WO2023170860A1 - 直流配電システム - Google Patents

直流配電システム Download PDF

Info

Publication number
WO2023170860A1
WO2023170860A1 PCT/JP2022/010573 JP2022010573W WO2023170860A1 WO 2023170860 A1 WO2023170860 A1 WO 2023170860A1 JP 2022010573 W JP2022010573 W JP 2022010573W WO 2023170860 A1 WO2023170860 A1 WO 2023170860A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
load
storage battery
loads
distribution system
Prior art date
Application number
PCT/JP2022/010573
Other languages
English (en)
French (fr)
Inventor
拓也 片岡
勇人 竹内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/010573 priority Critical patent/WO2023170860A1/ja
Priority to JP2024505755A priority patent/JP7577243B2/ja
Publication of WO2023170860A1 publication Critical patent/WO2023170860A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • This application relates to a DC power distribution system.
  • the power supply time to low-priority DC devices is short, and the power supply time to high-priority DC devices is set to be long.
  • DC power distribution A system has been proposed (for example, see Patent Document 1). That is, during standalone operation in response to a power outage, the power supply is cut off in order of priority, starting with the DC equipment with the lowest priority, in order to extend the continuous operation time of the DC equipment with the higher priority as much as possible.
  • JP 2011-83088 A (Paragraphs 0041 to 0047, Figures 3 to 4)
  • This application discloses a technology to solve the above-mentioned problems, and is a direct current technology that can suppress the power consumption of the system itself during standalone operation and extend the time that power can be supplied to important loads.
  • the purpose is to obtain a power distribution system.
  • the DC power distribution system disclosed in the present application includes a DC bus to which power is supplied as DC power from the grid power, and a power supply for the storage battery that is arranged between the DC bus and the storage battery and performs power conversion for charging and discharging the storage battery.
  • a converter is provided between each of the plurality of DC loads and the DC bus, and a plurality of load-side power conversion units that convert the power supplied to the DC bus into DC power of a voltage according to the specifications of each load side power converter.
  • a control unit that cooperatively controls the storage battery power converter and the plurality of load-side power converters, and the control unit controls the state of charge of the storage battery when the supply from the grid power is cut off.
  • At least one of the load-side power converters connected to the important load and the storage battery power converter performs power conversion through a switching operation by a switching element, It is characterized in that the switching operation is stopped and the input side and the output side are brought into conduction.
  • the power consumption of the system itself can be suppressed during standalone operation, so it is possible to obtain a DC power distribution system that can extend the time during which power can be supplied from storage batteries to important loads. can.
  • FIG. 1 is a block diagram showing a connection relationship between a power source and a load for explaining the configuration of a DC power distribution system according to a first embodiment
  • FIG. FIG. 2 is a circuit diagram showing a main circuit of a power converter that constitutes the DC power distribution system according to the first embodiment.
  • FIG. 2 is a block diagram of a control unit that constitutes the DC power distribution system according to the first embodiment.
  • FIG. 3 is a diagram for explaining setting of an operating range according to a charging rate of a storage battery in the DC power distribution system according to the first embodiment. 3 is a flowchart for explaining the operation of the DC power distribution system according to the first embodiment.
  • FIG. 7 is a diagram for explaining setting of an operating range according to a modification according to a charging rate of a storage battery in the DC power distribution system according to the first embodiment.
  • FIG. 2 is a block diagram showing a connection relationship between a power source and a load for explaining the configuration of a DC power distribution system according to a second embodiment. 12 is a flowchart for explaining the operation after shifting to self-sustaining operation in the DC power distribution system according to the second embodiment.
  • FIG. 2 is a block diagram for explaining a first example of operation of a DC power distribution system according to a second embodiment.
  • FIG. 3 is a block diagram for explaining a second example of operation of the DC power distribution system according to the second embodiment.
  • FIG. 7 is a block diagram for explaining a third example of operation of the DC power distribution system according to the second embodiment.
  • FIG. 7 is a block diagram for explaining a fourth example of operation of the DC power distribution system according to the second embodiment.
  • FIG. 7 is a block diagram for explaining a fifth example of operation of the DC power distribution system according to the second embodiment.
  • FIG. 7 is a block diagram for explaining a first example of operation of a DC power distribution system according to a third embodiment;
  • FIG. 7 is a block diagram for explaining a second example of operation of the DC power distribution system according to the third embodiment.
  • FIG. 2 is a block diagram illustrating an example of the hardware configuration of a control unit that configures the DC power distribution system according to each embodiment.
  • Embodiment 1. 1 to 5 are for explaining the configuration and operation of the DC power distribution system according to the first embodiment, and FIG. 1 shows the connection between the power source and the load to explain the configuration of the DC power distribution system.
  • FIG. 2 is a circuit diagram showing the main circuit of a storage battery power converter among the multiple power converters that make up the DC power distribution system
  • FIG. 3 is a control unit that makes up the DC power distribution system.
  • FIG. 4 is a diagram for explaining the setting of the operating range for each operating mode according to the charging rate of the storage battery
  • FIG. 5 is a flowchart for explaining the operation of the DC power distribution system.
  • a DC power distribution system 1 mainly connects a plurality of power source side power converters 4 and load side power converters 5 around a DC bus 8, and controls distributed power.
  • a control section 3 is provided.
  • an interface circuit 2 for receiving various commands, various setting values, etc., transmitting measurement information, and displaying it through the user of the system or a higher-level control device represented by a server, energy management system, etc. It is equipped with
  • the main power supply 911 is assumed to be an AC system as the system power, but it may be a DC power supply. Further, although a lithium ion battery is assumed as the storage battery 912, other types of storage batteries such as a lead acid battery may be used.
  • the power received from the main power source 911 and the storage battery 912 is collected by the DC bus 8, converted into DC power suitable for each DC load 92, and distributed.
  • a main power source 911 and a storage battery 912 are connected to the power receiving power converter 41 and the storage battery power converter 42 that constitute the power source side power converter 4, respectively.
  • One or more load devices 921 and load devices 922 are connected to the load power converter 51 and the load power converter 52 that constitute the load-side power converter 5, respectively. .
  • a switch 61 and a switch 62 (collectively via the power supply side switch 6). Similarly, between the load power converter 51 and the load device 921, and between the load power converter 52 and the load device 922, a switch 71 and a switch 72 (which can be turned on and off) are provided, respectively. They are collectively connected to the load side switch 7).
  • the power supply side switch 6 and the load side switch 7 are devices that can switch on and off using external commands, and can be switched off in the event of a power outage according to a cutoff signal commanded from the control unit 3. Implement. Note that if the power is turned on manually at the time of return, any device that can be shut off at least in response to an external command will suffice. Further, the open/close state of the switch may be output to the control unit 3.
  • the types of DC loads 92 to which power is distributed include, for example, general loads such as lighting loads and office automation equipment, power loads such as air conditioning loads, and loads such as servers and IT equipment.
  • the DC load 92 is classified and set as an important load or a general load as a priority order of power distribution targets during a power outage. Therefore, the connection between the load-side power converter 5 and the DC load 92 is distributed according to the degree of importance and type of the DC load 92.
  • the receiving power converter 41 of the DC power distribution system 1 mainly uses a PWM converter (Pulse Width Modulation Converter), and the storage battery power converter 42 and the load side power converter 5 mainly use a DC power converter such as a chopper circuit. is used.
  • the storage battery power converter 42 uses a step-up chopper circuit configured using two semiconductor switches S1 and S2 (here, IGBT: Insulated Gate Bipolar Transistor), as shown in FIG. Note that in FIG. 2, only the main circuit section is shown for the sake of simplicity, and drawings of the control circuit, sensors, etc. are omitted.
  • the DC power of the storage battery is boosted (power converted) to higher voltage DC power by a switching operation in which semiconductor switches S1 and S2 are repeatedly turned on alternately. It is generally known that loss occurs during the switching operation of turning ON/OFF the semiconductor switches S1 and S2. Therefore, when there is no need to boost the voltage of the storage battery 912, the semiconductor switch S1 is always turned on and conductive to reduce the loss caused by the switching operation while increasing the input and output (between the storage battery 912 and the DC bus 8). It can be made conductive.
  • the DC power distribution system 1 of the present application is configured to use the conduction mode depending on the operating state to reduce loss due to power consumption of the system itself.
  • this conduction mode the same operation can be performed not only by the boost chopper circuit as shown in FIG. 2 but also by other conversion circuits such as a buck chopper, buck-boost chopper, or a PWM inverter.
  • the input and output can be brought into conduction while reducing losses due to switching operations, so power consumption can be suppressed regardless of the type of power converter.
  • power converters that cannot operate in the same manner as in conduction mode, and such power converters are not subject to the conduction mode specifications.
  • the configuration for mode switching control includes a state detection section 31 that detects the state of each device based on information from a sensor section of each device in the system, information acquired from the state detection section 31 and the interface circuit 2, Alternatively, it includes an operation mode determination section 32 that determines the operation mode based on a command.
