WO2023171260A1 - 高周波回路 - Google Patents
高周波回路 Download PDFInfo
- Publication number
- WO2023171260A1 WO2023171260A1 PCT/JP2023/005062 JP2023005062W WO2023171260A1 WO 2023171260 A1 WO2023171260 A1 WO 2023171260A1 JP 2023005062 W JP2023005062 W JP 2023005062W WO 2023171260 A1 WO2023171260 A1 WO 2023171260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- band
- filter
- transmission
- reception
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
Definitions
- the present invention relates to high frequency circuits.
- the present invention provides a high frequency circuit that can contribute to downsizing of communication devices.
- a high frequency circuit includes a first transmission circuit that supports reception of a cellular communication system and a satellite system, and a second transmission circuit that supports transmission and reception of the cellular communication system, and includes a first transmission circuit that supports reception of a cellular communication system and a satellite system;
- the circuit includes a first filter circuit connected to the first antenna connection terminal and having a passband including a cellular reception band and a satellite reception band, and a first low noise amplifier circuit connected to the first filter circuit
- the second transmission circuit is connected to the second antenna connection terminal and includes a second filter circuit having a passband including a cellular reception band and a cellular transmission band corresponding to the cellular reception band, and a power amplification circuit connected to the second filter circuit. circuit, and a second low noise amplifier circuit connected to the second filter circuit.
- the high frequency circuit according to one aspect of the present invention can contribute to downsizing of communication devices.
- FIG. 1 is a circuit configuration diagram of a communication device according to the first embodiment.
- FIG. 2 is a plan view of the first high frequency module according to Example 1 of Embodiment 1.
- FIG. 3 is a partial cross-sectional view of the first high-frequency module according to Example 1 of Embodiment 1.
- FIG. 4 is a plan view of the second high frequency module according to Example 1 of Embodiment 1.
- FIG. 5 is a plan view of a high frequency module according to Example 2 of Embodiment 1.
- FIG. 6 is a circuit configuration diagram of a communication device according to the second embodiment.
- FIG. 7 is a circuit configuration diagram of a communication device according to Embodiment 3.
- FIG. 8 is a circuit configuration diagram of a communication device according to a modification of the third embodiment.
- FIG. 9 is a circuit configuration diagram of a communication device according to Embodiment 4.
- FIG. 10 is a circuit configuration diagram of a communication device according to Embodiment 5.
- Patent Document 1 in addition to a module for transmitting and receiving signals of a cellular communication system (hereinafter referred to as cellular signals), signals of a satellite system (for example, GPS (Global Positioning System)) (hereinafter referred to as satellite signals) are included.
- cellular signals signals of a satellite system (for example, GPS (Global Positioning System)) (hereinafter referred to as satellite signals) are included.
- satellite signals for example, GPS (Global Positioning System)
- satellite signals for example, GPS (Global Positioning System)
- Patent Document 2 discloses a communication device including a transmitting/receiving module for transmitting and receiving signals using a primary antenna, and a receiving module for receiving signals using a diversity antenna.
- the number of modules increases because multiple antennas are used to transmit and receive cellular signals and to receive satellite signals, which may lead to an increase in the size of the communication device.
- each figure is a schematic diagram with emphasis, omission, or ratio adjustment as appropriate to illustrate the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ. It may be different.
- substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
- the x-axis and the y-axis are axes that are orthogonal to each other on a plane parallel to the main surface of the module board. Specifically, when the module board has a rectangular shape in plan view, the x-axis is parallel to the first side of the module board, and the y-axis is parallel to the second side orthogonal to the first side of the module board. It is. Further, the z-axis is an axis perpendicular to the main surface of the module substrate, and its positive direction indicates an upward direction, and its negative direction indicates a downward direction.
- connection includes not only the case of direct connection with a connection terminal and/or wiring conductor, but also the case of electrical connection through other circuit elements.
- Connected between A and B means connected to both A and B between A and B, and in addition to being connected in series to the path connecting A and B. This includes being connected in parallel (shunt connection) between the path and ground.
- the component is placed on the board includes placing the component on the main surface of the board and placing the component within the board.
- the component is placed on the main surface of the board means that the part is placed in contact with the main surface of the board, and also that the part is placed above the main surface without contacting the main surface. (e.g., the part is stacked on top of another part placed in contact with the major surface).
- the component is placed on the main surface of the substrate may include that the component is placed in a recess formed in the main surface.
- a component is placed within a board means that, in addition to being encapsulated within a module board, all of the part is located between the two main surfaces of the board, but only a portion of the part is encapsulated within the module board. This includes not being covered by the board and only part of the component being placed within the board.
- the term “cellular reception band” refers to a frequency band for the cellular communication system and used for reception in a communication device.
- Cellular transmission band means a frequency band for a cellular communication system and used for transmission in a communication device.
- Satellite reception band means a frequency band for a satellite system and used for reception in a communication device.
- Satellite transmission band means a frequency band for a satellite system and used for transmission in a communication device.
- cellular communication system refers to a communication system standardized by standardization organizations (for example, 3GPP (registered trademark) (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers), etc.) for cellular networks.
- the cellular communication system includes a terrestrial network (TN) as well as a non-terrestrial network (NTN).
- TN terrestrial network
- NTN non-terrestrial network
- LTE Long-Term Evolution
- 5GNR 5th Generation New Radio
- tellite system means a system using artificial satellites.
- a satellite navigation system and/or a satellite communication system will be used as a satellite system, but the satellite system is not limited to these.
- the satellite communication system includes NTN. Note that TN is not included in the satellite communication system.
- Embodiment 1 will be described below.
- an uplink operating band and a downlink operating band included in the same frequency division duplex (FDD) band are used as the cellular transmission band and the cellular receiving band, respectively.
- FDD frequency division duplex
- FIG. 1 is a circuit configuration diagram of a communication device 5 according to this embodiment.
- the communication device 5 corresponds to a user terminal (UE: User Equipment) in a cellular communication system, and is typically a mobile phone, smart phone, tablet computer, wearable device, or the like.
- UE User Equipment
- the communication device 5 includes IoT (Internet of Things) sensor devices, medical/healthcare devices, cars, unmanned aerial vehicles (UAVs) (so-called drones), and automated guided vehicles (AGVs). It may be.
- the communication device 5 may be used as a base station (BS) in a cellular communication system.
- BS base station
- the communication device 5 includes a high frequency circuit 1, antennas 2a and 2b, an RFIC (Radio Frequency Integrated Circuit) 3, and a BBIC (Baseband Integrated Circuit) 4.
- RFIC Radio Frequency Integrated Circuit
- BBIC Baseband Integrated Circuit
- the high frequency circuit 1 can transmit high frequency signals between the antennas 2a and 2b and the RFIC 3.
- the high frequency circuit 1 includes a first transmission circuit 6 that supports reception of cellular communication systems and satellite systems, and a second transmission circuit 7 that supports transmission and reception of cellular communication systems. The detailed internal configuration of the high frequency circuit 1 will be described later.
- the antenna 2a is an example of a diversity antenna, and is connected to the antenna connection terminal 101 of the high frequency circuit 1.
- the antenna 2a can receive a high frequency signal from the outside and supply the received high frequency signal to the high frequency circuit 1.
- the antenna 2b is an example of a primary antenna, and is connected to the antenna connection terminal 102 of the high frequency circuit 1.
- the antenna 2b can receive a high frequency signal from the outside and supply the received high frequency signal to the high frequency circuit 1. Furthermore, the antenna 2b can transmit the high frequency signal received from the high frequency circuit 1 to the outside.
- the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 can perform signal processing on the high frequency received signal received via the reception path of the high frequency circuit 1 by down-converting or the like, and can supply the received signal generated by the signal processing to the BBIC 4. . Further, the RFIC 3 can perform signal processing on the transmission signal received from the BBIC 4 by up-converting or the like, and supply the high-frequency transmission signal generated by the signal processing to the transmission path of the high-frequency circuit 1 . Furthermore, the RFIC 3 has a control section for controlling the switches, amplifiers, etc. that the high frequency circuit 1 has. Note that part or all of the function of the control unit of the RFIC 3 may be implemented outside the RFIC 3, for example, in the BBIC 4 or the high frequency circuit 1.
- the BBIC 4 is a baseband signal processing circuit for signal processing using an intermediate frequency band lower in frequency than the high frequency signal transmitted by the high frequency circuit 1.
- the signal processed by the BBIC 4 for example, an image signal for displaying an image and/or an audio signal for talking through a speaker is used.
- the circuit configuration of the communication device 5 shown in FIG. 1 is an example and is not limited thereto.
- the communication device 5 may not include the antennas 2a and 2b, and may not include the BBIC 4.
- the communication device 5 may include three or more antennas.
- the high frequency circuit 1 includes a first transmission circuit 6, a second transmission circuit 7, antenna connection terminals 101 and 102, output terminals 103 to 105, and an input terminal 106.
- the antenna connection terminal 101 is an example of a first antenna connection terminal.
- the antenna connection terminal 101 is connected to the first transmission circuit 6 within the high frequency circuit 1 and connected to the antenna 2a outside the high frequency circuit 1. Thereby, the received signals of the cellular reception band and the satellite reception band received by the antenna 2a are transmitted to the first transmission circuit 6 via the antenna connection terminal 101.
- the antenna connection terminal 102 is an example of a second antenna connection terminal.
- the antenna connection terminal 102 is connected to the second transmission circuit 7 within the high frequency circuit 1 and connected to the antenna 2b outside the high frequency circuit 1.
- the received signal of the cellular reception band received by the antenna 2b is transmitted to the second transmission circuit 7 via the antenna connection terminal 102.
- the cellular transmission band transmission signal amplified by the second transmission circuit 7 is output to the antenna 2b via the antenna connection terminal 102.
- Each of the output terminals 103 to 105 is a high frequency output terminal for supplying a high frequency signal to the RFIC 3.
- the output terminal 103 is connected to the output terminal of the first transmission circuit 6 within the high frequency circuit 1, and the received signal of the cellular reception band is supplied to the RFIC 3 via the output terminal 103.
- the output terminal 104 is connected to the output terminal of the first transmission circuit 6 within the high frequency circuit 1, and a received signal in the satellite reception band is supplied to the RFIC 3 via the output terminal 104.
- the output terminal 105 is connected to the output terminal of the second transmission circuit 7 within the high frequency circuit 1, and the received signal of the cellular reception band is supplied to the RFIC 3 via the output terminal 105.
- the input terminal 106 is a high frequency input terminal for receiving a high frequency signal from the RFIC 3. Specifically, the input terminal 106 is connected to the input terminal of the second transmission circuit 7 within the high frequency circuit 1, and the transmission signal of the cellular transmission band received from the RFIC 3 via the input terminal 106 is transmitted to the second transmission circuit 7. supplied to
- the first transmission circuit 6 supports reception of cellular communication systems and satellite systems.
- the first transmission circuit 6 has two receiving paths for transmitting the received signal inputted through the antenna connecting terminal 101, and does not have a transmitting path for transmitting the transmitting signal outputted through the antenna connecting terminal 101.
- each of the two reception paths includes a reception filter having a passband that includes the reception band.
- one of the two reception paths has a filter 311 described below, and the other of the two reception paths has a filter 312 described below.
- the first transmission circuit 6 includes a low-noise amplifier circuit 21 and a filter circuit 31.
- the low noise amplifier circuit 21 is an example of a first low noise amplifier circuit, and is connected between the filter circuit 31 and the output terminals 103 and 104 of the high frequency circuit 1. As shown in FIG. 1, low noise amplifier circuit 21 includes low noise amplifiers 211 and 212.
- the input terminal of the low noise amplifier 211 is connected to a filter 311 in a filter circuit 31, which will be described later.
- the output terminal of the low noise amplifier 211 is connected to the output terminal 103 of the high frequency circuit 1.
- the low noise amplifier 211 can amplify the received signal in the cellular receiving band received via the filter 311 and supply the amplified received signal in the cellular receiving band to the RFIC 3 via the output terminal 103.
- the input terminal of the low noise amplifier 212 is connected to a filter 312 in a filter circuit 31, which will be described later.
- the output terminal of the low noise amplifier 212 is connected to the output terminal 104 of the high frequency circuit 1.
- the low-noise amplifier 212 can amplify the satellite reception band reception signal received via the filter 312 and supply the amplified satellite reception band reception signal to the RFIC 3 via the output terminal 104.
- Low noise amplifier circuit 21 may include only one low noise amplifier.
- the low-noise amplifier circuit 21 may include a switch that changes the connection of the input terminal of one low-noise amplifier between the filters 311 and 312, and the connection of the output terminal of one low-noise amplifier of the high-frequency circuit 1.
- a switch may be included to switch between output terminals 103 and 104.
- the filter circuit 31 is an example of a first filter circuit, and is connected between the antenna connection terminal 101 and the low-noise amplification circuit 21. As shown in FIG. 1, filter circuit 31 includes filters 311 and 312 and a switch 313.
- the filter 311 (A-Rx) is an example of a first reception filter and has a pass band that includes the cellular reception band.
- One end of the filter 311 is connected to the antenna connection terminal 101 via a switch 313.
- the other end of the filter 311 is connected to the input terminal of the low noise amplifier 211.
- the filter 312 (B-Rx) is an example of a second reception filter and has a passband that includes the satellite reception band.
- One end of the filter 312 is connected to the antenna connection terminal 101 via a switch 313.
- the other end of filter 312 is connected to the input terminal of low noise amplifier 212.
- the switch 313 is an example of a first switch, and is connected between the antenna connection terminal 101 and the filters 311 and 312. Specifically, switch 313 has terminals 313a to 313c. Terminal 313a is connected to antenna connection terminal 101. Terminal 313b is connected to filter 311. Terminal 313c is connected to filter 312.
- the switch 313 can connect either of the terminals 313b and 313c to the terminal 313a based on a control signal from the RFIC 3, for example. That is, the switch 313 can switch the connection of the antenna connection terminal 101 between the filters 311 and 312.
- the switch 313 is composed of, for example, an SPDT (Single Pole Double Throw) type switch circuit.
- the terminal 313a is configured to be connectable to the terminals 313b and 313c.
- the terminal 313b is configured to be connectable to the terminal 313a, but not connectable to the terminal 313c.
- the terminal 313c is configured to be connectable to the terminal 313a, but not connectable to the terminal 313b.
- the second transmission circuit 7 supports transmission and reception of a cellular communication system.
- the second transmission circuit 7 has one receiving path for transmitting a received signal input through the antenna connection terminal 102 and one transmission path for transmitting a transmission signal outputted through the antenna connection terminal 102.
- the second transmission circuit 7 includes a power amplification circuit 11, a low noise amplification circuit 22, and a filter circuit 32.
- the power amplifier circuit 11 is connected between the input terminal 106 and the filter circuit 32. As shown in FIG. 1, the power amplifier circuit 11 includes a power amplifier 111. An input terminal of power amplifier 111 is connected to input terminal 106. The output terminal of the power amplifier 111 is connected to a filter 321 in a filter circuit 32, which will be described later. With this configuration, the power amplifier 111 can amplify the transmission signal in the cellular transmission band received from the RFIC 3 via the input terminal 106, and output the amplified transmission signal in the cellular transmission band to the antenna 2b via the filter 321. can.
- the low noise amplifier circuit 22 is an example of a second low noise amplifier circuit, and is connected between the filter circuit 32 and the output terminal 105 of the high frequency circuit 1.
- Low noise amplifier circuit 22 includes a low noise amplifier 221.
- An input terminal of the low noise amplifier 221 is connected to a filter 322 in a filter circuit 32, which will be described later.
- the output terminal of the low noise amplifier 221 is connected to the output terminal 105 of the high frequency circuit 1.
- the low-noise amplifier 221 can amplify the received signal in the cellular receiving band received via the filter 322 and supply the amplified received signal in the cellular receiving band to the RFIC 3 via the output terminal 105.
- the filter circuit 32 is an example of a second filter circuit, and is connected between the antenna connection terminal 102 and the power amplifier circuit 11 and the low-noise amplifier circuit 22. As shown in FIG. 1, filter circuit 32 includes filters 321 and 322.
- the filter 321 (A-Tx) is an example of a first transmission filter and has a pass band that includes the cellular transmission band. One end of the filter 321 is connected to the antenna connection terminal 102. The other end of filter 321 is connected to the output terminal of power amplifier 111.
- the filter 322 (A-Rx) is an example of a fourth reception filter and has a passband that includes the cellular reception band. One end of the filter 322 is connected to the antenna connection terminal 102. The other end of the filter 322 is connected to the input terminal of the low noise amplifier 221.
- the circuit configuration of the high frequency circuit 1 shown in FIG. 1 is an example, and is not limited thereto.
- the first transmission circuit 6 may further include a transmission path. Even in this case, the number of reception paths in the first transmission circuit 6 is greater than the number of transmission paths.
- an uplink operation band and a downlink operation band included in the same FDD band are used as the cellular transmission band and the cellular reception band.
- a frequency band included in the range of 1.4 to 5 GHz can be used as the FDD band.
- the FDD band includes, for example, Band1, Band2, Band3, Band4, Band7, Band11, Band21, Band24, Band25, Band66, or Band74 for LTE, or n1, n2, n3 for 5GNR. , n7, n24, n25, n66, n74, n201, n255 or n256 or any combination thereof can also be used.
- a frequency band for receiving signals from an artificial satellite can be used as the satellite reception band.
- the satellite reception band includes, for example, the L1 band (1563 to 1587 MHz) for GPS, the L1 band (1593 to 1610 MHz) for GLONASS (Global Navigation Satellite System), or the L5 band (1164 MHz). ⁇ 1189 MHz), downlink operating band for Globalstar (2483.5-2500 MHz), or downlink operating band for N201 for 5GNR (2483.5-2495 MHz), downlink operating band for N255 (2483.5-2495 MHz), 1525-1559 MHz) or n256 downlink operating band (2170-2200 MHz), or any combination thereof.
