WO2023168846A1 - 电池隔膜用涂层及其制备方法、电池隔膜和电池 - Google Patents

电池隔膜用涂层及其制备方法、电池隔膜和电池 Download PDF

Info

Publication number
WO2023168846A1
WO2023168846A1 PCT/CN2022/097847 CN2022097847W WO2023168846A1 WO 2023168846 A1 WO2023168846 A1 WO 2023168846A1 CN 2022097847 W CN2022097847 W CN 2022097847W WO 2023168846 A1 WO2023168846 A1 WO 2023168846A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
battery
separator
battery separators
nanomaterials
Prior art date
Application number
PCT/CN2022/097847
Other languages
English (en)
French (fr)
Inventor
王艳杰
陈泽林
孙华
沈剑强
谭斌
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to KR1020247021786A priority Critical patent/KR20240118116A/ko
Publication of WO2023168846A1 publication Critical patent/WO2023168846A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of batteries, and in particular to a coating for battery separators and a preparation method thereof, a battery separator and a battery.
  • Lithium battery separator is one of the core components of lithium-ion batteries. Its performance has a very important impact on the overall performance of lithium batteries and is one of the key technologies restricting the development of lithium batteries. As the application fields of lithium batteries continue to expand and the impact of lithium battery products in people's lives continues to deepen, people have higher and higher requirements for the performance of lithium batteries. In order to meet the development requirements of lithium batteries, separators, as an important component of lithium batteries, should not only have good chemical stability and low manufacturing costs, but also improve the safety performance of lithium-ion batteries. It is also an important trend in the current development of lithium batteries.
  • the separator currently used in lithium-ion batteries is polyolefin, which has poor wettability to the electrolyte. Therefore, when the battery is assembled, the electrolyte is injected into the semi-finished product. Since the electrolyte cannot quickly spread on the surface of the polyolefin separator, the electrolyte will Under the action of surface tension, the separator will deform and wrinkle, forming a dead area inside the lithium battery, thereby affecting the performance of the battery.
  • the invention provides a coating for a battery separator and a preparation method thereof, a battery separator and a battery, so as to improve the problem of electrolyte-induced deformation of the battery separator.
  • the invention provides a coating for battery separators.
  • the slurry of the coating includes: a dispersion medium, a nanomaterial, and a polymer containing polar functional groups; the surface pore size of the coating is 10 -30nm, the surface roughness is 200-500nm, and the hydroxyl content in the coating is 100-4000mg KOH/g.
  • the dispersion medium and nanomaterials form a dispersion liquid, and based on the quality of the dispersion medium, the content of the nanomaterials in the dispersion liquid is 0.1 to 30 wt%.
  • the nanomaterials include nanoparticles and one-dimensional nanomaterials.
  • the particle diameter of the nanoparticle ceramics is less than 150 nm, preferably ⁇ 100 nm; the aspect ratio of the one-dimensional nanomaterials is ⁇ 50 and the length is ⁇ 1000 nm.
  • the nanomaterials include alumina, boehmite, magnesium hydroxide, magnesium oxide, barium sulfate, calcium carbonate, aluminum nitride, silicon carbide, hydroxyapatite, nanocellulose, attapulgite, aromatic One or more of fiber resin, polymethylmethacrylate, polyvinylidene fluoride and polyethylene oxide.
  • the polar functional group-containing polymer includes polyacrylic acid, polyvinyl alcohol, carboxymethyl cellulose, or a combination thereof.
  • the added amount of the polar functional group-containing polymer is 1-30 wt% of the nanomaterial.
  • the content of water in the dispersion medium is more than 90 wt%.
  • the present invention provides a method for preparing a coating for battery separators, which is used to prepare the aforementioned coating for battery separators.
  • the preparation method includes:
  • the coated membrane is subjected to radiation treatment, and the etchant in the coated membrane reacts to generate gas, thereby causing the coated membrane to be etched to form the coating with a rough surface; or,
  • the coated separator is immersed in water, and the water eluent in the coated separator is precipitated into the water, leaving holes on the surface of the coated separator after dissolution, forming the coating with a rough surface.
  • the etchant includes low molecular weight polyethylene, low molecular weight polypropylene, or a combination thereof.
  • the molecular weight of the low molecular weight polyethylene is less than 10,000 g/mol, and the molecular weight of the low molecular weight polypropylene is less than 10,000 g/mol.
  • the radiation treatment includes ultraviolet radiation or plasma radiation.
  • the ultraviolet radiation has a wavelength range of 100-300 nm, a power of 30-100 W/cm, and an irradiation time of 0.01-5 s.
  • the base film is a polyolefin base film
  • the thickness of the base film is 3-30 microns
  • the drying temperature is 40-130°C
  • the coating speed is 10-200 m/min.
  • the water dissolution agent is polymer nanoparticles, including polymethyl methacrylate, polyvinylidene fluoride or a combination thereof; the diameter of the polymer nanoparticles is 100-500 nm, and the dosage is the 5-20wt% of nanomaterials.
  • the time for immersing the coated membrane in water is 1-5 minutes.
  • the coating method includes at least one of spray coating, dip coating, micro-gravure roller coating, printing coating, extrusion coating, and wire bar coating.
  • the present invention provides a battery separator, the surface of which has any one of the coatings for battery separators described above, or has a coating made by any one of the above preparation methods. Coatings for battery separators.