  • the configuration for executing the conduction mode described above includes an operation command generation unit that generates operation commands for each power converter based on information and commands from the operation mode determination unit 32, the state detection unit 31, and the interface circuit 2.
  • a section 33 is provided.
  • a threshold database (denoted as DB in the figure) 34 that holds information about threshold values used for operation settings according to the state of charge of the storage battery 912, and a priority database that holds information about the priorities of each DC load 92. It is equipped with 35.
  • it includes an equipment specification database 36 that holds information about equipment specifications, such as the operating voltage range of each DC load 92 and the operating range of the power converter.
  • the operation commands for each power converter include an output voltage command, a signal related to starting and stopping the power converter, a charge/discharge power command from the storage battery 912, and the like.
  • the operation range setting for each operation mode according to the fluctuation of the charging state of the storage battery (hereinafter referred to as SoC (State of Charge)) in FIG.
  • SoC State of Charge
  • the determination of the operating mode and the setting of the operating range are determined by the control unit 3 based on the SoC of the storage battery 912 and the operating states of the main power source 911 and the power receiving power converter 41.
  • a grid-connected operation mode in which power is supplied to the DC load 92 using the power received from the main power supply 911 and the storage battery 912, and a grid-connected operation mode in which there is no interconnection with the main power supply 911 and only the power from the storage battery 912 is used. It is broadly classified into two self-sustaining operation modes in which power is supplied to the DC load 92.
  • a normal operating range in which there is no operational restriction on charging and discharging from the storage battery 912 and a semi-restricted operating range in which discharging from the storage battery 912 is stopped are set.
  • the self-sustaining operation mode depending on whether the SoC is equal to or higher than the threshold value Sth1, there is a self-sustaining operation region in which power is normally supplied to a plurality of DC loads 92, and one or more limited limited loads predetermined as important loads.
  • a limited operating range is set in which power is supplied only to the DC load 92.
  • a charging stop threshold Smax is set to prevent the lifespan of the storage battery 912 from being shortened due to overcharging
  • a charging stop threshold Smax is set to prevent the lifespan of the storage battery 912 from being shortened due to overdischarge.
  • a discharge stop threshold value Smin is separately set. The region exceeding the charge stop threshold Smax is set as a charge stop region where charging to the storage battery 912 is stopped, and the region below the discharge stop threshold Smin is set as a discharge stop region where discharge from the storage battery 912 is stopped.
  • the state detection unit 31 detects the operating state of the PV power converter 43, information indicating the power generation status of the solar panel 913 such as time information related to sunlight, and Collect information indicating load status (distribution voltage). Then, it is determined whether power exceeding the power suppressed by the conversion to the conduction mode described above can be obtained from the solar panel 913, that is, whether effective power generation is possible from the solar panel 913 (step S310). At this time, even if the current amount of power generation is high, if it is determined that the power generation duration is short, such as near sunset, it may be determined that power generation is not possible.
  • the operation command generation unit 33 stops the load power converter 51, which is a device other than the power supply system leading to the important load, opens the switch 71 and the switch 74, and supplies power to the general load. Generates an operation command to stop. Then, as shown in FIG. 10, the load power converter 51, which is a device other than the power supply system from the storage battery 912 and the solar panel 913 to the load devices 922 and 923, is stopped, and the load power converter 51, which is a device other than the power supply system, is stopped, and the switch 71 and the switch 74 are stopped. is opened and power supply to the general load is stopped (step S520).
  • step S430 the process moves to step S310, and the power generation status of the solar panel 913 is determined at any time.
  • Example of operation under different conditions an example of operation (operation control of the power converter) under different conditions when power generation of the solar panel 913 is stopped will be described.
  • the storage battery power converter 42, the load power converter 52, the load All power converters 53 are set to conduction mode.
  • the switching operation of the storage battery power converter 42 is turned on. to operate the power conversion.
  • the power conversion operation of the storage battery power converter 42 is controlled so that the voltage of the DC bus 8 becomes an output voltage (for example, 350 V DC) that falls within the operating voltage range of the important load.
  • the load power converter 52 and the load power converter 53 are set in the conduction mode, and the DC voltage (350 V in this example) of the DC bus 8 is supplied as is to the important load.
  • the storage battery power converter 42 is set to the voltage range of the common portion, and the load-side power converter 5 for the important loads is set to the conduction mode.
  • the power converter that can be used should be a device that can respond to changes in input voltage and/or fluctuate output voltage according to operation commands.
  • the combination may be selected based on a preset setting table, or the operation command generation unit 33 or the like may select or judge the combination based on information held in the device specification database 36 or the like. Good too.
  • the configuration of the DC power distribution system 1 according to the third embodiment is the same as that shown in FIG. 7 described in the second embodiment, there is a difference in the operation in the control unit 3, so it will be explained based on an operation example.
  • the storage battery 912 and the storage battery power converter 42 are basically selected to have a capacity that can supply sufficient power to important loads during self-sustaining operation. The capacity may not be sufficient to supply sufficient power.
  • the priority order for the DC load 92 is determined in more detail.
  • a second priority is given in which the DC load 92 classified as a general load is further assigned a priority according to the degree of importance. I set the ranking.
  • the voltage of the DC bus 8 is maintained using the storage battery power converter 42 and the PV power converter 43, but when the power consumption of the DC load 92 exceeds the supply capacity, The voltage of the DC bus 8 cannot be maintained and drops. Therefore, by detecting this voltage drop, it is possible to determine whether the power supply capacity is insufficient.
  • the lack of power supply capacity is determined using the measured value of the voltage of the DC bus 8 (DC bus voltage) that is always obtained from any of the power converters. Then, whether or not there is a shortage of power supply capacity is determined based on whether the DC bus voltage is lower than the voltage threshold Vth, and if it is determined that the power supply capacity is insufficient, the second priority is given until the power supply shortage is resolved.
  • the power supply to the DC loads 92 is sequentially stopped according to the order.
  • the priority order of the DC load 92 is that load equipment 922 and load equipment 923 are set as important loads, load equipment 921 and load equipment 924 are set as general loads, and as the second priority, load equipment 921 is set as load equipment 924. Suppose that it is higher rank.
  • the total power (power demand) consumed by the four DC loads 92 is assumed to be 80 kW (30 kW + 10 kW + 10 kW + 30 kW).
  • the solar panel 913 can supply 40 kW of power during power generation. Then, if 40 kW is supplied from the storage battery 912, the total (power supply amount) will be 80 kW (40 kW + 40 kW), which means that the power supply capacity is sufficient.
  • the operation mode determining unit 32 compares the DC bus voltage detected by the state detecting unit 31 with a voltage threshold Vth, and if the DC bus voltage is lower than the voltage threshold Vth, it is determined that the power supply is insufficient.
  • the operation command generation unit 33 generates an operation command to open the switch 74 in order to stop the power supply to the load device 924 at the lowest level in the second priority order, and the operation shifts to the operation shown in FIG. 15. .
  • the power supply shortage is resolved by disconnecting the load device 924, but if the shortage is not resolved, the power supply to the higher-order load device 921 will be stopped. be done. Note that if the power generation of the solar panel 913 is resumed and the power supply increases after this, the load equipment 921, the load equipment 924, and the upper DC load 92 will be You may also try connecting again.
  • the storage battery 912 and the storage battery power converter 42 that can sufficiently supply power to the important load are selected, but there may be cases where the power supply capacity of the storage battery 912 is insufficient for the important load. is assumed. However, in that case, the order of importance (third priority) is assigned among the important loads, and if the power supply capacity is insufficient as with general loads, the DC loads 92 are disconnected in order from the least important. Action is performed.
  • control unit 3 constituting the DC power distribution system 1 of the present application may be configured by one piece of hardware 30 including a processor 301 and a storage device 302, as shown in FIG.
  • the storage device 302 includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device such as a hard disk may be provided instead of the flash memory.
  • Processor 301 executes a program input from storage device 302. In this case, the program is input from the auxiliary storage device to the processor 301 via the volatile storage device. Further, the processor 301 may output data such as calculation results to a volatile storage device of the storage device 302, or may store data in an auxiliary storage device via the volatile storage device.
  • the control unit 3 selects the target for stopping the switching operation that maximizes the suppression of power consumption based on the specifications of the important load, the power converter connected to the important load, and the storage battery power converter 42. , the power consumption of the system itself can be suppressed to the maximum during autonomous operation.
  • the targets may be stored in advance as a table, or the adjustment allowance for the operating range, the consumption amount, etc. may be calculated from the specifications, and the targets may be selected so that the total consumption amount is minimized.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

