WO2023171207A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2023171207A1
WO2023171207A1 PCT/JP2023/004035 JP2023004035W WO2023171207A1 WO 2023171207 A1 WO2023171207 A1 WO 2023171207A1 JP 2023004035 W JP2023004035 W JP 2023004035W WO 2023171207 A1 WO2023171207 A1 WO 2023171207A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensing element
electrical wiring
substrate
wiring
Prior art date
Application number
PCT/JP2023/004035
Other languages
English (en)
French (fr)
Inventor
冠汰 菊地
英治 梅津
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2023171207A1 publication Critical patent/WO2023171207A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor with reduced power consumption and equipped with AC electrical wiring and DC electrical wiring that can apply an AC magnetic field to a magnetic sensing element with high efficiency.
  • Patent Document 1 describes a magnetic measurement device that includes a magnetic sensor whose output characteristic of output voltage with respect to a magnetic field is an even function, and a modulation coil that applies a modulated alternating current magnetic field to the magnetic sensor. It is disclosed that an alternating current and a direct current are passed through nearby wiring to generate an alternating current magnetic field and a direct current magnetic field.
  • Patent Document 2 describes a magnetic sensor in which a first electrical resistance of a first sensor element changes according to a first magnetic layer, a current flowing through a first wiring, and a detected magnetic field applied to a first sensor element.
  • Patent Document 3 describes a magnetic sensor including wiring that supplies alternating current to a magnetic sensing element. According to the magnetic sensors described in these documents, it is possible to accurately detect an external magnetic field through modulation by an alternating magnetic field.
  • An object of the present invention is to provide a magnetic sensor with high magnetic resolution that suppresses an increase in power consumption due to an increase in resistance of AC electric wiring when AC current is supplied.
  • the present invention has the following configuration as a means for solving the above-mentioned problems.
  • a DC electric wiring capable of applying a DC magnetic field to the magnetic sensing element, the magnetic sensing element, the AC electric wiring, and the DC electric wiring are insulated from each other, and the AC electric wiring is capable of applying a DC magnetic field to the magnetic sensing element.
  • a magnetic sensor characterized in that at least a portion of the wiring is formed embedded in the substrate.
  • the Joule heat generated in the AC wiring can be efficiently radiated to the board, making it difficult for resistance to increase in the AC electrical wiring. Furthermore, since the AC electrical wiring can be formed with a larger cross-sectional area than when the AC electrical wiring is formed on an insulating film, the resistivity of the AC electrical wiring can be reduced. Furthermore, by forming the AC electric wiring embedded in the substrate, the distance between the magnetic sensing element and the AC electric wiring can be reduced. Thereby, the magnetic field applied to the magnetic sensing element can be increased without increasing the amount of current flowing through the AC electrical wiring.
  • the magnetic sensor may be formed such that at least a portion of the DC electrical wiring is embedded in the substrate.
  • the AC electrical wiring may be disposed between the magnetic sensing element and the DC electrical wiring when viewed from a direction perpendicular to the normal direction of the substrate and the direction of the sensing axis of the magnetic sensing element.
  • the DC electrical wiring may be formed in parallel to the AC electrical wiring when viewed from a direction perpendicular to the normal direction of the substrate and the direction of the sensing axis of the magnetic sensing element.
  • the AC electrical wiring When the AC electrical wiring and the magnetic sensing element are formed in parallel, the AC electrical wiring may be arranged so as to have a portion that overlaps with the magnetic sensing element when viewed from the normal direction of the substrate. .
  • the AC electrical wiring closer to the magnetic sensing element than the DC electrical wiring, the magnetic field from the AC electrical wiring, which may consume relatively more power, can be detected most efficiently. can be applied to the element. Therefore, it is possible to reduce the current flowing through the alternating current electric wiring to which current is continuously applied, so that the power consumption of the entire current sensor can be reduced.
  • the DC electrical wiring may be disposed between the magnetic sensing element and the AC electrical wiring when viewed from a direction perpendicular to the normal direction of the substrate and the direction of the sensing axis of the magnetic sensing element.
  • the cross-sectional area of the AC electric wiring is larger than the cross-sectional area of the DC electric wiring when viewed from a direction perpendicular to the normal direction of the substrate and the direction of the sensing axis of the magnetic sensing element.
  • the magnetic sensor may include a plurality of the magnetic sensing elements, and may include a bridge circuit formed including the plurality of magnetic sensing elements. By using a bridge circuit, noise added to the entire magnetic sensing element can be removed, so the measurement accuracy of the magnetic sensor is improved.
  • the magnetic sensor may include a soft magnetic material provided on the insulating layer further from the substrate than the magnetic sensing element. Since the magnetic field of the object to be measured can be amplified by the soft magnetic material, the measurement accuracy of the magnetic sensor is improved.
  • the substrate may be a silicon substrate, and the AC electrical wiring may be formed by a damascene process.
  • the damascene process By forming a thermal oxidation layer on the silicon substrate in the damascene process, insulation between the AC electrical wiring and the silicon substrate can be ensured. Further, according to the damascene process, it is possible to form deep grooves in a silicon substrate to form electrical wiring having a large cross-sectional area.
  • the magnetic sensor of the present invention has at least a portion of the AC electric wiring buried in the substrate, thereby suppressing heat generation of the AC electric wiring when AC current is supplied, and reducing power consumption of the magnetic sensor without reducing detection performance. It is possible to reduce Therefore, it is possible to provide a magnetic sensor that suppresses an increase in power consumption, has high magnetic resolution, and has good detection performance.
  • FIG. 2 is a plan view schematically showing a magnetic sensor including a bridge circuit.
  • 1A is a plan view schematically showing a bridge circuit that constitutes the magnetic sensor of FIG. 1A.
  • FIG. 1A is a plan view schematically showing electrical wiring for applying an alternating magnetic field, which constitutes the magnetic sensor of FIG. 1A.
  • FIG. 1B is a plan view schematically showing electrical wiring for applying a DC magnetic field, which constitutes the magnetic sensor of FIG. 1A.
  • FIG. 3 is a cross-sectional view of a magnetic sensor according to a reference example.
  • FIG. 2 is a diagram illustrating the measurement principle of the magnetic sensor of the present invention. It is a graph in which the magnetic field strength measured by a magnetic sensor is broken down by frequency.
  • FIG. 1 is a cross-sectional view of a magnetic sensor according to a first embodiment.
  • FIG. 3 is a cross-sectional view of a magnetic sensor according to a modification of the first embodiment.
  • FIG. 3 is a cross-sectional view of a magnetic sensor according to a second embodiment.
  • FIG. 7 is a cross-sectional view of a magnetic sensor according to a modification of the second embodiment.
  • FIG. 1 is a schematic diagram illustrating a method for manufacturing a magnetic sensor according to the present invention.
  • FIG. 1 is a schematic diagram illustrating a method for manufacturing a magnetic sensor according to the present invention.
  • FIG. 1 is a schematic diagram illustrating a method for manufacturing a magnetic sensor according to the present invention.
  • FIG. 1 is a schematic diagram illustrating a method for manufacturing a magnetic sensor according to the present invention.
  • FIG. 1 is a schematic diagram illustrating a method for manufacturing a magnetic sensor according to the present invention. It is a top view of the magnetic sensor manufactured by the manufacturing method of FIG. 10A to FIG. 10D.
  • FIG. 2 is a plan view illustrating the configuration of a soft magnetic body of a magnetic sensor according to an example.
  • FIG. 3 is a cross-sectional view illustrating the configuration of each part of the magnetic sensor of the example.
  • FIG. 3 is a plan view illustrating the configuration of AC electrical wiring of the magnetic sensor of the example.
  • FIG. 2 is a plan view illustrating the configuration of DC electrical wiring of the magnetic sensor of the example.
  • FIG. 1A is a plan view schematically showing a magnetic sensor 1 including a bridge circuit 2 formed including a plurality of magnetic sensing elements 11.
  • FIG. 1B is a plan view schematically showing the bridge circuit 2 that constitutes the magnetic sensor 1 of FIG. 1A.
  • FIG. 1C is a plan view schematically showing electric wiring 12AC for applying an alternating magnetic field, which constitutes the magnetic sensors 1 and 10 of FIG. 1A.
  • FIG. 1D is a plan view schematically showing electric wiring 12DC for applying a DC magnetic field, which constitutes the magnetic sensors 1 and 10 of FIG. 1A.
  • the soft magnetic body 15 in the magnetic sensor 10 is omitted in FIGS. 1A and 1B, and each member is simplified and schematically shown in FIGS. 1A, 1B, 1C, and 1D. Therefore, the magnetic sensor 10 shown in FIG. 1A is different from the magnetic sensor 10 shown in FIGS. 6 and 10E in the illustrated members and the relative positional relationship and size of each member.
  • the electrical wiring 12 is shown in thick lines to make it easier to distinguish it from the bridge circuit 2.
  • the bridge circuit 2 is shown larger than the magnetic sensing elements 11 shown in FIG. 10C to show that it is composed of four magnetic sensing elements 11. Note that in FIG.
  • the AC electrical wiring 12AC and the DC electrical wiring 12DC are collectively shown as the electrical wiring 12, but as shown in FIGS. 1C, 1D, 6, and 10A to 10E, the AC electrical wiring 12AC and The DC electric wiring 12DC is configured as a separate member.
  • the AC electrical wiring 12AC and the DC electrical wiring 12DC are arranged so as to overlap when viewed from above (Z1-Z2 direction Z2 side).
  • the DC electrical wiring 12DC is located above the AC electrical wiring 12AC.
  • the magnetic sensor 1 includes two half-bridge circuits in which a magnetic sensing element 11a and a magnetic sensing element 11b are connected in series, and these half-bridge circuits are connected in parallel to a power supply terminal Vdd to form a bridge circuit. 2.
  • a magnetic sensing element 11 magnetic sensing element 11a, magnetic sensing element 11b
  • GMR giant magnetoresistive
  • TMR tunnel magnetoresistive
  • a pinned magnetic layer, a nonmagnetic layer, and a free magnetic layer are sequentially laminated on an insulating underlayer, and the surface of the free magnetic layer is covered with a protective layer.
  • the fixed magnetic layer is made of a soft magnetic material such as CoFe alloy (cobalt-iron alloy), and has a fixed magnetization direction.
  • the pinned direction P of magnetization of the pinned magnetic layer is indicated by an arrow.
