WO2023171460A1 - 燃焼ガス抽気プローブ及びその運転方法 - Google Patents
燃焼ガス抽気プローブ及びその運転方法 Download PDFInfo
- Publication number
- WO2023171460A1 WO2023171460A1 PCT/JP2023/007239 JP2023007239W WO2023171460A1 WO 2023171460 A1 WO2023171460 A1 WO 2023171460A1 JP 2023007239 W JP2023007239 W JP 2023007239W WO 2023171460 A1 WO2023171460 A1 WO 2023171460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- bleed
- probe
- cold air
- discharge ports
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 149
- 239000000567 combustion gas Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000000740 bleeding effect Effects 0.000 title abstract 3
- 239000007789 gas Substances 0.000 claims abstract description 226
- 239000013598 vector Substances 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 42
- 239000000460 chlorine Substances 0.000 abstract description 42
- 229910052801 chlorine Inorganic materials 0.000 abstract description 42
- 238000001816 cooling Methods 0.000 abstract description 23
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 238000000605 extraction Methods 0.000 description 20
- 239000000843 powder Substances 0.000 description 13
- 238000011017 operating method Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- 239000000428 dust Substances 0.000 description 7
- 238000007599 discharging Methods 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/60—Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/364—Avoiding environmental pollution during cement-manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/43—Heat treatment, e.g. precalcining, burning, melting; Cooling
- C04B7/44—Burning; Melting
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/43—Heat treatment, e.g. precalcining, burning, melting; Cooling
- C04B7/47—Cooling ; Waste heat management
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
- F27D17/002—Details of the installations, e.g. fume conduits or seals
Definitions
- the present invention relates to a combustion gas bleed probe and a method of operating the same.
- the chlorine bypass system prevents coating problems in kilns and preheaters caused by chlorine by extracting gas containing chlorine from cement manufacturing equipment and discharging it outside the system.
- the chlorine bypass system bleeds a portion of the combustion gas using a combustion gas bleed probe (hereinafter also referred to as a "probe") installed near the bottom of a kiln that constitutes cement manufacturing equipment.
- the extracted combustion gas (hereinafter also referred to as "bleed gas”) is mixed with low temperature gas (hereinafter also referred to as "cold air”), and the chlorine content contained in the extracted gas undergoes a phase transition from a gas state to a solid state. It is recovered and removed from the system in a form called chlorine bypass dust, which consists mainly of potassium chloride. It is known that by rapidly cooling the extracted gas at this time, the chlorine content is concentrated on the fine powder side of the bypass dust.
- the raw material (coarse powder) and chlorine (fine powder) contained in the gas are separated by a cyclone, the raw material is returned to the kiln, and the chlorine is discharged outside the system.
- the cooling rate is slow, the amount of chlorine returned to the kiln together with the coarse powder with low chlorine concentration increases, and the chlorine removal efficiency decreases.
- Patent Document 1 describes cooling the bleed gas by discharging the low-temperature gas in a central direction perpendicular to the suction direction of the bleed gas and having a momentum that reaches the center of the cross section. .
- Patent Document 2 discloses that the bleed gas is cooled by discharging the low temperature gas in a central direction perpendicular to the suction direction of the bleed gas and in such a manner that the momentum vector of the low temperature gas has a vertically downward component. is listed.
- Patent Document 4 listed below describes a chlorine bypass device in which a swirling portion of a cooling pipe into which cold air is introduced is formed in an annular shape surrounding an air bleed pipe.
- cooling is performed by discharging low temperature gas in a direction perpendicular to the bleed gas flowing through the probe, but the operation index regarding the discharge speed and momentum of the low temperature gas when the bleed rate is increased is is not specified.
- Patent Document 4 the cold air flows into the bleed pipe while swirling in the swirling section, so that the bleed gas and the cold air are stirred and mixed, so that the bleed gas can be rapidly cooled by the cold air.
- the momentum of the cold air is attenuated by the time the bleed gas and the cold air are mixed, and there is a risk that sufficient cooling may not be achieved.
- cold air may leak to the bottom of the kiln (backflow or blow-through), promoting coating adhesion (adversely affecting kiln operation) and causing heat loss (burning more fuel).
- an object of the present invention is to provide a combustion gas bleed probe and an operating method thereof, which can sufficiently cool the bleed gas even when the bleed rate is increased, and which can operate while maintaining a predetermined chlorine removal efficiency. It is in.
- Another object of the present invention is to provide a combustion gas bleed probe and its operating method that can sufficiently cool the bleed gas even when the bleed rate is increased and can suppress the backflow of cold air to the kiln bottom. be.
- the combustion gas bleed probe of the present invention includes a gas pipe that bleeds a part of the combustion gas from the kiln; A plurality of discharge ports are provided in the gas pipe and each discharge a low temperature gas in a direction perpendicular to the flow direction of the bleed gas extracted by the gas pipe and in a direction toward the center of the flow of the bleed gas,
- the discharge port satisfies a ratio of the momentum of the low temperature gas per mouth of the discharge port to the momentum of the bleed gas of 1.2 to 4.0, and a ratio of the wind speed of the low temperature gas to the wind speed of the bleed gas.
- the low temperature gas is discharged such that the value (m ⁇ 1 ) divided by the inner diameter of the gas pipe satisfies 1.5 to 3.5.
- the method of operating the combustion gas bleed probe of the present invention includes a gas pipe that bleeds a part of the combustion gas from the kiln; Combustion comprising: a plurality of discharge ports that are perforated in the gas pipe and discharge low-temperature gas in a direction perpendicular to the flow direction of the bleed gas extracted by the gas pipe and in a direction toward the center of the flow of the bleed gas;
- a method of operating a gas bleed probe comprising: The ratio of the momentum of the low temperature gas per discharge port to the momentum of the bleed gas satisfies 1.2 to 4.0, and the ratio of the wind speed of the low temperature gas to the wind speed of the bleed gas is determined by the inner diameter of the gas pipe. The value divided by (m ⁇ 1 ) satisfies 1.5 to 3.5.
- the extraction gas can be sufficiently cooled, and operation can be performed while maintaining a predetermined chlorine removal efficiency.
- the combustion gas bleed probe of the present invention includes a gas pipe that bleeds a part of the combustion gas from the kiln; A plurality of discharge ports are provided in the gas pipe and each discharge a low temperature gas to the extracted gas extracted by the gas pipe, The plurality of discharge ports are arranged so that the low temperature gas discharged from each of the discharge ports does not collide with each other within the gas pipe.
- a method for operating a combustion gas bleed probe according to the present invention is a method for operating a combustion gas bleed probe described above, comprising: The wind speed of the low temperature gas discharged from the discharge port satisfies 25 to 180 m/s, and the ratio of the momentum of the low temperature gas per mouth of the discharge port to the momentum of the bleed gas is 1.8 to 5.3. Fulfill.
- the bleed gas can be sufficiently cooled even when the bleed rate is increased, and the backflow of cold air to the bottom of the kiln can be suppressed.
- FIG. 1 is an overall configuration diagram schematically showing a first embodiment of a chlorine bypass system including a combustion gas bleed probe according to the present invention.
- the chlorine bypass system 100 includes a probe 2 that bleeds a part of the combustion gas G1 from the kiln exhaust gas passage from the kiln bottom 1a of the kiln 1 to the lowest cyclone (not shown), and a probe 2 that bleeds a part of the combustion gas G1.
- a cold air fan 3 for supplying a cold air fan 3 (equivalent to 100%); an inverter 4 for adjusting the output of the cold air fan 3; A cyclone 5, a cooler 6 that cools the mixed gas G4 containing the fine powder A2 discharged from the cyclone 5, a dust collector 7 that collects the fine powder A2 from the exhaust gas G5 discharged from the cooler 6, and a dust collector 7.
- An exhaust fan 8 that induces the exhaust gas G6, and a measuring device 9 (anemometer, thermometer, etc.) that measures the wind speed of the exhaust fan 8, etc.
- FIG. 2 is a cross-sectional view schematically showing the probe 2.
- the probe 2 is provided to protrude from a rising portion 1b extending upward from the kiln bottom 1a as a part of the kiln exhaust gas flow path.
- the inlet 2a of the probe 2 opens into the kiln exhaust gas flow path within the rising portion 1b.
- the air extraction rate by probe 2 is 5% or more, preferably 10 to 15%.
- the bleed rate is the ratio of the gas volume (Nm3/unit time) of the bleed gas G2 extracted per unit time to the gas volume (Nm3/unit time) of the combustion gas G1 passing through the kiln bottom 1a per unit time ( ratio).
- the amount of bleed gas G2 is preferably 2,500 Nm3/h or more, more preferably 10,000 Nm3/h or more.
- the probe 2 includes a cylindrical inner tube 21 (corresponding to a gas tube), a cylindrical outer tube 22 surrounding the inner tube 21, and a cold air passage 23 formed between the inner tube 21 and the outer tube 22.
- a supply port 24 for supplying cold air from the cold air fan 3 to the cold air passage 23 is provided.
- the bleed gas G2 flows inside the inner pipe 21 in the direction of the arrow.
- the probe 2 is provided with a plurality of discharge ports 25 that are bored in the inner tube 21 and discharge the cold air C supplied to the cold air passage 23 toward the bleed gas G2.
- the discharge port 25 is formed in a circular shape.
- FIG. 3 is a view taken along the line III-III in FIG. 2.
- the plurality of discharge ports 25 are arranged at substantially the same position in the extending direction of the inner tube 21, and preferably at the same position. In other words, the plurality of discharge ports 25 are preferably arranged in a plane perpendicular to the extending direction of the inner tube 21.
- the plurality of discharge ports 25 each discharge the cold air C in a direction perpendicular to the flow direction of the bleed gas G2 in the inner pipe 21.
- the plurality of discharge ports 25 are arranged at completely the same position in the extending direction of the inner tube 21 if the cold air C discharged from each discharge port 25 can collide with each other and diffuse. There's no need.
- the two discharge ports 25 are provided at positions symmetrical with respect to a vertical line P passing through the center O of the inner tube 21 as an axis of symmetry.
- the two discharge ports 25 are arranged horizontally so that the angle between the straight line L connecting the center 25c of the discharge ports 25 and the center O of the inner tube 21 and the horizontal line H passing through the center O of the inner tube 21 is 15 degrees. each is placed.
- the two discharge ports 25 discharge cold air C toward the center O of the inner tube 21, respectively.