- Band24 uplink operating band (1626.5 to 1660.5 MHz) and downlink operating band (1525 to 1559 MHz) for LTE, and for GPS A combination of L1 bands is used.
- N24 (UL: 1626.5 ⁇ 1660.5 MHz, DL: 1525 ⁇ 1559 MHz), N201 (UL: 1610 ⁇ 1626.5 MHz, DL: 2483.5 ⁇ 2495 MHz) or N255 for 5GNR (UL: 1626.5 to 1660.5 MHz, DL: 1525 to 1559 MHz) may be used, and the L1 band for GLONASS may be used instead of the L1 band for GPS.
- the satellite reception band is included in the frequency gap (eg 1559-1626.5 MHz for Band 24) between the cellular transmission band and the cellular reception band.
- Example 1 of high frequency circuit 1 As Example 1 of the high frequency circuit 1 according to the present embodiment as described above, high frequency modules 1001 and 1002 in which the high frequency circuit 1 is mounted will be described. In this embodiment, the high frequency circuit 1 is mounted separately into a high frequency module 1001 in which the first transmission circuit 6 is mounted and a high frequency module 1002 in which the second transmission circuit 7 is mounted.
- FIG. 2 is a plan view of the high frequency module 1001 according to this embodiment.
- FIG. 3 is a partial sectional view of the high frequency module 1001 according to this embodiment.
- the cross section of the high frequency module 1001 in FIG. 3 represents the cross section taken along line iii-iii in FIG. 2.
- FIGS. 2 to 4 illustrations of wiring that connects each of the plurality of circuit components are omitted. Further, in FIGS. 2 and 4, illustrations of a resin member that covers a plurality of circuit components and a shield electrode layer that covers the surface of the resin member are omitted.
- letters representing the circuits mounted on each circuit component for example, "LNA", etc. are attached so that the arrangement relationship of each circuit component can be easily understood. The characters do not need to be attached to each actual circuit component.
- the high frequency module 1001 is a so-called diversity module.
- the high frequency module 1001 includes, in addition to a plurality of circuit components including a plurality of circuit elements included in the low noise amplifier circuit 21 and filter circuit 31 shown in FIG. 1, a module substrate 1091, a resin member 1094, and a shield electrode layer. 1095 and a plurality of land electrodes 1096.
- the module board 1091 is an example of a first module board, and has main surfaces 1091a and 1091b facing each other. Note that although the module substrate 1091 has a rectangular shape in plan view in FIG. 2, it is not limited to this shape.
- LTCC low temperature co-fired ceramics
- HTCC high temperature co-fired ceramics
- a component-embedded board, a board having a redistribution layer (RDL), a printed circuit board, or the like can be used, but the present invention is not limited to these.
- the main surface 1091a of the module board 1091 includes a low noise amplifier 211 (LNA), a low noise amplifier 212 (LNA), a filter 311 (A-Rx), a filter 312 (B-Rx), and a switch 313 (SW). , is located. Furthermore, a plurality of land electrodes 1096 are arranged on the main surface 1091b of the module substrate 1091.
- the low noise amplifiers 211 and 212 are included in one integrated circuit, and the switch 313 is included in another integrated circuit.
- the integrated circuit including the low-noise amplifiers 211 and 212 and the integrated circuit including the switch 313 are configured using, for example, CMOS (Complementary Metal Oxide Semiconductor), and specifically manufactured by an SOI (Silicon on Insulator) process. Good too. Note that the integrated circuit is not limited to CMOS. Note that the low-noise amplifiers 211 and 212 and the switch 313 may be included in one integrated circuit, or may be included individually in three integrated circuits.
- the filters 311 and 312 are configured using surface acoustic wave (SAW) filters and are mounted on the same piezoelectric substrate 1310.
- the filter component including the filters 311 and 312 includes a piezoelectric substrate 1310, IDT (Interdigital Transducer) electrodes 1311 and 1312, and a plurality of bump electrodes 1313, as shown in FIG.
- Piezoelectric substrate 1310 has a surface that propagates elastic waves.
- the surface on which elastic waves propagate faces the main surface 1091a of the module substrate 1091.
- the piezoelectric substrate 1310 is made of, for example, LiNbO 3 single crystal or LiTaO 3 single crystal.
- the IDT electrodes 1311 and 1312 are arranged on the surface of the piezoelectric substrate 1310.
- Each of the IDT electrodes 1311 and 1312 is an example of a functional electrode, and can convert an elastic wave propagating on the surface of the piezoelectric substrate 1310 into an electric signal, or can convert an electric signal into an elastic wave.
- filters 311 and 312 are mounted on piezoelectric substrate 1310.
- As the material for each of the IDT electrodes 1311 and 1312 copper, aluminum, platinum, a laminate thereof, or an alloy thereof can be used.
- the IDT electrodes 1311 and 1312 may be covered with a protective film.
- the protective film has a function of protecting the IDT electrodes 1311 and 1312 and a function of adjusting frequency temperature characteristics.
- the protective film is made of silicon dioxide, for example.
- the plurality of bump electrodes 1313 protrude from the surface of the piezoelectric substrate 1310, and their tips are physically connected to the main surface 1091a of the module substrate 1091. At least some of the plurality of bump electrodes 1313 are electrically connected to the IDT electrodes 1311 and 1312, and the electrical signals converted by the IDT electrodes 1311 and 1312 are taken out, or the electrical signals are connected to the IDT electrodes 1311 and 1312, respectively. 1312 respectively.
- the plurality of bump electrodes 1313 are made of a highly conductive metal (for example, solder made of tin, silver, and copper, or a metal whose main component is gold).
- the filters 311 and 312 do not need to be mounted on the same piezoelectric substrate, and may be mounted on different piezoelectric substrates. Furthermore, the filters 311 and 312 do not need to be configured using SAW filters.
- the filters 311 and 312 may be configured using bulk acoustic wave (BAW) filters. In this case, the two BAW filters configuring filters 311 and 312 may be mounted on the same piezoelectric substrate. Further, the filters 311 and 312 may be configured using an LC resonance filter or a dielectric filter, and are not limited to these.
- BAW bulk acoustic wave
- the plurality of land electrodes 1096 function as a plurality of external connection terminals including the antenna connection terminal 101 shown in FIG. 1, the output terminals 103 and 104, and a ground terminal.
- Each of the plurality of land electrodes 1096 is connected to an input/output terminal and/or a ground terminal on a motherboard arranged in the negative direction of the z-axis of the high frequency module 1001. Note that instead of the plurality of land electrodes 1096, a plurality of bump electrodes may be arranged on the main surface 1091b.
- the resin member 1094 covers the main surface 1091a and at least a portion of the plurality of circuit components on the main surface 1091a.
- the resin member 1094 has a function of ensuring reliability such as mechanical strength and moisture resistance of the plurality of circuit components on the main surface 1091a. Note that the resin member 1094 does not need to be included in the high frequency module 1001.
- the shield electrode layer 1095 is, for example, a metal thin film formed by sputtering. Shield electrode layer 1095 is formed to cover the surface (upper surface and side surfaces) of resin member 1094. The shield electrode layer 1095 is connected to the ground, and prevents external noise from entering the electronic components that constitute the high-frequency module 1001 and suppresses noise generated in the high-frequency module 1001 from interfering with other modules or other equipment. do. Note that the shield electrode layer 1095 does not need to be included in the high frequency module 1001.
- FIG. 4 is a plan view of the high frequency module 1002 according to this embodiment.
- the high frequency module 1002 is a so-called primary module.
- the high frequency module 1002 includes a plurality of circuit components including a plurality of circuit elements included in the power amplifier circuit 11, low noise amplifier circuit 22, and filter circuit 32 shown in FIG. 1, as well as a module substrate 1092, a resin member ( (not shown), a shield electrode layer (not shown), and a plurality of land electrodes (not shown).
- the module board 1092 is an example of a second module board, and has main surfaces facing each other. Note that although the module substrate 1092 has a rectangular shape in plan view in FIG. 4, it is not limited to this shape. Module board 1092 can be configured similarly to module board 1091.
- a power amplifier 111 PA
- a low noise amplifier 221 LNA
- a filter 321 A-Tx
- a filter 322 A-Rx
- the power amplifier 111 is included in one integrated circuit.
- the integrated circuit including power amplifier 111 may be constructed of at least one of gallium arsenide (GaAs), silicon germanium (SiGe), and gallium nitride (GaN), for example. Thereby, a high quality power amplifier 111 can be realized.
- a part of the power amplifier 111 may be configured using CMOS, and specifically may be manufactured using an SOI process.
- the low noise amplifier 221 is the same as the low noise amplifiers 211 and 212, so a description thereof will be omitted. Further, the filters 321 and 322 are the same as the filters 311 and 312 except that they are mounted on different piezoelectric substrates, so a description thereof will be omitted.
- the power amplifier circuit connected to the transmission path may be mounted on the module board 1091 or the module board 1092.
- Example 2 of high frequency circuit 1 a high frequency module 1003 in which the high frequency circuit 1 is mounted will be described.
- the first transmission circuit 6 and the second transmission circuit 7 included in the high frequency circuit 1 are mounted in one high frequency module 1003.
- FIG. 5 is a plan view of the high frequency module 1003 according to this embodiment.
- FIG. 5 illustration of wiring that connects each of the plurality of circuit components is omitted. Further, in FIG. 5, illustrations of a resin member covering a plurality of circuit components and a shield electrode layer covering the surface of the resin member are omitted. In addition, in FIG. 5, letters representing the circuits mounted on each circuit component (for example, "LNA") are attached so that the arrangement relationship of each circuit component can be easily understood, but the actual The circuit components do not need to be labeled with the characters.
- LNA the circuits mounted on each circuit component
- the module substrate 1093 has main surfaces facing each other. Note that although the module substrate 1093 has a rectangular shape in plan view in FIG. 5, it is not limited to this shape. Module board 1093 can be configured similarly to module board 1091.
- a power amplifier 111 On the main surface of the module board 1093, a power amplifier 111, low noise amplifiers 211, 212, and 221, filters 311, 312, 321, and 322, and a switch 313 are arranged.
- the high frequency circuit 1 includes the first transmission circuit 6 that supports reception of a cellular communication system and a satellite system, and the second transmission circuit 7 that supports transmission and reception of the cellular communication system.
- the first transmission circuit 6 includes a filter circuit 31 connected to the antenna connection terminal 101 and having a pass band including a cellular reception band and a satellite reception band, and a low noise amplification circuit 21 connected to the filter circuit 31.
- the second transmission circuit 7 is connected to the antenna connection terminal 102 and has a filter circuit 32 having a passband including a cellular reception band and a cellular transmission band corresponding to the cellular reception band;
- the power amplifier circuit 11 has a power amplifier circuit 11 connected to the filter circuit 32, and a low noise amplifier circuit 22 connected to a filter circuit 32.
- the filter circuit 31 having a passband including the cellular reception band and the satellite reception band is connected to the antenna connection terminal 101, one antenna can be shared by the cellular reception band and the satellite reception band. . Therefore, it becomes easy to mount the circuit for the cellular reception band and the circuit for the satellite reception band on one module board 1091 or 1093, which can contribute to miniaturization of the communication device 5. Further, since the filter circuit 31 for the satellite reception band is connected to an antenna connection terminal 101 different from the antenna connection terminal 102 to which the filter circuit 32 for the cellular transmission band is connected, the cellular transmission signal is connected to the satellite reception signal. It is possible to suppress interference and suppress a decrease in reception sensitivity in the satellite system.
- the first transmission circuit 6 has one or more receiving paths for transmitting a received signal input via the antenna connection terminal 101. It is not necessary to have a transmission path for transmitting a transmission signal to be outputted via the transmission path.
- the first transmission circuit 6 corresponding to reception of the satellite system does not include a transmission path, the reception sensitivity of the satellite system can be improved.
- the first transmission circuit 6 can be applied to a receiving circuit (diversity module) for receiving signals using a diversity antenna, for example.
- the filter circuit 31 includes a switch 313 connected to the antenna connection terminal 101, and a filter circuit 31 that is connected to the antenna connection terminal 101 via the switch 313, and is connected to the antenna connection terminal 101 through the switch 313.
- the filter 311 may include a filter 311 having a band, and a filter 312 connected to the antenna connection terminal 101 via a switch 313 and having a passband including the satellite reception band.
- the filter 311 corresponding to the cellular reception band and the filter 312 corresponding to the satellite reception band are separately included in the high frequency circuit 1, a reception path for the cellular reception band and a reception path for the satellite reception band are included. It is possible to improve the isolation between the route and the route.
- each of the filters 311 and 312 is an elastic wave filter, and the filters 311 and 312 may be mounted on the same piezoelectric substrate (for example, the piezoelectric substrate 1310). .
- the high frequency circuit 1 can be downsized, and this can contribute to downsizing the communication device 5.
- the cellular transmission band and the cellular reception band may be an uplink operating band and a downlink operating band included in the same FDD band.
- the high frequency circuit 1 can be used for transmission and reception in the FDD band.
- the satellite reception band may be included in the gap between the cellular transmission band and the cellular reception band.
- the high frequency circuit 1 can be used when the satellite reception band is close to the cellular transmission band and the cellular reception band, and it is possible to more effectively suppress a decrease in reception sensitivity in the satellite system.
- the filter circuit 32 is connected to the antenna connection terminal 102 and has a pass band including the cellular transmission band, and the filter circuit 32 is connected to the antenna connection terminal 102 and connected to the antenna connection terminal 102 for cellular reception.
- the power amplifier circuit 11 may be connected to the filter 321 and the low noise amplifier circuit 22 may be connected to the filter 322.
- a duplexer can be used for the cellular transmission band and the cellular reception band.
- the high frequency circuit 1 includes a module board 1091 on which a filter circuit 31 and a low noise amplifier circuit 21 are mounted, and a module board 1091 on which a filter circuit 32, a power amplifier circuit 11, and a low noise amplifier circuit 22 are mounted.
- a module board 1092 may also be provided.
- a filter circuit 31 and a low noise amplification circuit 21 are connected to the antenna 2a via the antenna connection terminal 101, and a filter circuit 32 and a power amplification circuit 11 are connected to the antenna 2b via the antenna connection terminal 102. It is possible to improve the isolation between the antenna and the low-noise amplifier circuit 22, and it is possible to suppress a decrease in reception sensitivity in the satellite system.
- the high frequency circuit 1 may include a module board 1093 on which the filter circuits 31 and 32, the power amplifier circuit 11, and the low noise amplifier circuits 21 and 22 are mounted.
- the high frequency circuit 1 can contribute to further miniaturization of the communication device 5.
- the present embodiment differs from the first embodiment in that diversity reception is achieved using one filter having a passband that includes both the cellular reception band and the satellite reception band.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment.
- the circuit configuration of the communication device 5A according to the present embodiment is the same as that of the communication device 5 according to the first embodiment, except that the high frequency circuit 1A is provided instead of the high frequency circuit 1. Therefore, a detailed description of the communication device 5A will be omitted, and the high frequency circuit 1A will be described with reference to FIG. 6.
- FIG. 6 is a circuit configuration diagram of the communication device 5A according to the present embodiment.
- the high frequency circuit 1A includes a first transmission circuit 6A, a second transmission circuit 7, antenna connection terminals 101 and 102, output terminals 103 to 105, and an input terminal 106.
- the first transmission circuit 6A includes a low noise amplifier circuit 21A and a filter circuit 31A.
- the low noise amplifier circuit 21A is an example of a first low noise amplifier circuit, and is connected between the filter circuit 31A and the output terminals 103 and 104 of the high frequency circuit 1A. As shown in FIG. 1, the low noise amplifier circuit 21A includes a low noise amplifier 213 and a splitter 214.
- the input terminal of the low noise amplifier 213 is connected to a filter 314 in a filter circuit 31A, which will be described later.
- the output terminal of the low noise amplifier 213 is connected to the output terminals 103 and 104 of the high frequency circuit 1A via a splitter 214.
- the low noise amplifier 213 amplifies the received signals of bands A and B received via the filter 314, and supplies the amplified received signals of bands A and B to the RFIC 3 via the output terminals 103 and 104. be able to.
- the splitter 214 is an example of a power divider, and is connected between the low noise amplifier circuit 21A and the output terminals 103 and 104 of the high frequency circuit 1A.
- the input terminal of splitter 214 is connected to the output terminal of low noise amplifier 213.
- Two output terminals of the splitter 214 are connected to output terminals 103 and 104 of the high frequency circuit 1A, respectively. This allows the splitter 214 to split the output signal of the low noise amplifier 213 to the two output terminals 103 and 104.
- the filter circuit 31A is an example of a first filter circuit, and is connected between the antenna connection terminal 101 and the low-noise amplifier circuit 21A. As shown in FIG. 1, the filter circuit 31A includes a filter 314.
- Filter 314 (AB-Rx) is an example of a third reception filter, and has a passband that includes a cellular reception band and a satellite reception band. One end of the filter 314 is connected to the antenna connection terminal 101. The other end of filter 314 is connected to the input terminal of low noise amplifier 213.
- a combination of the Band 24 uplink operating band and downlink operating band for LTE and the L1 band for GPS is used as a combination of the cellular transmission band, cellular reception band, and satellite reception band. I can do it.
- n24, n201, or n255 for 5GNR may be used instead of Band24 for LTE
- L1 band for GLONASS may be used instead of L1 band for GPS.
- the high frequency circuit 1A includes the first transmission circuit 6A that supports reception of a cellular communication system and a satellite system, and the second transmission circuit 7 that supports transmission and reception of the cellular communication system.
- the first transmission circuit 6A includes a filter circuit 31A connected to the antenna connection terminal 101 and having a pass band including a cellular reception band and a satellite reception band, and a low noise amplification circuit 21A connected to the filter circuit 31A.