  • the present invention provides a battery, including the battery separator described above.
  • the number of hydroxyl functional groups, surface pore size and surface roughness of the coating are synergistically processed to jointly improve the wettability of the battery separator and improve ion transmission. efficiency.
  • Figure 1 is a schematic flow chart of a method for preparing a coating for battery separators in one embodiment
  • Figure 2 is a schematic flow chart of a method for preparing a coating for battery separators in another embodiment.
  • ceramic materials are generally micron or sub-micron scale. The pores formed between micron ceramic particles are micron-sized. There are large gaps on the surface in contact with the separator, and the electrolyte is transferred along the ceramic surface, resulting in damage to the micron-sized pores.
  • the present invention proposes a coating for battery separators with electrophilic properties.
  • the slurry of the coating includes: dispersion medium, nanomaterials, and polymers containing polar functional groups; the surface pore size of the coating is 10-30 nm, and the surface roughness is is 200-500nm, and the hydroxyl content in the coating is 100-4000 mg KOH/g.
  • the surface pore diameter of the coating can be 10nm, 11nm, 12nm, 13nm, 14nm, 15nm, 16nm, 17nm, 18nm, 19nm, 20nm, 21nm, 22nm, 23nm, 24nm, 25nm, 26nm, 27nm, 28nm, 29nm, 30nm.
  • surface roughness can be 200nm, 300nm, 400nm, 500nm
  • hydroxyl content in the coating can be 100mg KOH/g, 500mg KOH/g, 1000mg KOH/g, 1500mg KOH/ g, any one of 2000mg KOH/g, 2500mg KOH/g, 3000mg KOH/g, 3500mg KOH/g, 4000mg KOH/g or the range between any two; as the selected slurry material changes, And combined with experiments, the corresponding values can be selected and changed.
  • the dispersion medium can be any liquid that can be used for material dispersion.
  • the water content in the dispersion medium is more than 90 wt%.
  • it can also include dispersion media such as ethanol, acetone, and N-methylpyrrolidone.
  • the dispersion medium and nanomaterials form a dispersion liquid.
  • the content of the nanomaterials in the dispersion liquid is 0.1 to 30wt%.
  • the content can be 0.1wt%, 0.5wt%, or 1wt%.
  • the nanomaterials include nanoparticles and one-dimensional nanomaterials.
  • the particle size of the nanoparticle ceramics is less than 150 nm, preferably ⁇ 100 nm; the aspect ratio of the one-dimensional nanomaterials is ⁇ 50 and the length is ⁇ 1000 nm.
  • the nanomaterials include alumina, boehmite, magnesium hydroxide, magnesium oxide, barium sulfate, calcium carbonate, aluminum nitride, silicon carbide, hydroxyapatite, nanocellulose, attapulgite rods, aramid resin, One or more of polymethyl methacrylate, polyvinylidene fluoride and polyethylene oxide.
  • the polymer containing polar functional groups includes polyacrylic acid, polyvinyl alcohol, carboxymethyl cellulose or a combination thereof.
  • the added amount of the polar functional group-containing polymer is 1-30wt% of the nanomaterial mass, such as 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%.
  • the inventor found that reducing the pore size of the coating can effectively reduce the gap size at the contact interface between the nanomaterial coating and the separator, thereby solving the problem of dead areas. Since the pore size on the coating surface is reduced, The resistance to entry of the electrolyte increases, and polar groups need to be added to ensure its wettability. However, when the hydroxyl content is too high, the electrolyte will form a dense liquid film and cannot enter the coating. Therefore, the pore size of the coating is related to the polarity. There is a synergistic relationship between the number of sexual groups. The coating provided by this application has a certain number of hydroxyl groups to ensure affinity for the electrolyte.
  • the nano-scale pores have capillary action to ensure that the electrolyte can be adsorbed. With a certain degree of roughness, it can ensure that the electrolyte has It has good diffusibility and is adsorbed to the maximum extent, thereby slowing down the impact of the electrolyte on the separator; for the first time, this application jointly improves the separator wettability and ion transmission efficiency by combining the coating pore size, surface roughness and hydroxyl content.
  • embodiments of the present invention also provide a method for preparing a coating for battery separators, which is used to prepare any of the coatings for battery separators.
  • a method for preparing a coating for battery separators includes the following steps:
  • the dispersion medium can be any liquid that can be used for dispersing materials.
  • the content of water in the dispersion medium is more than 90 wt%.
  • it can also include dispersion media such as ethanol, acetone, and N-methylpyrrolidone.
  • the dispersion method is uniformly dispersed in the dispersant through high-speed stirring, high-pressure homogenization, sand grinding and dispersion.
  • the content of nanomaterials in the dispersion can be 0.1 to 30wt%.
  • the nanomaterials include nanoparticles and one-dimensional nanomaterials.
  • the particle size of the nanoparticles is less than 150nm.
  • the aspect ratio of the one-dimensional nanomaterials is ⁇ 50. Length ⁇ 1000nm.
  • the etchant includes low molecular weight polyethylene, low molecular weight polypropylene or a combination thereof, and the molecular weight of low molecular weight polyethylene or low molecular weight polypropylene is less than 10,000 g/mol.
  • Coating and film making Coat the prepared dispersion on the base film through coating, and dry it to obtain a coated separator.
  • Coating methods include spray coating, dip coating, micro-gravure roller coating, printing coating, extrusion coating, wire rod coating, etc. Of course, other existing coating methods can also be selected.
  • the base film is a polyolefin base film with a thickness of 3-30 microns, a drying temperature of 40-130°C, and a coating speed of 10-200m/min.
