WO2023168544A1 - 轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统 - Google Patents

轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统 Download PDF

Info

Publication number
WO2023168544A1
WO2023168544A1 PCT/CN2022/079443 CN2022079443W WO2023168544A1 WO 2023168544 A1 WO2023168544 A1 WO 2023168544A1 CN 2022079443 W CN2022079443 W CN 2022079443W WO 2023168544 A1 WO2023168544 A1 WO 2023168544A1
Authority
WO
WIPO (PCT)
Prior art keywords
raceway
ring
spherical
outer ring
axial
Prior art date
Application number
PCT/CN2022/079443
Other languages
English (en)
French (fr)
Inventor
徐学庆
Original Assignee
徐学庆
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐学庆 filed Critical 徐学庆
Priority to PCT/CN2022/079443 priority Critical patent/WO2023168544A1/zh
Priority to CN202280002318.6A priority patent/CN117015668A/zh
Publication of WO2023168544A1 publication Critical patent/WO2023168544A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting

Definitions

  • This application is a divisional application.
  • the application number of the original application is: 202010821664. : 202111007956.0, divisional case submission date: August 30, 2021, invention name is "Bearings, precession bearings and precession bearing gyros, and gyro precession-type active stabilization devices using precession bearing gyros"
  • the present invention relates to the field of bearings.
  • the present invention provides a combined bearing 1, 2, 3, characterized in that the spherical raceways of the inner and outer rings overlap and are spaced apart from the axial raceways of the inner and outer rings, and are configured with different rolling elements.
  • the control movement mode; the inner ring forms an annular radial spherical raceway and the first and second axial raceways; the outer ring forms a split internal raceway contact profile of the first and second outer rings.
  • the radially separated spherical raceway space of the inner and outer rings is an axially distributed cage that maintains the point contact rolling motion of multiple ball rows in angular contact, and there is a spherical raceway space in the middle of the bearing.
  • the raceways between the tracks are configured to form a rolling motion with the contact shape of the rolling elements; the outer ring on one side of the bearing with different outer diameters of the first and second outer rings has an interference fit with the bearing box, and the outer ring on the other side is matched by bolts
  • the elastic element is automatically axially tightened.
  • a pair of rolling elements in the axial direction are radially flexibly pre-tightened by the elastic element on the cage.
  • the adjustable bearing clearance is automatically and flexibly adjusted.
  • the combined bearing is always in a stable and precise position without gaps.
  • Motion used for general machinery, the relatively stable rotating inner ring is set into a ring-shaped rigid body and can also be used for the rotor of a gyroscope.
  • the present invention relates to the technical field of gyroscopic precession effects of precession (precession, oscillation, nutation) bearings 2 and 3 .
  • the present invention provides a precession effect bearing, which is composed of corresponding axial raceways (annular planar raceways, annular spherical raceways) in the inner and outer rings and conical cones with generally axial directions.
  • a pair of rolling elements configured with an angular raceway (conical raceway, thrust angular contact annular spherical raceway) is controlled so that the axial left flat raceway of the inner ring is parallel to the axial flat raceway of the second right outer ring, or The axial right planar raceway of the inner ring is parallel to the axial planar raceway of the first left outer ring. That is, the inner and outer rings have axial annular raceways (flat and spherical raceways) on one side and are arranged separately. The raceway on the other side of the opposite raceway can form a concave or convex thrust angular contact raceway (conical raceway, annular spherical raceway).
  • the opposite axial direction of the rolling body can be controlled.
  • Parallel the rotation axis of the rolling element on one side is controlled by the outer ring and is parallel to the rotation axis of the outer ring
  • the rotation axis of the rolling element on the other side is controlled by the inner ring and is parallel to the rotation axis of the inner ring, one row of non-parallel rolling elements
  • the rotation axes intersect with the rotation axes of the inner and outer rings, that is, the rotation axes of the inner ring and the outer ring intersect.
  • the rolling motion of a pair of rolling elements in the axial direction drives the precession (nutation) of the inner ring or the outer ring. This This mode of motion is called a passive precession motion.
  • the precession (nutation) motion of the bearing will attenuate and tend to be a stable relative motion (pure rolling motion).
  • the bearing will precess again, that is , kinematic effects on precession and stability.
  • Used in general machinery such as vehicles, wind power, reducers, helicopter rotor mechanisms, robotic arm joints, etc.
  • the present invention also relates to the field of a precession bearing 1 with active precession (nutation) motion effect, which is the combination of the axial planar raceway of the inner and outer rings of the bearing and the axial slope.