- the second transmission circuit 7 is connected to the antenna connection terminal 102 and has a filter circuit 32 having a passband including a cellular reception band and a cellular transmission band corresponding to the cellular reception band;
- the power amplifier circuit 11 has a power amplifier circuit 11 connected to the filter circuit 32, and a low noise amplifier circuit 22 connected to a filter circuit 32.
- the filter circuit 31A having a pass band including the cellular reception band and the satellite reception band is connected to the antenna connection terminal 101, one antenna can be shared by the cellular reception band and the satellite reception band. . Therefore, it becomes easy to mount the circuit for the cellular reception band and the circuit for the satellite reception band on one module board 1091 or 1093, which can contribute to miniaturization of the communication device 5A. Further, since the filter circuit 31A for the satellite reception band is connected to an antenna connection terminal 101 different from the antenna connection terminal 102 to which the filter circuit 32 for the cellular transmission band is connected, the cellular transmission signal is connected to the satellite reception signal. It is possible to suppress interference and suppress a decrease in reception sensitivity in the satellite system.
- the first transmission circuit 6A has one or more reception paths for transmitting a received signal input via the antenna connection terminal 101. It is not necessary to have a transmission path for transmitting a transmission signal to be outputted via the transmission path.
- the first transmission circuit 6A corresponding to reception of the satellite system does not include a transmission path, the reception sensitivity of the satellite system can be improved.
- the first transmission circuit 6A can be applied to a receiving circuit (diversity module) for receiving signals using a diversity antenna, for example.
- the filter circuit 31A may include a filter 314 having a passband including a cellular reception band and a satellite reception band.
- the number of filters can be reduced compared to the case where filters are individually included in the cellular reception band and the satellite reception band, and it is possible to contribute to downsizing of the communication device 5A.
- the low noise amplifier circuit 21A includes a low noise amplifier 213 connected to the filter 314 and a splitter 214 connected to the output terminal of the low noise amplifier 213. But that's fine.
- the high frequency circuit 1A transmits the reception signal of the cellular reception band and the reception signal of the satellite reception band through the two output terminals 103 and 104. can be supplied to the RFIC3.
- the downlink operation band of Band24 for LTE or n24, n201, or n255 for 5GNR and the downlink operation band of GPS or GLONASS are used as a combination of the cellular reception band and the satellite reception band.
- the downlink operation band of Band24 for LTE or n24, n201, or n255 for 5GNR and the downlink operation band of GPS or GLONASS are used as a combination of the cellular reception band and the satellite reception band.
- the downlink operation band of Band24 for LTE or n24, n201, or n255 for 5GNR and the downlink operation band of GPS or GLONASS are used as a combination of the cellular reception band and the satellite reception band.
- a combination with the L1 band can be used.
- a combination of two relatively close reception bands can be used as the combination of the cellular reception band and the satellite reception band, and the performance requirements of the filter 314 and the low noise amplifier 213 can be relaxed.
- Embodiment 3 differs from the first embodiment in that the same frequency band included in a time division duplex (TDD) band is used as a cellular transmission band and a cellular reception band.
- TDD time division duplex
- the circuit configuration of the communication device 5B according to the present embodiment is the same as that of the communication device 5 according to the first embodiment, except that the high-frequency circuit 1B is provided instead of the high-frequency circuit 1. Therefore, a detailed description of the communication device 5B will be omitted, and the high frequency circuit 1B will be described with reference to FIG.
- FIG. 7 is a circuit configuration diagram of the communication device 5B according to the present embodiment.
- the high frequency circuit 1B includes a first transmission circuit 6B, a second transmission circuit 7B, antenna connection terminals 101 and 102, output terminals 103 to 105, and an input terminal 106.
- the first transmission circuit 6B includes a low noise amplifier circuit 21 and a filter circuit 31B.
- the filter circuit 31B is an example of a first filter circuit, and is connected between the antenna connection terminal 101 and the low-noise amplifier circuit 21. As shown in FIG. 7, filter circuit 31B is similar to filter circuit 31 according to the first embodiment, except that filter 315 (C-Rx) is included instead of filter 311 (ARx).
- the filter 315 (C-Rx) is an example of a first reception filter, and has a passband that includes the cellular reception band (that is, TDD band). One end of the filter 315 is connected to the antenna connection terminal 101 via the switch 313. The other end of filter 315 is connected to the input terminal of low noise amplifier 211.
- the second transmission circuit 7B includes a power amplifier circuit 11, a low noise amplifier circuit 22, and a filter circuit 32B.
- the filter circuit 32B is an example of a second filter circuit, and is connected between the antenna connection terminal 102 and the power amplifier circuit 11 and the low-noise amplifier circuit 22. As shown in FIG. 7, filter circuit 32B includes a filter 323 and a switch 324.
- the filter 323 (C-TRx) is an example of a transmitting/receiving filter, and has a pass band including a cellular transmitting band and a cellular receiving band (ie, TDD band).
- One end of the filter 323 is connected to the antenna connection terminal 102.
- the other end of the filter 323 is connected to the output terminal of the power amplifier 111 and the input terminal of the low noise amplifier 221 via a switch 324.
- the switch 324 is an example of a second switch, and is connected between the filter 323 and the power amplifier circuit 11 and the low-noise amplifier circuit 22. Specifically, switch 324 has terminals 324a to 324c. Terminal 324a is connected to filter 323. Terminal 324b is connected to the output terminal of power amplifier 111. Terminal 324c is connected to the input terminal of low noise amplifier 221.
- the switch 324 can connect either of the terminals 324b and 324c to the terminal 324a based on a control signal from the RFIC 3, for example. That is, the switch 324 can switch the connection of the filter 323 between the power amplifier circuit 11 and the low noise amplifier circuit 22.
- the switch 324 is composed of, for example, an SPDT type switch circuit.
- the terminal 324a is configured to be connectable to the terminals 324b and 324c.
- the terminal 324b is configured to be connectable to the terminal 324a, but not connectable to the terminal 324c.
- the terminal 324c is configured to be connectable to the terminal 324a, but not connectable to the terminal 324b.
- the same frequency band included in the same TDD band is used as the cellular transmission band and the cellular reception band.
- a frequency band included in the range of 1.4 to 5 GHz can be used as the TDD band.
- the TDD band includes, for example, Band34, Band39, Band40, Band41, Band42, or Band48 for LTE, or n34, n39, n40, n41, n48, n77, n78, or n79 for 5GNR. , or any combination thereof can also be used.
- a frequency band for receiving signals from an artificial satellite can be used as the satellite reception band.
- satellite reception bands include, for example, the L1 band or L5 band for GPS, the L1 band for GLONASS, the downlink operating band for Globalstar, and n201, n255, or n256 for 5GNR. downlink operating bands or any combination thereof may be used.
- the high frequency circuit 1B includes a first transmission circuit 6B that supports reception of a cellular communication system and a satellite system, and a second transmission circuit 7B that supports transmission and reception of a cellular communication system.
- the first transmission circuit 6B includes a filter circuit 31B connected to the antenna connection terminal 101 and having a pass band including a cellular reception band and a satellite reception band, and a low noise amplification circuit 21 connected to the filter circuit 31B.
- the second transmission circuit 7B is connected to the antenna connection terminal 102, and has a filter circuit 32B having a passband including a cellular reception band and a cellular transmission band corresponding to the cellular reception band;
- the power amplifier circuit 11 includes a power amplifier circuit 11 connected to the filter circuit 32B, and a low noise amplifier circuit 22 connected to the filter circuit 32B.
- the filter circuit 31B having a pass band including the cellular reception band and the satellite reception band is connected to the antenna connection terminal 101, one antenna can be shared by the cellular reception band and the satellite reception band. . Therefore, it becomes easy to mount the circuit for the cellular reception band and the circuit for the satellite reception band on one module board 1091 or 1093, which can contribute to miniaturization of the communication device 5B. Further, since the filter circuit 31B for the satellite reception band is connected to an antenna connection terminal 101 different from the antenna connection terminal 102 to which the filter circuit 32B for the cellular transmission band is connected, the cellular transmission signal is connected to the satellite reception signal. It is possible to suppress interference and suppress a decrease in reception sensitivity in the satellite system.
- the first transmission circuit 6B has one or more receiving paths for transmitting a received signal input via the antenna connection terminal 101. It is not necessary to have a transmission path for transmitting a transmission signal to be outputted via the transmission path.
- the first transmission circuit 6B corresponding to reception of the satellite system does not include a transmission path, the reception sensitivity of the satellite system can be improved.
- the first transmission circuit 6B can be applied to a receiving circuit (diversity module) for receiving signals using a diversity antenna, for example.
- the cellular transmission band and the cellular reception band may be the same frequency band included in the same TDD band.
- the high frequency circuit 1B can be used for transmission and reception in the TDD band.
- the filter circuit 32B includes a filter 323 having a passband including the TDD band, and a switch 324 connected to the filter 323, and the power amplification circuit 11 includes:
- the low noise amplifier circuit 22 may be connected to the filter 323 via the switch 324 .
- the number of filters can be reduced compared to the case where filters are individually included in the cellular transmission band and the cellular reception band.
- the circuit configuration of the communication device 5C according to this modification is the same as the communication device 5 according to the first embodiment, except that the high frequency circuit 1C is provided instead of the high frequency circuit 1. Therefore, a detailed description of the communication device 5C will be omitted, and the high frequency circuit 1C will be described with reference to FIG. 8.
- FIG. 8 is a circuit configuration diagram of a communication device 5C according to the present embodiment.
- the high frequency circuit 1C includes a first transmission circuit 6B, a second transmission circuit 7C, antenna connection terminals 101 and 102, output terminals 103 to 105, and an input terminal 106.
- the second transmission circuit 7C includes a power amplification circuit 11, a low noise amplification circuit 22, and a filter circuit 32C.
- the filter circuit 32C is an example of a second filter circuit, and is connected between the antenna connection terminal 102 and the power amplifier circuit 11 and the low-noise amplifier circuit 22. As shown in FIG. 8, the filter circuit 32C includes filters 325 and 326 and a switch 327.
- the filter 325 (C-Tx) is an example of a second transmission filter, and has a passband that includes the cellular transmission band (ie, TDD band).
- One end of the filter 325 is connected to the antenna connection terminal 102 via a switch 327.
- the other end of filter 325 is connected to the output terminal of power amplifier 111.
- the filter 326 (C-Rx) is an example of a fifth reception filter, and has a passband that includes the cellular reception band (that is, TDD band). One end of the filter 326 is connected to the antenna connection terminal 102 via a switch 327. The other end of filter 326 is connected to the input terminal of low noise amplifier 221.
- the switch 327 is an example of a third switch, and is connected between the antenna connection terminal 102 and the filters 325 and 326. Specifically, switch 327 has terminals 327a to 327c. Terminal 327a is connected to antenna connection terminal 102. Terminal 327b is connected to filter 325. Terminal 327c is connected to filter 326.
- the switch 327 can connect either of the terminals 327b and 327c to the terminal 327a based on a control signal from the RFIC 3, for example. That is, the switch 327 can switch the connection of the antenna connection terminal 102 between the filters 325 and 326.
- the switch 327 is composed of, for example, an SPDT type switch circuit.
- the terminal 327a is configured to be connectable to the terminals 327b and 327c.
- the terminal 327b is configured to be connectable to the terminal 327a, but not connectable to the terminal 327c.
- the terminal 327c is configured to be connectable to the terminal 327a, but not connectable to the terminal 327b.
- the filter circuit 32C includes the switch 327 connected to the antenna connection terminal 102, and the filter circuit 32C connected to the antenna connection terminal 102 via the switch 327, including the TDD band.
- the power amplification circuit 11 is connected to the filter 325 and includes a filter 326 that is connected to the antenna connection terminal 102 via a switch 327 and has a passband that includes the TDD band.
- Amplification circuit 22 may be connected to filter 326.
- filters 325 and 326 suitable for TDD band transmission and reception, respectively, can be used.
- the filters 312 and 315 and the switch 313 of the filter circuit 31B can be replaced with one filter 314, as in the second embodiment.
- Band 41 (2496-2690 MHz) for LTE and Globalstar's downlink operating band or A combination with the n201 downlink operating band can be used.
- Band41 for LTE may be replaced with n41 (2496 to 2690 MHz) for 5GNR.
- a combination of Band41 for LTE or n41 for 5GNR and the downlink operating band for Globalstar can be used as a combination of the cellular reception band and the satellite reception band.
- a combination of two relatively close reception bands can be used as the combination of the cellular reception band and the satellite reception band, and the performance requirements of the filter 314 and the low noise amplifier 213 can be relaxed.
- Embodiment 4 Next, Embodiment 4 will be described.
- This embodiment mainly differs from the first embodiment in that the communication device supports not only satellite reception but also satellite transmission.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment.
- the circuit configuration of the communication device 5D according to the present embodiment is the same as that of the communication device 5 according to the first embodiment, except that the high frequency circuit 1D is provided instead of the high frequency circuit 1. Therefore, a detailed description of the communication device 5D will be omitted, and the high frequency circuit 1D will be described with reference to FIG. 9.
- FIG. 9 is a circuit configuration diagram of a communication device 5D according to the present embodiment.
- the high frequency circuit 1D includes a first transmission circuit 6, a second transmission circuit 7D, antenna connection terminals 101 and 102, output terminals 103 to 105, and input terminals 106 and 107. .
- the input terminal 107 is a high frequency input terminal for receiving a high frequency signal from the RFIC 3. Specifically, the input terminal 107 is connected to the input terminal of the power amplifier circuit 11D in the high frequency circuit 1, and the transmission signal of the satellite transmission band received from the RFIC 3 via the input terminal 107 is supplied to the power amplifier circuit 11D. be done.
- the second transmission circuit 7D includes a power amplifier circuit 11D, a low noise amplifier circuit 22, and a filter circuit 32D.
- the power amplifier circuit 11D is connected between the input terminals 106 and 107 and the filter circuit 32D. As shown in FIG. 9, power amplifier circuit 11D includes power amplifiers 111 and 112.
- the input terminal of the power amplifier 112 is connected to the input terminal 107.
- the output terminal of the power amplifier 112 is connected to a filter 328 in a filter circuit 32D, which will be described later.
- the power amplifier 112 can amplify the satellite transmission band transmission signal received from the RFIC 3 via the input terminal 107, and output the amplified satellite transmission band transmission signal to the antenna 2b via the filter 328. can.
- Power amplifier circuit 11D may include only one power amplifier.
- the power amplifier circuit 11D may include a switch that switches the connection of the output terminal of one power amplifier between the filters 321 and 328, and the connection of the input terminal of one power amplifier to the input terminal 106 of the high frequency circuit 1D. and 107 may be included.
- the filter circuit 32D is an example of a second filter circuit, and is connected between the antenna connection terminal 102 and the power amplifier circuit 11D and the low-noise amplifier circuit 22. As shown in FIG. 9, filter circuit 32D includes filters 321, 322, and 328 and a switch 329.
- Filter 328 (B-Tx) is an example of a third transmission filter and has a passband that includes the satellite transmission band.
- One end of the filter 328 is connected to the antenna connection terminal 102 via a switch 329.
- the other end of filter 328 is connected to the output terminal of power amplifier 112.
- the switch 329 is connected between the antenna connection terminal 102 and the filters 321, 322, and 328. Specifically, switch 329 has terminals 329a to 329c. Terminal 329a is connected to antenna connection terminal 102. Terminal 329b is connected to filters 321 and 322. Terminal 329c is connected to filter 328.
- the switch 329 can connect either of the terminals 329b and 329c to the terminal 329a based on a control signal from the RFIC 3, for example. That is, the switch 329 can switch the connection of the antenna connection terminal 102 between the filters 321 and 322 and the filter 328.
- the switch 329 is composed of, for example, an SPDT type switch circuit.
- the terminal 329a is configured to be connectable to the terminals 329b and 329c.
- the terminal 329b is configured to be connectable to the terminal 329a, but not connectable to the terminal 329c.
- the terminal 329c is configured to be connectable to the terminal 329a, but not connectable to the terminal 329b.
- an uplink operation band and a downlink operation band included in the same FDD band are used as the cellular transmission band and the cellular reception band.
- the same cellular transmission band and cellular reception band as in the first embodiment are used.
- the uplink operating band and downlink operating band for the satellite communication system are used as the satellite transmission band and the satellite reception band. More specifically, the satellite transmission band and satellite reception band include, for example, the uplink operating band (1610-1621.35 MHz) and downlink operating band for Globalstar, or the N201, N255 or N256 for 5GNR. Uplink operating bands and downlink operating bands may be used.
- the high frequency circuit 1D includes the first transmission circuit 6 that supports reception of a cellular communication system and a satellite system, and the second transmission circuit 7D that supports transmission and reception of the cellular communication system.
- the first transmission circuit 6 includes a filter circuit 31 connected to the antenna connection terminal 101 and having a pass band including a cellular reception band and a satellite reception band, and a low noise amplification circuit 21 connected to the filter circuit 31.
- the second transmission circuit 7D is connected to the antenna connection terminal 102, and is connected to a filter circuit 32D having a passband including a cellular reception band and a cellular transmission band corresponding to the cellular reception band.
- the power amplifier circuit 11D includes a power amplifier circuit 11D, and a low noise amplifier circuit 22 connected to a filter circuit 32D.
- the filter circuit 31 having a passband including the cellular reception band and the satellite reception band is connected to the antenna connection terminal 101, one antenna can be shared by the cellular reception band and the satellite reception band. . Therefore, it becomes easy to mount the circuit for the cellular reception band and the circuit for the satellite reception band on one module board 1091 or 1093, which can contribute to miniaturization of the communication device 5D. Further, since the filter circuit 31 for the satellite reception band is connected to an antenna connection terminal 101 different from the antenna connection terminal 102 to which the filter circuit 32D for the cellular transmission band is connected, the cellular transmission signal is connected to the satellite reception signal. It is possible to suppress interference and suppress a decrease in reception sensitivity in the satellite system.