- the two discharge ports 25 each discharge the cold air C toward the center of the flow of the bleed gas G2 within the inner pipe 21. Therefore, the cold air C discharged from the two discharge ports 25 collides with each other near the center O of the inner pipe 21 and diffuses. This enables sufficient mixing of the cold air C and the bleed gas G2.
- the cold air C after the collision also has a velocity vector in the opposite direction to the flow direction of the bleed gas G2, that is, in the direction toward the kiln tail 1a. If the amount of cold air C directed toward the kiln bottom 1a becomes excessive, a backflow of the cold air C toward the kiln bottom 1a will occur, which may become a cause of heat loss.
- the chlorine bypass system 100 includes a control section (not shown).
- the control unit can grasp the air volume and momentum of the bleed gas G2 in real time from the exhaust air volume calculated from the measurement value of the measuring device 9 and the cold air volume discharged from the cold air fan 3, and also can grasp the air volume and momentum of the bleed gas G2 in real time.
- the cooling fan 3 can be operated at the optimum output at all times.
- the control unit controls the amount of cold air calculated from the wind speed, air volume, and temperature of the cold air C per mouth of the discharge port 25 with respect to the momentum MG of the bleed gas G2 calculated from the wind speed, air volume, and temperature of the bleed gas G2 at the inlet 2a of the probe 2.
- the probe diameter D is adjusted such that the ratio (MC/MG) of the momentum MC of C is in the range of 1.2 to 4.0, and the ratio (VC/VG) of the wind speed VC of the cold air C to the wind speed VG of the bleed gas G2 is set to the probe diameter D.
- the output of the cold air fan 3 is adjusted so that the value [m ⁇ 1 ] divided by is in the range of 1.5 to 3.5.
- the momentum ratio (MC/MG) is 1.2 or more, preferably 3.0 or more.
- the momentum ratio (MC/MG) is 4.0 or less, preferably 3.6 or less.
- the ratio of wind speed/probe diameter (VC/VG/D) is preferably 1.5 or more, and more preferably 2.3 or more.
- the ratio of wind speed/probe diameter (VC/VG/D) is preferably 3.5 or less, more preferably 3.0 or less.
- the wind speed VC of the cold air C is preferably 25 to 180 m/s, more preferably 50 to 150 m/s.
- the momentum ratio may be increased by providing a variable nozzle (not shown) that changes the opening area of the discharge port 25 and increasing only the wind speed VC while maintaining the air volume of the cold air C.
- the present inventors carried out a search for factors that contribute to improving the cooling efficiency of the bleed gas G2 through a simulation analysis of the mixed state of the bleed gas G2 and the cold air C.
- the software used for the simulation analysis was Fluent 2020 R2 manufactured by ANSYS.
- the extraction rate in the chlorine bypass system 100 was 5 to 15%.
- the cold air C was 20° C.
- the cold air C was introduced so that the average temperature at the exit cross section 2b of the probe 2 (see FIG. 2) was 400° C. Under each condition, by adjusting the area of the discharge port 25, the speed of the cold air C is changed while maintaining a predetermined air volume.
- the temperature distribution inside the probe 2 was evaluated by changing the extraction rate, the wind speed of the cold air C (indicated as "cold air speed” in Table 1), and the probe diameter D.
- the shape of the probe 2 used in the simulation analysis is the shape shown in FIGS. 2 and 3. Further, analysis conditions are shown in Table 1.
- the extraction rate was 5 to 15%, and the cold air velocity was 28 to 200 m/s.
- the size of probe 2 is set based on the momentum ratio (MC/MG) of cold air C and bleed gas G2, and analysis examples 1-1 to 3-2 are type A, analysis examples 4-1 to 4-4.
- cold air - bleed gas momentum ratio means the ratio (MC/MG) of the momentum MC of cold air C per mouth of discharge port 25 to the momentum MG of bleed gas G2
- cold air - bleed gas wind speed means the ratio of the wind speed VC of the cold air C to the wind speed VG of the bleed gas G2/probe diameter D (VC/VG/D) (the same applies to Tables 2 to 4 described later).
- the degree of gas cooling was determined based on whether or not the temperature deviation at the exit cross section 2b of the probe 2 was 200° C. or less.
- the temperature deviation at the exit cross section 2b of the probe 2 is a variation from the average temperature within the exit cross section 2b.
- the cold air C may enter the kiln bottom 1a (backflow). Therefore, in order to quantify the amount of cold air that reached the kiln bottom 1a relative to the amount of cold air, the temperature drop (difference from the temperature of the kiln bottom 1a) at the junction between the probe 2 and the kiln bottom 1a (inlet 2a) was calculated and introduced. The backflow rate of cold air C was calculated. This backflow rate can be considered as one of the indicators of the force with which the discharged cold air C collides and diffuses, and a high value indicates that the mixing force of the cold air C within the probe 2 is strong.
- Table 3 shows the temperature deviation and backflow rate at the exit cross section 2b of the probe 2 in Analysis 1.
- ⁇ indicates that the temperature deviation at the exit cross section 2b of the probe 2 is 200°C or less and the backflow rate is 10% or less
- x indicates that the exit cross section 2b of the probe 2 This indicates that the temperature deviation in the temperature exceeds 200°C or the reflux rate exceeds 10%.
- FIG. 5 shows the relationship between the cold air-bleed gas momentum ratio and the temperature deviation at the exit cross section 2b of the probe 2 in Analysis 1.
- the white parts are the conditions that were judged as "x”, and the filled parts are the conditions that were judged as " ⁇ " (the same applies to FIG. 6).
- a correlation was confirmed between the cold air-bleed gas momentum ratio and the temperature deviation at the exit cross section 2b of the probe 2, regardless of the bleed rate and the probe diameter D.
- operating conditions cannot be defined solely by the cold air-extraction gas momentum ratio.
- the present inventors made the determination using an index that includes the factors of wind speed and probe diameter D as factors related to the collision of cold air C, in addition to the cold air-bleed gas momentum ratio.
- the results are shown in FIG.
- the cold air-bleed gas momentum ratio is in the range of 1.2 to 4.0 and the cold air-bleed gas wind speed ratio/probe diameter (m -1 ) is in the range of 1.5 to 3.5.
- the temperature deviation at the exit cross section 2b of the probe 2 was 200° C. or less. Therefore, by using this index, sufficient cooling performance of the chlorine bypass system can be easily achieved even if the chlorine bypass system is different.
- Table 4 shows the temperature deviation at the exit cross section 2b of the probe 2 in Analysis 2.
- ⁇ indicates that the reflux rate is 10% or less
- x indicates that the reflux rate exceeds 10%.
- the temperature deviation at the outlet cross section 2b of the probe 2 tended to decrease as the cold air-bleed gas momentum ratio increased. Therefore, a predetermined cooling performance can be achieved by controlling the cold air-bleed gas momentum ratio regardless of the arrangement of the discharge ports 25.
- the cooling performance is highest when the discharge ports 25 are arranged "horizontally". That is, it is preferable that the plurality of discharge ports 25 include a pair of discharge ports 25 that are arranged to face each other on both sides of the inner tube 21 in the horizontal direction and discharge the cold air C in the horizontal direction. This means that when cold air C discharged in the horizontal direction from a pair of discharge ports 25 disposed opposite each other in the horizontal direction collides head-on with each other, the cold air C is difficult to drift vertically, resulting in high cooling performance. Conceivable.
- the probe 2 includes an inner pipe 21 for extracting a part of the combustion gas G1 from the kiln 1, and an inner pipe 21 for extracting the extracted gas G2.
- a plurality of discharge ports 25 each discharge cold air C in a direction perpendicular to the flow direction and toward the center of the flow of the bleed gas G2.
- the ratio (MC/MG) of the momentum MC of the cold air C per mouth satisfies 1.2 to 4.0, and the ratio (VC/VG) of the wind speed VC of the cold air C to the wind speed VG of the bleed gas G2 is set in the inner pipe 21.
- the cold air C is discharged so that the value (m ⁇ 1 ) divided by the probe diameter D satisfies 1.5 to 3.5.
- the extraction gas G2 can be sufficiently cooled, and operation can be performed while maintaining a predetermined chlorine removal efficiency.
- the plurality of discharge ports 25 include a pair of discharge ports 25 that are arranged to face each other on both sides of the inner tube 21 in the horizontal direction and discharge the cold air C in the horizontal direction. .
- the wind speed VC of the cold air C is preferably 25 to 180 m/s.
- the cold air C discharged from the plurality of discharge ports 25 has a velocity vector in the opposite direction to the flow direction of the bleed gas G2 after colliding with each other, and the discharged cold air It is preferable that the ratio of cold air C flowing back into the kiln bottom 1a to C is 10% or less.
- the backflow rate can be kept low and heat loss can be suppressed.
- the operating method of the probe 2 includes an inner pipe 21 for extracting a part of the combustion gas G1 from the kiln 1, and an inner pipe 21 provided in the inner pipe 21 for extracting a part of the combustion gas G1 from the kiln 1.
- a method of operating a probe 2 comprising a plurality of discharge ports 25 each discharging cold air C in a direction perpendicular to the flow direction and toward the center of the flow of the bleed gas G2, the method comprising:
- the ratio of the momentum MC of the cold air C per mouth of the exit 25 (MC/MG) satisfies 1.2 to 4.0
- the ratio of the wind speed VC of the cold air C to the wind speed VG of the bleed gas G2 (VC/VG) is within the range of 1.2 to 4.0.
- the value (m ⁇ 1 ) divided by the probe diameter D of the tube 21 satisfies 1.5 to 3.5.
- the extraction gas G2 can be sufficiently cooled, and operation can be performed while maintaining a predetermined chlorine removal efficiency.
- combustion gas bleed probe and its operating method are not limited to the configurations of the embodiments described above, nor are they limited to the effects described above. Further, it goes without saying that the combustion gas bleed probe may be modified in various ways without departing from the gist of the present invention. For example, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined, and furthermore, one or more of the configurations and methods according to the various modifications described below may be arbitrarily selected. Of course, the present invention may be employed in the configurations, methods, etc. according to the embodiments described above.
- the probe 2 according to the above embodiment has a configuration in which two discharge ports 25 are bored in the inner tube 21.
- the probe 2 is not limited to such a configuration.
- three or more discharge ports 25 may be formed in the inner tube 21.
- they are preferably arranged at equal intervals in the circumferential direction of the inner tube 21.
- FIG. 7 is an overall configuration diagram schematically showing a second embodiment of a chlorine bypass system including a combustion gas bleed probe according to the present invention.