主電源(911)からの供給が断たれた際、蓄電池(912)の充電状態に応じて複数の直流負荷(92)に通常通りに電力を供給する通常自立運転動作と、複数の直流負荷(92)のうち、優先順位の高い重要負荷に供給対象を限定する制限動作とを切り替え、制限動作において、負荷側電力変換器(5)のうち重要負荷に接続された電力変換器と蓄電池用電力変換器(42)の少なくともいずれかを、電力変換におけるスイッチング動作を停止して入力側と出力側とを導通させるように構成した。

Description

直流配電システム
 本願は、直流配電システムに関するものである。
 近年、停電時の対応および施設に供給される電力ピークシフト対応のために蓄電池の活用が拡大している。蓄電池の活用に用いられる電源システムとして、例えば、需要家へ直流電力を給配電する直流給配電システムが挙げられる。蓄電池をピークシフトおよび停電対応に用いる場合、ピークシフトにより蓄電池の電荷を放電しすぎた場合、停電時においてバックアップ電源としての機能を果たせなくなる場合がある。
 そこで、蓄電装置の残容量に応じた適切な電力配分を実現するため、優先順位の低い直流機器への電力供給時間は短く、優先順位の高い直流機器への電力供給時間は長く設定する直流配電システムが提案されている(例えば、特許文献1参照。)。すなわち、停電対応での自立運転時には、優先順位の低い直流機器から順に電力の供給が遮断され、優先順位の高い直流機器の動作継続時間をできる限り延長しようとするものである。
特開2011-83088号公報(段落0041~0047、図3~図4)
 しかしながら自立運転時に蓄電池から電力を供給する場合においても、複数の電力変換器を介して負荷へと電力を供給することになり、電源システムを構成する電力変換器の電力消費によって、想定よりも動作継続時間が短くなることがあった。
 本願は、上記のような課題を解決するための技術を開示するものであり、自立運転時におけるシステム自体の電力消費を抑制し、重要負荷への電力供給可能時間をより長くすることができる直流配電システムを得ることを目的とする。
 本願に開示される直流配電システムは、系統電力から直流電力として電力が供給される直流バス、前記直流バスと蓄電池の間に配置され、前記蓄電池の充放電のための電力変換を行う蓄電池用電力変換器、複数の直流負荷それぞれと前記直流バスとの間に設けられ、前記直流バスに供給された電力をそれぞれの仕様に応じた電圧の直流電力に変換して供給する複数の負荷側電力変換器、および前記蓄電池用電力変換器と前記複数の負荷側電力変換器とを連携制御する制御部を備え、前記制御部は、前記系統電力からの供給が断たれた際、前記蓄電池の充電状態に応じて前記複数の直流負荷に通常通りに電力を供給する通常自立運転動作と、前記複数の直流負荷のうち、優先順位の高い重要負荷に供給対象を限定する制限動作とを切り替え、前記制限動作において、前記負荷側電力変換器のうち前記重要負荷に接続された電力変換器と前記蓄電池用電力変換器のうち、スイッチング素子によるスイッチング動作で電力変換を行う電力変換器の少なくともいずれかを、前記スイッチング動作を停止して入力側と出力側とを導通させることを特徴とする。
 本願に開示される直流配電システムによれば、自立運転時においてシステム自体の電力消費を抑制できるので、蓄電池から重要負荷への電力供給可能時間をより長くすることができる直流配電システムを得ることができる。
実施の形態1にかかる直流配電システムの構成を説明するための電源と負荷との接続関係を示すブロック図である。 実施の形態1にかかる直流配電システムを構成する電力変換器の主回路を示す回路図である。 実施の形態1にかかる直流配電システムを構成する制御部のブロック図である。 実施の形態1にかかる直流配電システムにおいて、蓄電池の充電率に応じた動作域の設定を説明するための図である。 実施の形態1にかかる直流配電システムの動作を説明するためのフローチャートである。 実施の形態1にかかる直流配電システムにおいて、蓄電池の充電率に応じた変形例にかかる動作域の設定を説明するための図である。 実施の形態2にかかる直流配電システムの構成を説明するための電源と負荷との接続関係を示すブロック図である。 実施の形態2にかかる直流配電システムにおいて自立運転に移行した後の動作を説明するためのフローチャートである。 実施の形態2にかかる直流配電システムの動作例1を説明するためのブロック図である。 実施の形態2にかかる直流配電システムの動作例2を説明するためのブロック図である。 実施の形態2にかかる直流配電システムの動作例3を説明するためのブロック図である。 実施の形態2にかかる直流配電システムの動作例4を説明するためのブロック図である。 実施の形態2にかかる直流配電システムの動作例5を説明するためのブロック図である。 実施の形態3にかかる直流配電システムの動作例1を説明するためのブロック図である。 実施の形態3にかかる直流配電システムの動作例2を説明するためのブロック図である。 各実施の形態にかかる直流配電システムを構成する制御部のハードウエア構成例を示すブロック図である。
実施の形態1.
 図1~図5は、実施の形態1にかかる直流配電システムの構成、および動作について説明するためのものであり、図1は直流配電システムの構成を説明するための、電源と負荷との接続関係を示す模式的なブロック図、図2は直流配電システムを構成する複数の電力変換器のうち、蓄電池用電力変換器の主回路を示す回路図、図3は直流配電システムを構成する制御部のブロック図である。そして、図4は蓄電池の充電率に応じた動作モード毎の動作域の設定を説明するための図、図5は直流配電システムの動作を説明するためのフローチャートである。
 実施の形態1にかかる直流配電システム1は、図1に示すように主に直流バス8を中心に複数の電源側電力変換器4と負荷側電力変換器5が接続され、配電電力を制御する制御部3を備えている。また、当該システムの使用者、あるいはサーバ、エネルギーマネジメントシステム等で代表される上位の制御装置を介して、各種指令、各種設定値等の受信、計測情報の送信、表示を行うためのインタフェース回路2を備えている。
 本実施の形態では、主電源911は系統電力として交流系統を想定しているが、直流電源であってもよい。また、蓄電池912としてはリチウムイオン電池を想定しているが、鉛蓄電池など他の種類の蓄電池であってもよい。そして、主電源911と蓄電池912(まとめて電源91)から受電した電力を直流バス8でまとめ、それぞれの直流負荷92に適した直流電力に変換し配電するように構成している。
 電源側電力変換器4を構成する受電用電力変換器41と蓄電池用電力変換器42には、それぞれ主電源911と蓄電池912が接続されている。負荷側電力変換器5を構成する負荷用電力変換器51と負荷用電力変換器52には、それぞれ1つあるいは複数の負荷機器921、負荷機器922(まとめて直流負荷92)が接続されている。
 そして、主電源911と受電用電力変換器41との間、および蓄電池912と蓄電池用電力変換器42との間には、それぞれ投入と遮断の切り替え自在な開閉器61、開閉器62(まとめて電源側開閉器6)を介している。同様に、負荷用電力変換器51と負荷機器921との間、および負荷用電力変換器52と負荷機器922との間には、それぞれ投入と遮断の切り替え自在な開閉器71、開閉器72(まとめて負荷側開閉器7)を介している。
 電源側開閉器6、負荷側開閉器7には、外部指令を用いた投入と遮断の切り替え動作が可能である機器を使用し、制御部3から指令される遮断信号に応じて停電時における遮断を実施する。なお、復帰時に手動で投入するようにすれば、少なくとも外部指令に応じて遮断が可能な機器であればよい。また、開閉器の開閉状態については制御部3へと出力する場合がある。
 配電先の直流負荷92の種類は、例えば、照明負荷およびオフィスオートメーション機器等といった一般負荷、空調負荷等の動力負荷、サーバ等とIT機器負荷といったものがある。本実施の形態における直流配電システム1では、停電時における配電対象の優先順位として、直流負荷92が重要負荷であるか、一般負荷であるかに分類設定される。そのため、直流負荷92の重要度、および種類に応じて負荷側電力変換器5と直流負荷92との接続が振り分けられている。
 ここで、電力変換器の構成と特性について説明する。直流配電システム1の受電用電力変換器41は主にPWMコンバータ(Pulse Width Modulation Converter)などが用いられ、蓄電池用電力変換器42および負荷側電力変換器5では主にチョッパ回路といった直流電力変換器が用いられる。蓄電池用電力変換器42は、図2に示すように2つの半導体スイッチS1、S2(ここではIGBT:Insulated Gate Bipolar Transistor)を用いて構成される昇圧チョッパ回路を用いている。なお、図2では簡易化のため主回路部のみを図示しており、制御回路、センサ等の描画を省略している。
 この回路では半導体スイッチS1、S2を交互にONすることを繰り返すスイッチング動作により、蓄電池の直流電力をより電圧の高い直流電力に昇圧(電力変換)している。この半導体スイッチS1、S2のON/OFFを切り替えるスイッチング動作時に損失が発生することが一般的に知られている。そのため、蓄電池912の電圧から昇圧する必要がない場合、半導体スイッチS1を常にONにして導通状態にすることでスイッチング動作による損失を削減しつつ、入力と出力(蓄電池912と直流バス8間)を導通させることができる。
 この動作を導通モードと呼称する。そこで、本願の直流配電システム1では、動作状態に応じて導通モードを使用し、システム自体の電力消費による損失の低減を図るように構成した。なお、この導通モードに関しては、図2に示したような昇圧チョッパ回路に限らず、例えば降圧チョッパ、昇降圧チョッパ等のその他変換回路、あるいはPWMインバータ等でも同等の動作が実施できる。
 そして、導通モードにおいては、スイッチング動作による損失を削減しつつ、入力と出力を導通させることができるので、電力変換器の種別を問わず、電力消費を抑制できる。ただし、一部の電力変換器では導通モードと同等の動作ができない種類も存在するが、そういった電力変換器は導通モードの仕様対象にはしないとする。