  • the annular rolling elements (conical rollers and cylindrical rollers are combined into an angle and non-parallel rolling surfaces) cooperate with the active control of precession (nutation) motion, that is, the rotation axes of the inner ring and the outer ring intersect at the center of the ball, that is,
  • a pair of annular slope rolling elements in the axial direction are tangent to the axial plane raceways of the inner and outer rings, and the rolling motion forces the active precession (nutation) motion of the inner ring or outer ring.
  • the rotational motion of one side is opposite to that of the other.
  • One side will rotate in the opposite direction and be accompanied by active precession (nutation) motion, forming a transmission motion of friction between the rolling elements and the raceway and forming a transmission ratio.
  • active precession nutation
  • the central axis of the ring plane raceway which is the first and second raceways on the axial left and right sides of the inner ring, is tilted relative to the axis of the transmission shaft.
  • the inclination of the first and second raceways The ring plane raceways are arranged in parallel.
  • the two rows of third slope circumferential rolling elements have precession motion and the inclined ring plane raceway of the inner ring has reciprocating linear swing motion (nutation motion).
  • the combined effects of the two motions form nutation and
  • the coupled motion of precession will drive nutation and precession of the outer ring.
  • Nutation bearings with the dynamic characteristics of coupled motion of nutation and precession can be used in machinery, such as the formation of transmission ratios of nutation transmission motion.
  • it relates to the field of a precession bearing with an active precession (nutation) motion effect, and is provided with an axial direction of a bearing with an active precession (precession, oscillation, nutation) motion effect.
  • a pair of rolling elements is arranged, and all the distances (spaces) between the third stepped axial raceway of the first and second outer rings and the axial first and second raceways of the inner ring are arranged. Two rows of second rolling elements are described.
  • the active precession (precession, swing, nutation) side of the inner ring of the bearing is provided with an inclined raceway (the central axis of the annular raceway on the axial side of the inner ring is relative to the axis of the transmission shaft Set obliquely) and the other side is provided with an axial contact raceway corresponding to the outer ring's axial raceway (thrust angular contact annular spherical raceway or axial contact spherical raceway or tapered raceway), designed in this way
  • the plan is that the two sides of the inner ring in the axial direction are not parallel, resulting in a pair of rolling elements in the axial direction that are relatively non-parallel.
  • the pair of rolling elements form an included angle in the axial space.
  • the left rolling element and the right rolling element The axial distance of the body is different. Its working principle: When the inner ring rotates driven by the shaft, a pair of rolling elements roll between the raceways in the axial direction of the inner and outer rings, which will drive the outer ring to precess (precession, swing, nutation) effect. On the contrary, driving the precession (precession, swing, nutation) motion of the outer ring will drive the rotational motion of the inner ring, which is used in the mechanical field.
  • a precession bearing gyro device including the precession and stability of the precession bearings 2 and 3, and a precession-type active stabilization platform of the precession bearing gyro device, which is characterized by: On one side of the outer ring, a nose cone or hemisphere is set in the middle of the outer ring's axial direction. The nose cone or hemisphere of the outer ring stands on the load-bearing platform to maintain the balance and stability of the support platform connected to the shell of the motor connected to the inner ring. Used in balancing vehicles, mechanical equipment, building vibration reduction, ultra-precision high-speed workpiece stages for photolithography machines, optics, radar, etc.
  • the seventh aspect specifically relates to the technical field of methods and systems for rotating rigid bodies to walk on a plane slope platform, citing the precession and stability of the aforementioned precession bearings 2 and 3 and the precession bearing gyro device.
  • the present invention provides a system 4. method that utilizes the nose cone or hemisphere of the overrunning outer ring of a precession bearing gyro device to walk on a sloped plane track. It is characterized by the radial direction of the inner ring of the gyro bearing of the device.
  • the middle part of the directional outer spherical raceway is equipped with a plurality of circumferential free-rotating (centrifugal) grooved spherical raceways, and the overrunning clutch transmission torque motion of the spherical raceways with spherical rollers on the inner and outer rings is formed.
  • a rotating rigid body moves in a straight line on a slope platform.
  • bearings are used as support shafts. They can guide the rotation of the shaft and can also be a mechanical part that can withstand the force transmitted from the shaft. It is the relative rotational motion of the inner ring and the outer ring, a single sliding motion or rolling motion;
  • the technical problem actually solved by this application is a combined bearing with degrees of freedom of point, line, and surface contact that combines rolling motion and sliding motion.
  • the inner ring of the combined bearing is formed into an annular shape with a penetrating center.