- the chlorine bypass system 100 includes a probe 2 that bleeds a part of the combustion gas G1 from the kiln exhaust gas passage from the kiln bottom 1a of the kiln 1 to the lowest cyclone (not shown), and a probe 2 that bleeds a part of the combustion gas G1.
- a cyclone 5 as a classifier that separates coarse powder A1 contained in mixed gas G3, which is a mixture of bleed gas G2 and cold air C
- a cyclone 5 that serves as a classifier to separate coarse powder A1 contained in the mixed gas G3, which is a mixture of bleed gas G2 and cold air C, and fine powder A2 discharged from the cyclone 5.
- It includes a cooler 6 that cools the mixed gas G4 contained therein, a dust collector 7 that collects fine powder A2 from the exhaust gas G5 discharged from the cooler 6, and an exhaust fan 8 that draws the exhaust gas G6 from the dust collector 7. .
- FIG. 8 is a cross-sectional view schematically showing the probe 2.
- the probe 2 is provided to protrude from a rising portion 1b extending upward from the kiln bottom 1a as a part of the kiln exhaust gas flow path.
- the inlet 2a of the probe 2 opens into the kiln exhaust gas flow path within the rising portion 1b.
- the air extraction rate by the probe 2 is 10% or more, preferably 12% or more, and more preferably 15% or more.
- the bleed rate is the ratio of the gas volume (Nm3/unit time) of the bleed gas G2 extracted per unit time to the gas volume (Nm3/unit time) of the combustion gas G1 passing through the kiln bottom 1a per unit time ( ratio).
- the amount of bleed gas G2 is preferably 2,500 Nm3/h or more, more preferably 10,000 Nm3/h or more.
- the probe 2 includes a cylindrical inner tube 21 (corresponding to a gas tube), a cylindrical outer tube 22 surrounding the inner tube 21, and a cold air passage 23 formed between the inner tube 21 and the outer tube 22.
- a supply port 24 for supplying cold air from the cold air fan 3 to the cold air passage 23 is provided.
- the bleed gas G2 flows inside the inner pipe 21 in the direction of the arrow.
- the probe 2 includes a plurality of discharge ports 250 that are bored in the inner tube 21 and discharge the cold air C supplied to the cold air passage 23 toward the bleed gas G2.
- the discharge port 250 is formed in a circular shape.
- FIG. 9 is a view taken along arrows IX-IX in FIG. 8.
- the plurality of discharge ports 250 are arranged at substantially the same position in the extending direction of the inner tube 21, and preferably at the same position.
- the plurality of discharge ports 250 are preferably arranged in a plane perpendicular to the extending direction of the inner tube 21.
- the plurality of discharge ports 250 do not need to be arranged at completely the same position in the extending direction of the inner tube 21.
- the two discharge ports 250 are arranged symmetrically with respect to the center O of the inner tube 21.
- the two discharge ports 250 are arranged 180 degrees apart from each other in the circumferential direction of the inner tube 21 .
- the discharge port 250 is arranged so that the center 250c is parallel to the horizontal line H.
- the two discharge ports 250 discharge cold air C to the bleed gas G2 in the inner pipe 21, respectively. That is, the two discharge ports 250 are arranged alternately, and the cold air C discharged from each discharge port 250 does not collide with each other within the inner pipe 21. Thereby, the cold air C discharged from each discharge port 250 does not collide with each other and diffuse, and the flow in the direction toward the kiln bottom 1a side is less likely to occur. As a result, the backflow of cold air C to the kiln bottom 1a can be suppressed, and heat loss can be suppressed.
- the inner tube 21 has a nozzle 260 surrounding the discharge port 250.
- the cylindrical nozzle 260 is arranged coaxially with the center 250c of the discharge port 250. By providing the nozzle 260 around the discharge port 250, the cold air C is discharged in a direction along the center 250c of the discharge port 250. Note that if the inner tube 21 has a sufficiently large wall thickness, the nozzle 260 is not necessarily necessary.
- the chlorine bypass system 100 includes a control section (not shown).
- the control unit can adjust the output of the cold air fan 3.
- the control unit controls the amount of cold air calculated from the wind speed, air volume, and temperature of the cold air C per mouth of the discharge port 250 with respect to the momentum MG of the bleed gas G2 calculated from the wind speed, air volume, and temperature of the bleed gas G2 at the inlet 2a of the probe 2.
- the output of the cold air fan 3 is adjusted so that the ratio of the momentum MC of C (MC/MG) is in the range of 1.8 to 5.3. Thereby, even when the extraction rate increases, the extraction gas G2 can be sufficiently cooled, and operation can be performed while maintaining a predetermined chlorine removal efficiency (for details, see Example 2 below).
- the ratio of momentum (MC/MG) is 1.8 or more, preferably 3.0 or more.
- the momentum ratio (MC/MG) is increased too much, pressure loss will increase, and the cold air fan 3 will also need to be larger. Furthermore, as the momentum ratio (MC/MG) increases, the reduction rate of the temperature deviation (details will be described later) at the exit cross section 2b of the probe 2 decreases, while the flow backflows inside the probe 2 and flows into the kiln bottom 1a. The amount of cold air that arrives increases. Therefore, the momentum ratio (MC/MG) is 5.3 or less, preferably 4.0 or less.
- the wind speed of the cold air C is preferably 25 to 180 m/s, more preferably 50 to 150 m/s.
- the momentum ratio may be increased by providing a variable nozzle (not shown) that changes the opening area of the discharge port 250 and increasing only the wind speed while maintaining the air volume of the cold air C.
- the present inventors conducted a simulation analysis of the mixed state of the bleed gas G2 and the cold air C to confirm the effect of arranging the plurality of discharge ports 250.
- the software used for the simulation analysis was Fluent 2020 R2 manufactured by ANSYS.
- FIGS. 10A and 10B The cross-sectional shape of the probe used in the simulation analysis is shown in FIGS. 10A and 10B (the outer tube 22 is not shown).
- FIG. 10A shows a pair of inner pipes 21 each discharging cold air C in a direction perpendicular to the flow direction of the extracted gas G2, and so that the discharged cold air C does not collide with each other within the inner pipe 21.
- An example in which discharge ports 250 are arranged is shown.
- FIG. 10B a pair of discharge ports 250A are arranged so that the inner pipe 21 discharges cold air C in a direction perpendicular to the flow direction of the extracted gas G2 and toward the center of the flow of the extracted gas G2.
- the analysis conditions are shown in Table 5.
- the extraction rate in the chlorine bypass system 100 was 10-15%.
- the cold air C was 20° C., and the cold air C was introduced so that the average temperature at the exit cross section 2b of the probe 2 (see FIG. 2) was 400° C.
- the area of the discharge ports 250, 250A is adjusted to change the speed of the cold air C while maintaining a predetermined air volume.
- the wind speed of the cold air C is calculated from the wind speed, air volume, and temperature of the cold air C per mouth of the discharge ports 250 and 250A with respect to the momentum of the bleed gas G2 calculated from the wind speed, air volume, and temperature of the bleed gas G2 at the inlet 2a of the probe 2. It was set and analyzed taking into account the momentum ratio of the cold wind C.
- cold air speed means the wind speed of the cold air C
- cold air-extraction gas momentum ratio means the momentum MC of the cold air C per mouthful of the discharge ports 250, 250A with respect to the momentum MG of the extraction gas G2. It means the ratio (MC/MG) (the same applies to Table 6 below).
- staggered type means that the discharge ports are arranged as shown in FIG. 10A
- collision type means that the discharge ports are arranged as shown in FIG. 10B.
- the degree of gas cooling was determined based on whether or not the temperature deviation at the exit cross section 2b of the probe 2 was 200° C. or less.
- the temperature deviation at the exit cross section 2b of the probe 2 is a variation from the average temperature within the exit cross section 2b.
- the proportion of the cold air C that has reached the inlet 2a of the probe 2 is calculated from the temperature drop (difference from the temperature of the kiln butt 1a) at the junction between the probe 2 and the kiln butt 1a (inlet 2a), and then introduced. It was evaluated as the backflow rate of cold air C.
- Table 6 shows the temperature deviation at the outlet cross section 2b of the probe 2 and the backflow rate to the kiln bottom 1a. In Table 6, " ⁇ " indicates that the reflux rate is 0, “ ⁇ ” indicates that the reflux rate is 10% or less, and "x" indicates that the reflux rate exceeds 10%.
- the "alternating type" of analysis examples 6-1 to 7-2 has a slightly higher temperature deviation than the "collision type” of analysis examples 8-1 to 9-2 under the same conditions, but the temperature deviation is 200%. °C or less, and sufficient cooling has been achieved.
- FIG. 11 shows the relationship between the cold air-bleed gas momentum ratio and the temperature deviation at the exit cross section 2b of the probe 2.
- the cold air-bleed gas momentum ratio is in the range of 1.8 to 5.3, and in the range of 3.0 to 4.0, the temperature of the bleed gas G2 in the probe 2 increases earlier. can be made uniform.
- the probe 2 includes an inner pipe 21 that bleeds a part of the combustion gas G1 from the kiln 1, and a hole in the inner pipe 21 that bleeds a part of the combustion gas G1 from the kiln 1.
- the plurality of discharge ports 250 are arranged so that the cold winds C discharged from the respective discharge ports 250 do not collide with each other within the inner pipe 21. There is.
- the cold air C discharged from each discharge port 250 does not collide with each other and diffuse, and the flow in the direction toward the kiln bottom 1a side is less likely to occur.
- the bleed gas G2 can be sufficiently cooled, and the backflow of the cold air C to the kiln bottom 1a can be suppressed.
- the plurality of discharge ports 250 are arranged at the same position in the extending direction of the inner tube 21.
- the plurality of discharge ports 250 may be arranged point-symmetrically with respect to the center O of the inner tube 21 when viewed in the extending direction of the inner tube 21. preferable.
- the plurality of discharge ports 250 are arranged at equal intervals in the circumferential direction of the inner tube 21.
- the operating method of the probe 2 according to the present embodiment is such that the wind speed of the cold air C discharged from the discharge port 250 satisfies 25 to 180 m/s, and the cold air C per mouthful of the discharge port 250 is set relative to the momentum MG of the bleed gas G2.
- the ratio of momentum MC (MC/MG) satisfies 1.8 to 5.3.
- the bleed gas G2 can be sufficiently cooled, and the backflow of the cold air C to the kiln bottom 1a can be suppressed.
- the cold air C does not flow back into the kiln bottom 1a after colliding with the inner wall surface of the inner tube 21.
- the backflow rate can be kept low.
