WO2023171168A1 - 磁性異物除去装置、ブラシレスモータ及び推進機 - Google Patents

磁性異物除去装置、ブラシレスモータ及び推進機 Download PDF

Info

Publication number
WO2023171168A1
WO2023171168A1 PCT/JP2023/002327 JP2023002327W WO2023171168A1 WO 2023171168 A1 WO2023171168 A1 WO 2023171168A1 JP 2023002327 W JP2023002327 W JP 2023002327W WO 2023171168 A1 WO2023171168 A1 WO 2023171168A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
foreign matter
magnetic foreign
brushless motor
magnetic body
Prior art date
Application number
PCT/JP2023/002327
Other languages
English (en)
French (fr)
Inventor
義康 井上
洋平 今野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023171168A1 publication Critical patent/WO2023171168A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/06Attaching of nacelles, fairings or cowlings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters

Definitions

  • the present disclosure relates to a magnetic foreign matter removal device, a brushless motor, and a propulsion device.
  • aircraft electric aircraft
  • small aircraft small mobility for small groups
  • UAV unmanned aerial vehicles
  • drones drones
  • flying robots have been used for inspection, surveying, agriculture, transportation, disaster prevention, passenger use, etc. It is expected to have a wide variety of uses.
  • airplane motors used in these systems are often driven by limited electric power, mainly from batteries.
  • airplane motors In order to enhance the value of airplane equipment, such as long flight times, increased payload, and improved maneuverability (stable control in strong winds), airplane motors are equipped with lightweight, high output, high efficiency, and high cooling due to self-wind pressure. Performance is emphasized. For this reason, most airplane motors are currently air-cooled open outer rotor brushless motors, and many of these products do not have dust-proof properties in mind.
  • the air-cooled open type brushless motor has a structure that actively takes in outside air into the motor, there is a problem in that dust and the like can enter the motor during operation. Further, dust may contain magnetic substances such as iron sand, and if this magnetic substance adheres to the magnetic force generating body inside the motor, the function of the motor may be reduced.
  • Japanese Patent No. 6856446, Japanese Patent Application Publication No. 2020-145766, International Publication No. 2018/216599 pamphlet, Japanese Patent No. 6692870, Japanese Patent Publication No. 2020-048292, International Publication No. 2020/059654 pamphlet, Patent No. 2019-033560 and International Publication No. 2019/026900 pamphlet disclose technologies related to outer rotor type electric motors.
  • cooling air introduction holes are formed in the cover that constitutes the outer shell, and cooling air is introduced into the inside of the electric motor from the cooling air introduction holes.
  • the cooling air is simply introduced into the inside of the electric motor, and does not have a function of removing dust from the air, which is the fluid flowing into the inside of the electric motor.
  • magnetic foreign substances that move together with the fluid can be captured in the flow path through which the fluid flows.
  • the present disclosure has been made in view of the above circumstances, and provides, as an example, a magnetic foreign matter removal device, a brushless motor, and a propulsion device that can capture magnetic foreign matter that moves with the fluid in a flow path through which the fluid flows.
  • the purpose is to
  • a first aspect of the present disclosure is a magnetic foreign matter removal device that includes a magnetic force generating body and a magnetic body that is magnetized by the magnetic force generating body and is disposed in a channel through which a fluid flows so as to be able to come into contact with the fluid. .
  • the magnetic body magnetized by the magnetic force generator comes into contact with the fluid flowing in the flow path, and the magnetic foreign matter that moves with the fluid is attracted to the magnetic body. Therefore, magnetic foreign substances that move together with the fluid can be captured in the channel through which the fluid flows.
  • a second aspect of the present disclosure is the magnetic foreign matter removal device according to the first aspect, wherein the magnetic body includes a first magnetic body and a second magnetic body, and the first magnetic body is connected to the magnetic force generating body.
  • the second magnetic body is magnetized at the N pole of the magnet and is permeable to the fluid;
  • the second magnetic body is magnetized at the S pole of the magnet and is permeable to the fluid;
  • the body and the second magnetic body are magnetic foreign matter removing devices that are arranged to face each other and to be spaced apart from each other in the flow direction of the fluid.
  • the first magnetic body is magnetized by the north pole of the magnet
  • the second magnetic body is magnetized by the south pole of the magnet.
  • the first magnetic body and the second magnetic body are arranged opposite to each other with an interval in the flow direction of the fluid. Therefore, a magnetic field is generated between the first magnetic body and the second magnetic body.
  • a third aspect of the present disclosure is the magnetic foreign matter removal device according to the second aspect, in which the first magnetic body includes a plurality of magnetic particles extending in a first direction and arranged at intervals in a direction perpendicular to the first direction.
  • a first mesh structure comprising a first metal fiber and a plurality of second metal fibers extending in a second direction intersecting the first direction and spaced apart in a direction perpendicular to the second direction.
  • the second magnetic body includes a plurality of third metals extending in a third direction intersecting the first direction and the second direction and arranged at intervals in a direction perpendicular to the third direction.
  • a second mesh structure comprising fibers and a plurality of fourth metal fibers extending in a fourth direction intersecting the third direction and spaced apart in a direction perpendicular to the fourth direction. This is a magnetic foreign matter removal device.
  • the first magnetic body extends in the first direction and includes a plurality of first metal fibers arranged at intervals in a direction orthogonal to the first direction, and
  • the first mesh structure includes a plurality of second metal fibers extending in an intersecting second direction and spaced apart in a direction perpendicular to the second direction.
  • the second magnetic body includes a plurality of third metal fibers extending in a third direction intersecting the first direction and the second direction and arranged at intervals in a direction orthogonal to the third direction;
  • the second mesh structure includes a plurality of fourth metal fibers extending in a fourth direction intersecting the three directions and spaced apart in a direction perpendicular to the fourth direction.
  • a fourth aspect of the present disclosure is a magnetic foreign matter removal device according to the third aspect, in which a pair of first metal fibers and a pair of second metal fibers constitute a part of the first mesh structure.
  • a first frame-shaped part that is configured, and a second frame-shaped part that configures a part of the second mesh structure and is configured of a pair of the third metal fibers and a pair of the fourth metal fibers; are magnetic foreign matter removal devices that intersect when viewed from the flow direction.
  • a part of the first mesh structure is constituted by the first frame-shaped part, and the first frame-shaped part is composed of a pair of first metal fibers and a pair of second metal fibers. It is configured in a rectangular frame shape.
  • a part of the second mesh structure is constituted by a second frame-shaped part, and the second frame-shaped part is constituted in a rectangular frame shape by a pair of third metal fibers and a pair of fourth metal fibers. has been done.
  • the first frame-shaped portion and the second frame-shaped portion intersect with each other when viewed from the flow direction of the fluid.
  • a fifth aspect of the present disclosure is a magnetic foreign matter removal device according to any one of the second to fourth aspects, in which the magnet is disposed between the first magnetic body and the second magnetic body.
  • This is a magnetic foreign matter removal device that includes a holding spacer made of a non-magnetic material.
  • a spacer made of a non-magnetic material is interposed between the first magnetic material and the second magnetic material, and the magnet is held by the spacer. Therefore, the first magnetic body, the second magnetic body, and the magnet can be supported by the spacer while suppressing the spacer from inhibiting the magnetization of the first magnetic body and the second magnetic body.
  • a sixth aspect of the present disclosure includes a base member that supports a stator, a shaft supported by the base member, and a rotor that is supported by the shaft and includes a rotor housing that covers the stator.
  • a magnetic foreign matter removal device according to any one of the second to fifth aspects, on an air flow path including a first ventilation hole provided in the housing and a second ventilation hole provided in the base member. This is a brushless motor equipped with a
  • the stator is supported by the base member, and the shaft is supported by the base member.
  • a rotor including a rotor housing is supported on the shaft, and the stator is covered by the rotor housing.
  • the rotor housing is provided with a first ventilation hole
  • the base member is provided with a second ventilation hole
  • the air flow path including the first ventilation hole and the second ventilation hole is provided with the first ventilation hole.
  • a seventh aspect of the present disclosure is the brushless motor according to the sixth aspect, in which the rotor housing includes a disk portion whose thickness direction is the direction in which the shaft extends, and the disk portion includes In the brushless motor, the first ventilation hole is formed, and the magnetic foreign matter removing device is disposed along the disk portion so as to cover the first ventilation hole.
  • the rotor housing includes a disk portion whose thickness direction is the direction in which the shaft extends, and the first ventilation hole is formed in the disk portion. .
  • a magnetic foreign matter removing device is arranged along the disk portion of the rotor housing so as to cover the first ventilation hole. Therefore, when the brushless motor is driven, it is possible to prevent magnetic foreign matter from entering the inside of the brushless motor via the first ventilation hole.
  • An eighth aspect of the present disclosure is the brushless motor according to the seventh aspect, in which a plurality of the first ventilation holes are formed in a circumferential direction of the disc part, and a plurality of the magnets are arranged in a circumferential direction of the disc part.
  • the brushless motor is arranged so as to overlap a portion of the disk portion between the adjacent first ventilation holes when viewed from the extending direction.
  • a plurality of first ventilation holes are formed in the circumferential direction of the disc portion. Further, the plurality of magnets are arranged in the circumferential direction of the disc part, and each magnet is arranged so that it overlaps a portion of the disc part between adjacent first ventilation holes when viewed from the extending direction of the shaft. It is located. Therefore, it is possible to prevent the magnet from obstructing the flow of air into the brushless motor through the first ventilation hole and the discharge of air from the brushless motor.
  • a ninth aspect of the present disclosure is the brushless motor according to any one of the sixth to eighth aspects, wherein the base member includes an outer circumferential wall portion forming an outer circumferential portion, and the outer circumferential wall portion is a brushless motor in which the second ventilation hole is formed and the magnetic foreign matter removing device is disposed along the outer peripheral wall so as to cover the second ventilation hole.
  • the base member is configured to include an outer circumferential wall portion constituting the outer circumferential portion thereof, and the second ventilation hole is formed in the outer circumferential wall portion.
  • a magnetic foreign matter removing device is arranged along the outer peripheral wall of the base member so as to cover the second ventilation hole. Therefore, when the brushless motor is driven, it is possible to prevent magnetic foreign matter from entering the inside of the brushless motor via the second ventilation hole.
  • a tenth aspect of the present disclosure is the brushless motor according to the ninth aspect, wherein a plurality of the second ventilation holes are formed in a circumferential direction of the outer peripheral wall, and a plurality of the magnets are arranged in a circumferential direction of the outer peripheral wall.
  • the brushless motor is arranged such that a portion of the outer circumferential wall between the adjacent second ventilation holes overlaps with the outer circumferential wall when viewed from the thickness direction of the outer circumferential wall.
  • a plurality of second ventilation holes are formed in the circumferential direction of the outer peripheral wall. Further, the plurality of magnets are arranged in the circumferential direction of the outer peripheral wall, and each magnet overlaps a portion of the outer peripheral wall between adjacent second ventilation holes when viewed from the thickness direction of the outer peripheral wall. It is arranged like this. Therefore, it is possible to prevent the magnet from obstructing the inflow of air into the brushless motor through the second ventilation hole and the discharge of air from the brushless motor.
  • An eleventh aspect of the present disclosure is a brushless motor that includes a base member that supports a stator, a shaft supported by the base member, and a rotor that is supported by the shaft and includes a rotor housing that covers the stator. and a propeller supported by the shaft, and a nacelle accommodating the brushless motor, and the nacelle is configured to cover a ventilation hole provided in the nacelle according to any one of the second to fifth aspects.
  • This is a propulsion machine equipped with a magnetic foreign matter removal device.
  • a brushless motor is provided, and this brushless motor is configured to include a base member, a shaft, and a rotor.
  • the base member supports the stator and the shaft.
  • a rotor including a rotor housing is supported on the shaft, and the stator is covered by the rotor housing.
  • the brushless motor is covered with a nacelle, and this nacelle is provided with ventilation holes.
  • this nacelle is provided with ventilation holes.
