WO2023168901A1 - 雾化芯、雾化模块、气雾弹和雾化芯的制造方法 - Google Patents

雾化芯、雾化模块、气雾弹和雾化芯的制造方法 Download PDF

Info

Publication number
WO2023168901A1
WO2023168901A1 PCT/CN2022/110970 CN2022110970W WO2023168901A1 WO 2023168901 A1 WO2023168901 A1 WO 2023168901A1 CN 2022110970 W CN2022110970 W CN 2022110970W WO 2023168901 A1 WO2023168901 A1 WO 2023168901A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
atomization
liquid
heating element
mesh heating
Prior art date
Application number
PCT/CN2022/110970
Other languages
English (en)
French (fr)
Inventor
周兴夫
沈立夫
姜林君
Original Assignee
迈博高分子材料(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈博高分子材料(宁波)有限公司 filed Critical 迈博高分子材料(宁波)有限公司
Publication of WO2023168901A1 publication Critical patent/WO2023168901A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture

Definitions

  • the invention relates to an atomization core, an atomization module, an aerosol bomb and a manufacturing method of the atomization core, and in particular to an atomization core, atomization module, etc. used in application fields such as electronic cigarettes, aromatherapy, and pharmaceutical solution atomization. Manufacturing method of aerosol bomb and atomizing core.
  • the atomizer core is a key component of electronic atomization.
  • the atomizer core usually includes an atomizer core liquid guide element and a heating element.
  • Common atomization core liquid-conducting components include non-woven fabrics, fiber bundles and porous ceramics.
  • the fiber bundles are made of cellulose-containing fibers such as cotton fiber and hemp fiber, or carbon fiber, glass fiber, ceramic fiber, etc.
  • Sintered porous ceramics It has a fixed shape and high strength, making it easy to install, but porous ceramics have strong selective adsorption and poor aroma reduction properties. In addition, ceramic particles are easy to fall off, posing potential health risks to users.
  • Atomizing cores that use non-woven fabrics, cotton fibers, and hemp fibers as the liquid-conducting elements of the atomizing core are safe and have high aroma reduction properties.
  • resistance wires are usually made into spiral heating elements and Surrounded by the outer peripheral surface of the liquid guide element of the atomization core, the two ends of the spiral heating element form pins for connection to the power supply. Since the spiral resistance wire covers a small proportion of the surface of the liquid guide element of the atomization core, the atomized particles are large. , the taste is less delicate and fuller, and this kind of atomizer core has low strength, poor shape and dimensional stability, and difficult pin alignment during automated installation.
  • the present invention proposes an atomizing core.
  • the atomizing core includes an atomizing core liquid guide element and a mesh heating element.
  • the mesh heating element surrounds the atomizing element in a 360-degree manner. Cover the outer peripheral surface of the liquid guide element of the atomization core, and/or adhere to the inner peripheral surface of the liquid guide element of the atomization core in a 360-degree surrounding manner.
  • the mesh-shaped heating element is partially embedded in the outer peripheral surface of the liquid-guiding element of the atomization core, and/or the mesh-shaped heating element is partially embedded in the inner peripheral surface of the liquid-guiding element in the atomization core.
  • the mesh heating element is formed by braiding or cross-winding resistance wires.
  • the mesh heating element includes at least one left-hand resistance wire and at least one right-hand resistance wire.
  • the resistance wires of the mesh heating element include warp resistance wires and weft resistance wires.
  • the mesh heating element includes at least two left-hand resistance wires or right-hand resistance wires with different pitches.
  • the mesh heating element includes at least one resistance wire, and the one resistance wire includes a left-hand resistance wire and a right-hand resistance wire, and the left-hand resistance wire and the right-hand resistance wire are braided or cross-wound to form a mesh. shape.
  • the atomization core includes more than two layers of mesh heating elements.
  • the mesh heating element and the atomizing core liquid guide element are formed separately.
  • the mesh heating element and the atomizing core liquid guide element are integrally formed.
  • the material of the liquid-conducting element of the atomization core includes cellulose-containing fibers or powders, carbon fibers, glass fibers, ceramic fibers and porous ceramics.
  • the mesh heating element is formed by etching, punching, or welding resistance material.
  • the weight per meter of the liquid-conducting element of the atomization core is 1.0 to 6.0 grams.
  • the resistance wire has a wire diameter of 10 to 150 microns.
  • the resistance of the atomization core is 0.2 to 2.0 ohms.
  • the number of resistance wires of the mesh heating element is 4 to 36.
  • the number of mesh holes in the axial length of the mesh heating element is 25.4 mm, ranging from 20 to 300.
  • the axial length of the mesh heating element and the axial length of the liquid guide element of the atomizing core are substantially equal.
  • the mesh heating element includes at least two zigzag-shaped resistance wires.
  • the atomizing core further includes an electrode, which is parallel to the axial direction of the mesh heating element and connected to the mesh heating element.
  • the present invention also provides an atomization module, which at least includes the atomization core described in any one of the above.
  • the atomization module includes an electrode and an electrode card interface provided at one end of the electrode, and the electrode card interface is connected to the mesh heating element.
  • the atomization module includes an electrode and an electrode plug-in part provided at one end of the electrode.
  • the electrode plug-in part is inserted into the through hole of the liquid conduction element of the atomization core and connected to the mesh heating element.
  • the atomization module also includes a gas-liquid exchange element.
  • the present invention also provides an aerosol bomb, which includes a liquid storage element and any of the atomization modules described above.
  • the atomization core is directly connected to the liquid in the liquid storage element.
  • the atomization module includes a gas-liquid exchange element
  • the gas-liquid exchange element is used to transfer liquid to the liquid guide element of the atomization core
  • the atomization core passes through the gas-liquid exchange element and the liquid storage element. Liquid connection.
  • the mesh heating element is attached to the inner peripheral surface of the liquid guide element of the atomization core in a 360-degree surrounding manner, the outer peripheral surface of the liquid guide element of the atomization core is in contact with the liquid in the liquid storage element. Connected.
  • the outer peripheral surface of the atomizing core liquid conducting element is covered with a hollow metal tube, and the outer peripheral surface of the atomizing core liquid conducting element communicates with the liquid in the liquid storage element through the hollow metal tube.
  • the aerosol bomb also includes an aerosol channel.
  • the atomization core liquid guide element has a atomization core liquid guide element through hole that axially penetrates the atomization core liquid guide element, the atomization core liquid guide element The angle between the through hole of the liquid conducting element and the aerosol channel is greater than or equal to 45 degrees and less than or equal to 135 degrees.
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • the resistance wires are braided or cross-wound to form a mesh heating element that covers the outer circumferential surface of the atomization core liquid-conducting element in a 360-degree surrounding manner; wherein at least a part of the resistance wires is controlled to spirally wrap in a manner to form a right-handed resistance wire.
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • the resistance wires are braided or cross-wound to form a mesh heating element that covers the outer circumferential surface of the liquid guide element of the atomization core in a 360-degree circle; wherein at least one of the resistance wires is controlled to spirally cover the mist with a first pitch.
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • the resistance wires are braided or cross-wound to form a mesh heating element that covers the outer circumferential surface of the auxiliary core in a 360-degree surround; wherein at least a part of the resistance wires is controlled to form a right-handed
  • the resistance wire is spirally wrapped on the outer peripheral surface of the auxiliary core body, and at least a part of the resistance wire is controlled to form a left-handed resistance wire and is spirally wrapped on the outer peripheral surface of the auxiliary core body;
  • the atomizing core liquid-conducting element on the outer periphery of the mesh heating element, such as with woven fabric or non-woven fabric, or coat the outer periphery of the mesh heating element with cellulose fiber slurry and then dry;
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • Left-hand resistance wire and right-hand resistance wire are braided or cross-wound to form a mesh heating element.
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • a certain number of resistance wires are braided or cross-wound to form the first layer of mesh heating element that covers the outer peripheral surface of the liquid conduction element of the atomizer core in a 360-degree surround;
  • a certain number of resistance wires are braided or cross-wound to form a second layer of mesh heating elements that covers the outer peripheral surface of the first layer of mesh heating elements in a 360-degree surround;
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • the resistance wire is braided or cross-wound on an auxiliary core to form a mesh heating element.
  • the auxiliary core can be made of metal or plastic;
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • the resistance wire is braided or cross-wound on an auxiliary core to form a two-layer mesh structure, and after cutting, the auxiliary core is taken out to make a mesh heating element; or the resistance wire is braided or cross-wound into a long strip of heating element, and the auxiliary core is cut and made into a long strip. mesh heating element;
  • the atomization core is made by placing a mesh heating element outside the atomizing core liquid-guiding element; or the mesh heating element is placed outside the atomizing core liquid-guiding element to form an atomization core.
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • Resistance wire is braided or cross-wound into a long strip of mesh heating element
  • the invention also provides a method for manufacturing an atomizing core, which includes the following steps:
  • the resistance wires are braided or cross-wound to form a mesh heating element that covers the outer circumferential surface of the atomization core liquid guide element in a 360-degree surround; wherein at least two of the folded-line resistance wires are controlled to bend at adjacent interlocking to form a mesh and cover the outer peripheral surface of the liquid guide element of the atomization core;
  • the atomizing core of the present invention includes a mesh heating element that surrounds the outer or inner peripheral surface of the liquid guide element of the atomizing core at 360 degrees.
  • the atomizing core has better strength and shape stability; the mesh heating element that surrounds the atomizing core at 360 degrees
  • the heat generated can be more evenly distributed on the surface of the liquid guide element of the atomization core and more fully atomize the liquid on the liquid guide element of the atomization core, making the atomization more stable and reliable, and the taste more delicate and full.
  • the traditional atomizer core that uses a spiral heating element and has pins has poor shape stability, difficulty in controlling pin alignment during installation, and low assembly efficiency.
  • the atomizing core of the present invention since the mesh heating element surrounds the outer or inner peripheral surface of the liquid conduction element of the atomizing core at 360 degrees, the atomizing core does not require pins, so that the electrodes can contact the outer peripheral wall of the mesh heating element from any direction. Or the inner peripheral wall is conducive to the efficient assembly of the atomizer core in the aerosol bomb.
  • the atomizing cores of the existing technology usually need to be produced one by one, and the production efficiency is low.
  • the atomizing core of the present invention can continuously produce and harvest atomizing core coils, has high production efficiency, and can facilitate the storage and transportation of the atomizing core, so it can significantly reduce the cost of the atomizing core.
  • the atomizing core of the present invention has low cost, good atomization adequacy, and delicate and full taste.
  • the atomization of the aerosol bomb using this atomizing core is stable and reliable, with small individual differences and good user experience.
  • Figure 1 is a schematic structural diagram of a first atomizing core according to a first embodiment of the present invention
  • Figure 2 is a schematic structural diagram of the second atomizing core according to the first embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a first mesh heating element according to a first embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a second mesh heating element according to the first embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a third mesh heating element according to the first embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a fourth mesh heating element according to the first embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of the fifth mesh heating element according to the first embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of a sixth mesh heating element according to the first embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of a seventh mesh heating element according to the first embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of an eighth mesh heating element according to the first embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of a third atomizing core according to the first embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of the fourth atomizing core according to the first embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of the fifth atomizing core according to the first embodiment of the present invention.
  • Figure 14 is a schematic structural diagram of a sixth atomizing core according to the first embodiment of the present invention.
  • Figure 15 is a schematic structural diagram of a seventh atomizing core according to the first embodiment of the present invention.
  • Figure 16 is a schematic cross-sectional view of a seventh atomizing core according to the first embodiment of the present invention.
  • Figure 17 is a schematic structural diagram of an eighth atomizing core according to the first embodiment of the present invention.
  • Figure 18 is a schematic cross-sectional view of an eighth atomizing core according to the first embodiment of the present invention.
  • Figure 19 is a schematic structural diagram of the ninth atomizing core according to the first embodiment of the present invention.
  • Figure 20 is a schematic cross-sectional view of the ninth atomizing core according to the first embodiment of the present invention.
  • Figure 21 is a schematic structural diagram of a tenth atomizing core according to the first embodiment of the present invention.
  • Figure 22 is a schematic cross-sectional view of a tenth atomizing core according to the first embodiment of the present invention.
  • Figure 23 is a schematic structural diagram of the first aerosol bomb according to the first embodiment of the present invention.
  • Figure 24 is an exploded schematic structural diagram of the first aerosol bomb according to the first embodiment of the present invention.
  • Figure 25 is a schematic structural diagram of the second aerosol bomb according to the first embodiment of the present invention.
  • Figure 26 is an exploded schematic diagram of the structure of the second aerosol bomb according to the first embodiment of the present invention.
  • Figure 27 is a schematic structural diagram of a third aerosol bomb according to the first embodiment of the present invention.
  • Figure 28 is an exploded schematic diagram of the structure of the third aerosol bomb according to the first embodiment of the present invention.
  • Figure 29 is a schematic structural diagram of the first aerosol bomb according to the second embodiment of the present invention.
  • Figure 30 is an exploded schematic structural diagram of the first aerosol bomb according to the second embodiment of the present invention.
  • Figure 31 is a schematic structural diagram of the second aerosol bomb according to the second embodiment of the present invention.
  • Figure 32 is an exploded schematic diagram of the structure of the second aerosol bomb according to the second embodiment of the present invention.
  • Figure 33 is a schematic structural diagram of a third aerosol bomb according to the second embodiment of the present invention.
  • Figure 34 is an exploded schematic diagram of the structure of the third aerosol bomb according to the second embodiment of the present invention.
  • Figure 35 is a schematic structural diagram of the first aerosol bomb according to the third embodiment of the present invention.
  • Figure 36 is an exploded schematic structural diagram of the first aerosol bomb according to the third embodiment of the present invention.
  • Figure 37 is a schematic structural diagram of the second aerosol bomb according to the third embodiment of the present invention.
  • Figure 38 is an exploded schematic diagram of the structure of the second aerosol bomb according to the third embodiment of the present invention.
  • Figure 39 is a schematic structural diagram of the first aerosol bomb according to the fourth embodiment of the present invention.
  • Figure 40 is an exploded schematic diagram of the structure of the first aerosol bomb according to the fourth embodiment of the present invention.
  • Figure 41 is a schematic structural diagram of the second aerosol bomb according to the fourth embodiment of the present invention.
  • Figure 42 is an exploded schematic diagram of the structure of the second aerosol bomb according to the fourth embodiment of the present invention.
  • Figure 43 is a schematic structural diagram of the first aerosol bomb according to the fifth embodiment of the present invention.
  • Figure 44 is an exploded schematic structural diagram of the first aerosol bomb according to the fifth embodiment of the present invention.
  • Figure 45 is a schematic structural diagram of the atomizing core of the first aerosol bomb according to the fifth embodiment of the present invention.
  • Figure 46 is a schematic structural diagram of the second aerosol bomb according to the fifth embodiment of the present invention.
  • Figure 47 is an exploded schematic diagram of the structure of the second aerosol bomb according to the fifth embodiment of the present invention.
  • Figure 48 is a schematic structural diagram of an eleventh atomizing core according to the first embodiment of the present invention.
  • Figure 49 is a schematic structural diagram of a twelfth atomizing core according to the first embodiment of the present invention.
  • Figure 50 is a schematic cross-sectional view of a twelfth atomizing core according to the first embodiment of the present invention.
  • Figure 51 is a schematic structural diagram of an aerosol bomb according to the eighth embodiment of the present invention.
  • Figure 1 is a schematic structural diagram of a first atomizing core according to the first embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a second atomizing core according to the first embodiment of the present invention.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 covers the outer periphery of the atomization core liquid guide element 932 in a 360-degree surrounding manner. surface, and/or, is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 can be partially embedded in the outer peripheral surface of the atomization core liquid guide element 932, and/or the mesh heating element 931 can be partially embedded in the inner peripheral surface of the atomization core liquid guide element 932. That is to say, the mesh heating element 931 can be partially embedded in the atomization core liquid guide element 932 and partially exposed on the outer peripheral surface and/or the inner peripheral surface of the atomization core liquid guide element 932 .
  • the atomization core liquid guide element 932 may be a conventional atomization core liquid guide element 932 in the art, and is used to deliver the liquid to be atomized to the atomization core 930 .
  • the mesh heating element 931 can be etched, die-cut, braided, cross-wound or welded from resistive material to form a 360-degree surrounding mesh structure.
  • the mesh heating element 931 is made of resistance wires 9311 braided or cross-wound.
  • resistance wire 9311 generally refers to a metal wire or non-metal wire that has a certain resistance and can generate heat when energized, such as nickel-chromium alloy wire, iron-chromium alloy wire, etc.
  • the cross-section of the resistance wire 9311 can be circular, rectangular or other geometric shapes, and the diameter of the resistance wire 9311 with a circular cross-section can be selected according to application requirements.
  • Figure 3 is a schematic structural diagram of the first mesh heating element according to the first embodiment of the present invention
  • Figure 4 is a schematic structural diagram of the second mesh heating element according to the first embodiment of the present invention
  • Figure 5 is a schematic structural diagram of the second mesh heating element according to the first embodiment of the present invention.
  • a schematic structural view of the third mesh heating element according to the first embodiment
  • Figure 6 is a schematic structural view of the fourth mesh heating element according to the first embodiment of the present invention
  • Figure 7 is a schematic structural view of the third mesh heating element according to the first embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a sixth reticulated heating element according to the first embodiment of the present invention
  • Figure 9 is a seventh reticulated heating element according to the first embodiment of the present invention
  • 10 is a schematic structural diagram of an eighth mesh heating element according to the first embodiment of the present invention.
  • the mesh heating element 931 is formed by braiding or cross-winding one or more resistance wires 9311.
  • the resistance values of the resistance wires 9311 of the braided mesh heating element 931 can be the same or different.
  • Mesh heating element 931 may include, but is not limited to, the following braided or cross-wound structures:
  • the mesh heating element 931 includes at least one left-hand resistance wire 9311a and at least one right-hand resistance wire 9311b.
  • the mesh heating element 931 includes two to eight resistors.
  • the mesh heating element 931 is placed vertically, and when viewed from top to bottom, the resistance wire 9311 spirally wraps clockwise from bottom to top is the left-handed resistance wire 9311a; the mesh heating element 931 is placed vertically, from top to bottom. Looking down, the resistance wire 9311 spiraling upward in a counterclockwise direction from bottom to top is the right-handed resistance wire 9311b.
  • the mesh heating element 931 includes a left-hand resistance wire 9311a and a right-hand resistance wire 9311b.
  • the mesh heating element 931 When the mesh heating element 931 is placed vertically, it can be seen that the left-hand resistance wire 9311a and the right-hand resistance wire 9311b 9311b spirals up and crosses each other to form a 360-degree surrounding network structure.
  • the mesh heating element 931 includes one left-hand resistance wire 9311a and two right-hand resistance wires 9311b.
  • the mesh heating element 931 When the mesh heating element 931 is placed vertically, it can be seen that the left-hand resistance wire 9311a and the right-hand resistance wire 9311b 9311b spirals up and crosses each other to form a 360-degree surrounding network structure.
  • the mesh heating element 931 includes two left-hand resistance wires 9311a and two right-hand resistance wires 9311b.
  • the left-hand resistance wire 9311a and the right-hand resistance wire 9311b 9311b spirals up and crosses each other to form a 360-degree surrounding network structure.
  • the mesh heating element 931 includes three left-hand resistance wires 9311a and three right-hand resistance wires 9311b.
  • the left-hand resistance wire 9311a and the right-hand resistance wire 9311b spiral Rise and cross each other to form a 360-degree surrounding network structure.
  • the left-hand resistance wire 9311a and the right-hand resistance wire 9311b coexist in the mesh heating element 931, and the left-hand resistance wire 9311a and the right-hand resistance wire 9311b intersect with each other to form a 360-degree surrounding mesh structure, which helps to improve the atomization core 930
  • the overall strength and shape retention ability also help the mesh heating element 931 to evenly distribute heat on the outer or inner peripheral surface of the atomizing core liquid conduction element 932 when the mesh heating element 931 is energized.
  • Using this kind of atomization core 930 can improve the atomization efficiency and make the atomization more complete. If the atomizing core 930 is used in an inhalation device such as an electronic cigarette, it can make the aerosol taste more delicate and fuller when inhaling.
  • the resistance wire 9311 of the mesh heating element 931 includes a warp resistance wire 9311c and a weft resistance wire 9311d.
  • the warp resistance wire 9311c may be a plurality of resistance wires 9311 arranged in parallel along the axial direction
  • the weft resistance wire 9311d may be a plurality of annular resistance wires 9311 perpendicularly crossing the warp resistance wire 9311c.
  • a plurality of warp resistance wires 9311c and a plurality of weft resistance wires 9311d can be woven into a mesh on the outer peripheral surface or the inner peripheral surface of the atomizing core liquid conducting element 932.
  • the mesh heating element 931 can also be braided or cross-wound by a spiral weft resistance wire 9311d and a plurality of warp resistance wires 9311c.
  • one resistance wire 9311 may be folded back and forth to form a warp resistance wire 9311c, and may be braided or cross-wound with a spiral weft resistance wire 9311d.
  • one resistance wire 9311 may be folded back and forth to form a warp resistance wire 9311c, and may be braided or cross-wound with a plurality of annular weft resistance wires 9311d.
  • the mesh heating element 931 may also include at least two left-hand resistance wires 9311a or right-hand resistance wires 9311b with different pitches. Two or more left-handed resistance wires 9311a or right-handed resistance wires 9311b with different pitches will intersect on the mesh heating element 931 at regular intervals to form a mesh structure. As shown in Figure 9, the mesh heating element 931 includes two right-handed resistance wires 9311b with different pitches. The two right-handed resistance wires 9311b with different pitches are cross-wound to form a mesh heating element 931.
  • the mesh heating element 931 includes at least one resistance wire 9311.
  • One resistance wire 9311 includes a left-hand resistance wire 9311a and a right-hand resistance wire 9311b.
  • the left-hand resistance wire 9311a and the right-hand resistance wire 9311b are braided or Cross-wound to form a mesh.
  • the mesh heating element 931 includes a resistance wire 9311.
  • the resistance wire 9311 spirals upward from bottom to top to form a right-handed resistance wire 9311b; after the resistance wire 9311 spirals up to a certain height, it spirals from top to bottom. It spirals down to form a left-handed resistance wire 9311a.
  • the left-hand resistance wire 9311a and the right-hand resistance wire 9311b are braided or cross-wound to form a mesh heating element 931.
  • the same resistance wire 9311 contains both a left-handed resistance wire 9311a and a right-handed resistance wire 9311b, and the left-handed resistance wire 9311a and the right-handed resistance wire 9311b intersect with each other to form a network, it helps to improve the strength and shape retention of the atomizing core 930 The ability also helps to uniformly distribute heat on the outer or inner peripheral surface of the atomizing core liquid-conducting element 932 when the mesh heating element 931 is energized, making atomization uniform and stable.
  • FIG. 11 is a schematic structural diagram of the third atomizing core according to the first embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of the fourth atomizing core according to the first embodiment of the present invention.
  • the mesh heating element 931 when the mesh heating element 931 is attached to the inner peripheral surface of the atomization core liquid guide element 932 in a 360-degree surrounding manner, the cellulose fiber or powder slurry can be coated on the inner circumferential surface of the liquid guide element 932. The outer peripheral surface of the mesh heating element 931 is then dried to form the atomizing core liquid guide element 932.
  • woven fabric or non-woven fabric can also be used as the atomization core liquid guide element 932 to cover the outer peripheral surface of the mesh heating element 931 .
  • the binding wire L can be wrapped around the outer peripheral surface of the atomizing core liquid guide element 932 to make the atomizing core 930 more stable.
  • a mesh heating element 931 can also be provided on both the outer peripheral surface and the inner peripheral surface of the atomizing core 930 as needed.
  • the mesh heating element 931 provided on the outer peripheral surface can not only heat, but also bind the liquid guide element 932 of the atomization core to make the atomization core 930 more stable.
  • FIG 13 is a schematic structural diagram of the fifth atomizing core according to the first embodiment of the present invention.
  • the mesh heating element 931 covers the outer peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surround
  • high temperature resistant fibers such as cotton fiber, glass fiber, ceramic fiber or carbon fiber can be used Bundles or fiber rods serve as the liquid guide element 932 of the atomization core.
  • the mesh heating element 931 shown in FIG. 13 includes at least one resistance wire 9311.
  • the mesh heating element 931 includes a resistance wire 9311.
  • a resistance wire 9311 starts from the upper part of the atomization core liquid guide element 932 and winds down spirally in a left- or right-hand direction to the atomizer core liquid guide.
  • the lower part of the element 932 is formed with a left-handed resistance wire 9311a or a right-handed resistance wire 9311b; then, the resistance wire 9311 is wound right-handedly or left-handedly from the lower part of the atomizing core liquid-guiding element 932 to the atomizing core liquid-guiding element.