- the filter circuit 32D may include a filter 328 having a pass band including a satellite transmission band corresponding to the satellite reception band
- the power amplification circuit 11D may include a filter 328 having a passband including a satellite transmission band corresponding to the satellite reception band. May be connected.
- one antenna can be shared between the cellular transmission band and the satellite transmission band, which can contribute to downsizing of the communication device 5D.
- the low-noise amplifier circuit 21 and filter circuit 31 can be replaced with the low-noise amplifier circuit 21A and filter circuit 31A, similarly to the second embodiment.
- the same frequency band included in the same TDD band can be used as the cellular transmission band and the cellular reception band, similarly to the third embodiment or its modification.
- the filter circuit 32D may include a filter 323 and a switch 324, or may include filters 325 and 326 instead of the filters 321 and 322.
- Embodiment 5 differs from the first embodiment mainly in that the high frequency circuit includes a switch for switching connections between two antenna connection terminals and two filter circuits.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment.
- the circuit configuration of the communication device 5E according to the present embodiment is the same as that of the communication device 5 according to the first embodiment, except that the high frequency circuit 1E is provided instead of the high frequency circuit 1. Therefore, a detailed description of the communication device 5E will be omitted, and the high frequency circuit 1E will be described with reference to FIG. 10.
- FIG. 10 is a circuit configuration diagram of a communication device 5E according to this embodiment.
- the high frequency circuit 1E includes a power amplifier circuit 11, low noise amplifier circuits 21 and 22, filter circuits 31 and 32, a switch circuit 41, antenna connection terminals 101 and 102, and an output terminal 103. 105 and an input terminal 106.
- the switch circuit 41 is connected between the antenna connection terminals 101 and 102 and the filter circuits 31 and 32. Specifically, the switch circuit 41 has terminals 41a to 41d. Terminal 41a is connected to antenna connection terminal 101. Terminal 41b is connected to antenna connection terminal 102. Terminal 41c is connected to filter circuit 31. The terminal 41d is connected to the filter circuit 32.
- the switch circuit 41 can connect the terminal 41a to one of the terminals 41c and 41d, and connect the terminal 41b to the other of the terminals 41c and 41d, based on a control signal from the RFIC 3, for example. That is, the switch circuit 41 can connect the antenna connection terminal 101 to one of the filter circuits 31 and 32, and connect the antenna connection terminal 102 to the other of the filter circuits 31 and 32.
- the switch circuit 41 is composed of, for example, a DPDT (Double Pole Double Throw) type switch circuit.
- the terminal 41a is configured to be connectable to the terminals 41c and 41d, but not connectable to the terminal 41b.
- the terminal 41b is configured to be connectable to the terminals 41c and 41d, but not connectable to the terminal 41a.
- the terminal 41c is configured to be connectable to the terminals 41a and 41b, but not connectable to the terminal 41d.
- the terminal 41d is configured to be connectable to the terminals 41a and 41b, but not connectable to the terminal 41c.
- the high frequency circuit 1E includes the first transmission circuit 6 that supports reception of a cellular communication system and a satellite system, and the second transmission circuit 7 that supports transmission and reception of the cellular communication system.
- the first transmission circuit 6 includes a filter circuit 31 connected to the antenna connection terminal 101 and having a pass band including a cellular reception band and a satellite reception band, and a low noise amplification circuit 21 connected to the filter circuit 31.
- the second transmission circuit 7 is connected to the antenna connection terminal 102 and has a filter circuit 32 having a passband including a cellular reception band and a cellular transmission band corresponding to the cellular reception band;
- the power amplifier circuit 11 has a power amplifier circuit 11 connected to the filter circuit 32, and a low noise amplifier circuit 22 connected to a filter circuit 32.
- the filter circuit 31 having a passband including the cellular reception band and the satellite reception band is connected to the antenna connection terminal 101, one antenna can be shared by the cellular reception band and the satellite reception band. . Therefore, it becomes easy to mount the circuit for the cellular reception band and the circuit for the satellite reception band on one module board 1091 or 1093, which can contribute to miniaturization of the communication device 5E. Further, since the filter circuit 31 for the satellite reception band is connected to an antenna connection terminal 101 different from the antenna connection terminal 102 to which the filter circuit 32 for the cellular transmission band is connected, the cellular transmission signal is connected to the satellite reception signal. It is possible to suppress interference and suppress a decrease in reception sensitivity in the satellite system.
- the high frequency circuit 1E further includes a terminal 41a connected to the antenna connection terminal 101, a terminal 41b connected to the antenna connection terminal 102, a terminal 41c connected to the filter circuit 31, and a filter circuit.
- a switch circuit 41 having a terminal 41d connected to 32 may be provided.
- the switch circuit 41 is included in the high frequency circuit 1 according to the first embodiment, but the switch circuit 41 is included in the high frequency circuits 1A to 1D according to the second to fourth embodiments. May be included.
- the switch circuit 41 may be included outside the high frequency circuits 1A to 1E in the communication devices 5A to 5E.
- the switch circuit 41 may be connected between the antennas 2a and 2b and the high frequency circuit 1.
- terminals 41a and 41b of switch circuit 41 may be connected to antennas 2a and 2b
- terminals 41c and 41d of switch circuit 41 may be connected to antenna connection terminals 101 and 102.
- Such a switch circuit 41 may be mounted on a motherboard.
- the high frequency circuit and communication device according to the present invention have been described above based on the embodiments, the high frequency circuit according to the present invention is not limited to the above embodiments.
- another circuit element, wiring, etc. may be inserted between the paths connecting the respective circuit elements and signal paths disclosed in the drawings.
- an impedance matching circuit may be inserted between the low noise amplifier circuit and the filter circuit and/or between the power amplifier circuit and the filter circuit.
- the first transmission circuit does not have a transmission path, but the first transmission circuit may have one or more transmission paths. That is, in the high frequency circuit in each of the embodiments described above, the first transmission circuit includes one or more receiving paths for transmitting a received signal input via the antenna connection terminal 101 and a transmission path for outputting the received signal via the antenna connection terminal 101. one or more transmission paths for transmitting a signal, each of the one or more reception paths having one reception filter having a passband including the reception band, and each of the one or more transmission paths for transmitting a signal. The number of one or more receive paths may be greater than the number of one or more transmit paths, with one transmit filter having a passband including a band.
- the first transmission circuit can be applied to a receiving circuit (diversity module) for receiving signals using a diversity antenna, for example.
- the uplink operating band is used as the cellular transmission band
- the downlink operating band is used as the cellular receiving band
- the present invention is not limited to this.
- a downlink operating band may be used as the cellular transmission band and an uplink operating band may be used as the cellular receiving band.
- the present invention can be widely used in communication devices such as mobile phones as a high frequency circuit placed in a front end section.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
高周波回路(1)は、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路(6)と、セルラー通信システムの送信及び受信に対応する第2伝送回路(7)と、を備え、第1伝送回路(6)は、アンテナ接続端子(101)に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路(31)と、フィルタ回路(31)に接続される低雑音増幅回路(21)と、を有し、第2伝送回路(7)は、アンテナ接続端子(102)に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路(32)と、フィルタ回路(32)に接続される電力増幅回路(11)と、フィルタ回路(32)に接続される低雑音増幅回路(22)と、を備える。
Description
本発明は、高周波回路に関する。
携帯電話などの移動体通信機器では、マルチバンド化の進展等に伴い、高周波フロントエンドモジュールが複雑化している(例えば、特許文献1及び2を参照)。
しかしながら、上記従来の技術では、通信装置の大型化を招く可能性がある。
そこで、本発明は、通信装置の小型化に貢献することができる高周波回路を提供する。
本発明の一態様に係る高周波回路は、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路と、セルラー通信システムの送信及び受信に対応する第2伝送回路と、を備え、第1伝送回路は、第1アンテナ接続端子に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有する第1フィルタ回路と、第1フィルタ回路に接続される第1低雑音増幅回路と、を含み、第2伝送回路は、第2アンテナ接続端子に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有する第2フィルタ回路と、第2フィルタ回路に接続される電力増幅回路と、第2フィルタ回路に接続される第2低雑音増幅回路と、を含む。
本発明の一態様に係る高周波回路によれば、通信装置の小型化に貢献することができる。
(本発明に至った経緯)
近年、移動体通信装置では、セルラー通信システムに加えて、衛星システムへの対応が要求されている。例えば、特許文献1には、セルラー通信システムの信号(以下、セルラー信号という)を送受信するためのモジュールに加えて、衛星システム(例えばGPS(Global Positioning System))の信号(以下、衛星信号という)を受信するためのモジュールを備える通信装置が開示されている。
近年、移動体通信装置では、セルラー通信システムに加えて、衛星システムへの対応が要求されている。例えば、特許文献1には、セルラー通信システムの信号(以下、セルラー信号という)を送受信するためのモジュールに加えて、衛星システム(例えばGPS(Global Positioning System))の信号(以下、衛星信号という)を受信するためのモジュールを備える通信装置が開示されている。
また、移動体通信装置では、複数のアンテナを用いることで、通信の質、信頼性、能力等の向上が図られることがある。例えば、特許文献2には、プライマリアンテナによる信号の送受信のための送受信モジュールと、ダイバーシティアンテナによる信号の受信のための受信モジュールと、を備える通信装置が開示されている。
しかしながら、上記従来の技術では、複数のアンテナを用いたセルラー信号の送受信と衛星信号の受信とのために、モジュール数が増加して通信装置の大型化を招く場合がある。
そこで、複数のアンテナを用いたセルラー信号の送受信と衛星信号の受信とに対応する通信装置の小型化に貢献することができる高周波回路について、実施の形態に基づいて以下に詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。
なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。