  • the magnetic foreign matter removal device is disposed in the ventilation hole provided in the nacelle so as to cover the ventilation hole. Therefore, when the brushless motor is driven, magnetic foreign matter that moves with the air is prevented by at least one of the first magnetic body and the second magnetic body, which are arranged facing each other with an interval in the flow direction of the air. be captured.
  • FIG. 1 is a perspective view of an airplane device according to a first embodiment of the present disclosure.
  • FIG. 1 is a plan view of a brushless motor according to a first embodiment of the present disclosure.
  • FIG. 1 is a side view of a brushless motor according to a first embodiment of the present disclosure.
  • FIG. 1 is an exploded perspective view of a brushless motor according to a first embodiment of the present disclosure.
  • FIG. 1 is a plan view showing the configuration of a first magnetic foreign matter removal device according to a first embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view showing the configuration of a first magnetic foreign matter removal device according to a first embodiment of the present disclosure.
  • FIG. 1 is an exploded perspective view showing the configuration of a first magnetic foreign matter removal device according to a first embodiment of the present disclosure.
  • FIG. 1 is an enlarged view of main parts showing the configuration of a first magnetic foreign matter removing device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view showing the configuration of a second magnetic foreign matter removal device according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing the configuration of a second magnetic foreign matter removal device according to the first embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view showing the configuration of a second magnetic foreign matter removing device according to the first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing the configuration of a second magnetic foreign matter removing device according to a first modification of the first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing the configuration of a propulsion device according to a second modification example of the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing the configuration of a magnetic foreign matter removal device according to a second embodiment of the present disclosure.
  • the airplane device 10 (electric multicopter) of this embodiment shown in FIG. 1 is capable of flying by remote control or automatic control, and includes a main body 12 and a plurality of propulsion devices 14.
  • Arrow FR indicates the front side of the aircraft 10 in the longitudinal direction
  • arrow LH indicates the left side of the aircraft 10 in the left-right direction
  • arrow UP indicates the upper side of the aircraft 10 in the vertical direction.
  • the main body 12 has a cabin 16 and a pair of legs 18.
  • the cabin 16 has a box-like configuration, and is equipped with various control devices and various sensors.
  • a pair of leg portions 18 are provided on the lower side of the cabin 16.
  • the number of the plurality of propulsion devices 14 is, for example, four.
  • the plurality of propulsion devices 14 are arranged symmetrically in the front, rear, right and left directions of the main body portion 12 . That is, the first propulsion device 14 is arranged on the left front side of the main body portion 12, the second propulsion device 14 is arranged on the right front side of the main body portion 12, and the third propulsion device 14 is The fourth propulsion device 14 is arranged on the left rear side of the main body part 12, and the fourth propulsion device 14 is arranged on the right rear side of the main body part 12.
  • Each propulsion device 14 has a motor 20 and a propeller 22, and is connected to the main body 12 via a rod 24 extending from the main body 12 and a support member 26 provided at the tip of the rod 24, respectively. It is fixed against.
  • the motor 20 of each propulsion device 14 is supported by a support member 26 with the vertical direction of the main body 12 as the axial direction.
  • the motor 20 includes a motor body 28 having a stator 32 and a rotor 34, and a shaft 30 that rotates together with the rotor 34, as will be described in detail later.
  • the plurality of motors 20 have the same configuration.
  • Each motor 20 is an example of a "brushless motor.”
  • the motor bodies 28 of the front left motor 20 and the front right motor 20 are disposed below the support member 26, and are fixed to the support member 26 with one axial side (arrow A1 side) facing upward. ing.
  • the motor bodies 28 of the motor 20 on the left rear side and the motor 20 on the right rear side are arranged above the support member 26, and are placed on the support member 26 with the other axial side (arrow A2 side) facing upward.
  • a shaft 30 extends upward from the motor body 28, and a propeller 22 is fixed to the upper end of the shaft 30.
  • a motor 20 arranged with the other axial side (arrow A2 side) facing upward, like the above-mentioned left rear motor 20 and right rear motor 20, will be described.
  • the motor 20 is an outer rotor type brushless motor, and includes a shaft 30, a stator 32, a rotor 34, and a base member 36 (center piece).
  • the arrow A1 side indicates one axial side of the motor 20, and the arrow A2 side indicates the other axial side of the motor 20.
  • the axial direction of the motor 20 corresponds to the vertical direction of the above-described airplane equipment 10 (see FIG. 1).
  • the stator 32, rotor 34, and base member 36 constitute the motor body 28.
  • the stator 32 includes a stator core 32A and a plurality of wire winding portions 32B wound around the stator core 32A.
  • the rotor 34 has a rotor housing 38 and a plurality of magnets (not shown).
  • the rotor housing 38 includes a generally disk-shaped disk portion 40 whose thickness direction is in the axial direction of the motor 20, that is, the direction in which the shaft 30 extends, and a back yoke disposed along the peripheral edge of the disk portion 40. 42, and has a closed cylindrical shape.
  • a plurality of cooling holes 44 are formed in a portion of the disc portion 40 facing the winding winding portion 32B, which penetrates the rotor housing 38 in the axial direction.
  • the plurality of cooling holes 44 are formed side by side in the circumferential direction of the rotor housing 38.
  • the cooling hole 44 is an example of a "first ventilation hole.”
  • a through hole 46 is formed in the center of the disc portion 40 and passes through the rotor housing 38 in the axial direction, and the shaft 30 is inserted into the through hole 46. Further, a protrusion 40A that protrudes toward the arrow A2 side of the rotor housing 38 is formed in the center of the disc portion 40, and the protrusion 40A has a plurality of screw holes extending in the radial direction of the rotor housing 38. 48 is formed.
  • the plurality of screw holes 48 communicate with the through hole 46.
  • Set screws (not shown) are screwed into the plurality of screw holes 48, respectively.
  • the tip of each set screw is fitted into a plurality of not-shown recesses formed in the shaft 30, thereby fixing the shaft 30 to the rotor housing 38.
  • a water drain hole (not shown) that penetrates the rotor housing 38 in the axial direction is formed around the protrusion 40A in the rotor housing 38.
  • the back yoke 42 surrounds the stator 32, and the rotor housing 38 covers the stator 32 from above the aircraft equipment 10 in the vertical direction.
  • a plurality of magnets are fixed to the inner peripheral surface of the back yoke 42. These magnets are arranged side by side in the circumferential direction of the back yoke 42, and a gap is ensured between these magnets and the stator 32.
  • the base member 36 includes a disk portion 36A and an outer peripheral wall portion 36B that is provided along the outer periphery of the disk portion 36A and constitutes the outer periphery of the base member 36.
  • the disk portion 36A has a circular plate shape when viewed from the top and bottom of the airplane equipment 10, and is disposed on the arrow A1 side of the stator 32 facing the stator 32 to support the stator 32. Further, the shaft 30 is supported by the base member 36 via a bearing (not shown). In addition, a drain hole (not shown) is formed in the disc part 36A, which penetrates in the axial direction of the disc part 36A.
  • a plurality of cooling holes 50 are formed in the outer circumferential wall 36B in the circumferential direction of the outer circumferential wall 36B, which penetrate in the radial direction of the disk portion 36A.
  • the cooling hole 50 is an example of a "second ventilation hole.”
  • the rotor 34 is provided with the cooling holes 44, and the base member 36 is provided with the cooling holes 50. Further, the cooling holes 44 and the cooling holes 50 are communicated with a gap between the stator 32 and the magnet provided in the back yoke 42.
  • the motor 20 of this embodiment is an air-cooled open type.
  • the first magnetic foreign matter removal device 52 is disposed with respect to the cooling hole 44 provided in the rotor 34, and the second magnetic foreign matter removal device 52 is disposed with respect to the cooling hole 50 provided in the base member 36.
  • a removal device 54 is arranged.
  • the first magnetic foreign matter removing device 52 is disposed above and below the airplane device 10 in the disk portion 40 of the rotor housing 38, and as shown in FIGS. It has a disc shape with the thickness direction being the direction.
  • the first magnetic foreign matter removal device 52 includes a metal mesh 56, a metal mesh 58, an inner spacer 60, an outer spacer 62, and a pair of magnets 64.
  • the metal mesh 56 is an example of a "first magnetic body” and a “first mesh structure”
  • the metal mesh 58 is an example of a "second magnetic body” and a “second mesh structure.” is an example of a "magnetic force generator”.
  • the metal mesh 56 has a disk shape in which a substantially circular through hole 66 is formed in the center when viewed from the top and bottom of the airplane equipment 10 by weaving metal fibers made of ferromagnetic material such as iron. is formed.
  • the metal mesh 56 includes a plurality of metal fibers 68 that extend in the first direction and are arranged at intervals in a direction perpendicular to the first direction, when viewed from the top and bottom of the airplane equipment 10. It is configured to include a plurality of metal fibers 70 that extend in the intersecting second direction and are arranged at intervals in the direction orthogonal to the second direction.
  • the metal fiber 68 is an example of a "first metal fiber”
  • the metal fiber 70 is an example of a "second metal fiber.”
  • the metal mesh 58 basically has the same configuration as the metal mesh 56, and has a through hole 72 formed in its center.
  • This metal mesh 58 includes a plurality of metal meshes extending in a third direction intersecting the first direction and the second direction when viewed from the top and bottom of the airplane equipment 10, and arranged at intervals in a direction perpendicular to the third direction. It is configured to include fibers 74 and a plurality of metal fibers 76 extending in a fourth direction intersecting the third direction and spaced apart in a direction perpendicular to the third direction.
  • the metal fiber 74 is an example of a "third metal fiber"
  • the metal fiber 76 is an example of a "fourth metal fiber”.
  • the frame portion 58A which is composed of a pair of metal fibers 74 and a pair of metal fibers 76, intersect with each other when viewed from the top and bottom of the airplane device 10. That is, when viewed from the flow direction of the cooling wind (air) flowing through the cooling hole 44, the frame-shaped portion 56A and the frame-shaped portion 58A intersect.
  • the frame portion 56A is an example of a “first frame portion” and the frame portion 58A is an example of a “second frame portion”.
  • the inner spacer 60 is made of a non-magnetic material such as resin or aluminum, and includes a main body 60A and a pair of holding pieces 60B that are provided integrally with the main body 60A.
  • the main body portion 60A has an annular shape when viewed from the vertical direction of the aircraft equipment 10, and has a plate shape with the plate thickness direction being the vertical direction of the aircraft equipment 10.
  • the holding piece portions 60B are provided on one side and the other side in the radial direction of the main body portion 60A, and have a rectangular plate shape when viewed from the top and bottom of the airplane equipment 10.
  • a through hole 78 into which the protrusion 40A of the rotor housing 38 can fit is formed in the center of the main body 60A.
  • a rectangular through hole 80 is formed in the holding piece 60B when viewed from the top and bottom of the airplane equipment 10.
  • a locking portion (not shown) is formed in the inner spacer 60, and when this locking portion is locked to a locked portion provided on the disc portion 40 of the rotor housing 38, the first A magnetic foreign matter removal device 52 is adapted to be removably attached to the rotor housing 38.
  • the outer spacer 62 is made of a non-magnetic material such as resin or aluminum, and has an annular plate shape located on the outer peripheral side of the inner spacer 60 when viewed from the top and bottom of the airplane equipment 10.
  • a metal mesh 56 is provided on the upper surface of the aircraft equipment 10 in the vertical direction of the inner spacer 60 and the outer spacer 62, and a metal mesh 58 is provided on the lower surface of the aircraft equipment 10 in the vertical direction of the inner spacer 60 and the outer spacer 62. , are each joined at a joint (not shown) using an adhesive or the like.
  • the cooling hole 44 of the rotor housing 38 is located between the inner spacer 60 and the outer spacer 62 when viewed from the top and bottom of the airplane equipment 10. positioned.
  • the magnet 64 has a rectangular plate shape when viewed from the top and bottom of the airplane equipment 10, and is held by the inner spacer 60 by being fitted into the through hole 80 of the inner spacer 60.
  • the magnet 64 is arranged such that the north pole 64A is located above the aircraft device 10 in the vertical direction, and the south pole 64B is located below the aircraft device 10 in the vertical direction.
  • the metal mesh 56 is magnetized at the north pole 64A, and the metal mesh 58 is magnetized at the south pole 64B.
  • the second magnetic foreign matter removing device 54 is disposed on the outer circumferential side of the outer circumferential wall portion 36B of the base member 36. It is said to be cylindrical in shape.
  • the second magnetic foreign matter removal device 54 includes a metal mesh 82, a metal mesh 84, a spacer 86, and four magnets 88.
  • the metal mesh 82 is an example of a "first magnetic body” and a "first mesh structure”
  • the metal mesh 84 is an example of a "second magnetic body” and a “second mesh structure.” is an example of a "magnetic force generator”.