  • Etching The above-mentioned coated separator is subjected to radiation treatment, and the etchant reacts to generate gas, which is then etched to form the coating with a rough surface.
  • Radiation treatment can include ultraviolet radiation, plasma radiation and other means.
  • the wavelength range of ultraviolet is 100-300nm, the power is 30-100W/cm, and the irradiation time is 0.01-5s.
  • the present invention also provides another method for preparing a coating for battery separators, which includes the following steps:
  • the dispersion medium can be any liquid that can be used for dispersing materials.
  • the content of water in the dispersion medium is more than 90 wt%.
  • it can also include dispersion media such as ethanol, acetone, and N-methylpyrrolidone.
  • the dispersion method is uniformly dispersed in the dispersant through high-speed stirring, high-pressure homogenization, sand grinding and dispersion.
  • the content of nanomaterials in the dispersion can be 0.1 to 30wt%.
  • the nanomaterials include nanoparticles and one-dimensional nanomaterials.
  • the particle size of the nanoparticles is less than 150nm.
  • the aspect ratio of the one-dimensional nanomaterials is ⁇ 50. Length ⁇ 1000nm.
  • the water dissolution agent can choose polymer nanoparticles, such as polymethyl methacrylate, polyvinylidene fluoride or a combination thereof. The diameter of the nanoparticles is 100-500nm, and the dosage is 5-20wt of the weight of the ceramic. %.
  • Coating and film making Coat the prepared dispersion on the base film through coating, and dry it to obtain a coated separator.
  • Coating methods include spray coating, dip coating, micro-gravure roller coating, printing coating, extrusion coating, wire rod coating, etc. Of course, other existing coating methods can also be selected.
  • the base film is a polyolefin base film with a thickness of 3-30 microns, a drying temperature of 40-130°C, and a coating speed of 10-200m/min.
  • Base film The base film used in Examples 1-8 and Comparative Examples 1-10 is a polyethylene film with a thickness of 5 microns, a porosity of 40%, and a pore diameter of 40 nm.
  • Diaphragm The diaphragm is prepared by the etching method in Figure 1 above, specifically including:
  • S1 Dispersion of nanomaterials: Fully disperse the nanomaterials in the dispersion medium to form a dispersion.
  • the dispersion medium is water.
  • S2 Introduction of polymer: Add a polymer containing polar functional groups to the above dispersion liquid to form a slurry;
  • S3 Addition of etchant: Add etchant to the above solution to form a liquid to be coated.
  • Etching The above-mentioned coated separator is treated with ultraviolet radiation, and the etchant reacts to generate gas, which is then etched to form the coating with a rough surface.
  • Test method for coating electrolyte liquid absorption rate Test the liquid absorption rate of the base film and composite separator (coated base film) according to method 1. Subtract the two to obtain the electrolyte of the coating. Liquid absorption rate.
  • the hydroxyl content detection method refers to GB/T 12008.3-2009.
  • Liquid injection wrinkle test Assemble the separator and the positive and negative electrodes into a battery, then inject the electrolyte, let it sit for a period of time, disassemble the battery, and check the deformation of the separator. If there are no wrinkles, it is not deformed; if there are wrinkles and the number of folds is less than 3, it is said to be deformed; if the number of folds is greater than 3 and less than 10, it is deformed; if the number of folds is greater than 10, it is deformed. serious.
  • the reason for this phenomenon is that when the hydroxyl content is less than 100mg KOH/g, the coating has insufficient wettability to the electrolyte. Therefore, the absorption rate of the electrolyte by the coated separator is relatively low, and the separator is deformed.
  • the coating When the hydroxyl content is greater than 4000mg KOH/g, the coating has super strong adsorption to the electrolyte, thereby forming a dense electrolyte liquid film on the surface of the coating, resulting in the electrolyte not being able to smoothly enter the coating pores, so the electrolysis
  • the liquid accumulates on the surface of the separator, and the absorption rate of the electrolyte by the coated separator is relatively low (the adsorption rate of the electrolyte by the coated separator decreased in Example 4 and Comparative Example 2), resulting in deformation of the separator.
  • the surface roughness further increases and the liquid film accumulates, the increased impact of the electrolyte on the base film increases, resulting in severe deformation of the separator, as shown in Comparative Example 3.
  • This application is designed so that the coating has a certain number of hydroxyl groups to ensure affinity for the electrolyte.
  • the nanoscale pores have capillary action to ensure that the electrolyte can be adsorbed, and a certain degree of roughness can ensure that the electrolyte can be adsorbed.
  • the liquid is adsorbed and transported to the greatest extent, thereby slowing down the impact of the electrolyte on the diaphragm.
  • the wettability of the separator is improved and the ion transmission efficiency is improved through the synergy of coating pore size, surface roughness and hydroxyl content.
  • An embodiment of the present invention also provides a battery separator, which is produced using the above-mentioned preparation method.
  • An embodiment of the present invention also provides a battery, including the battery separator related to the above optional solution.
  • an implementation mode means the specific features described in conjunction with the embodiment or example, Structures, materials or features are included in at least one embodiment or example of the invention.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)