  • the upper part of 932 forms a right-hand resistance wire 9311b or a left-hand resistance wire 9311a. As needed, the process of spirally rising winding or spirally falling winding can be repeated to form multiple left-handed resistance wires 9311a or right-handed resistance wires 9311b, thereby forming a multi-layered mesh heating element 931.
  • cotton fiber, glass fiber, ceramic fiber or carbon fiber can also be used as the atomization core liquid conduction element 932.
  • the two ends of a resistance wire 9311 start from the lower part of the atomization core liquid conduction element 932, respectively.
  • the heating element 931 is spirally wound to the upper part of the atomization core liquid guide element 932 in a left-hand or right-hand direction, and is braided or cross-wound on the outer peripheral surface of the atomization core liquid guide element 932 to form a mesh-like mesh heating element 931 .
  • FIG 14 is a schematic structural diagram of a sixth atomizing core according to the first embodiment of the present invention.
  • the atomizing core 930 includes an atomizing core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 is The outer peripheral surface of the liquid guide element 932 of the atomization core is covered in a 360-degree surrounding manner.
  • the mesh heating element 931 is woven from resistance wires 9311.
  • the mesh heating element 931 includes at least one left-hand resistance wire 9311a and at least one right-hand resistance wire 9311b.
  • the mesh heating element 931 includes 2 to 8 resistance wires 9311, one part of which is a left-handed resistance wire 9311a, and the other part is a right-handed resistance wire 9311b.
  • the left-hand resistance wires 9311a and right-hand resistance wires 9311b that coexist in the mesh heating element 931 intersect with each other to form a mesh shape.
  • the mesh heating element 931 is a two-layer mesh structure, including a first layer of mesh heating element 9311f and a second layer Mesh Heating Element 9311s.
  • the dotted line represents the first layer of mesh heating elements 9311f that is close to the outer peripheral surface of the atomizing core liquid guide element 932, and the solid line represents the second layer covering the first layer of heating elements.
  • the number and resistance values of the resistance wires of the two layers of heating elements can be the same or different.
  • the second layer of mesh heating elements 9311s can further heat the aerosol generated by the first layer of mesh heating elements 9311f to form smaller aerosol particles, allowing the user to experience a more delicate and dry aerosol.
  • Figure 15 is a schematic structural diagram of the seventh atomizing core according to the first embodiment of the present invention
  • Figure 16 is a schematic cross-sectional view of the seventh atomizing core according to the first embodiment of the present invention.
  • the atomizing core liquid conducting element 932 can be cellulose fiber or powder.
  • the cellulose fiber or powder can be derived from cotton, wood, flax, etc., or can be recycled.
  • Cellulose fiber; the atomization core liquid conduction element 932 can also be porous ceramics.
  • the sintered porous ceramics are hard and easy to assemble.
  • the atomizing core liquid guide element 932 and the mesh heating element 931 are preferably formed in one piece.
  • the mesh heating element 931 is attached to the inner peripheral surface of the atomization core liquid guide element 932 in a 360-degree surrounding manner, and the mesh heating element 931 is partially embedded in the inner peripheral surface of the atomization core liquid guide element 932 .
  • Figure 17 is a schematic structural diagram of the eighth atomizing core according to the first embodiment of the present invention
  • Figure 18 is a schematic cross-sectional view of the eighth atomizing core according to the first embodiment of the present invention.
  • the atomizing core liquid conducting element 932 is made of cellulose fiber, the mesh heating element 931 and the atomizing core liquid conducting element 932 are respectively formed, and the mesh heating element 931 is coated
  • the atomizer core liquid guide element 932 is provided, and the mesh heating element 931 is attached to the inner peripheral surface of the atomizer core liquid guide element 932 in a 360-degree surrounding manner.
  • the heating element is preferably formed by braiding or cross-winding resistance wires 9311.
  • the atomization core 930 includes more than two layers of mesh heating elements 931, one of which is close to the inner peripheral surface of the atomization core liquid conduction element 932 and has a multi-layer mesh.
  • the atomizing core 930 of the heating element 931 can atomize the liquid more fully, which is beneficial to reducing the particles of the aerosol, thereby allowing the user to experience drier aerosol.
  • Figure 19 is a schematic structural diagram of the ninth atomizing core according to the first embodiment of the present invention
  • Figure 20 is a schematic cross-sectional view of the ninth atomizing core according to the first embodiment of the present invention.
  • the atomization core liquid guide element 932 and the mesh heating element 931 are integrally formed, and the mesh heating element 931 is wrapped around the atomization core guide in a 360-degree manner.
  • the outer peripheral surface of the liquid element 932, and the mesh heating element 931 is partially embedded in the outer peripheral surface of the liquid guide element 932 of the atomization core.
  • the material of the atomization core liquid-conducting element 932 can be fiber or powder containing cellulose, carbon fiber and porous ceramics.
  • Figure 21 is a schematic structural diagram of the tenth type of atomizing core according to the first embodiment of the present invention
  • Figure 22 is a schematic cross-sectional view of the tenth type of atomizing core according to the first embodiment of the present invention.
  • the atomizing core liquid conducting element 932 and the mesh heating element 931 are respectively formed, and the atomizing core liquid conducting element 932 is covered with a mesh heating element 931, so that the mesh is
  • the heating element 931 covers the outer peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 is preferably formed by braiding or cross-winding resistance wires 9311.
  • the atomization core 930 includes more than two layers of mesh heating elements 931, one of which is close to the outer peripheral surface of the atomization core liquid guide element 932 and has multiple layers.
  • the atomization core 930 of the layered mesh heating element 931 can atomize the liquid more fully, which is beneficial to reducing the particles of the aerosol, thereby allowing the user to experience drier aerosol.
  • the material of the atomization core liquid-conducting element 932 can be fiber or powder containing cellulose, carbon fiber, or porous ceramics.
  • the first method of manufacturing an atomizing core includes the following steps:
  • the resistance wire 9311 is braided or cross-wound to form a mesh heating element 931 that covers the outer circumferential surface of the atomization core liquid guide element 932 in a 360-degree circle; wherein, at least a portion of the resistance wire 9311 is controlled to form a right-handed resistance wire 9311b spirally wraps the outer peripheral surface of the atomization core liquid guide element 932, and controls at least a part of the resistance wire 9311 to form a left-handed resistance wire 9311a.
  • the second method of manufacturing an atomizing core provided by the present invention includes the following steps:
  • the resistance wires 9311 are braided or cross-wound to form a mesh heating element 931 that covers the outer circumferential surface of the atomization core liquid guide element 932 in a 360-degree circumference. At least one of the resistance wires 9311 is controlled to spiral with a first pitch. Cover the outer circumferential surface of the atomization core liquid guide element 932, and control at least one of the resistance wires 9311 to spirally cover the outer circumferential surface of the atomizer core liquid guide element 932 with a second pitch. The first pitch and the second pitch are not equal. ;
  • the third method of manufacturing an atomizing core provided by the present invention includes the following steps:
  • the resistance wire 9311 is braided or cross-wound to form a mesh heating element 931 that covers the outer circumferential surface of the auxiliary core in a 360-degree circle; wherein, at least part of the resistance wire 9311 is controlled to Spirally wrap around the outer peripheral surface of the auxiliary core in a manner that forms a right-handed resistance wire 9311b, and control at least a portion of the resistance wires 9311 to spirally wrap around the outer peripheral surface of the auxiliary core in a manner that forms a left-handed resistance wire 9311a;
  • the fourth method of manufacturing an atomizing core provided by the present invention includes the following steps:
  • a resistance wire 9311 starts from the lower part of the atomization core liquid conduction element 932, spirally rises and winds in a left- or right-hand manner to the upper part of the atomization core liquid conduction element 932, forming a left-hand resistance wire 9311a. Or right-hand resistance wire 9311b;
  • the resistance wire 9311 is wound right-hand or left-hand from the upper part of the atomization core liquid-guiding element 932 to the lower part of the atomization core liquid-guiding element 932 to form a right-hand resistance wire 9311b or a left-hand resistance wire 9311a. ;
  • the left-hand resistance wire 9311a and the right-hand resistance wire 9311b are braided or cross-wound to form a mesh heating element 931.
  • the fifth method of manufacturing an atomizing core provided by the present invention includes the following steps:
  • the two ends of a resistance wire 9311 start from the lower part of the atomization core liquid guide element 932, and spirally rise and wind in a left-hand or right-hand manner to the upper part of the atomization core liquid guide element 932.
  • the outer peripheral surface of the core liquid-conducting element 932 is braided or cross-wound to form a mesh-like mesh heating element 931;
  • the sixth method of manufacturing an atomizing core provided by the present invention includes the following steps:
  • a certain number of resistance wires 9311 are braided or cross-wound to form a first layer of mesh heating element 9311f that covers the outer peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surround;
  • the seventh method of manufacturing an atomization core provided by the present invention includes the following steps:
  • the resistance wire 9311 is braided or cross-wound on an auxiliary core to form a mesh heating element 931.
  • the auxiliary core can be made of metal or plastic;
  • the mesh heating element 931 containing the auxiliary core into the mold and position it, inject the fiber or powder slurry containing cellulose into the mold to form, or continuously pull the mesh heating element strip containing the auxiliary core in the mold, At the same time, cellulose-containing fiber or powder slurry is injected into the mold;
  • the eighth method of manufacturing an atomizing core provided by the present invention includes the following steps:
  • Braid or cross-wrap the resistance wire 9311 on an auxiliary core to form a two-layer mesh structure.
  • After cutting take out the auxiliary core to make a mesh heating element 931; or braid or cross-wrap the resistance wire 9311 into a strip of heating element and cut it. Finally, it is made into a mesh heating element 931;
  • the cellulose-containing fiber or powder slurry is extruded into a long tube including the through hole 932b of the axial atomization core liquid guide element, and then cut into pieces after drying to form the atomization core liquid guide element 932; or the cellulose-containing fiber or powder slurry is The powder slurry is extruded into a long strip including the auxiliary core, dried, and after cutting, the auxiliary core is taken out to make the atomization core liquid guide element 932;
  • the mesh heating element 931 is surrounded by the atomizing core liquid guide element 932 to form the atomizing core 930 .
  • the ninth method for manufacturing an atomization core includes the following steps:
  • the atomizing core 930 is made by cutting the atomizing core 930 into long strips.
  • the tenth method for manufacturing an atomization core includes the following steps:
  • the resistance wire 9311 is braided or cross-wound on an auxiliary core to form a two-layer mesh structure. After cutting, the auxiliary core is taken out to form a mesh heating element 931; or the resistance wire 9311 is braided or cross-wound into a mesh heating element 931. strips, cut into mesh-shaped heating elements 931;
  • the cellulose-containing fiber or powder slurry is extruded into a long tube including the through hole 932b of the axial atomization core liquid guide element, and then cut into pieces after drying to form the atomization core liquid guide element 932; or the cellulose-containing fiber or powder slurry is The powder slurry is extruded into a long strip including the auxiliary core, dried, and after cutting, the auxiliary core is taken out to make the atomization core liquid guide element 932;
  • the atomizing core liquid guide element 932 is coated with a mesh heating element 931 to form an atomizing core 930 .
  • Figure 23 is a schematic structural diagram of the first aerosol bomb according to the first embodiment of the present invention
  • Figure 24 is a structural exploded schematic diagram of the first aerosol bomb according to the first embodiment of the present invention
  • Figure 25 is a schematic structural diagram of the first aerosol bomb according to the first embodiment of the present invention.
  • a schematic structural view of the second aerosol bomb according to an embodiment
  • Figure 26 is an exploded schematic structural view of the second aerosol bomb according to the first embodiment of the present invention
  • Figure 27 is a third aerosol bomb according to the first embodiment of the present invention.
  • Figure 28 is an exploded schematic structural diagram of a third aerosol bomb according to the first embodiment of the present invention.
  • the present invention also provides an atomization module 700.
  • the atomization module 700 includes any of the above atomization cores 930.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 covers the outer peripheral surface of the atomization core liquid guide element 932 in a 360-degree surrounding manner.
  • the atomization module 700 includes an electrode 936 and an electrode card interface 9364 provided at one end of the electrode 936.
  • the electrode card interface 9364 is connected to the mesh heating element 931.
  • the electrode clamping interface 9364 can be clamped with the outer peripheral surface of the mesh heating element 931 from the radial direction of the atomizing core 930 catch.
  • the resistance of the mesh heating element 931 between the two electrodes 936 is usually controlled at 0.5 to 2.0 ohms.
  • the atomization module 700 of the first aerosol bomb includes an atomization module upper cover 710 and an atomization module base 720. It is installed on the atomization module base 720 and the atomization module base 720.
  • the atomization core 930 and the electrode 936 are between the upper cover 710 of the atomization module.
  • the electrode 936 passes through the atomization module base 720 and is electrically connected to the mesh heating element 931.
  • the atomization module upper cover 710 includes an atomization module upper interface 711 and an atomization module liquid guide hole 712 that penetrate the atomization module upper cover 710 .
  • the present invention also provides an aerosol bomb 800.
  • the aerosol bomb 800 includes a liquid storage element 100 and any of the above atomization modules 700.
  • the atomization core liquid conducting element 932 can be directly connected with the liquid in the liquid storage element 100 .
  • the first aerosol bomb 800 includes an aerosol bomb casing 810, a liquid storage element 100 disposed in the aerosol bomb casing 810, an axially penetrating storage element The gas mist channel 1303 of the liquid element 100 and the liquid storage element sealing element 823 sealing the bottom opening of the liquid storage element 100.
  • the aerosol bomb 800 also includes a base sealing element 824 that seals the bottom of the aerosol bomb shell 810 and seals the gap between the aerosol bomb shell 810 and the atomization module base 720 .
  • the liquid storage element sealing element 823 is provided with a liquid supply port 825 and a gas mist channel assembly port 826 that penetrate the liquid storage element sealing element 823 .
  • the liquid supply port 825 is provided corresponding to the liquid guide hole 712 of the atomization module.
  • the aerosol channel assembly opening 826 has a downwardly extending tubular protrusion. During assembly, the aerosol channel assembly port 826 of the liquid storage element sealing element 823 is sleeved on the outer peripheral surface of the aerosol channel 1303, and the upper interface 711 of the atomization module is sleeved on the outer peripheral wall of the tubular protrusion of the aerosol channel assembly opening 826. .
  • the upper end of the atomization module liquid guide hole 712 is docked with the liquid supply port 825, and the lower end is in contact with the atomization core 930, so that the atomization core 930 is directly connected to the liquid in the liquid storage element 100.
  • the top outlet of the aerosol channel 1303 is the aerosol outlet 1301, and the bottom opening of the aerosol channel 1303 is the atomization module connection port 1302, which is used to communicate with the upper interface 711 of the atomization module.
  • the aerosol atomized by the atomization module 700 escapes through the upper interface 711 of the atomization module, the atomization module connection port 1302, the aerosol channel 1303 and the aerosol outlet 1301.
  • the atomization module base 720 is provided with an air inlet 1121 that axially penetrates the atomization module base 720 as a passage for external air to enter the atomization module 700 .
  • the gas mist outlet 1301 may be provided with a gas mist outlet sealing plug 1306 that seals the gas mist outlet 1301, and the air inlet 1121 of the atomization module base 720 may be provided with an air inlet sealing plug (not shown) that seals the air inlet 1121.
  • the gas mist outlet sealing plug 1306 and the air inlet sealing plug can be respectively provided with silicone sealing plugs. The arrangement of the aerosol outlet sealing plug 1306 and the air inlet sealing plug can further increase the anti-leakage capability of the aerosol bomb 800 during storage and transportation.
  • atomization module liquid conduction holes 712 there are preferably two atomization module liquid conduction holes 712 , and the lower opening of the atomization module liquid conduction hole 712 is connected to the parts at both ends of the atomization core 930 that do not pass current.
  • the portion between the electrodes 936 of the mesh heating element 931 passes current and generates heat, and the portion outside the two electrodes passes almost no current and generates basically no heat.
  • the mesh heating element 931 can be partially embedded in the outer peripheral surface of the liquid guide element 932 of the atomization core.
  • the material of the atomization core liquid-conducting element 932 may be cellulose-containing fibers or powders, carbon fibers, and porous ceramics.
  • the atomizing core 930 and the mesh heating element 931 can be integrally formed.
  • the structure of the atomization module 700 of the second aerosol bomb according to the first embodiment of the present invention is basically the same as that in Figures 23 and 24, and the same parts will not be described again.
  • the atomization module 700 also includes a gas-liquid exchange element 290.
  • the atomization module 700 includes a gas-liquid exchange element 290 , and the atomization core 930 communicates with the liquid in the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the gas-liquid exchange element 290 can be installed in the liquid guide hole 712 of the atomization module.
  • the parts at both ends of the atomization core 930 that do not pass current are connected to the liquid in the liquid storage element 100 through the gas-liquid exchange element 290.
  • the gas-liquid exchange element 290 It can be a tubular bonding fiber with axial through holes. In Figures 25 and 26, the lengths of the mesh heating element 931 and the atomizing core liquid guide element 932 are basically the same.
  • the structure of the atomization module 700 of the third aerosol bomb according to the first embodiment of the present invention is basically the same as that in Figures 25 and 26, and the same parts will not be described again.
  • the length of the atomization core liquid guide element 932 is greater than the length of the mesh heating element 931, so that both ends of the atomization core liquid guide element 932 extend out of the mesh heating element 931.
  • the atomization core liquid guide element 932 extends out of the mesh heating element 931 and can be connected to the gas-liquid exchange element 290 .
  • the mesh heating element 931 covers the outer peripheral surface of the atomization core liquid guide element 932 in a 360-degree circumferential manner, the pins connected from the atomization core 930 to the electrode 936 can be omitted.
  • the electrode 936 can contact the mesh heating element 931 from any direction to create an electrical connection. Therefore, the difficulty of assembling the atomizer core 930 in the aerosol bomb 800 can be reduced, and the assembly efficiency can be greatly improved.
  • the atomizing core 930 of the present invention can continuously produce and harvest the atomizing core 930 coil material, which can greatly improve the production efficiency and facilitate the storage and transportation of the atomizing core 930, thus greatly reducing the cost of the atomizing core 930.
  • the cross section of the atomizing core 930 can be made into a circular shape, but it can also be made into an elliptical shape or other geometric shapes as needed.
  • FIG. 29 is a schematic structural diagram of the first aerosol bomb according to the second embodiment of the present invention
  • FIG. 30 is an exploded schematic structural diagram of the first aerosol bomb according to the second embodiment of the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the parts that are the same as those of the first embodiment will not be described again in the description of this embodiment.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 covers the outer periphery of the atomization core liquid guide element 932 in a 360-degree surrounding manner. surface, and/or, is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 includes two to eight resistance wires 9311, one part of which is a left-handed resistance wire 9311a, and the other part is a right-handed resistance wire 9311b.
  • the atomizer core liquid guide element 932 is formed with an atomizer core liquid guide element through hole 932b that axially penetrates the atomizer core liquid guide element 932, and a mesh heating element 931 is provided on the atomizer core liquid guide element 932.
  • the liquid element is inserted into the through hole 932b and attached to the inner peripheral surface of the atomizing core 930.
  • the outer peripheral surface of the atomization core liquid guide element 932 is in communication with the liquid in the liquid storage element 100 .
  • the atomization module 700 includes an electrode 936 and an electrode plug-in part 9365 provided at one end of the electrode 936.
  • the electrode plug-in part 9365 is inserted into the atomization core liquid conduction element through hole 932b and connected to the mesh heating element 931.
  • the electrode plug-in portion 9365 is in the shape of an earplug with a through hole, and the electrode plug-in portions 9365 of the two electrodes 936 are inserted into the atomizer core liquid conduction element through hole 932b from both ends of the horizontal atomizer core 930. , connected to the mesh heating element 931.
  • the liquid storage element sealing element 823 can be omitted, and the atomization module upper cover 710 is used as the liquid storage element sealing element 823 at the same time.
  • the atomization module upper cover 710 may be provided with only one atomization module liquid guide hole 712 .
  • the upper opening of the atomization module liquid guide hole 712 is directly connected to the liquid in the liquid storage element 100, and the lower opening is in contact with the outer peripheral surface of the atomization core liquid guide element 932, thereby transporting the liquid in the liquid storage element 100 to Atomizer core liquid guide element 932.
  • the aerosol bomb 800 also includes an aerosol channel 1303.
  • the atomizer core liquid guide element 932 has an atomizer core liquid guide element through hole 932b that axially penetrates the atomizer core liquid guide element 932
  • the atomization The angle between the core liquid conduction element through hole 932b and the aerosol channel 1303 is greater than 45 degrees and less than or equal to 135 degrees.
  • the angle between the through hole 932b of the liquid guide element of the atomization core and the aerosol channel 1303 is 45 degrees, 60 degrees, 75 degrees, 90 degrees, 105 degrees, 120 degrees and 135 degrees. Most preferably, it is basically equal to 90 degrees. That is to say, most preferably, the atomization core liquid guide element through hole 932b and the gas mist channel 1303 are arranged substantially perpendicularly.
  • the atomization core liquid conducting element through hole 932b is connected with the gas mist channel 1303.
  • the mesh heating element 931 surrounding the inner peripheral surface of the atomization core liquid guide element 932 evaporates the liquid, and the evaporated gas mixes with the air flowing through the atomization core 930 to form aerosol.
  • the mist escapes through the aerosol passage 1303. This structure facilitates rapid replenishment of liquid in the liquid storage element 100 to the atomizing core liquid guide element 932 .
  • the through hole 932b of the liquid guide element of the atomizing core is arranged vertically with the gas mist channel 1303, when the high-temperature condensate generated near the atomizing core 930 turns vertically and enters the gas mist channel 1303, the large particles of condensate cannot easily enter the gas due to inertia. In the mist channel 1303, large particles of condensate can be reduced or avoided from directly entering the oral cavity, thereby improving the user experience.
  • Figure 31 is a schematic structural diagram of the second aerosol bomb according to the second embodiment of the present invention.
  • Figure 32 is an exploded schematic structural diagram of the second aerosol bomb according to the second embodiment of the present invention.
  • the structure of the atomization module 700 of the second aerosol bomb according to the second embodiment of the present invention is basically the same as that in Figures 29 and 30, and the same parts will not be described again.
  • the atomization module upper cover 710 is provided with a first atomization module liquid conduction hole 712a and a second atomization module liquid conduction hole 712b.
  • the upper opening of the first atomization module liquid guide hole 712a is directly connected to the liquid in the liquid storage element 100, and the lower opening is in contact with the outer peripheral surface of the atomization core liquid guide element 932, thereby transferring the liquid in the liquid storage element 100 Delivered to the atomization core liquid guide element 932.
  • the upper opening of the second atomization module liquid conducting hole 712b is directly connected to the liquid in the liquid storage element 100, and the lower opening is connected to the atmosphere.
  • a gas-liquid exchange element 290 is provided in the second atomizing module liquid conducting hole 712b.
  • the gas-liquid exchange element 290 mainly functions to transport gas into the liquid storage element 100, thereby making the atomization of the atomization module 700 more stable and reliable.
  • the gas-liquid exchange element 290 may be a tubular bonded fiber or a tubular plastic product or a tubular metal product including an axial through hole.
  • the atomization core liquid conducting element through hole 932b is connected with the gas mist channel 1303.
  • the atomization module 700 includes an electrode 936 and an electrode plug-in part 9365 provided at one end of the electrode 936.
  • the electrode plug-in part 9365 is inserted into the atomizer.
  • the core liquid conducting element 932 is then connected to the mesh heating element 931 .
  • the electrode plug-in parts 9365 are in the shape of an undercut arrow. After the electrode plug-in parts 9365 of the two electrodes 936 respectively pierce the atomizer core liquid-conducting element 932 of the horizontal atomizer core 930, they enter the atomization
  • the core liquid conducting element through hole 932b is connected to the mesh heating element 931.
  • FIG. 33 is a schematic structural diagram of the third aerosol bomb according to the second embodiment of the present invention
  • FIG. 34 is an exploded schematic structural diagram of the third aerosol bomb according to the second embodiment of the present invention.
  • the structure of the atomization module 700 of the third aerosol bomb according to the second embodiment of the present invention is basically the same as that in Figures 31 and 32, and the same parts will not be described again.
  • the third aerosol bomb 800 has an independent liquid storage element sealing element 823.
  • the liquid storage element sealing element 823 has a liquid supply port 825 and is disposed on the liquid storage element.
  • the air guide channel 836 at the bottom of the sealing element 823.
  • the atomization module 700 is an independent integrated component, including an atomization module upper cover 710 and an atomization module base 720, an atomization core 930 installed between the atomization module base 720 and the atomization module upper cover 710, and a gas-liquid exchange element. 290 and electrode 936.
  • the atomization module upper cover 710 is provided with a first atomization module liquid guide hole 712a, a second atomization module liquid guide hole 712b, and an atomization module upper interface 711.
  • the first atomization module liquid guide hole 712a extends upward to form a tubular protrusion.
  • the upper part of the gas-liquid exchange element 290 is assembled in the second atomization module liquid guide hole 712b, and its lower part can extend into the groove on the atomization module base 720 and communicate with the atmosphere.
  • the aerosol bomb 800 can be formed.
  • the first atomization module liquid guide hole 712a extends upward to form a tubular protrusion inserted into the liquid supply port 825, and an air guide hole 827 is formed between the tubular protrusion and the inner peripheral wall of the liquid supply port 825.
  • the air guide hole 827 is connected to the air guide channel 836, and the air guide channel 836 is connected to the assembled gas-liquid exchange element 290.