  • the metal mesh 82 constitutes the outer circumferential side of the second magnetic foreign matter removing device 54, and for example, is made of woven metal fibers made of ferromagnetic material such as iron, so that the metal mesh 82 is It is formed into a circular cylindrical shape.
  • the metal mesh 84 constitutes the inner circumferential side of the second magnetic foreign matter removing device 54, and basically has the same configuration as the metal mesh 82.
  • the spacer 86 is made of a non-magnetic material such as resin or aluminum, and is formed into a circular cylindrical shape when viewed from the top and bottom of the airplane equipment 10. Furthermore, four through holes 90 are formed in the spacer 86 at intervals of 90 degrees when viewed from the top and bottom of the airplane device 10 . Further, between the through holes 90, through holes 92 are formed which are larger than the through holes 90 in the circumferential direction of the spacer 86.
  • a metal mesh 82 and a metal mesh 84 are bonded to the outer circumferential surface of the spacer 86 and the metal mesh 84 to the inner circumferential surface of the spacer 86, respectively, using an adhesive or the like at a joint (not shown).
  • a locking portion (not shown) is formed in the spacer 86, and when the locking portion is locked to a connector connection portion 94 (see FIG. 2) provided on the base member 36, the second magnetic A foreign object removing device 54 is configured to be removably attached to the motor 20 while being spaced apart from the base member 36.
  • the cooling hole 50 of the base member 36 is located inside the through hole 92 when viewed from the radial direction of the spacer 86 (see FIG. reference).
  • the magnet 88 has a rectangular plate shape when viewed from the radial direction of the spacer 86, and is held by the spacer 86 by being fitted into the through hole 90 of the spacer 86.
  • the magnet 88 is arranged such that the north pole 88A is on the outside of the spacer 86 in the radial direction, and the south pole 88B is on the inside of the spacer 86 in the radial direction.
  • the metal mesh 82 is magnetized at the north pole 88A, and the metal mesh 84 is magnetized at the south pole 88B.
  • a gap filling member made of an elastic non-magnetic material such as sponge is arranged between the member 36 and the member 36, respectively.
  • the metal mesh 56 and the metal mesh 58 magnetized by the magnet 64 and the magnet 88
  • the magnetized metal mesh 82 and the metal mesh 84 come into contact with the air flowing through the cooling air flow path, and magnetic foreign substances such as iron sand that move with the air are removed from the metal mesh 56, the metal mesh 58, the metal mesh 82, and the metal mesh. It is attracted to the mesh 84. Therefore, magnetic foreign matter that moves with the air can be captured in the cooling air flow path through which the air flows.
  • the metal mesh 56 is magnetized by the north pole 64A of the magnet 64, and the metal mesh 58 is magnetized by the south pole 64B of the magnet 64. Further, the metal mesh 56 and the metal mesh 58 are arranged opposite to each other with an interval in the flow direction of the cooling air. Therefore, a magnetic field is generated between the metal mesh 56 and the metal mesh 58.
  • the metal mesh 82 is magnetized by the north pole 88A of the magnet 88, and the metal mesh 84 is magnetized by the south pole 88B of the magnet 88. Moreover, the metal mesh 82 and the metal mesh 84 are arranged opposite to each other with an interval in the flow direction of the cooling air. Therefore, a magnetic field is generated between the metal mesh 82 and the metal mesh 84.
  • the metal mesh 56 extends in the first direction and includes a plurality of metal fibers 68 arranged at intervals in a direction orthogonal to the first direction. and a plurality of metal fibers 70 extending in a second direction intersecting the first direction and arranged at intervals in a direction perpendicular to the second direction.
  • the metal mesh 58 has a plurality of metal fibers 74 extending in a third direction intersecting the first direction and the second direction and arranged at intervals in a direction perpendicular to the third direction, and a plurality of metal fibers 74 extending in a third direction intersecting the first direction and the second direction.
  • the metal fibers 76 extend in a fourth direction and are arranged at intervals in a direction perpendicular to the fourth direction.
  • a part of the metal mesh 56 is constituted by a frame-shaped part 56A, and the frame-shaped part 56A is formed into a rectangular frame shape by a pair of metal fibers 68 and a pair of metal fibers 70. It is composed of Further, a part of the metal mesh 58 is constituted by a frame-shaped portion 58A, and the frame-shaped portion 58A is constituted by a pair of metal fibers 74 and a pair of metal fibers 76 into a rectangular frame shape.
  • the frame portion 56A and the frame portion 58A intersect with each other when viewed from the direction of flow of the cooling air.
  • an inner spacer 60 and an outer spacer 62 made of non-magnetic material are interposed between the metal mesh 56 and the metal mesh 58.
  • a magnet 64 is held by a spacer 60. Therefore, while the inner spacer 60 and the outer spacer 62 suppress the magnetization of the metal mesh 56 and the metal mesh 58 by the magnet 64, the inner spacer 60 and the outer spacer 62 suppress the magnetization of the metal mesh 56 and the metal mesh 58.
  • a magnet 64 can be supported. This also applies to the second magnetic foreign matter removing device 54.
  • a stator 32 is supported by a base member 36, and a shaft 30 is supported by the base member 36 via a bearing.
  • a rotor 34 including a rotor housing 38 is supported on the shaft 30, and the stator 32 is covered by the rotor housing 38.
  • the rotor housing 38 is provided with a cooling hole 44, and the base member 36 is provided with a cooling hole 50, and a first magnetic foreign matter removal device 52 and a cooling air flow path including the cooling hole 44 and the cooling hole 50 are provided.
  • a second magnetic foreign matter removing device 54 is arranged.
  • the first magnetic foreign matter removing device 52 removes the air by at least one of the metal mesh 56 and the metal mesh 58, which are arranged facing each other with an interval in the flow direction of the cooling air. Magnetic foreign matter that moves together with the magnet is captured.
  • the second magnetic foreign matter removal device 54 magnetic foreign matter that moves with the air is removed by at least one of the metal mesh 82 and the metal mesh 84, which are arranged facing each other with an interval in the flow direction of the cooling air. be captured.
  • the rotor housing 38 is configured to include a disk portion 40 whose plate thickness direction is the direction in which the shaft 30 extends, and the disk portion 40 includes, as also shown in FIG. Cooling holes 44 are formed therein.
  • the first magnetic foreign matter removing device 52 is arranged along the disk portion 40 so as to cover the cooling hole 44 . Therefore, when the motor 20 is driven, magnetic foreign matter can be prevented from entering the inside of the motor 20 via the cooling holes 44.
  • the base member 36 is configured to include an outer circumferential wall portion 36B constituting an outer circumferential portion thereof, and the outer circumferential wall portion 36B has cooling holes 50. is formed.
  • a second magnetic foreign matter removing device 54 is disposed along the outer peripheral wall portion 36B to cover the cooling hole 50. Therefore, when the motor 20 is driven, it is possible to prevent magnetic foreign matter from entering the inside of the motor 20 via the cooling hole 50.
  • the first magnetic foreign matter removing device 52 includes a spacer 96 instead of the inner spacer 60 and the outer spacer 62.
  • the spacer 96 includes an inner circumferential portion 96A that forms the center side and is annular when viewed from the top and bottom of the airplane equipment 10, and an inner circumferential portion 96A that forms the outer periphery and has an annular shape when viewed from the top and bottom of the airplane equipment 10.
  • the outer circumferential portion 96B includes a plurality of connecting portions 96C extending radially from the inner circumferential portion 96A and connecting the inner circumferential portion 96A and the outer circumferential portion 96B.
  • the connecting portion 96C overlaps a portion between adjacent cooling holes 44 in the disk portion 40 when viewed from the extending direction of the shaft 30. ing.
  • a magnet 64 is attached to each of the connecting portions 96C similarly to the inner spacer 60.
  • the portion where the through hole 90 into which the magnet 88 is fitted is provided is the base member 36 when viewed from the radial direction of the spacer 86. It overlaps with a portion between adjacent cooling holes 50 in the outer peripheral wall portion 36B.
  • a plurality of cooling holes 44 are formed in the circumferential direction of the disk portion 40.
  • a plurality of magnets 64 are arranged in the circumferential direction of the disc part 40, and each magnet 64 is connected to a portion of the disc part 40 between adjacent cooling holes 44 when viewed from the extending direction of the shaft 30. They are arranged so that they overlap. Therefore, it is possible to prevent the magnet 64 from obstructing the inflow of air into the motor 20 via the cooling hole 44 and the discharge of air from the motor 20 .
  • a plurality of cooling holes 50 are formed in the circumferential direction of the outer peripheral wall portion 36B of the base member 36.
  • a plurality of magnets 88 are arranged in the circumferential direction of the outer circumferential wall 36B, and each magnet 88 is connected to a portion of the outer circumferential wall 36B between adjacent cooling holes 50 perpendicular to the extending direction of the shaft 30. They are arranged so as to overlap when viewed from the direction (thickness direction of the outer peripheral wall portion 36B). Therefore, it is possible to prevent the magnet 88 from obstructing the inflow of air into the motor 20 via the cooling hole 50 and the discharge of air from the motor 20.
  • the motor bodies 28 of the left front motor 20 and the right front motor 20 are housed in a nacelle 98.
  • the nacelle 98 has a tapered cylindrical shape whose diameter decreases toward the bottom in the vertical direction of the aircraft 10, and an opening 100 is formed at the lower end thereof.
  • the nacelle 98 is attached to the support member 26 via an attachment member (not shown).
  • the opening 100 is an example of a "ventilation hole”.
  • a first magnetic foreign matter removal device 52 is attached to the opening 100 so as to cover the opening 100 when viewed from the top and bottom of the airplane equipment 10.
  • the motor body 28 of the motor 20 is covered with a nacelle 98, and the nacelle 98 is provided with an opening 100. Then, when the motor 20 is driven, air flows from the outside of the nacelle 98 to the motor 20 side through the opening 100.
  • the first magnetic foreign matter removing device 52 is arranged in the opening 100 so as to cover the opening 100. Therefore, when the motor 20 is driven, magnetic foreign matter that moves with the air is captured by at least one of the metal mesh 56 and the metal mesh 58, which are arranged facing each other with an interval in the flow direction of the air. Ru.
  • a magnetic foreign matter removal device 112 is arranged in a pipe 110 through which liquid such as water and oil flows.
  • This magnetic foreign matter removing device 112 includes a pair of first removing parts 114 arranged along a pipe wall 110A of a steel pipe 110, and a plurality of second removing parts 116 arranged between the first removing parts 114. It is configured to include a connecting portion (not shown) that connects these.
  • the first removing section 114 includes a spacer 118, a plate 120, and a magnet 122.
  • the spacer 118 is made of a non-magnetic material such as resin or aluminum, and has a plate shape that extends in the direction in which the pipe 110 extends, that is, in the direction in which the liquid flows, while being in contact with the pipe wall 110A.
  • the plate 120 is made of a ferromagnetic material such as iron, and is attached to the surface of the spacer 118 on the opposite side of the tube wall 110A.
  • the magnet 122 is embedded in the spacer 118 with one of the north and south poles disposed on the side of the tube wall 110A and the other of the north and south poles disposed on the center side of the pipe 110.
  • the plate 120 is an example of a "first magnetic body” and a "second magnetic body,” and the magnet 122 is an example of a "magnetic force generator.”
  • the first removal part 114 is attached to the tube wall 110A at the pole of the magnet 122 on the tube wall 110A side. Further, the plate 120 is magnetized with the pole of the magnet 122 on the opposite side to the tube wall 110A.
  • the second removal section 116 includes a spacer 118, a pair of plates 120, and a magnet 122.
  • the plate 120 is attached to both the surface of the spacer 118 on the tube wall 110A side and the surface on the center side of the pipe 110, and the magnet 122 is attached to the spacer 118, as in the first removal section 114. It is embedded in 118.
  • one plate 120 is magnetized by one pole of the magnet 122, and the other plate 120 is magnetized by the other pole of the magnet 122.
  • first removing section 114 and the second removing section 116 are arranged such that the plate 120 magnetized by the north pole of the magnet 122 and the plate 120 magnetized by the south pole of the magnet 122 face each other. .
  • the plate 120 magnetized by the magnet 122 comes into contact with the liquid flowing through the pipe 110, and magnetic foreign matter that moves with the fluid is attracted to the plate 120. Therefore, magnetic foreign substances that move together with the liquid can be captured in the pipe 110 through which the liquid flows.
  • one magnetic foreign matter removing device is disposed for each cooling hole, but a plurality of magnetic foreign matter removing devices may be stacked and disposed for each cooling hole.
  • the magnetic foreign matter removal device was equipped with a single magnet that magnetized a magnetic material such as a metal mesh, but the present invention is not limited to this.
  • a magnetic body such as a metal mesh may be magnetized by the magnetic force of a magnet included in the rotor 34.
  • the magnet it is possible to employ various magnets such as ferrite magnets and electromagnets.
  • a metal mesh is used as the magnetic material that is magnetized by the magnet, but the invention is not limited to this.
  • the first magnetic foreign matter removing device 52 and the second magnetic foreign matter removing device 54 are attached to the motor 20, but the present invention is not limited thereto.
  • the first magnetic foreign matter removing device 52 and the second magnetic foreign matter removing device 54 may be arranged at the inlet of a pipe through which liquid such as oil flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