  • the direction (X-axis direction) orthogonal to the fixed direction P of magnetization is the sensitivity axis direction of each magnetic sensing element 11.
  • the fixed direction P of magnetization of each magnetic sensing element 11 constituting the bridge circuit 2 is the same, and in the example shown in FIGS. 1A and 1B, both are directed upward in the drawing (Y2 direction).
  • the nonmagnetic layer is made of a nonmagnetic material such as Cu (copper).
  • the free magnetic layer is made of a soft magnetic material such as NiFe alloy (nickel-iron alloy).
  • the protective layer covering the free magnetic layer is made of Ta (tantalum) or the like.
  • the magnetization direction of the free magnetic layer is aligned in the same direction as the fixed direction P of magnetization of the pinned magnetic layer.
  • a bias magnetic field may be applied to align the magnetization directions of the free magnetic layer.
  • the magnetic sensing element 11 when an external magnetic field is applied from the outside, the direction of magnetization in the free magnetic layer, which is aligned in the same direction as the fixed direction P of magnetization of the pinned magnetic layer, is tilted toward the X direction.
  • the electrical resistance of the magnetic sensing element 11 increases, and when the angle between the magnetization vector of the free magnetic layer and the magnetization fixed direction P decreases, , the electrical resistance of the magnetic sensing element 11 becomes smaller. Therefore, the magnetic sensing element 11 exhibits an even-function type resistance change with respect to a magnetic field in the direction of the sensing axis S (X-axis direction) orthogonal to the pinned direction P of magnetization of the pinned magnetic layer.
  • the magnetic sensor 1 includes an electric wiring 12 that functions as a magnetic coil capable of applying a magnetic field to the magnetic sensing element 11.
  • the electrical wiring 12 consists of an AC electrical wiring 12AC and a DC electrical wiring 12DC.
  • the AC electric wiring 12AC can apply an AC magnetic field to the magnetic sensing element 11 in the direction of the detection axis S of magnetization of the pinned magnetic layer (X-axis direction).
  • the DC electric wiring 12DC can apply a DC magnetic field to the magnetic sensing element 11 in the direction of the detection axis S of magnetization of the pinned magnetic layer.
  • the AC electric wiring 12AC has wiring connected in parallel, and the direction in which the parallel wiring is arranged is in the direction in which the two half-bridge circuits forming the full-bridge circuit 2 are arranged. It's in line.
  • Each wiring formed in parallel is directed in opposite directions to each other along the Y-axis direction (Y1 side in the Y1-Y2 direction, Y2 side in the Y1-Y2 direction) from the branch point with the common wiring that supplies alternating current to these wirings. It is branched into.
  • the branch point is located between two half-bridge circuits when viewed from above (Z2 side in the Z1-Z2 direction).
  • the AC electrical wiring 12AC arranged to overlap the magnetic sensing element 11a and the AC electrical wiring 12AC arranged to overlap the magnetic sensing element 11b always have currents in opposite directions. flows. Therefore, when an alternating current is passed through the alternating current electric wiring 12AC, an alternating current magnetic field of opposite phase is applied to the magnetic sensing element 11a and the magnetic sensing element 11b that constitute the bridge circuit 2.
  • Solid and broken arrows in the figure indicate the direction of the alternating current flowing through the alternating current electrical wiring 12AC.
  • the direction of the alternating current magnetic field generated in the alternating current electrical wiring 12AC by the alternating current in the direction indicated by the solid line is indicated by a black arrow.
  • the direction of the alternating current magnetic field generated in the alternating current electrical wiring 12AC due to the alternating current in the direction indicated by the broken line is indicated by the white arrow.
  • the DC electrical wiring 12DC has wiring connected in parallel, and the direction in which the parallel wiring is arranged is in the direction in which the two half-bridge circuits forming the full-bridge circuit 2 are arranged. It's in line.
  • Each wiring formed in parallel and the wiring connecting each wiring are arranged in a direction perpendicular to the X-axis direction and the Y-axis direction from the branch point with the common wiring that supplies DC current to these wirings. It's branching out.
  • the branch point is located between the magnetic sensing element 11a and the magnetic sensing element 11b that constitute each half-bridge circuit when viewed from above (Z2 side in the Z1-Z2 direction).
  • the magnetic sensor 1 can detect weak magnetic fields by applying an AC magnetic field to the magnetic sensing element 11 through the AC electric wiring 12AC.
  • weak magnetic fields detected by the magnetic sensor 1 include magnetic fields emitted from living bodies measured in medical procedures, weak magnetic fields emitted from various devices, and the like. Magnetic sensors with high magnetic resolution are required for measuring brain waves in medical settings and testing various devices, and the magnetic sensor 1 is suitable for these uses.
  • FIG. 2 shows a reference example magnetic sensor 50 that includes a magnetic sensing element 11 and AC electrical wiring 12AC.
  • the magnetic sensing element 11 In detecting a magnetic field by applying an alternating magnetic field to the magnetic sensing element 11, the magnetic sensing element 11 has an even function type characteristic, in which the output signal characteristic for a magnetic field having a sensing axis S along the in-plane direction of the substrate is an even function.
  • an AC electric wiring 12AC that applies an AC magnetic field in a direction perpendicular thereto, constitute the basic configuration for detecting magnetism. Therefore, the principle of operation of the magnetic sensor 10 that constitutes the magnetic sensor 1 will be described below with reference to the magnetic sensor 50 as a reference example.
  • an AC electric wiring 12AC is installed in the insulating layer 14 on the substrate 13, below the magnetic sensing element 11.
  • the substrate 13 is made of, for example, a silicon substrate made of silicon.
  • FIG. 3 is a diagram illustrating the measurement principle of the magnetic sensor 50. This figure shows the resistance change of the magnetic sensing element 11 of the single-element magnetic sensor 50.
  • FIG. 4 is a graph in which the magnetic field strength measured by the magnetic sensor 50 is broken down into frequencies. The graph shown in the figure is obtained by performing Fast Fourier Transform (FFT) on the waveform of the resistance change of the magnetic sensing element 11.
  • FFT Fast Fourier Transform
  • the waveform of the resistance change of the magnetic sensing element 11a is output as a wave with twice the frequency (2 ⁇ a) of the alternating current magnetic field applied by the alternating current electric wiring 12AC, as shown by the following equation.
  • the waveform of the resistance change of the magnetic sensing element 11a is expressed by the following equation.
  • the signal indicating the resistance change of the magnetic sensing element 11a consists of a component of twice the frequency ⁇ a of the applied alternating magnetic field (2 ⁇ a), and components of ( ⁇ a + ⁇ b) and ( ⁇ a - ⁇ b). It is output as a wave.
  • the external magnetic field Hb ⁇ sin( ⁇ b ⁇ t) can be extracted as a signal with frequencies ( ⁇ a+ ⁇ b) and ( ⁇ a ⁇ b). That is, a signal obtained by adding the frequency ⁇ b of the external magnetic field to the frequency ⁇ a of the alternating magnetic field is obtained as a signal decomposed by frequency.
  • 1/f noise can be significantly reduced. In this way, the magnetic resolution of the magnetic sensor 50 can be increased by measuring a high frequency region with less randomly generated 1/f noise.
  • the equation showing the change in the resistance R' of the magnetic sensing element 11b and the equation showing the change in the resistance R of the magnetic sensing element 11a are such that the signs of the term including ( ⁇ a + ⁇ b) and the term including ( ⁇ a - ⁇ b) are reversed. , 2 ⁇ a and 2 ⁇ b are not inverted in sign. Therefore, the difference R'-R between the resistance R of the magnetic sensing element 11a and the resistance R' of the magnetic sensing element 11b is expressed by the following equation.
  • the AC electric wirings 12AC are connected in parallel, and the magnetic sensing elements 11a and 11a of the bridge circuit 2 are connected to each other.
  • the frequency ( ⁇ a + ⁇ b) required to extract the external magnetic field Hb ⁇ sin ( ⁇ b ⁇ t) from the resistance R of the magnetic sensing element 11a and the resistance R' of the magnetic sensing element 11b by applying an alternating current magnetic field of opposite phase The magnetic detection sensitivity can be improved by extracting the term ( ⁇ a ⁇ b). By improving the magnetic detection sensitivity in this way, it becomes possible to use, for example, an amplifier with a high amplification factor.
  • FIG. 5 is a graph in which the magnetic field strength measured by the magnetic sensor 50 is broken down into frequencies when a disturbance magnetic field larger than the amplitude of the detected magnetic field is applied.
  • the measurement principle of the magnetic sensor 50 is as described above, but when actually measuring a magnetic field, a disturbance magnetic field Hi is applied to the magnetic sensor. Therefore, the equation showing the change in the waveform of the resistance change of the magnetic sensing element 11 is as follows.
  • the magnetic sensor 50 of the reference example including the magnetic sensing element 11 and the AC electric wiring 12AC has a problem in that the S/N ratio of the detected magnetic field deteriorates when a large disturbance magnetic field Hi is applied. Therefore, the magnetic sensor 10 of this embodiment applies a DC magnetic field to the magnetic sensing element 11 through the DC electric wiring 12DC shown in FIGS. 1A and 1D to cancel the disturbance magnetic field Hi.
  • the magnetic sensing element 11 and the AC electric wiring 12AC are both provided on the insulating layer 14, the Joule heat generated in the AC electric wiring 12AC is released to the substrate 13. difficult to do. Therefore, there is a problem in that the sensitivity of the magnetic sensing element 11 is reduced due to the heat generated by the AC electric wiring 12AC.
  • FIG. 6 is a cross-sectional view of the magnetic sensor 10 according to the present embodiment, and schematically shows the configuration of the cross-section of the XZ plane taken along the line AA in FIG. 1A.
  • the magnetic sensor 10 includes a magnetic sensing element 11, an AC electrical wiring 12AC, a DC electrical wiring 12DC, and a soft magnetic body 15.
  • the magnetic sensing element 11, the AC electrical wiring 12AC, and the DC electrical wiring 12DC are insulated from each other by an insulating layer 14.
  • the magnetic sensing element 11 is formed on a substrate 13 via an insulating layer 14 made of an insulating material, and has a sensing axis S along the direction within the XY plane of the substrate 13 (see FIG. 1B).
  • the detection axis S is a direction perpendicular to the pinned direction P of magnetization of the pinned magnetic layer, and is the X-axis direction.