- combustion gas bleed probe and its operating method are not limited to the configurations of the embodiments described above, nor are they limited to the effects described above. Further, it goes without saying that the combustion gas bleed probe may be modified in various ways without departing from the gist of the present invention. For example, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined, and furthermore, one or more of the configurations and methods according to the various modifications described below may be arbitrarily selected. Of course, the present invention may be employed in the configurations, methods, etc. according to the embodiments described above.
- the plurality of discharge ports 250 are arranged at the same position in the extending direction of the inner tube 21.
- the probe 2 is not limited to such a configuration.
- the plurality of discharge ports 250 may be arranged at different positions in the extending direction of the inner tube 21.
- the plurality of discharge ports 250 are arranged point-symmetrically with respect to the center O of the inner tube 21 when viewed in the extending direction of the inner tube 21. This is the structure.
- the probe 2 is not limited to such a configuration.
- the plurality of discharge ports 250 may not be arranged symmetrically with respect to the center O of the inner tube 21 when viewed in the extending direction of the inner tube 21. .
- the two discharge ports 250 are arranged at equal intervals in the circumferential direction of the inner tube 21.
- the probe 2 is not limited to such a configuration.
- three discharge ports 250 may be arranged at equal intervals in the circumferential direction of the inner tube 21.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Chimneys And Flues (AREA)
- Muffle Furnaces And Rotary Kilns (AREA)
Abstract
抽気率を増強した場合にも抽気ガスを十分に冷却でき、かつ所定の塩素除去効率を維持した運転を可能とする燃焼ガス抽気プローブ及びその運転方法を提供する。プローブ2は、キルン1からの燃焼ガスG1の一部を抽気する内管21と、内管21に穿設され、内管21が抽気した抽気ガスG2の流れ方向に対して直角方向、かつ抽気ガスG2の流れの中心方向に冷風Cを各々吐出する複数の吐出口25と、を備え、吐出口25は、抽気ガスG2の運動量MGに対する吐出口25一口当たりの冷風Cの運動量MCの比(MC/MG)が1.2~4.0を満たし、かつ抽気ガスG2の風速VGに対する冷風Cの風速VCの比(VC/VG)を内管21の内径Dで除した値(m-1)が1.5~3.5を満たすように、冷風Cを吐出する。
Description
本発明は、燃焼ガス抽気プローブ及びその運転方法に関する。
塩素バイパスシステムは、セメント製造設備から塩素を含むガスを抽気し系外に排出することで、塩素に起因するキルンやプレヒータ系のコーチングトラブルを防止する。塩素バイパスシステムは、セメント製造設備を構成するキルンの窯尻近傍に設けられた燃焼ガス抽気プローブ(以下、「プローブ」ともいう)によって燃焼ガスの一部を抽気する。抽気された燃焼ガス(以下、「抽気ガス」ともいう)は低温ガス(以下、「冷風」ともいう)と混合され、抽気ガス中に含まれる塩素分は気体状態から固体状態に相転移し、塩化カリウムを主成分とする塩素バイパスダストと呼ばれる形で回収・系外除去される。このとき抽気ガスを急冷することにより、塩素分がバイパスダストの微粉側へ濃縮することが分かっている。
塩素バイパスシステムにおいて、ガス中に含まれる原料分(粗粉)と塩素分(微粉)はサイクロンで分離され、原料分はキルン側へと戻され、塩素分は系外に排出される。しかし、冷却速度が遅いと塩素分濃縮が低い粗粉と共にキルン側に戻る塩素分量が多くなり、塩素除去効率は低下する。
ところで、近年、脱炭素や原燃料コスト低減を目的に廃プラスチックを始めとする廃棄物の活用が推進されており、セメント製造設備に持ち込まれる塩素量(インプット塩素量)が増加している。そのため、塩素バイパスシステムの能力増強、つまり抽気風量の増量(=抽気率の増強)が必要となっている。一方、抽気風量を増量させるとそのガス温度を一定以下に冷却するため、冷風量(低温ガス量)もそれに応じて増量させる必要があり、プローブ内のガス速度増加(ガス冷却の維持)への対応、例えばプローブの大型化が必要となる。他方、プローブを含む塩素バイパスシステムの大型化には設備場所の確保が困難な状況であり、例えば既存設備を活用してプローブ内のガス速度を増加させる必要がある。
下記特許文献1には、低温ガスを抽気ガスの吸引方向に対して直角中心方向、かつ断面の中心部に達する運動量を有するように吐出させることで、抽気ガスを冷却することが記載されている。
また、下記特許文献2には、低温ガスを抽気ガスの吸引方向に対して直角中心方向、かつ低温ガスの運動量ベクトルが鉛直下向きの成分を有するように吐出させることで、抽気ガスを冷却することが記載されている。
また、下記特許文献3には、低温ガスの運動量の合成ベクトルの方向が、プローブ断面の中心部から抽気ガスの速度分布の重心へ向かう方向と逆方向の成分を有するように低温ガスを吐出させることで、抽気ガスを冷却することが記載されている。
また、下記特許文献4には、冷風が導入される冷却管の旋回部が、抽気管を取り囲む円環状に形成された塩素バイパス装置が記載されている。
抽気率の増強のために、上記のように、プローブを大型化すると低温ガスがプローブの中心部まで届きにくくなり、また、プローブ内のガス速度を増加させると滞留時間が減少するため、プローブ内の混合冷却域の形成が悪化し、短時間かつ均一な冷却が難しい。抽気ガスの冷却が不十分になると塩素分濃縮が低い粗粉と共にキルン側に戻る塩素分量が多くなり、塩素バイパスシステムによる塩素除去効率は低下する。
特許文献1~3では、何れもプローブを流れる抽気ガスに対して直角方向に低温ガスを吐出させて冷却を行っているが、抽気率を増強した際の低温ガスの吐出速度や運動量に関する運転指標は明記していない。
特許文献4では、冷風は、旋回部で旋回しつつ抽気管内へ流入することで、抽気ガスと冷風が攪拌、混合されるため、抽気ガスを冷風によって急速に冷却することができる。しかしながら、冷風を旋回させながら流入させており、抽気ガスと冷風が混合するまでに冷風の持つ運動量が減衰してしまい、十分に冷却ができないおそれがある。
また、冷風の吹込み方法や条件によっては、窯尻に冷風がリーク(逆流や吹き抜け)し、コーチング付着の助長(キルン運転への悪影響)や熱ロス(燃料の増し焚き)が発生する。
また、冷風の吹込み方法や条件によっては、窯尻に冷風がリーク(逆流や吹き抜け)し、コーチング付着の助長(キルン運転への悪影響)や熱ロス(燃料の増し焚き)が発生する。
よって、本発明の目的は、抽気率を増強した場合にも抽気ガスを十分に冷却でき、かつ所定の塩素除去効率を維持した運転を可能とする燃焼ガス抽気プローブ及びその運転方法を提供することにある。また、本発明の別の目的は、抽気率を増強した場合にも抽気ガスを十分に冷却でき、かつ窯尻への冷風の逆流を抑制できる燃焼ガス抽気プローブ及びその運転方法を提供することにある。
本発明の燃焼ガス抽気プローブは、キルンからの燃焼ガスの一部を抽気するガス管と、
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスの流れ方向に対して直角方向、かつ前記抽気ガスの流れの中心方向に低温ガスを各々吐出する複数の吐出口と、を備え、
前記吐出口は、前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.2~4.0を満たし、かつ前記抽気ガスの風速に対する前記低温ガスの風速の比を前記ガス管の内径で除した値(m-1)が1.5~3.5を満たすように、前記低温ガスを吐出する。
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスの流れ方向に対して直角方向、かつ前記抽気ガスの流れの中心方向に低温ガスを各々吐出する複数の吐出口と、を備え、
前記吐出口は、前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.2~4.0を満たし、かつ前記抽気ガスの風速に対する前記低温ガスの風速の比を前記ガス管の内径で除した値(m-1)が1.5~3.5を満たすように、前記低温ガスを吐出する。
また、本発明の燃焼ガス抽気プローブの運転方法は、キルンからの燃焼ガスの一部を抽気するガス管と、
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスの流れ方向に対して直角方向、かつ前記抽気ガスの流れの中心方向に低温ガスを各々吐出する複数の吐出口と、を備える燃焼ガス抽気プローブの運転方法であって、
前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.2~4.0を満たし、かつ前記抽気ガスの風速に対する前記低温ガスの風速の比を前記ガス管の内径で除した値(m-1)が1.5~3.5を満たす。
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスの流れ方向に対して直角方向、かつ前記抽気ガスの流れの中心方向に低温ガスを各々吐出する複数の吐出口と、を備える燃焼ガス抽気プローブの運転方法であって、