磁性異物除去装置は、磁力発生体と、前記磁力発生体で磁化され、流体が流れる流路に対して当該流体と接触可能に配置された磁性体と、を有する。

Description

磁性異物除去装置、ブラシレスモータ及び推進機
 本開示は、磁性異物除去装置、ブラシレスモータ及び推進機に関する。
 近年、小型航空機(少人数向け小型モビリティ)や無人航空機(UAV)、ドローン、飛行ロボットなどに代表される電動航空機(以下、飛行機器)は、点検・測量・農業・輸送・防災・乗用など、多岐にわたる用途が見込まれている。
 これらに使われる飛行機器用のモータは、主に電池による限られた電力で駆動される方式が多い。飛行機器の価値である、長時間飛行、積載量増加、運動性向上(強風での制御安定)を高めるために、飛行機器用のモータには、軽量・高出力・高効率・自己風圧による高い冷却性能が重視される。そのため、現在多くの飛行機器用のモータは、空冷開放型のアウタロータ型のブラシレスモータが主流で、防塵性の配慮が無い製品が多い。
 空冷開放型のブラシレスモータは、モータ内部に外気を積極的に取り入れる構造であるため、駆動時においてモータ内部への埃等の侵入という課題がある。また、埃には、砂鉄等の磁性体が含まれていることがあり、この磁性体がモータ内部の磁力発生体に付着すると、モータの機能が低下することが考えられる。
 例えば、特許第6856446号公報、特開2020-145766号公報、国際公開第2018/216599号パンフレット、特許第6692870号公報、特開2020-048292号公報、国際公開第2020/059654号パンフレット、特開2019-033560号公報、及び、国際公開第2019/026900号パンフレットには、アウタロータ型電動機に関する技術が開示されている。これらの技術では、外殻を構成するカバーに冷却風導入孔が形成されており、冷却風導入孔から電動機の内部に冷却風が導入される。しかしながら、これらの技術では、冷却風は、単純に電動機の内部に導入されるだけであり、電動機の内部に流れ込む流体である空気から埃を取り除くような機能は備えていない。
 また、上記のような技術に限らず、作動油を用いる原動機等において、原動機に繋がる配管に流れる流体である作動油から鉄粉等を除去できることが好ましい。
 上記を鑑みると、流体が流れる流路において、流体と共に移動する磁性を有する異物を捕獲できることが好ましい。
 本開示は、上記事情に鑑みてなされたものであって、一例として、流体が流れる流路において、流体と共に移動する磁性を有する異物を捕獲できる磁性異物除去装置、ブラシレスモータ及び推進機を提供することを目的とする。
 本開示の第1態様は、磁力発生体と、前記磁力発生体で磁化され、流体が流れる流路に対して当該流体と接触可能に配置された磁性体と、を有する磁性異物除去装置である。
 この磁性異物除去装置によれば、磁力発生体で磁化された磁性体が、流路を流れる流体と接触し、当該流体と共に移動する磁性を有する異物が、当該磁性体に引き寄せられる。このため、流体が流れる流路において、流体と共に移動する磁性を有する異物を捕獲できる。
 本開示の第2態様は、第1態様に係る磁性異物除去装置において、前記磁性体は、第1磁性体と、第2磁性体とを備えると共に、前記第1磁性体は、前記磁力発生体としての磁石のN極で磁化されると共に、前記流体が透過可能とされ、前記第2磁性体は、前記磁石のS極で磁化されると共に、前記流体が透過可能とされ、前記第1磁性体と前記第2磁性体とは、前記流体の流れる流れ方向において間隔をあけてかつ対向して配置されている磁性異物除去装置である。
 この磁性異物除去装置によれば、第1磁性体が磁石のN極で磁化され、第2磁性体が当該磁石のS極で磁化される。また、第1磁性体と第2磁性体とは、流体の流れる流れ方向において間隔をあけてかつ対向して配置されている。このため、第1磁性体と第2磁性体との間に磁界が発生する。
 そして、第1磁性体及び第2磁性体に流体が透過することで、第1磁性体及び第2磁性体の少なくとも一方によって流体と共に移動する磁性を有する異物が捕獲される。
 本開示の第3態様は、第2態様に係る磁性異物除去装置において、前記第1磁性体は、第1方向に延びると共に当該第1方向と直交する方向に間隔をあけて配置された複数の第1金属繊維と、当該第1方向と交差する第2方向に延びると共に当該第2方向と直交する方向に間隔をあけて配置された複数の第2金属繊維と、を備えた第1メッシュ構造体とされ、前記第2磁性体は、前記第1方向及び前記第2方向と交差する第3方向に延びると共に当該第3方向と直交する方向に間隔をあけて配置された複数の第3金属繊維と、当該第3方向と交差する第4方向に延びると共に当該第4方向と直交する方向に間隔をあけて配置された複数の第4金属繊維と、を備えた第2メッシュ構造体とされている磁性異物除去装置である。
 この磁性異物除去装置によれば、第1磁性体が、第1方向に延びると共に当該第1方向と直交する方向に間隔をあけて配置された複数の第1金属繊維と、当該第1方向と交差する第2方向に延びると共に当該第2方向と直交する方向に間隔をあけて配置された複数の第2金属繊維とを備えた第1メッシュ構造体とされている。
 一方、第2磁性体は、第1方向及び第2方向と交差する第3方向に延びると共に当該第3方向と直交する方向に間隔をあけて配置された複数の第3金属繊維と、当該第3方向と交差する第4方向に延びると共に当該第4方向と直交する方向に間隔をあけて配置された複数の第4金属繊維とを備えた第2メッシュ構造体とされている。
 このため、流体の流れる流れ方向から第1メッシュ構造体及び第2メッシュ構造体を見たときに、これらが重なることを抑制し、これらで磁性を有する異物を捕獲する確度を高めることができる。
 本開示の第4態様は、第3態様に係る磁性異物除去装置において、前記第1メッシュ構造体の一部を構成すると共に、一対の前記第1金属繊維と一対の前記第2金属繊維とで構成された第1枠状部と、前記第2メッシュ構造体の一部を構成すると共に、一対の前記第3金属繊維と一対の前記第4金属繊維とで構成された第2枠状部とが、前記流れ方向から見て交差している磁性異物除去装置である。
 この磁性異物除去装置によれば、第1メッシュ構造体の一部が第1枠状部で構成されており、当該第1枠状部は、一対の第1金属繊維と一対の第2金属繊維とで矩形枠状に構成されている。また、第2メッシュ構造体の一部が第2枠状部で構成されており、当該第2枠状部は、一対の第3金属繊維と一対の第4金属繊維とで矩形枠状に構成されている。そして、第1枠状部と第2枠状部とが、流体の流れる流れ方向から見て交差している。
 このため、隣接する第1金属繊維同士の間隔、隣接する第2金属繊維同士の間隔、隣接する第3金属繊維同士の間隔及び隣接する第4金属繊維同士の間隔の少なくとも一つを拡げても、流体の流れる流れ方向から第1枠状部及び第2枠状部の一方を見たときに、当該一方の内側に他方の一部が位置することとなる。したがって、第1メッシュ構造体及び第2メッシュ構造体が流体の抵抗となることを抑制しつつ、これらで磁性を有する異物を捕獲する確度を高めることができる。
 本開示の第5態様は、第2態様から第4態様の何れか一つの態様に係る磁性異物除去装置において、前記第1磁性体と、前記第2磁性体との間には、前記磁石を保持する非磁性体製のスペーサが介在している磁性異物除去装置である。
 この磁性異物除去装置によれば、第1磁性体と第2磁性体との間に、非磁性体製のスペーサが介在しており、当該スペーサによって磁石が保持されている。このため、スペーサによって磁石による第1磁性体及び第2磁性体の磁化が阻害されることを抑制しつつ、当該スペーサで、第1磁性体、第2磁性体及び磁石を支持することができる。
 本開示の第6態様は、ステータを支持するベース部材と、前記ベース部材に支持されたシャフトと、前記シャフトに支持されると共に前記ステータを覆うロータハウジングを備えたロータと、を備え、前記ロータハウジングに設けられた第1通気孔と、前記ベース部材に設けられた第2通気孔と、を含む空気の流路上に第2態様から第5態様の何れか1つの態様に係る磁性異物除去装置が配置されているブラシレスモータである。
 このブラシレスモータによれば、ステータがベース部材で支持されており、当該ベース部材には、シャフトが支持されている。このシャフトには、ロータハウジングを備えたロータが支持されており、ロータハウジングによってステータが覆われている。
 そして、ロータハウジングに第1通気孔が設けられると共に、ベース部材に第2通気孔が設けられており、第1通気孔及び第2通気孔を含む空気の流路上に第2態様から第5態様の何れか1つの態様に係る磁性異物除去装置が配置されている。
 このため、ブラシレスモータの駆動時において、空気の流れる流れ方向において間隔をあけてかつ対向して配置された第1磁性体及び第2磁性体の少なくとも一方によって、空気と共に移動する磁性を有する異物が捕獲される。
 本開示の第7態様は、第6態様に係るブラシレスモータにおいて、前記ロータハウジングは、前記シャフトの延在方向を板厚方向とされた円板部を含んで構成され、当該円板部には、前記第1通気孔が形成されると共に、前記磁性異物除去装置が前記円板部に沿って前記第1通気孔を覆うように配置されているブラシレスモータである。
 このブラシレスモータによれば、ロータハウジングは、シャフトの延在方向を板厚方向とされた円板部を含んで構成されており、当該円板部には、第1通気孔が形成されている。そして、磁性異物除去装置が、ロータハウジングの円板部に沿って第1通気孔を覆うように配置されている。このため、ブラシレスモータの駆動時において、第1通気孔を経由してブラシレスモータの内側に磁性を有する異物が進入することを抑制することができる。
 本開示の第8態様は、第7態様に係るブラシレスモータにおいて、前記第1通気孔は、前記円板部の周方向に複数形成され、前記磁石は、前記円板部の周方向に複数配置されると共に、前記円板部における隣接する前記第1通気孔の間の部分と前記延在方向から見て重なるように配置されているブラシレスモータである。
 このブラシレスモータによれば、第1通気孔が円板部の周方向に複数形成されている。また、複数の磁石が円板部の周方向に配置されると共に、それぞれの磁石が、円板部における隣接する第1通気孔の間の部分と、シャフトの延在方向から見て重なるように配置されている。このため、第1通気孔を介したブラシレスモータへの空気の流入及びブラシレスモータからの空気の排出が磁石で阻害されることを抑制することができる。
 本開示の第9態様は、第6態様から第8態様の何れか1つの態様に係るブラシレスモータにおいて、前記ベース部材は、外周部を構成する外周壁部を含んで構成され、当該外周壁部には、前記第2通気孔が形成されると共に、前記磁性異物除去装置が前記外周壁部に沿って前記第2通気孔を覆うように配置されているブラシレスモータである。
 このブラシレスモータによれば、ベース部材は、その外周部を構成する外周壁部を含んで構成されており、当該外周壁部には、第2通気孔が形成されている。そして、磁性異物除去装置が、ベース部材の外周壁部に沿って第2通気孔を覆うように配置されている。このため、ブラシレスモータの駆動時において、第2通気孔を経由してブラシレスモータの内側に磁性を有する異物が進入することを抑制することができる。
 本開示の第10態様は、第9態様に係るブラシレスモータにおいて、前記第2通気孔は、前記外周壁部の周方向に複数形成され、前記磁石は、前記外周壁部の周方向に複数配置されると共に、前記外周壁部における隣接する前記第2通気孔の間の部分と前記外周壁部の厚さ方向から見て重なるように配置されているブラシレスモータである。