  • the atomization module 700 adopts a detachable structure, which makes it easy to replace the liquid storage element 100 in the aerosol bomb 800, and to facilitate the maintenance and replacement of the atomization module 700. .
  • the second atomization module liquid guide hole 712b can also be configured to extend upward to form a tubular protrusion.
  • the second atomization module liquid guide hole 712b can also pass through the liquid storage element.
  • the element sealing element 823 is inserted into the liquid storage element 100, so that the gas-liquid exchange element 290 can be connected with the liquid storage element 100 without the need to provide an air guide hole 827 and an air guide channel 836.
  • the gas-liquid exchange element 290 mainly functions as an independent gas guide and does not assume the function of transmitting liquid to the atomization core liquid guide element 932 .
  • Figure 35 is a schematic structural diagram of the first aerosol bomb according to the third embodiment of the present invention
  • Figure 36 is a structural exploded schematic diagram of the first aerosol bomb according to the third embodiment of the present invention
  • Figure 37 is a schematic structural diagram of the first aerosol bomb according to the third embodiment of the present invention.
  • Figure 38 is an exploded schematic structural view of the second aerosol bomb according to the third embodiment of the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the parts that are the same as those of the first embodiment will not be described again in the description of this embodiment.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 wraps the outer periphery of the atomization core liquid guide element 932 in a 360-degree surrounding manner. surface, and/or, is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 includes two to eight resistance wires 9311, one part of which is a left-handed resistance wire 9311a, and the other part is a right-handed resistance wire 9311b.
  • the atomization core liquid guide element 932 is formed with an axial penetrating mist
  • the mesh heating element 931 is arranged in the through hole 932b of the atomization core liquid conduction element 932 of the atomization core liquid conduction element, and is attached to the inner peripheral surface of the atomization core 930.
  • the atomizing core 930 is arranged vertically, that is to say, when the atomizing module 700 is placed horizontally, the central axis of the atomizing module 700 is perpendicular to the horizontal plane.
  • At least part of the outer peripheral surface of the atomizing core liquid conducting element 932 is covered with a hollow metal tube 9396.
  • the outer peripheral surface of the atomizing core liquid conducting element 932 communicates with the liquid in the liquid storage element 100 through the hollow metal tube 9396.
  • the atomization module 700 includes a first electrode 936a and a second electrode 936b.
  • One end of the first electrode 936a is provided with a first electrode plug-in part 9365a, and the electrode plug-in part 9365 is inserted into the atomization core liquid conduction element through hole 932b.
  • the second electrode 936b is connected to the mesh heating element 931; the second electrode 936b includes a hollow metal tube 9396 set on the outer peripheral surface of the atomization core liquid conduction element 932 and a metal ring 9397 set at one end of the second electrode 936b.
  • the metal ring 9397 is set
  • the hollow metal tube 9396 is connected to the outer peripheral wall of the hollow metal tube 9396.
  • the end of the hollow metal tube 9396 opposite to the first electrode plug-in part 9365a protrudes into the interior of the hollow metal tube 9396 to form a second electrode plug-in part. 9365b.
  • the second electrode plug-in part 9365b is inserted into the through hole 932b of the liquid conduction element of the atomization core and connected to the mesh heating element 931.
  • hollow metal pipe 9396 refers to a metal pipe with a plurality of through holes penetrating the pipe wall, which allows liquid to enter the pipe wall from outside the pipe wall through the plurality of through holes in the pipe wall. Inside.
  • the atomization module 700 is an independent integrated component, including an atomization module upper cover 710 and an atomization module base 720, an atomization core 930 installed between the atomization module base 720 and the atomization module upper cover 710, and a gas-liquid exchange element. 290 and electrode 936.
  • the atomization module upper cover 710 is provided with a first atomization module liquid guide hole 712a, a second atomization module liquid guide hole 712b, and an atomization module upper interface 711.
  • the first atomization module liquid guide hole 712a extends upward to form a tubular protrusion.
  • the upper part of the gas-liquid exchange element 290 is assembled in the second atomization module liquid guide hole 712b, and its lower part can extend into the groove on the atomization module base 720 and communicate with the atmosphere.
  • the atomization module 700 also includes an atomization module upper cover 710 and an atomization module base 720 , an atomization core 930 installed between the atomization module base 720 and the atomization module upper cover 710 , and a gas-liquid exchange element 290 .
  • the atomization module upper cover 710 is provided with a first atomization module liquid guide hole 712a, a second atomization module liquid guide hole 712b, and an atomization module upper interface 711.
  • the first atomization module liquid guide hole 712a extends downward from the upper surface of the atomization module upper cover 710, and then extends laterally to the atomization module upper interface 711.
  • the atomization core 930 is installed vertically in the upper interface 711 of the atomization module and communicates with the liquid guide hole 712a of the first atomization module.
  • the upper part of the gas-liquid exchange element 290 is assembled in the second atomization module liquid guide hole 712b, and its lower part can extend into the groove on the atomization module base 720 and communicate with the atmosphere.
  • the liquid storage element sealing element is omitted, and the atomization module upper cover 710 is also used as the liquid storage element sealing element.
  • the liquid in the element 100 is directly connected to the hollow metal tube 9396 through the first atomization module liquid guide hole 712a, and is connected to the atomization core liquid guide element 932 through the hollow metal tube 9396.
  • the gas-liquid exchange element 290 is in communication with the liquid in the liquid storage element 100 , but does not participate in transporting liquid to the atomization core 930 , and is mainly used to conduct air independently to the liquid storage element 100 .
  • the mesh heating element 931 attached to the inner peripheral surface of the atomization core liquid guide element 932 atomizes the liquid.
  • the vaporized gas is mixed with the air passing through the through hole 932b of the liquid guide element of the atomizing core to form aerosol.
  • the gas-liquid exchange element 290 is provided in the aerosol bomb 800, which can make the atomization more stable and reliable.
  • the gas-liquid exchange element 290 may be a tubular bonded fiber including axial through holes.
  • the structure of the second aerosol bomb according to the third embodiment of the present invention is basically the same as the structure in Figures 35 and 36, and the same parts will not be described again.
  • FIG. 37 and 38 there is an opening for transferring liquid to the lateral atomizing core 930 between the aerosol channel 1303 in the second aerosol bomb according to the third embodiment of the present invention and the atomizing module upper cover 710.
  • the hollow metal tube 9396 on the outer peripheral surface of the atomization core 930 is arranged opposite to the opening for transporting liquid.
  • the upper part of the atomization core 930 is fixed by the inner tube wall of the gas mist channel 1303, and the lower part of the atomization core 930 is fixed by the upper interface 711 of the atomization module.
  • the central axis of the atomizing core 930 is preferably set to coincide with the central axis of the aerosol channel 1303 .
  • Figure 39 is a schematic structural diagram of the first aerosol bomb according to the fourth embodiment of the present invention
  • Figure 40 is a structural exploded schematic diagram of the first aerosol bomb according to the fourth embodiment of the present invention
  • Figure 41 is a schematic structural diagram of the first aerosol bomb according to the fourth embodiment of the present invention.
  • Figure 42 is an exploded schematic structural diagram of the second aerosol bomb according to the fourth embodiment of the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the parts that are the same as those of the first embodiment will not be described again in the description of this embodiment.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 wraps the outer periphery of the atomization core liquid guide element 932 in a 360-degree surrounding manner. surface, and/or, is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the atomization core 930 includes more than two layers of mesh heating elements 931, one of which The atomizer core 930 with the multi-layer mesh heating element 931 close to the outer peripheral surface of the atomizer core liquid guide element 932 can atomize the liquid more fully, which is beneficial to reducing the particles of aerosol, thereby making the user feel drier. of aerosol.
  • the atomization module 700 of the second aerosol bomb 800 also includes a first gas-liquid exchange element 290A and a second gas-liquid exchange element 290A.
  • Exchange element 290B As shown in Figures 41 and 42, in the atomization module 700 of the second aerosol bomb 800 according to the fourth embodiment of the present invention, the atomization module 700 also includes a first gas-liquid exchange element 290A and a second gas-liquid exchange element 290A. Exchange element 290B.
  • the first gas-liquid exchange element 290A can be made of plastic or fiber, and an outer circumferential surface groove or an internal through hole can be provided along the axial direction of the first gas-liquid exchange element 290A.
  • the first gas-liquid exchange element 290A is preferably a tubular bonded fiber with axial through holes.
  • the second gas-liquid exchange element 290B is preferably made of porous material, such as sponge, bonded fiber, sintered powder plastic, etc.
  • the atomization module 700 also includes an atomization module upper cover 710 and an atomization module base 720 , an atomization core 930 installed between the atomization module base 720 and the atomization module upper cover 710 , and an electrode 936 .
  • the electrode 936 passes through the atomization module base 720 and is electrically connected to the mesh heating element 931.
  • the atomization module upper cover 710 includes an atomization module upper interface 711 and an atomization module liquid guide hole 712 that penetrate the atomization module upper cover 710 .
  • the first gas-liquid exchange element 290A is assembled in the atomization module liquid guide hole 712.
  • the outer peripheral surface groove of the first gas-liquid exchange element 290A and the inner peripheral wall of the atomization module liquid guide hole 712 can form a liquid or air conductive passage. hole.
  • the atomizer core liquid guide element 932 has an axial atomizer core liquid guide element through hole 932b.
  • the atomizer core liquid guide element 932 is sleeved on the outer peripheral wall of the second gas-liquid exchange element 290B.
  • the atomizer core liquid guide element 932 The inner peripheral wall of the second gas-liquid exchange element 290B is in contact with the outer peripheral wall of the second gas-liquid exchange element 290B.
  • the two ends of the second gas-liquid exchange element 290B respectively pass through the two ends of the atomization core liquid guide element 932, and the lower end surfaces of the two first gas-liquid exchange elements 290A are respectively connected with the two ends of the second gas-liquid exchange element 290B. Connected.
  • the liquid in the gas-liquid exchange element 290 is transferred to the second gas-liquid exchange element 290B through the first gas-liquid exchange element 290A, and then transferred to the atomization core liquid guide element 932 through the second gas-liquid exchange element 290B.
  • the mesh heating element 931 is formed into a hollow columnar shape, and the hollow columnar mesh heating element 931 is wrapped around the outer peripheral surface of the atomizing core liquid conducting element 932 or attached to the atomizing core liquid conducting element 932 inner circumference.
  • the mesh number of the mesh heating element 931 is defined as the number of woven or etched mesh holes in the axial length of 25.4 mm of the mesh heating element 931.
  • Mesh count is a measure of the density of the holes in a woven or etched mesh.
  • the axial length of the mesh heating element 931 and the axial length of the atomizing core liquid guide element 932 are substantially equal means that the length difference between the two does not exceed 20%.
  • Mesh heating element 931 may include energized portions and non-energized portions.
  • the energized parts generate heat, and the generated heat is also conducted to the non-energized parts.
  • the wire diameter of the resistance wire 9311 refers to the diameter when the cross section of the resistance wire 9311 is circular, but the cross section of the resistance wire 9311 used in the present invention can be of any geometric shape.
  • the cross section of the resistance wire 9311 When it is non-circular, the diameter of the circular resistance wire 9311 with the same cross-sectional area can be converted into the diameter of the resistance wire 9311.
  • the resistance of the atomization core 930 refers to the resistance measured through the two electrodes 936 after the atomization core 930 is connected to the electrode 936.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 covers the outer periphery of the atomization core liquid guide element 932 in a 360-degree surrounding manner. surface, and/or, is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the atomization core liquid guide element 932 is used to transport the liquid to be atomized to the atomization core 930, and its material may include cellulose-containing fibers or powders, carbon fibers, glass fibers, ceramic fibers, porous ceramics, etc.
  • the most commonly used atomization core liquid guide element 932 includes cotton rope or glass fiber.
  • the weight of the atomization core liquid guide element 932 per meter length is preferably 1.0 to 6.0 grams, more preferably 1.8 to 4.5 grams.
  • Cotton ropes have better taste reduction properties for atomized liquids; glass fibers and porous ceramics are resistant to high temperatures and have advantages in systems that require high-temperature atomization, such as the atomization of THC.
  • resistance wire 9311 generally refers to a metal wire or non-metal wire that has a certain resistance and can generate heat when energized, such as nickel-chromium alloy wire, iron-chromium alloy wire, etc.
  • the cross-section of the resistance wire 9311 can be circular, rectangular and other geometric shapes, among which the circular shape is the most commonly used.
  • the preferred wire diameter of the resistance wire 9311 is 10 to 150 microns, such as 10, 12.5, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150 microns, etc., and the resistance wire is more preferably
  • the wire diameter of 9311 is 25 to 100 microns.
  • the mesh heating element 931 is formed by braiding or cross-winding one or more resistance wires 9311 .
  • the resistance values of the resistance wires 9311 forming the mesh heating element 931 can be the same or different.
  • the resistance of the atomization core 930 refers to the resistance measured through the two electrodes 936 after the atomization core 930 is connected to the electrode 936.
  • the resistance of the atomizing core 930 is preferably 0.2 ohms to 2.0 ohms, such as 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.8, 2.0 ohms, etc.
  • the resistance of the traditional atomizer core 930 wound with the spiral resistance wire 9311 is 1.2 to 1.8 ohms.
  • the mesh heating element 931 can flexibly select the wire diameter, quantity and mesh number of the resistance wire 9311, the resistance range can be greatly expanded to adapt to different application requirements.
  • 8 to 36 resistance wires 9311 can be used to weave a two-layer mesh heating element 931, so that the resistance of the atomizing core 930 can be as low as 0.2 to 1.0 ohms.
  • the lower resistance of the atomizing core 930 can be used when the host has constant power output. Extend battery life.
  • the mesh heating element 931 includes 4 to 36 resistance wires 9311, and more preferably the number of resistance wires 9311 is a multiple of 4 or 6 out of 4 to 36, such as 4, 6, 8, 12, 16, 18, 20, 24, 28, 32, 36, etc.
  • the number of mesh holes in the axial length of 25.4 mm of the mesh heating element 931 is between 20 and 300, that is, the mesh number of the mesh heating element 931 is between 20 and 300 mesh, such as 20 mesh, 30 mesh, 40 mesh, 50 mesh, 60 mesh, 70 mesh, 80 mesh, 100 mesh, 120 mesh, 150 mesh, 200 mesh, 250 mesh, 300 mesh, etc.
  • the number of resistance wires 9311 is the same, a smaller mesh number is beneficial to the atomizing core 930 to produce larger aerosol particles, and the aerosol tastes moister; a larger mesh number is beneficial to the atomizing core 930 to produce delicate aerosol particles. Aerosol particles, the aerosol tastes relatively dry.
  • the atomization core 930 may include two or more layers (including two layers) of mesh heating elements 931 .
  • the mesh number and resistance of the two-layer mesh heating element 931, as well as the number and wire diameter of the resistance wires 9311 making the two-layer mesh heating element 931 may be the same or different.
  • the number of layers of the mesh heating element 931 can be further increased to improve the heating of the aerosol to meet the requirements of fine and dry aerosol.
  • the mesh heating element 931 when the mesh heating element 931 is attached to the inner peripheral surface of the atomization core liquid guide element 932 in a 360-degree surrounding manner, the cellulose fiber or powder slurry can be coated on the inner circumferential surface of the liquid guide element 932.
  • the outer peripheral surface of the mesh heating element 931 is then dried to form the atomizing core liquid guide element 932.
  • the powder slurry may be clay slurry.
  • the left-hand and right-hand resistance wires 9311 can be used in one up and down, one up and two down, two up and two down, etc. ways.
  • the electrode card interface 9364 can be connected to the radial direction of the atomizing core 930.
  • the outer peripheral surface of the mesh heating element 931 is snap-fitted.
  • the lengths of the mesh heating element 931 and the atomizing core liquid guide element 932 are substantially equal.
  • This structure can bring additional benefits, that is: during atomization, the energized part of the mesh heating element 931 between the electrodes 936 generates heat to atomize the liquid, and part of the heat is conducted to the non-energized parts at both ends of the atomization core 930, thereby Heating the liquid at both ends of the atomizing core 930 and reducing the viscosity of the liquid, thereby increasing the speed of liquid conduction from both ends of the atomizing core 930 to the central heating part of the atomizing core 930, is helpful for atomizing viscous liquids, such as CBD and THC atomization liquid is relatively viscous or even paste-like at room temperature, while e-cigarette liquid in cold outdoor environments is also very viscous, but the viscosity of these liquids decreases significantly when heated to above 50°C.
  • Figure 43 is a schematic structural diagram of the first aerosol bomb according to the fifth embodiment of the present invention
  • Figure 44 is a structural exploded schematic diagram of the first aerosol bomb according to the fifth embodiment of the present invention
  • Figure 45 is a schematic structural diagram of the first aerosol bomb according to the fifth embodiment of the present invention.
  • Figure 46 is a schematic structural diagram of the second aerosol bomb according to the fifth embodiment of the present invention
  • Figure 47 is a schematic structural diagram of the atomizing core according to the fifth embodiment of the present invention.
  • Structural decomposition diagram of two types of aerosol bombs The structure of this embodiment is similar to that of the first embodiment, and the parts that are the same as those of the first embodiment will not be described again in the description of this embodiment.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931 , the mesh heating element 931 covers the outer peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surround.
  • the mesh heating element 931 is a single layer, braided by 8 resistance wires 9311, with a braiding density of 50 mesh, and the resistance of the atomizing core is 1.2 ohms.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931 , the mesh heating element 931 covers the outer peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surround.
  • the mesh heating element 931 has two layers. The first layer is woven from 8 resistance wires 9311 with a weaving density of 60 mesh; the second layer is woven from 8 resistance wires 9311 with a weaving density of 40 mesh.
  • the atomizing core The resistance is 0.6 ohms.
  • the atomizing core liquid guide element 932 is a cotton rope with a weight of 3.2 grams per meter, and the resistance wire 9311 making the mesh heating element 931 has an even diameter. is 60 microns.
  • the atomization core 930 of the two-layer mesh heating element 931 can achieve the best smoking taste at lower power, including aroma. Excitation, fullness, persistence, aerosol temperature, etc. Therefore, the atomization core 930 of the two-layer mesh heating element 931 is conducive to saving the power of the host and increasing battery life.
  • the experimental results also show that the atomization core 930 using a two-layer mesh heating element 931 can produce more delicate aerosol and have a richer aroma than the atomization core 930 using a single layer mesh heating element 931.
  • the first electrode 936a with the electrode card interface 9364 is clamped with the atomizing core 930, and the upper end of the second electrode 936b is in contact with the lower end of the first electrode 936a.
  • the advantage of this split electrode 936 is that it can improve Flexibility in connecting the aerosol bomb 800 to the host (not shown).
  • the atomization core 930 of the present invention is advantageous to make the mesh heating element 931 into a structure of more than two layers (including two layers).
  • the first layer of mesh heating element 91 in contact with the liquid guide element 932 of the atomization core heats the liquid to mist.
  • the generated aerosol is further heated and baked by other layers of mesh heating elements 931, making the smoke more delicate and dry, and the aroma more fully stimulated.
  • the traditional atomizer core that uses a spiral heating element and has pins has poor shape stability, difficulty in controlling pin alignment during installation, and low assembly efficiency.
  • the atomizing core 930 of the present invention since the mesh heating element 931 surrounds the outer or inner peripheral surface of the liquid conducting element of the atomizing core at 360 degrees, the atomizing core has high strength and good stability, and does not require pins.
  • the electrodes can Contacting the outer or inner wall of the mesh heating element from any direction is beneficial to the efficient assembly of the atomizer core in the aerosol bomb.
  • Figure 48 is a schematic structural diagram of an eleventh atomizing core according to the first embodiment of the present invention.
  • the sixth embodiment is a modification of the first embodiment and has a similar structure to the first embodiment. The parts that are the same as the first embodiment will not be described again in the description of this embodiment.
  • the mesh heating element 931 can also be formed by at least two zigzag-shaped resistance wires 9311 interlocking at adjacent bends. As shown in FIG. 48 , the mesh heating element 931 is made of eight zigzag resistance wires 9311 . Each resistance wire 9311 interlocks with the adjacent resistance wire 9311 at the bend to form a hollow columnar mesh structure.
  • the hollow columnar mesh heating element 931 is wrapped on the outer peripheral surface of the atomization core liquid guide element 932 or attached to the inner peripheral surface of the atomizer core liquid guide element 932, so that the atomizer core 930 has good strength and shape stability. ;
  • the heat generated by the 360-degree surrounding mesh heating element 931 can be evenly distributed on the surface of the atomizer core liquid guide element 932, and can atomize the liquid on the atomizer core liquid guide element 932 more evenly, making the atomization more stable. Reliable, with a more delicate and full taste.
  • the tenth method for manufacturing an atomization core includes the following steps:
  • the resistance wire 9311 into a zigzag shape, for example, bend it into an S shape or a Z shape, let the adjacent resistance wires 9311 interlock at the bend, and form a mesh heating element 931 on the outer peripheral surface of the atomizing core liquid conduction element 932 , the mesh heating element 931 covers the atomizing core liquid guide element 932 in a 360-degree surround;
  • Figure 49 is a schematic structural diagram of the twelfth atomizing core according to the first embodiment of the present invention
  • Figure 50 is a schematic cross-sectional view of the twelfth atomizing core according to the first embodiment of the present invention
  • Figure 51 is a schematic diagram of the twelfth atomizing core according to the first embodiment of the present invention.
  • Structural diagram of the aerosol bomb according to the eighth embodiment The structure of this embodiment is similar to that of the first embodiment, and the parts that are the same as those of the first embodiment will not be described again in the description of this embodiment.
  • the atomization core 930 includes an atomization core liquid guide element 932 and a mesh heating element 931.
  • the mesh heating element 931 covers the outer periphery of the atomization core liquid guide element 932 in a 360-degree surrounding manner. surface, and/or, is attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 is preferably attached to the inner peripheral surface of the atomizing core liquid guide element 932 in a 360-degree surrounding manner.
  • the atomizing core 930 also includes an electrode 936, which is parallel to the axial direction of the mesh heating element 931 and connected to the mesh heating element 936. Electrode 936 is preferably a wire.
  • the mesh heating element 931 may be one layer, or may be two or more layers (including two layers); the electrode 936 and the mesh heating element 931 may be connected by welding or mechanical contact.
  • the electrode 936 can be buried between the first layer and the second layer of mesh heating elements 931 so that the electrode 936 is in contact with the mesh heating element 931.
  • the electrodes 936 are two wires parallel to the axial direction of the mesh heating element 931 .
  • the circumference of the cross section of the mesh heating element 931 is equally divided by two wires so that the atomizing core can be heated evenly.
  • the length of the electrode 936 connected to the mesh heating element 931 may be equal to or smaller than the axial length of the mesh heating element 931 .
  • the resistance of the atomizing core 930 can be changed by changing the length of the connection between the electrode 936 and the mesh heating element 931 .
  • the atomizing core liquid-guiding element 932 can be non-woven fabric, cotton paddle, etc.; at least a part of the outer peripheral surface of the atomizing core liquid-guiding element 932 is covered with a hollow metal tube 9396 and is arranged in the hollow metal tube 9396 On the tube wall, the outer peripheral surface of the atomizing core liquid conducting element 932 communicates with the liquid in the liquid storage element 100 through the through hole 9397 of the hollow metal tube wall.
  • the atomizing core 930 is arranged parallel to or coincident with the central axis of the aerosol channel 1303.
  • the hollow metal tube 9396 is connected to the aerosol channel 1303, and the hollow metal tube wall
  • the through hole 9397 is in direct contact with the liquid in the liquid storage element 100, and the liquid in the liquid storage element 100 is conducted to the atomization core liquid guide element 932 through the through hole 9397 in the hollow metal tube wall.
  • the atomization module upper cover 710 is provided with an atomization module liquid guide hole 712 .
  • the upper opening of the atomization module liquid guide hole 712 is directly connected to the liquid in the liquid storage element 100, and the lower opening is connected to the atmosphere.
  • a gas-liquid exchange element 290 is provided in the atomization module liquid guide hole 712.
  • the gas-liquid exchange element 290 mainly functions to transport gas into the liquid storage element 100, thereby making the atomization of the atomization module 700 more stable and reliable.
  • the atomizing core 930 of the present invention includes the outer peripheral surface of the atomizing core liquid-conducting element 932 that is wrapped in a 360-degree surrounding manner, and/or is attached to the atomizing core liquid-conducting element 932 in a 360-degree surrounding manner.
  • the mesh heating element 931 on the inner peripheral surface of the atomization core 930 has good strength and shape stability.
  • the heat generated by the 360-degree surrounding mesh heating element 931 can be more evenly distributed on the surface of the atomization core liquid guide element 932, and more efficiently heat the liquid on the atomization core liquid guide element 932, making atomization more complete. It allows users to obtain a more delicate and full taste.
  • the atomizing core of the present invention is advantageous to make the mesh heating element 931 into a structure with more than two layers (including two layers). Compared with the single-layer mesh heating element 931, the mesh heating element 931 with more than two layers (including two layers) is used.
  • the aerosol bomb with 931-shaped heating element has more complete atomization and more delicate aerosol.
  • the mesh heating element 931 covers the outer peripheral surface of the liquid guide element 932 of the atomizing core in a 360-degree surrounding manner, and/or is attached to the atomizing core in a 360-degree surrounding manner.
  • the atomizing core 930 does not need to be provided with pins connected to the electrode 936, so that the electrode 936 can contact the outer or inner peripheral wall of the mesh heating element 931 from any direction, which is beneficial to the atomizing core 930 in Assembly of aerosol bomb 800.
  • the coiled material of the atomizing core 930 can be continuously produced and harvested, which can greatly improve the production efficiency and facilitate the storage and transportation of the atomizing core 930. Therefore, the cost of the atomizing core 930 can be greatly reduced.

