低減することができる。
 また、この実施形態においては、環状溝50には、ピストン40がダンパー戻り方向F2に移動するときに、摩擦部材70が軸方向に移動するのを規制する摩擦部材移動規制部(ここでは突条52の第2斜面55)が設けられている。
 上記態様によれば、ピストン40がダンパー戻り方向F2に移動すると、摩擦部材70の摩擦部材側斜面82が、摩擦部材移動規制部をなす突条52の第2斜面55に当接して、摩擦部材70の軸方向移動(ダンパー制動方向F1側への移動)が規制されるので、ピストン40のダンパーの戻り方向F2への移動時に、シールリング60と摩擦部材70とを離間させやすくすることができる。その結果、摩擦部材70を速やかに縮径させて、ピストン40の操作力を低減することができると共に、シールリング60と摩擦部材70との間に、通気路(隙間G:図15参照)を形成することができる。
 (ダンパーの他の実施形態)
 図17及び図18には、本発明に係るダンパー装置の、他の実施形態が示されている。なお、前記実施形態と実質的に同一部分には同符号を付してその説明を省略する。
 この実施形態のダンパー装置10Aは、図1~16に示すダンパー装置10とは逆に、ピストン40がシリンダー20の端部壁25に近接する方向に移動したときに、制動力が作用し、ピストン40がシリンダー20の端部壁25から離反する方向に移動したときに、制動力が解除される構造となっている。
 すなわち、この実施形態の場合、環状溝50に対するシールリング60及び摩擦部材70の配置が、図1~16に示すダンパー装置10におけるシールリング60及び摩擦部材70の配置と逆向きとなっている。
 具体的には、図18に示すように、環状溝50の底面51であって、第1側壁部41寄りの位置に、突条52が突設されている。この突条52の、第2側壁部42側に向く側面が、第1斜面54をなし、第1側壁部41側に向く斜面が、第2斜面55をなしている。また、摩擦部材70は、押圧力受け面80が第2側壁部42側に向くように、突条52を介して環状溝50に装着されている。更に、シールリング60は、軸方向一端部を摩擦部材70側に向け、軸方向他端部を第2側壁部42側に向けて、環状溝50内に軸方向移動可能に配置されており、シールリング60の軸方向一端部が、摩擦部材70の押圧力受け面80を押圧するようになっている。
 そして、ピストン40がダンパー制動方向F1に移動を開始して所定距離移動すると、シリンダー20の内周面からのダンパー戻り方向F2の摩擦力によって、シールリング60がダンパー戻り方向F2側に押されると共に、第1空気室V1の圧力変化(加圧)に伴って、第1空気室V1からの押圧力F3´がシールリング60に作用して、シールリング60がダンパー戻り方向F2側に移動する。その結果、摩擦部材70が押圧されて拡径し、その外周面が、シリンダー20の内周面に対して所定の圧接力で圧接されるため、シリンダー20の内周面に対する摩擦部材70の摩擦力を発生させることができ、高いダンパー制動力を得ることができる。
 また、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で、各種の変形実施形態が可能であり、そのような実施形態も本発明の範囲に含まれる。
10,10A ダンパー装置
20 シリンダー
30 ロッド
40 ピストン
50 環状溝
51 底面
52 突条
54 第1斜面(斜面)
60 シールリング
70 摩擦部材
73 空隙
75 第1環状突部
77 第2環状突部
78 当接面
80 押圧力受け面
81 斜面当接部
83 テーパ面
85 通気溝
90 防止キャップ

Claims (6)