 つぎに制御部3の構成について、連系電力が供給されている際の連系運転動作モードと停電時の自立運転動作モードとを切り替え制御するための一般的な構成部分と、上述した導通モードの動作を制御するための構成について図3を用いて説明する。モード切り替え制御のための構成として、システム内の各機器のセンサ部等からの情報に基づいて各機器の状態を検出する状態検出部31と、状態検出部31およびインタフェース回路2から取得した情報、または指令に基づいて動作モードを判定する動作モード判定部32を備えている。
 そして、上述した導通モードを実行するための構成として、動作モード判定部32と状態検出部31とインタフェース回路2からの情報、指令に基づいて各電力変換器への動作指令を生成する動作指令生成部33を備えている。また、蓄電池912の充電状態に応じた動作設定に用いる閾値等についての情報を保持する閾値データベース(図中DBと表記)34と、各直流負荷92の優先順位についての情報を保持する優先順位データベース35を備えている。さらに、各直流負荷92の動作電圧範囲、電力変換器の動作範囲等、機器の仕様についての情報を保持する機器仕様データベース36を備えている。なお、各電力変換器の動作指令については、出力電圧指令、および電力変換器の起動・停止に関わる信号、蓄電池912からの充放電電力指令等が含まれる。
 つぎに、本実施の形態1にかかる直流配電システム1の動作設定に関して、図4の蓄電池の充電状態(以下SoC(State of Charge)と称する)の変動に応じた動作モード毎の動作域の設定についての概念図を参考にして説明する。動作モードの判定と動作域の設定は、蓄電池912のSoC、主電源911と受電用電力変換器41の動作状態を元に制御部3にて判定される。
 動作モードについては、主電源911と蓄電池912から受電した電力を用いて直流負荷92に電力を供給する連系運転動作モードと、主電源911との連系がなく、蓄電池912からの電力のみで直流負荷92へ電力供給を実施する自立運転動作モードの2つに大きく分類される。
 連系運転動作モードでは、SoCが閾値Sth1以上か否かによって、蓄電池912からの充放電についての動作制限のない通常動作域と、蓄電池912からの放電を停止する準制限動作域が設定されている。自立運転動作モードでは、SoCが閾値Sth1以上か否かによって、複数の直流負荷92に通常通りの電力供給を実施する自立運転動作域と、予め重要負荷と定められた1つないし複数の限定された直流負荷92のみへの電力を供給する制限動作域が設定されている。
 また、いずれの動作モードに対しても、蓄電池912の保護のため、過充電による蓄電池912の寿命の減少を防止するための充電停止閾値Smaxと、過放電による蓄電池の寿命の減少を防止するための放電停止閾値Sminが別途設定されている。そして、充電停止閾値Smaxを超える領域は、蓄電池912への充電を停止する充電停止域に、放電停止閾値Sminを下回る領域は蓄電池912からの放電を停止する放電停止域に設定される。
 閾値Sth1は、予め重要度の高い直流負荷92の推定消費電力と電力供給時間より概算される必要電力量に基づいて設定される。例えば、蓄電池912を閾値Sth1から放電停止閾値Sminまで放電させたときに得られる電力量が必要電力量を上回るような値に設定され、充電停止閾値Smaxと放電停止閾値Sminとともに閾値データベース34に保持される。また、閾値Sth1はインタフェース回路2からリアルタイムで変更するように指示される場合がある。
 上記構成、および設定を前提として、直流配電システム1の動作について、図5のフローチャートを参考にして説明する。なお、ここでは、負荷機器921はサーバ等のIT機器負荷が接続されており、優先順位としては重要負荷と設定され、負荷機器922は照明等の一般負荷が接続されており、負荷の優先順位としては一般負荷として設定されると想定する。
 はじめに、状態検出部31が検出した主電源911および受電用電力変換器41の動作状態に基づいて、動作モード判定部32が動作モードの判定を行う(ステップS100~S110)。上述したように、主電源911と受電用電力変換器41が運転している場合は主電源911と蓄電池912から受電した電力を用いて直流負荷92に電力を供給する連系運転動作モードであると判定する。一方、主電源911の停電、あるいは受電用電力変換器41の故障時においては、蓄電池912のみで直流負荷92へ電力供給を実施する自立運転動作モードと判定する。
 連系運転モードであると判定した場合(ステップS120で「No」)、直流配電システム1は主に主電源911である交流系統より受電した電力を直流負荷92へと供給する連系運転動作をする(ステップS200)。その際、Socが充電停止閾値Smax以下、放電停止閾値Smin以上の範囲になるよう動作させる。そして、状況変化により自立運転モードと判定されるまで、Socに応じて蓄電池912からの充放電動作に制限のない通常動作域か、蓄電池912からの放電を停止する準制限動作域に切り替える連系動作制御を継続する。
 さらに連系運転動作時は上位制御装置、あるいはユーザーからの指令に応じてピークカット制御を実施する。ピークカット制御は、予め定められたピークカット指令と比べて受電電力が大きい場合に、蓄電池912から電力を放電し、受電電力を削減する制御を示す。また、ピークカット指令に対して受電電力が小さい場合は、蓄電池912への充電を実施する場合もある。ただし、この連系運転動作モードの動作は一般的な連系運転と同様であるため、詳細な説明は省略する。
 連系運転動作時においてピークカット制御のために蓄電池912の電力を消費しすぎた場合、自立運転動作において直流負荷92への電力供給継続時間が十分に確保できなくなる懸念がある。そのため、図4で示したように蓄電池912のSocが閾値Sth1を下回る場合、ピークカットのための蓄電池912の放電を制限する。この動作により、自立運転動作時における重要負荷への電力供給時間を確保する。
 一方、交流系統の停電、もしくは受電用電力変換器41に故障が生じ、自立運転モードと判定される(ステップS120で「Yes」)と、蓄電池912が主電源となり、直流負荷92への電力供給を実施する自立運転動作を実行する。連系運転動作から自立運転に移行した場合、蓄電池のSoCに基づいて図4で説明した動作域の判定を実施する。
 基本的に連系運転においては、SoCは放電停止閾値Smin以上、充電停止閾値Smax以下の範囲で動作しているので、自立運転への移行直後は、例えば、蓄電池912のSoCが閾値Sth1以上であるか否かを判定する(ステップS300)。閾値Sth1以上である場合(ステップS300で「Yes」)、蓄電池912から負荷機器921および負荷機器922へと全負荷供給が可能な自立運転動作域と判定し(ステップS600)、閾値Sth1を下回るまで自立運転動作を継続する。
 対して蓄電池912のSoCが閾値Sth1を下回る場合(ステップS300で「No」)、蓄電池912から重要度の高い重要負荷へのみ電力供給を実施する制限動作域と判定し、重要負荷にのみ電力を供給する(ステップS410~)動作制御を行う。そのため、動作指令生成部33は、優先順位データベース35に保持された、一般負荷か重要負荷かを判別するための優先順位情報に基づいて、電力供給対象として負荷機器921を選定する。
 さらに、蓄電池912から重要負荷(負荷機器921)に至る給電系統を構成する機器仕様情報に基づいて、給電系統内の少なくとも1台の電力変換器を導通モード動作の対象として選定し(ステップS410)、選定結果に基づいた動作指令を生成する。
 例えば、蓄電池912の出力電圧範囲、負荷機器921の動作範囲(電圧)、および蓄電池用電力変換器42と負荷用電力変換器51の動作特性に基づいて、最も消費電力を抑える動作構成として、蓄電池用電力変換器42を導通モードの対象として選定する。その際、負荷用電力変換器51には、蓄電池912から直流電力が直接供給されることにより入力電圧が変化するが、その変化を補償して負荷機器921への出力電圧を維持するための動作に関する指令(動作指令)も生成する。さらには、例えば、負荷用電力変換器52のように、上記給電系統以外の機器についても、動作を停止する動作指令を生成する。
 なお、負荷機器921の動作範囲が蓄電池912の出力電圧範囲内で、負荷機器921の効率に問題が生じない場合、蓄電池用電力変換器42に加え、負荷用電力変換器51も導通モードの対象としてもよい。あるいは、蓄電池用電力変換器42よりも負荷用電力変換器51を選定する方が消費電力の抑制効果が高い場合、負荷用電力変換器51のみを導通モードに選定してもよい。さらには、導通モードの選定に加え、出力電圧等の変更等、消費電力を抑制するための組み合わせを判定するようにしてもよい。
 動作指令生成部33からの動作指令をシステム内の機器が受信すると、蓄電池912から重要度の高い負荷機器921へ電力が限定供給され、少なくとも一つが導通モードで動作する制限に移行する(ステップS420)。この状態において、蓄電池912のSoCが放電停止閾値Sminを下回ると(ステップS430で「Yes」)、自立運転を停止し(ステップS430)、運転を終了する。
 つまり、制限動作域では、蓄電池912の電圧と重要度の高い直流負荷92への配電電圧に応じて蓄電池用電力変換器42もしくは負荷用電力変換器51の少なくとも一方のスイッチング動作を停止し、導通モードにて動作させる。この動作によりスイッチングにより発生する損失を低減することが可能であり、蓄電池912から負荷機器921への電力供給時に発生する損失を低減し、供給対象を単に限定した場合よりも電力供給時間の増加を図ることができる。
 なお、蓄電池用電力変換器42もしくは負荷用電力変換器51のどちらのスイッチング動作を停止するかについては予め設定するようにしてもよく、その情報を機器仕様データベース36等に保持するようにしてもよい。その場合も、蓄電池用電力変換器42と負荷用電力変換器51それぞれの損失特性と定格電圧、および蓄電池電圧と負荷機器921の定格電圧などの関係から、装置への負担および損失低減効果を鑑みて決定される。
変形例.