Abstract

一种雾化芯、雾化模块、气雾弹和雾化芯的制造方法,雾化芯(930)包括雾化芯导液元件(932)和网状加热元件(931),网状加热元件(931)以360度环绕的方式包覆雾化芯导液元件(932)的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件(932)的内周面。360度环绕的网状加热元件(931)产生的热量能更均匀地分布在雾化芯导液元件(932)表面、更高效地加热雾化雾化芯导液元件(932)上的液体,使雾化更充分,可以让使用者获得更细腻饱满的口感。

Description

雾化芯、雾化模块、气雾弹和雾化芯的制造方法 技术领域
本发明涉及一种雾化芯、雾化模块、气雾弹和雾化芯的制造方法,特别涉及用于电子烟、香薰和药物溶液雾化等应用领域中的雾化芯、雾化模块、气雾弹和雾化芯的制造方法。
背景技术
电子雾化被广泛应用于日常生活的各个领域,如电子烟、香薰和药物雾化等。雾化芯是电子雾化的关键部件,雾化芯通常包括雾化芯导液元件和加热元件。常见雾化芯导液元件包括无纺布、纤维束和多孔陶瓷,其中纤维束的材质包括棉纤维、麻纤维等含纤维素的纤维、或碳纤维、玻璃纤维、陶瓷纤维等,烧结的多孔陶瓷具有固定的形状和较高的强度,便于安装,但多孔陶瓷具有较强的选择性吸附,对香气的还原性较差,此外,陶瓷颗粒容易脱落而对使用者造成潜在的健康风险。用无纺布、棉纤维、麻纤维作为雾化芯导液元件的雾化芯安全性好,对香气的还原性较高,此类雾化芯中通常将电阻丝制成螺旋状加热元件并环绕在雾化芯导液元件的外周面,螺旋状加热元件的两端形成引脚用于连接至电源,由于螺旋状电阻丝对雾化芯导液元件表面的覆盖比例小,雾化颗粒大,口感的细腻性和饱满性较差,并且这种雾化芯强度较低、形状和尺寸稳定性较差、自动化安装时引脚对位难度大。
发明内容
为解决现有技术中存在的问题,本发明提出了一种雾化芯,所述雾化芯包括雾化芯导液元件和网状加热元件,所述网状加热元件以360度环绕的方式包覆所述雾化芯导液元件的外周面,和/或,以360度环绕的方式贴覆于所述雾化芯导液元件的内周面。
进一步,所述网状加热元件部分埋入雾化芯导液元件的外周面,和/或,所述网状加热元件部分埋入雾化芯导液元件的内周面。
进一步,所述网状加热元件由电阻丝编织或交叉缠绕而形成。
进一步,所述网状加热元件包括至少一根左旋电阻丝和至少一根右旋电阻丝。
进一步,所述网状加热元件的电阻丝包括经线电阻丝和纬线电阻丝。
进一步,所述网状加热元件至少包括两根螺距不同的左旋电阻丝或右旋电阻丝。
进一步,所述网状加热元件包括至少一根电阻丝,所述一根电阻丝包括左旋电阻丝和右旋电阻丝,所述左旋电阻丝和所述右旋电阻丝编织或交叉缠绕后形成网状。
进一步,所述雾化芯包括两层以上的网状加热元件。
进一步,所述网状加热元件和所述雾化芯导液元件分别成型。
进一步,所述网状加热元件和所述雾化芯导液元件一体成型。
进一步,所述雾化芯导液元件的材质包括含纤维素的纤维或粉末、碳纤维、玻璃纤维、陶瓷纤维和多孔陶瓷。
进一步,所述网状加热元件由电阻材料蚀刻、冲切、或焊接而成形成。
进一步,所述雾化芯导液元件的每米重量为1.0克至6.0克。
进一步,所述电阻丝的线径为10至150微米。
进一步,所述雾化芯的电阻为0.2至2.0欧姆。
进一步,所述网状加热元件的电阻丝数量为4至36根。
进一步,所述网状加热元件轴向长度25.4毫米中网孔的数量介于20至300个。
进一步,所述网状加热元件的轴向长度和雾化芯导液元件的轴向长度基本相等。
进一步,所述网状加热元件包括至少两根折线形的电阻丝。
进一步,所述雾化芯还包括电极,所述电极与所述网状加热元件的轴向平行并与所述网状加热元件连接。
本发明还提供了一种雾化模块,所述雾化模块至少包括上述任一项所述的雾化芯。
进一步,所述雾化模块包括电极和设置在所述电极一端的电极卡接口,所述电极卡接口卡接所述网状加热元件。
进一步,所述雾化模块包括电极和设置在所述电极一端的电极插接部,所述电极插接部插入雾化芯导液元件通孔后与所述网状加热元件连接。
进一步,所述雾化模块还包括气液交换元件。
本发明还提供了一种气雾弹,所述气雾弹包括储液元件和上述任一项所述的雾化模块。
进一步,所述雾化芯直接与储液元件中的液体连通。
进一步,当所述雾化模块包括气液交换元件,且所述气液交换元件用于向雾化芯导液元件传送液体时,所述雾化芯通过气液交换元件与储液元件中的液体连通。
进一步,当所述网状加热元件以360度环绕的方式贴覆于所述雾化芯导液元件的内周面时,所述雾化芯导液元件的外周面与储液元件中的液体连通。
进一步,所述雾化芯导液元件的外周面的至少一部分套设有镂空金属管,所述雾化芯导 液元件的外周面透过镂空金属管与储液元件中的液体连通。
进一步,所述气雾弹还包括气雾通道,当所述雾化芯导液元件具有轴向贯穿所述雾化芯导液元件的雾化芯导液元件通孔时,所述雾化芯导液元件通孔与所述气雾通道的夹角大于等于45度且小于等于135度。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的网状加热元件;其中,控制其中至少一部分电阻丝以形成右旋电阻丝的方式螺旋包覆在雾化芯导液元件的外周面,并控制其中至少一部分电阻丝以形成左旋电阻丝的方式螺旋包覆雾化芯导液元件的外周面;
制成雾化芯卷材;
从雾化芯卷材截取需要的长度作为雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的网状加热元件;其中,控制其中至少一根电阻丝以第一螺距螺旋包覆在雾化芯导液元件的外周面,并控制其中至少一根电阻丝以第二螺距螺旋包覆雾化芯导液元件的外周面,第一螺距与第二螺距不相等;
制成雾化芯卷材;
从雾化芯卷材截取需要的长度作为雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
以塑料或金属作为辅助芯体,将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆辅助芯体的外周面的网状加热元件;其中,控制其中至少一部分电阻丝以形成右旋电阻丝的方式螺旋包覆在辅助芯体的外周面,并控制其中至少一部分电阻丝以形成左旋电阻丝的方式螺旋包覆在辅助芯体的外周面;
在网状加热元件的外周面包覆雾化芯导液元件,比如包覆织布或不织布,或者在网状加热元件的外周面涂覆纤维素纤维的浆料然后干燥;
制成雾化芯卷材;
从雾化芯卷材截取需要的长度,取出辅助芯体制成雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
将一根电阻丝从雾化芯导液元件的靠下的部位开始,以左旋或右旋的方式螺旋上升缠绕到雾化芯导液元件的靠上的部位,形成左旋电阻丝或者右旋电阻丝;
然后,再将电阻丝从雾化芯导液元件的靠上的部位右旋或左旋绕至雾化芯导液元件的靠下的部位,形成右旋电阻丝或者左旋电阻丝;
左旋电阻丝和右旋电阻丝编织或交叉缠绕形成网状加热元件。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
将将根电阻丝的两端从雾化芯导液元件靠下的部位开始,分别以左旋或右旋的方式螺旋上升缠绕到雾化芯导液元件的靠上的部位,在雾化芯导液元件的外周面编织或交叉缠绕形成网状的网状加热元件;
制成雾化芯卷材;
从雾化芯卷材截取需要的长度作为雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
将一定数量的电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的第一层网状加热元件;
将一定数量的电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆第一层网状加热元件的外周面的第二层网状加热元件;
制成雾化芯卷材;
从雾化芯卷材截取需要的长度作为雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
将电阻丝编织或交叉缠绕在一辅助芯体上形成网状加热元件,辅助芯体可以用金属或塑料等制成;
将包含辅助芯体的网状加热元件放入模具并定位,将纤维素纤维或粉末浆料注入模具成型,或者,在模具中连续拉动包含辅助芯体的网状加热元件长条,同时注入纤维素纤维或粉末浆料成型;
干燥,制成雾化芯长条半成品;
截断雾化芯半成品,取出辅助芯体,即为雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
将电阻丝编织或交叉缠绕在一辅助芯体上形成二层网状结构,截断后取出辅助芯体制成网状加热元件;或者将电阻丝编织或交叉缠绕成加热元件长条,截断后制成网状加热元件;
将纤维素纤维或粉末浆料挤出成包括轴向雾化芯导液元件通孔的长管,干燥,截断制成雾化芯导液元件;或者将纤维素纤维或粉末浆料挤出成包括辅助芯体的长条,干燥,截断后取出辅助芯体制成雾化芯导液元件;
网状加热元件外套设雾化芯导液元件制成雾化芯;或者雾化芯导液元件外套设网状加热元件制成雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
将电阻丝编织或交叉缠绕成网状的网状加热元件长条;
在模具中拉动网状加热元件长条,同时注入纤维素纤维或粉末浆料成型;
干燥,制成雾化芯长条;
截断雾化芯长条制成雾化芯。
本发明还提供了一种雾化芯的制造方法,包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的网状加热元件;其中,控制其中至少两根折线形的电阻丝在相邻的弯折处互扣从而形成网状并包覆雾化芯导液元件的外周面;
制成雾化芯卷材;
从雾化芯卷材截取需要的长度作为雾化芯。本发明的雾化芯包括360度环绕雾化芯导液元件的外周面或内周面的网状加热元件,雾化芯具有更好的强度和形状稳定性;360度环绕的网状加热元件产生的热量能更均匀地分布在雾化芯导液元件表面、更充分地雾化雾化芯导液元件上的液体,使雾化更稳定可靠,口感更加细腻饱满。传统的采用螺旋状加热元件并带有引脚的雾化芯形状稳定性差、安装时控制引脚对位难度大,装配效率低。本发明的雾化芯,由于网状加热元件360度环绕雾化芯导液元件的外周面或内周面,雾化芯不需要引脚,使电极可以从任意方向接触网状加热元件外周壁或内周壁,有利于雾化芯在气雾弹中的高效装配。
现有技术的雾化芯,通常需要逐个制作,生产效率低。本发明的雾化芯可以连续生产并收成雾化芯卷材,生产效率高,并能方便雾化芯的储存和运输,因此能大幅降低雾化芯的成本。雾化芯安装时放卷并截取需要的长度即可,有利于雾化芯的自动化装配。
和现有技术相比,本发明的雾化芯成本低、雾化充分性好、口感细腻饱满,采用这种雾化芯的气雾弹雾化稳定可靠,个体差异小,用户体验好。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并结合附图,作详细说明。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为根据本发明第一实施例的第一种雾化芯的结构示意图;
图2为根据本发明第一实施例的第二种雾化芯的结构示意图;
图3为根据本发明第一实施例的第一种网状加热元件的结构示意图;
图4为根据本发明第一实施例的第二种网状加热元件的结构示意图;
图5为根据本发明第一实施例的第三种网状加热元件的结构示意图;
图6为根据本发明第一实施例的第四种网状加热元件的结构示意图;
图7为根据本发明第一实施例的第五种网状加热元件的结构示意图;
图8为根据本发明第一实施例的第六种网状加热元件的结构示意图;
图9为根据本发明第一实施例的第七种网状加热元件的结构示意图;
图10为根据本发明第一实施例的第八种网状加热元件的结构示意图;
图11为根据本发明第一实施例的第三种雾化芯的结构示意图;
图12为根据本发明第一实施例的第四种雾化芯的结构示意图;
图13为根据本发明第一实施例的第五种雾化芯的结构示意图;
图14为根据本发明第一实施例的第六种雾化芯的结构示意图;
图15为根据本发明第一实施例的第七种雾化芯的结构示意图;
图16为根据本发明第一实施例的第七种雾化芯的剖面示意图;
图17为根据本发明第一实施例的第八种雾化芯的结构示意图;
图18为根据本发明第一实施例的第八种雾化芯的剖面示意图;
图19为根据本发明第一实施例的第九种雾化芯的结构示意图;
图20为根据本发明第一实施例的第九种雾化芯的剖面示意图;
图21为根据本发明第一实施例的第十种雾化芯的结构示意图;
图22为根据本发明第一实施例的第十种雾化芯的剖面示意图;
图23为根据本发明第一实施例的第一种气雾弹的结构示意图;
图24为根据本发明第一实施例的第一种气雾弹的结构分解示意图;
图25为根据本发明第一实施例的第二种气雾弹的结构示意图;
图26为根据本发明第一实施例的第二种气雾弹的结构分解示意图;
图27为根据本发明第一实施例的第三种气雾弹的结构示意图;
图28为根据本发明第一实施例的第三种气雾弹的结构分解示意图;
图29为根据本发明第二实施例的第一种气雾弹的结构示意图;
图30为根据本发明第二实施例的第一种气雾弹的结构分解示意图;
图31为根据本发明第二实施例的第二种气雾弹的结构示意图;
图32为根据本发明第二实施例的第二种气雾弹的结构分解示意图;
图33为根据本发明第二实施例的第三种气雾弹的结构示意图;
图34为根据本发明第二实施例的第三种气雾弹的结构分解示意图;
图35为根据本发明第三实施例的第一种气雾弹的结构示意图;
图36为根据本发明第三实施例的第一种气雾弹的结构分解示意图;
图37为根据本发明第三实施例的第二种气雾弹的结构示意图;
图38为根据本发明第三实施例的第二种气雾弹的结构分解示意图;
图39为根据本发明第四实施例的第一种气雾弹的结构示意图;
图40为根据本发明第四实施例的第一种气雾弹的结构分解示意图;
图41为根据本发明第四实施例的第二种气雾弹的结构示意图;
图42为根据本发明第四实施例的第二种气雾弹的结构分解示意图;
图43为根据本发明第五实施例的第一种气雾弹的结构示意图;
图44为根据本发明第五实施例的第一种气雾弹的结构分解示意图;
图45为根据本发明第五实施例的第一种气雾弹的雾化芯结构示意图;
图46为根据本发明第五实施例的第二种气雾弹的结构示意图;
图47为根据本发明第五实施例的第二种气雾弹的结构分解示意图;
图48为根据本发明第一实施例的第十一种雾化芯的结构示意图;
图49为根据本发明第一实施例的第十二种雾化芯的结构示意图;
图50为根据本发明第一实施例的第十二种雾化芯的剖面示意图;
图51为根据本发明第八实施例的气雾弹的结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方 式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语包括科技术语对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
第一实施例
图1为根据本发明第一实施例的第一种雾化芯的结构示意图;图2为根据本发明第一实施例的第二种雾化芯的结构示意图。
如图1和图2所示,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
网状加热元件931可以部分埋入雾化芯导液元件932的外周面,和/或,网状加热元件931可以部分埋入雾化芯导液元件932的内周面。也就是说,网状加热元件931可以部分嵌入雾化芯导液元件932,部分露出雾化芯导液元件932的外周面和/或内周面。
雾化芯导液元件932可以是本领域内常规的雾化芯导液元件932,用于向雾化芯930输送待雾化的液体。
网状加热元件931可以由电阻材料蚀刻、冲切、编织、交叉缠绕或焊接而成360度环绕的网状结构。优选,网状加热元件931由电阻丝9311编织或交叉缠绕的方式制成。
在本发明中,电阻丝9311泛指具有一定的电阻且通电时能发热的金属丝或非金属丝,如镍铬合金丝、铁铬合金丝等。电阻丝9311的横截面可以为圆形、长方形等几何形状,横截面为圆形的电阻丝9311的直径可以根据应用要求选择。
图3为根据本发明第一实施例的第一种网状加热元件的结构示意图;图4为根据本发明第一实施例的第二种网状加热元件的结构示意图;图5为根据本发明第一实施例的第三种网状加热元件的结构示意图;图6为根据本发明第一实施例的第四种网状加热元件的结构示意图;图7为根据本发明第一实施例的第五种网状加热元件的结构示意图;图8为根据本发明第一实施例的第六种网状加热元件的结构示意图;图9为根据本发明第一实施例的第七种网状加热元件的结构示意图;图10为根据本发明第一实施例的第八种网状加热元件的结构示意图。
[网状加热元件]
如图3至图10所示,网状加热元件931由一根或多根的电阻丝9311编织或交叉缠绕而 形成,编织网状加热元件931的电阻丝9311的阻值可以相同或不同。
网状加热元件931可以包括但不限于下述编织或交叉缠绕结构:
1)如图3、4、5和6所示,网状加热元件931包括至少一根左旋电阻丝9311a和至少一根右旋电阻丝9311b,优选,网状加热元件931包括二至八根电阻丝9311,其中一部分为左旋电阻丝9311a,另一部分为右旋电阻丝9311b。在本发明中,将网状加热元件931垂直放置,从上向下看,电阻丝9311从下往上按顺时针方向螺旋环绕的为左旋电阻丝9311a;将网状加热元件931垂直放置,从上向下看,电阻丝9311从下往上按逆时针方向螺旋向上环绕的为右旋电阻丝9311b。
如图3所示,网状加热元件931包括一根左旋电阻丝9311a和一根右旋电阻丝9311b,将网状加热元件931垂直放置时,可以看到,左旋电阻丝9311a和右旋电阻丝9311b螺旋上升,互相交叉形成360度环绕的网状结构。
如图4所示,网状加热元件931包括一根左旋电阻丝9311a和两根右旋电阻丝9311b,将网状加热元件931垂直放置时,可以看到,左旋电阻丝9311a和右旋电阻丝9311b螺旋上升,互相交叉形成360度环绕的网状结构。
如图5所示,网状加热元件931包括两根左旋电阻丝9311a和两根右旋电阻丝9311b,将网状加热元件931垂直放置时,可以看到,左旋电阻丝9311a和右旋电阻丝9311b螺旋上升,互相交叉形成360度环绕的网状结构。
如图6所示,网状加热元件931包括三根左旋电阻丝9311a和三根右旋电阻丝9311b,将网状加热元件931垂直放置时,可以看到,左旋电阻丝9311a和右旋电阻丝9311b螺旋上升,互相交叉形成360度环绕的网状结构。
网状加热元件931中同时存在的左旋电阻丝9311a和右旋电阻丝9311b,且左旋电阻丝9311a和右旋电阻丝9311b互相交叉形成360度环绕的网状结构,有助于提高雾化芯930的整体强度和形状保持能力,也有助于网状加热元件931通电时均匀地在雾化芯导液元件932的外周面或内周面分布热量。采用这种雾化芯930,可以提高雾化效率,使雾化更充分。如果该雾化芯930应用于电子烟等吸入装置中,可以使得吸入气雾时,口感更细腻饱满。
2)如图7和8所示,网状加热元件931的电阻丝9311包括经线电阻丝9311c和纬线电阻丝9311d。
如图7所示,经线电阻丝9311c可以是多根沿着轴向方向平行排列的电阻丝9311,纬线电阻丝9311d可以是多根与经线电阻丝9311c垂直交叉的环状电阻丝9311。这种情况下,可以将多根经线电阻丝9311c和多根纬线电阻丝9311d在雾化芯导液元件932的外周面或内周面编织成网。
如图8所示,网状加热元件931也可是一根螺旋状的纬线电阻丝9311d和多根经线电阻丝9311c编织或者交叉缠绕而成。也可以是,一根电阻丝9311往复折返形成经线电阻丝9311c,并与螺旋状的一根纬线电阻丝9311d编织或者交叉缠绕而成。也可以是,一根电阻丝9311往复折返形成经线电阻丝9311c,并与多根环状的纬线电阻丝9311d编织或者交叉缠绕而成。
3)如图9所示,网状加热元件931还可以包括至少两根螺距不同的左旋电阻丝9311a或右旋电阻丝9311b。螺距不同的两根或以上左旋电阻丝9311a或右旋电阻丝9311b每隔一定的间距,便会在网状加热元件931上产生交叉从而形成网状结构。如图9所示,网状加热元件931包括两根螺距不同的右旋电阻丝9311b,两根螺距不同的右旋电阻丝9311b交叉缠绕开成网状加热元件931。
4)如图10所示,网状加热元件931包括至少一根电阻丝9311,一根电阻丝9311包括左旋电阻丝9311a和右旋电阻丝9311b,左旋电阻丝9311a和右旋电阻丝9311b编织或交叉缠绕后形成网状。
如图10所示,网状加热元件931包括一根电阻丝9311。在网状加热元件931垂直放置时,可以看到,该一根电阻丝9311从下至上螺旋上升,形成右旋电阻丝9311b;在该电阻丝9311螺旋上升至一定高度后,再从上至下螺旋下降,形成左旋电阻丝9311a。由此,左旋电阻丝9311a和右旋电阻丝9311b经编织或者交叉缠绕后形成网状加热元件931。由于同一根电阻丝9311同时存在左旋电阻丝9311a和右旋电阻丝9311b,且左旋电阻丝9311a和右旋电阻丝9311b的互相交叉形成网状,有助于提高雾化芯930的强度和形状保持能力,也有助于网状加热元件931通电时在雾化芯导液元件932的外周面或内周面均匀地分布热量,使雾化均匀稳定。
[雾化芯]
图11为根据本发明第一实施例的第三种雾化芯的结构示意图;图12为根据本发明第一实施例的第四种雾化芯的结构示意图。
如图11和图12所示,当网状加热元件931以360度环绕的方式贴覆于雾化芯导液元件932的内周面上时,可以用纤维素纤维或粉末浆料涂覆在网状加热元件931外周面然后干燥形成雾化芯导液元件932。
如图11所示,也可以用织布或不织布等作为雾化芯导液元件932包覆在网状加热元件931的外周面上。在这种情况下,可以在雾化芯导液元件932的外周面缠绕绑线L使雾化芯930更稳固。
如图12所示,也可以根据需要,在雾化芯930的外周面和内周面上均设置网状加热元件 931。设置在外周面的网状加热元件931既可以起到加热的作用,也可以起到捆绑雾化芯导液元件932的作用,使得雾化芯930更加稳固。
图13为根据本发明第一实施例的第五种雾化芯的结构示意图。如图13所示,当网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面上时,可以用棉纤维、玻璃纤维、陶瓷纤维或碳纤维等耐高温的纤维束或纤维棒作为雾化芯导液元件932。