以下の各図において、x軸及びy軸は、モジュール基板の主面と平行な平面上で互いに直交する軸である。具体的には、平面視においてモジュール基板が矩形状を有する場合、x軸は、モジュール基板の第1辺に平行であり、y軸は、モジュール基板の第1辺と直交する第2辺に平行である。また、z軸は、モジュール基板の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。
本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味し、A及びBを結ぶ経路に直列接続されることに加えて、当該経路とグランドとの間に並列接続(シャント接続)されることを含む。
本発明の部品配置において、「部品が基板に配置される」とは、部品が基板の主面上に配置されること、及び、部品が基板内に配置されることを含む。「部品が基板の主面上に配置される」とは、部品が基板の主面に接触して配置されることに加えて、部品が主面と接触せずに当該主面の上方に配置されること(例えば、部品が主面と接触して配置された他の部品上に積層されること)を含む。また、「部品が基板の主面上に配置される」は、主面に形成された凹部に部品が配置されることを含んでもよい。「部品が基板内に配置される」とは、部品がモジュール基板内にカプセル化されることに加えて、部品の全部が基板の両主面の間に配置されているが部品の一部が基板に覆われていないこと、及び、部品の一部のみが基板内に配置されていることを含む。
本発明の通信システムにおいて、「セルラー受信バンド」とは、セルラー通信システムのための周波数バンドであって通信装置において受信に用いられる周波数バンドを意味する。「セルラー送信バンド」とは、セルラー通信システムのための周波数バンドであって通信装置において送信に用いられる周波数バンドを意味する。「衛星受信バンド」とは、衛星システムのための周波数バンドであって通信装置において受信に用いられる周波数バンドを意味する。「衛星送信バンド」とは、衛星システムのための周波数バンドであって通信装置において送信に用いられる周波数バンドを意味する。
ここで、「セルラー通信システム」とは、セルラーネットワークのために標準化団体など(例えば3GPP(登録商標)(3rd Generation Partnership Project)及びIEEE(Institute of Electrical and Electronics Engineers)等)によって標準化された通信システムを意味する。セルラー通信システムには、地上系ネットワーク(TN:Terrestrial Network)に加えて、非地上系ネットワーク(NTN:Non-Terrestrial Network)が含まれる。NTNとは、衛星システムなどをセルラー通信システムに統合するために、3GPPで標準化されたネットワークである。以下では、セルラー通信システムとして、LTE(Long-Term Evolution)通信システム及び/又は5GNR(5th Generation New Radio)通信システムが用いられるが、セルラー通信システムは、これらに限定されない。例えば、セルラー通信システムとして、第6世代以降のセルラー通信システムが用いられてもよい。
また、「衛星システム」とは、人工衛星を用いたシステムを意味する。以下では、衛星システムとして、衛星ナビゲーションシステム(satellite navigation system)及び/又は衛星通信システム(satellite communication system)が用いられるが、衛星システムは、これらに限定されない。なお、衛星通信システムには、NTNが含まれる。なお、TNは、衛星通信システムに含まれない。
以下において、「平行」及び「垂直」などの要素間の関係性を示す用語、及び、「矩形」などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。
(実施の形態1)
以下に、実施の形態1について説明する。本実施の形態では、セルラー送信バンド及びセルラー受信バンドとして、同一の周波数分割複信(FDD:Frequency Division Duplex)バンドに含まれるアップリンク動作バンド及びダウンリンク動作バンドがそれぞれ用いられる。
以下に、実施の形態1について説明する。本実施の形態では、セルラー送信バンド及びセルラー受信バンドとして、同一の周波数分割複信(FDD:Frequency Division Duplex)バンドに含まれるアップリンク動作バンド及びダウンリンク動作バンドがそれぞれ用いられる。
[1.1 通信装置5の回路構成]
まず、本実施の形態に係る通信装置5の回路構成について、図1を参照しながら説明する。図1は、本実施の形態に係る通信装置5の回路構成図である。
まず、本実施の形態に係る通信装置5の回路構成について、図1を参照しながら説明する。図1は、本実施の形態に係る通信装置5の回路構成図である。
通信装置5は、セルラー通信システムにおけるユーザ端末(UE:User Equipment)に相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ、ウェアラブル・デバイス等である。なお、通信装置5は、IoT(Internet of Things)センサ・デバイス、医療/ヘルスケア・デバイス、車、無人航空機(UAV:Unmanned Aerial Vehicle)(いわゆるドローン)、無人搬送車(AGV:Automated Guided Vehicle)であってもよい。また、通信装置5は、セルラー通信システムにおける基地局(BS:Base Station)として用いられてもよい。
図1に示すように、通信装置5は、高周波回路1と、アンテナ2a及び2bと、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、を備える。
高周波回路1は、アンテナ2a及び2bとRFIC3との間で高周波信号を伝送することができる。高周波回路1は、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6と、セルラー通信システムの送信及び受信に対応する第2伝送回路7と、を備える。高周波回路1の詳細な内部構成については後述する。
アンテナ2aは、ダイバーシティアンテナの一例であり、高周波回路1のアンテナ接続端子101に接続される。アンテナ2aは、外部から高周波信号を受信し、受信した高周波信号を高周波回路1へ供給することができる。
アンテナ2bは、プライマリアンテナの一例であり、高周波回路1のアンテナ接続端子102に接続される。アンテナ2bは、外部から高周波信号を受信し、受信した高周波信号を高周波回路1へ供給することができる。さらに、アンテナ2bは、高周波回路1から受けた高周波信号を外部に送信することができる。
RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波回路1の受信経路を介して受けた高周波受信信号を、ダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をBBIC4へ供給することができる。また、RFIC3は、BBIC4から受けた送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波回路1の送信経路に供給することができる。また、RFIC3は、高周波回路1が有するスイッチ及び増幅器等を制御するための制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に実装されてもよく、例えば、BBIC4又は高周波回路1に実装されてもよい。
BBIC4は、高周波回路1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するためのベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のために音声信号が用いられる。
なお、図1に表された通信装置5の回路構成は、例示であり、これに限定されない。例えば、通信装置5は、アンテナ2a及び2bを含まなくてもよく、BBIC4を含まなくてもよい。また例えば、通信装置5は、3つ以上のアンテナを含んでもよい。
[1.2 高周波回路1の回路構成]
次に、通信装置5に含まれる高周波回路1の回路構成について、図1を参照しながら説明する。図1に示すように、高周波回路1は、第1伝送回路6と、第2伝送回路7と、アンテナ接続端子101及び102と、出力端子103~105と、入力端子106と、を備える。
次に、通信装置5に含まれる高周波回路1の回路構成について、図1を参照しながら説明する。図1に示すように、高周波回路1は、第1伝送回路6と、第2伝送回路7と、アンテナ接続端子101及び102と、出力端子103~105と、入力端子106と、を備える。
アンテナ接続端子101は、第1アンテナ接続端子の一例である。アンテナ接続端子101は、高周波回路1内で第1伝送回路6に接続され、高周波回路1外でアンテナ2aに接続される。これにより、アンテナ2aで受信されたセルラー受信バンド及び衛星受信バンドの受信信号は、アンテナ接続端子101を介して第1伝送回路6に伝送される。
アンテナ接続端子102は、第2アンテナ接続端子の一例である。アンテナ接続端子102は、高周波回路1内で第2伝送回路7に接続され、高周波回路1外でアンテナ2bに接続される。これにより、アンテナ2bで受信されたセルラー受信バンドの受信信号は、アンテナ接続端子102を介して第2伝送回路7に伝送される。また、第2伝送回路7で増幅されたセルラー送信バンドの送信信号は、アンテナ接続端子102を介してアンテナ2bに出力される。
出力端子103~105の各々は、RFIC3に高周波信号を供給するための高周波出力端子である。具体的には、出力端子103は、高周波回路1内で第1伝送回路6の出力端子に接続され、出力端子103を介してセルラー受信バンドの受信信号がRFIC3に供給される。出力端子104は、高周波回路1内で第1伝送回路6の出力端子に接続され、出力端子104を介して衛星受信バンドの受信信号がRFIC3に供給される。出力端子105は、高周波回路1内で第2伝送回路7の出力端子に接続され、出力端子105を介してセルラー受信バンドの受信信号がRFIC3に供給される。
入力端子106は、RFIC3から高周波信号を受けるための高周波入力端子である。具体的には、入力端子106は、高周波回路1内で第2伝送回路7の入力端子に接続され、RFIC3から入力端子106を介して受信されたセルラー送信バンドの送信信号が第2伝送回路7に供給される。
第1伝送回路6は、セルラー通信システム及び衛星システムの受信に対応している。第1伝送回路6は、アンテナ接続端子101を介して入力された受信信号を伝送する2つの受信経路を有し、アンテナ接続端子101を介して出力する送信信号を伝送する送信経路を有さない。このとき、2つの受信経路のそれぞれは、受信バンドを含む通過帯域を有する受信フィルタを含む。具体的には、図1において、2つの受信経路の一方は、後述するフィルタ311を有し、2つの受信経路の他方は、後述するフィルタ312を有する。図1に示すように、第1伝送回路6は、低雑音増幅回路21と、フィルタ回路31と、を有する。
低雑音増幅回路21は、第1低雑音増幅回路の一例であり、フィルタ回路31と高周波回路1の出力端子103及び104との間に接続される。図1に示すように、低雑音増幅回路21は、低雑音増幅器211及び212を含む。
低雑音増幅器211の入力端子は、後述するフィルタ回路31内のフィルタ311に接続される。低雑音増幅器211の出力端子は、高周波回路1の出力端子103に接続される。この構成により、低雑音増幅器211は、フィルタ311を介して受けたセルラー受信バンドの受信信号を増幅し、増幅したセルラー受信バンドの受信信号を出力端子103を介してRFIC3に供給することができる。
低雑音増幅器212の入力端子は、後述するフィルタ回路31内のフィルタ312に接続される。低雑音増幅器212の出力端子は、高周波回路1の出力端子104に接続される。この構成により、低雑音増幅器212は、フィルタ312を介して受けた衛星受信バンドの受信信号を増幅し、増幅した衛星受信バンドの受信信号を出力端子104を介してRFIC3に供給することができる。
なお、低雑音増幅回路21内の回路構成は、図1の構成に限定されない。低雑音増幅回路21は、1つの低雑音増幅器のみを含んでもよい。この場合、低雑音増幅回路21は、1つの低雑音増幅器の入力端子の接続をフィルタ311及び312の間で切り替えるスイッチを含んでもよく、1つの低雑音増幅器の出力端子の接続を高周波回路1の出力端子103及び104の間で切り替えるスイッチを含んでもよい。
フィルタ回路31は、第1フィルタ回路の一例であり、アンテナ接続端子101と低雑音増幅回路21との間に接続される。図1に示すように、フィルタ回路31は、フィルタ311及び312とスイッチ313とを含む。
フィルタ311(A-Rx)は、第1受信フィルタの一例であり、セルラー受信バンドを含む通過帯域を有する。フィルタ311の一端は、スイッチ313を介してアンテナ接続端子101に接続される。フィルタ311の他端は、低雑音増幅器211の入力端子に接続される。
フィルタ312(B-Rx)は、第2受信フィルタの一例であり、衛星受信バンドを含む通過帯域を有する。フィルタ312の一端は、スイッチ313を介してアンテナ接続端子101に接続される。フィルタ312の他端は、低雑音増幅器212の入力端子に接続される。
スイッチ313は、第1スイッチの一例であり、アンテナ接続端子101とフィルタ311及び312との間に接続される。具体的には、スイッチ313は、端子313a~313cを有する。端子313aは、アンテナ接続端子101に接続される。端子313bは、フィルタ311に接続される。端子313cは、フィルタ312に接続される。
この接続構成において、スイッチ313は、例えばRFIC3からの制御信号に基づいて、端子313b及び313cのいずれかを端子313aに接続することができる。つまり、スイッチ313は、アンテナ接続端子101の接続を、フィルタ311及び312の間で切り替えることができる。
スイッチ313は、例えばSPDT(Single Pole Double Throw)型のスイッチ回路で構成される。このとき、スイッチ313内において、端子313aは、端子313b及び313cに接続可能に構成される。また、スイッチ313内において、端子313bは、端子313aに接続可能に構成され、端子313cに接続不可能に構成される。また、スイッチ313内において、端子313cは、端子313aに接続可能に構成され、端子313bに接続不可能に構成される。
第2伝送回路7は、セルラー通信システムの送信及び受信に対応している。第2伝送回路7は、アンテナ接続端子102を介して入力された受信信号を伝送する1つの受信経路と、アンテナ接続端子102を介して出力する送信信号を伝送する1つの送信経路と、を有する。図1に示すように、第2伝送回路7は、電力増幅回路11と、低雑音増幅回路22と、フィルタ回路32と、を有する。
電力増幅回路11は、入力端子106とフィルタ回路32との間に接続される。図1に示すように、電力増幅回路11は、電力増幅器111を含む。電力増幅器111の入力端子は、入力端子106に接続される。電力増幅器111の出力端子は、後述するフィルタ回路32内のフィルタ321に接続される。この構成により、電力増幅器111は、RFIC3から入力端子106を介して受けたセルラー送信バンドの送信信号を増幅し、増幅したセルラー送信バンドの送信信号をフィルタ321を介してアンテナ2bに出力することができる。
低雑音増幅回路22は、第2低雑音増幅回路の一例であり、フィルタ回路32と高周波回路1の出力端子105との間に接続される。低雑音増幅回路22は、低雑音増幅器221を含む。低雑音増幅器221の入力端子は、後述するフィルタ回路32内のフィルタ322に接続される。低雑音増幅器221の出力端子は、高周波回路1の出力端子105に接続される。この構成により、低雑音増幅器221は、フィルタ322を介して受けたセルラー受信バンドの受信信号を増幅し、増幅したセルラー受信バンドの受信信号を出力端子105を介してRFIC3に供給することができる。
フィルタ回路32は、第2フィルタ回路の一例であり、アンテナ接続端子102と電力増幅回路11及び低雑音増幅回路22との間に接続される。図1に示すように、フィルタ回路32は、フィルタ321及び322を含む。
フィルタ321(A-Tx)は、第1送信フィルタの一例であり、セルラー送信バンドを含む通過帯域を有する。フィルタ321の一端は、アンテナ接続端子102に接続される。フィルタ321の他端は、電力増幅器111の出力端子に接続される。
フィルタ322(A-Rx)は、第4受信フィルタの一例であり、セルラー受信バンドを含む通過帯域を有する。フィルタ322の一端は、アンテナ接続端子102に接続される。フィルタ322の他端は、低雑音増幅器221の入力端子に接続される。
なお、図1に表された高周波回路1の回路構成は、例示であり、これに限定されない。例えば、第1伝送回路6は、さらに、送信経路を含んでもよい。この場合であっても、第1伝送回路6において、受信経路の数は、送信経路の数よりも多い。
[1.3 周波数バンドの具体例]
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド及び衛星受信バンドの具体例について説明する。
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド及び衛星受信バンドの具体例について説明する。
本実施の形態では、セルラー送信バンド及びセルラー受信バンドとして、同一のFDDバンドに含まれるアップリンク動作バンド及びダウンリンク動作バンドが用いられる。このとき、FDDバンドとしては、1.4~5GHzの範囲に含まれる周波数バンドを用いることができる。より具体的には、FDDバンドとしては、例えば、LTEのためのBand1、Band2、Band3、Band4、Band7、Band11、Band21、Band24、Band25、Band66若しくはBand74、若しくは、5GNRのためのn1、n2、n3、n7、n24、n25、n66、n74、n201、n255若しくはn256又は、これらの任意の組み合わせを用いることもできる。
また、本実施の形態では、衛星受信バンドとしては、人工衛星から信号を受信するための周波数バンドを用いることができる。より具体的には、衛星受信バンドとしては、例えば、GPSのためのL1バンド(1563~1587 MHz)、GLONASS(Global Navigation Satellite System)のためのL1バンド(1593~1610 MHz)若しくはL5バンド(1164~1189 MHz)、グローバルスター(Globalstar)のためのダウンリンク動作バンド(2483.5~2500 MHz)、若しくは、5GNRのためのn201のダウンリンク動作バンド(2483.5~2495 MHz)、n255のダウンリンク動作バンド(1525~1559 MHz)若しくはn256のダウンリンク動作バンド(2170~2200 MHz)、又は、これらの任意の組み合わせを用いることができる。
例えば、セルラー送信バンド、セルラー受信バンド及び衛星受信バンドの組み合わせとして、LTEのためのBand24のアップリンク動作バンド(1626.5~1660.5 MHz)及びダウンリンク動作バンド(1525~1559 MHz)、並びに、GPSのためのL1バンドの組み合わせが用いられる。このとき、LTEのためのBand24の代わりに5GNRのためのn24(UL: 1626.5~1660.5 MHz, DL: 1525~1559 MHz)、n201(UL: 1610~1626.5 MHz, DL: 2483.5~2495 MHz)又はn255(UL: 1626.5~1660.5 MHz, DL: 1525~1559 MHz)が用いられてもよく、GPSのためのL1バンドの代わりにGLONASSのためのL1バンドが用いられてもよい。これらの組み合わせでは、衛星受信バンドは、セルラー送信バンドとセルラー受信バンドとの間の周波数ギャップ(例えばBand24では1559~1626.5 MHz)に含まれる。
[1.4 高周波回路1の実施例1]
以上のような本実施の形態に係る高周波回路1の実施例1として、高周波回路1が実装された高周波モジュール1001及び1002について説明する。本実施例では、高周波回路1は、第1伝送回路6が実装された高周波モジュール1001と第2伝送回路7が実装された高周波モジュール1002とに分かれて実装されている。
以上のような本実施の形態に係る高周波回路1の実施例1として、高周波回路1が実装された高周波モジュール1001及び1002について説明する。本実施例では、高周波回路1は、第1伝送回路6が実装された高周波モジュール1001と第2伝送回路7が実装された高周波モジュール1002とに分かれて実装されている。
まず、高周波モジュール1001について図2及び図3を参照しながら説明する。図2は、本実施例に係る高周波モジュール1001の平面図である。図3は、本実施例に係る高周波モジュール1001の部分断面図である。図3における高周波モジュール1001の断面は、図2のiii-iii線における断面を表す。
なお、図2~図4において、複数の回路部品をそれぞれ接続する配線の図示が省略されている。また、図2及び図4において、複数の回路部品を覆う樹脂部材及びその樹脂部材の表面を覆うシールド電極層の図示が省略されている。また、図2及び図4において、各回路部品の配置関係が容易に理解されるように、各回路部品に実装されている回路を表す文字(例えば「LNA」など)が付されているが、実際の各回路部品には、当該文字は付されなくてもよい。
高周波モジュール1001は、いわゆるダイバーシティモジュールである。高周波モジュール1001は、図1に示された低雑音増幅回路21及びフィルタ回路31に含まれる複数の回路素子を含む複数の回路部品に加えて、モジュール基板1091と、樹脂部材1094と、シールド電極層1095と、複数のランド電極1096と、を備える。
モジュール基板1091は、第1モジュール基板の一例であり、互いに対向する主面1091a及び1091bを有する。なお、図2において、モジュール基板1091は、平面視において矩形状を有するが、この形状に限定されない。
モジュール基板1091としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)基板もしくは高温同時焼成セラミックス(HTCC:High Temperature Co-fired Ceramics)基板、部品内蔵基板、再配線層(RDL:Redistribution Layer)を有する基板、又は、プリント基板等を用いることができるが、これらに限定されない。
モジュール基板1091の主面1091aには、低雑音増幅器211(LNA)及び低雑音増幅器212(LNA)と、フィルタ311(A-Rx)及びフィルタ312(B-Rx)と、スイッチ313(SW)と、が配置されている。また、モジュール基板1091の主面1091bには、複数のランド電極1096が配置されている。
低雑音増幅器211及び212は、1つの集積回路に含まれており、スイッチ313は、他の1つの集積回路に含まれている。低雑音増幅器211及び212を含む集積回路、並びに、スイッチ313を含む集積回路は、例えばCMOS(Complementary Metal Oxide Semiconductor)を用いて構成され、具体的にはSOI(Silicon on Insulator)プロセスにより製造されてもよい。なお、集積回路は、CMOSに限定されない。なお、低雑音増幅器211及び212並びにスイッチ313は、1つの集積回路に含まれてもよく、3つの集積回路に個別に含まれてもよい。