  • the magnetic sensing element 11 has an output signal characteristic that is an even function with respect to the magnetic field in the X-axis direction.
  • the AC electric wiring 12AC applies an AC magnetic field to the magnetic sensing element 11 in the direction of the sensing axis S of the magnetic sensing element 11 by applying AC electricity.
  • an alternating magnetic field to the magnetic sensing element 11
  • a weak magnetic field can be detected with high accuracy based on the measurement principle described with reference to FIGS. 3 to 5.
  • the width of the AC electric wiring 12AC in the X-axis direction is narrower than that of the DC electric wiring 12DC, and wider than the magnetic sensing element 11. Thereby, a strong alternating magnetic field can be generated and a uniform alternating magnetic field can be applied to the magnetic sensing element 11.
  • An insulating layer 16 is formed between the AC electrical wiring 12AC and the substrate 13.
  • the insulating layer 16 is formed, for example, by thermally oxidizing the surface of the silicon substrate 13 when forming the AC electric wiring 12AC by a damascene process.
  • the AC electrical wiring 12AC of the magnetic sensor 10 is formed embedded in the substrate 13.
  • the entire AC electrical wiring 12AC is buried in the substrate 13, but a configuration in which a portion of the AC electrical wiring 12AC is buried in the substrate 13 may also be used.
  • the heat of the AC electric wiring 12AC can be efficiently radiated to the substrate 13.
  • the AC electric wiring 12AC can be buried near the magnetic sensing element 11. can be installed. Since the AC electrical wiring 12AC can be formed with a larger cross-sectional area than when the AC electrical wiring 12AC is formed in the insulating layer 14, the resistivity of the AC electrical wiring 12AC can be reduced. Therefore, it is possible to increase the AC magnetic field applied to the magnetic sensing element 11 without increasing the amount of AC current flowing through the AC electric wiring 12AC.
  • the AC electric wiring 12AC is connected to the magnetic field provided in the insulating layer 14.
  • Each part constituting the magnetic sensor 10 can be formed with higher precision than the sensor 50 (see FIG. 2).
  • the magnetic sensor 10 includes, in addition to the AC electric wiring 12AC, a DC electric wiring 12DC that can apply a DC magnetic field to the magnetic sensing element 11.
  • a DC electric wiring 12DC that can apply a DC magnetic field to the magnetic sensing element 11.
  • the width of the DC electric wiring 12DC in the X-axis direction is wider than that of the magnetic sensing element 11 and the AC electric wiring 12AC. Thereby, the cross-sectional area of the DC electric wiring 12DC can be increased and the resistance can be lowered.
  • the width of the DC electrical wiring 12DC By widening the width of the DC electrical wiring 12DC, the cross-sectional area of the DC electrical wiring 12DC can be increased, and the thickness can be made smaller than the DC electrical wiring 12DC, which has the same cross-sectional area but is narrower. Therefore, the distance between the AC electric wiring 12AC and the magnetic sensing element 11 can be reduced, and the AC magnetic field can be efficiently applied from the AC electric wiring 12AC to the magnetic sensing element 11.
  • the width of the DC electric wiring 12DC in the X-axis direction is approximately twice that of the magnetic sensing element 11 (for example, 1.5 times or more and 2.5 times or less). is preferred.
  • a DC electric wiring 12DC is connected to the plurality of magnetic sensing elements 11 in order to cancel a disturbance magnetic field. Apply a unidirectional DC magnetic field.
  • the direction of the DC magnetic field applied by the DC electric wiring 12DC is the same between the magnetic sensing elements 11a and 11b.
  • a DC current that generates a DC magnetic field that cancels out the measured disturbance magnetic field is applied to the magnetic sensor in the state where the DC current is flowing. This is done by feeding back the measured magnetic field strength to the direct current.
  • a known method can be used for feedback control.
  • the DC electric wiring 12DC of the magnetic sensor 10 is viewed from the direction (Y-axis direction) perpendicular to the normal direction of the substrate 13 (Z-axis direction) and the direction of the detection axis S of the magnetic sensing element 11 (X-axis direction). , is arranged between the magnetic sensing element 11 and the AC electric wiring 12AC.
  • the cross-sectional area of the AC electrical wiring 12AC can be increased without considering the arrangement of the DC electrical wiring 12DC, and the magnetic sensor No. 10 can easily enjoy the effect of efficient heat dissipation and the effect of reducing resistivity.
  • the magnetic field applied to the magnetic sensing element 11 can be applied without increasing the amount of current flowing through the DC electric wiring 12DC. can be made larger. This shortening of the distance of the DC electric wiring 12DC may contribute to improving the responsiveness of the magnetic sensor 10. Note that, from the viewpoint of ease of manufacture, it may be preferable that the DC electrical wiring 12DC does not have a portion buried in the substrate 13.
  • the cross-sectional area of the AC electric wiring 12AC of the magnetic sensor 10 is measured from the direction (Y-axis direction) perpendicular to the normal direction of the substrate 13 (Z-axis direction) and the direction of the detection axis S (X-axis direction) of the magnetic sensing element 11. When viewed, it is larger than the cross-sectional area of the DC electrical wiring 12DC.
  • the current is continuously applied to the AC electrical wiring 12AC, it may be preferable to reduce the power consumption of the AC electrical wiring 12AC preferentially from the viewpoint of reducing the overall power consumption. Therefore, if the cross-sectional area of the AC electric wiring 12AC is made larger than the cross-sectional area of the DC electric wiring 12DC, the resistivity of the AC electric wiring 12AC can be made lower than that of the DC electric wiring 12DC, and the AC electric wiring 12AC power consumption can be efficiently reduced.
  • the magnetic sensor 10 has a soft magnetic material 15 provided on the insulating layer 14 further from the substrate 13 than the magnetic sensing element 11 is.
  • the measurement accuracy of the magnetic sensor 10 can be improved by amplifying the magnetic field of the measurement object using the soft magnetic body 15 made of a MFC (Magnetic Flux Concentrator) or the like.
  • the magnetic sensor 10 has the AC electrical wiring 12AC embedded in the substrate 13, the AC electrical wiring 12AC can be formed thickly, and the DC electrical wiring 12DC can be formed in a layer above the AC electrical wiring 12AC. Therefore, power consumption can be suppressed while suppressing heat generation of the magnetic sensor 10. Furthermore, it is possible to form the AC electrical wiring 12AC in a groove provided in the substrate 13 to increase the cross-sectional area of the AC electrical wiring 12AC. Therefore, it is possible to prevent the sensitivity of the magnetic sensing element 11 from decreasing due to heat generation, reduce the power consumption of the magnetic sensor 10, and reduce the total film thickness.
  • FIG. 7 is a sectional view of a magnetic sensor 20 according to a modification of the magnetic sensor 10 of the first embodiment.
  • the magnetic sensor 20 differs from the magnetic sensor 10 in that the DC electrical wiring 12DC is embedded in the substrate 13.
  • An insulating layer 16 is provided between the DC electrical wiring 12DC and the substrate 13.
  • At least a portion of the DC electrical wiring 12DC is formed embedded in the substrate 13, and by forming the DC electrical wiring 12DC to have a portion embedded in the substrate 13, as in the case of the AC electrical wiring 12AC, The effects of efficient heat dissipation, resistivity reduction, and distance shortening can also be obtained for the DC electrical wiring 12DC. Therefore, it is possible to reduce the power consumption of both the AC electrical wiring 12AC and the DC electrical wiring 12DC.
  • the AC electrical wiring 12AC is connected to the magnetic sensing element when viewed from the direction (Y-axis direction) perpendicular to the normal direction of the substrate 13 (Z-axis direction) and the direction of the sensing axis S (X-axis direction) of the magnetic sensing element 11. 11 and the DC electrical wiring 12DC. Since the DC electrical wiring 12DC is configured to be distanced from the magnetic sensing element 11, the power consumption of the DC electrical wiring 12DC increases, but the power consumption of the AC electrical wiring 12AC can be reduced. Therefore, the power consumption of the magnetic sensor 20 can be suppressed as a whole.
  • FIG. 8 is a cross-sectional view of the magnetic sensor 30 according to this embodiment.
  • the magnetic sensor 30 is formed by embedding a DC electric wiring 12DC in a substrate 13.
  • the DC electric wiring 12DC is the AC electric wiring 12AC. are formed in parallel. Note that in FIG. 8, the entire DC electric wiring 12DC is buried in the substrate 13, but a portion thereof may be buried.
  • DC electrical wiring 12DC is arranged, one on each side in the X-axis direction, with respect to AC electrical wiring 12AC.
  • the DC electrical wiring 12DC may be provided only on one side of the AC electrical wiring 12AC, but from the viewpoint of uniforming the DC magnetic field applied from the DC electrical wiring 12DC to the magnetic sensing element 11, it is preferable to provide one on each side. It is preferable that From a similar point of view, the two DC electric wirings 12DC are arranged symmetrically with respect to the center line L1, which passes through the center of the magnetic sensing element 11 and is parallel to the Z-axis, when viewed from the Y-axis direction. More preferred.
  • the AC electric wiring 12AC is arranged so as to have a portion overlapping with the magnetic sensing element 11 when viewed from the normal direction of the substrate 13 (Z-axis direction).
  • the magnetic field from the AC electrical wiring 12AC which may have a relatively large power consumption, can be used most efficiently. can be applied to the magnetic sensing element 11 in a similar manner.
  • FIG. 9 is a cross-sectional view of a magnetic sensor 40 according to a modification of the magnetic sensor 30 of this embodiment.
  • the magnetic sensor 40 differs from the magnetic sensor 30 in that the positions of the DC electrical wiring 12DC and the AC electrical wiring 12AC are reversed.
  • two AC electric wirings 12AC are arranged, one on each side of the DC electric wiring 12DC, in the X-axis direction.
  • the two AC electric wirings 12AC are arranged symmetrically with respect to a center line L1 passing through the center of the magnetic sensing element 11 and parallel to the Z-axis direction, when viewed from the Y-axis direction.
  • An alternating current that applies an alternating magnetic field of the same phase to the magnetic sensing element 11 flows through the two alternating current electric wirings 12AC.
  • FIGS. 10A to 10D are schematic diagrams illustrating the method of manufacturing a magnetic sensor of the present invention
  • FIG. 10E is a plan view of a magnetic sensor manufactured by the same manufacturing method.
  • the plan view on the left side shows the main members formed in each step.