  1.  互いに近接離反する一対の部材の間に取付けられ、該一対の部材が近接又は離反するときに制動力を付与するダンパー装置であって、
     一端部に開口部を設けたシリンダーと、
     前記開口部を通して前記シリンダー内に移動可能に挿入されるロッドと、
     前記ロッドに連設され、外周に環状溝を形成したピストンと、
     前記環状溝の、ダンパー制動方向側に、軸方向移動可能に配置されると共に、前記シリンダーの内周面に圧接されるシールリングと、
     前記環状溝において、前記シールリングに対してダンパー制動方向とは反対の戻り方向側に配置された摩擦部材とを有しており、
     前記シールリング及び前記摩擦部材、又は、前記シールリングによって、前記シリンダーと前記ピストンとの間にシール部が形成されており、
     前記シリンダー内に前記シール部を介して空気室が形成されており、
     前記シールリングは、前記ピストンがダンパー制動方向に移動するときに、前記摩擦部材を押圧して拡径させ、該摩擦部材の外周面を前記シリンダーの内周面に圧接させ、
     前記摩擦部材は、前記シールリングからの押圧力が作用しないときに、前記シリンダーの内周面の寸法よりも小さくなるように構成されていることを特徴とするダンパー装置。
  2.  前記環状溝の底面又は前記摩擦部材の一方には斜面が設けられ、他方には前記斜面に当接する斜面当接部が設けられており、
     前記ピストンがダンパー制動方向に移動するときに、前記斜面当接部が前記斜面に押圧されながら前記斜面上の当接位置が変化して、前記摩擦部材が拡径するように構成されている請求項1記載のダンパー装置。
  3.  前記摩擦部材は、前記戻り方向側に位置する端部の外周面に、前記戻り方向側に向けて縮径するテーパ面が形成されている請求項1又は2記載のダンパー装置。
  4.  前記環状溝には、前記ピストンが前記戻り方向に移動するときに、前記摩擦部材が軸方向に移動するのを規制する摩擦部材移動規制部が設けられている請求項1~3のいずれか1つに記載のダンパー装置。
  5.  前記環状溝の底面に、周方向に延びる突条が設けられており、
     該突条の、ダンパー制動方向側の面が前記斜面をなしており、
     前記摩擦部材の前記斜面当接部に隣接する部分に、空隙が設けられている請求項2記載のダンパー装置。
  6.  前記摩擦部材の外周面には、軸方向に沿って延びる通気溝が形成されており、
     該通気溝は、前記ピストンがダンパー制動方向に移動するときに、前記シールリングに押圧されて、前記摩擦部材の外周面が前記シリンダーの内周面に圧接された状態となっても、その通気性が維持されるように構成されている請求項1~5のいずれか1つに記載のダンパー装置。
PCT/JP2023/008514 2022-03-10 2023-03-07 ダンパー装置 WO2023171654A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380024577.3A CN118786295A (zh) 2022-03-10 2023-03-07 阻尼装置
GBGB2412724.3A GB202412724D0 (en) 2022-03-10 2023-03-07 Damper device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037558 2022-03-10
JP2022037558 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171654A1 true WO2023171654A1 (ja) 2023-09-14

Family

ID=87935190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008514 WO2023171654A1 (ja) 2022-03-10 2023-03-07 ダンパー装置

Country Status (3)

Country Link
CN (1) CN118786295A (ja)
GB (1) GB202412724D0 (ja)
WO (1) WO2023171654A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120175830A1 (en) * 2011-01-07 2012-07-12 Ching-Chuan Yang Buffer
US20130118846A1 (en) * 2010-06-24 2013-05-16 Guenther Zimmer Pneumatic deceleration arrangement with constant performance
JP2018071595A (ja) * 2016-10-26 2018-05-10 株式会社ニフコ ダンパー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130118846A1 (en) * 2010-06-24 2013-05-16 Guenther Zimmer Pneumatic deceleration arrangement with constant performance
US20120175830A1 (en) * 2011-01-07 2012-07-12 Ching-Chuan Yang Buffer
JP2018071595A (ja) * 2016-10-26 2018-05-10 株式会社ニフコ ダンパー

Also Published As

Publication number Publication date
CN118786295A (zh) 2024-10-15
GB202412724D0 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
JP5793346B2 (ja) シリンダ装置
WO2023171654A1 (ja) ダンパー装置
CN111971489B (zh) 阻尼器
US7370571B2 (en) Negative pressure type booster device
JP6628804B2 (ja) ダンパー
WO2018066238A1 (ja) マスタシリンダ
JP7481993B2 (ja) ダンパー装置
JP6366185B2 (ja) マスタシリンダ
JPH0542946Y2 (ja)
WO2018174024A1 (ja) エアダンパー
WO2023182215A1 (ja) ダンパー装置
JP2006341790A (ja) 倍力装置
CN118805041A (zh) 阻尼装置
US20090008200A1 (en) Negative Pressure Type Booster Device
JP7423434B2 (ja) セグメントシール
JPH04151363A (ja) ブレーキ倍力装置
JP2006160002A (ja) 負圧式倍力装置
JPH10153228A (ja) ガススプリング
JP5951394B2 (ja) 管継手構成部材
CN111765241A (zh) 密封装置和换挡系统
WO2017131015A1 (ja) 負圧式倍力装置
CN116848335A (zh) 阻尼装置
JP2021042825A (ja) 密封装置
JP2006341791A (ja) 負圧式倍力装置
JP2005036885A (ja) ピストン部構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766830

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2024506337

Country of ref document: JP

Kind code of ref document: A