如图13所示的网状加热元件931包括至少一根电阻丝9311。优选,网状加热元件931包括一根电阻丝9311。将网状加热元件931垂直放置时,可以看到,一根电阻丝9311从雾化芯导液元件932的靠上的部位开始,以左旋或右旋的方式螺旋下降缠绕到雾化芯导液元件932的靠下的部位,形成左旋电阻丝9311a或者右旋电阻丝9311b;然后,电阻丝9311从雾化芯导液元件932的靠下的部位右旋或左旋绕至雾化芯导液元件932的靠上的部位,形成右旋电阻丝9311b或者左旋电阻丝9311a。根据需要,可以重复螺旋上升缠绕或者螺旋下降缠绕的过程,形成多个左旋电阻丝9311a或右旋电阻丝9311b,从而形成多层的网状加热元件931。
当然,也可以用棉纤维、玻璃纤维、陶瓷纤维或碳纤维等作为雾化芯导液元件932,将一根电阻丝9311的两端从雾化芯导液元件932靠下的部位开始,分别以左旋或右旋的方式螺旋上升缠绕到雾化芯导液元件932的靠上的部位,在雾化芯导液元件932的外周面编织或交叉缠绕形成网状的网状加热元件931。
图14为根据本发明第一实施例的第六种雾化芯的结构示意图。如图14所示,在根据本发明第一实施例的第六种雾化芯的结构中,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面。
网状加热元件931由电阻丝9311编织而成,网状加热元件931包括至少一根左旋电阻丝9311a和至少一根右旋电阻丝9311b。优选,网状加热元件931包括2至8根电阻丝9311,其中一部分为成左旋电阻丝9311a,另一部分形成右旋电阻丝9311b。网状加热元件931中同时存在的左旋电阻丝9311a和右旋电阻丝9311b互相交叉形成网状。
如图14所示,在根据本发明第一实施例的第六种雾化芯的结构中,网状加热元件931为两层网状结构,包括第一层网状加热元件9311f和第二层网状加热元件9311s。在图14中,虚线表示的是紧贴雾化芯导液元件932的外周面的第一层网状加热元件9311f,实线表示的是包覆在在第一层加热元件上面的第二层网状加热元件9311s,两层加热元件的电阻丝数量和阻值可以相同或不同。第二层网状加热元件9311s可以将第一层网状加热元件9311f产生的气雾进一步加热,形成更小的气雾颗粒,从而让使用者体验到更细腻干燥的气雾。
图15为根据本发明第一实施例的第七种雾化芯的结构示意图;图16为根据本发明第一 实施例的第七种雾化芯的剖面示意图。
根据本发明第一实施例的第七种雾化芯930,雾化芯导液元件932可以为纤维素纤维或粉末,纤维素纤维或粉末可以来源于棉花、木头、亚麻等,也可以为再生纤维素纤维;雾化芯导液元件932还可以为多孔陶瓷,烧结的多孔陶瓷坚硬,方便组装。雾化芯导液元件932和网状加热元件931优选一体成型。网状加热元件931以360度环绕的方式贴覆于雾化芯导液元件932的内周面,且网状加热元件931部分埋入雾化芯导液元件932的内周面。
图17为根据本发明第一实施例的第八种雾化芯的结构示意图;图18为根据本发明第一实施例的第八种雾化芯的剖面示意图。
根据本发明第一实施例的第八种雾化芯930,雾化芯导液元件932为纤维素纤维,网状加热元件931和雾化芯导液元件932分别成型,网状加热元件931外套设雾化芯导液元件932,使网状加热元件931以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
加热元件优选由电阻丝9311编织或交叉缠绕而形成,雾化芯930包括两层以上的网状加热元件931,其中一层紧贴雾化芯导液元件932的内周面,具有多层网状加热元件931的雾化芯930能更充分地雾化液体,有利于减小气雾的颗粒,从而让使用者体验更干燥的气雾。
图19为根据本发明第一实施例的第九种雾化芯的结构示意图;图20为根据本发明第一实施例的第九种雾化芯的剖面示意图。
根据本发明第一实施例的第九种雾化芯930,雾化芯导液元件932和网状加热元件931一体成型,网状加热元件931以360度环绕的方式包覆于雾化芯导液元件932的外周面,且网状加热元件931部分埋入雾化芯导液元件932的外周面。雾化芯导液元件932的材质可以为含纤维素的纤维或粉末、碳纤维和多孔陶瓷。
图21为根据本发明第一实施例的第十种雾化芯的结构示意图;图22为根据本发明第一实施例的第十种雾化芯的剖面示意图。
根据本发明第一实施例的第十种雾化芯930,雾化芯导液元件932和网状加热元件931分别成型,雾化芯导液元件932外套设网状加热元件931,使网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面。网状加热元件931优选由电阻丝9311编织或交叉缠绕而形成,雾化芯930包括两层以上的网状加热元件931,其中一层紧贴雾化芯导液元件932的外周面,具有多层网状加热元件931的雾化芯930能更充分地雾化液体,有利于减小气雾的颗粒,从而让使用者感受更干燥的气雾。雾化芯导液元件932的材质可以为含纤维素的纤维或粉末、碳纤维,也可以为多孔陶瓷。
[雾化芯的制造方法]
本发明提供的第一种雾化芯的制造方法,其包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件932;
将电阻丝9311编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件932的外周面的网状加热元件931;其中,控制其中至少一部分电阻丝9311以形成右旋电阻丝9311b的方式螺旋包覆在雾化芯导液元件932的外周面,并控制其中至少一部分电阻丝9311以形成左旋电阻丝9311a的方式螺旋包覆雾化芯导液元件932的外周面;
制成雾化芯930卷材;
从雾化芯930卷材截取需要的长度作为雾化芯930。
本发明提供的第二种雾化芯的制造方法,其包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件932;
将电阻丝9311编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件932的外周面的网状加热元件931;其中,控制其中至少一根电阻丝9311以第一螺距螺旋包覆在雾化芯导液元件932的外周面,并控制其中至少一根电阻丝9311以第二螺距螺旋包覆雾化芯导液元件932的外周面,第一螺距与第二螺距不相等;
制成雾化芯930卷材;
从雾化芯930卷材截取需要的长度作为雾化芯930。
本发明提供的第三种雾化芯的制造方法,其包括以下步骤:
以塑料或金属作为辅助芯体,将电阻丝9311编织或交叉缠绕,成以360度环绕的方式包覆辅助芯体的外周面的网状加热元件931;其中,控制其中至少一部分电阻丝9311以形成右旋电阻丝9311b的方式螺旋包覆在辅助芯体的外周面,并控制其中至少一部分电阻丝9311以形成左旋电阻丝9311a的方式螺旋包覆在辅助芯体的外周面;
在网状加热元件931的外周面包覆雾化芯导液元件932,比如包覆织布或不织布,或者在网状加热元件931的外周面涂覆含纤维素的纤维或粉末的浆料然后干燥;
制成雾化芯930卷材;
从雾化芯930卷材截取需要的长度,取出辅助芯体制成雾化芯930。
本发明提供的第四种雾化芯的制造方法,其包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件932;
将一根电阻丝9311从雾化芯导液元件932的靠下的部位开始,以左旋或右旋的方式螺旋上升缠绕到雾化芯导液元件932的靠上的部位,形成左旋电阻丝9311a或者右旋电阻丝9311b;
然后,再将电阻丝9311从雾化芯导液元件932的靠上的部位右旋或左旋绕至雾化芯导液元件932的靠下的部位,形成右旋电阻丝9311b或者左旋电阻丝9311a;
左旋电阻丝9311a和右旋电阻丝9311b编织或交叉缠绕形成网状加热元件931。
本发明提供的第五种雾化芯的制造方法,其包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件932;
将一根电阻丝9311的两端从雾化芯导液元件932靠下的部位开始,分别以左旋或右旋的方式螺旋上升缠绕到雾化芯导液元件932的靠上的部位,在雾化芯导液元件932的外周面编织或交叉缠绕形成网状的网状加热元件931;
制成雾化芯930卷材;
从雾化芯930卷材截取需要的长度作为雾化芯930。
本发明提供的第六种雾化芯的制造方法,其包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件932;
将一定数量的电阻丝9311编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件932的外周面的第一层网状加热元件9311f;
将一定数量的电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆第一层网状加热元件9311f的外周面的第二层网状加热元件9311s;
制成雾化芯930卷材;
从雾化芯卷材截取需要的长度作为雾化芯930。
本发明提供的第七种雾化芯的制造方法,其包括以下步骤:
将电阻丝9311编织或交叉缠绕在一辅助芯体上形成网状加热元件931,辅助芯体可以用金属或塑料等制成;
将包含辅助芯体的网状加热元件931放入模具并定位,将含纤维素的纤维或粉末浆料注入模具成型,或者,在模具中连续拉动包含辅助芯体的网状加热元件长条,同时注入含纤维素的纤维或粉末浆料成型;
干燥制成雾化芯930长条半成品;
截断雾化芯930半成品,取出辅助芯体,即为雾化芯930。
本发明提供的第八种雾化芯的制造方法,其包括以下步骤:
将电阻丝9311编织或交叉缠绕在一辅助芯体上形成二层网状结构,截断后取出辅助芯体制成网状加热元件931;或者将电阻丝9311编织或交叉缠绕成加热元件长条,截断后制成网状加热元件931;
将含纤维素的纤维或粉末浆料挤出成包括轴向雾化芯导液元件通孔932b的长管,干燥后截断制成雾化芯导液元件932;或者将含纤维素的纤维或粉末浆料挤出成包括辅助芯体的长条,烘干,截断后取出辅助芯体制成雾化芯导液元件932;
网状加热元件931外套设雾化芯导液元件932制成雾化芯930。
本发明提供的第九种雾化芯的制造方法,其包括以下步骤:
将电阻丝9311编织或交叉缠绕成网状的网状加热元件931长条;
在模具中拉动网状加热元件931长条,同时注入含纤维素的纤维或粉末浆料成型;
干燥制成雾化芯930长条;
截断雾化芯930长条制成雾化芯930。
本发明提供的第十种雾化芯的制造方法,其包括以下步骤:
将电阻丝9311编织或交叉缠绕在一辅助芯体上形成二层网状结构,截断后取出辅助芯体制成网状加热元件931;或者将电阻丝9311编织或交叉缠绕成网状加热元件931长条,截断后制成网状加热元件931;
将含纤维素的纤维或粉末浆料挤出成包括轴向雾化芯导液元件通孔932b的长管,干燥后截断制成雾化芯导液元件932;或者将含纤维素的纤维或粉末浆料挤出成包括辅助芯体的长条,烘干,截断后取出辅助芯体制成雾化芯导液元件932;
雾化芯导液元件932外套设网状加热元件931制成雾化芯930。
[雾化模块和气雾弹]
图23为根据本发明第一实施例的第一种气雾弹的结构示意图;图24为根据本发明第一实施例的第一种气雾弹的结构分解示意图;图25为根据本发明第一实施例的第二种气雾弹的结构示意图;图26为根据本发明第一实施例的第二种气雾弹的结构分解示意图;图27为根据本发明第一实施例的第三种气雾弹的结构示意图;图28为根据本发明第一实施例的第三种气雾弹的结构分解示意图。
如图23至图28所示,本发明还提供一种雾化模块700,雾化模块700包括上述任一种雾化芯930。雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面。
如图23至图28所示,根据本发明第一实施例的雾化模块700包括电极936和设置在电极936一端的电极卡接口9364,电极卡接口9364卡接网状加热元件931。
当网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面时,可以将电极卡接口9364从雾化芯930的径向与网状加热元件931的外周面卡接。
除了如上述的电极936与网状加热元件931卡接的方式之外,本领域的技术人员,也可以选择本领域内的常规方式,将电极936与网状加热元件931进行电连接,例如插接、压接、焊接等。
根据不同的使用要求,两个电极936之间的网状加热元件931的电阻通常控制在0.5至 2.0欧姆。
如图23和图24所示,根据本发明第一实施例的第一种气雾弹的雾化模块700包括雾化模块上盖710和雾化模块底座720、安装在雾化模块底座720和雾化模块上盖710之间的雾化芯930、以及电极936。电极936穿过雾化模块底座720与网状加热元件931电连接。
雾化模块上盖710包括贯穿雾化模块上盖710的雾化模块上接口711和雾化模块导液孔712。
如图23至图28所示,本发明还提供一种气雾弹800,气雾弹800包括储液元件100和上述任一种雾化模块700。
雾化芯导液元件932可以直接与储液元件100中的液体连通。
如图23和图24所示,根据本发明第一实施例的第一种气雾弹800,包括气雾弹壳体810、设置在气雾弹壳体810中的储液元件100、轴向贯穿储液元件100的气雾通道1303和密封储液元件100底部开口的储液元件密封元件823。
气雾弹800还包括密封气雾弹壳体810的底部、以及密封气雾弹壳体810和雾化模块底座720之间的间隙的底座密封元件824。
储液元件密封元件823上设置有贯穿储液元件密封元件823的液体供给口825和气雾通道装配口826。液体供给口825与雾化模块导液孔712对应设置。气雾通道装配口826具有向下延伸的管状凸起。装配时,储液元件密封元件823的气雾通道装配口826套设在气雾通道1303的外周面上,雾化模块上接口711套设在气雾通道装配口826管状凸起的外周壁上。
在本实施例中,雾化模块导液孔712的上端与液体供给口825对接,下端与雾化芯930接触,由此,使得雾化芯930直接与储液元件100中的液体连通。
气雾通道1303的顶部出口为气雾出口1301,气雾通道1303的底部开口为雾化模块连接口1302,用于与雾化模块上接口711连通。雾化模块700雾化后的气雾通过雾化模块上接口711、雾化模块连接口1302、气雾通道1303和气雾出口1301后逸出。雾化模块底座720上设置有轴向贯穿雾化模块底座720的进气口1121,作为外部空气进入雾化模块700的通道。
气雾出口1301可以设置封闭气雾出口1301的气雾出口密封塞1306,雾化模块底座720的进气口1121可以设置封闭进气口1121的进气口密封塞(未图示)。气雾出口密封塞1306和进气口密封塞可以分别设置硅胶密封塞。气雾出口密封塞1306和进气口密封塞的设置,可以进一步增加气雾弹800在储运过程中的抗泄漏能力。
在本实施例中,雾化模块导液孔712优选设置为两个,雾化模块导液孔712的下部开口与雾化芯930的两端不通过电流的部位连通。通常,网状加热元件931中,仅仅位于电极936之间的部分会通过电流并产生热量,两个电极外侧的部分,几乎没有电流通过,且基本不产生热量。
此外,根据本发明第一实施例的第二种气雾弹的雾化模块700,网状加热元件931可以部分埋入雾化芯导液元件932的外周面。并且,雾化芯导液元件932的材质可以是含纤维素的纤维或粉末、碳纤维和多孔陶瓷。雾化芯930和网状加热元件931可以一体成型。
如图25和图26所示,根据本发明第一实施例的第二种气雾弹的雾化模块700的结构与图23和图24中的结构基本相同,其相同的部分不再赘述。在图25和图26中,雾化模块700还包括气液交换元件290。
雾化模块700包括气液交换元件290,雾化芯930通过气液交换元件290与储液元件100中的液体连通。气液交换元件290可以装配在雾化模块导液孔712中,雾化芯930的两端不通过电流的部位通过气液交换元件290与储液元件100中的液体连通,气液交换元件290可以为具有轴向通孔的管状粘结纤维。在图25和图26中,网状加热元件931和雾化芯导液元件932的长度基本相同。
如图27和图28所示,根据本发明第一实施例的第三种气雾弹的雾化模块700的结构与图25和图26中的结构基本相同,其相同的部分不再赘述。在图27和图28中,雾化芯导液元件932的长度大于网状加热元件931的长度,使得雾化芯导液元件932的两端伸出网状加热元件931。雾化芯导液元件932伸出网状加热元件931的部分,可以与气液交换元件290连接。
在本实施例中,由于网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,可以省略从雾化芯930连接至电极936的引脚。电极936可以从任意方向接触网状加热元件931而产生电连接,因此,可以降低了雾化芯930在气雾弹800中的装配难度,大幅度提高装配效率。
本发明的雾化芯930可以连续生产并收成雾化芯930卷材,可以大大提高生产效率,以及方便雾化芯930的储存和运输,因此能大幅降低雾化芯930的成本。
雾化芯930安装时放卷并截取需要的长度,有利于雾化芯930的自动化装配。
本实施例中,可以将雾化芯930的横截面制成圆形,但也可以根据需要制成椭圆形或其他几何形状。
第二实施例
图29为根据本发明第二实施例的第一种气雾弹的结构示意图;图30为根据本发明第二实施例的第一种气雾弹的结构分解示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图29和图30所示,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
在本实施例中,网状加热元件931以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
优选,网状加热元件931包括二至八根电阻丝9311,其中一部分为左旋电阻丝9311a,另一部分为右旋电阻丝9311b。
如图29和图30所示,雾化芯导液元件932形成有轴向贯穿雾化芯导液元件932的雾化芯导液元件通孔932b,网状加热元件931设置在雾化芯导液元件通孔932b内,并贴覆在雾化芯930的内周面上。雾化芯导液元件932的外周面与储液元件100中的液体连通。
根据本实施例的雾化模块700包括电极936和设置在电极936一端的电极插接部9365,电极插接部9365插入雾化芯导液元件通孔932b后与网状加热元件931连接。具体而言,电极插接部9365呈具有贯穿通孔的耳塞状,两个电极936的电极插接部9365分别从横置的雾化芯930的两端插入雾化芯导液元件通孔932b,与网状加热元件931连接。
在本实施例中,可以省略储液元件密封元件823,由雾化模块上盖710同时用作储液元件密封元件823。雾化模块上盖710可以仅设置一个雾化模块导液孔712。雾化模块导液孔712的上部开口直接与储液元件100中的液体连通,其下部开口与雾化芯导液元件932的外周面接触,由此,将储液元件100中的液体输送至雾化芯导液元件932。
在本实施例中,气雾弹800还包括气雾通道1303,当雾化芯导液元件932具有轴向贯穿雾化芯导液元件932的雾化芯导液元件通孔932b时,雾化芯导液元件通孔932b与气雾通道1303夹角大于45度且小于等于135度。优选,雾化芯导液元件通孔932b与气雾通道1303的夹角为45度、60度、75度、90度、105度、120度和135度,最优选为,基本等于90度,也就是说,最优选,雾化芯导液元件通孔932b与气雾通道1303基本垂直配置。
雾化芯导液元件通孔932b与气雾通道1303连通。气雾弹800工作时,环绕在雾化芯导液元件932的内周面的网状加热元件931将液体蒸发,蒸发的气体与从雾化芯930内部流过的空气混合形成气雾,气雾经气雾通道1303逸出。这种结构有利于储液元件100中的液体快速补充至雾化芯导液元件932。
并且,由于雾化芯导液元件通孔932b与气雾通道1303垂直配置,在雾化芯930附近产 生高温冷凝液在垂直转弯进入气雾通道1303时,大颗粒的冷凝液由于惯性不易进入气雾通道1303中,从而可以减少或避免大颗粒的冷凝液直冲进入口腔,提升用户体验。
图31为根据本发明第二实施例的第二种气雾弹的结构示意图;图32为根据本发明第二实施例的第二种气雾弹的结构分解示意图。
如图31和图32所示,根据本发明第二实施例的第二种气雾弹的雾化模块700的结构与图29和图30中的结构基本相同,其相同的部分不再赘述。
如图31和图32所示,雾化模块上盖710上设置有第一雾化模块导液孔712a和第二雾化模块导液孔712b。第一雾化模块导液孔712a的上部开口直接与储液元件100中的液体连通,其下部开口与雾化芯导液元件932的外周面接触,由此,将储液元件100中的液体输送至雾化芯导液元件932。第二雾化模块导液孔712b的上部开口直接与储液元件100中的液体连通,其下部开口与大气连通,第二雾化模块导液孔712b中设置有气液交换元件290。在本实施例中,气液交换元件290主要起作向储液元件100中输送气体的作用,由此可以使得雾化模块700的雾化更稳定可靠。
气液交换元件290可以为包括轴向通孔的管状粘结纤维或管状塑料制品或管状金属制品。雾化芯导液元件通孔932b与气雾通道1303连通。
在根据本发明第二实施例的第二种气雾弹的雾化模块700中,雾化模块700包括电极936和设置在电极936一端的电极插接部9365,电极插接部9365插入雾化芯导液元件932后与网状加热元件931连接。具体而言,电极插接部9365呈带倒勾的箭头状,两个电极936的电极插接部9365分别刺穿横置的雾化芯930的雾化芯导液元件932后,进入雾化芯导液元件通孔932b与网状加热元件931连接。
图33为根据本发明第二实施例的第三种气雾弹的结构示意图;图34为根据本发明第二实施例的第三种气雾弹的结构分解示意图。根据本发明第二实施例的第三种气雾弹的雾化模块700的结构与图31和图32中的结构基本相同,其相同的部分不再赘述。
图33和图34所示,根据本发明第二实施例的第三种气雾弹800具有独立的储液元件密封元件823,储液元件密封元件823具有液体供给口825以及设置在储液元件密封元件823底部的导气通道836。
雾化模块700为独立的集成组件,包括雾化模块上盖710和雾化模块底座720、安装在雾化模块底座720和雾化模块上盖710之间的雾化芯930、气液交换元件290以及电极936。雾化模块上盖710上设置有第一雾化模块导液孔712a、第二雾化模块导液孔712b、以及雾化模块上接口711。第一雾化模块导液孔712a向上延伸形成管状凸起。气液交换元件290的上部装配在第二雾化模块导液孔712b中,其下部可以延伸至雾化模块底座720上的凹槽内,并 与大气连通。