Abstract

一种电池隔膜用涂层及其制备方法、电池隔膜和电池,其中的电池隔膜用涂层,涂层的浆料包括:分散介质、纳米材料、含极性官能团的聚合物;该涂层的表面孔径为10-30nm,表面粗糙度为200-500nm,该涂层中羟基含量为100-4000mg KOH/g。该电池隔膜用涂层及其制备方法、电池隔膜和电池,可以改善电解液诱导电池隔膜变形的问题。

Description

电池隔膜用涂层及其制备方法、电池隔膜和电池 技术领域
本发明涉及电池领域,尤其涉及一种电池隔膜用涂层及其制备方法、电池隔膜和电池。
背景技术
锂电池隔膜是锂离子电池核心部件之一,其性能的好坏对锂电池的整体性能有着非常重要的影响,是制约锂电池发展的关键技术之一。随着锂电池应用领域的不断扩大和锂电产品在人们生活中的影响不断深化,人们对锂电池性能的要求也越来越高。为了满足锂电池的发展要求,隔膜作为锂电池的重要部件不仅应具有良好的化学稳定性、较低的制造成本,提高锂离子电池的安全性能也是目前锂电发展的重要趋势。
当前锂离子电池中用到的隔膜为聚烯烃,其对电解液浸润性差,因此,当组装成电池后,往半成品中注入电解液,由于电解液不能迅速在聚烯烃隔膜表面铺展,在电解液表面张力的作用下,隔膜会发生变形,出现褶皱,在锂电池内部形成死区域,进而影响电池的性能发挥。
发明内容
本发明提供一种电池隔膜用涂层及其制备方法、电池隔膜和电池,以改善电解液诱导电池隔膜变形的问题。
根据本发明的第一方面,本发明提供了一种电池隔膜用涂层,涂层的浆料包括:分散介质、纳米材料、含极性官能团的聚合物;所述涂层的表面孔径为10-30nm,表面粗糙度为200-500nm,所述涂层中羟基含量为100-4000mg KOH/g。
一些实施例中,所述分散介质、纳米材料形成分散液,以分散介质质量为基准,所述纳米材料在所述分散液中的含量为0.1~30wt%。
一些实施例中,所述纳米材料包括纳米颗粒、一维纳米材料,所述纳米 颗粒陶瓷的粒径小于150nm,优选≤100nm;所述一维纳米材料长径比≤50,长度≤1000nm。
一些实施例中,所述纳米材料包括氧化铝、勃姆石、氢氧化镁、氧化镁、硫酸钡、碳酸钙、氮化铝、碳化硅、羟基磷灰石、纳米纤维素、凹凸棒、芳纶树脂、聚甲基丙烯酸甲酯、聚偏氟乙烯和聚环氧乙烷中的一种或多种。
一些实施例中,所述含极性官能团的聚合物包括聚丙烯酸、聚乙烯醇、羧甲基纤维素或其组合物。
一些实施例中,所述含极性官能团的聚合物加入量为纳米材料的1-30wt%。
一些实施例中,所述分散介质中水的含量为90wt%以上。
根据本发明的第二方面,本发明提供了一种电池隔膜用涂层的制备方法,用于制备前述的电池隔膜用涂层,所述制备方法包括:
将纳米材料充分地分散在分散介质中形成分散液;
向所述分散液中加入含极性官能团的聚合物形成浆料;
向浆料中加入刻蚀剂或者水溶出剂形成待涂覆液;
通过涂覆方式,将所述待涂覆液涂覆于基膜上,烘干得到涂覆隔膜;
将所述涂覆隔膜进行辐射处理,所述涂覆隔膜中的刻蚀剂发生反应,生成气体,进而使得所述涂覆隔膜被刻蚀,形成具有粗糙表面的所述涂层;或者,将所述涂覆隔膜浸入水中,所述涂覆隔膜中的水溶出剂析出到水中,所述涂覆隔膜表面留下溶出后的坑洞,形成具有粗糙表面的所述涂层。
一些实施例中,所述刻蚀剂包括低分子量聚乙烯、低分子量聚丙烯或其组合物。
一些实施例中,所述低分子量聚乙烯分子量低于10000g/mol,所述低分子量聚丙烯分子量低于10000g/mol。
一些实施例中,所述辐射处理包括紫外辐射或等离子体辐射。
一些实施例中,所述紫外辐射的紫外光的波长范围为100-300nm,功率为30-100W/cm,照射时间为0.01-5s。
一些实施例中,所述基膜为聚烯烃基膜,所述基膜的厚度为3-30微米,烘干温度为40-130℃,涂覆速度为10-200m/min。
一些实施例中,所述水溶出剂为聚合物纳米颗粒,包括聚甲基丙烯酸甲酯、聚偏氟乙烯或其组合物;所述聚合物纳米颗粒的直径为100-500nm,用量为所述纳米材料的5-20wt%。
一些实施例中,将所述涂覆隔膜浸入水中的时间为1-5min。
一些实施例中,所述涂覆方式包括喷涂、浸涂、微凹辊涂、印刷涂、挤压涂覆、线棒涂中至少一种。
根据本发明的第三方面,本发明提供了一种电池隔膜,所述电池隔膜表面具有前面任一所述的电池隔膜用涂层,或者具有利用前面任一所述的制备方法制作而成的电池隔膜用涂层。
根据本发明的第五方面,本发明提供了一种电池,包括前面所述的电池隔膜。
本发明提供的电池隔膜用涂层及其制备方法、电池隔膜和电池中,通过涂层羟基官能团数量、表面孔径、表面粗糙度三者协同处理的,共同改善了电池隔膜浸润性,提高离子传输效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一实施例中电池隔膜用涂层的制备方法的流程示意图;
图2是另一实施例中电池隔膜用涂层的制备方法的流程示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