 このブラシレスモータによれば、第2通気孔が外周壁部の周方向に複数形成されている。また、複数の磁石が外周壁部の周方向に配置されると共に、それぞれの磁石が、外周壁部における隣接する第2通気孔の間の部分と、外周壁部の厚さ方向から見て重なるように配置されている。このため、第2通気孔を介したブラシレスモータへの空気の流入及びブラシレスモータからの空気の排出が磁石で阻害されることを抑制することができる。
 本開示の第11態様は、ステータを支持するベース部材と、当該ベース部材に支持されたシャフトと、当該シャフトに支持されると共に当該ステータを覆うロータハウジングを備えたロータと、を備えたブラシレスモータと、前記シャフトに支持されたプロペラと、前記ブラシレスモータを収容するナセルと、を備え、前記ナセルに設けられた通気孔を覆うように第2態様から第5態様の何れか1つの態様に係る磁性異物除去装置が配置されている推進機である。
 この推進機によれば、ブラシレスモータを備えており、このブラシレスモータは、ベース部材、シャフト及びロータを含んで構成されている。ベース部材は、ステータを支持すると共に、シャフトを支持している。また、シャフトには、ロータハウジングを備えたロータが支持されており、このロータハウジングによってステータが覆われている。
 そして、ブラシレスモータが駆動することでシャフトに支持されたプロペラが回転し、このプロペラの回転によって推力が発生する。
 また、ブラシレスモータは、ナセルで覆われており、このナセルには、通気孔が設けられている。そして、ブラシレスモータが駆動すると、通気孔を介してナセルの外側からブラシレスモータ側へ空気が流入する。
 ここで、ナセルに設けられた通気孔には、当該通気孔を覆うように第2態様から第5態様の何れか1つの態様に係る磁性異物除去装置が配置されている。このため、ブラシレスモータの駆動時において、空気の流れる流れ方向において間隔をあけてかつ対向して配置された第1磁性体及び第2磁性体の少なくとも一方によって、空気と共に移動する磁性を有する異物が捕獲される。
本開示の第1実施形態に係る飛行機器の斜視図である。 本開示の第1実施形態に係るブラシレスモータの平面図である。 本開示の第1実施形態に係るブラシレスモータの側面図である。 本開示の第1実施形態に係るブラシレスモータの分解斜視図である。 本開示の第1実施形態に係る第1磁性異物除去装置の構成を示す平面図である。 本開示の第1実施形態に係る第1磁性異物除去装置の構成を示す断面図である。 本開示の第1実施形態に係る第1磁性異物除去装置の構成を示す分解斜視図である。 本開示の第1実施形態に係る第1磁性異物除去装置の構成を示す要部拡大図である。 本開示の第1実施形態に係る第2磁性異物除去装置の構成を示す平面図である。 本開示の第1実施形態に係る第2磁性異物除去装置の構成を示す断面図である。 本開示の第1実施形態に係る第2磁性異物除去装置の構成を示す分解斜視図である。 本開示の第1実施形態の第1変形例に係る第1磁性異物除去装置の構成を示す平面図である。 本開示の第1実施形態の第1変形例に係る第2磁性異物除去装置の構成を示す断面図である。 本開示の第1実施形態に係る第2変形例に係る推進機の構成を示す断面図である。 本開示の第2実施形態に係る磁性異物除去装置の構成を示す断面図である。
 [第1実施形態]
 はじめに、本開示の第1実施形態を説明する。
 図1に示される本実施形態の飛行機器10(電動マルチコプター)は、遠隔操作や自動制御によって飛行可能とされており、本体部12と、複数の推進機14とを備える。矢印FRは飛行機器10の前後方向前側を示し、矢印LHは飛行機器10の左右方向左側を示し、矢印UPは飛行機器10の上下方向上側を示している。
 本体部12は、キャビン16と、一対の脚部18とを有する。キャビン16は、箱形に構成されており、キャビン16には、各種制御装置並びに各種センサが搭載されている。一対の脚部18は、キャビン16の下側に設けられている。
 複数の推進機14の個数は、一例として、4個である。この複数の推進機14は、本体部12の前後左右に対称に配置されている。すなわち、第1の推進機14は、本体部12の左前側に配置されており、第2の推進機14は、本体部12の右前側に配置されており、第3の推進機14は、本体部12の左後側に配置されており、第4の推進機14は、本体部12の右後側に配置されている。
 各推進機14は、モータ20と、プロペラ22とを有しており、それぞれ本体部12から延出されたロッド24及びロッド24の先端部に設けられた支持部材26を介して本体部12に対して固定されている。
 各推進機14のモータ20は、本体部12の上下方向を軸方向として支持部材26に支持されている。モータ20は、後に詳述する通り、ステータ32及びロータ34を有するモータ本体28と、ロータ34と一体に回転するシャフト30とを有する。複数のモータ20は、同一の構成である。各モータ20は、「ブラシレスモータ」の一例である。
 左前側のモータ20及び右前側のモータ20のモータ本体28は、支持部材26の下側に配置されており、軸方向一方側(矢印A1側)を上向きにした状態で支持部材26に固定されている。一方、左後側のモータ20及び右後側のモータ20のモータ本体28は、支持部材26の上側に配置されており、軸方向他方側(矢印A2側)を上向きにした状態で支持部材26に固定されている。これらのモータ20において、シャフト30は、モータ本体28から上側に向けて延びており、シャフト30の上端部には、プロペラ22が固定されている。
 続いて、モータ20の具体的な構成を説明する。
 ここでは、一例として、上述の左後側のモータ20及び右後側のモータ20のように、軸方向他方側(矢印A2側)を上向きにして配置されたモータ20について説明する。
 図2~図4に示されるように、モータ20は、アウタロータ型のブラシレスモータであり、シャフト30と、ステータ32と、ロータ34と、ベース部材36(センターピース)とを備える。矢印A1側はモータ20の軸方向一方側を示し、矢印A2側はモータ20の軸方向他方側を示している。モータ20の軸方向は、上述の飛行機器10(図1参照)の上下方向に相当する。
 ステータ32、ロータ34及びベース部材36は、モータ本体28を構成している。ステータ32は、ステータコア32Aと、ステータコア32Aに巻き付けられた複数の巻線巻回部32Bとを有する。
 ロータ34は、ロータハウジング38と、図示しない複数の磁石とを有する。ロータハウジング38は、モータ20の軸方向すなわちシャフト30の延在方向を板厚方向とされた概略円板状の円板部40と、円板部40の周縁部に沿って配置されたバックヨーク42とを含んで、有蓋円筒状とされている。また、円板部40における巻線巻回部32Bと対向する部位には、ロータハウジング38の軸方向に貫通する複数の冷却孔44が形成されている。この複数の冷却孔44は、ロータハウジング38の周方向に並んで形成されている。冷却孔44は、「第1通気孔」の一例である。
 円板部40の中央部には、ロータハウジング38の軸方向に貫通する貫通孔46が形成されており、この貫通孔46には、シャフト30が挿入されている。また、円板部40の中央部には、ロータハウジング38の矢印A2側に突出する突出部40Aが形成されており、この突出部40Aには、ロータハウジング38の径方向に延びる複数のネジ孔48が形成されている。
 複数のネジ孔48は、貫通孔46と連通している。複数のネジ孔48には、図示しない止めネジがそれぞれ螺入されている。この各止めネジの先端部は、シャフト30に形成された複数の図示しない凹部にそれぞれ嵌合されており、これにより、シャフト30は、ロータハウジング38に固定されている。また、ロータハウジング38における突出部40Aの周辺部には、ロータハウジング38の軸方向に貫通する図示しない水抜き孔が形成されている。
 また、バックヨーク42は、ステータ32の周囲を囲んでおり、ロータハウジング38は、ステータ32を飛行機器10の上下方向上側から覆っている。
 一方、バックヨーク42の内周面には、複数の磁石が固着されている。これらの磁石は、バックヨーク42の周方向に並んで配置されており、これらの磁石とステータ32との間には、隙間が確保されている。
 ベース部材36は、円盤部36Aと、円盤部36Aの外周に沿って設けられると共にベース部材36の外周部を構成する外周壁部36Bとを含んで構成されている。円盤部36Aは、飛行機器10の上下方向から見て円形の板状とされており、ステータ32の矢印A1側にステータ32と対向して配置されて、ステータ32を支持している。また、ベース部材36には、図示しない軸受を介してシャフト30が支持されている。なお、円盤部36Aには、円盤部36Aの軸方向に貫通する図示しない水抜き孔が形成されている。
 一方、外周壁部36Bには、円盤部36Aの径方向に貫通する冷却孔50が、外周壁部36Bの周方向に複数形成されている。冷却孔50は、「第2通気孔」の一例である。
 本実施形態のモータ20では、上述のように、ロータ34に冷却孔44が設けられており、ベース部材36に冷却孔50が設けられている。また、冷却孔44及び冷却孔50は、ステータ32とバックヨーク42に設けられた磁石との隙間に連通されている。
 そして、この複数の冷却孔44及び冷却孔50を通じて吸気及び排気が行われることにより、モータ20の内部に冷却風の流れが形成され、この冷却風の流れによってモータ20の内部が冷却されるようになっている。このように、本実施形態のモータ20は、空冷開放型となっている。
 ここで、本実施形態では、ロータ34に設けられた冷却孔44に対して第1磁性異物除去装置52が配置されており、ベース部材36に設けられた冷却孔50に対して第2磁性異物除去装置54が配置されている。
 第1磁性異物除去装置52は、ロータハウジング38の円板部40における飛行機器10の上下方向上側に配置されており、図5~図7にも示されるように、全体では飛行機器10の上下方向を厚さ方向とされた円板状とされている。
 第1磁性異物除去装置52は、金属メッシュ56と、金属メッシュ58と、内側スペーサ60と、外側スペーサ62と、一対の磁石64とを備える。金属メッシュ56は、「第1磁性体」並びに「第1メッシュ構造体」の一例であり、金属メッシュ58は、「第2磁性体」並びに「第2メッシュ構造体」の一例であり、磁石64は、「磁力発生体」の一例である。
 金属メッシュ56は、一例として、鉄等の強磁性体製の金属繊維が編まれることで、飛行機器10の上下方向から見て中央部に概略円形の貫通孔66が形成された円板状に形成されている。
 詳しくは、金属メッシュ56は、飛行機器10の上下方向から見て、第1方向に延びると共に第1方向と直交する方向に間隔をあけて配置された複数の金属繊維68と、第1方向と交差する第2方向に延びると共に第2方向と直交する方向に間隔をあけて配置された複数の金属繊維70とを含んで構成されている。金属繊維68は、「第1金属繊維」の一例であり、金属繊維70は、「第2金属繊維」の一例である。
 金属メッシュ58は、基本的に金属メッシュ56と同様の構成とされており、その中央部に貫通孔72が形成されている。この金属メッシュ58は、飛行機器10の上下方向から見て、第1方向及び第2方向と交差する第3方向に延びると共に第3方向と直交する方向に間隔をあけて配置された複数の金属繊維74と、第3方向と交差する第4方向に延びると共に第3方向と直交する方向に間隔をあけて配置された複数の金属繊維76とを含んで構成されている。金属繊維74は、「第3金属繊維」の一例であり、金属繊維76は、「第4金属繊維」の一例である。
 また、図8に詳しく示されるように、金属メッシュ56の一部を構成すると共に一対の金属繊維68と一対の金属繊維70とで構成された枠状部56Aと、金属メッシュ58の一部を構成すると共に一対の金属繊維74と一対の金属繊維76とで構成された枠状部58Aとが、飛行機器10の上下方向から見て交差している。すなわち、冷却孔44を流れる冷却風(空気)の流れる流れ方向から見て、枠状部56Aと枠状部58Aとが交差している。枠状部56Aは、「第1枠状部」の一例であり、枠状部58Aは、「第2枠状部」の一例である。