前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.2~4.0を満たし、かつ前記抽気ガスの風速に対する前記低温ガスの風速の比を前記ガス管の内径で除した値(m-1)が1.5~3.5を満たす。
本発明によれば、抽気率が増加した場合にも抽気ガスを十分に冷却でき、かつ所定の塩素除去効率を維持した運転を可能とする。
本発明の燃焼ガス抽気プローブは、キルンからの燃焼ガスの一部を抽気するガス管と、
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスに対して低温ガスを各々吐出する複数の吐出口と、を備え、
前記複数の吐出口は、各々の前記吐出口から吐出される前記低温ガスが前記ガス管内で互いに衝突しないように配置されている。
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスに対して低温ガスを各々吐出する複数の吐出口と、を備え、
前記複数の吐出口は、各々の前記吐出口から吐出される前記低温ガスが前記ガス管内で互いに衝突しないように配置されている。
また、本発明の燃焼ガス抽気プローブの運転方法は、上記の燃焼ガス抽気プローブの運転方法であって、
前記吐出口から吐出される前記低温ガスの風速が25~180m/sを満たし、かつ前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.8~5.3を満たす。
前記吐出口から吐出される前記低温ガスの風速が25~180m/sを満たし、かつ前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.8~5.3を満たす。
本発明によれば、抽気率を増強した場合にも抽気ガスを十分に冷却でき、かつ窯尻への冷風の逆流を抑制できる。
[第1実施形態]
以下、本発明に係る燃焼ガス抽気プローブ及びその運転方法における第1実施形態について、図1~図3を参照しながら説明する。なお、各図において、図面の寸法比と実際の寸法比とは、必ずしも一致しておらず、また、各図面の間での寸法比も、必ずしも一致していない。
以下、本発明に係る燃焼ガス抽気プローブ及びその運転方法における第1実施形態について、図1~図3を参照しながら説明する。なお、各図において、図面の寸法比と実際の寸法比とは、必ずしも一致しておらず、また、各図面の間での寸法比も、必ずしも一致していない。
図1は、本発明に係る燃焼ガス抽気プローブを含む塩素バイパスシステムの第1実施形態を模式的に示す全体構成図である。塩素バイパスシステム100は、キルン1の窯尻1aから最下段サイクロン(不図示)に至るまでのキルン排ガス流路から燃焼ガスG1の一部を抽気するプローブ2と、プローブ2に冷風C(低温ガスに相当)を供給する冷風ファン3と、その冷風ファン3の出力を調整するインバーター4と、抽気ガスG2と冷風Cが混合された混合ガスG3に含まれる粗紛A1を分離する分級機としてのサイクロン5と、サイクロン5から排出された微粉A2を含む混合ガスG4を冷却する冷却器6と、冷却器6から排出された排ガスG5から微粉A2を回収する集塵装置7と、集塵装置7の排ガスG6を誘引する排気ファン8と、排気ファン8の風速等を測定する計測器9(風速計・温度計等)と、を備える。
図2は、プローブ2を模式的に示す断面図である。プローブ2は、窯尻1aからキルン排ガス流路の一部として上方へ向かう立上がり部1bに突設されている。プローブ2の入口2aは、立上がり部1b内のキルン排ガス流路に開口する。プローブ2による抽気率は、5%以上であり、好ましくは10~15%である。なお、抽気率は、窯尻1aを単位時間に通過する燃焼ガスG1のガス風量(Nm3/単位時間)に対する、単位時間に抽気される抽気ガスG2のガス風量(Nm3/単位時間)の割合(比率)をいう。
また、抽気ガスG2の抽気量は、2,500Nm3/h以上が好ましく、10,000Nm3/h以上がより好ましい。
プローブ2は、円筒状の内管21(ガス管に相当)と、内管21を囲む円筒状の外管22と、内管21と外管22との間に形成された冷風通路23と、冷風ファン3からの冷風を冷風通路23に供給する供給口24とを備える。抽気ガスG2は、内管21内を矢印の方向に流れる。
プローブ2は、内管21に穿設され、冷風通路23に供給された冷風Cを抽気ガスG2に向かって吐出する複数の吐出口25を備える。吐出口25は、円状に形成されている。
図3は、図2のIII-III矢視図である。複数の吐出口25は、内管21の延伸方向において略同じ位置に配置され、好ましくは同じ位置に配置されている。言い換えると、複数の吐出口25は、内管21の延伸方向に対して垂直な面内に配置されていることが好ましい。複数の吐出口25は、内管21内の抽気ガスG2の流れ方向に対して直角方向に冷風Cを各々吐出する。ただし、複数の吐出口25は、後述するように、各吐出口25から吐出された冷風Cが互いに衝突して拡散することができれば、内管21の延伸方向において完全に同じ位置に配置される必要はない。
本実施形態においては、2つの吐出口25が、内管21の中心Oを通る鉛直線Pを対称軸として線対称の位置に設けられている。2つの吐出口25は、吐出口25の中心25cと内管21の中心Oとを結ぶ直線Lと、内管21の中心Oを通る水平線Hとのなす角度が15°となるように左右にそれぞれ配置されている。2つの吐出口25は、内管21の中心Oに向かって冷風Cを各々吐出する。言い換えると、2つの吐出口25は、内管21内の抽気ガスG2の流れの中心方向に冷風Cを各々吐出する。そのため、2つの吐出口25から各々吐出される冷風Cは、内管21の中心O付近で互いに衝突して拡散する。これにより、冷風Cと抽気ガスG2との十分な混合が可能となる。
一方、衝突後の冷風Cは、抽気ガスG2の流れ方向と逆方向、すなわち窯尻1aに向かう方向にも速度ベクトルを有する。窯尻1aに向かう冷風Cの風量が過大になると、窯尻1aへの冷風Cの逆流が生じ、熱ロスを生み出す要因となり得る。
塩素バイパスシステム100は、不図示の制御部を備える。制御部は、計測器9の計測値から算出される排気風量と、冷風ファン3から吐出させる冷風量とから抽気ガスG2の風量と運動量(モメンタム)をリアルタイムで把握することができると共に、インバーター4を制御して最適な出力の冷風ファン3の運転を常時できる。
なお、本明細書において、ガスの(単位時間当たりの)運動量は以下のように定義される。
ガスの運動量[kg・m/s2]=密度[kg/m3]×風速[m/s]×風量[m3/s]
ガスの運動量[kg・m/s2]=密度[kg/m3]×風速[m/s]×風量[m3/s]
制御部は、プローブ2の入口2aにおける抽気ガスG2の風速、風量、温度から算出される抽気ガスG2の運動量MGに対する、吐出口25一口当たりの冷風Cの風速、風量、温度から算出される冷風Cの運動量MCの比(MC/MG)が1.2~4.0の範囲となるように、かつ抽気ガスG2の風速VGに対する冷風Cの風速VCの比(VC/VG)をプローブ径Dで除した値[m-1]が1.5~3.5の範囲となるように、冷風ファン3の出力を調整する。これにより、抽気率が増加した場合にも抽気ガスG2を十分に冷却でき、かつ所定の塩素除去効率を維持した運転を可能とする(詳しくは後述の実施例1を参照)。
運動量の比(MC/MG)を下げ過ぎると、冷風Cの運動量MCが抽気ガスG2の運動量MGに対して小さいため、抽気ガスG2との十分な混合が得られにくくなる。そのため、運動量の比(MC/MG)は、1.2以上であり、好ましくは3.0以上である。
一方、運動量の比(MC/MG)を上げ過ぎると圧損が増加し、冷風ファン3の大型化も必要となる。また、運動量の比(MC/MG)の増加に伴う、プローブ2の出口断面2bにおける温度偏差(詳しくは後述する)の低減割合が縮小する一方で、プローブ2内を逆流して窯尻1aに到達する冷風量が増加する。そのため、運動量の比(MC/MG)は、4.0以下であり、好ましくは3.6以下である。
風速の比/プローブ径(VC/VG/D)を下げ過ぎると、冷風Cは衝突拡散する前に抽気ガスG2によってサイクロン5の方へと流され、十分な混合が得られにくくなる。そのため、風速の比/プローブ径(VC/VG/D)は、1.5以上が好ましく、2.3以上がより好ましい。
風速の比/プローブ径(VC/VG/D)を上げ過ぎると、圧損が増加し、冷風ファン3の大型化も必要となる。また、プローブ2内を逆流して窯尻1aに到達する冷風量が増加する。そのため、風速の比/プローブ径(VC/VG/D)は、3.5以下が好ましく、3.0以下がより好ましい。
冷風Cの風速VCは、25~180m/sが好ましく、50~150m/sがより好ましい。
なお、吐出口25の開口面積を変動させる不図示の可変ノズルを設け、冷風Cの風量を維持したまま風速VCのみを増加させることで運動量の比(MC/MG)を増加してもよい。
以下、本発明についてさらに詳細に説明するために具体的な実施例等を示すが、本発明はこれら実施例の態様に限定されるものではない。
本発明者らは、抽気ガスG2と冷風Cの混合状態のシミュレーション解析を通じ、抽気ガスG2の冷却効率改善に資する因子の探索を実施した。シミュレーション解析に用いたソフトウェアは、ANSYS社製のFluent 2020 R2である。塩素バイパスシステム100での抽気率は5~15%とした。また、冷風Cは20℃であり、プローブ2の出口断面2b(図2を参照)における平均温度が400℃となるように冷風Cを導入した。各条件では吐出口25の面積を調整することで、所定の風量を維持したまま冷風Cの速度を変化させている。
(解析1)
抽気率や冷風Cの風速(表1では「冷風速度」と表示)、プローブ径Dを変更したプローブ2内の温度分布を評価した。シミュレーション解析に用いたプローブ2の形状は、図2及び図3に示す形状である。また、解析条件を表1に示す。抽気率は5~15%、冷風速度は28~200m/sの範囲で実施した。なお、プローブ2のサイズは、冷風Cと抽気ガスG2の運動量の比(MC/MG)などから設定し、解析例1-1~3-2をAタイプ、解析例4-1~4-4をAタイプの1.5倍の断面積に拡大、解析例5-1~5-2をAタイプの0.5倍の断面積に縮小させて実施した。表1において、「冷風-抽気ガス運動量比」は、抽気ガスG2の運動量MGに対する、吐出口25一口当たりの冷風Cの運動量MCの比(MC/MG)を意味し、「冷風-抽気ガス風速比/プローブ径」は、抽気ガスG2の風速VGに対する冷風Cの風速VCの比/プローブ径D(VC/VG/D)を意味する(後述の表2~表4についても同様)。
抽気率や冷風Cの風速(表1では「冷風速度」と表示)、プローブ径Dを変更したプローブ2内の温度分布を評価した。シミュレーション解析に用いたプローブ2の形状は、図2及び図3に示す形状である。また、解析条件を表1に示す。抽気率は5~15%、冷風速度は28~200m/sの範囲で実施した。なお、プローブ2のサイズは、冷風Cと抽気ガスG2の運動量の比(MC/MG)などから設定し、解析例1-1~3-2をAタイプ、解析例4-1~4-4をAタイプの1.5倍の断面積に拡大、解析例5-1~5-2をAタイプの0.5倍の断面積に縮小させて実施した。表1において、「冷風-抽気ガス運動量比」は、抽気ガスG2の運動量MGに対する、吐出口25一口当たりの冷風Cの運動量MCの比(MC/MG)を意味し、「冷風-抽気ガス風速比/プローブ径」は、抽気ガスG2の風速VGに対する冷風Cの風速VCの比/プローブ径D(VC/VG/D)を意味する(後述の表2~表4についても同様)。
(解析2)
上記Aタイプのプローブ2において、吐出口25の配置や口数を変更した。解析条件を表2に、吐出口25の配置の様子を図4A~図4Dにそれぞれ示す。表2において、「横」は吐出口25が図4Aの配置であることを示し、「下」は吐出口25が図4Bの配置であることを示し、「Y」は吐出口25が図4Cの配置であることを示し、「逆Y」は吐出口25が図4Dの配置であることを示す(後述の表4についても同様)。