发明人发现,在聚烯烃隔膜表面涂覆陶瓷材料,如氧化铝,勃姆石等, 陶瓷材料对电解液具有优异的浸润性,进而可以改善涂覆隔膜的电解液浸润性。但陶瓷材料一般为微米或亚微米尺度,微米陶瓷颗粒间形成的孔径为微米级,与隔膜接触的面存在较大的空隙,而电解液沿着陶瓷表面进行传递,从而导致对微米级孔道的覆盖不足,进而导致微米级孔道中有未被电解液覆盖的区域,同样形成死区域,从而降低隔膜有效传输离子通道,降低离子运输速率。为了降低电解液注入导致的电池隔膜变形影响,本发明提出了一种具有亲电解液特性的电池隔膜用涂层。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本发明具体实施例提供了一电池隔膜用涂层,涂层的浆料包括:分散介质、纳米材料、含极性官能团的聚合物;所述涂层的表面孔径为10-30nm,表面粗糙度为200-500nm,所述涂层中羟基含量为100-4000mg KOH/g。该涂层表面孔径可以为10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm、20nm、21nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm、30nm中的任一者或者任意两者之间的范围;表面粗糙度可以为200nm、300nm、400nm、500nm;涂层中羟基含量可以为100mg KOH/g、500mg KOH/g、1000mg KOH/g、1500mg KOH/g、2000mg KOH/g、2500mg KOH/g、3000mg KOH/g、3500mg KOH/g、4000mg KOH/g中的任一者或者任意两者之间的范围;随着所选浆料材料的变化,并结合试验,可从中选择、变化相应的取值。
其中的分散介质,可以为任意可用于材料分散的液体,所述分散介质中,水的含量为90wt%以上,此外还可以包括乙醇、丙酮、N-甲基吡咯烷酮等分散介质。
其中,所述分散介质、纳米材料形成分散液,以分散介质质量为基准,所述纳米材料在分散液中的含量为0.1~30wt%,例如含量可以为0.1wt%、0.5wt%、1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%、19wt%、20wt%、21wt%、22wt%、23wt%、24wt%、25wt%、26wt%、27wt%、 28wt%、29wt%、30wt%中的任一者或者任意两者之间的范围。一些实施例中,所述纳米材料包括纳米颗粒、一维纳米材料,所述纳米颗粒陶瓷的粒径小于150nm,优选≤100nm;所述一维纳米材料长径比≤50,长度≤1000nm。
其中,所述纳米材料包括氧化铝、勃姆石、氢氧化镁、氧化镁、硫酸钡、碳酸钙、氮化铝、碳化硅、羟基磷灰石、纳米纤维素、凹凸棒、芳纶树脂、聚甲基丙烯酸甲酯、聚偏氟乙烯和聚环氧乙烷中的一种或多种。
所述含极性官能团的聚合物包括聚丙烯酸、聚乙烯醇、羧甲基纤维素或其组合物。一些实施例中,所述含极性官能团的聚合物加入量为纳米材料质量的1-30wt%,如1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%、15wt%、16wtwt%、17wt%、18wt%、19wt%、20wt%、21wt%、22wt%、23wt%、24wt%、25wt%、26wt%、27wt%、28wt%、29wt%、30wt%中的任一者或者任意两者之间的范围。
基于对涂层的研究,发明人发现,涂层孔径减小后,能有效降低纳米材料涂层与隔膜接触界面的空隙大小,从而解决了存在死区域的问题,由于涂层表面孔径减小后电解液进入阻力增大,需要增加极性基团来确保其浸润性,但当羟基含量过高时会导致电解液形成致密的液体膜而无法进入涂层中,因此涂层的孔径大小与极性基团数量间存在相互协同关系。本申请提供的涂层具有一定数量的羟基,确保对电解液具有亲和性,纳米级的孔道具有毛细作用,可以确保电解液能够被吸附,配合一定程度的粗糙度,则能确保电解液具有良好的扩散性并被最大程度地吸附,从而减缓电解液对隔膜的冲击;本申请首次通过结合涂层孔径、表面粗糙度和羟基含量共同改善了隔膜浸润性,提高离子传输效率。
为了得到上述电池隔膜用涂层,本发明实施例还提供了一种电池隔膜用涂层的制备方法,用于制备任一所述的电池隔膜用涂层。
参见图1,在一实施例中,一种电池隔膜用涂层的制备方法,包括以下步骤:
S1:纳米材料的分散:将纳米材料充分地分散在分散介质中形成分散液。分散介质可以为任意可用于材料分散的液体,所述分散介质中,水的含量为90wt%以上,此外还可以包括乙醇、丙酮、N-甲基吡咯烷酮等分散介质。分 散方式通过高速搅拌、高压均质、砂磨分散等方式而均匀地分散在分散剂中。纳米材料在分散液中的含量可以为0.1~30wt%,所述纳米材料包括纳米颗粒、一维纳米材料,所述纳米颗粒的粒径小于150nm;所述一维纳米材料长径比≤50,长度≤1000nm。
S2:聚合物的引入:在上述分散液中加入含极性官能团的聚合物,如聚丙烯酸,聚乙烯醇、羧甲基纤维素等,其加入量为纳米材料质量的1-30wt%。
S3:刻蚀剂的加入:在上述溶液中加入刻蚀剂。刻蚀剂包括低分子量聚乙烯、低分子量聚丙烯或其组合物,低分子量聚乙烯或低分子量聚丙烯分子量低于10000g/mol。
S4:涂覆制膜:通过涂覆方式,将制得的分散液涂覆于基膜上,烘干即可得到涂覆隔膜。涂覆方式为喷涂、浸涂、微凹辊涂、印刷涂、挤压涂覆、线棒涂等,当然也可选择其他现有的涂覆方式。基膜为聚烯烃基膜,厚度为3-30微米,烘干温度为40-130℃,涂覆速度为10-200m/min。
S5:刻蚀:将上述涂覆隔膜通过辐射处理,刻蚀剂发生反应,生成气体,进而被刻蚀,形成具有粗糙表面的所述涂层。辐处理可以是射紫外辐射、等离子体辐射等手段处理。其中紫外的波长范围为100-300nm,功率为30-100W/cm,照射时间为0.01-5s。
参见图2,在另一具体实施方式中,本发明还提供了另一种电池隔膜用涂层的制备方法,包括以下步骤:
S1:纳米材料的分散:将纳米材料充分地分散在分散介质中形成分散液。分散介质可以为任意可用于材料分散的液体,所述分散介质中,水的含量为90wt%以上,此外还可以包括乙醇、丙酮、N-甲基吡咯烷酮等分散介质。分散方式通过高速搅拌、高压均质、砂磨分散等方式而均匀地分散在分散剂中。纳米材料在分散液中的含量可以为0.1~30wt%,所述纳米材料包括纳米颗粒、一维纳米材料,所述纳米颗粒的粒径小于150nm;所述一维纳米材料长径比≤50,长度≤1000nm。S2:聚合物的引入:在上述分散液中加入含极性官能团的聚合物,如聚丙烯酸,聚乙烯醇、羧甲基纤维素等,其加入量为纳米材料质量的1-30wt%。