  • the annular inner ring forms a spherical outer spherical raceway radially and a first and second annular axial raceways axially.
  • the outer ring of the combined bearing is formed into a split first outer ring and a second outer ring.
  • Each part of the outer ring of the left and right first outer rings and second outer rings is composed of a first step, a second step and a third step. forming.
  • the first step of each part of the outer ring is formed with a first spherical inner cavity spherical raceway in the radial direction
  • the radial inner end of the second step is formed with a second inner spherical raceway
  • the third step is formed with the annular axial direction of the inner ring.
  • the raceway matches a third annular axial raceway on which the second rolling element is placed.
  • the combined bearing has a plurality of first ball rows held by an axially distributed first cage with a generally radial direction, and can create a free multi-angle space between the outer spherical raceway of the inner ring and the first spherical inner cavity spherical raceway of the outer ring.
  • the track point contact rolling motion; the combined bearing also maintains the axial direction of the inner and outer rings through the second cage on both sides of the inner ring axially to maintain the line or point contact between the second rolling element and the third axial raceway of the outer ring.
  • the rolling motion between the raceways in the bearing controls the degree of freedom of the plurality of first ball rows in the bearing; the combined bearing also moves through the sliding surface contact between the second inner spherical raceway of the outer ring and the outer spherical raceway of the inner ring.
  • the combined bearing is provided with a plurality of staggered connecting holes through the end surfaces of the axially outer peripheries of the left and right first and second outer rings.
  • the plurality of connecting holes of the first outer ring penetrate into the second outer ring and are threaded.
  • a plurality of connecting holes of the ring pass through and are threaded on the first outer ring (each part of the first and second outer rings is staggered and evenly distributed with a plurality of through holes and a plurality of threaded counterbores).
  • Multiple connecting bolts on the left and right connect the first and second outer rings on the left and right in two directions respectively.
  • elastic elements are put on the nuts of the bolts. Elastic elements are added to the bolt nuts to automatically tighten the first and second outer rings on the left and right.
  • the outer ring on the side with the larger outer diameter has an interference fit with the bearing box, and the outer ring on the other side with the smaller outer diameter is automatically and flexibly preloaded.
  • the bearing is flexibly preloaded without clearance, and the adjustable bearing clearance is automatically and flexibly adjusted. This is a good solution. For this problem, by changing the relative axial position of the raceway, a certain clearance value can be obtained.
  • the combined bearing is basically free of vibration and beating, and the bearing operates accurately and has high stability. Combined with the point, line, and surface motion modes, the first balls in each row on the left and right of the ball center in the axial direction of the bearing and the second rolling elements on the left and right first roll to carry approximately half of the force.
  • the load exceeds that of the bearing ball.
  • the moment (load) experienced by each row of first balls on the left and right of the center and the second rolling elements on the left and right of the center causes the first ball row and the second rolling elements to deform slightly.
  • the second inner spherical raceway of the outer ring is in contact with the inner ring.
  • the outer spherical raceway of the ring starts sliding motion and carries approximately half of the moment (load).
  • the first ball in a row in the center of the ball is provided with small-diameter balls (the diameter of each ball in the first row of balls in the center of the ball is smaller than the diameter of each ball in each row of first balls to the left and right of the center of the ball in the axial direction).
  • Rolling motion is added, and the second inner spherical raceway of the outer ring and the outer spherical raceway of the inner ring begin sliding motion.
  • the bearing will undergo fretting wear, and the elastic element of the bearing will tighten the fit of the first and second outer rings in the relative axial direction.
  • the bearing will not fail after being used for a long time.
  • the freedom of angular movement of the bearing is limited by the width of the axial sides of the first spherical inner cavity spherical raceway of the outer ring and the width of the outermost left and right rows of the first balls.
  • the cages of the first balls in each row of the outermost left and right rows will contact the axial sides of the first spherical inner cavity spherical raceway of the outer ring.
  • the multiple rows of first balls are controlled by cages spaced apart in the axial direction.
  • Each row of balls on the left and right sides of the axial direction is independently held by a different number of pockets in a single cage, forming the outer spherical raceway of the inner ring.
  • Each row of cages with different radial diameters distributed in the axial direction holds the balls relatively assembled in the left and right hemisphere spaces.
  • the elastic elements of the connecting bolts are flexibly connected to the point contact rotation of the first and second outer rings and the inner ring on the left and right. sports. Under the action of external force, multiple rows of first balls distributed axially perform adaptive swing, deflection, tilt and other movements in the raceways of the inner and outer rings.