上記Aタイプのプローブ2において、吐出口25の配置や口数を変更した。解析条件を表2に、吐出口25の配置の様子を図4A~図4Dにそれぞれ示す。表2において、「横」は吐出口25が図4Aの配置であることを示し、「下」は吐出口25が図4Bの配置であることを示し、「Y」は吐出口25が図4Cの配置であることを示し、「逆Y」は吐出口25が図4Dの配置であることを示す(後述の表4についても同様)。
プローブ2の出口断面2bにおける平均温度を400℃となるように冷風Cを導入させ、抽気ガスG2の温度を塩素化合物の融点である600~700℃以下(特許第4294871号公報参照)に下げる観点から、ガス冷却の程度の判断は、プローブ2の出口断面2bにおける温度偏差が200℃以下の達成可否を評価基準とした。ここで、プローブ2の出口断面2bにおける温度偏差とは、出口断面2b内における平均温度からのバラツキである。
冷風Cの風速の増加によって窯尻1aへの冷風Cの混入(逆流)が懸念される。そこで冷風量に対する窯尻1aに到達した冷風量を定量化するため、プローブ2と窯尻1aの接合部(入口2a)での温度低下(窯尻1aの温度との差分)から算定し、導入した冷風Cの逆流率を算定した。この逆流率は吐出した冷風Cが衝突し拡散する力の指標の一つと見なすことができ、この値が高いとプローブ2内における冷風Cの混合力が強いことを示す。流体シミュレーションでは窯尻1aに到達した冷風Cはほぼ全量が再度プローブ2側へ流れる一方、その量が過大になると冷風Cが窯尻1aに吹き抜けて熱ロスを生み出す要因になりうる。そのため、逆流率は極力抑制することが望まれ、本解析では10%以下とする。
解析1におけるプローブ2の出口断面2bにおける温度偏差、および逆流率を表3に示す。表3において、「○」は、プローブ2の出口断面2bにおける温度偏差が200℃以下であり、かつ、逆流率が10%以下であることを示し、「×」は、プローブ2の出口断面2bにおける温度偏差が200℃を超えるか、また、逆流率が10%を超えることを示す。
冷風-抽気ガス運動量比の増加に伴い、温度偏差は低減し、抽気率15%の条件、プローブ径が異なる場合であっても温度偏差は低減する傾向となった。
解析1の冷風-抽気ガス運動量比とプローブ2の出口断面2bにおける温度偏差の関係を図5に示す。白抜き部は判定で「×」とした条件であり、塗りつぶし部は判定で「○」とした条件である(図6においても同様)。冷風-抽気ガス運動量比とプローブ2の出口断面2bにおける温度偏差との間には、抽気率、プローブ径Dの大小によらず相関が確認された。一方、冷風-抽気ガス運動量比のみで運転条件を規定することはできない。
そこで、本発明者らは、冷風-抽気ガス運動量比の他に冷風Cの衝突に関わる因子として、風速とプローブ径Dの因子を含む指標で判定を行った。結果を図6に示す。図6に示すように、冷風-抽気ガス運動量比が1.2~4.0、かつ冷風-抽気ガス風速比/プローブ径(m-1)が1.5~3.5の範囲であれば、抽気率、プローブ径Dに関わらずプローブ2の出口断面2bにおける温度偏差が200℃以下となった。よって、この指標を用いることで、異なる塩素バイパスシステムであっても簡易に塩素バイパスシステムの十分な冷却性能を達成できる。
解析2におけるプローブ2の出口断面2bにおける温度偏差を表4に示す。表4において、「○」は逆流率が10%以下であることを示し、「×」は逆流率が10%を超えることを示す。
吐出口25の配置に関わらず、冷風-抽気ガス運動量比が増加するに従い、プローブ2の出口断面2bにおける温度偏差は低減する傾向となった。そのため、吐出口25の配置によらず冷風-抽気ガス運動量比を制御することで所定の冷却性能を達成することができる。なお、吐出口25を「横」に配置した場合が、冷却性能が最も高い。すなわち、複数の吐出口25は、内管21の水平方向の両側に対向配置され、水平方向に冷風Cを吐出する一対の吐出口25を含むことが好ましい。これは、水平方向の両側に対向配置された一対の吐出口25から水平方向に吐出された冷風C同士を正面衝突させた場合、冷風Cが上下方向に偏流しにくく、冷却性能が高いものと考えられる。
以上のように、本実施形態に係るプローブ2は、キルン1からの燃焼ガスG1の一部を抽気する内管21と、内管21に穿設され、内管21が抽気した抽気ガスG2の流れ方向に対して直角方向、かつ抽気ガスG2の流れの中心方向に冷風Cを各々吐出する複数の吐出口25と、を備え、吐出口25は、抽気ガスG2の運動量MGに対する吐出口25一口当たりの冷風Cの運動量MCの比(MC/MG)が1.2~4.0を満たし、かつ抽気ガスG2の風速VGに対する冷風Cの風速VCの比(VC/VG)を内管21のプローブ径Dで除した値(m-1)が1.5~3.5を満たすように、冷風Cを吐出する。
この構成によれば、抽気率が増加した場合にも抽気ガスG2を十分に冷却でき、かつ所定の塩素除去効率を維持した運転を可能とする。
また、本実施形態に係るプローブ2においては、複数の吐出口25は、内管21の水平方向の両側に対向配置され、水平方向に冷風Cを吐出する一対の吐出口25を含むことが好ましい。
この構成によれば、良好な冷却性能を達成することができる。
また、本実施形態に係るプローブ2においては、冷風Cの風速VCは、25~180m/sであることが好ましい。
この構成によれば、良好な冷却性能を達成することができる。
また、本実施形態に係るプローブ2においては、複数の吐出口25から各々吐出される冷風Cは、互いに衝突した後に抽気ガスG2の流れ方向と逆方向に速度ベクトルを有し、吐出される冷風Cに対する窯尻1aに逆流する冷風Cの比が10%以下となることが好ましい。
この構成によれば、逆流率を低く抑え、熱ロスを抑制することができる。
また、本実施形態に係るプローブ2の運転方法は、キルン1からの燃焼ガスG1の一部を抽気する内管21と、内管21に穿設され、内管21が抽気した抽気ガスG2の流れ方向に対して直角方向、かつ抽気ガスG2の流れの中心方向に冷風Cを各々吐出する複数の吐出口25と、を備えるプローブ2の運転方法であって、抽気ガスG2の運動量MGに対する吐出口25一口当たりの冷風Cの運動量MCの比(MC/MG)が1.2~4.0を満たし、かつ抽気ガスG2の風速VGに対する冷風Cの風速VCの比(VC/VG)を内管21のプローブ径Dで除した値(m-1)が1.5~3.5を満たす。
この構成によれば、抽気率が増加した場合にも抽気ガスG2を十分に冷却でき、かつ所定の塩素除去効率を維持した運転を可能とする。
なお、燃焼ガス抽気プローブ及びその運転方法は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。また、燃焼ガス抽気プローブは、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記した複数の実施形態の各構成や各方法等を任意に採用して組み合わせてもよく、さらに、下記する各種の変形例に係る構成や方法等を任意に一つ又は複数選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
上記実施形態に係るプローブ2においては、2つの吐出口25が内管21に穿設されている、という構成である。しかしながら、プローブ2は、かかる構成に限られない。例えば図4Aに示すように、3つ以上の吐出口25が内管21に穿設されているという構成でもよい。3つ以上の吐出口25を設ける場合、内管21の周方向に等間隔に配置されていることが好ましい。
[第2実施形態]
以下、本発明に係る燃焼ガス抽気プローブ及びその運転方法における第2実施形態について、図7~図9を参照しながら説明する。なお、各図において、図面の寸法比と実際の寸法比とは、必ずしも一致しておらず、また、各図面の間での寸法比も、必ずしも一致していない。
以下、本発明に係る燃焼ガス抽気プローブ及びその運転方法における第2実施形態について、図7~図9を参照しながら説明する。なお、各図において、図面の寸法比と実際の寸法比とは、必ずしも一致しておらず、また、各図面の間での寸法比も、必ずしも一致していない。
図7は、本発明に係る燃焼ガス抽気プローブを含む塩素バイパスシステムの第2実施形態を模式的に示す全体構成図である。塩素バイパスシステム100は、キルン1の窯尻1aから最下段サイクロン(不図示)に至るまでのキルン排ガス流路から燃焼ガスG1の一部を抽気するプローブ2と、プローブ2に冷風C(低温ガスに相当)を供給する冷風ファン3と、抽気ガスG2と冷風Cが混合された混合ガスG3に含まれる粗紛A1を分離する分級機としてのサイクロン5と、サイクロン5から排出された微粉A2を含む混合ガスG4を冷却する冷却器6と、冷却器6から排出された排ガスG5から微粉A2を回収する集塵装置7と、集塵装置7の排ガスG6を誘引する排気ファン8と、を備える。
図8は、プローブ2を模式的に示す断面図である。プローブ2は、窯尻1aからキルン排ガス流路の一部として上方へ向かう立上がり部1bに突設されている。プローブ2の入口2aは、立上がり部1b内のキルン排ガス流路に開口する。プローブ2による抽気率は、10%以上であり、好ましくは12%以上であり、より好ましくは15%以上である。なお、抽気率は、窯尻1aを単位時間に通過する燃焼ガスG1のガス風量(Nm3/単位時間)に対する、単位時間に抽気される抽気ガスG2のガス風量(Nm3/単位時間)の割合(比率)をいう。
また、抽気ガスG2の抽気量は、2,500Nm3/h以上が好ましく、10,000Nm3/h以上がより好ましい。
プローブ2は、円筒状の内管21(ガス管に相当)と、内管21を囲む円筒状の外管22と、内管21と外管22との間に形成された冷風通路23と、冷風ファン3からの冷風を冷風通路23に供給する供給口24とを備える。抽気ガスG2は、内管21内を矢印の方向に流れる。
プローブ2は、内管21に穿設され、冷風通路23に供給された冷風Cを抽気ガスG2に向かって吐出する複数の吐出口250を備える。吐出口250は、円状に形成されている。
図9は、図8のIX-IX矢視図である。複数の吐出口250は、内管21の延伸方向において略同じ位置に配置され、好ましくは同じ位置に配置されている。言い換えると、複数の吐出口250は、内管21の延伸方向に対して垂直な面内に配置されていることが好ましい。ただし、複数の吐出口250は、内管21の延伸方向において完全に同じ位置に配置される必要はない。
本実施形態において、2つの吐出口250は、内管21の中心Oを対称の中心として点対称に配置されている。2つの吐出口250は、内管21の周方向に互いに180度ずれて配置されている。
吐出口250は、中心250cが水平線Hと平行となるように配置されている。2つの吐出口250は、内管21内の抽気ガスG2に対してそれぞれ冷風Cを吐出する。すなわち、2つの吐出口250は、互い違いに配置されており、各々の吐出口250から吐出される冷風Cは、内管21内で互いに衝突しない。これにより、各々の吐出口250から吐出される冷風Cは、互いに衝突して拡散することがなく、窯尻1a側へ向かう方向の流れが生じにくい。その結果、窯尻1aへの冷風Cの逆流を抑えて、熱ロスを抑制できる。
内管21は、吐出口250の周囲を取り囲むノズル260を有することが好ましい。円筒状のノズル260は、吐出口250の中心250cと同軸上に配置される。吐出口250の周囲にノズル260を設けることで、冷風Cは吐出口250の中心250cに沿った方向に吐出される。なお、内管21の肉厚が十分に大きい等の場合、ノズル260は必ずしも必要ではない。
塩素バイパスシステム100は、不図示の制御部を備える。制御部は、冷風ファン3の出力を調整できる。