S3:水溶出剂的加入:在上述溶液中加入水溶出剂,水溶出剂和陶瓷颗粒的亲和力弱,在水中时,水溶出剂优先被洗脱出来,所述涂覆隔膜表面留下溶出后的坑洞,形成具有粗糙表面的所述涂层。在一些实施例中,水溶出剂可以选择聚合物纳米颗粒,如聚甲基丙烯酸甲酯、聚偏氟乙烯或其组合物,纳米颗粒的直径为100-500nm,用量为陶瓷重量的5-20wt%。
S4:涂覆制膜:通过涂覆方式,将制得的分散液涂覆于基膜上,烘干即可得到涂覆隔膜。涂覆方式为喷涂、浸涂、微凹辊涂、印刷涂、挤压涂覆、线棒涂等,当然也可选择其他现有的涂覆方式。基膜为聚烯烃基膜,厚度为3-30微米,烘干温度为40-130℃,涂覆速度为10-200m/min。
S5:水溶出:将上述涂覆隔膜浸到水中,所述涂覆隔膜中的水溶出剂析出到水中,所述涂覆隔膜表面留下溶出后的坑洞,形成具有粗糙表面的所述涂层。涂覆隔膜浸入水中时间为1-5min。
下面将通过实验分析本发明一些实施例及对比例的产品性能。
请结合参考表1,表1中的实施例1-8以及对比例1-对比例10的隔膜采用以下方式进行制备和性能测试。
一、膜制备
基膜:实施例1-8以及对比例1-10采用的基膜为厚度为5微米、孔隙率40%、孔径40nm的聚乙烯膜。隔膜:隔膜采用上述图1中的刻蚀方法制备,具体的包括:
S1:纳米材料的分散:将纳米材料充分地分散在分散介质中形成分散液。分散介质为水。
S2:聚合物的引入:在上述分散液中加入含极性官能团的聚合物形成浆料;S3:刻蚀剂的加入:在上述溶液中加入刻蚀剂形成待涂覆液。
S4:涂覆制膜:通过涂覆方式,将制得的分散液涂覆于上述基膜上,烘干即可得到涂覆隔膜。
S5:刻蚀:将上述涂覆隔膜通过紫外辐射处理,刻蚀剂发生反应,生成气体,进而被刻蚀,形成具有粗糙表面的所述涂层。
其中,各个实施例及对比例的制备参数请具体参见表1。
二、电解液吸液率测试:
1、基膜吸液率测试方法:(1)裁取150mm*150mm(S=0.0225m 2)大小的隔膜样品,将样品称重,记录质量m 1;(2)将样品完全浸泡在电解液(EC:EMC=7:3vol%,LiFP6 1mol)中,浸泡时间1h;(3)在平整桌面平铺一层干净纸巾(面积大于150mm*150mm),取出样品置于纸巾上,另用一干净纸巾轻轻擦拭隔膜表面的游离电解液一遍,再取一干净纸巾擦拭直到肉眼看不到颗粒状电解液为止;(4)称量擦干后的样品质量m 2,计算吸液率(单位:g/m 2)面吸液率=(m 2-m 1)/S
2、涂层电解液吸液率测试方法:按1的方法分别测试基膜和复合隔膜(带有涂层的基膜)的吸液率,两者相减,即可得到涂层的电解液吸液率。
三、电解液膜面扩散速度:
(1)将1片载玻片置于光学显微镜下,裁取50mm*50mm的隔膜样品,标记MD/TD方向,将样品用胶带固定在载玻片上。
(2)取2μL的电解液(EC:EMC=7:3vol%,LiFP6 1mol),滴在固定好的样品上,并同时按下计时器,在液滴停止扩散时,记录扩散时间t(s)及利用光学显微镜记录扩散后的液滴形态;
(3)利用电脑分析软件计算扩散后液滴的当量半径R(mm);根据公式:V=R/t,计算扩散速度V(mm/s);
(4)重复三次上述实验,计算扩散速度的均值。
四、参数测定、评定:
羟基的含量检测方法参考GB/T 12008.3-2009。
表层孔径通过高分辨扫描电镜测试。
表面粗糙度通过3D表面形貌仪测试。
变形程度怎么衡量,什么样叫做不变形、出现变形、变形较大、变形严重。注液起皱测试:将隔膜与正负极组装成电池,然后注入电解液,静置放置一段时间后,拆开电池,查看隔膜变形情况。若不出现褶皱,则为不变形;若出现褶皱,褶皱数量小于3条,则称为出现变形;若褶皱数量大于3,小于10,则为变形较大;若褶皱数量大于10,则为变形严重。
五、测试结果及分析:测试得到的数据见下面表1。
Figure PCTCN2022097847-appb-000001
Figure PCTCN2022097847-appb-000002
Figure PCTCN2022097847-appb-000003
Figure PCTCN2022097847-appb-000004
表1
由实施例1-4、对比例1-2对比可知,当-OH含量增加时,电解液的扩散速度逐步提升并保持不变,导致这一现象的原因在于-OH的增多有助于电解液在表面的扩散,但过多时,电解液的速度达到了极限。当-OH含量 为50mg KOH/g时,隔膜出现变形,当-OH含量提高到100mg KOH/g时,隔膜不再变形,并且在100-4000mg KOH/g内都不变形,当-OH含量进一步提高到4500mg KOH/g时,涂覆隔膜开始变形。导致这一现象的原因在于羟基含量低于100mg KOH/g时,涂层对电解液的浸润性不足,因此,涂覆隔膜对电解液的吸收率比较低,且隔膜变形。当羟基含量大于4000mg KOH/g时,涂层对电解液有超强的吸附性,进而在涂层表面形成一层致密的电解液液体膜,导致电解液不能顺利进入涂层孔中,所以电解液在隔膜表面堆积,涂覆隔膜对电解液的吸收率比较低(实施例4、对比例2中涂覆隔膜对电解液的吸附率下降),导致隔膜变形。表面粗糙度的进一步增大,液体膜累积增多,则增多的电解液对基膜造成冲击增强,因而隔膜变形严重,如对比例3。
由实施例5-6、对比例4-5可知,当表层孔径低于10nm或高于30nm时,电解液注入会导致隔膜变形,而在10-30nm范围内,隔膜形状保持不变,这主要是因为孔径过小时,电解液进入涂层内阻力大,在10-30nm则具有较强的毛细作用。当孔径继续增大时,毛细作用减小。因而不能充吸收电解液。
由实施例2、8、对比例6-8可知,当粗糙度为300nm和500nm时,涂覆隔膜具有优异的抗电解液变形能力,而粗糙度为100nm、800nm和1000nm时,该特性均变差。导致这一现象的主要原因在于粗糙度过小,区域有限,则不能充分吸收电解液。而粗糙度过大,则较高的缺陷差值阻碍了电解液的传输分散,电解液不能充分扩散到周围,故以液态的形式存在于膜表面。