 図6は、変化例として連系運転動作時と自立運転動作時において、蓄電池の充電率に対して、それぞれ異なる閾値を設けた際の動作域の設定を説明するための図4に対応する図である。上記例では、連系運転動作時における準制限動作域へ移行する閾値と自立運転動作時における制限動作域へ移行する閾値として、同じ閾値Sth1を用いたがこれに限ることはない。図6に示すように連系運転動作時の閾値として、自立運転動作時の閾値Sth1とは異なる値の第二閾値Sth2を用いるようにしてもよい。
 異なる閾値を設定することで、重要負荷の継続時間に基づいて設定された閾値Sth1に縛られることなく、連系動作における最適な動作設定が可能になる。
実施の形態2.
 上記実施の形態1では、蓄電池と主電源のみで電源を構成した例を示したがこれに限ることはない。本実施の形態2では、太陽光パネルを加えて電源を構成した例について説明する。図7~図13は、実施の形態2にかかる直流配電システムの構成、および動作について説明するためのものであり、図7は直流配電システムの構成を説明するための、電源と負荷との接続関係を示す模式的なブロック図、図8は自立運転に移行した後の動作を説明するためのフローチャートである。
 そして、図9は動作例1として連系運転動作時の動作例を示す図7に対応するブロック図、図10は動作例2として太陽光パネルが発電しているときの自立運転動作時の動作例を示す図7に対応するブロック図、図11は動作例3として太陽光パネルの発電が停止しているときの自立運転動作時の動作例を示す図7に対応するブロック図である。また、図12、図13それぞれは動作例4、動作例5として、別の条件で太陽光パネルの発電が停止しているときの自立運転動作時の動作例を示す図7に対応するブロック図である。なお、制御部の基本構成、および自立運転動作における基本動作等について実施の形態1で説明した図2~図4を援用する。
 本実施の形態2にかかる直流配電システム1は、実施の形態1で説明した直流配電システム1の拡張例として、図7に示すように発電設備である太陽光パネル913を電源91として追加し、直流負荷92の種類を増加させたものである。太陽光パネル913は、開閉器63、PV用電力変換器43を介して直流バス8に接続している。直流負荷92としては、新たに負荷機器923と負荷機器924を追加し、負荷機器923は負荷用電力変換器53、開閉器73を介して直流バス8に接続し、負荷機器924は電力変換器を介さず、開閉器74を介して直流バス8に接続している。
 ここで、受電用電力変換器41を除く他の電力変換器は、機器の電圧に合わせて直流電力の昇圧もしくは降圧のどちらかの機能を有するとする。そして、図9に示すように入力形態と電圧の異なる複数の電源91から得られた電力を、複数の直流負荷92それぞれに電圧の異なる直流電圧を給電しているとする。
 例えば、電源側電力変換器4は交流400V、蓄電池用電力変換器42は直流400V、PV用電力変換器43は直流350Vとそれぞれ入力電力の形態と電圧が異なっているが、直流バス8に対して同じ750Vの直流電力を出力するように設定している。同様に、負荷側電力変換器5は同じ直流750Vで入力されるが、負荷用電力変換器51は直流600V、負荷用電力変換器52は直流380V、負荷用電力変換器53は直流282Vと、それぞれ異なる電圧の直流電力を出力するように設定されている。そして、本実施の形態2では直流負荷92の優先順位として負荷機器921と負荷機器924が一般負荷、負荷機器922と負荷機器923が重要負荷に設定されているとする。
 つぎに、本実施の形態2にかかる直流配電システム1の動作について説明する。太陽光パネル913およびPV用電力変換器43の動作は、基本的に太陽光パネル913から発電される電力を最大化する最大電力点追従制御動作(以下、MPPT(Maximum Power Point Tracking)制御と称する)を実施し、動作モードによらず発電を継続する。ただし、夜間等の時間帯、および雨天等の天候状況によって発電が期待できない場合は、スケジュール機能もしくは上位制御装置等により停止するように指令される。
 制限動作域において、予め定められた直流負荷92の優先順位において一般負荷に分類される直流負荷92への電力供給を停止する点に変更はないが、導通モードの使用の有無については、太陽光パネル913からの発電が可能であるか否かによって判断される。基本的にPV用電力変換器43を介した太陽光パネル913からの発電電力が、導通モードへの変換により抑制される電力よりも十分に大きいため、導通モードの使用よりもPV用電力変換器43を運転継続することが優先されるからである。
 本実施の形態2では、基本的には太陽光パネル913およびPV用電力変換器43の状況に応じた動作を除けば、実施の形態1で説明した動作と同様の動作を実施する。しかし、制限動作域における動作に差異があるため図8のフローチャートを参考にして、ステップS300以降の動作について説明する。つまり、交流系統で停電が発生し、自立運転移行後に蓄電池912の放電が進み、SoCが閾値Sth1を下回り、制限域に移行した場合の動作について説明する。
 制限動作域と判断すると(ステップS300で「No」)、例えば状態検出部31は、PV用電力変換器43の動作状態、日照に関わる時間情報といった太陽光パネル913の発電状況を示す情報、および負荷の状態を示す情報(配電電圧)を収集する。そして、太陽光パネル913から上述した導通モードへの変換によって抑制される電力を上回る電力が得られるか否か、つまり太陽光パネル913から有効な発電が可能であるか否かを判断する(ステップS310)。その際、現時点での発電量が高い場合であっても、日没に近い時間等、発電継続時間が短いと判断した場合は、発電不可と判断するようにしてもよい。
 時間が昼間等で太陽光パネル913の発電が続いている状況においては、動作モード判定部32は、太陽光パネル913からの発電電力が十分にある、つまり発電可能と判断する(ステップS320で「Yes」)。動作指令生成部33は、優先順位データベース35に保持された、一般負荷か重要負荷かを判別するための優先順位情報に基づいて、電力供給対象として負荷機器922、負荷機器923を選定する(ステップS510)。
 選定結果に応じて動作指令生成部33は、重要負荷に至る給電系統以外の機器である負荷用電力変換器51を停止し、開閉器71と開閉器74を開放して一般負荷への電力供給を停止するための動作指令を生成する。すると、図10に示すように、蓄電池912と太陽光パネル913から負荷機器922と負荷機器923に至る給電系統以外の機器である負荷用電力変換器51を停止し、開閉器71と開閉器74を開放して一般負荷への電力供給が停止する(ステップS520)。
 そして、蓄電池912のSoCが放電停止閾値Sminを下回るまで(ステップS430で「No])は、ステップS310へ移行し、太陽光パネル913の発電状況を随時判断するようにする。
 一方、太陽光パネル913からの発電電力が不十分、つまり発電不可と判断すると(ステップS320で「No」)、実施の形態1で説明した制限動作域の動作(ステップS410)に移行する。そして、図11に示すように、一般負荷(負荷機器921、負荷機器924)への電力供給を停止するとともに、予め設定された設定テーブルを元に蓄電池用電力変換器42の動作を導通モードへと移行し、損失の低減を図る。なお、蓄電池用電力変換器42の動作を導通モードへ移行する際に直流バス8の電圧が急変しないように動作移行する制御が実施される。
 別条件での動作例.
 ここで、太陽光パネル913の発電が停止した場合において、別の条件での動作例(電力変換器の動作制御)について説明する。図12に示すように蓄電池電圧が重要負荷(負荷機器922、負荷機器923)の動作電圧範囲に収まる条件(例えば、直流350V)では、蓄電池用電力変換器42、負荷用電力変換器52、負荷用電力変換器53をすべて導通モードにする。
 一方、図13に示すように、蓄電池電圧が重要負荷(負荷機器922、負荷機器923)の動作電圧範囲よりも低い条件(例えば、直流320V)では、蓄電池用電力変換器42のスイッチング動作をオンにして電力変換動作させる。その際、直流バス8の電圧が、重要負荷の動作電圧範囲に収まる出力電圧(例えば、直流350V)となるように蓄電池用電力変換器42の電力変換動作を制御する。そして、負荷用電力変換器52と負荷用電力変換器53は導通モードにし、直流バス8の直流電圧(本例では350V)がそのまま重要負荷に供給される。
 本実施の形態2のように、直流負荷92の台数の増加および太陽光パネル913等の発電設備の追加がある場合、太陽光パネル913の発電電力を十分に活用しつつ、一般負荷への供給停止、および電力変換器の動作台数を最小にすることでの損失を低減できる。これにより、単に一般負荷への供給を停止する場合よりも、蓄電池912から重要負荷への電力供給可能時間をより長くすることができる。
 とくに、別条件における動作例として図12で説明した動作例4では、蓄電池912から重要負荷に至るまでの電力変換器を2段とも導通モードにすることで変換損失を抑えている。また、図11で説明した条件においても、蓄電池912の電圧(本例では400V)で重要負荷の動作が可能であれば、さらに蓄電池用電力変換器42も導通モードに設定してもよい。
 一方、図13で説明した動作例5では、蓄電池912から重要負荷に至るまでの2段の電力変換器のうち、1段を導通モードにすることで、図11で説明した動作例3と同等の効果(変換損失の削減)が期待できる。
なお、本実施の形態では、図7のような構成を示したが、さらなる負荷機器の追加、電源においても燃料電池のような発電設備、蓄電池として利用する電気自動車等の追加をしても同様の効果が得られることは言うまでもない。
 さらには、例えば、複数の重要負荷の動作電圧範囲に重なる領域がある場合、蓄電池用電力変換器42を共通部分の電圧域に設定し、重要負荷用の負荷側電力変換器5を導通モードにすることで、スイッチング対象の台数を低減するようにしてもよい。ただし、対象となりうる電力変換器には、動作指令に応じて入力電圧の変化への対応、および出力電圧の変動の少なくともいずれかが可能な機器を用いるようにする。
 いずれの場合でも、直流負荷92およびシステム内の機器(とくに電力変換器)への過剰な負担がなく、消費電力の抑制効果を得られる組み合わせを選定できるようにすればよい。その際、予め設定された設定テーブルを元に組み合わせを選定してもよいし、機器仕様データベース36等に保持された情報に基づいて、動作指令生成部33等が選定、または判断するようにしてもよい。