フィルタ311及び312は、弾性表面波(SAW:Surface Acoustic Wave)フィルタを用いて構成され、同一の圧電基板1310に実装されている。具体的には、フィルタ311及び312を含むフィルタ部品は、図3に示すように圧電基板1310と、IDT(Interdigital Transducer)電極1311及び1312と、複数のバンプ電極1313と、を備える。
圧電基板1310は、弾性波を伝搬する表面を有する。本実施の形態では、弾性波を伝搬する表面は、モジュール基板1091の主面1091aに対面している。圧電基板1310は、例えば、LiNbO3単結晶又はLiTaO3単結晶で構成される。
IDT電極1311及び1312は、圧電基板1310の表面に配置されている。IDT電極1311及び1312の各々は、機能電極の一例であり、圧電基板1310の表面を伝搬する弾性波を電気信号に変換することができる、又は、電気信号を弾性波に変換することができる。これにより、フィルタ311及び312が圧電基板1310に実装される。IDT電極1311及び1312の各々の材料としては、銅、アルミニウム、白金、それらの積層体、又は、それらの合金を用いることができる。
なお、IDT電極1311及び1312は、保護膜で覆われてもよい。保護膜は、IDT電極1311及び1312を保護する機能、及び、周波数温度特性を調整する機能を有する。保護膜は、例えば二酸化ケイ素で構成される。
複数のバンプ電極1313は、圧電基板1310の表面から突出し、その先端がモジュール基板1091の主面1091aに物理的に接続される。複数のバンプ電極1313の少なくとも一部は、IDT電極1311及び1312と電気的に接続されており、IDT電極1311及び1312で変換された電気信号がそれぞれ取り出され、又は、電気信号がIDT電極1311及び1312にそれぞれ供給される。複数のバンプ電極1313は、高導電性金属(例えば、すず、銀及び銅で構成されたはんだ、又は、金を主成分とする金属など)で構成される。
なお、フィルタ311及び312は、同一の圧電基板に実装されなくてもよく、異なる圧電基板に実装されてもよい。また、フィルタ311及び312は、SAWフィルタを用いて構成されなくてもよい。例えば、フィルタ311及び312は、バルク弾性波(BAW:Bulk Acoustic Wave)フィルタを用いて構成されてもよい。この場合、フィルタ311及び312を構成する2つのBAWフィルタは、同一の圧電基板に実装されてもよい。また、フィルタ311及び312は、LC共振フィルタ、又は、誘電体フィルタを用いて構成されてもよく、これらに限定される必要もない。
複数のランド電極1096は、図1に示したアンテナ接続端子101並びに出力端子103及び104とグランド端子とを含む複数の外部接続端子として機能する。複数のランド電極1096の各々は、高周波モジュール1001のz軸負方向に配置されたマザー基板上の入出力端子及び/又はグランド端子等に接続される。なお、複数のランド電極1096の代わりに、複数のバンプ電極が主面1091b上に配置されてもよい。
樹脂部材1094は、主面1091a及び主面1091a上の複数の回路部品の少なくとも一部を覆っている。樹脂部材1094は、主面1091a上の複数の回路部品の機械強度及び耐湿性等の信頼性を確保する機能を有する。なお、樹脂部材1094は、高周波モジュール1001に含まれなくてもよい。
シールド電極層1095は、例えばスパッタ法により形成された金属薄膜である。シールド電極層1095は、樹脂部材1094の表面(上面及び側面)を覆うように形成されている。シールド電極層1095は、グランドに接続され、外来ノイズが高周波モジュール1001を構成する電子部品に侵入すること、及び、高周波モジュール1001で発生したノイズが他のモジュール又は他の機器に干渉することを抑制する。なお、シールド電極層1095は、高周波モジュール1001に含まれなくてもよい。
次に、高周波モジュール1002について図4を参照しながら説明する。図4は、本実施例に係る高周波モジュール1002の平面図である。
高周波モジュール1002は、いわゆるプライマリモジュールである。高周波モジュール1002は、図1に示された電力増幅回路11、低雑音増幅回路22及びフィルタ回路32に含まれる複数の回路素子を含む複数の回路部品に加えて、モジュール基板1092と、樹脂部材(図示せず)と、シールド電極層(図示せず)と、複数のランド電極(図示せず)と、を備える。
モジュール基板1092は、第2モジュール基板の一例であり、互いに対向する主面を有する。なお、図4において、モジュール基板1092は、平面視において矩形状を有するが、この形状に限定されない。モジュール基板1092は、モジュール基板1091と同様に構成することができる。
モジュール基板1092の主面には、電力増幅器111(PA)と、低雑音増幅器221(LNA)と、フィルタ321(A-Tx)及びフィルタ322(A-Rx)と、が配置されている。
電力増幅器111は、1つの集積回路に含まれている。電力増幅器111を含む集積回路は、例えばガリウムヒ素(GaAs)、シリコンゲルマニウム(SiGe)及び窒化ガリウム(GaN)のうちの少なくとも1つで構成されてもよい。これにより、高品質な電力増幅器111を実現することができる。なお、電力増幅器111の一部をCMOSを用いて構成してもよく、具体的にはSOIプロセスにより製造されてもよい。
低雑音増幅器221は、低雑音増幅器211及び212と同様であるので説明を省略する。また、フィルタ321及び322は、異なる圧電基板に実装されている点を除いて、フィルタ311及び312と同様であるので説明を省略する。
なお、第1伝送回路6に送信経路が含まれる場合、当該送信経路に接続される電力増幅回路は、モジュール基板1091に実装されてもよく、モジュール基板1092に実装されてもよい。
[1.5 高周波回路1の実施例2]
次に、本実施の形態に係る高周波回路1の実施例2として、高周波回路1が実装された高周波モジュール1003について説明する。本実施例では、高周波回路1に含まれる第1伝送回路6及び第2伝送回路7は、1つの高周波モジュール1003に実装されている。
次に、本実施の形態に係る高周波回路1の実施例2として、高周波回路1が実装された高周波モジュール1003について説明する。本実施例では、高周波回路1に含まれる第1伝送回路6及び第2伝送回路7は、1つの高周波モジュール1003に実装されている。
高周波モジュール1003について図5を参照しながら説明する。図5は、本実施例に係る高周波モジュール1003の平面図である。
なお、図5において、複数の回路部品をそれぞれ接続する配線の図示が省略されている。また、図5において、複数の回路部品を覆う樹脂部材及びその樹脂部材の表面を覆うシールド電極層の図示が省略されている。また、図5において、各回路部品の配置関係が容易に理解されるように、各回路部品に実装されている回路を表す文字(例えば「LNA」など)が付されているが、実際の各回路部品には、当該文字は付されなくてもよい。
モジュール基板1093は、互いに対向する主面を有する。なお、図5において、モジュール基板1093は、平面視において矩形状を有するが、この形状に限定されない。モジュール基板1093は、モジュール基板1091と同様に構成することができる。
モジュール基板1093の主面には、電力増幅器111と、低雑音増幅器211、212及び221と、フィルタ311、312、321及び322と、スイッチ313と、が配置されている。
[1.6 効果など]
以上のように、本実施の形態に係る高周波回路1は、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6と、セルラー通信システムの送信及び受信に対応する第2伝送回路7と、を備え、第1伝送回路6は、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31と、フィルタ回路31に接続される低雑音増幅回路21と、を有し、第2伝送回路7は、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32と、フィルタ回路32に接続される電力増幅回路11と、フィルタ回路32に接続される低雑音増幅回路22と、を有する。
以上のように、本実施の形態に係る高周波回路1は、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6と、セルラー通信システムの送信及び受信に対応する第2伝送回路7と、を備え、第1伝送回路6は、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31と、フィルタ回路31に接続される低雑音増幅回路21と、を有し、第2伝送回路7は、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32と、フィルタ回路32に接続される電力増幅回路11と、フィルタ回路32に接続される低雑音増幅回路22と、を有する。
これによれば、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31がアンテナ接続端子101に接続されるので、セルラー受信バンドと衛星受信バンドとで1つのアンテナを共用することができる。したがって、セルラー受信バンドのための回路と衛星受信バンドのための回路とを1つのモジュール基板1091又は1093に実装することが容易となり、通信装置5の小型化に貢献することができる。また、衛星受信バンドのためのフィルタ回路31は、セルラー送信バンドのためのフィルタ回路32が接続されるアンテナ接続端子102と異なるアンテナ接続端子101に接続されるので、セルラー送信信号が衛星受信信号に干渉することを抑制し、衛星システムにおける受信感度の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1において、第1伝送回路6は、アンテナ接続端子101を介して入力された受信信号を伝送する1以上の受信経路を有し、アンテナ接続端子101を介して出力する送信信号を伝送する送信経路を有さなくてもよい。
これによれば、衛星システムの受信に対応する第1伝送回路6に送信経路が含まれないので、衛星システムの受信感度を向上させることができる。このとき、例えばダイバーシティアンテナによる信号の受信のための受信回路(ダイバーシティモジュール)に第1伝送回路6を適用することができる。
また例えば、本実施の形態に係る高周波回路1において、フィルタ回路31は、アンテナ接続端子101に接続されるスイッチ313と、スイッチ313を介してアンテナ接続端子101に接続され、セルラー受信バンドを含む通過帯域を有するフィルタ311と、スイッチ313を介してアンテナ接続端子101に接続され、衛星受信バンドを含む通過帯域を有するフィルタ312と、を含んでもよい。
これによれば、セルラー受信バンドに対応するフィルタ311と衛星受信バンドに対応するフィルタ312とが別々に高周波回路1に含まれるので、セルラー受信バンドのための受信経路と衛星受信バンドのための受信経路との間のアイソレーションを向上させることができる。
また例えば、本実施の形態に係る高周波回路1において、フィルタ311及び312の各々は、弾性波フィルタであり、フィルタ311及び312は、同一の圧電基板(例えば圧電基板1310)に実装されてもよい。
これによれば、フィルタ311及び312が同一の圧電基板に実装されるので、高周波回路1の小型化を図ることができ、通信装置5の小型化に貢献することができる。
また例えば、本実施の形態に係る高周波回路1において、セルラー送信バンド及びセルラー受信バンドは、同一のFDDバンドに含まれるアップリンク動作バンド及びダウンリンク動作バンドであってもよい。
これによれば、FDDバンドの送受信に高周波回路1を用いることができる。
また例えば、本実施の形態に係る高周波回路1において、衛星受信バンドは、セルラー送信バンドとセルラー受信バンドとの間のギャップに含まれてもよい。
これによれば、衛星受信バンドがセルラー送信バンド及びセルラー受信バンドに近接している場合に高周波回路1を用いることができ、衛星システムにおける受信感度の低下をより効果的に抑制することができる。
また例えば、本実施の形態に係る高周波回路1において、フィルタ回路32は、アンテナ接続端子102に接続され、セルラー送信バンドを含む通過帯域を有するフィルタ321と、アンテナ接続端子102に接続され、セルラー受信バンドを含む通過帯域を有するフィルタ322と、を含み、電力増幅回路11は、フィルタ321に接続され、低雑音増幅回路22は、フィルタ322に接続されてもよい。
これによれば、セルラー送信バンド及びセルラー受信バンドのためにデュプレクサを用いることができる。
また例えば、本実施の形態に係る高周波回路1は、フィルタ回路31及び低雑音増幅回路21が実装されたモジュール基板1091と、フィルタ回路32、電力増幅回路11及び低雑音増幅回路22が実装されたモジュール基板1092と、を備えてもよい。
これによれば、アンテナ接続端子101を介してアンテナ2aに接続されるフィルタ回路31及び低雑音増幅回路21と、アンテナ接続端子102を介してアンテナ2bに接続されるフィルタ回路32、電力増幅回路11及び低雑音増幅回路22との間のアイソレーションを向上させることができ、衛星システムにおける受信感度の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1は、フィルタ回路31及び32と、電力増幅回路11と、低雑音増幅回路21及び22とが実装されたモジュール基板1093を備えてもよい。
これによれば、高周波回路1は、通信装置5のさらなる小型化に貢献することができる。
(実施の形態2)
次に、実施の形態2について説明する。本実施の形態では、セルラー受信バンド及び衛星受信バンドの両方を含む通過帯域を有する1つのフィルタを用いてダイバーシティ受信が実現される点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態2について説明する。本実施の形態では、セルラー受信バンド及び衛星受信バンドの両方を含む通過帯域を有する1つのフィルタを用いてダイバーシティ受信が実現される点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
[2.1 高周波回路1Aの回路構成]
本実施の形態に係る通信装置5Aの回路構成については、高周波回路1の代わりに高周波回路1Aを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Aの詳細な説明は省略し、高周波回路1Aについて図6を参照しながら説明する。
本実施の形態に係る通信装置5Aの回路構成については、高周波回路1の代わりに高周波回路1Aを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Aの詳細な説明は省略し、高周波回路1Aについて図6を参照しながら説明する。
図6は、本実施の形態に係る通信装置5Aの回路構成図である。図6に示すように、高周波回路1Aは、第1伝送回路6Aと、第2伝送回路7と、アンテナ接続端子101及び102と、出力端子103~105と、入力端子106と、を備える。
第1伝送回路6Aは、低雑音増幅回路21Aと、フィルタ回路31Aと、を備える。
低雑音増幅回路21Aは、第1低雑音増幅回路の一例であり、フィルタ回路31Aと高周波回路1Aの出力端子103及び104との間に接続される。図1に示すように、低雑音増幅回路21Aは、低雑音増幅器213と、スプリッタ214と、を含む。
低雑音増幅器213の入力端子は、後述するフィルタ回路31A内のフィルタ314に接続される。低雑音増幅器213の出力端子は、スプリッタ214を介して高周波回路1Aの出力端子103及び104に接続される。この構成により、低雑音増幅器213は、フィルタ314を介して受けたバンドA及びBの受信信号を増幅し、増幅したバンドA及びBの受信信号を出力端子103及び104を介してRFIC3に供給することができる。
スプリッタ214は、電力分配器の一例であり、低雑音増幅回路21Aと高周波回路1Aの出力端子103及び104との間に接続される。スプリッタ214の入力端子は、低雑音増幅器213の出力端子に接続される。スプリッタ214の2つの出力端子は、高周波回路1Aの出力端子103及び104にそれぞれ接続される。これにより、スプリッタ214は、低雑音増幅器213の出力信号を2つの出力端子103及び104に分配することができる。
フィルタ回路31Aは、第1フィルタ回路の一例であり、アンテナ接続端子101と低雑音増幅回路21Aとの間に接続される。図1に示すように、フィルタ回路31Aは、フィルタ314を含む。
フィルタ314(AB-Rx)は、第3受信フィルタの一例であり、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有する。フィルタ314の一端は、アンテナ接続端子101に接続される。フィルタ314の他端は、低雑音増幅器213の入力端子に接続される。
[2.2 周波数バンドの具体例]
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド及び衛星受信バンドの具体例について説明する。
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド及び衛星受信バンドの具体例について説明する。
本実施の形態では、セルラー送信バンド、セルラー受信バンド及び衛星受信バンドの組み合わせとして、LTEのためのBand24のアップリンク動作バンド及びダウンリンク動作バンド、並びに、GPSのためのL1バンドの組み合わせを用いることができる。このとき、LTEのためのBand24の代わりに5GNRのためのn24、n201又はn255が用いられてもよく、GPSのためのL1バンドの代わりにGLONASSのためのL1バンドが用いられてもよい。
[2.3 効果など]
以上のように、本実施の形態に係る高周波回路1Aは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6Aと、セルラー通信システムの送信及び受信に対応する第2伝送回路7と、を備え、第1伝送回路6Aは、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31Aと、フィルタ回路31Aに接続される低雑音増幅回路21Aと、を有し、第2伝送回路7は、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32と、フィルタ回路32に接続される電力増幅回路11と、フィルタ回路32に接続される低雑音増幅回路22と、を有する。
以上のように、本実施の形態に係る高周波回路1Aは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6Aと、セルラー通信システムの送信及び受信に対応する第2伝送回路7と、を備え、第1伝送回路6Aは、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31Aと、フィルタ回路31Aに接続される低雑音増幅回路21Aと、を有し、第2伝送回路7は、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32と、フィルタ回路32に接続される電力増幅回路11と、フィルタ回路32に接続される低雑音増幅回路22と、を有する。
これによれば、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31Aがアンテナ接続端子101に接続されるので、セルラー受信バンドと衛星受信バンドとで1つのアンテナを共用することができる。したがって、セルラー受信バンドのための回路と衛星受信バンドのための回路とを1つのモジュール基板1091又は1093に実装することが容易となり、通信装置5Aの小型化に貢献することができる。また、衛星受信バンドのためのフィルタ回路31Aは、セルラー送信バンドのためのフィルタ回路32が接続されるアンテナ接続端子102と異なるアンテナ接続端子101に接続されるので、セルラー送信信号が衛星受信信号に干渉することを抑制し、衛星システムにおける受信感度の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Aにおいて、第1伝送回路6Aは、アンテナ接続端子101を介して入力された受信信号を伝送する1以上の受信経路を有し、アンテナ接続端子101を介して出力する送信信号を伝送する送信経路を有さなくてもよい。
これによれば、衛星システムの受信に対応する第1伝送回路6Aに送信経路が含まれないので、衛星システムの受信感度を向上させることができる。このとき、例えばダイバーシティアンテナによる信号の受信のための受信回路(ダイバーシティモジュール)に第1伝送回路6Aを適用することができる。
また例えば、本実施の形態に係る高周波回路1Aにおいて、フィルタ回路31Aは、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ314を含んでもよい。
これによれば、セルラー受信バンド及び衛星受信バンドで個別にフィルタが含まれる場合よりもフィルタ数を削減することができ、通信装置5Aの小型化に貢献することができる。
また例えば、本実施の形態に係る高周波回路1Aにおいて、低雑音増幅回路21Aは、フィルタ314に接続された低雑音増幅器213と、低雑音増幅器213の出力端子に接続されたスプリッタ214と、を含んでもよい。
これによれば、高周波回路1Aは、セルラー受信バンド及び衛星受信バンドでフィルタ314が共用される場合でも、セルラー受信バンドの受信信号及び衛星受信バンドの受信信号を2つの出力端子103及び104を介してRFIC3に供給することができる。
また例えば、本実施の形態に係る高周波回路1Aにおいて、セルラー受信バンド及び衛星受信バンドの組み合わせとして、LTEのためのBand24又は5GNRのためのn24、n201若しくはn255のダウンリンク動作バンドとGPS又はGLONASSのためのL1バンドとの組み合わせを用いることができる。
これによれば、セルラー受信バンド及び衛星受信バンドの組み合わせとして、比較的近い2つの受信バンドの組み合わせを用いることができ、フィルタ314及び低雑音増幅器213の性能要件を緩和することができる。
(実施の形態3)
次に、実施の形態3について説明する。本実施の形態では、セルラー送信バンド及びセルラー受信バンドとして、時分割複信(TDD:Time Division Duplex)バンドに含まれる同一の周波数バンドが用いられる点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態3について説明する。本実施の形態では、セルラー送信バンド及びセルラー受信バンドとして、時分割複信(TDD:Time Division Duplex)バンドに含まれる同一の周波数バンドが用いられる点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
[3.1 高周波回路1Bの回路構成]
本実施の形態に係る通信装置5Bの回路構成については、高周波回路1の代わりに高周波回路1Bを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Bの詳細な説明は省略し、高周波回路1Bについて図7を参照しながら説明する。