当雾化模块700和储液元件100装配在一起,即可以形成气雾弹800。装配后,第一雾化模块导液孔712a向上延伸形成管状凸起插入液体供给口825,并且,管状凸起和液体供给口825的内周壁之间形成有导气孔827。导气孔827与导气通道836连通,导气通道836与装配后的气液交换元件290连通。
根据本发明第二实施例的第三种气雾弹800,其雾化模块700采用了可拆卸的结构,易于更换气雾弹800中的储液元件100,以及便于维修和更换雾化模块700。
在本实施例中,第二雾化模块导液孔712b也可以设置为向上延伸形成管状凸起,在与储液元件100装配时,第二雾化模块导液孔712b也可以穿过储液元件密封元件823,插入储液元件100内,从而可以将气液交换元件290与储液元件100连通,而无需设置导气孔827和导气通道836。在本实施例中,气液交换元件290主要起作独立导气的作用,并不承担向雾化芯导液元件932传输液体的功能。
第三实施例
图35为根据本发明第三实施例的第一种气雾弹的结构示意图;图36为根据本发明第三实施例的第一种气雾弹的结构分解示意图;图37为根据本发明第三实施例的第二种气雾弹的结构示意图;图38为根据本发明第三实施例的第二种气雾弹的结构分解示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图35和图36所示,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
在本实施例中,网状加热元件931以360度环绕的方式贴覆于雾化芯导液元件932的内周面。优选,网状加热元件931包括二至八根电阻丝9311,其中一部分为左旋电阻丝9311a,另一部分为右旋电阻丝9311b。
如图35至图36所示,在本实施例中,根据本发明第三实施例的第一种气雾弹800中的雾化模块700,雾化芯导液元件932形成有轴向贯穿雾化芯导液元件932的雾化芯导液元件通孔932b,网状加热元件931设置在雾化芯导液元件通孔932b内,并贴覆在雾化芯930的内周面上。
雾化芯930竖直设置,也就是说,雾化模块700水平放置时,雾化模块700的中轴线与水平面垂直。
雾化芯导液元件932的外周面的至少一部分套设有镂空金属管9396,雾化芯导液元件932的外周面透过镂空金属管9396与储液元件100中的液体连通。
具体而言,雾化模块700包括第一电极936a和第二电极936b,第一电极936a的一端设置有第一电极插接部9365a,电极插接部9365插入雾化芯导液元件通孔932b中与网状加热元件931连接;第二电极936b包括套设在雾化芯导液元件932的外周面的镂空金属管9396以及设置在第二电极936b一端的金属环9397,金属环9397套设在镂空金属管9396的外周壁上与镂空金属管9396连接,镂空金属管9396与第一电极插接部9365a相对的端部,向镂空金属管9396的内部凸出,形成第二电极插接部9365b。当镂空金属管9396套设在雾化芯930的外周面上时,第二电极插接部9365b插入雾化芯导液元件通孔932b中与网状加热元件931连接。
在本发明中,镂空金属管9396是指管壁上形设有多个贯穿管壁的通孔的金属管,可以使得液体能够从管壁外通过多个管壁上的通孔进入到管壁内。
雾化模块700为独立的集成组件,包括雾化模块上盖710和雾化模块底座720、安装在雾化模块底座720和雾化模块上盖710之间的雾化芯930、气液交换元件290以及电极936。雾化模块上盖710上设置有第一雾化模块导液孔712a、第二雾化模块导液孔712b、以及雾化模块上接口711。第一雾化模块导液孔712a向上延伸形成管状凸起。气液交换元件290的上部装配在第二雾化模块导液孔712b中,其下部可以延伸至雾化模块底座720上的凹槽内,并与大气连通。
雾化模块700还包括雾化模块上盖710和雾化模块底座720、安装在雾化模块底座720和雾化模块上盖710之间的雾化芯930、以及气液交换元件290。雾化模块上盖710上设置有第一雾化模块导液孔712a、第二雾化模块导液孔712b、以及雾化模块上接口711。第一雾化模块导液孔712a从雾化模块上盖710的上表面开始向下延伸,然后侧向延伸至雾化模块上接口711。雾化芯930竖直安装雾化模块上接口711中,与第一雾化模块导液孔712a连通。
气液交换元件290的上部装配在第二雾化模块导液孔712b中,其下部可以延伸至雾化模块底座720上的凹槽内,并与大气连通。
如图35和图36所示,根据本发明第三实施例的第一种气雾弹800,省略了储液元件密封元件,雾化模块上盖710同时用作储液元件密封元件,储液元件100中的液体通过第一雾化模块导液孔712a直接连通至镂空金属管9396,通过镂空金属管9396与雾化芯导液元件932连通。气液交换元件290与储液元件100中的液体连通,但不参与向雾化芯930输送液体,主要用作向储液元件100独立导气的作用。
根据本发明第三实施例的第一种气雾弹800,当气雾弹800工作时,贴覆在雾化芯导液 元件932的内周面的网状加热元件931将液体雾化,雾化的气体与从雾化芯导液元件通孔932b内部通过的空气混合形成气雾。
气雾弹800中设置气液交换元件290,可以使雾化更稳定可靠。气液交换元件290可以为包括轴向通孔的管状粘结纤维。
如图37和图38所示,根据本发明第三实施例的第二种气雾弹的结构与图35和36中的结构基本相同,其相同的部分不再赘述。
如图37和图38,根据本发明第三实施例的第二种气雾弹中的气雾通道1303和雾化模块上盖710之间存在侧向雾化芯930输送液体的开口,套设在雾化芯930外周面上的镂空金属管9396与该输送液体的开口相对设置。雾化芯930的上部由气雾通道1303的内管壁固定,雾化芯930的下部由雾化模块上接口711固定。雾化芯930的中轴线优选设置为与气雾通道1303的中轴线重合。
第四实施例
图39为根据本发明第四实施例的第一种气雾弹的结构示意图;图40为根据本发明第四实施例的第一种气雾弹的结构分解示意图;图41为根据本发明第四实施例的第二种气雾弹的结构示意图;图42为根据本发明第四实施例的第二种气雾弹的结构分解示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图39和图40所示,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
如图39和图40所示,在根据本发明第四实施例的第一种气雾弹800的雾化模块700中,雾化芯930包括两层以上的网状加热元件931,其中一层紧贴雾化芯导液元件932的外周面,具有多层网状加热元件931的雾化芯930能更充分地雾化液体,有利于减小气雾的颗粒,从而上使用者感受更干燥的气雾。
如图41和图42所示,在根据本发明第四实施例的第二种气雾弹800的雾化模块700中,雾化模块700还包括第一气液交换元件290A和第二气液交换元件290B。
第一气液交换元件290A可以由塑料或纤维制成,可以沿第一气液交换元件290A的轴向设置外周面凹槽或内部通孔。第一气液交换元件290A优选为具有轴向通孔的管状粘结纤维。
第二气液交换元件290B优选由多孔材料制成,例如海绵、粘结纤维、烧结粉末塑料等。
雾化模块700还包括雾化模块上盖710和雾化模块底座720、安装在雾化模块底座720 和雾化模块上盖710之间的雾化芯930、以及电极936。电极936穿过雾化模块底座720与网状加热元件931电连接。
雾化模块上盖710包括贯穿雾化模块上盖710的雾化模块上接口711和雾化模块导液孔712。
第一气液交换元件290A装配在雾化模块导液孔712中,第一气液交换元件290A的外周面凹槽与雾化模块导液孔712的内周壁可以形成导液或者导气的通孔。
雾化芯导液元件932具有轴向的雾化芯导液元件通孔932b,雾化芯导液元件932套设在第二气液交换元件290B的外周壁上,雾化芯导液元件932的内周壁与第二气液交换元件290B的外周壁接触。并且,第二气液交换元件290B的两端分别穿出雾化芯导液元件932的两端,两个第一气液交换元件290A的下端面分别与第二气液交换元件290B的两端连通。气液交换元件290中的液体通过第一气液交换元件290A传送至第二气液交换元件290B,再由第二气液交换元件290B传送至雾化芯导液元件932。
第五实施例
需要进一步说明的是,本发明中网状加热元件931形成中空柱状,中空柱状的网状加热元件931包覆在雾化芯导液元件932的外周面或贴覆在雾化芯导液元件932的内周面。
本发明中,网状加热元件931的目数定义为网状加热元件931轴向长度25.4毫米中编织或蚀刻网孔的数量。目数是编织或蚀刻网孔密度的一种衡量指标。
本发明中,网状加热元件931的轴向长度和雾化芯导液元件932的轴向长度基本相等指的是两者的长度差不超过百分之二十。
网状加热元件931可以包括通电部分和非通电部分。通电部分产生热量,产生的热量也会传导至非通电部分。
本发明中,电阻丝9311的线径是指当电阻丝9311的横截面为圆形时的直径,但用于本发明的电阻丝9311横截面可以为任意几何形状,当电阻丝9311的横截面为非圆形时,可换算成相同横截面积的圆形电阻丝9311的直径作为电阻丝9311的线径。
本发明中,雾化芯930的电阻是指雾化芯930连接电极936后,通过两个电极936测量的电阻。
本实施例中与其他实施例相同的部分不再赘述。
如图1和图2所示,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
雾化芯导液元件932用于向雾化芯930输送待雾化的液体,其材质可以包括含纤维素的纤维或粉末、碳纤维、玻璃纤维、陶瓷纤维和多孔陶瓷等。最常用的雾化芯导液元件932包括棉绳或玻璃纤维。每米长度的雾化芯导液元件932的重量优选为1.0克至6.0克,更优选为1.8克至4.5克。棉绳对雾化液的口感还原性较好;玻璃纤维和多孔陶瓷耐高温,在需要高温雾化的体系中具有优势,比如THC的雾化。
在本发明中,电阻丝9311泛指具有一定的电阻且通电时能发热的金属丝或非金属丝,如镍铬合金丝、铁铬合金丝等。电阻丝9311的横截面可以为圆形、长方形等几何形状,其中圆形最常使用。优选电阻丝9311的线径为10至150微米,如10、12.5、20、25、30、40、50、60、70、80、90、100、110、120、150微米等,更优选电阻丝9311的线径为25至100微米。
如图3至图10所示,网状加热元件931由一根或多根的电阻丝9311编织或交叉缠绕而形成,制成网状加热元件931的电阻丝9311的阻值可以相同或不同。
本发明中,雾化芯930的电阻是指雾化芯930连接电极936后,通过两个电极936测量的电阻。本发明中,雾化芯930的电阻优选为0.2欧姆至2.0欧姆,如0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.5、1.8、2.0欧姆等。传统缠绕螺旋状电阻丝9311的雾化芯930的电阻为1.2至1.8欧姆。由于网状加热元件931可以灵活选择电阻丝9311的线径、数量和目数,因此能大幅扩大电阻的范围以适应不同的应用需求。比如可以采用8至36根电阻丝9311编织二层的网状加热元件931,使雾化芯930的电阻低至0.2至1.0欧姆,较低的雾化芯930的电阻可以在主机恒功率输出时延长电池的使用时间。
优选,网状加热元件931包括4至36根电阻丝9311,更优选电阻丝9311的数量为4至36根中4或6的倍数,如4、6、8、12、16、18、20、24、28、32、36根等。
优选,网状加热元件931轴向长度25.4毫米中网孔的数量介于20至300个,即网状加热元件931的目数介于20至300目,如20目、30目、40目、50目、60目、70目、80目、100目、120目、150目、200目、250目、300目等。在电阻丝9311数量相同的情况下,较小的目数有利于雾化芯930产生较大的气雾颗粒,气雾口感较为湿润;较大的目数则有利于雾化芯930产生细腻的气雾颗粒,气雾口感较为干燥。
如图14所示,雾化芯930可以包括两层以上(含两层)的网状加热元件931。两层网状加热元件931的目数和电阻、以及制成两层网状加热元件931的电阻丝9311的数量和线径可以相同或不同。可以进一步增加网状加热元件931的层数来提高对气雾的加热,以达到气雾细腻、干燥的要求。
如图11和图12所示,当网状加热元件931以360度环绕的方式贴覆于雾化芯导液元件 932的内周面上时,可以用纤维素纤维或粉末浆料涂覆在网状加热元件931外周面然后干燥形成雾化芯导液元件932。在本发明中,粉末浆料可以是陶土浆料。
在本发明中,电阻丝9311编织或交叉缠绕时,可以采用左旋和右旋的电阻丝9311一上一下、一上二下、二上二下等方式。
如图23至图28所示,当网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面时,可以将电极卡接口9364从雾化芯930的径向与网状加热元件931的外周面卡接。雾化芯930装入电极卡接口9364后,可以将电极卡接口9364端部收拢,以增强电极卡接口9364对雾化芯930的固定。
在图23至图26中,网状加热元件931和雾化芯导液元件932的长度基本相等。这种结构能带来额外的好处,即:雾化时在电极936之间的网状加热元件931的通电部分发热将液体雾化,部分热量向雾化芯930两端的非通电部分传导,从而加热雾化芯930两端的液体并使液体的粘度降低,从而提高液体从雾化芯930两端向雾化芯930中间加热部位传导的速度,这对雾化粘稠液体有帮助,比如CBD和THC雾化液在常温下比较粘稠甚至为膏状,而在寒冷的室外环境中的电子烟烟液也很粘稠,但这些液体加热至50℃以上时粘度显著降低。
图43为根据本发明第五实施例的第一种气雾弹的结构示意图;图44为根据本发明第五实施例的第一种气雾弹的结构分解示意图;图45为根据本发明第五实施例的第一种气雾弹的雾化芯结构示意图;图46为根据本发明第五实施例的第二种气雾弹的结构示意图;图47为根据本发明第五实施例的第二种气雾弹的结构分解示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图43至图45所示,在根据本发明第五实施例的第一种气雾弹800的雾化模块700中,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面。网状加热元件931为单层,由8根电阻丝9311编织而成,编织密度为50目,雾化芯的电阻为1.2欧姆。
如图44和图45所示,在根据本发明第五实施例的第二种气雾弹800的雾化模块700中,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面。网状加热元件931为二层,第一层由8根电阻丝9311编织而成,编织密度为60目;第二层由8根电阻丝9311编织而成,编织密度为40目,雾化芯的电阻为0.6欧姆。
根据本发明第五实施例的第一种和第二种气雾弹,雾化芯导液元件932均为每米重量3.2克的棉绳,制作网状加热元件931的电阻丝9311线径均为60微米。
用烟草口味、薄荷烟草口味、双苹果水烟口味三种不同的雾化液注入气雾弹,用可调恒功率输出主机对比测试,获得每个气雾弹最佳抽吸口感时的输出功率如下:
Figure PCTCN2022110970-appb-000001
实验结果表明,相比于单层网状加热元件931的雾化芯930,二层网状加热元件931的雾化芯930能在较低的功率下达到最佳的抽吸口感,包括香气的激发、饱满度、持久性、气雾温度等,因此二层网状加热元件931的雾化芯930有利于节省主机的电能,增加续航。实验结果还表明,采用二层网状加热元件931的雾化芯930比单层网状加热元件931的雾化芯930能产生更细腻的气雾,并且香气更浓郁。这些结果表明,在具有二层网状加热元件931的气雾弹中,液体被紧贴雾化芯导液元件932的第一层网状加热元件931雾化后,被其他层的网状加热元件931进一步加热或烘烤,有利于减小气雾的颗粒,使雾化更充分,从而让使用者感受更细腻、干燥、香气更浓郁的气雾。
本实施例中,具有电极卡接口9364的第一电极936a与雾化芯930卡接,第二电极936b的上端与第一电极936a的下端接触连接,这种分体式电极936的好处是能提高气雾弹800与主机(未图示)连接的灵活性。
本发明的雾化芯930有利于将网状加热元件931制成二层以上(含二层)的结构,与雾化芯导液元件932接触的第一层网状加热元件91将液体加热雾化,产生的气雾经其他层网状加热元件931进一步加热烘烤,烟雾更细腻、干燥,香气激发更充分。传统的采用螺旋状加热元件并带有引脚的雾化芯形状稳定性差、安装时控制引脚对位难度大,装配效率低。本发明的雾化芯930,由于网状加热元件931以360度环绕雾化芯导液元件的外周面或内周面,雾化芯强度高、稳定性好,且不需要引脚,电极可以从任意方向接触网状加热元件外周壁或内周壁,有利于雾化芯在气雾弹中的高效装配。
第六实施例
图48为根据本发明第一实施例的第十一种雾化芯的结构示意图。第六实施例为第一实施例的变型例,与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
根据本实施例的网状加热元件931也可以由至少两根折线形的电阻丝9311在相邻的弯折处互扣而形成。如图48所示,网状加热元件931由8根折线形的电阻丝9311制成,每根电阻丝9311与相邻的电阻丝9311在折弯处互扣而形成中空柱状的网状结构。
中空柱状的网状加热元件931包覆在雾化芯导液元件932的外周面或贴覆在雾化芯导液元件932的内周面,使雾化芯930具有良好的强度和形状稳定性;360度环绕的网状加热元件931产生的热量能均匀地分布在雾化芯导液元件932的表面、能更均匀地雾化雾化芯导液元件932上的液体,使雾化更稳定可靠,口感更加细腻饱满。
第七实施例
本发明提供的第十种雾化芯的制造方法,其包括以下步骤:
以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件932;
将电阻丝9311制成折线形,比如弯折成S形或Z形,让相邻的电阻丝9311在弯折处互扣,在雾化芯导液元件932的外周面形成网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932;
制成雾化芯930卷材;
从雾化芯930卷材截取需要的长度作为雾化芯930。
第八实施例
图49为根据本发明第一实施例的第十二种雾化芯的结构示意图;图50为根据本发明第一实施例的第十二种雾化芯的剖面示意图;图51为根据本发明第八实施例的气雾弹的结构示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图49至图51所示,雾化芯930包括雾化芯导液元件932和网状加热元件931,网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
网状加热元件931优选以360度环绕的方式贴覆于雾化芯导液元件932的内周面。
雾化芯930还包括电极936,电极936与网状加热元件931的轴向平行并与所述网状加热元件936连接。电极936优选为导线。
在本实施例中,网状加热元件931可以为一层,也可以为二层以上(包括二层);电极936与网状加热元件931可以采用焊接或机械接触等连接方式。
当网状加热元件931为二层以上时,可以将电极936埋在第一层和第二层的网状加热元 件931之间从而使电极936与网状加热元件931接触。
优选,电极936为两根与网状加热元件931的轴向平行的导线。网状加热元件931的横截面的周长被两根导线等分,以便雾化芯均匀加热。
电极936与网状加热元件931连接的长度,可以与网状加热元件931的轴向长度相等,或者小于网状加热元件931的轴向长度。
在本实施例中,可以通过改变电极936与网状加热元件931连接的长度来改变雾化芯930的电阻大小。
在本实施例中,雾化芯导液元件932可以为无纺布、棉桨等;雾化芯导液元件932的外周面的至少一部分套设有镂空金属管9396和设置在镂空金属管9396的管壁上的,雾化芯导液元件932的外周面透过镂空金属管壁通孔9397与储液元件100中的液体连通。
在本实施例中,雾化芯930与气雾通道1303的中轴线平行或者重合设置,雾化芯930插入储液元件100中后,镂空金属管9396与气雾通道1303连接,镂空金属管壁通孔9397与储液元件100中的液体直接接触,储液元件100中的液体通过镂空金属管壁通孔9397传导至雾化芯导液元件932。
在本实施例中,如图51所示,雾化模块上盖710上设置有雾化模块导液孔712。雾化模块导液孔712上部开口直接与储液元件100中的液体连通,其下部开口与大气连通,雾化模块导液孔712中设置有气液交换元件290。在本实施例中,气液交换元件290主要起作向储液元件100中输送气体的作用,由此可以使得雾化模块700的雾化更稳定可靠气。
综上,本发明的雾化芯930包括以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面的网状加热元件931,雾化芯930具有好的强度和形状稳定性。
360度环绕的网状加热元件931产生的热量能更均匀地分布在雾化芯导液元件932表面、更高效地加热雾化雾化芯导液元件932上的液体,使雾化更充分,可以让使用者获得更细腻饱满的口感。
本发明的雾化芯有利于将网状加热元件931制成二层以上(含二层)的结构,相比于单层的网状加热元件931,采用二层以上(含二层)的网状加热元件931的气雾弹,雾化更充分,气雾更细腻。
根据本发明的雾化芯930,由于网状加热元件931以360度环绕的方式包覆雾化芯导液元件932的外周面,和/或,以360度环绕的方式贴覆于雾化芯导液元件932的内周面,雾化芯930不需要设置与电极936连接的引脚,使电极936可以从任意方向接触网状加热元件931外周壁或内周壁,有利于雾化芯930在气雾弹800中的装配。
根据本发明的雾化芯930,可以连续生产并收成雾化芯930卷材,可以大大提高生产效率,并方便雾化芯930的储存和运输,因此能大幅降低雾化芯930的成本。雾化芯930安装时,可以通过放卷并截取需要的长度,有利于雾化芯930的自动化装配。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (40)