 内側スペーサ60は、樹脂やアルミニウム等の非磁性体で構成されており、本体部60Aと、本体部60Aと一体の設けられた一対の保持片部60Bとを備えている。本体部60Aは、飛行機器10の上下方向から見て円環状とされると共に、板厚方向を飛行機器10の上下方向とされた板状とされている。一方、保持片部60Bは、本体部60Aの径方向一方側と他方側とに設けられており、飛行機器10の上下方向から見て矩形の板状とされている。そして、本体部60Aの中央部には、ロータハウジング38の突出部40Aが嵌合可能な貫通孔78が形成されている。
 一方、保持片部60Bには、飛行機器10の上下方向から見て矩形状の貫通孔80が形成されている。なお、内側スペーサ60には、図示しない係止部が形成されており、この係止部がロータハウジング38の円板部40に設けられた被係止部に係止されることで、第1磁性異物除去装置52がロータハウジング38に取り外し可能に取り付けられるようになっている。
 外側スペーサ62は、樹脂やアルミニウム等の非磁性体で構成されており、飛行機器10の上下方向から見て、内側スペーサ60の外周側に位置する円環状の板状とされている。そして、内側スペーサ60及び外側スペーサ62における飛行機器10の上下方向上側の面には金属メッシュ56が、内側スペーサ60及び外側スペーサ62における飛行機器10の上下方向下側の面には金属メッシュ58が、それぞれ接着剤等による図示しない接合部で接合されている。
 なお、第1磁性異物除去装置52がロータハウジング38に取り付けられた状態において、飛行機器10の上下方向から見て内側スペーサ60と外側スペーサ62との間には、ロータハウジング38の冷却孔44が位置している。
 一方、磁石64は、飛行機器10の上下方向から見て矩形の板状とされており、内側スペーサ60の貫通孔80に嵌合されることで、内側スペーサ60に保持されている。磁石64は、N極64Aを飛行機器10の上下方向上側とされると共に、S極64Bを飛行機器10の上下方向下側とされた状態で配置されている。そして、N極64Aで金属メッシュ56が磁化され、S極64Bで金属メッシュ58が磁化されている。
 一方、第2磁性異物除去装置54は、図9~図11に示されるように、ベース部材36の外周壁部36Bの外周側に配置されており、飛行機器10の上下方向から見てモータ20を囲む円筒状とされている。
 第2磁性異物除去装置54は、金属メッシュ82と、金属メッシュ84と、スペーサ86と、4つの磁石88とを備える。金属メッシュ82は、「第1磁性体」並びに「第1メッシュ構造体」の一例であり、金属メッシュ84は、「第2磁性体」並びに「第2メッシュ構造体」の一例であり、磁石88は、「磁力発生体」の一例である。
 金属メッシュ82は、第2磁性異物除去装置54の外周側を構成しており、一例として、鉄等の強磁性体製の金属繊維が編まれることで、飛行機器10の上下方向から見て円形とされた円筒状に形成されている。
 金属メッシュ84は、第2磁性異物除去装置54の内周側を構成しており、基本的に金属メッシュ82と同様の構成とされている。
 スペーサ86は、樹脂やアルミニウム等の非磁性体で構成されており、飛行機器10の上下方向から見て円形とされた円筒状に形成されている。また、スペーサ86には、飛行機器10の上下方向から見て90度の間隔で4つの貫通孔90が形成されている。また、貫通孔90間には、貫通孔90よりもスペーサ86の周方向において大きい貫通孔92が形成されている。
 そして、スペーサ86の外周側の面には金属メッシュ82が、スペーサ86の内周側の面には金属メッシュ84が、それぞれ接着剤等による図示しない接合部で接合されている。なお、スペーサ86には、図示しない係止部が形成されており、当該係止部がベース部材36に設けられたコネクタ接続部94(図2参照)に係止されることで、第2磁性異物除去装置54がベース部材36に対して間隔をあけられた状態でモータ20に取り外し可能に取り付けられるようになっている。
 また、第2磁性異物除去装置54がモータ20に取り付けられた状態において、スペーサ86の径方向から見て貫通孔92の内側には、ベース部材36の冷却孔50が位置している(図3参照)。
 一方、磁石88は、スペーサ86の径方向から見て矩形の板状とされており、スペーサ86の貫通孔90に嵌合されることで、スペーサ86に保持されている。磁石88は、N極88Aをスペーサ86の径方向外側とされると共に、S極88Bをスペーサ86の径方向内側とされた状態で配置されている。そして、N極88Aで金属メッシュ82が磁化され、S極88Bで金属メッシュ84が磁化されている。
 なお、第2磁性異物除去装置54の飛行機器10の上下方向上側の周縁部とベース部材36との間と、第2磁性異物除去装置54の飛行機器10の上下方向下側の周縁部とベース部材36との間とのそれぞれには、スポンジ等の弾性を有する非磁性体で構成された隙詰め部材が配置されている。
 次に、本実施形態の作用及び効果を説明する。
 図2に示されるように、本実施形態に係る第1磁性異物除去装置52及び第2磁性異物除去装置54によれば、磁石64で磁化された金属メッシュ56及び金属メッシュ58並びに、磁石88で磁化された金属メッシュ82及び金属メッシュ84が、冷却風の流路を流れる空気と接触し、空気と共に移動する砂鉄等の磁性を有する異物が、金属メッシュ56、金属メッシュ58、金属メッシュ82及び金属メッシュ84に引き寄せられる。このため、空気が流れる冷却風の流路において、空気と共に移動する磁性を有する異物を捕獲できる。
 また、図6に示されるように、第1磁性異物除去装置52において、金属メッシュ56が磁石64のN極64Aで磁化され、金属メッシュ58が磁石64のS極64Bで磁化される。また、金属メッシュ56と金属メッシュ58とは、冷却風の流れる流れ方向において間隔をあけてかつ対向して配置されている。このため、金属メッシュ56と金属メッシュ58との間に磁界が発生する。
 そして、金属メッシュ56及び金属メッシュ58に空気が透過することで、金属メッシュ56及び金属メッシュ58の少なくとも一方によって空気と共に移動する磁性を有する異物が捕獲される。
 また、図10に示されるように、第2磁性異物除去装置54において、金属メッシュ82が磁石88のN極88Aで磁化され、金属メッシュ84が磁石88のS極88Bで磁化される。また、金属メッシュ82と金属メッシュ84とは、冷却風の流れる流れ方向において間隔をあけてかつ対向して配置されている。このため、金属メッシュ82と金属メッシュ84との間に磁界が発生する。
 そして、金属メッシュ82及び金属メッシュ84に空気が透過することで、金属メッシュ82及び金属メッシュ84の少なくとも一方によって空気と共に移動する磁性を有する異物が捕獲される。
 また、図8に示されるように、第1磁性異物除去装置52において、金属メッシュ56が、第1方向に延びると共に第1方向と直交する方向に間隔をあけて配置された複数の金属繊維68と、第1方向と交差する第2方向に延びると共に第2方向と直交する方向に間隔をあけて配置された複数の金属繊維70とを備えている。
 一方、金属メッシュ58は、第1方向及び第2方向と交差する第3方向に延びると共に第3方向と直交する方向に間隔をあけて配置された複数の金属繊維74と、第3方向と交差する第4方向に延びると共に第4方向と直交する方向に間隔をあけて配置された複数の金属繊維76とを備えている。
 このため、冷却風の流れる流れ方向から金属メッシュ56及び金属メッシュ58を見たときに、これらが重なることを抑制し、これらで磁性を有する異物を捕獲する確度を高めることができる。
 また、第1磁性異物除去装置52において、金属メッシュ56の一部が枠状部56Aで構成されており、枠状部56Aは、一対の金属繊維68と一対の金属繊維70とで矩形枠状に構成されている。また、金属メッシュ58の一部が枠状部58Aで構成されており、枠状部58Aは、一対の金属繊維74と一対の金属繊維76とで矩形枠状に構成されている。そして、枠状部56Aと枠状部58Aとが、冷却風の流れる流れ方向から見て交差している。
 このため、隣接する金属繊維68同士の間隔、隣接する金属繊維70同士の間隔、隣接する金属繊維74同士の間隔及び隣接する金属繊維76同士の間隔の少なくとも一つを拡げても、冷却風の流れる流れ方向から枠状部56A及び枠状部58Aの一方を見たときに、当該一方の内側に他方の一部が位置することとなる。したがって、金属メッシュ56及び金属メッシュ58が冷却風の抵抗となることを抑制しつつ、これらで磁性を有する異物を捕獲する確度を高めることができる。
 また、図6に示されるように、第1磁性異物除去装置52において、金属メッシュ56と金属メッシュ58との間に、非磁性体製の内側スペーサ60及び外側スペーサ62が介在しており、内側スペーサ60によって磁石64が保持されている。このため、内側スペーサ60及び外側スペーサ62によって磁石64による金属メッシュ56及び金属メッシュ58の磁化が阻害されることを抑制しつつ、内側スペーサ60及び外側スペーサ62で、金属メッシュ56、金属メッシュ58及び磁石64を支持することができる。これは、第2磁性異物除去装置54でも同様である。
 また、図4に示されるように、モータ20において、ステータ32がベース部材36で支持されており、ベース部材36には、軸受を介してシャフト30が支持されている。このシャフト30には、ロータハウジング38を備えたロータ34が支持されており、ロータハウジング38によってステータ32が覆われている。
 そして、ロータハウジング38に冷却孔44が設けられると共に、ベース部材36に冷却孔50が設けられており、冷却孔44及び冷却孔50を含む冷却風の流路上に第1磁性異物除去装置52及び第2磁性異物除去装置54が配置されている。
 このため、モータ20の駆動時において、第1磁性異物除去装置52では、冷却風の流れる流れ方向において間隔をあけてかつ対向して配置された金属メッシュ56及び金属メッシュ58の少なくとも一方によって、空気と共に移動する磁性を有する異物が捕獲される。
 また、第2磁性異物除去装置54では、冷却風の流れる流れ方向において間隔をあけてかつ対向して配置された金属メッシュ82及び金属メッシュ84の少なくとも一方によって、空気と共に移動する磁性を有する異物が捕獲される。
 また、モータ20において、ロータハウジング38は、シャフト30の延在方向を板厚方向とされた円板部40を含んで構成されており、円板部40には、図2にも示されるように、冷却孔44が形成されている。そして、第1磁性異物除去装置52が、円板部40に沿って冷却孔44を覆うように配置されている。このため、モータ20の駆動時において、冷却孔44を経由してモータ20の内側に磁性を有する異物が進入することを抑制することができる。
 また、図4及び図10に示されるように、モータ20において、ベース部材36は、その外周部を構成する外周壁部36Bを含んで構成されており、外周壁部36Bには、冷却孔50が形成されている。そして、第2磁性異物除去装置54が、外周壁部36Bに沿って冷却孔50を覆うように配置されている。このため、モータ20の駆動時において、冷却孔50を経由してモータ20の内側に磁性を有する異物が進入することを抑制することができる。
 次に、本実施形態の変形例を説明する。
 (第1変形例)
 図12及び図13に示される第1変形例では、第1磁性異物除去装置52が、内側スペーサ60及び外側スペーサ62の代わりにスペーサ96を備えている。