  • the cross-sectional view on the right side shows the cross section along line AA in FIG. 10E step by step after each member is formed in each step.
  • AC electrical wiring 12AC is formed on a substrate 13 made of a silicon substrate by a damascene process.
  • a groove 131 corresponding to the shape of the AC electric wiring 12AC is formed on the substrate 13, and the AC electric wiring 12AC is formed on the substrate 13 in which the groove 131 is formed.
  • a layer for the AC electrical wiring 12AC including the AC electrical wiring 12AC is formed on the surface of the substrate 13 in which the groove 131 is formed, and portions other than the AC electrical wiring 12AC are scraped off from the surface to form the AC electrical wiring 12AC. Good too.
  • the insulation resistance of the AC electric wiring 12AC is improved. Furthermore, the damascene process is suitable for forming deep grooves 131 in the substrate 13 and forming AC electrical wiring 12AC having a large cross-sectional area.
  • the AC electrical wiring 12AC is formed by a damascene process.
  • members other than the AC electrical wiring 12AC are also formed by the damascene process.
  • AC electrical wiring 12AC and DC electrical wiring 12DC are formed by a damascene process.
  • AC electrical wiring 12AC and DC electrical wiring 12DC are formed by a damascene process. Since the AC electrical wiring 12AC and the DC electrical wiring 12DC are arranged in parallel, at least some of them can be formed at the same time.
  • each member can be formed by a sputtering process or the like. Through these steps, it is possible to manufacture the magnetic sensor 1 including the magnetic sensor 10 shown in FIG. 10E.
  • the alternating current (drive current) of the alternating current electric wiring 12AC and the magnitude of the direct current (cancellation current) of the direct current electric wiring 12DC was determined by calculation.
  • FIG. 11A to 11D show the configuration of the magnetic sensor simulated in the example, where FIG. 11A is a plan view showing the size of the soft magnetic body 15, and FIG. 11B shows the size and arrangement of each part.
  • 11C is a plan view showing the shape and size of AC electrical wiring 12AC
  • FIG. 11D is a plan view showing the shape and size of DC electrical wiring 12DC.
  • the resistivity of the AC electrical wiring 12AC and the DC electrical wiring 12DC was set to 0.0345 ⁇ /m.
  • the resistance value is as follows. ((1300+1600+1200) ⁇ 2 +(2170+4140)/2)/30/0.23 ⁇ 0.0345 ⁇ 57 ⁇
  • the resistance value is as follows. (215+850+1600+2785+2450+(2570+4140)/2)/50/0.23 ⁇ 0.0345 ⁇ 34 ⁇
  • Example 1 the DC electrical wiring 12DC is arranged closer to the magnetic sensing element 11 than the AC electrical wiring 12AC, and in Examples 2 to 4, the AC electrical wiring 12AC is arranged closer to the magnetic sensing element 11 than the DC electrical wiring 12DC. placed in the position.
  • Example 5 one DC electric wiring 12DC was arranged on each side of the AC electric wiring 12AC in the X-axis direction.
  • the distance in the Z-axis direction between the AC electrical wiring 12AC and the DC electrical wiring 12DC and the magnetic sensing element 11 was set to 0.20 ⁇ m.
  • the distance in the X-axis direction between the AC electrical wiring 12AC and the DC electrical wiring 12DC on both sides thereof was each 0.30 ⁇ m.
  • Example 6 one AC electric wiring 12AC was arranged on each side of the DC electric wiring 12DC in the X-axis direction.
  • the distance in the Z-axis direction between the AC electric wiring 12AC and the DC electric wiring 12DC and the magnetic sensing element 11 was set to 0.2 ⁇ m.
  • the distance in the X-axis direction between the DC electrical wiring 12DC and the AC electrical wiring 12AC on both sides thereof was each 0.30 ⁇ m.
  • Table 1 shows the AC current and power consumption of the AC electrical wiring 12AC
  • Table 2 shows the DC current and power consumption of the DC electrical wiring 12DC, which were determined by simulation calculations for the current sensors of Examples 1 to 6.
  • the present invention is useful as a magnetic sensor with high magnetic resolution that can detect weak magnetic fields with high precision and is used in the medical field and testing of various devices.
  • Magnetic sensor 2 Bridge circuit 10: Magnetic sensor 11: Magnetic sensing element 11a: Magnetic sensing element 11b: Magnetic sensing element 12: Electrical wiring 12AC: AC electric wiring 12DC: DC electric wiring 13: Substrate (silicon substrate) 14: Insulating layer 15: Soft magnetic material 16: Insulating layer 20: Magnetic sensor 30: Magnetic sensor 40: Magnetic sensor 50: Magnetic sensor 131: Groove Ha: Amplitude Hi: Disturbing magnetic field Hi': Magnetic field Hs: Magnetic field L1: Center line P: Fixed direction S: Detection axis TAC: Film thickness TDC: Film thickness Vdd: Power supply terminal ⁇ a: Frequency ⁇ b: Frequency R: Resistance R': Resistance WAC: Width WDC: Width

Abstract

本発明に係る磁気センサ10は、基板13と、基板13上に絶縁層14を介して形成され、基板13の面内方向に沿ったX軸方向に検知軸を有する磁界に対する出力信号特性が偶関数である磁気検知素子11と、磁気検知素子11に交流磁界を印加可能な交流電気配線12ACと、磁気検知素子11に直流磁界を印加可能な直流電気配線12DCと、を備え、磁気検知素子11、交流電気配線12ACおよび直流電気配線12DCは互いに絶縁され、交流電気配線12ACの少なくとも一部は基板13に埋設して形成されているため、交流電流を供給した際に、交流電気配線の抵抗が上昇することによる消費電力の増加が抑えられ、磁気分解能が高い。

Description

磁気センサ
 本発明は、高効率で交流磁界を磁気検知素子に印加可能な交流電気配線および直流電気配線を備えた消費電力が抑えられた磁気センサに関する。