本実施の形態に係る通信装置5Bの回路構成については、高周波回路1の代わりに高周波回路1Bを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Bの詳細な説明は省略し、高周波回路1Bについて図7を参照しながら説明する。
図7は、本実施の形態に係る通信装置5Bの回路構成図である。図7に示すように、高周波回路1Bは、第1伝送回路6Bと、第2伝送回路7Bと、アンテナ接続端子101及び102と、出力端子103~105と、入力端子106と、を備える。
第1伝送回路6Bは、低雑音増幅回路21と、フィルタ回路31Bと、を有する。
フィルタ回路31Bは、第1フィルタ回路の一例であり、アンテナ接続端子101と低雑音増幅回路21との間に接続される。図7に示すように、フィルタ回路31Bは、フィルタ311(A-Rx)の代わりにフィルタ315(C-Rx)を含む点を除いて、実施の形態1に係るフィルタ回路31と同様である。
フィルタ315(C-Rx)は、第1受信フィルタの一例であり、セルラー受信バンド(つまり、TDDバンド)を含む通過帯域を有する。フィルタ315の一端は、スイッチ313を介してアンテナ接続端子101に接続される。フィルタ315の他端は、低雑音増幅器211の入力端子に接続される。
第2伝送回路7Bは、電力増幅回路11と、低雑音増幅回路22と、フィルタ回路32Bと、を有する。
フィルタ回路32Bは、第2フィルタ回路の一例であり、アンテナ接続端子102と電力増幅回路11及び低雑音増幅回路22との間に接続される。図7に示すように、フィルタ回路32Bは、フィルタ323とスイッチ324とを含む。
フィルタ323(C-TRx)は、送受信フィルタの一例であり、セルラー送信バンド及びセルラー受信バンド(つまり、TDDバンド)を含む通過帯域を有する。フィルタ323の一端は、アンテナ接続端子102に接続される。フィルタ323の他端は、スイッチ324を介して、電力増幅器111の出力端子及び低雑音増幅器221の入力端子に接続される。
スイッチ324は、第2スイッチの一例であり、フィルタ323と電力増幅回路11及び低雑音増幅回路22との間に接続される。具体的には、スイッチ324は、端子324a~324cを有する。端子324aは、フィルタ323に接続される。端子324bは、電力増幅器111の出力端子に接続される。端子324cは、低雑音増幅器221の入力端子に接続される。
この接続構成において、スイッチ324は、例えばRFIC3からの制御信号に基づいて、端子324b及び324cのいずれかを端子324aに接続することができる。つまり、スイッチ324は、フィルタ323の接続を、電力増幅回路11及び低雑音増幅回路22の間で切り替えることができる。
スイッチ324は、例えばSPDT型のスイッチ回路で構成される。このとき、スイッチ324内において、端子324aは、端子324b及び324cに接続可能に構成される。また、スイッチ324内において、端子324bは、端子324aに接続可能に構成され、端子324cに接続不可能に構成される。また、スイッチ324内において、端子324cは、端子324aに接続可能に構成され、端子324bに接続不可能に構成される。
[3.2 周波数バンドの具体例]
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド及び衛星受信バンドの具体例について説明する。
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド及び衛星受信バンドの具体例について説明する。
本実施の形態では、セルラー送信バンド及びセルラー受信バンドとして、同一のTDDバンドに含まれる同一の周波数バンドが用いられる。このとき、TDDバンドとしては、1.4~5GHzの範囲に含まれる周波数バンドを用いることができる。より具体的には、TDDバンドとしては、例えば、LTEのためのBand34、Band39、Band40、Band41、Band42若しくはBand48、若しくは、5GNRのためのn34、n39、n40、n41、n48、n77、n78若しくはn79、又は、これらの任意の組み合わせを用いることもできる。
また、本実施の形態では、衛星受信バンドとしては、人工衛星から信号を受信するための周波数バンドを用いることができる。より具体的には、衛星受信バンドとしては、例えば、GPSのためのL1バンド若しくはL5バンド、GLONASSのためのL1バンド、グローバルスターのためのダウンリンク動作バンド、5GNRのためのn201、n255若しくはn256のダウンリンク動作バンド、又は、これらの任意の組み合わせを用いることができる。
[3.3 効果など]
以上のように、本実施の形態に係る高周波回路1Bは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6Bと、セルラー通信システムの送信及び受信に対応する第2伝送回路7Bと、を備え、第1伝送回路6Bは、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31Bと、フィルタ回路31Bに接続される低雑音増幅回路21と、を有し、第2伝送回路7Bは、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32Bと、フィルタ回路32Bに接続される電力増幅回路11と、フィルタ回路32Bに接続される低雑音増幅回路22と、を備える。
以上のように、本実施の形態に係る高周波回路1Bは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6Bと、セルラー通信システムの送信及び受信に対応する第2伝送回路7Bと、を備え、第1伝送回路6Bは、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31Bと、フィルタ回路31Bに接続される低雑音増幅回路21と、を有し、第2伝送回路7Bは、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32Bと、フィルタ回路32Bに接続される電力増幅回路11と、フィルタ回路32Bに接続される低雑音増幅回路22と、を備える。
これによれば、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31Bがアンテナ接続端子101に接続されるので、セルラー受信バンドと衛星受信バンドとで1つのアンテナを共用することができる。したがって、セルラー受信バンドのための回路と衛星受信バンドのための回路とを1つのモジュール基板1091又は1093に実装することが容易となり、通信装置5Bの小型化に貢献することができる。また、衛星受信バンドのためのフィルタ回路31Bは、セルラー送信バンドのためのフィルタ回路32Bが接続されるアンテナ接続端子102と異なるアンテナ接続端子101に接続されるので、セルラー送信信号が衛星受信信号に干渉することを抑制し、衛星システムにおける受信感度の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Bにおいて、第1伝送回路6Bは、アンテナ接続端子101を介して入力された受信信号を伝送する1以上の受信経路を有し、アンテナ接続端子101を介して出力する送信信号を伝送する送信経路を有さなくてもよい。
これによれば、衛星システムの受信に対応する第1伝送回路6Bに送信経路が含まれないので、衛星システムの受信感度を向上させることができる。このとき、例えばダイバーシティアンテナによる信号の受信のための受信回路(ダイバーシティモジュール)に第1伝送回路6Bを適用することができる。
また例えば、本実施の形態に係る高周波回路1Bにおいて、セルラー送信バンド及びセルラー受信バンドは、同一のTDDバンドに含まれる同一の周波数バンドであってもよい。
これによれば、TDDバンドの送受信に高周波回路1Bを用いることができる。
また例えば、本実施の形態に係る高周波回路1Bにおいて、フィルタ回路32Bは、TDDバンドを含む通過帯域を有するフィルタ323と、フィルタ323に接続されるスイッチ324と、を含み、電力増幅回路11は、スイッチ324を介してフィルタ323に接続され、低雑音増幅回路22は、スイッチ324を介してフィルタ323に接続されてもよい。
これによれば、セルラー送信バンド及びセルラー受信バンドで個別にフィルタが含まれる場合よりもフィルタ数を削減することができる。
(実施の形態3の変形例)
次に、実施の形態3の変形例について説明する。本変形例では、上記実施の形態3と同様に、セルラー送信バンド及びセルラー受信バンドとして、TDDバンドに含まれる同一の周波数バンドが用いられる。ただし、本変形例では、高周波回路が、TDDバンドの送信及び受信のために個別にフィルタを備える点が上記実施の形態3と主として異なる。以下に、上記実施の形態3と異なる点を中心に本変形例について図面を参照しながら説明する。
次に、実施の形態3の変形例について説明する。本変形例では、上記実施の形態3と同様に、セルラー送信バンド及びセルラー受信バンドとして、TDDバンドに含まれる同一の周波数バンドが用いられる。ただし、本変形例では、高周波回路が、TDDバンドの送信及び受信のために個別にフィルタを備える点が上記実施の形態3と主として異なる。以下に、上記実施の形態3と異なる点を中心に本変形例について図面を参照しながら説明する。
本変形例に係る通信装置5Cの回路構成については、高周波回路1の代わりに高周波回路1Cを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Cの詳細な説明は省略し、高周波回路1Cについて図8を参照しながら説明する。
図8は、本実施の形態に係る通信装置5Cの回路構成図である。図8に示すように、高周波回路1Cは、第1伝送回路6Bと、第2伝送回路7Cと、アンテナ接続端子101及び102と、出力端子103~105と、入力端子106と、を備える。
第2伝送回路7Cは、電力増幅回路11と、低雑音増幅回路22と、フィルタ回路32Cと、を有する。
フィルタ回路32Cは、第2フィルタ回路の一例であり、アンテナ接続端子102と電力増幅回路11及び低雑音増幅回路22との間に接続される。図8に示すように、フィルタ回路32Cは、フィルタ325及び326と、スイッチ327と、を含む。
フィルタ325(C-Tx)は、第2送信フィルタの一例であり、セルラー送信バンド(つまり、TDDバンド)を含む通過帯域を有する。フィルタ325の一端は、スイッチ327を介してアンテナ接続端子102に接続される。フィルタ325の他端は、電力増幅器111の出力端子に接続される。
フィルタ326(C-Rx)は、第5受信フィルタの一例であり、セルラー受信バンド(つまり、TDDバンド)を含む通過帯域を有する。フィルタ326の一端は、スイッチ327を介してアンテナ接続端子102に接続される。フィルタ326の他端は、低雑音増幅器221の入力端子に接続される。
スイッチ327は、第3スイッチの一例であり、アンテナ接続端子102とフィルタ325及び326との間に接続される。具体的には、スイッチ327は、端子327a~327cを有する。端子327aは、アンテナ接続端子102に接続される。端子327bは、フィルタ325に接続される。端子327cは、フィルタ326に接続される。
この接続構成において、スイッチ327は、例えばRFIC3からの制御信号に基づいて、端子327b及び327cのいずれかを端子327aに接続することができる。つまり、スイッチ327は、アンテナ接続端子102の接続を、フィルタ325及び326の間で切り替えることができる。
スイッチ327は、例えばSPDT型のスイッチ回路で構成される。このとき、スイッチ327内において、端子327aは、端子327b及び327cに接続可能に構成される。また、スイッチ327内において、端子327bは、端子327aに接続可能に構成され、端子327cに接続不可能に構成される。また、スイッチ327内において、端子327cは、端子327aに接続可能に構成され、端子327bに接続不可能に構成される。
以上のように、本実施の形態に係る高周波回路1Cにおいて、フィルタ回路32Cは、アンテナ接続端子102に接続されるスイッチ327と、スイッチ327を介してアンテナ接続端子102に接続され、TDDバンドを含む通過帯域を有するフィルタ325と、スイッチ327を介してアンテナ接続端子102に接続され、TDDバンドを含む通過帯域を有するフィルタ326と、を含み、電力増幅回路11は、フィルタ325に接続され、低雑音増幅回路22は、フィルタ326に接続されてもよい。
これによれば、TDDバンドの送信及び受信にそれぞれ適したフィルタ325及び326を用いることができる。
なお、実施の形態3及びその変形例のいずれにおいても、上記実施の形態2のように、フィルタ回路31Bのフィルタ312及び315並びにスイッチ313を1つのフィルタ314に置き換えることができる。この場合、セルラー送信バンド及びセルラー受信バンド(つまり、TDDバンド)と衛星受信バンドとの組み合わせとして、LTEのためのBand41(2496~2690 MHz)と、グローバルスターのダウンリンク動作バンド又は5GNRのためのn201のダウンリンク動作バンドとの組み合わせを用いることができる。このとき、LTEのためのBand41は、5GNRのためのn41(2496~2690 MHz)に置き換えられてもよい。
このように、セルラー受信バンド及び衛星受信バンドの組み合わせとして、LTEのためのBand41又は5GNRのためのn41とグローバルスターのためのダウンリンク動作バンドとの組み合わせを用いることができる。
これによれば、セルラー受信バンド及び衛星受信バンドの組み合わせとして、比較的近い2つの受信バンドの組み合わせを用いることができ、フィルタ314及び低雑音増幅器213の性能要件を緩和することができる。
(実施の形態4)
次に、実施の形態4について説明する。本実施の形態では、通信装置が衛星受信だけでなく衛星送信にも対応する点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態4について説明する。本実施の形態では、通信装置が衛星受信だけでなく衛星送信にも対応する点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
[4.1 高周波回路1Dの回路構成]
本実施の形態に係る通信装置5Dの回路構成については、高周波回路1の代わりに高周波回路1Dを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Dの詳細な説明は省略し、高周波回路1Dについて図9を参照しながら説明する。
本実施の形態に係る通信装置5Dの回路構成については、高周波回路1の代わりに高周波回路1Dを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Dの詳細な説明は省略し、高周波回路1Dについて図9を参照しながら説明する。
図9は、本実施の形態に係る通信装置5Dの回路構成図である。図9に示すように、高周波回路1Dは、第1伝送回路6と、第2伝送回路7Dと、アンテナ接続端子101及び102と、出力端子103~105と、入力端子106及び107と、を備える。
入力端子107は、RFIC3から高周波信号を受けるための高周波入力端子である。具体的には、入力端子107は、高周波回路1内で電力増幅回路11Dの入力端子に接続され、RFIC3から入力端子107を介して受信された衛星送信バンドの送信信号が電力増幅回路11Dに供給される。
第2伝送回路7Dは、電力増幅回路11Dと、低雑音増幅回路22と、フィルタ回路32Dと、を有する。
電力増幅回路11Dは、入力端子106及び107とフィルタ回路32Dとの間に接続される。図9に示すように、電力増幅回路11Dは、電力増幅器111及び112を含む。
電力増幅器112の入力端子は、入力端子107に接続される。電力増幅器112の出力端子は、後述するフィルタ回路32D内のフィルタ328に接続される。この構成により、電力増幅器112は、RFIC3から入力端子107を介して受けた衛星送信バンドの送信信号を増幅し、増幅した衛星送信バンドの送信信号をフィルタ328を介してアンテナ2bに出力することができる。
なお、電力増幅回路11D内の回路構成は、図9の構成に限定されない。電力増幅回路11Dは、1つの電力増幅器のみを含んでもよい。この場合、電力増幅回路11Dは、1つの電力増幅器の出力端子の接続をフィルタ321及び328の間で切り替えるスイッチを含んでもよく、1つの電力増幅器の入力端子の接続を高周波回路1Dの入力端子106及び107の間で切り替えるスイッチを含んでもよい。
フィルタ回路32Dは、第2フィルタ回路の一例であり、アンテナ接続端子102と電力増幅回路11D及び低雑音増幅回路22との間に接続される。図9に示すように、フィルタ回路32Dは、フィルタ321、322及び328とスイッチ329とを含む。
フィルタ328(B-Tx)は、第3送信フィルタの一例であり、衛星送信バンドを含む通過帯域を有する。フィルタ328の一端は、スイッチ329を介してアンテナ接続端子102に接続される。フィルタ328の他端は、電力増幅器112の出力端子に接続される。
スイッチ329は、アンテナ接続端子102とフィルタ321、322及び328との間に接続される。具体的には、スイッチ329は、端子329a~329cを有する。端子329aは、アンテナ接続端子102に接続される。端子329bは、フィルタ321及び322に接続される。端子329cは、フィルタ328に接続される。
この接続構成において、スイッチ329は、例えばRFIC3からの制御信号に基づいて、端子329b及び329cのいずれかを端子329aに接続することができる。つまり、スイッチ329は、アンテナ接続端子102の接続を、フィルタ321及び322とフィルタ328との間で切り替えることができる。
スイッチ329は、例えばSPDT型のスイッチ回路で構成される。このとき、スイッチ329内において、端子329aは、端子329b及び329cに接続可能に構成される。また、スイッチ329内において、端子329bは、端子329aに接続可能に構成され、端子329cに接続不可能に構成される。また、スイッチ329内において、端子329cは、端子329aに接続可能に構成され、端子329bに接続不可能に構成される。
[4.2 周波数バンドの具体例]
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド、衛星送信バンド及び衛星受信バンドの具体例について説明する。
ここで、本実施の形態におけるセルラー送信バンド、セルラー受信バンド、衛星送信バンド及び衛星受信バンドの具体例について説明する。
本実施の形態では、セルラー送信バンド及びセルラー受信バンドとして、同一のFDDバンドに含まれるアップリンク動作バンド及びダウンリンク動作バンドが用いられる。具体的には、実施の形態1と同様のセルラー送信バンド及びセルラー受信バンドが用いられる。
また、本実施の形態では、衛星送信バンド及び衛星受信バンドとしては、衛星通信システムのためのアップリンク動作バンド及びダウンリンク動作バンドが用いられる。より具体的には、衛星送信バンド及び衛星受信バンドとしては、例えばグローバルスターのためのアップリンク動作バンド(1610~1621.35 MHz)及びダウンリンク動作バンド、又は、5GNRのためのn201、n255若しくはn256のアップリンク動作バンド及びダウンリンク動作バンドを用いることができる。
[4.3 効果など]
以上のように、本実施の形態に係る高周波回路1Dは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6と、セルラー通信システムの送信及び受信に対応する第2伝送回路7Dと、を備え、第1伝送回路6は、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31と、フィルタ回路31に接続される低雑音増幅回路21と、を有し、第2伝送回路7Dは、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32Dと、フィルタ回路32Dに接続される電力増幅回路11Dと、フィルタ回路32Dに接続される低雑音増幅回路22と、を有する。
以上のように、本実施の形態に係る高周波回路1Dは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6と、セルラー通信システムの送信及び受信に対応する第2伝送回路7Dと、を備え、第1伝送回路6は、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31と、フィルタ回路31に接続される低雑音増幅回路21と、を有し、第2伝送回路7Dは、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32Dと、フィルタ回路32Dに接続される電力増幅回路11Dと、フィルタ回路32Dに接続される低雑音増幅回路22と、を有する。
これによれば、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31がアンテナ接続端子101に接続されるので、セルラー受信バンドと衛星受信バンドとで1つのアンテナを共用することができる。したがって、セルラー受信バンドのための回路と衛星受信バンドのための回路とを1つのモジュール基板1091又は1093に実装することが容易となり、通信装置5Dの小型化に貢献することができる。また、衛星受信バンドのためのフィルタ回路31は、セルラー送信バンドのためのフィルタ回路32Dが接続されるアンテナ接続端子102と異なるアンテナ接続端子101に接続されるので、セルラー送信信号が衛星受信信号に干渉することを抑制し、衛星システムにおける受信感度の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Dにおいて、フィルタ回路32Dは、衛星受信バンドに対応する衛星送信バンドを含む通過帯域を有するフィルタ328を含んでもよく、電力増幅回路11Dは、フィルタ328に接続されてもよい。
これによれば、セルラー送信バンドと衛星送信バンドとで1つのアンテナを共用することができ、通信装置5Dの小型化に貢献することができる。
なお、本実施の形態においても、上記実施の形態2と同様に、低雑音増幅回路21及びフィルタ回路31を低雑音増幅回路21A及びフィルタ回路31Aに置き換えることができる。さらに、本実施の形態において、上記実施の形態3又はその変形例と同様に、セルラー送信バンド及びセルラー受信バンドとして、同一のTDDバンドに含まれる同一の周波数バンドを用いることができる。この場合、フィルタ回路32Dは、フィルタ321及び322の代わりに、フィルタ323及びスイッチ324を備えてもよく、フィルタ325及び326を備えてもよい。
(実施の形態5)
次に、実施の形態5について説明する。本実施の形態では、高周波回路が2つのアンテナ接続端子と2つのフィルタ回路との接続を切り替えるためのスイッチを備える点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態5について説明する。本実施の形態では、高周波回路が2つのアンテナ接続端子と2つのフィルタ回路との接続を切り替えるためのスイッチを備える点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
[5.1 高周波回路1Eの回路構成]
本実施の形態に係る通信装置5Eの回路構成については、高周波回路1の代わりに高周波回路1Eを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Eの詳細な説明は省略し、高周波回路1Eについて図10を参照しながら説明する。