制御部は、プローブ2の入口2aにおける抽気ガスG2の風速、風量、温度から算出される抽気ガスG2の運動量MGに対する、吐出口250一口当たりの冷風Cの風速、風量、温度から算出される冷風Cの運動量MCの比(MC/MG)が1.8~5.3の範囲となるように、冷風ファン3の出力を調整する。これにより、抽気率が増加した場合にも抽気ガスG2を十分に冷却でき、かつ所定の塩素除去効率を維持した運転を可能とする(詳しくは後述の実施例2を参照)。
なお、本明細書において、ガスの(単位時間当たりの)運動量は以下のように定義される。
ガスの運動量[kg・m/s2]=密度[kg/m3]×風速[m/s]×風量[m3/s]
ガスの運動量[kg・m/s2]=密度[kg/m3]×風速[m/s]×風量[m3/s]
運動量の比(MC/MG)を下げ過ぎると、冷風Cの運動量MCが抽気ガスG2の運動量MGに対して小さいため、抽気ガスG2との十分な混合が得られにくくなる。そのため、運動量の比(MC/MG)は、1.8以上であり、好ましくは3.0以上である。
一方、運動量の比(MC/MG)を上げ過ぎると圧損が増加し、冷風ファン3の大型化も必要となる。また、運動量の比(MC/MG)の増加に伴う、プローブ2の出口断面2bにおける温度偏差(詳しくは後述する)の低減割合が縮小する一方で、プローブ2内を逆流して窯尻1aに到達する冷風量が増加する。そのため、運動量の比(MC/MG)は、5.3以下であり、好ましくは4.0以下である。
冷風Cの風速は、25~180m/sが好ましく、50~150m/sがより好ましい。
なお、吐出口250の開口面積を変動させる不図示の可変ノズルを設け、冷風Cの風量を維持したまま風速のみを増加させることで運動量の比(MC/MG)を増加してもよい。
以下、本発明についてさらに詳細に説明するために具体的な実施例等を示すが、本発明はこれら実施例の態様に限定されるものではない。
本発明者らは、抽気ガスG2と冷風Cの混合状態のシミュレーション解析を通じ、複数の吐出口250の配置による効果確認を実施した。シミュレーション解析に用いたソフトウェアは、ANSYS社製のFluent 2020 R2である。
シミュレーション解析に用いたプローブの断面形状を図10A及び図10Bに示す(なお、外管22は図示していない)。図10Aは、内管21が抽気した抽気ガスG2の流れ方向に対して直角方向に冷風Cを各々吐出し、かつ各々吐出される冷風Cが内管21内で互いに衝突しないように、一対の吐出口250を配置した例を示す。図10Bは、内管21が抽気した抽気ガスG2の流れ方向に対して直角方向に、かつ抽気ガスG2の流れの中心方向に冷風Cを各々吐出するように、一対の吐出口250Aを配置した例を示す。
解析条件を表5に示す。塩素バイパスシステム100での抽気率は10~15%とした。また、冷風Cは20℃であり、プローブ2の出口断面2b(図2を参照)における平均温度が400℃となるように冷風Cを導入した。各条件では吐出口250,250Aの面積を調整することで、所定の風量を維持したまま冷風Cの速度を変化させている。
冷風Cの風速は、プローブ2の入口2aにおける抽気ガスG2の風速、風量、温度から算出される抽気ガスG2の運動量に対する、吐出口250,250A一口当たりの冷風Cの風速、風量、温度から算出される冷風Cの運動量の比を鑑みて設定し、解析した。
表5において、「冷風速度」は、冷風Cの風速を意味し、「冷風-抽気ガス運動量比」は、抽気ガスG2の運動量MGに対する、吐出口250,250A一口当たりの冷風Cの運動量MCの比(MC/MG)を意味する(後述の表6についても同様)。また、表5において、「互い違い型」は、吐出口が図10Aに示す配置であることを意味し、「衝突型」は、吐出口が図10Bに示す配置であることを意味する。
プローブ2の出口断面2bにおける平均温度を400℃となるように冷風Cを導入させ、抽気ガスG2の温度を塩素化合物の融点である600~700℃以下(特許第4294871号公報参照)に下げる観点から、ガス冷却の程度の判断は、プローブ2の出口断面2bにおける温度偏差が200℃以下の達成可否を評価基準とした。ここで、プローブ2の出口断面2bにおける温度偏差とは、出口断面2b内における平均温度からのバラツキである。
また、併せてプローブ2の入口2aに達した冷風Cの割合を、プローブ2と窯尻1aの接合部(入口2a)での温度低下(窯尻1aの温度との差分)から算定し、導入した冷風Cの逆流率として評価した。プローブ2の出口断面2bにおける温度偏差、および窯尻1aへの逆流率を表6に示す。表6において、「○」は逆流率が0であることを示し、「△」は逆流率が10%以下であることを示し、「×」は逆流率が10%を超えることを示す。
解析例6-1~7-2の「互い違い型」では、同条件であれば、解析例8-1~9-2の「衝突型」と比べて温度偏差がやや高いが、温度偏差が200℃以下であり、十分な冷却がなされている。
また、解析例6-1~7-2の「互い違い型」では、窯尻1aへの逆流が生じていない。これは、「衝突型」では、複数の吐出口250Aから各々吐出される冷風Cは、互いに衝突した後に窯尻1a側への速度ベクトルが発生するが、「互い違い型」では、冷風C同士の直接衝突がないため、窯尻1a側への速度ベクトルの発生量が少ないためである。
冷風-抽気ガス運動量比とプローブ2の出口断面2bにおける温度偏差の関係を図11に示す。図11に示されるように、冷風-抽気ガス運動量比は、1.8~5.3の範囲であり、3.0~4.0の範囲ではより早期にプローブ2内の抽気ガスG2の温度の均一化が図れる。
以上のように、本実施形態に係るプローブ2は、キルン1からの燃焼ガスG1の一部を抽気する内管21と、内管21に穿設され、内管21が抽気した抽気ガスG2に対して冷風Cを各々吐出する複数の吐出口250と、を備え、複数の吐出口250は、各々の吐出口250から吐出される冷風Cが内管21内で互いに衝突しないように配置されている。
この構成によれば、各々の吐出口250から吐出される冷風Cは、互いに衝突して拡散することがなく、窯尻1a側へ向かう方向の流れが生じにくい。これにより、抽気率を増強した場合にも抽気ガスG2を十分に冷却でき、かつ窯尻1aへの冷風Cの逆流を抑制できる。
また、本実施形態に係るプローブ2においては、複数の吐出口250は、内管21の延伸方向において同じ位置に配置されていることが好ましい。
この構成によれば、良好な冷却性能を達成することができる。
また、本実施形態に係るプローブ2においては、複数の吐出口250は、内管21の延伸方向に見たとき、内管21の中心Oを対称の中心として点対称に配置されていることが好ましい。
この構成によれば、良好な冷却性能を達成することができる。
また、本実施形態に係るプローブ2においては、複数の吐出口250は、内管21の周方向に等間隔に配置されていることが好ましい。
この構成によれば、良好な冷却性能を達成することができる。
また、本実施形態に係るプローブ2の運転方法は、吐出口250から吐出される冷風Cの風速が25~180m/sを満たし、かつ抽気ガスG2の運動量MGに対する吐出口250一口当たりの冷風Cの運動量MCの比(MC/MG)が1.8~5.3を満たす。
この構成によれば、抽気率を増強した場合にも抽気ガスG2を十分に冷却でき、かつ窯尻1aへの冷風Cの逆流を抑制できる。
また、本実施形態に係るプローブ2の運転方法においては、冷風Cは、内管21の内壁面に衝突した後、窯尻1aに逆流しないことが好ましい。
この構成によれば、逆流率を低く抑えることができる。
なお、燃焼ガス抽気プローブ及びその運転方法は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。また、燃焼ガス抽気プローブは、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記した複数の実施形態の各構成や各方法等を任意に採用して組み合わせてもよく、さらに、下記する各種の変形例に係る構成や方法等を任意に一つ又は複数選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
(1)上記実施形態に係るプローブ2においては、複数の吐出口250は、内管21の延伸方向において同じ位置に配置されている、という構成である。しかしながら、プローブ2は、かかる構成に限られない。例えば、複数の吐出口250は、内管21の延伸方向において異なる位置に配置されてもよい。
(2)本実施形態に係るプローブ2においては、複数の吐出口250は、内管21の延伸方向に見たとき、内管21の中心Oを対称の中心として点対称に配置されている、という構成である。しかしながら、プローブ2は、かかる構成に限られない。例えば、図12A及び図12Bに示すように、複数の吐出口250は、内管21の延伸方向に見たとき、内管21の中心Oを対称の中心として点対称に配置されていなくともよい。
(3)本実施形態に係るプローブ2においては、2つの吐出口250は、内管21の周方向に等間隔に配置されている、という構成である。しかしながら、プローブ2は、かかる構成に限られない。例えば、図12Cに示すように、3つの吐出口250が、内管21の周方向に等間隔に配置されていてもよい。
1 :キルン
1a :窯尻
1b :立上がり部
2 :プローブ
2a :プローブの入口
2b :プローブの出口断面
3 :冷風ファン
4 :インバーター
5 :サイクロン
6 :冷却器
7 :集塵装置
8 :排気ファン
9 :計測器
21 :内管
22 :外管
23 :冷風通路
24 :供給口
25 :吐出口
25c :吐出口の中心
250 :吐出口
250c:吐出口の中心
260 :ノズル
100 :塩素バイパスシステム
A1 :粗紛
A2 :微粉
C :冷風
D :プローブ径
G1 :燃焼ガス
G2 :抽気ガス
G3 :混合ガス
G4 :混合ガス
G5 :排ガス
G6 :排ガス
H :水平線
MC :冷風の運動量
MG :抽気ガスの運動量
O :内管の中心
VC :冷風の風速
VG :抽気ガスの風速
1a :窯尻
1b :立上がり部
2 :プローブ
2a :プローブの入口
2b :プローブの出口断面
3 :冷風ファン
4 :インバーター
5 :サイクロン
6 :冷却器
7 :集塵装置
8 :排気ファン
9 :計測器
21 :内管
22 :外管
23 :冷風通路
24 :供給口
25 :吐出口
25c :吐出口の中心
250 :吐出口
250c:吐出口の中心
260 :ノズル
100 :塩素バイパスシステム
A1 :粗紛
A2 :微粉
C :冷風
D :プローブ径
G1 :燃焼ガス
G2 :抽気ガス
G3 :混合ガス
G4 :混合ガス
G5 :排ガス
G6 :排ガス
H :水平線
MC :冷風の運動量
MG :抽気ガスの運動量
O :内管の中心
VC :冷風の風速
VG :抽気ガスの風速
Claims (11)
- キルンからの燃焼ガスの一部を抽気するガス管と、
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスの流れ方向に対して直角方向、かつ前記抽気ガスの流れの中心方向に低温ガスを各々吐出する複数の吐出口と、を備え、
前記吐出口は、前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.2~4.0を満たし、かつ前記抽気ガスの風速に対する前記低温ガスの風速の比を前記ガス管の内径で除した値(m-1)が1.5~3.5を満たすように、前記低温ガスを吐出することを特徴とする燃焼ガス抽気プローブ。 - 前記複数の吐出口は、前記ガス管の水平方向の両側に対向配置され、水平方向に前記低温ガスを吐出する一対の前記吐出口を含むことを特徴とする請求項1に記載の燃焼ガス抽気プローブ。
- 前記低温ガスの風速は、25~180m/sであることを特徴とする請求項1に記載の燃焼ガス抽気プローブ。