 高感度な磁界検出を可能とするために、磁気検知素子と、磁気検知素子に交流磁界を印加する交流電気配線とを備えた磁気センサが提案されている。
 特許文献1には、磁界に対する出力電圧の出力特性が偶関数となる磁気センサと、この磁気センサに変調交流磁界を印加する変調コイルとを備えた、磁気計測装置が記載されており、GMR素子近傍の配線に交流電流と直流電流とを流して、交流磁界と直流磁界を発生させることが開示されている。
 特許文献2には、第1磁性層と、第1配線に流れる電流、及び、第1センサ素子に加わる被検出磁界に応じて、第1センサ素子の第1電気抵抗が変化する磁気センサにおける、第1配線に交流の電流を供給することが記載されている。特許文献3には、磁気検知素子に交流電流を供給する配線を備えた磁気センサが記載されている。これらの文献に記載されている磁気センサによれば、交流磁界による変調によって外部磁界を精度よく検出することができる。
特開2017-3336号公報 特開2018-155719号公報 特開2019-207167号公報
 磁気検知素子と、交流磁界を発生させる交流電気配線とを備えた磁気センサでは、磁気検知素子に交流磁界を印加する交流電流を供給することで交流電気配線にジュール熱が発生し、抵抗上昇が生じ交流電気配線の消費電力が大きくなるという問題がある。また、交流電気配線の発熱の影響によって磁気検知素子の感度が低下し、磁気センサの検出性能が低下するという問題もある。
 本発明は、交流電流を供給した際に、交流電気配線の抵抗が上昇することによる消費電力の増加が抑えられた、磁気分解能の高い磁気センサを提供することを目的とする。
 本発明は上述した課題を解決するための手段として、以下の構成を備えている。
 基板と、前記基板上に絶縁層を介して形成され、前記基板の面内方向に沿った検知軸を有する磁界に対する出力信号特性が偶関数である磁気検知素子と、前記磁気検知素子に交流磁界を印加可能な交流電気配線と、前記磁気検知素子に直流磁界を印加可能な直流電気配線と、を備え、前記磁気検知素子、前記交流電気配線および前記直流電気配線は互いに絶縁され、前記交流電気配線の少なくとも一部は前記基板に埋設して形成されることを特徴とする磁気センサ。
 交流電気配線を基板に埋設することにより、交流電気配線において発生するジュール熱を基板に効率的に放熱できるため、交流電気配線に抵抗上昇が生じにくい。また、交流電気配線が絶縁膜に形成される場合に比べて断面積が大きな交流電気配線を形成できるため、交流電気配線の抵抗率を低減できる。さらに、交流電気配線が基板に埋設して形成されることによって、磁気検知素子と交流電気配線との距離を小さくすることができる。これにより、交流電気配線を流れる電流量を増やすことなく、磁気検知素子に印加される磁界を大きくすることができる。
 磁気センサは、前記直流電気配線の少なくとも一部が前記基板に埋設されて形成されてもよい。
 この構成により、交流電気配線の場合と同様に、直流電気配線についても、効率的放熱、抵抗率低減および距離短縮の効果を得ることができ、交流電気配線、直流電気配線の両方の消費電力を低減可能である。
 前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記交流電気配線は前記磁気検知素子と前記直流電気配線との間に配置されてもよい。
 交流電気配線を磁気検知素子の近位に配置することにより、電流印加が継続的に行われる交流電気配線に流す電流を低減できるから、磁気センサ全体の消費電力を低減させることができる。
 前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記直流電気配線は前記交流電気配線に並列して形成されてもよい。
 直流電気配線と交流電気配線とを並列に配置することにより、2種の電気配線の少なくとも一部を同一の配線形成プロセスで製造することが可能である。
 交流電気配線と前記磁気検知素子とが並列して形成される場合、前記基板の法線方向からみたときに、前記交流電気配線は前記磁気検知素子と重なる部分を有するように配置されてもよい。
 並列配置において、交流電気配線を直流電気配線よりも磁気検知素子の近位に配置することにより、消費電力が相対的に大きくなる可能性がある交流電気配線からの磁界を最も効率的に磁気検知素子に印加することができる。したがって、電流印加が継続的に行われる交流電気配線に流す電流を低減できるから、電流センサ全体の消費電力を低減させることができる。
 前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記直流電気配線は前記磁気検知素子と前記交流電気配線との間に配置されてもよい。
 上記の構成により、交流電気配線からの磁界を最も効率的に磁気検知素子に印加することができる。したがって、直流電気配線に流す電流の低減が可能である。
 前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記交流電気配線の断面積は前記直流電気配線の断面積よりも大きいことが好ましい。
 上記の構成により、電流印加が継続的に行われる交流電気配線の消費電力を優先的に低減させて、磁気センサ全体の消費電力を低減させることができる。
 磁気センサは、前記磁気検知素子を複数有し、当該複数の前記磁気検知素子を含んで形成されたブリッジ回路を備えていてもよい。
 ブリッジ回路とすることで、磁気検知素子の全体に加わるノイズを除去できるため、磁気センサの測定精度が向上する。
 磁気センサは、前記絶縁層上に、前記磁気検知素子よりも前記基板から遠位に設けられた軟磁性体を有していてもよい。
 軟磁性体により測定対象の磁界を増幅させることができるため、磁気センサの測定精度が向上する。
 磁気センサは、前記基板がシリコン基板であり、前記交流電気配線がダマシンプロセスによって形成されたものでもよい。
 ダマシンプロセスにおいてシリコン基板に熱酸化層を形成することで、交流電気配線とシリコン基板との絶縁性を担保できる。また、ダマシンプロセスによれば、シリコン基板に深い溝を形成して大きな断面積を有する電気配線を形成可能である。
 本発明の磁気センサは、交流電気配線の少なくとも一部を基板に埋設することにより、交流電流を供給した際における交流電気配線の発熱を抑え、検出性能を低下させることなく磁気センサの消費電力を低減可能である。したがって、消費電力の増加が抑えられた、磁気分解能が高く検出性能の良い磁気センサを提供することができる。
ブリッジ回路を備えた磁気センサを模式的に示す平面図である。 図1Aの磁気センサを構成するブリッジ回路を模式的に示す平面図である。 図1Aの磁気センサを構成する交流磁界印加用の電気配線を模式的に示す平面図である。 図1Aの磁気センサを構成する直流磁界印加用の電気配線を模式的に示す平面図である。 参考例に係る磁気センサの断面図である。 本発明の磁気センサの測定原理を説明する図である。 磁気センサにより測定される磁界強度を周波数で分解したグラフである。 外乱磁界が加わったときに磁気センサにより測定される磁界強度を周波数で分解したグラフである。 第1の実施形態に係る磁気センサの断面図である。 第1の実施形態の変形例に係る磁気センサの断面図である。 第2の実施形態に係る磁気センサの断面図である。 第2の実施形態の変形例に係る磁気センサの断面図である。 本発明の磁気センサの製造方法を説明する模式図である。 本発明の磁気センサの製造方法を説明する模式図である。 本発明の磁気センサの製造方法を説明する模式図である。 本発明の磁気センサの製造方法を説明する模式図である。 図10Aから図10Dの製造方法で製造された磁気センサの平面図である。 実施例の磁気センサの軟磁性体の構成を説明する平面図である。 実施例の磁気センサの各部の構成を説明する断面図である。 実施例の磁気センサの交流電気配線の構成を説明する平面図である。 実施例の磁気センサの直流電気配線の構成を説明する平面図である。
 本発明を実施する態様について、以下、図面を参照して説明する。同じ部材については、各図面において同じ番号を付して、適宜、説明を省略する。また、各図に示した座標は、参照用である。
<第1の実施形態>
 図1Aは、複数の磁気検知素子11を含んで形成されたブリッジ回路2を備える磁気センサ1を模式的に示す平面図である。図1Bは、図1Aの磁気センサ1を構成するブリッジ回路2を模式的に示す平面図である。図1Cは、図1Aの磁気センサ1、10を構成する交流磁界印加用の電気配線12ACを模式的に示す平面図である。図1Dは、図1Aの磁気センサ1、10を構成する直流磁界印加用の電気配線12DCを模式的に示す平面図である。
 説明の便宜上、図1Aおよび図1Bでは、磁気センサ10における軟磁性体15を省略し、図1A、図1B、図1Cおよび図1Dでは、各部材を簡略化して模式的に示している。このため、図1Aに示す磁気センサ10は、図6および図10Eに示す磁気センサ10と、図示した部材および各部材の相対的な位置関係や大きさが異なっている。図1Aでは、電気配線12を太線で示し、ブリッジ回路2との識別性を高めてある。図1Bでは、ブリッジ回路2が4つの磁気検知素子11により構成されていることを示すために、図10Cに示す磁気検知素子11よりも大きく表した。なお、図1Aでは、交流電気配線12ACおよび直流電気配線12DCをまとめて電気配線12として示したが、図1C、図1D、図6および図10A~図10Eに示すように、交流電気配線12ACと直流電気配線12DCとは、別の部材として構成されている。具体的には、図6に示されるように、本実施形態に係る磁気センサ1では、交流電気配線12ACおよび直流電気配線12DCは上方(Z1-Z2方向Z2側)からみて重複するように配置され、直流電気配線12DCの方が交流電気配線12ACよりも上側に位置する。
 磁気センサ1は、磁気検知素子11aと磁気検知素子11bとが直列に接続されたハーフブリッジ回路を2つ備え、これらのハーフブリッジ回路は、給電端子Vddに対して並列に接続されて、ブリッジ回路2を構成している。磁気検知素子11(磁気検知素子11a、磁気検知素子11b)は、巨大磁気抵抗効果(GMR)素子、トンネル型磁気抵抗(TMR)素子などが用いられる。磁気検知素子11としてGMR素子を用いる場合について以下に説明する。
 GMR素子は、絶縁下地層の上に、固定磁性層と非磁性層とフリー磁性層が順に積層され、フリー磁性層の表面が保護層で覆われている。
 固定磁性層は、CoFe合金(コバルト-鉄合金)などの軟磁性材料で形成されており、磁化方向が固定されている。図1Bには、固定磁性層の磁化の固定方向Pが矢印で示されている。磁化の固定方向Pに直交する方向(X軸方向)が、それぞれの磁気検知素子11の感度軸方向である。ブリッジ回路2を構成する各磁気検知素子11は磁化の固定方向Pが同じであり、図1Aおよび図1Bに示す例では、共に図示上向き(Y2方向)である。
 非磁性層はCu(銅)などの非磁性材料で形成されている。フリー磁性層は、NiFe合金(ニッケル-鉄合金)などの軟磁性材料で形成されている。フリー磁性層を覆う保護層はTa(タンタル)などで形成されている。フリー磁性層の磁化方向は、固定磁性層の磁化の固定方向Pと同じ向きに揃えられている。フリー磁性層の磁化方向を揃えるために、バイアス磁界が印加されることがある。
 磁気検知素子11では、外部から外部磁界が与えられると、フリー磁性層において固定磁性層の磁化の固定方向Pと同じ向きに揃えられている磁化の向きがX方向へ向けて傾けられる。フリー磁性層の磁化のベクトルと磁化の固定方向Pとの角度が大きくなると、磁気検知素子11の電気抵抗が大きくなり、フリー磁性層の磁化のベクトルと磁化の固定方向Pとの角度が小さくなると、磁気検知素子11の電気抵抗が小さくなる。このため、磁気検知素子11は、固定磁性層の磁化の固定方向Pに直交する検知軸Sの方向(X軸方向)の磁界に対し、偶関数型の抵抗変化を示す。
 磁気センサ1は、磁気検知素子11に対して磁界を印加可能な磁気コイルとして機能する電気配線12を備えている。電気配線12は、交流電気配線12ACと直流電気配線12DCとからなる。交流電気配線12ACは、磁気検知素子11に対して、固定磁性層の磁化の検知軸Sの方向(X軸方向)に交流磁界を印加可能である。直流電気配線12DCは、磁気検知素子11に対して、固定磁性層の磁化の検知軸Sの方向に直流磁界を印加可能である。