本申请通过设计,使得涂层具有一定数量的羟基,确保对电解液具有亲和性,纳米级的孔道具有毛细作用,可以确保电解液能够被吸附,而一定程度的粗糙度,则能确保电解液被最大程度地吸附及传输,从而减缓电解液对隔膜的冲击。通过涂层孔径、表面粗糙度和羟基含量协同配合改善了隔膜浸润性,提高离子传输效率。
本发明实施例还提供了一种电池隔膜,所述电池隔膜是利用以上所提及的制备方法制作而成的。
本发明实施例还提供了一种电池,包括以上可选方案涉及的电池隔膜。
在本说明书的描述中,参考术语“一种实施方式”、“一种实施例”、“具体实施过程”、“一种举例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种电池隔膜用涂层,其特征在于,涂层的浆料包括:分散介质、纳米材料、含极性官能团的聚合物;所述涂层的表面孔径为10-30nm,表面粗糙度为200-500nm,所述涂层中羟基含量为100-4000mg KOH/g。
  2. 根据权利要求1所述的电池隔膜用涂层,其特征在于,所述分散介质、纳米材料形成分散液,以分散液质量为基准,所述纳米材料在所述分散液中的含量为0.1~30wt%。
  3. 根据权利要求1所述的电池隔膜用涂层,其特征在于,所述纳米材料包括纳米颗粒、一维纳米材料,所述纳米颗粒的粒径小于150nm;所述一维纳米材料长径比≤50,长度≤1000nm。
  4. 根据权利要求1-3任一项所述的电池隔膜用涂层,其特征在于,所述纳米材料包括氧化铝、勃姆石、氢氧化镁、氧化镁、硫酸钡、碳酸钙、氮化铝、碳化硅、羟基磷灰石、纳米纤维素、凹凸棒、芳纶树脂、聚甲基丙烯酸甲酯、聚偏氟乙烯和聚环氧乙烷中的一种或多种。
  5. 根据权利要求1所述的电池隔膜用涂层,其特征在于,所述含极性官能团的聚合物包括聚丙烯酸、聚乙烯醇、羧甲基纤维素或其组合物。
  6. 根据权利要求1所述的电池隔膜用涂层,其特征在于,所述含极性官能团的聚合物加入量为纳米材料的1-30wt%。
  7. 根据权利要求1所述的电池隔膜用涂层,其特征在于,所述分散介质中水的含量为90wt%以上。
  8. 一种电池隔膜用涂层的制备方法,其特征在于,用于制备权利要求1至7任一所述的电池隔膜用涂层,所述制备方法包括:
    将纳米材料分散在分散介质中形成分散液;
    向所述分散液中加入含极性官能团的聚合物形成浆料;
    向浆料中加入刻蚀剂或者水溶出剂形成待涂覆液;
    通过涂覆方式,将所述待涂覆液涂覆于基膜上,烘干得到涂覆隔膜;
    将所述涂覆隔膜进行辐射处理,所述涂覆隔膜中的刻蚀剂发生反应,生成气体,进而使得所述涂覆隔膜被刻蚀,形成具有粗糙表面的所述涂层;或者,将所述涂覆隔膜浸入水中,所述涂覆隔膜中的水溶出剂析出到水中,所 述涂覆隔膜表面留下溶出后的坑洞,形成具有粗糙表面的所述涂层。
  9. 根据权利要求8所述的电池隔膜用涂层的制备方法,其特征在于,所述刻蚀剂包括低分子量聚乙烯、低分子量聚丙烯或其组合物。
  10. 根据权利要求9所述的电池隔膜用涂层的制备方法,其特征在于,所述低分子量聚乙烯分子量低于10000g/mol,所述低分子量聚丙烯分子量低于10000g/mol。
  11. 根据权利要求8所述的电池隔膜用涂层的制备方法,其特征在于,所述辐射处理包括紫外辐射或等离子体辐射;其中,所述紫外辐射的紫外光的波长范围为100-300nm,功率为30-100W/cm,照射时间为0.01-5s。
  12. 根据权利要求8所述的电池隔膜用涂层的制备方法,其特征在于,所述基膜为聚烯烃基膜,所述基膜的厚度为3-30微米,烘干温度为40-130℃,涂覆速度为10-200m/min。
  13. 根据权利要求8所述的电池隔膜用涂层的制备方法,其特征在于,所述水溶出剂为聚合物纳米颗粒,包括聚甲基丙烯酸甲酯、聚偏氟乙烯或其组合物;所述聚合物纳米颗粒的直径为100-500nm,用量为所述纳米材料的5-20wt%。
  14. 根据权利要求8所述的电池隔膜用涂层的制备方法,其特征在于,将所述涂覆隔膜浸入水中的时间为1-5min;所述涂覆方式包括喷涂、浸涂、微凹辊涂、印刷涂、挤压涂覆、线棒涂中至少一种。
  15. 一种电池隔膜,其特征在于,所述电池隔膜表面具有权利要求1至7任一项所述的电池隔膜用涂层,或具有利用权利要求8-14任一项所述的制备方法制作而成的电池隔膜用涂层。
  16. 一种电池,其特征在于,包括权利要求15所述的电池隔膜。
PCT/CN2022/097847 2022-03-07 2022-06-09 电池隔膜用涂层及其制备方法、电池隔膜和电池 WO2023168846A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247021786A KR20240118116A (ko) 2022-03-07 2022-06-09 배터리 분리막용 코팅층 및 이의 제조 방법, 배터리 분리막 및 배터리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210224515.4A CN116780102A (zh) 2022-03-07 2022-03-07 电池隔膜用涂层及其制备方法、电池隔膜和电池
CN202210224515.4 2022-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/759,062 Continuation US20240356158A1 (en) 2022-03-07 2024-06-28 Coating for battery separator, preparation method thereof, battery separator, and battery