実施の形態3.
 本実施の形態3においては、上述した実施の形態1あるいは実施の形態2の構成と動作を前提とし、自立運転モードで全負荷供給する場合の電力振り分けに関する構成と動作について説明する。図14と図15は、実施の形態3にかかる直流配電システムの構成、および動作について説明するためのものであり、図14は動作例1として自立運転動作域において、全負荷に電力を振り分けた状態を示す実施の形態2の図7に対応するブロック図、図15は動作例2として自立運転動作域において、直流バスの電圧低下を回避するための負荷への供給を停止した状態を示す実施の形態2の図7に対応するブロック図である。なお、実施の形態1および2で用いた図2~図4、および図7~図10を援用する。
 実施の形態3にかかる直流配電システム1の構成は実施の形態2で説明した図7と同様であるが、制御部3おける動作に差異があるため、動作例に基づいて説明する。蓄電池912および蓄電池用電力変換器42には、基本的には自立運転動作時において重要負荷へ十分な電力を供給できる容量のものが選定されるが、コストの問題によりすべての直流負荷92への十分な電力を供給できる容量ではない場合がある。
 本実施の形態3においては、全負荷供給モードにおいて電力供給能力が足りなくなるような場合に対処するため、直流負荷92への優先順位をより詳細に決定するようにした。そして、直流負荷92の優先順位として、実施の形態2と同様の重要負荷か一般負荷かの分類に加え、一般負荷に分類された直流負荷92を重要度に応じてさらに順位を割り振る第二優先順位を設定するようにした。
 ここで、電力供給能力の不足の判定については、各電力変換器からの出力電力情報を用いて判断することが望ましい。これは、自立運転動作域においては蓄電池用電力変換器42およびPV用電力変換器43を用いて、直流バス8の電圧を維持するが、直流負荷92の消費電力が供給能力を超過した場合、直流バス8の電圧が維持できず低下する。そのため、この電圧低下を検出することで、電力供給能力の不足を判定することができるからである。
 ただし、電力変換器すべてに電力計測可能なセンサを実装することは現実的ではない。そのため、本実施の形態3においては、いずれかの電力変換器で必ず得られる直流バス8の電圧(直流バス電圧)の計測値を用いて電力供給能力の不足を判定するようにした。そして、直流バス電圧が電圧閾値Vthを下回るか否かで、電力供給能力の不足の有無を判定するようにし、電力供給能力が不足と判定した場合、電力供給不足が解消されるまで第二優先順位に従って直流負荷92への電力供給を順次停止するようにした。
 例えば、蓄電池912の最大電力供給能力が50kWであるとする。また、直流負荷92の優先順位は負荷機器922および負荷機器923が重要負荷に、負荷機器921および負荷機器924が一般負荷に設定され、第二優先順位として、負荷機器921の方が負荷機器924より上位であるとする。
 そして自立運転モードで自立運転動作域において、図14に示すように、4つの直流負荷92が消費する総電力(電力需要量)が80kW(30kW+10kW+10kW+30kW)であるとする。それに対し、太陽光パネル913からは発電中に40kWの電力供給が可能であるとする。すると、蓄電池912から40kW分を供給させれば合計(電力供給量)が80kW(40kW+40kW)になり、電力供給能力は十分にあることになる。
 この太陽光パネル913が発電できている状況から時間が進んで夜間等になり、太陽光パネル913からの発電が停止した場合、蓄電池912から最大の50kWの電力を供給させたとしても電力供給量が不足し、直流バス電圧が低下する。例えば、動作モード判定部32において、状態検出部31が検出した直流バス電圧と電圧閾値Vthとを比較し、電圧閾値Vthを下回っていた場合、電力供給不足であると判定される。
 すると、動作指令生成部33において、第二優先順位における最下位の負荷機器924への電力供給を停止するため、開閉器74を開放させる動作指令が生成され、図15に示す動作へと推移する。なお、図15に示す第2動作例では、負荷機器924を解列することで電力供給量の不足が解消されたが、もし不足が解消されない場合はさらに上位の負荷機器921の電力供給が停止される。なお、この後再度、太陽光パネル913の発電が再開され電力供給量が増加した場合、ユーザーからの入力、あるいは上位制御装置からの指令によって負荷機器921、負荷機器924と上位の直流負荷92から再度接続するようにしてもよい。
 なお、本例では、重要負荷への電力供給が十分に達成できる蓄電池912と蓄電池用電力変換器42が選定されるとしたが、重要負荷に対して蓄電池912の電力供給能力が不足する場合も想定される。しかし、その場合においては重要負荷のなかで重要度の順番(第三優先順位)が割り振られ、一般負荷と同様に電力供給能力が不足した場合、重要度の低い直流負荷92から順に解列する動作が実施される。
 このように、自立運転動作時において電源91からの電力供給能力が不足し、すべての直流負荷92への電力供給することが難しい場合でも、第二優先順位または第三優先順位が下位の直流負荷92から解列していくことにより、電力供給を継続することができる。
 なお、本願の直流配電システム1を構成する制御部3は、図16に示すようにプロセッサ301と記憶装置302を備えた一つのハードウエア30によって構成することも考えられる。記憶装置302は、図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ301は、記憶装置302から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ301にプログラムが入力される。また、プロセッサ301は、演算結果等のデータを記憶装置302の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 さらに、本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 例えば、負荷側電力変換器5は、それぞれ異なる直流電圧に変換する例を示したがこれに限ることはなく、同じ電圧に変換する複数の負荷側電力変換器5があってもよく、優先順位が同であっても、違っていてもよい。また、系統電力である主電源911が直流電源の場合、その電圧が直流バス8に求められる電圧と実質的に一致する場合には、受電用電力変換器41を省略することも可能である。
 以上のように、本願の直流配電システム1によれば、系統電力(主電源911)から(直接、あるいは受電用電力変換器41を介して)直流電力として電力が供給される直流バス8、直流バス8と蓄電池912の間に配置され、蓄電池912の充放電のための電力変換を行う蓄電池用電力変換器42、複数の直流負荷92それぞれと直流バス8との間に設けられ、直流バス8に供給された電力をそれぞれの仕様に応じた電圧の直流電力に変換して供給する複数の負荷側電力変換器5、および蓄電池用電力変換器42と複数の負荷側電力変換器5とを連携制御する制御部3を備え、制御部3は、系統電力(主電源911、受電用電力変換器41)からの供給が断たれた際、蓄電池912の充電状態に応じて複数の直流負荷92に通常通りに電力を供給する通常自立運転動作と、複数の直流負荷92のうち、優先順位の高い重要負荷に供給対象を限定する制限動作とを切り替え、制限動作において、負荷側電力変換器5のうち重要負荷に接続された電力変換器と蓄電池用電力変換器42のうち、スイッチング素子S1、S2によるスイッチング動作で電力変換を行う電力変換器の少なくともいずれかを、スイッチング動作を停止して入力側と出力側とを導通させるように構成した。これにより、スイッチング動作による電力消費の削減によって、自立運転時においてシステム自体の電力消費を抑制できるので、蓄電池912から重要負荷への電力供給可能時間をより長くすることができる。
 制御部3は、蓄電池912の充電状態が閾値Sth1を下回ると通常自立運転動作から制限動作に切り替えるので、蓄電池912の容量を最大限に利用して重要負荷の運転時間を必要な時間まで継続させることができる。また、導通を実行しない場合と比べて、閾値Sth1を低く設定できるので、通常自立運転動作の時間も延ばすことができる。
 制御部3は、重要負荷と重要負荷に接続された電力変換器と蓄電池用電力変換器42の仕様に基づいて、消費電力の抑制が最大となるスイッチング動作の停止対象を選定するようにすれば、自立運転時においてシステム自体の電力消費を最大限に抑制できる。この場合、対象を予めテーブルとして記憶していてもよいし、仕様から動作範囲の調整代、消費量等を演算して、総消費量が最小となるように対象を選定してもよい。
 直流バス8に電力供給を行う追加電源(例えば、太陽光パネル913)を備え、制御部3は、制限動作において、追加電源からの電力供給がある間は、スイッチング動作の停止による導通を解除するようにすれば、追加電源からの電力を有効利用して、重要負荷の運転時間をより延長できる。
 その際、制御部3は、通常自立運転動作において、蓄電池912および追加電源からの電力供給量が複数の直流負荷92の電力需要量に対して不足している場合、電力需要量が電力供給量以下になるまで、複数の直流負荷92のうち、優先順位の低い負荷から解列するようにすれば、系統電力が断たれた場合にも自立運転動作を継続することができる。
 さらにその際、制御部3は、直流バス8の電圧に基づいて、電力供給量が電力需要量に対して不足しているか否かを判断するようにすれば、過剰なセンサを搭載することなく、上記制御が可能になる。
 1:直流配電システム、 2:インタフェース回路、 3:制御部、 31:状態検出部、 32:動作モード判定部、 33:動作指令生成部、 34:閾値データベース、 35:優先順位データベース、 36:機器仕様データベース、 4:電源側電力変換器、 42:蓄電池用電力変換器、 5:負荷側電力変換器、 6:電源側開閉器、 7:負荷側開閉器、 8:直流バス、 91:電源、 911:主電源(系統電力)、 912:蓄電池、 913:太陽光パネル(追加電源)、 92:直流負荷、 Smax:充電停止閾値、 Smin:放電停止閾値、 Sth1:閾値、 Vth:電圧閾値。