 図1Cに示すように、交流電気配線12ACは、並列に接続された配線を有し、並列に形成された配線の並び方向は、フルブリッジ回路2を構成する2つのハーフブリッジ回路の並び方向に沿っている。並列に形成された各配線は、これらの配線に交流電流を供給する共通配線との分岐点から、Y軸方向に沿って互いに反対向き(Y1-Y2方向Y1側、Y1-Y2方向Y2側)に分岐している。当該分岐点は、図1Aに示すように、上方(Z1-Z2方向Z2側)からみて、2つのハーフブリッジ回路の間に位置している。このため、上方からみて、磁気検知素子11aに重複するように配置された交流電気配線12ACと、磁気検知素子11bに重複するように配置された交流電気配線12ACとには、常に反対向きの電流が流れる。それゆえ、交流電気配線12ACに交流電流を流した際に、ブリッジ回路2を構成する磁気検知素子11aと、磁気検知素子11bとに逆位相の交流磁界が印加される。同図における実線および破線の矢印は、交流電気配線12ACに流れる交流電流の方向を示している。実線で示す方向の交流電流によって交流電気配線12ACに生じる交流磁界の方向を、黒塗り矢印で示している。破線で示す方向の交流電流によって交流電気配線12ACに生じる交流磁界の方向を、白抜き矢印で示している。
 図1Dに示すように、直流電気配線12DCは、並列に接続された配線を有し、並列に形成された配線の並び方向は、フルブリッジ回路2を構成する2つのハーフブリッジ回路の並び方向に沿っている。並列に形成された各配線と、各配線を接続する配線とは、これらの配線に直流電流を供給する共通配線との分岐点から、X軸方向とY軸方向とに沿って直交する方向に分岐している。当該分岐点は、図1Aに示すように、上方(Z1-Z2方向Z2側)からみて、各ハーフブリッジ回路を構成する磁気検知素子11aと磁気検知素子11bとの間に位置している。このため、上方からみて、フルブリッジ回路2を構成する全ての磁気検知素子11aおよび磁気検知素子11bに重複するように配置された直流電気配線12DCには、常に同じ向きの電流が流れる。それゆえ、直流電気配線12DCに直流電流を流した際に、ブリッジ回路2を構成する全ての磁気検知素子11aおよび磁気検知素子11bに同方向の直流磁界が印加される。同図における実線および破線の矢印は、直流電気配線12DCに流れる直流電流の方向を示している。実線で示す方向の直流電流によって直流電気配線12DCに生じる直流磁界の方向を、黒塗り矢印で示している。破線で示す方向の直流電流によって直流電気配線12DCに生じる直流磁界の方向を、白抜き矢印で示している。
 磁気センサ1は、交流電気配線12ACにより磁気検知素子11に交流磁界を印加することで、微弱な磁界の検知が可能になる。磁気センサ1が検知対象とする微弱な磁界としては、例えば、医療行為において測定される生体から発せられる磁界や、各種のデバイスから発せられる微弱な磁界などが挙げられる。医療形態における脳波の測定や、各種のデバイスの検査などにおいては、磁気分解能が高い磁気センサが求められており、磁気センサ1はこれらの用途に好適である。
 図2は、磁気検知素子11と交流電気配線12ACとを備えた参考例の磁気センサ50である。磁気検知素子11に交流磁界を印加する磁界の検知では、基板の面内方向に沿った検知軸Sを有する磁界に対する出力信号特性が偶関数である、偶関数型の特性を持つ磁気検知素子11と、それに直交する方向の交流磁界を印加する交流電気配線12ACとが磁気を検知するための基本構成となる。そこで、参考例の磁気センサ50を参照して、磁気センサ1を構成する磁気センサ10の動作の原理について、以下に説明する。
 図2に示すように、磁気センサ50では、基板13上の絶縁層14の磁気検知素子11の下層に交流電気配線12ACが設置されている。基板13は、例えばシリコンから形成されたシリコン基板からなる。交流電気配線12ACに交流電流を流すことにより、磁気検知素子11に対して、固定磁性層の磁化の固定方向P(Y軸方向、1B参照)に直交する、検知軸Sの方向(X軸方向)に交流磁界が印加される(図1C参照)。図2および、図6~図9に示す破線の両矢印は、交流磁界を示している。
 図3は、磁気センサ50の測定原理を説明する図である。同図は、単素子の磁気センサ50の磁気検知素子11の抵抗変化を示している。
 図4は、磁気センサ50により測定される磁界強度を周波数で分解したグラフである。同図に示すグラフは、磁気検知素子11の抵抗変化の波形を高速フーリエ変換(FFT、Fast Fourier Transform)することにより得られる。
 磁気検知素子11(具体的には例えば磁気検知素子11a)に外部磁界が与えられていない状態において、交流電気配線12ACにより振幅Ha、周波数ωaの交流磁界(Ha×sin(ωa×t))を磁気検知素子11aに加えた場合、磁気検知素子11aの抵抗変化領域が2次関数であると仮定すると、抵抗変化の波形は、以下の式により表される。dR/dH×(Ha×sin(ωa×t))2=dR/dH×Ha2×(1-cos(2ωa×t))
 このため、磁気検知素子11aの抵抗変化の波形は、以下の式で示されるように、交流電気配線12ACによって印加された交流磁界の周波数の2倍(2ωa)の波として出力される。
Figure JPOXMLDOC01-appb-M000001
 交流磁界に交流の外部磁界(Hb×sin(ωb×t))が加わると、磁気検知素子11aの抵抗変化の波形は、以下の式で示される。この式に示すように、磁気検知素子11aの抵抗変化を示す信号は、印加された交流磁界の周波数ωaの2倍(2ωa)の成分と、(ωa+ωb)および(ωa-ωb)の成分とをもった波として出力される。
Figure JPOXMLDOC01-appb-M000002
 磁気検知素子11aの抵抗変化を示す信号の出力にフィルターをかけることにより、周波数(ωa+ωb)、(ωa-ωb)の信号として外部磁界Hb×sin(ωb×t)を取り出すことができる。すなわち、周波数で分解された信号として、交流磁界の周波数ωaに外部磁界の周波数ωbを加えた信号が得られる。交流信号として外部磁界を検出することにより、1/fノイズを大幅に減らすことができる。このように、ランダムに発生する1/fノイズが少ない高周波領域を測定対象とすることにより、磁気センサ50の磁気分解能を高くすることができる。
 ここで、図1Cに示すように、交流電気配線12ACに交流電流を流すと、図1Aおよび図1Bに示す磁気検知素子11bには、磁気検知素子11aとは逆位相の交流磁界が印加される。すなわち、磁気検知素子11bには(Ha×sin(-ωa×t)=-Ha×sin(ωa×t))で表される交流磁界が加わっている。このため、磁気検知素子11bの抵抗R'は下記の式で表される。
Figure JPOXMLDOC01-appb-M000003
 磁気検知素子11bの抵抗R'の変化を示す式と、磁気検知素子11aの抵抗Rの変化を示す式とは、(ωa+ωb)を含む項および(ωa-ωb)を含む項の符号が反転し、2ωaを含む項および2ωbを含む項の符号が反転しない。よって、磁気検知素子11aの抵抗Rと、磁気検知素子11bの抵抗R'との差R'-Rは、以下の式のようになる。
Figure JPOXMLDOC01-appb-M000004
 したがって、差R'-Rを求めることにより、外部磁界Hb×sin(ωb×t)を取り出すために必要な周波数(ωa+ωb)、(ωa-ωb)の項を取り出し、不要な2ωaの2ωbの項を取り除くことができる。このように、ブリッジ回路2が有する磁気検知素子11aと磁気検知素子11bとに逆位相の交流磁界を印加し、ブリッジ回路2の差動出力を磁気の検出に用いることにより、不要な2ωaの2ωbの項を効率的に取り除くことができる。
 以上説明したように、図1Aから図1Dに示す本実施形態に係る磁気センサ1では、交流電気配線12ACを並列に接続し、ブリッジ回路2の磁気検知素子11aと磁気検知素子11aとで、互いに逆の位相の交流磁界を加えることにより、磁気検知素子11aの抵抗Rおよび磁気検知素子11bの抵抗R'から、外部磁界Hb×sin(ωb×t)を取り出すために必要な周波数(ωa+ωb)、(ωa-ωb)の項を取り出して、磁気の検出感度を向上させることができる。こうして磁気の検出感度を向上させることにより、例えば、増幅率の高いアンプを使用することが可能になる。
 図5は、検出磁界の振幅より大きい外乱磁界が加わったときに磁気センサ50により測定される磁界強度を周波数で分解したグラフである。
 磁気センサ50の測定原理は、上述したとおりであるが、実際に磁界を測定する場合、磁気センサに外乱磁界Hiが加わる。このため、磁気検知素子11の抵抗変化の波形の変化を示す式は以下のようになる。
Figure JPOXMLDOC01-appb-M000005
 式に示すとおり、実際の測定では、波形の出力を周波数で分解した信号には、(ωa+ωb)および(ωa-ωb)に加えて、ωaとωbの成分が同時に存在する。このため、外乱磁界Hiが検出磁界の振幅より大きい場合、図5に示すようにωa信号のすそ引きが大きくなる。外乱磁界Hiの信号が重なることにより、周波数ωa、(ωa+ωb)および(ωa-ωb)の信号の検出精度が低下する。したがって、磁気検知素子11と交流電気配線12ACとを備えた参考例の磁気センサ50には、大きい外乱磁界Hiが加わったときに検出磁界のS/N比が悪化するという問題がある。そこで、本実施形態の磁気センサ10は、図1Aおよび図1Dに示す直流電気配線12DCにより直流磁界を磁気検知素子11に印加して、外乱磁界Hiをキャンセルする。
 また、磁気センサ50は、図2に示すように、磁気検知素子11および交流電気配線12ACがいずれも絶縁層14に設けられているから、交流電気配線12ACに生じたジュール熱を基板13に放出することが困難である。このため、交流電気配線12ACの発熱により磁気検知素子11の感度が低下するという問題がある。
 図6は、本実施形態に係る磁気センサ10の断面図であり、図1AのAA線におけるXZ平面の断面の構成を模式的に示している。
 磁気センサ10は、磁気検知素子11と、交流電気配線12ACと、直流電気配線12DCと、軟磁性体15とを備えている。磁気検知素子11、交流電気配線12ACおよび直流電気配線12DCは互いに絶縁層14により絶縁されている。
 磁気検知素子11は、基板13上に絶縁性物質からなる絶縁層14を介して形成されており、基板13のXY平面内方向に沿って検知軸Sを有する(図1B参照)。検知軸Sは、固定磁性層の磁化の固定方向Pに直交する方向であり、X軸方向である。磁気検知素子11は、X軸方向の磁界に対する出力信号特性が偶関数である。
 交流電気配線12ACは、交流電気を通電することにより、磁気検知素子11に対して、磁気検知素子11の検知軸S方向に交流磁界を印加する。磁気検知素子11に交流磁界を印加することで、図3から図5を参照して説明した測定原理により、微弱な磁界を精度よく検知できる。
 交流電気配線12ACは、X軸方向の幅が、直流電気配線12DCよりも狭く、磁気検知素子11よりも広く形成されている。これにより、強い交流磁界を発生させて、磁気検知素子11に均一な交流磁界を印加することができる。
 交流電気配線12ACと基板13との間には、絶縁層16が形成されている。絶縁層16は、例えば、ダマシンプロセスにより交流電気配線12ACを形成する際に、シリコンの基板13の表面を熱酸化することによって形成される。
 磁気センサ10の交流電気配線12ACは、基板13に埋設して形成されている。図6では交流電気配線12ACの全体が基板13に埋設されているが、交流電気配線12ACの一部が基板13に埋設された構成としてもよい。交流電気配線12ACの少なくとも一部を基板13に埋設することにより、交流電気配線12ACの熱を基板13に効率的に放熱することができ、また、磁気検知素子11の近くに交流電気配線12ACを設置することができる。交流電気配線12ACが絶縁層14に形成される場合に比べて断面積が大きな交流電気配線12ACを形成できるため、交流電気配線12ACの抵抗率を低減できる。したがって、交流電気配線12ACを流れる交流電流量を増やすことなく、磁気検知素子11に印加される交流磁界を大きくすることが可能である。
 また、交流電気配線12ACを基板13に埋設し、その上に、磁気検知素子11、直流電気配線12DC、絶縁層14などを形成することによって、交流電気配線12ACが絶縁層14に設けられた磁気センサ50(図2参照)に比べて、磁気センサ10を構成する各部を精度よく形成できる。