Publications (1)

Publication Number Publication Date
WO2023168846A1 true WO2023168846A1 (zh) 2023-09-14

Family

ID=87937078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097847 WO2023168846A1 (zh) 2022-03-07 2022-06-09 电池隔膜用涂层及其制备方法、电池隔膜和电池

Country Status (3)

Country Link
KR (1) KR20240118116A (zh)
CN (1) CN116780102A (zh)
WO (1) WO2023168846A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008210A1 (en) * 1987-04-15 1988-10-20 Ricoh Company, Ltd. Sheet-like electrode, method of producing the same, and secondary cell
CN101546822A (zh) * 2008-03-27 2009-09-30 三星Sdi株式会社 电极组件及包括该电极组件的二次电池
CN104701479A (zh) * 2015-03-02 2015-06-10 常州大学 一种含有机/无机复合交联涂层的聚丙烯微孔隔膜及其制备方法
KR20200085949A (ko) * 2019-01-04 2020-07-16 에너에버배터리솔루션 주식회사 Ev나 ess의 중대형 이차전지용 분리막 코팅제와 이를 이용한 ev나 ess의 중대형 이차전지용 코팅 분리막 제조방법 및 ev나 ess의 중대형 이차전지
CN113644378A (zh) * 2021-08-10 2021-11-12 深圳市鼎泰祥新能源科技有限公司 一种功能涂层隔膜及其制备方法和应用
CN114039167A (zh) * 2021-11-09 2022-02-11 惠州市旭然新能源有限公司 一种多孔性锂离子电池隔膜及制备方法和锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008210A1 (en) * 1987-04-15 1988-10-20 Ricoh Company, Ltd. Sheet-like electrode, method of producing the same, and secondary cell
CN101546822A (zh) * 2008-03-27 2009-09-30 三星Sdi株式会社 电极组件及包括该电极组件的二次电池
CN104701479A (zh) * 2015-03-02 2015-06-10 常州大学 一种含有机/无机复合交联涂层的聚丙烯微孔隔膜及其制备方法
KR20200085949A (ko) * 2019-01-04 2020-07-16 에너에버배터리솔루션 주식회사 Ev나 ess의 중대형 이차전지용 분리막 코팅제와 이를 이용한 ev나 ess의 중대형 이차전지용 코팅 분리막 제조방법 및 ev나 ess의 중대형 이차전지
CN113644378A (zh) * 2021-08-10 2021-11-12 深圳市鼎泰祥新能源科技有限公司 一种功能涂层隔膜及其制备方法和应用
CN114039167A (zh) * 2021-11-09 2022-02-11 惠州市旭然新能源有限公司 一种多孔性锂离子电池隔膜及制备方法和锂离子电池

Also Published As

Publication number Publication date
CN116780102A (zh) 2023-09-19
KR20240118116A (ko) 2024-08-02

Similar Documents

Publication Publication Date Title
EP2695907B1 (en) Method for manufacturing a porous membrane
KR102494180B1 (ko) 저굴절률층, 적층 필름, 저굴절률층의 제조 방법, 적층 필름의 제조 방법, 광학 부재 및 화상 표시 장치
JP2018159080A (ja) 積層多孔質フィルムの製造方法
WO2016201757A1 (zh) 一种高介电常数的纳米复合涂层隔膜及其制备方法
CN113611980B (zh) 填充有纳米颗粒的多孔膜及其制备方法与应用
JP7485596B2 (ja) 多層ナノ多孔質セパレータ
TWI529204B (zh) Composite material and manufacturing method thereof
CN108475792B (zh) 气体扩散电极、微多孔层涂料及其制造方法
KR20160007525A (ko) 자외선 산란제를 함유하는 수지 분체 및 그의 제조 방법, 및 화장료
CN110323396B (zh) 一种锂离子电池复合隔膜及其制备方法
Yu et al. Preparation of a superhydrophilic SiO2 nanoparticles coated chitosan-sodium phytate film by a simple ethanol soaking process
US9884955B2 (en) Hydroxylated-fullerene-containing solution, resin molding and resin composition each using the same, and method for producing each of the resin molding and the resin composition
Ou et al. Highly mechanical nanostructured aramid-composites with gradient structures
WO2023168846A1 (zh) 电池隔膜用涂层及其制备方法、电池隔膜和电池
DE112012005339T5 (de) Coextrudierte ultradünne Filme
Chen et al. Functionalized MXene Films with Substantially Improved Low‐Voltage Actuation
TW201345023A (zh) 微多孔膜及其製造方法(二)
CN107051208B (zh) 三维结构纳米复合物共混掺杂聚偏氟乙烯混合基质超滤膜及其制备
Qian et al. Protonation and dip-coating synergistically enhancing dimensional stability of multifunctional cellulose-based films
Zhang et al. Super-reinforced photothermal stability of cellulose nanofibrils films by armour-type ordered doping Mg-Al layered double hydroxides
CN113206345A (zh) 一种对位芳纶纳米纤维/无机纳米粒子复合涂层增强聚烯烃电池隔膜及制备方法
CN108137815B (zh) 含多孔体凝胶的液体及其制造方法、高空隙层和高空隙率多孔体及层叠膜卷材的制造方法
Mallakpour et al. Ultrasound-assisted surface treatment of ZrO2 with BSA and incorporating in PVC to improve the properties of the obtained nanocomposites: Fabrication and characterization
TWI637990B (zh) 石墨烯/纖維素複合氣凝膠及其製造方法
US20240356158A1 (en) Coating for battery separator, preparation method thereof, battery separator, and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247021786

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022930475

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022930475

Country of ref document: EP

Effective date: 20241007