Claims (6)

  1.  系統電力から直流電力として電力が供給される直流バス、
     前記直流バスと蓄電池の間に配置され、前記蓄電池の充放電のための電力変換を行う蓄電池用電力変換器、
     複数の直流負荷それぞれと前記直流バスとの間に設けられ、前記直流バスに供給された電力をそれぞれの仕様に応じた電圧の直流電力に変換して供給する複数の負荷側電力変換器、および
     前記蓄電池用電力変換器と前記複数の負荷側電力変換器とを連携制御する制御部を備え、
     前記制御部は、
     前記系統電力からの供給が断たれた際、前記蓄電池の充電状態に応じて前記複数の直流負荷に通常通りに電力を供給する通常自立運転動作と、前記複数の直流負荷のうち、優先順位の高い重要負荷に供給対象を限定する制限動作とを切り替え、
     前記制限動作において、前記負荷側電力変換器のうち前記重要負荷に接続された電力変換器と前記蓄電池用電力変換器のうち、スイッチング素子によるスイッチング動作で電力変換を行う電力変換器の少なくともいずれかを、前記スイッチング動作を停止して入力側と出力側とを導通させることを特徴とする直流配電システム。
  2.  前記制御部は、前記蓄電池の充電状態が閾値を下回ると前記通常自立運転動作から前記制限動作に切り替えることを特徴とする請求項1に記載の直流配電システム。
  3.  前記制御部は、前記重要負荷と前記重要負荷に接続された電力変換器と前記蓄電池用電力変換器の仕様に基づいて、消費電力の抑制が最大となる前記スイッチング動作の停止対象を選定することを特徴とする請求項1または2に記載の直流配電システム。
  4.  前記直流バスに電力供給を行う追加電源を備え、
     前記制御部は、前記制限動作において、前記追加電源からの電力供給がある間は、前記スイッチング動作の停止による前記導通を解除することを特徴とする請求項1から3のいずれか1項に記載の直流配電システム。
  5.  前記制御部は、前記通常自立運転動作において、前記蓄電池および前記追加電源からの電力供給量が前記複数の直流負荷の電力需要量に対して不足している場合、前記電力需要量が前記電力供給量以下になるまで、前記複数の直流負荷のうち、優先順位の低い負荷から解列することを特徴とする請求項4に記載の直流配電システム。
  6.  前記制御部は、前記直流バスの電圧に基づいて、前記電力供給量が前記電力需要量に対して不足しているか否かを判断することを特徴とする請求項5に記載の直流配電システム。
PCT/JP2022/010573 2022-03-10 2022-03-10 直流配電システム WO2023170860A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/010573 WO2023170860A1 (ja) 2022-03-10 2022-03-10 直流配電システム
JP2024505755A JP7577243B2 (ja) 2022-03-10 直流配電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010573 WO2023170860A1 (ja) 2022-03-10 2022-03-10 直流配電システム