- 前記複数の吐出口から各々吐出される前記低温ガスは、互いに衝突した後に前記抽気ガスの流れ方向と逆方向に速度ベクトルを有し、
吐出される前記低温ガスに対する窯尻に逆流する前記低温ガスの比が10%以下となることを特徴とする請求項1に記載の燃焼ガス抽気プローブ。 - キルンからの燃焼ガスの一部を抽気するガス管と、
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスの流れ方向に対して直角方向、かつ前記抽気ガスの流れの中心方向に低温ガスを各々吐出する複数の吐出口と、を備える燃焼ガス抽気プローブの運転方法であって、
前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.2~4.0を満たし、かつ前記抽気ガスの風速に対する前記低温ガスの風速の比を前記ガス管の内径で除した値(m-1)が1.5~3.5を満たすことを特徴とする燃焼ガス抽気プローブの運転方法。 - キルンからの燃焼ガスの一部を抽気するガス管と、
前記ガス管に穿設され、前記ガス管が抽気した抽気ガスに対して低温ガスを各々吐出する複数の吐出口と、を備え、
前記複数の吐出口は、各々の前記吐出口から吐出される前記低温ガスが前記ガス管内で互いに衝突しないように配置されていることを特徴とする燃焼ガス抽気プローブ。 - 前記複数の吐出口は、前記ガス管の延伸方向において同じ位置に配置されていることを特徴とする請求項6に記載の燃焼ガス抽気プローブ。
- 前記複数の吐出口は、前記ガス管の延伸方向に見たとき、前記ガス管の中心を対称の中心として点対称に配置されていることを特徴とする請求項6に記載の燃焼ガス抽気プローブ。
- 前記複数の吐出口は、前記ガス管の周方向に等間隔に配置されていることを特徴とする請求項6に記載の燃焼ガス抽気プローブ。
- 請求項6~9の何れか1項に記載の燃焼ガス抽気プローブの運転方法であって、
前記吐出口から吐出される前記低温ガスの風速が25~180m/sを満たし、かつ前記抽気ガスの運動量に対する前記吐出口一口当たりの前記低温ガスの運動量の比が1.8~5.3を満たすことを特徴とする燃焼ガス抽気プローブの運転方法。 - 前記低温ガスは、前記ガス管の内壁面に衝突した後、窯尻に逆流しないことを特徴とする請求項10に記載の燃焼ガス抽気プローブの運転方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247027501A KR20240137624A (ko) | 2022-03-10 | 2023-02-28 | 연소 가스 추기 프로브 및 그 운전 방법 |
CN202380025368.0A CN118829841A (zh) | 2022-03-10 | 2023-02-28 | 燃烧气体抽气探头及其运转方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022037146A JP7343639B1 (ja) | 2022-03-10 | 2022-03-10 | 燃焼ガス抽気プローブ及びその運転方法 |
JP2022-037146 | 2022-03-10 | ||
JP2022036926A JP7386913B2 (ja) | 2022-03-10 | 2022-03-10 | 燃焼ガス抽気プローブ及びその運転方法 |
JP2022-036926 | 2022-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171460A1 true WO2023171460A1 (ja) | 2023-09-14 |
Family
ID=87935177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/007239 WO2023171460A1 (ja) | 2022-03-10 | 2023-02-28 | 燃焼ガス抽気プローブ及びその運転方法 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20240137624A (ja) |
TW (1) | TW202402705A (ja) |
WO (1) | WO2023171460A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005050114A1 (ja) * | 2003-11-18 | 2005-06-02 | Taiheiyo Cement Corporation | 燃焼ガス抽気プローブ及び燃焼ガスの処理方法 |
JP2011032130A (ja) * | 2009-07-31 | 2011-02-17 | Denki Kagaku Kogyo Kk | セメントキルン排ガス抽気処理装置及びその運転方法 |
JP2011056434A (ja) * | 2009-09-11 | 2011-03-24 | Taiheiyo Cement Corp | ガスの混合装置及びその運転方法 |
JP2013147401A (ja) * | 2012-01-23 | 2013-08-01 | Mitsubishi Materials Corp | 塩素バイパス装置 |
JP5411126B2 (ja) * | 2008-03-14 | 2014-02-12 | 太平洋セメント株式会社 | 燃焼ガス抽気プローブ及びその運転方法 |
CN211823871U (zh) * | 2019-11-29 | 2020-10-30 | 天津健威泽节能环保科技股份有限公司 | 一种水泥窑旁路放风烟气急冷装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051325U (ja) | 1973-09-10 | 1975-05-19 | ||
JPS5642613Y2 (ja) | 1975-12-26 | 1981-10-05 | ||
JPS5411126U (ja) | 1977-06-24 | 1979-01-24 |
-
2023
- 2023-02-28 KR KR1020247027501A patent/KR20240137624A/ko active Search and Examination
- 2023-02-28 WO PCT/JP2023/007239 patent/WO2023171460A1/ja active Application Filing
- 2023-03-06 TW TW112108074A patent/TW202402705A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005050114A1 (ja) * | 2003-11-18 | 2005-06-02 | Taiheiyo Cement Corporation | 燃焼ガス抽気プローブ及び燃焼ガスの処理方法 |
JP5411126B2 (ja) * | 2008-03-14 | 2014-02-12 | 太平洋セメント株式会社 | 燃焼ガス抽気プローブ及びその運転方法 |
JP2011032130A (ja) * | 2009-07-31 | 2011-02-17 | Denki Kagaku Kogyo Kk | セメントキルン排ガス抽気処理装置及びその運転方法 |
JP2011056434A (ja) * | 2009-09-11 | 2011-03-24 | Taiheiyo Cement Corp | ガスの混合装置及びその運転方法 |
JP2013147401A (ja) * | 2012-01-23 | 2013-08-01 | Mitsubishi Materials Corp | 塩素バイパス装置 |
CN211823871U (zh) * | 2019-11-29 | 2020-10-30 | 天津健威泽节能环保科技股份有限公司 | 一种水泥窑旁路放风烟气急冷装置 |
Also Published As
Publication number | Publication date |
---|---|
TW202402705A (zh) | 2024-01-16 |
KR20240137624A (ko) | 2024-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101832550B1 (ko) | 염소 바이패스 장치 | |
JP5806029B2 (ja) | セメントキルン排ガス抽気処理装置及びその運転方法 | |
CN106595331B (zh) | 一种强力冷却的直接空冷凝汽器散热单元 | |
JPS63274642A (ja) | セメント製造装置 | |
BR112015005220B1 (pt) | Instalação de resfriamento brusco a seco de coque | |
JP2013002688A (ja) | パラレルフロー型熱交換器及びそれを搭載した空気調和機 | |
CN106482213A (zh) | 一种混流空调 | |
CN104374138B (zh) | 风冷冰箱 | |
WO2023171460A1 (ja) | 燃焼ガス抽気プローブ及びその運転方法 | |
US3049891A (en) | Cooling by flowing gas at supersonic velocity | |
JP7343639B1 (ja) | 燃焼ガス抽気プローブ及びその運転方法 | |
CN106322849B (zh) | 换热器结构 | |
JP7470909B2 (ja) | マイクロチャネル熱交換器および空気調和機 | |
JP7386913B2 (ja) | 燃焼ガス抽気プローブ及びその運転方法 | |
WO1990002293A1 (en) | Composite circulation fluidized bed boiler | |
CN105992913B (zh) | 流内燃烧器模块 | |
CN205690682U (zh) | 全预混燃烧换热装置 | |
JP2013002773A (ja) | 熱交換器及びそれを搭載した空気調和機 | |
JP2024128569A (ja) | 塩素バイパスシステムの運転方法及び塩素バイパスシステム | |
JPS62237939A (ja) | 多段噴流層装置 | |
JP2021160969A (ja) | 冷却ガス導入装置、塩素バイパス設備、セメントクリンカ製造設備、及びセメントクリンカの製造方法 | |
CN207763210U (zh) | 蜗舌、风道装置及空调室内机 | |
RU2676716C1 (ru) | Пневмотрубная установка для термической обработки мелкозернистого материала | |
CN216482291U (zh) | 一种冶炼炉炉体隔热降温装置 | |
CN109323488A (zh) | 一种基于环状流整流实现均匀稳定分流的分流器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23766638 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12024551831 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401005246 Country of ref document: TH |
|
ENP | Entry into the national phase |
Ref document number: 20247027501 Country of ref document: KR Kind code of ref document: A |