 磁気センサ10は、交流電気配線12ACに加えて、磁気検知素子11に直流磁界を印加可能な直流電気配線12DCを備えている。直流電気配線12DCにより、外乱磁界をキャンセルする直流磁界を磁気検知素子11に印加することで、外部磁界の影響によって検出磁界のS/N比が悪化することを低減できる。
 直流電気配線12DCは、X軸方向の幅が、磁気検知素子11および交流電気配線12ACよりも広く形成されている。これにより、直流電気配線12DCの断面積を大きくして、抵抗を低くすることができる。直流電気配線12DCの幅を広くすることにより、直流電気配線12DCの断面積を大きくし、かつ、断面積が同じでより幅の狭い直流電気配線12DCよりも厚みを小さくできる。このため、交流電気配線12ACと磁気検知素子11との距離を小さくして、交流電気配線12ACから磁気検知素子11への交流磁界を効率よく印加することができる。磁気検知素子11に対して、均一な直流磁界を印加する観点から、直流電気配線12DCのX軸方向の幅は磁気検知素子11の2倍程度(例えば1.5倍以上2.5倍以下)が好ましい。
 図1Aに示す、複数の磁気検知素子11を含んで形成されたブリッジ回路2を備える磁気センサ1では、直流電気配線12DCが、外乱磁界をキャンセルするために、複数の磁気検知素子11に対して一方向の直流磁界を印加する。直流電気配線12DCが印加する直流磁界の方向は、磁気検知素子11aと11bとで同じである。
 磁気検知素子11に直流磁界を印加するための直流電気配線12DCに流す電流の制御は、計測された外乱磁界を打ち消す直流磁界を発生させる直流電流を流し、直流電流を流した状態における磁気センサに測定される磁界強度の測定値を直流電流にフィードバックすることにより行う。フィードバック制御には、公知の方法を用いることができる。
 磁気センサ10の直流電気配線12DCは、基板13の法線方向(Z軸方向)および磁気検知素子11の検知軸Sの方向(X軸方向)に直交する方向(Y軸方向)からみたときに、磁気検知素子11と交流電気配線12ACとの間に配置されている。
 直流電気配線12DCを磁気検知素子11と交流電気配線12ACとの間に配置することにより、直流電気配線12DCの配置を考慮することなく交流電気配線12ACの断面積を大きくすることができ、磁気センサ10は効率的放熱の効果および抵抗率低減の効果を享受しやすい。
 また、この配置の場合には、直流電気配線12DCと磁気検知素子11との距離が相対的に小さくなるため、直流電気配線12DCに流す電流量を増やすことなく磁気検知素子11に印加される磁界を大きくすることができる。この直流電気配線12DCの距離短縮は、磁気センサ10としての応答性を高めることに寄与する場合がある。なお、製造容易性の観点から、直流電気配線12DCは基板13に埋設された部分を有していないことが好ましい場合がある。
 磁気センサ10の交流電気配線12ACの断面積は、基板13の法線方向(Z軸方向)および磁気検知素子11の検知軸Sの方向(X軸方向)に直交する方向(Y軸方向)からみたときに、直流電気配線12DCの断面積よりも大きい。
 交流電気配線12ACへの電流印加は継続的に行われるため、交流電気配線12ACの消費電力を優先的に低減させることが、全体の消費電力を低減させる観点から好ましい場合がある。そこで、交流電気配線12ACの断面積を直流電気配線12DCの断面積よりも大きく形成すれば、交流電気配線12ACの抵抗率を直流電気配線12DCの抵抗率よりも低くすることができ、交流電気配線12ACの消費電力を効率的に低減できる。
 磁気センサ10は絶縁層14上に、磁気検知素子11よりも基板13から遠位に設けられた軟磁性体15を有している。MFC(Magnetic Flux Concentrator)などで構成される軟磁性体15により、測定対象の磁界を増幅させて、磁気センサ10の測定精度を向上させることができる。
 磁気センサ10は交流電気配線12ACが基板13に埋め込まれているため、交流電気配線12ACを厚く形成し、直流電気配線12DCを交流電気配線12ACの上の層(レイヤー)に形成することができる。このため、磁気センサ10の発熱を抑えつつ、消費電力を抑えることができる。
 また、交流電気配線12ACを基板13に設けた溝に形成し、交流電気配線12ACの断面積を増大させることが可能である。したがって、発熱による磁気検知素子11の感度低下を防止するとともに、磁気センサ10の消費電力を低下させ、トータルの膜厚も抑えることができる。
 図7は、第1の実施形態の磁気センサ10の変形例に係る磁気センサ20の断面図である。
 磁気センサ20は、直流電気配線12DCが基板13に埋設されて形成されている構成において、磁気センサ10と異なっている。直流電気配線12DCと基板13との間には、絶縁層16が設けられている。
 直流電気配線12DCの少なくとも一部が基板13に埋設されて形成され、直流電気配線12DCが基板13に埋設された部分を有するように形成されることにより、交流電気配線12ACの場合と同様に、直流電気配線12DCについても、効率的放熱、抵抗率低減および距離短縮の効果を得ることができる。したがって、交流電気配線12ACおよび直流電気配線12DCの両方の消費電力を低減することが可能である。
 交流電気配線12ACは、基板13の法線方向(Z軸方向)および磁気検知素子11の検知軸Sの方向(X軸方向)に直交する方向(Y軸方向)からみたときに、磁気検知素子11と直流電気配線12DCとの間に配置されている。
 直流電気配線12DCが磁気検知素子11から距離が遠ざかる構成になるため、直流電気配線12DCの消費電力が増加するが、交流電気配線12ACの消費電力を小さくすることができる。このため、全体として、磁気センサ20の消費電力を抑えることができる。
<第2の実施形態>
 図8は、本実施形態に係る磁気センサ30の断面図である。
 同図に示すように、磁気センサ30は、直流電気配線12DCが基板13に埋設されて形成されている。基板13の法線方向(Z軸方向)および磁気検知素子11の検知軸Sの方向(X軸方向)に直交する方向(Y軸方向)からみたときに、直流電気配線12DCは交流電気配線12ACに並列して形成されている。なお、図8では、直流電気配線12DCの全部が基板13に埋設されているが、その一部が埋設されていてもよい。
 磁気センサ30では、交流電気配線12ACに対して、X軸方向の両脇に1本ずつ、直流電気配線12DCが配列されている。直流電気配線12DCは、交流電気配線12ACの一方側にのみ設けられてもよいが、直流電気配線12DCから、磁気検知素子11に加わる直流磁界を均一にする観点から、両脇に1本ずつ設けられることが好ましい。同様の観点から、2つの直流電気配線12DCは、Y軸方向から見たときに、磁気検知素子11の中心を通るZ軸に平行な中心線L1に対して線対称に配置されていることがより好ましい。
 基板13の面内方向から見たときに、直流電気配線12DCと交流電気配線12ACとが並列になるように配置することにより、2種の電気配線の少なくとも一部を同一の配線形成プロセスで製造することが可能になるため、製造効率が向上する。
 交流電気配線12ACは、基板13の法線方向(Z軸方向)からみたときに、磁気検知素子11と重なる部分を有するように配置されている。
 並列配置において、交流電気配線12ACを直流電気配線12DCよりも磁気検知素子11の近位に配置することにより、消費電力が相対的に大きくなる可能性がある交流電気配線12ACからの磁界を最も効率的に磁気検知素子11に印加することができる。
 図9は、本実施形態の磁気センサ30の変形例に係る磁気センサ40の断面図である。磁気センサ40は、直流電気配線12DCと交流電気配線12ACとの位置が逆になっている構成において、磁気センサ30と異なっている。
 磁気センサ40は、Y軸方向から見たときに、2つの交流電気配線12ACが、直流電気配線12DCに対して、X軸方向の両脇に1本ずつ配列されている。2つの交流電気配線12ACは、Y軸方向から見たときに、磁気検知素子11の中心を通るZ軸方向に平行な中心線L1に対して線対称に配置されている。2つの交流電気配線12ACには、磁気検知素子11に同位相の交流磁界を印加する交流電流が流れる。
 図10A~図10Dは本発明の磁気センサの製造方法を説明する模式図であり、図10Eは同製造方法により製造された磁気センサの平面図である。図10A~図10Dでは、向かって左側の平面図に各工程において形成される主な部材を示している。向かって右側の断面図は、各工程において各部材が形成された後における、図10EのAA線の断面を段階的に示している。
 図10Aに示すように、シリコン基板からなる基板13に交流電気配線12ACがダマシンプロセスによって形成される。交流電気配線12ACの形状に対応する溝131を基板13に形成し、溝131が形成された基板13に交流電気配線12ACを形成する。交流電気配線12ACを含む交流電気配線12AC用の層を、溝131が形成された基板13の表面に形成し、交流電気配線12AC以外の部分を表面から削り取って、交流電気配線12ACを形成してもよい。
 交流電気配線12AC用の層を製膜する前に基板13の表面を熱酸化して、絶縁層16を形成することにより、交流電気配線12ACの絶縁耐性が向上する。また、ダマシンプロセスは、基板13に深い溝131を形成し、大きな断面積を有する交流電気配線12ACを形成するのに適している。
 図10A~図10Eで説明する磁気センサ10では、ダマシンプロセスによって形成されるのは、交流電気配線12ACである。しかし、磁気センサ20、30、40では、交流電気配線12AC以外の部材もダマシンプロセスによって形成される。
 磁気センサ20(図7参照)では、交流電気配線12ACと直流電気配線12DCとが、ダマシンプロセスによって形成される。
 磁気センサ30、40(図8、図9参照)では、ダマシンプロセスによって交流電気配線12ACと直流電気配線12DCとが形成される。交流電気配線12ACと直流電気配線12DCとは、並列配置されているため、少なくとも一部を同時に形成することができる。
 続いて、図10Bに示す絶縁層14および直流電気配線12DC、図10Cに示す絶縁層14および磁気検知素子11、図10Dに示す絶縁層14および軟磁性体15を順次形成する。図10B~図10Dに示す工程では、スパッタ工程などにより各部材を形成することができる。これらの各工程により、図10Eに示す、磁気センサ10を備えた磁気センサ1を製造することができる。
 図1A~図1Dに示すブリッジ回路2を備えた磁気センサ1において、磁気検知素子11に加わる磁界Hsおよび磁界Hi'を発生させるために必要な、交流電気配線12ACの交流電流(ドライブ電流)および直流電気配線12DCの直流電流(キャンセル電流)の大きさを計算により求めた。
 図11A~図11Dは、実施例においてシミュレーションを行った磁気センサの構成を示しており、図11Aが軟磁性体15のサイズを示す平面図であり、図11Bが各部の大きさおよび配置を示す断面図であり、図11Cが交流電気配線12ACの形状とサイズを示す平面図であり、図11Dが直流電気配線12DCの形状とサイズを示す平面図である。
 磁気検知素子11、交流電気配線12AC、直流電気配線12DCおよび軟磁性体15について、図11A~図11Dに示したサイズおよび配置として、シミュレーション計算を行った。
 実施例1~6における、交流電気配線12ACの幅WACおよび厚み(膜厚)TAC、ならびに直流電気配線12DCの幅WDCおよび厚み(膜厚)TDCは、表1および表2に示す大きさとした。表1に記載した相違する構成以外は、各実施例で共通とした。
 シミュレーション計算においては、交流電気配線12ACおよび直流電気配線12DCの抵抗率を0.0345μΩ/mとした。
 例えば、交流電気配線12ACが、幅:30μm、厚さ:0.23μmの場合、抵抗値は以下のようになる。
((1300+1600+1200)×2
 +(2170+4140)/2)/30/0.23×0.0345≒57Ω
 また、直流電気配線12DCが、幅:50μm、厚さ:0.23μmの場合、抵抗値は以下のようになる。
(215+850+1600+2785+2450+(2570+4140)/2)/50/0.23×0.0345≒34Ω