  1. 一种雾化芯,其特征在于,所述雾化芯包括雾化芯导液元件和网状加热元件,所述网状加热元件以360度环绕的方式包覆所述雾化芯导液元件的外周面,和/或,以360度环绕的方式贴覆于所述雾化芯导液元件的内周面。
  2. 如权利要求1所述的雾化芯,其特征在于,所述网状加热元件部分埋入雾化芯导液元件的外周面,和/或,所述网状加热元件部分埋入雾化芯导液元件的内周面。
  3. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件由电阻丝编织或交叉缠绕而形成。
  4. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件包括至少一根左旋电阻丝和至少一根右旋电阻丝。
  5. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件的电阻丝包括经线电阻丝和纬线电阻丝。
  6. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件至少包括两根螺距不同的左旋电阻丝或右旋电阻丝。
  7. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件包括至少一根电阻丝,所述一根电阻丝包括左旋电阻丝和右旋电阻丝,所述左旋电阻丝和所述右旋电阻丝编织或交叉缠绕后形成网状。
  8. 如权利要求1或者2所述的雾化芯,其特征在于,所述雾化芯包括两层以上的网状加热元件。
  9. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件和所述雾化芯导液元件分别成型。
  10. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件和所述雾化芯导液元件一体成型。
  11. 如权利要求1或者2所述的雾化芯,其特征在于,所述雾化芯导液元件的材质包括含纤维素的纤维或粉末、碳纤维、玻璃纤维、陶瓷纤维和多孔陶瓷。
  12. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件由电阻材料蚀刻、冲切、或焊接而成形成。
  13. 如权利要求1或者2所述的雾化芯,其特征在于,所述雾化芯导液元件的每米重量为1.0克至6.0克。
  14. 如权利要求1或者2所述的雾化芯,其特征在于,所述电阻丝的线径为10至150微米。
  15. 如权利要求1或者2所述的雾化芯,其特征在于,所述雾化芯的电阻为0.2至2.0欧姆。
  16. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件的电阻丝数量为4至36根。
  17. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件轴向长度25.4毫米中网孔的数量介于20至300个。
  18. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件的轴向长度和所述雾化芯导液元件的轴向长度基本相等。
  19. 如权利要求1或者2所述的雾化芯,其特征在于,所述网状加热元件包括至少两根折线形的电阻丝。
  20. 如权利要求1或者2所述的雾化芯,其特征在于,所述雾化芯还包括电极,所述电极与所述网状加热元件的轴向平行并与所述网状加热元件连接。
  21. 一种雾化模块,其特征在于,所述雾化模块至少包括如权利要求1至20中任一项所述的雾化芯。
  22. 如权利要求21所述的雾化模块,其特征在于,所述雾化模块包括电极和设置在所述电极一端的电极卡接口,所述电极卡接口卡接所述网状加热元件。
  23. 如权利要求21所述的雾化模块,其特征在于,所述雾化模块包括电极和设置在所述电极一端的电极插接部,所述电极插接部插入雾化芯导液元件通孔后与所述网状加热元件连接。
  24. 如权利要求21所述的雾化模块,其特征在于,所述雾化模块还包括气液交换元件。
  25. 一种气雾弹,其特征在于,所述气雾弹包括储液元件和如权利要求21至24中任一项所述的雾化模块。
  26. 如权利要求25所述的气雾弹,其特征在于,所述雾化芯直接与储液元件中的液体连通。
  27. 如权利要求25所述的气雾弹,其特征在于,当所述雾化模块包括气液交换元件,且所述气液交换元件用于向雾化芯导液元件传送液体时,所述雾化芯通过气液交换元件与储液元件中的液体连通。
  28. 如权利要求25所述的气雾弹,其特征在于,当所述网状加热元件以360度环绕的方 式贴覆于所述雾化芯导液元件的内周面时,所述雾化芯导液元件的外周面与储液元件中的液体连通。
  29. 如权利要求28所述的气雾弹,其特征在于,所述雾化芯导液元件的外周面的至少一部分套设有镂空金属管,所述雾化芯导液元件的外周面透过镂空金属管与储液元件中的液体连通。
  30. 如权利要求25所述的气雾弹,其特征在于,所述气雾弹还包括气雾通道,当所述雾化芯导液元件具有轴向贯穿所述雾化芯导液元件的雾化芯导液元件通孔时,所述雾化芯导液元件通孔与所述气雾通道的夹角大于等于45度且小于等于135度。
  31. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
    将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的网状加热元件;其中,控制其中至少一部分电阻丝以形成右旋电阻丝的方式螺旋包覆在雾化芯导液元件的外周面,并控制其中至少一部分电阻丝以形成左旋电阻丝的方式螺旋包覆雾化芯导液元件的外周面;
    制成雾化芯卷材;
    从雾化芯卷材截取需要的长度作为雾化芯。
  32. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
    将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的网状加热元件;其中,控制其中至少一根电阻丝以第一螺距螺旋包覆在雾化芯导液元件的外周面,并控制其中至少一根电阻丝以第二螺距螺旋包覆雾化芯导液元件的外周面,第一螺距与第二螺距不相等;
    制成雾化芯卷材;
    从雾化芯卷材截取需要的长度作为雾化芯。
  33. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    以塑料或金属作为辅助芯体,将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆辅助芯体的外周面的网状加热元件;其中,控制其中至少一部分电阻丝以形成右旋电阻丝的方式螺旋包覆在辅助芯体的外周面,并控制其中至少一部分电阻丝以形成左旋电阻丝的方式螺旋包覆在辅助芯体的外周面;
    在网状加热元件的外周面包覆雾化芯导液元件,比如包覆织布或不织布,或者在网状加 热元件的外周面涂覆纤维素纤维的浆料然后干燥;
    制成雾化芯卷材;
    从雾化芯卷材截取需要的长度,取出辅助芯体制成雾化芯。
  34. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
    将一根电阻丝从雾化芯导液元件的靠下的部位开始,以左旋或右旋的方式螺旋上升缠绕到雾化芯导液元件的靠上的部位,形成左旋电阻丝或者右旋电阻丝;
    然后,再将电阻丝从雾化芯导液元件的靠上的部位右旋或左旋绕至雾化芯导液元件的靠下的部位,形成右旋电阻丝或者左旋电阻丝;
    左旋电阻丝和右旋电阻丝编织或交叉缠绕形成网状加热元件。
  35. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
    将将根电阻丝的两端从雾化芯导液元件靠下的部位开始,分别以左旋或右旋的方式螺旋上升缠绕到雾化芯导液元件的靠上的部位,在雾化芯导液元件的外周面编织或交叉缠绕形成网状的网状加热元件;
    制成雾化芯卷材;
    从雾化芯卷材截取需要的长度作为雾化芯。
  36. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
    将一定数量的电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的第一层网状加热元件;
    将一定数量的电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆第一层网状加热元件的外周面的第二层网状加热元件;
    制成雾化芯卷材;
    从雾化芯卷材截取需要的长度作为雾化芯。
  37. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    将电阻丝编织或交叉缠绕在一辅助芯体上形成网状加热元件,辅助芯体可以用金属或塑料等制成;
    将包含辅助芯体的网状加热元件放入模具并定位,将纤维素纤维或粉末浆料注入模具成型,或者,在模具中连续拉动包含辅助芯体的网状加热元件长条,同时注入纤维素纤维或粉 末浆料成型;
    干燥,制成雾化芯长条半成品;
    截断雾化芯半成品,取出辅助芯体,即为雾化芯。
  38. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    将电阻丝编织或交叉缠绕在一辅助芯体上形成二层网状结构,截断后取出辅助芯体制成网状加热元件;或者将电阻丝编织或交叉缠绕成加热元件长条,截断后制成网状加热元件;
    将纤维素纤维或粉末浆料挤出成包括轴向雾化芯导液元件通孔的长管,干燥,截断制成雾化芯导液元件;或者将纤维素纤维或粉末浆料挤出成包括辅助芯体的长条,干燥,截断后取出辅助芯体制成雾化芯导液元件;
    网状加热元件外套设雾化芯导液元件制成雾化芯;或者雾化芯导液元件外套设网状加热元件制成雾化芯。
  39. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    将电阻丝编织或交叉缠绕成网状的网状加热元件长条;
    在模具中拉动网状加热元件长条,同时注入纤维素纤维或粉末浆料成型;
    干燥,制成雾化芯长条;
    截断雾化芯长条制成雾化芯。
  40. 一种雾化芯的制造方法,其特征在于,包括以下步骤:
    以棉纤维束、碳纤维束、陶瓷纤维束或玻璃纤维束等作为雾化芯导液元件;
    将电阻丝编织或交叉缠绕,形成以360度环绕的方式包覆雾化芯导液元件的外周面的网状加热元件;其中,控制其中至少两根折线形的电阻丝在相邻的弯折处互扣从而形成网状并包覆雾化芯导液元件的外周面;
    制成雾化芯卷材;
    从雾化芯卷材截取需要的长度作为雾化芯。
PCT/CN2022/110970 2022-03-10 2022-08-08 雾化芯、雾化模块、气雾弹和雾化芯的制造方法 WO2023168901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210230441.5A CN116763008A (zh) 2022-03-10 2022-03-10 雾化芯、雾化模块、气雾弹和雾化芯的制造方法
CN202210230441.5 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023168901A1 true WO2023168901A1 (zh) 2023-09-14