本実施の形態に係る通信装置5Eの回路構成については、高周波回路1の代わりに高周波回路1Eを備える点を除いて、上記実施の形態1に係る通信装置5と同様である。したがって、通信装置5Eの詳細な説明は省略し、高周波回路1Eについて図10を参照しながら説明する。
図10は、本実施の形態に係る通信装置5Eの回路構成図である。図10に示すように、高周波回路1Eは、電力増幅回路11と、低雑音増幅回路21及び22と、フィルタ回路31及び32と、スイッチ回路41と、アンテナ接続端子101及び102と、出力端子103~105と、入力端子106と、を備える。
スイッチ回路41は、アンテナ接続端子101及び102とフィルタ回路31及び32との間に接続される。具体的には、スイッチ回路41は、端子41a~41dを有する。端子41aは、アンテナ接続端子101に接続される。端子41bは、アンテナ接続端子102に接続される。端子41cは、フィルタ回路31に接続される。端子41dは、フィルタ回路32に接続される。
この接続構成において、スイッチ回路41は、例えばRFIC3からの制御信号に基づいて、端子41aを端子41c及び41dの一方に接続し、端子41bを端子41c及び41dの他方に接続することができる。つまり、スイッチ回路41は、アンテナ接続端子101をフィルタ回路31及び32の一方に接続し、アンテナ接続端子102をフィルタ回路31及び32の他方に接続することができる。
スイッチ回路41は、例えばDPDT(Double Pole Double Throw)型のスイッチ回路で構成される。このとき、例えば、スイッチ回路41内において、端子41aは、端子41c及び41dに接続可能に構成され、端子41bに接続不可能に構成される。また、スイッチ回路41内において、端子41bは、端子41c及び41dに接続可能に構成され、端子41aに接続不可能に構成される。また、スイッチ回路41内において、端子41cは、端子41a及び41bに接続可能に構成され、端子41dに接続不可能に構成される。また、スイッチ回路41内において、端子41dは、端子41a及び41bに接続可能に構成され、端子41cに接続不可能に構成される。
[5.2 効果など]
以上のように、本実施の形態に係る高周波回路1Eは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6と、セルラー通信システムの送信及び受信に対応する第2伝送回路7と、を備え、第1伝送回路6は、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31と、フィルタ回路31に接続される低雑音増幅回路21と、を有し、第2伝送回路7は、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32と、フィルタ回路32に接続される電力増幅回路11と、フィルタ回路32に接続される低雑音増幅回路22と、を有する。
以上のように、本実施の形態に係る高周波回路1Eは、セルラー通信システム及び衛星システムの受信に対応する第1伝送回路6と、セルラー通信システムの送信及び受信に対応する第2伝送回路7と、を備え、第1伝送回路6は、アンテナ接続端子101に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31と、フィルタ回路31に接続される低雑音増幅回路21と、を有し、第2伝送回路7は、アンテナ接続端子102に接続され、セルラー受信バンド及びセルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有するフィルタ回路32と、フィルタ回路32に接続される電力増幅回路11と、フィルタ回路32に接続される低雑音増幅回路22と、を有する。
これによれば、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有するフィルタ回路31がアンテナ接続端子101に接続されるので、セルラー受信バンドと衛星受信バンドとで1つのアンテナを共用することができる。したがって、セルラー受信バンドのための回路と衛星受信バンドのための回路とを1つのモジュール基板1091又は1093に実装することが容易となり、通信装置5Eの小型化に貢献することができる。また、衛星受信バンドのためのフィルタ回路31は、セルラー送信バンドのためのフィルタ回路32が接続されるアンテナ接続端子102と異なるアンテナ接続端子101に接続されるので、セルラー送信信号が衛星受信信号に干渉することを抑制し、衛星システムにおける受信感度の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Eは、さらに、アンテナ接続端子101に接続される端子41a、アンテナ接続端子102に接続される端子41b、フィルタ回路31に接続される端子41c及びフィルタ回路32に接続される端子41dを有するスイッチ回路41を備えてもよい。
これによれば、セルラー通信システムの送受信に用いるアンテナとセルラー通信システム及び衛星システムの受信に用いるアンテナとを互いに切り替えることができる。したがって、送信信号の品質の向上と受信感度の向上とを図ることができる。
なお、本実施の形態では、スイッチ回路41が、実施の形態1に係る高周波回路1に含まれる例について説明したが、スイッチ回路41は、実施の形態2~4に係る高周波回路1A~1Dに含まれてもよい。
また、スイッチ回路41は、通信装置5A~5E内の高周波回路1A~1E外に含まれてもよい。この場合、スイッチ回路41は、アンテナ2a及び2bと高周波回路1との間に接続されてもよい。具体的には、スイッチ回路41の端子41a及び41bはアンテナ2a及び2bに接続され、スイッチ回路41の端子41c及び41dはアンテナ接続端子101及び102に接続されてもよい。このようなスイッチ回路41は、マザー基板上に実装されてもよい。
(他の実施の形態)
以上、本発明に係る高周波回路及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波回路は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路を内蔵した各種機器も本発明に含まれる。
以上、本発明に係る高周波回路及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波回路は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路を内蔵した各種機器も本発明に含まれる。
例えば、上記各実施の形態に係る高周波回路の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、各実施の形態において、低雑音増幅回路とフィルタ回路との間、及び/又は、電力増幅回路とフィルタ回路との間に、インピーダンス整合回路が挿入されてもよい。
また例えば、上記各実施の形態において、第1伝送回路は送信経路を有していないが、第1伝送回路は1以上の送信経路を有してもよい。つまり、上記各実施の形態における高周波回路において、第1伝送回路は、アンテナ接続端子101を介して入力された受信信号を伝送する1以上の受信経路と、アンテナ接続端子101を介して出力する送信信号を伝送する1以上の送信経路と、を有し、1以上の受信経路のそれぞれは、受信バンドを含む通過帯域を有する1つの受信フィルタを有し、1以上の送信経路のそれぞれは、送信バンドを含む通過帯域を有する1つの送信フィルタを有し、1以上の受信経路の数は、1以上の送信経路の数よりも多くてもよい。
これによれば、衛星システムの受信に対応する第1伝送回路に含まれる送信経路を少なくすることができるので、衛星システムの受信感度を向上させることができる。このとき、例えばダイバーシティアンテナによる信号の受信のための受信回路(ダイバーシティモジュール)に第1伝送回路を適用することができる。
なお、上記実施の形態1などでは、セルラー送信バンドとしてアップリンク動作バンドが用いられ、セルラー受信バンドとしてダウンリンク動作バンドが用いられていたが、これに限定されない。例えば、通信装置が基地局として用いられる場合には、セルラー送信バンドとしてダウンリンク動作バンドが用いられ、セルラー受信バンドとしてアップリンク動作バンドが用いられてもよい。
本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。
1、1A、1B、1C、1D、1E 高周波回路
2a、2b アンテナ
3 RFIC
4 BBIC
5、5A、5B、5C、5D、5E 通信装置
6、6A、6B 第1伝送回路
7、7B、7C、7D 第2伝送回路
11、11D 電力増幅回路
21、21A、22 低雑音増幅回路
31、31A、31B、32、32B、32C、32D フィルタ回路
41 スイッチ回路
101、102 アンテナ接続端子
103、104、105 出力端子
106、107 入力端子
111、112 電力増幅器
211、212、213、221 低雑音増幅器
214 スプリッタ
311、312、314、315、321、322、323、325、326、328
フィルタ
313、324、327、329 スイッチ
1001、1002、1003 高周波モジュール
1091、1092、1093 モジュール基板
1091a、1091b 主面
1094 樹脂部材
1095 シールド電極層
1096 ランド電極
1310 圧電基板
1311、1312 IDT電極
1313 バンプ電極
2a、2b アンテナ
3 RFIC
4 BBIC
5、5A、5B、5C、5D、5E 通信装置
6、6A、6B 第1伝送回路
7、7B、7C、7D 第2伝送回路
11、11D 電力増幅回路
21、21A、22 低雑音増幅回路
31、31A、31B、32、32B、32C、32D フィルタ回路
41 スイッチ回路
101、102 アンテナ接続端子
103、104、105 出力端子
106、107 入力端子
111、112 電力増幅器
211、212、213、221 低雑音増幅器
214 スプリッタ
311、312、314、315、321、322、323、325、326、328
フィルタ
313、324、327、329 スイッチ
1001、1002、1003 高周波モジュール
1091、1092、1093 モジュール基板
1091a、1091b 主面
1094 樹脂部材
1095 シールド電極層
1096 ランド電極
1310 圧電基板
1311、1312 IDT電極
1313 バンプ電極
Claims (18)
- セルラー通信システム及び衛星システムの受信に対応する第1伝送回路と、
前記セルラー通信システムの送信及び受信に対応する第2伝送回路と、を備え、
前記第1伝送回路は、
第1アンテナ接続端子に接続され、セルラー受信バンド及び衛星受信バンドを含む通過帯域を有する第1フィルタ回路と、
前記第1フィルタ回路に接続される第1低雑音増幅回路と、を含み、
前記第2伝送回路は、
第2アンテナ接続端子に接続され、前記セルラー受信バンド及び前記セルラー受信バンドに対応するセルラー送信バンドを含む通過帯域を有する第2フィルタ回路と、
前記第2フィルタ回路に接続される電力増幅回路と、
前記第2フィルタ回路に接続される第2低雑音増幅回路と、を含む、
高周波回路。 - 前記第1伝送回路は、
前記第1アンテナ接続端子を介して入力された受信信号を伝送する1以上の受信経路と、
前記第1アンテナ接続端子を介して出力する送信信号を伝送する1以上の送信経路と、を有し、
前記1以上の受信経路のそれぞれは、受信バンドを含む通過帯域を有する1つの受信フィルタを有し、
前記1以上の送信経路のそれぞれは、送信バンドを含む通過帯域を有する1つの送信フィルタを有し、
前記1以上の受信経路の数は、前記1以上の送信経路の数よりも多い、
請求項1に記載の高周波回路。 - 前記第1伝送回路は、前記第1アンテナ接続端子を介して入力された受信信号を伝送する1以上の受信経路を有し、前記第1アンテナ接続端子を介して出力する送信信号を伝送する送信経路を有さない、
請求項1に記載の高周波回路。 - 前記第1フィルタ回路は、
前記第1アンテナ接続端子に接続される第1スイッチと、
前記第1スイッチを介して前記第1アンテナ接続端子に接続され、前記セルラー受信バンドを含む通過帯域を有する第1受信フィルタと、
前記第1スイッチを介して前記第1アンテナ接続端子に接続され、前記衛星受信バンドを含む通過帯域を有する第2受信フィルタと、を含む、
請求項1~3のいずれか1項に記載の高周波回路。 - 前記第1受信フィルタ及び前記第2受信フィルタの各々は、弾性波フィルタであり、
前記第1受信フィルタ及び前記第2受信フィルタは、同一の圧電基板に実装されている、
請求項4に記載の高周波回路。 - 前記第1フィルタ回路は、前記セルラー受信バンド及び前記衛星受信バンドを含む通過帯域を有する第3受信フィルタを含む、
請求項1~3のいずれか1項に記載の高周波回路。 - 前記第1低雑音増幅回路は、
前記第3受信フィルタに接続された低雑音増幅器と、
前記低雑音増幅器の出力端子に接続された電力分配器と、を含む、
請求項6に記載の高周波回路。 - 前記セルラー受信バンド及び前記衛星受信バンドの組み合わせは、LTE(Long Term Evolution)のためのBand24又は5GNR(5th Generation New Radio)のためのn24、n201若しくはn255のダウンリンク動作バンドとGPS(Global Positioning System)又はGLONASS(Global Navigation Satellite System)のためのL1バンドとの組み合わせ、又は、LTEのためのBand41又は5GNRのためのn41とグローバルスターのためのダウンリンク動作バンド又は5GNRのためのn201のダウンリンク動作バンドとの組み合わせである、
請求項6又は7に記載の高周波回路。 - 前記セルラー送信バンド及び前記セルラー受信バンドは、同一の周波数分割複信バンドに含まれるアップリンク動作バンド及びダウンリンク動作バンドである、
請求項1~8のいずれか1項に記載の高周波回路。 - 前記衛星受信バンドは、前記セルラー送信バンドと前記セルラー受信バンドとの間のギャップに含まれる、
請求項9に記載の高周波回路。 - 前記第2フィルタ回路は、
前記第2アンテナ接続端子に接続され、前記セルラー送信バンドを含む通過帯域を有する第1送信フィルタと、
前記第2アンテナ接続端子に接続され、前記セルラー受信バンドを含む通過帯域を有する第4受信フィルタと、を含み、
前記電力増幅回路は、前記第1送信フィルタに接続され、
前記第2低雑音増幅回路は、前記第4受信フィルタに接続される、
請求項9又は10に記載の高周波回路。 - 前記セルラー送信バンド及び前記セルラー受信バンドは、同一の時分割複信バンドに含まれる同一の周波数バンドである、
請求項1~7のいずれか1項に記載の高周波回路。 - 前記第2フィルタ回路は、
前記時分割複信バンドを含む通過帯域を有する送受信フィルタと、
前記送受信フィルタに接続される第2スイッチと、を含み、
前記電力増幅回路は、前記第2スイッチを介して前記送受信フィルタに接続され、
前記第2低雑音増幅回路は、前記第2スイッチを介して前記送受信フィルタに接続される、
請求項12に記載の高周波回路。 - 前記第2フィルタ回路は、
前記第2アンテナ接続端子に接続される第3スイッチと、
前記第3スイッチを介して前記第2アンテナ接続端子に接続され、前記時分割複信バンドを含む通過帯域を有する第2送信フィルタと、
前記第3スイッチを介して前記第2アンテナ接続端子に接続され、前記時分割複信バンドを含む通過帯域を有する第5受信フィルタと、を含み、
前記電力増幅回路は、前記第2送信フィルタに接続され、
前記第2低雑音増幅回路は、前記第5受信フィルタに接続される、
請求項12に記載の高周波回路。 - 前記第2伝送回路は、さらに、前記衛星システムの送信に対応し、
前記第2フィルタ回路は、さらに、前記衛星受信バンドに対応する衛星送信バンドを含む通過帯域を有する第3送信フィルタを含み、
前記電力増幅回路は、さらに、前記第3送信フィルタに接続される、
請求項11、13又は14に記載の高周波回路。 - 前記高周波回路は、さらに、前記第1アンテナ接続端子に接続される端子、前記第2アンテナ接続端子に接続される端子、前記第1フィルタ回路に接続される端子及び前記第2フィルタ回路に接続される端子を有するスイッチ回路を備える、
請求項1~15のいずれか1項に記載の高周波回路。 - 前記高周波回路は、さらに、
前記第1フィルタ回路及び前記第1低雑音増幅回路が実装された第1モジュール基板と、
前記第2フィルタ回路、前記電力増幅回路及び前記第2低雑音増幅回路が実装された第2モジュール基板と、を備える、
請求項1~16のいずれか1項に記載の高周波回路。 - 前記高周波回路は、さらに、前記第1フィルタ回路、前記第2フィルタ回路、前記電力増幅回路、前記第1低雑音増幅回路、及び、前記第2低雑音増幅回路が実装されたモジュール基板を備える、
請求項1~16のいずれか1項に記載の高周波回路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022036636 | 2022-03-09 | ||
JP2022-036636 | 2022-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171260A1 true WO2023171260A1 (ja) | 2023-09-14 |
Family
ID=87936745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/005062 WO2023171260A1 (ja) | 2022-03-09 | 2023-02-14 | 高周波回路 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023171260A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0759162A (ja) * | 1993-06-25 | 1995-03-03 | Alcatel Mobil Commun Fr | 2モード携帯式デジタル信号送受信装置 |
WO2009111453A2 (en) * | 2008-03-04 | 2009-09-11 | Ico Satellite Services G.P. | Method and system for integrated satellite assistance services |
JP2019140671A (ja) * | 2018-02-13 | 2019-08-22 | 株式会社村田製作所 | 高周波信号送受信回路 |
JP2020167445A (ja) * | 2019-03-28 | 2020-10-08 | 株式会社村田製作所 | フロントエンド回路および通信装置 |
JP2021106336A (ja) * | 2019-12-26 | 2021-07-26 | 株式会社村田製作所 | 高周波モジュール及び通信装置 |
JP2022019182A (ja) * | 2020-07-17 | 2022-01-27 | 株式会社村田製作所 | 高周波モジュール及び通信装置 |
-
2023
- 2023-02-14 WO PCT/JP2023/005062 patent/WO2023171260A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0759162A (ja) * | 1993-06-25 | 1995-03-03 | Alcatel Mobil Commun Fr | 2モード携帯式デジタル信号送受信装置 |
WO2009111453A2 (en) * | 2008-03-04 | 2009-09-11 | Ico Satellite Services G.P. | Method and system for integrated satellite assistance services |
JP2019140671A (ja) * | 2018-02-13 | 2019-08-22 | 株式会社村田製作所 | 高周波信号送受信回路 |
JP2020167445A (ja) * | 2019-03-28 | 2020-10-08 | 株式会社村田製作所 | フロントエンド回路および通信装置 |
JP2021106336A (ja) * | 2019-12-26 | 2021-07-26 | 株式会社村田製作所 | 高周波モジュール及び通信装置 |
JP2022019182A (ja) * | 2020-07-17 | 2022-01-27 | 株式会社村田製作所 | 高周波モジュール及び通信装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20240101877A (ko) | 고주파 모듈 및 통신 장치 | |
CN113574658A (zh) | 高频模块和通信装置 | |
US11626967B2 (en) | Radio frequency module and communication apparatus | |
CN214851216U (zh) | 高频模块和通信装置 | |
CN215120789U (zh) | 高频模块和通信装置 | |
CN114788181B (zh) | 高频模块以及通信装置 | |
CN113940008B (zh) | 高频模块以及通信装置 | |
KR20210155347A (ko) | 고주파 모듈 및 통신 장치 | |
CN111697984B (zh) | 开关电路、高频模块以及通信装置 | |
JP2021197644A (ja) | 高周波モジュールおよび通信装置 | |
CN213937899U (zh) | 高频模块和通信装置 | |
US12063028B2 (en) | High-frequency module and communication device | |
CN220210417U (zh) | 高频电路和通信装置 | |
WO2023171260A1 (ja) | 高周波回路 | |
KR102455844B1 (ko) | 고주파 모듈 및 통신장치 | |
CN213661616U (zh) | 高频模块和通信装置 | |
CN116210157A (zh) | 高频模块 | |
US20240039515A1 (en) | Radio frequency module | |
WO2023188664A1 (ja) | 高周波モジュール | |
WO2022209737A1 (ja) | 高周波モジュール及び通信装置 | |
CN214959527U (zh) | 高频模块以及通信装置 | |
WO2022209482A1 (ja) | 高周波モジュール及び通信装置 | |
WO2021205702A1 (ja) | 高周波回路、高周波モジュール及び通信装置 | |
WO2023021792A1 (ja) | 高周波モジュール及び通信装置 | |
US20230275338A1 (en) | Radio frequency module and communication device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23766440 Country of ref document: EP Kind code of ref document: A1 |