 実施例1では、直流電気配線12DCを交流電気配線12ACより磁気検知素子11の近位に配置し、実施例2~4では、交流電気配線12ACを直流電気配線12DCよりも磁気検知素子11の近位に配置した。
 実施例5では、交流電気配線12ACのX軸方向の両側に直流電気配線12DCを一つずつ配置した。交流電気配線12ACおよび直流電気配線12DCと、磁気検知素子11とのZ軸方向の距離を0.20μmとした。交流電気配線12ACと、その両側の直流電気配線12DCとのX軸方向の距離を各0.30μmとした。
 実施例6では、直流電気配線12DCのX軸方向の両側に交流電気配線12ACを一つずつ配置した。交流電気配線12ACおよび直流電気配線12DCと、磁気検知素子11とのZ軸方向の距離を0.2μmとした。直流電気配線12DCと、その両側の交流電気配線12ACとのX軸方向の距離を各0.30μmとした。
 実施例1~6の電流センサについてシミュレーション計算によって求めた、表1に交流電気配線12ACの交流電流および消費電力を示し、表2に直流電気配線12DCの直流電流および消費電力を示す。
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
 表1および表2に示す結果から、交流電気配線12ACおよび直流電気配線12DCのいずれも、断面積を大きくすることで消費電力を抑制できるといえる。このため、交流電気配線12ACの少なくとも一部を基板13に埋設して、断面積を大きくすることは、磁気センサ1の低消費電力化に有効といえる。
 本発明は、微弱な磁界を高精度で検知することができる、医療分野や各種デバイスの検査に用いられる、磁気分解能の高い磁気センサとして有用である。
1    :磁気センサ
2    :ブリッジ回路
10   :磁気センサ
11   :磁気検知素子
11a  :磁気検知素子
11b  :磁気検知素子
12   :電気配線
12AC :交流電気配線
12DC :直流電気配線
13   :基板(シリコン基板)
14   :絶縁層
15   :軟磁性体
16   :絶縁層
20   :磁気センサ
30   :磁気センサ
40   :磁気センサ
50   :磁気センサ
131  :溝
Ha   :振幅
Hi   :外乱磁界
Hi’  :磁界
Hs   :磁界
L1   :中心線
P    :固定方向
S    :検知軸
TAC  :膜厚
TDC  :膜厚
Vdd  :給電端子
ωa   :周波数
ωb   :周波数
R    :抵抗
R’   :抵抗
WAC  :幅
WDC  :幅

Claims (10)

  1.  基板と、
     前記基板上に絶縁層を介して形成され、前記基板の面内方向に沿った検知軸を有する磁界に対する出力信号特性が偶関数である磁気検知素子と、
     前記磁気検知素子に交流磁界を印加可能な交流電気配線と、
     前記磁気検知素子に直流磁界を印加可能な直流電気配線と、を備え、
     前記磁気検知素子、前記交流電気配線および前記直流電気配線は互いに絶縁され、
     前記交流電気配線の少なくとも一部は前記基板に埋設して形成されることを特徴とする磁気センサ。
  2.  前記直流電気配線の少なくとも一部が前記基板に埋設されて形成される、
    請求項1に記載の磁気センサ。
  3.  前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記直流電気配線は前記磁気検知素子と前記交流電気配線との間に配置される、
    請求項1に記載の磁気センサ。
  4.  前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記交流電気配線は前記磁気検知素子と前記直流電気配線との間に配置される、
    請求項2に記載の磁気センサ。
  5.  前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記直流電気配線は前記交流電気配線に並列して形成される、
    請求項2に記載の磁気センサ。
  6.  前記基板の法線方向からみたときに、前記交流電気配線は前記磁気検知素子と重なる部分を有するように配置される、
    請求項5に記載の磁気センサ。
  7.  前記基板の法線方向および前記磁気検知素子の検知軸の方向に直交する方向からみたときに、前記交流電気配線の断面積は前記直流電気配線の断面積よりも大きい、
    請求項1に記載の磁気センサ。
  8.  前記磁気検知素子を複数有し、当該複数の前記磁気検知素子を含んで形成されたブリッジ回路を備える、
    請求項1に記載の磁気センサ。
  9.  前記絶縁層上に、前記磁気検知素子よりも前記基板から遠位に設けられた軟磁性体を有する、
    請求項1に記載の磁気センサ。
  10.  前記基板がシリコン基板であり、前記交流電気配線がダマシンプロセスによって形成されたものである、
    請求項1に記載の磁気センサ。
PCT/JP2023/004035 2022-03-09 2023-02-07 磁気センサ WO2023171207A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036551 2022-03-09
JP2022036551 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171207A1 true WO2023171207A1 (ja) 2023-09-14

Family

ID=87936628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004035 WO2023171207A1 (ja) 2022-03-09 2023-02-07 磁気センサ

Country Status (1)

Country Link
WO (1) WO2023171207A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036017A (ja) * 1999-07-23 2001-02-09 Toshiba Corp インダクタ及びその製造方法
JP2001194181A (ja) * 2000-01-07 2001-07-19 Hirose Cherry Precision:Kk 磁気センサに用いるピックアップコイル
JP2006030004A (ja) * 2004-07-16 2006-02-02 Okayama Univ 磁気検知装置及び物質判定装置
JP2006106013A (ja) * 2006-01-12 2006-04-20 Tdk Corp 渦電流プローブ
JP2006267120A (ja) * 2001-10-29 2006-10-05 Yamaha Corp 磁気センサ
WO2006109382A1 (ja) * 2005-03-14 2006-10-19 National University Corporation Okayama University 磁気的インピーダンス計測装置
JP2009103534A (ja) * 2007-10-22 2009-05-14 Okayama Univ 磁気測定装置
JP2013011588A (ja) * 2011-05-30 2013-01-17 Jfe Steel Corp 磁気特性測定方法および磁気特性測定装置
JP2016105046A (ja) * 2014-12-01 2016-06-09 国立大学法人 岡山大学 磁気的非破壊検査装置。
JP2017003336A (ja) * 2015-06-06 2017-01-05 国立大学法人 岡山大学 磁場計測装置及びこの磁場計測装置を用いた非破壊検査装置
JP2019207167A (ja) * 2018-05-29 2019-12-05 株式会社東芝 磁気センサ及び診断装置
JP2021018057A (ja) * 2019-07-17 2021-02-15 Tdk株式会社 磁気センサ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036017A (ja) * 1999-07-23 2001-02-09 Toshiba Corp インダクタ及びその製造方法
JP2001194181A (ja) * 2000-01-07 2001-07-19 Hirose Cherry Precision:Kk 磁気センサに用いるピックアップコイル
JP2006267120A (ja) * 2001-10-29 2006-10-05 Yamaha Corp 磁気センサ
JP2006030004A (ja) * 2004-07-16 2006-02-02 Okayama Univ 磁気検知装置及び物質判定装置
WO2006109382A1 (ja) * 2005-03-14 2006-10-19 National University Corporation Okayama University 磁気的インピーダンス計測装置
JP2006106013A (ja) * 2006-01-12 2006-04-20 Tdk Corp 渦電流プローブ
JP2009103534A (ja) * 2007-10-22 2009-05-14 Okayama Univ 磁気測定装置
JP2013011588A (ja) * 2011-05-30 2013-01-17 Jfe Steel Corp 磁気特性測定方法および磁気特性測定装置
JP2016105046A (ja) * 2014-12-01 2016-06-09 国立大学法人 岡山大学 磁気的非破壊検査装置。
JP2017003336A (ja) * 2015-06-06 2017-01-05 国立大学法人 岡山大学 磁場計測装置及びこの磁場計測装置を用いた非破壊検査装置
JP2019207167A (ja) * 2018-05-29 2019-12-05 株式会社東芝 磁気センサ及び診断装置
JP2021018057A (ja) * 2019-07-17 2021-02-15 Tdk株式会社 磁気センサ

Similar Documents

Publication Publication Date Title
US20230084942A1 (en) Offset current sensor structure
JP5531215B2 (ja) 電流センサ
JP5616431B2 (ja) 電流から発生する磁界を検知して電流量を推定する方法
JP2018146314A (ja) 磁気センサ、磁気センサ装置
US20130057273A1 (en) Current sensor
US10006945B2 (en) Electric current sensor
JPWO2011043193A1 (ja) 磁気平衡式電流センサ
JPWO2018100778A1 (ja) 電流センサ及び電流センサユニット
JP5234459B2 (ja) 電流センサ
JP2013170878A (ja) 電流センサ
JP2016001118A (ja) 電流検出装置、磁界検出装置及びこれらの方法
JP2017003345A (ja) 磁場検出装置
JP2009162499A (ja) 磁気センサ
JP2009300150A (ja) 磁気センサ及び磁気センサモジュール
JP6228663B2 (ja) 電流検知装置
JP5505817B2 (ja) 磁気平衡式電流センサ
JP2012026966A (ja) 電流センサ
WO2023171207A1 (ja) 磁気センサ
JP6819164B2 (ja) 磁界検出装置
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
JP2017181403A (ja) 磁気センサ
US11946975B2 (en) Magnetic sensor and inspection device
JP7096349B2 (ja) 磁気センサおよび電流センサ
US20220221536A1 (en) Magnetic sensor and inspection device
JP5458319B2 (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024505957

Country of ref document: JP