 スペーサ96は、その中央側を構成すると共に飛行機器10の上下方向から見て円環状とされた内周部96Aと、その外周側を構成すると共に飛行機器10の上下方向から見て円環状とされた外周部96Bと、内周部96Aから放射状に延出されると共に内周部96Aと外周部96Bとを繋ぐ複数の接続部96Cを含んで構成されている。
 また、接続部96Cは、第1磁性異物除去装置52がロータハウジング38に取り付けられた状態において、シャフト30の延在方向から見て円板部40における隣接する冷却孔44の間の部分と重なっている。そして、接続部96Cには、それぞれ内側スペーサ60と同様に磁石64が取り付けられている。
 また、この第1変形例では、第2磁性異物除去装置54のスペーサ86において、磁石88が嵌合された貫通孔90が設けられている部分が、スペーサ86の径方向から見てベース部材36の外周壁部36Bにおける隣接する冷却孔50の間の部分と重なっている。
 この第1変形例によれば、冷却孔44が円板部40の周方向に複数形成されている。また、複数の磁石64が円板部40の周方向に配置されると共に、それぞれの磁石64が、円板部40における隣接する冷却孔44の間の部分と、シャフト30の延在方向から見て重なるように配置されている。このため、冷却孔44を介したモータ20への空気の流入及びモータ20からの空気の排出が磁石64で阻害されることを抑制することができる。
 また、この第1変形例によれば、冷却孔50がベース部材36の外周壁部36Bの周方向に複数形成されている。また、複数の磁石88が外周壁部36Bの周方向に配置されると共に、それぞれの磁石88が、外周壁部36Bにおける隣接する冷却孔50の間の部分と、シャフト30の延在方向と直交する方向(外周壁部36Bの厚さ方向)から見て重なるように配置されている。このため、冷却孔50を介したモータ20への空気の流入及びモータ20からの空気の排出が磁石88で阻害されることを抑制することができる。
 (第2変形例)
 図14に示される第2変形例では、左前側のモータ20及び右前側のモータ20のモータ本体28がナセル98に収容されている。詳しくは、ナセル98は、飛行機器10の上下方向下側に向かうに従って縮径するテーパ形状の円筒状とされており、その下端部には、開口部100が形成されている。なお、ナセル98は、支持部材26に図示しない取付部材を介して取り付けられている。開口部100は、「通気孔」の一例である。
 そして、開口部100には、飛行機器10の上下方向から見て開口部100を覆うように、第1磁性異物除去装置52が取り付けられている。
 この第1変形例によれば、モータ20のモータ本体28がナセル98で覆われており、このナセル98には、開口部100が設けられている。そして、モータ20が駆動すると、開口部100を介してナセル98の外側からモータ20側へ空気が流入する。
 ここで、開口部100には、開口部100を覆うように第1磁性異物除去装置52が配置されている。このため、モータ20の駆動時において、空気の流れる流れ方向において間隔をあけてかつ対向して配置された金属メッシュ56及び金属メッシュ58の少なくとも一方によって、空気と共に移動する磁性を有する異物が捕獲される。
 [第2実施形態]
 次に、本開示の第2実施形態を説明する。
 図15に示されるように、本実施形態では、水や油等の液体が流れる配管110に、磁性異物除去装置112が配置されている。
 この磁性異物除去装置112は、鋼製の配管110の管壁110Aに沿って配置された一対の第1除去部114と、第1除去部114間に配置された複数の第2除去部116とこれらを連結する図示しない連結部とを含んで構成されている。
 第1除去部114は、スペーサ118と、プレート120と、磁石122とを含んで構成されている。スペーサ118は、樹脂やアルミニウム等の非磁性体で構成されており、管壁110Aに当接された状態で配管110の延在方向、すなわち液体の流れる方向に延在する板状とされている。プレート120は、鉄等の強磁性体で構成されており、スペーサ118における管壁110Aの反対側の面に貼り付けられている。磁石122は、管壁110A側にN極及びS極の一方が配置され、配管110の中央側にN極及びS極の他方が配置された状態でスペーサ118に埋め込まれている。プレート120は、「第1磁性体」及び「第2磁性体」の一例であり、磁石122は、「磁力発生体」の一例である。
 そして、第1除去部114は、磁石122の管壁110A側の極で管壁110Aに取り付けられている。また、磁石122の管壁110Aと反対側の極でプレート120が磁化されている。
 第2除去部116は、スペーサ118と、一対のプレート120と、磁石122とを含んで構成されている。第2除去部116において、プレート120は、スペーサ118の管壁110A側の面と配管110の中央側の面との両方に貼り付けられると共に、磁石122は、第1除去部114と同様にスペーサ118に埋め込まれている。そして、第2除去部116では、磁石122の一方の極で一方のプレート120が磁化され、磁石122の他方の極で他方のプレート120が磁化されている。
 また、第1除去部114と第2除去部116とは、磁石122のN極で磁化されたプレート120と、磁石122のS極で磁化されたプレート120とが対向するように配置されている。
 このような構成によれば、磁石122で磁化されたプレート120が、配管110を流れる液体と接触し、当該流体と共に移動する磁性を有する異物が、プレート120に引き寄せられる。このため、液体が流れる配管110において、液体と共に移動する磁性を有する異物を捕獲できる。
 (その他の変形例)
 上述した第1実施形態において、磁性異物除去装置は、冷却孔に対して一つ配置されていたが、冷却孔に対して磁性異物除去装置を複数重ねて配置してもよい。
 また、上述した第1実施形態では、磁性異物除去装置が単体で金属メッシュ等の磁性体を磁化させる磁石を備えていたが、これに限らない。例えば、ロータ34が備える磁石の磁力によって金属メッシュ等の磁性体を磁化させてもよい。また、磁石としては、フェライト磁石や電磁石等種々の磁石を採用することが可能である。
 また、上述した第1実施形態において、磁石で磁化される磁性体として、金属メッシュを採用したが、これに限らない。例えば、鋼製のパンチングプレートやスチールウール等を磁性体として採用することが可能である。
 また、上述した第1実施形態において、第1磁性異物除去装置52及び第2磁性異物除去装置54は、モータ20に取り付けられていたが、これに限らない。例えば、第1磁性異物除去装置52及び第2磁性異物除去装置54を油等の液体が流れる配管の流入口に配置してもよい。
 以上、本開示の第1実施形態及び第2実施形態について説明したが、本開示は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  磁力発生体と、
     前記磁力発生体で磁化され、流体が流れる流路に対して当該流体と接触可能に配置された磁性体と、
     を有する磁性異物除去装置。
  2.  前記磁性体は、第1磁性体と、第2磁性体とを備えると共に、
     前記第1磁性体は、前記磁力発生体としての磁石のN極で磁化されると共に、前記流体が透過可能とされ、
     前記第2磁性体は、前記磁石のS極で磁化されると共に、前記流体が透過可能とされ、
     前記第1磁性体と前記第2磁性体とは、前記流体の流れる流れ方向において間隔をあけてかつ対向して配置されている、
     請求項1に記載の磁性異物除去装置。
  3.  前記第1磁性体は、第1方向に延びると共に当該第1方向と直交する方向に間隔をあけて配置された複数の第1金属繊維と、当該第1方向と交差する第2方向に延びると共に当該第2方向と直交する方向に間隔をあけて配置された複数の第2金属繊維と、を備えた第1メッシュ構造体とされ、
     前記第2磁性体は、前記第1方向及び前記第2方向と交差する第3方向に延びると共に当該第3方向と直交する方向に間隔をあけて配置された複数の第3金属繊維と、当該第3方向と交差する第4方向に延びると共に当該第4方向と直交する方向に間隔をあけて配置された複数の第4金属繊維と、を備えた第2メッシュ構造体とされている、
     請求項2に記載の磁性異物除去装置。
  4.  前記第1メッシュ構造体の一部を構成すると共に、一対の前記第1金属繊維と一対の前記第2金属繊維とで構成された第1枠状部と、
     前記第2メッシュ構造体の一部を構成すると共に、一対の前記第3金属繊維と一対の前記第4金属繊維とで構成された第2枠状部とが、
     前記流れ方向から見て交差している、
     請求項3に記載の磁性異物除去装置。
  5.  前記第1磁性体と、前記第2磁性体との間には、前記磁石を保持する非磁性体製のスペーサが介在している、
     請求項2~請求項4の何れか1項に記載の磁性異物除去装置。
  6.  ステータを支持するベース部材と、
     前記ベース部材に支持されたシャフトと、
     前記シャフトに支持されると共に前記ステータを覆うロータハウジングを備えたロータと、
     を備え、
     前記ロータハウジングに設けられた第1通気孔と、前記ベース部材に設けられた第2通気孔と、を含む空気の流路上に請求項2~請求項5の何れか1項に記載の磁性異物除去装置が配置されている、
     ブラシレスモータ。
  7.  前記ロータハウジングは、前記シャフトの延在方向を板厚方向とされた円板部を含んで構成され、当該円板部には、前記第1通気孔が形成されると共に、
     前記磁性異物除去装置が前記円板部に沿って前記第1通気孔を覆うように配置されている、
     請求項6に記載のブラシレスモータ。
  8.  前記第1通気孔は、前記円板部の周方向に複数形成され、
     前記磁石は、前記円板部の周方向に複数配置されると共に、前記円板部における隣接する前記第1通気孔の間の部分と前記延在方向から見て重なるように配置されている、
     請求項7に記載のブラシレスモータ。
  9.  前記ベース部材は、外周部を構成する外周壁部を含んで構成され、当該外周壁部には、前記第2通気孔が形成されると共に、
     前記磁性異物除去装置が前記外周壁部に沿って前記第2通気孔を覆うように配置されている、
     請求項6~請求項8の何れか1項に記載のブラシレスモータ。
  10.  前記第2通気孔は、前記外周壁部の周方向に複数形成され、
     前記磁石は、前記外周壁部の周方向に複数配置されると共に、前記外周壁部における隣接する前記第2通気孔の間の部分と前記外周壁部の厚さ方向から見て重なるように配置されている、
     請求項9に記載のブラシレスモータ。
  11.  ステータを支持するベース部材と、当該ベース部材に支持されたシャフトと、当該シャフトに支持されると共に当該ステータを覆うロータハウジングを備えたロータと、を備えたブラシレスモータと、
     前記シャフトに支持されたプロペラと、
     前記ブラシレスモータを収容するナセルと、
     を備え、
     前記ナセルに設けられた通気孔を覆うように請求項2~請求項5の何れか1項に記載の磁性異物除去装置が配置されている、
     推進機。
PCT/JP2023/002327 2022-03-11 2023-01-25 磁性異物除去装置、ブラシレスモータ及び推進機 WO2023171168A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-038638 2022-03-11
JP2022038638A JP2023133000A (ja) 2022-03-11 2022-03-11 磁性異物除去装置、ブラシレスモータ及び推進機