Family

ID=87936172

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/110970 WO2023168901A1 (zh) 2022-03-10 2022-08-08 雾化芯、雾化模块、气雾弹和雾化芯的制造方法
PCT/CN2023/092841 WO2023169605A1 (zh) 2022-03-10 2023-05-08 雾化芯、雾化模块、气雾弹和雾化芯的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092841 WO2023169605A1 (zh) 2022-03-10 2023-05-08 雾化芯、雾化模块、气雾弹和雾化芯的制造方法

Country Status (2)

Country Link
CN (1) CN116763008A (zh)
WO (2) WO2023168901A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205567816U (zh) * 2016-01-08 2016-09-14 深圳瀚星翔科技有限公司 电子烟雾化芯、电子烟雾化器及电子烟
CN205728069U (zh) * 2016-05-27 2016-11-30 深圳市合元科技有限公司 雾化器和应用该雾化器的电子烟
CN208657987U (zh) * 2018-08-06 2019-03-29 深圳市优维尔科技有限公司 一种插拔式抽吸装置
US20200214361A1 (en) * 2019-01-05 2020-07-09 Shenzhen First Union Technology Co., Ltd. Atomizing core
CN213848765U (zh) * 2020-10-29 2021-08-03 深圳市合元科技有限公司 雾化器及电子雾化装置
CN113966872A (zh) * 2021-11-22 2022-01-25 深圳市石开科技有限公司 一种雾化芯及其制造方法、以及雾化器
CN217012790U (zh) * 2022-03-10 2022-07-22 迈博高分子材料(宁波)有限公司 雾化芯、雾化模块和气雾弹

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993023B2 (en) * 2013-02-22 2018-06-12 Altria Client Services Llc Electronic smoking article
CN103202540B (zh) * 2013-04-24 2016-04-27 上海烟草集团有限责任公司 无需燃烧使用的烟芯
CN109259331A (zh) * 2015-04-22 2019-01-25 卓尔悦欧洲控股有限公司 雾化器及其气溶胶发生装置
CN209185766U (zh) * 2018-11-29 2019-08-02 深圳市优维尔科技有限公司 一种电加热抽吸雾化器及抽吸装置
CN112841741B (zh) * 2019-11-27 2023-05-12 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN113197345A (zh) * 2021-04-16 2021-08-03 深圳麦克韦尔科技有限公司 雾化芯材料、雾化芯及其制备方法、电子雾化装置
CN219146755U (zh) * 2023-01-09 2023-06-09 深圳市卓尔悦电子科技有限公司 雾化芯、雾化器及气溶胶发生装置
CN219069448U (zh) * 2023-01-09 2023-05-26 深圳市卓尔悦电子科技有限公司 雾化芯、雾化器及气溶胶发生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205567816U (zh) * 2016-01-08 2016-09-14 深圳瀚星翔科技有限公司 电子烟雾化芯、电子烟雾化器及电子烟
CN205728069U (zh) * 2016-05-27 2016-11-30 深圳市合元科技有限公司 雾化器和应用该雾化器的电子烟
CN208657987U (zh) * 2018-08-06 2019-03-29 深圳市优维尔科技有限公司 一种插拔式抽吸装置
US20200214361A1 (en) * 2019-01-05 2020-07-09 Shenzhen First Union Technology Co., Ltd. Atomizing core
CN213848765U (zh) * 2020-10-29 2021-08-03 深圳市合元科技有限公司 雾化器及电子雾化装置
CN113966872A (zh) * 2021-11-22 2022-01-25 深圳市石开科技有限公司 一种雾化芯及其制造方法、以及雾化器
CN217012790U (zh) * 2022-03-10 2022-07-22 迈博高分子材料(宁波)有限公司 雾化芯、雾化模块和气雾弹

Also Published As

Publication number Publication date
WO2023169605A1 (zh) 2023-09-14
CN116763008A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US10660363B2 (en) Electronic vaping device and components thereof
CN110169600B (zh) 气溶胶生成系统和制造方法
KR102650327B1 (ko) e-베이핑 장치용 히터 조립체를 만드는 방법
CN106455711B (zh) 电子蒸汽吐烟装置及其部件
US11317651B2 (en) Cartridge with dilution air passage, method of making the cartridge, and e-vaping device including the cartridge
CN107529825A (zh) 用于气溶胶生成系统的筒
JP2018520666A (ja) エアロゾル発生システムのためのカートリッジ
CN109982588A (zh) 包括模块化组件的气溶胶生成系统
CN207613206U (zh) 一种具有面发热体的电子烟
CN105054307A (zh) 雾化芯、雾化器及电子烟
WO2023168901A1 (zh) 雾化芯、雾化模块、气雾弹和雾化芯的制造方法
CN217012790U (zh) 雾化芯、雾化模块和气雾弹
CN107373769A (zh) 一种自导油加热的电子烟
JP2024518193A (ja) アトマイザー、霧化モジュール、エアロゾルカートリッジ及びアトマイザーの製造方法
CN208755162U (zh) 发热装置及电加热吸烟装置
CN216568359U (zh) 雾化器及电子雾化装置
CN113455736A (zh) 雾化器及电子雾化装置
CN113475781A (zh) 雾化器及电子雾化装置
WO2023123815A1 (zh) 发热体和气溶胶产生装置
CN216983629U (zh) 一种雾化效率高的烟油雾化器及其电子烟
CN219613080U (zh) 一种雾化芯、雾化器及气溶胶生成装置
CN216416037U (zh) 发热网、雾化器及电子雾化装置
CN219679793U (zh) 一种发热体、雾化芯和雾化装置
CN219330733U (zh) 发热丝、雾化器及电子烟
CN210630647U (zh) 雾化芯微孔陶瓷加热器及使用该加热器的雾化芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930530

Country of ref document: EP

Kind code of ref document: A1