Publications (1)

Publication Number Publication Date
WO2023170860A1 true WO2023170860A1 (ja) 2023-09-14

Family

ID=87936370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010573 WO2023170860A1 (ja) 2022-03-10 2022-03-10 直流配電システム

Country Status (1)

Country Link
WO (1) WO2023170860A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125038A (ja) * 1990-09-13 1992-04-24 Toshiba Corp 直流無停電電源装置
JP2011083088A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 直流配電システム
JP2012120414A (ja) * 2010-12-03 2012-06-21 Ntt Facilities Inc 直流給電システム及び双方向電力変換装置
JP2012228027A (ja) * 2011-04-18 2012-11-15 Sharp Corp 直流給電システムおよびその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125038A (ja) * 1990-09-13 1992-04-24 Toshiba Corp 直流無停電電源装置
JP2011083088A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 直流配電システム
JP2012120414A (ja) * 2010-12-03 2012-06-21 Ntt Facilities Inc 直流給電システム及び双方向電力変換装置
JP2012228027A (ja) * 2011-04-18 2012-11-15 Sharp Corp 直流給電システムおよびその制御方法

Also Published As

Publication number Publication date
JPWO2023170860A1 (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2012057032A1 (ja) 直流給電システム
WO2012049965A1 (ja) 電力管理システム
EP2337184A2 (en) Grid-connected energy storage system and method of controlling grid-connected energy storage system
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
WO2012128252A1 (ja) 蓄電システム
WO2020161765A1 (ja) 直流給電システム
JP2008131736A (ja) 分散型電源システムと昇降圧チョッパ装置
US20150207322A1 (en) Power Supply System
JP2015195674A (ja) 蓄電池集合体制御システム
JP2007028735A (ja) 分散電源システム及び方法
JPH09191565A (ja) 直流配電システム
WO2012050180A1 (ja) 優先回路及び電力供給システム
JP2012175864A (ja) 蓄電システム
KR101380530B1 (ko) 계통 연계형 에너지 저장 시스템
JP5841279B2 (ja) 電力充電供給装置
CN104501333A (zh) 离网式光伏空调系统及其供电控制方法
JP2017118598A (ja) 電力供給システム
JP7089960B2 (ja) パワーコンディショナおよび蓄電システム
WO2024131045A1 (zh) 光伏设备以及提升光伏设备的光伏利用率的方法
WO2023170860A1 (ja) 直流配電システム
JP5477744B2 (ja) 自家用発電システム
KR20150111638A (ko) 계통 연계형 시스템에서의 고효율 배터리 충방전 시스템 및 방법
JP2018170933A (ja) 電力変換装置、電力変換システム
JP7577243B2 (ja) 直流配電システム
JP6677186B2 (ja) 直流給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024505755

Country of ref document: JP