Publications (1)

Publication Number Publication Date
WO2023171168A1 true WO2023171168A1 (ja) 2023-09-14

Family

ID=87936581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002327 WO2023171168A1 (ja) 2022-03-11 2023-01-25 磁性異物除去装置、ブラシレスモータ及び推進機

Country Status (2)

Country Link
JP (1) JP2023133000A (ja)
WO (1) WO2023171168A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059707A (ja) * 1973-09-26 1975-05-23
JPH07328368A (ja) * 1994-06-06 1995-12-19 Nippon Tekunisu:Kk 空気清浄器
JPH1043524A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp ストレーナ
JPH11346458A (ja) * 1998-03-31 1999-12-14 Asmo Co Ltd ブラシレスモ―タ
JP2011015576A (ja) * 2009-07-03 2011-01-20 Sugai Sogyo:Kk 冷却装置
JP2012196114A (ja) * 2011-03-14 2012-10-11 Ogawa Seiki Kk モーター冷却機構
JP2015204663A (ja) * 2014-04-11 2015-11-16 日本電産株式会社 自冷式モータ
WO2018025984A1 (ja) * 2016-08-05 2018-02-08 日本電産株式会社 モータおよび軸流ファン
KR20190001771A (ko) * 2017-06-28 2019-01-07 서민영 철 함유된 미세 입자 여과 장치 및 그 제작 방법
JP2019057977A (ja) * 2017-09-20 2019-04-11 シナノケンシ株式会社 全天候型モータ
WO2021229771A1 (ja) * 2020-05-14 2021-11-18 株式会社ナイルワークス 飛行体及びモータ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059707A (ja) * 1973-09-26 1975-05-23
JPH07328368A (ja) * 1994-06-06 1995-12-19 Nippon Tekunisu:Kk 空気清浄器
JPH1043524A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp ストレーナ
JPH11346458A (ja) * 1998-03-31 1999-12-14 Asmo Co Ltd ブラシレスモ―タ
JP2011015576A (ja) * 2009-07-03 2011-01-20 Sugai Sogyo:Kk 冷却装置
JP2012196114A (ja) * 2011-03-14 2012-10-11 Ogawa Seiki Kk モーター冷却機構
JP2015204663A (ja) * 2014-04-11 2015-11-16 日本電産株式会社 自冷式モータ
WO2018025984A1 (ja) * 2016-08-05 2018-02-08 日本電産株式会社 モータおよび軸流ファン
KR20190001771A (ko) * 2017-06-28 2019-01-07 서민영 철 함유된 미세 입자 여과 장치 및 그 제작 방법
JP2019057977A (ja) * 2017-09-20 2019-04-11 シナノケンシ株式会社 全天候型モータ
WO2021229771A1 (ja) * 2020-05-14 2021-11-18 株式会社ナイルワークス 飛行体及びモータ

Also Published As

Publication number Publication date
JP2023133000A (ja) 2023-09-22

Similar Documents

Publication Publication Date Title
JP6702985B2 (ja) 軸方向磁束機械
EP3218259B1 (en) Underwater propelling device for underwater vehicle
EP2209186B1 (en) Magnetically-levitated motor and pump
US8378543B2 (en) Generating electromagnetic forces in large air gaps
US6933645B1 (en) Permanent magnet rotor and magnet cradle
US20210167658A1 (en) All-weather motor
JPH04219496A (ja) きれいな分子真空のための真空ポンプ
JP2007215291A (ja) モータ用ロータ
EP3290731B1 (en) Drone with magnet fluid sealed bearing unit and drive motor having the bearing unit
US20090261676A1 (en) Method for Mounting a Magnetic Pole and Associated Rotor
US11081928B2 (en) Magnetic seal for magnetically-responsive devices, systems, and methods
US10527099B2 (en) Magnet fluid sealed bearing unit and drive motor having the bearing unit
WO2023171168A1 (ja) 磁性異物除去装置、ブラシレスモータ及び推進機
CN210461398U (zh) 具备磁体防护结构的永磁悬浮轴承和海洋运输设备
WO2015052962A1 (ja) 回転電機
EP0414294A1 (en) Sealing and friction bearing unit containing a magnetic fluid
JP2009060730A (ja) リニアモータ
CN210156196U (zh) 一种永磁体防护装置和磁体单元
JP7501783B2 (ja) 磁石配列方法、ロータの製造方法、及び磁石配列用治具
WO2020195006A1 (ja) ロータ、およびモータ
WO2017022044A1 (ja) 動力伝達装置
JP2010121495A (ja) 電動ポンプ
WO2020195005A1 (ja) ロータの製造方法、およびモータの製造方法
JP2020156178A (ja) 回転駆動装置およびポンプ駆動装置
JP2020103020A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766348

Country of ref document: EP

Kind code of ref document: A1