  • the motion trajectories of the plurality of first ball rows evenly distributed in the axial direction have omnidirectional movement, and the cage can flexibly combine the left and right opposite first balls of each row.
  • the ball diameter of one pair of the first balls is smaller than the ball diameter of the other pair. Therefore, the stable rotation of the combined bearing can also be used on the rotating shaft of the gyroscope, or the inner ring of the combined bearing can be used as the rotor of the gyroscope.
  • a spinning gyro has an important characteristic, that is, it will produce a rotation effect, that is, precession, when it is acted upon by an external torque, and the precession direction is always consistent with the spin direction.
  • precession bearings that introduce precession (precession, pendulum, nutation) motion.
  • the precession (nutation) bearing of this application is based on the combination bearing.
  • the raceway in the axial direction changes the contact shape and cooperates with the second rolling element to form a precession (nutation) bearing without external torque.
  • Active precession sports The ring plane raceway provided by the third stepped axial raceway of the first and second outer rings to the ring plane provided by the axial first and second raceways of the inner ring
  • the two rows of second rolling elements are arranged at a distance (space) from the raceway, and the axial second rolling elements are arranged as tapered rollers and cylindrical rollers in the slope held by the annular window-type third cage.
  • the left and right axially opposite third slope circumferential rolling elements are divided into two cylindrical rollers at both ends on the annular diameter line and are divided into multiple conical rollers on both sides to form slopes distributed on the circumference.
  • the two cylindrical rollers on the above straight line are divided into half circles of tapered rollers on both sides. The slope direction is half.
  • the small diameter end of each tapered roller faces the center of the cage and the rotation axis of the tapered roller points to the center of the cage.
  • the large-diameter end of each tapered roller in the other half faces the center of the cage and the rotation axis of the tapered roller points to the center of the cage.
  • the opposite rolling surfaces of the rolling elements of the combination of the tapered roller and the cylindrical roller are formed as The rolling contact surface of two planes of slope.
  • the plane rolling surface formed by the third ramp circumferential rolling element opposite to the left and right is tangent to the two axial plane raceway surfaces of the inner ring, and the slope rolling surface formed by the third ramp circumferential rolling element on the left side is It is tangent to the third axial plane raceway surface of the first outer ring, and the slope raceway surface formed by the third slope circumferential rolling element on the right side is tangent to the third axial plane raceway of the second outer ring.
  • the raceway surfaces are tangent, and the upper-slope large-diameter tapered rollers in the left column of the third slope circumferential rolling element facing each other correspond to the small-diameter tapered rollers in the right column with a downward slope, that is, the rotation axis of the inner ring
  • the third slope circumferential rolling element rolls between the axial raceways of the inner and outer rings. Its working principle: When the inner ring is driven to rotate, the high-speed rotational motion of the two opposite rows of third slope circumferential rolling elements will drive the outer ring to actively precess (precession, swing, nutation) in the opposite direction.
  • the stable and continuous active precession (nutation) motion effect and transmission motion effect of the center of the ball that is, the inner ring rotates on a fixed axis, and the outer ring is dynamically balanced in the opposite direction.
  • the angle size (slope size) of the rolling elements around the third slope when the angle is designed to be small, the outer ring precesses quickly (angular speed is fast); when the angle is designed to be large, the outer ring precesses slowly (angular speed is slow). ).
  • driving the outer ring to precess will drive the inner ring to rotate.
  • the third ramp ring Regarding the angle size (slope size) of the circumferential rolling element, when the angle is designed to be small, the inner ring precesses quickly (angular speed is fast); when the angle is designed to be large, the inner ring precesses slowly (angular speed is slow). On the contrary, driving the inner ring to precess will drive the outer ring to rotate.
  • the active precession (nutation) of the bearing with the third slope circumferential rolling element will continue to operate stably without stopping, and has a transmission ratio of transmission motion, which is the transmission of the friction between the rolling element and the raceway.
  • Bearings that can be equipped with active precession (precession, swing, nutation) motion effects are equipped with a pair of ball rows, and the third axial raceways of the third steps of the first and second outer rings are connected to each other.
  • the two rows of second rolling elements are arranged at a distance (space) between the first and second raceways in the axial direction of the inner ring, and the two rows of second rolling elements are arranged into a pair of ball rows.
  • the active precession (precession, oscillation, nutation) bearing has an inclined annular plane raceway on one side of the inner ring (the central axis of the annular plane raceway on the axial side of the inner ring is relative to the transmission
  • the axis of the shaft is set obliquely) and the other side is provided with an axial contact ring planar raceway corresponding to the thrust angular contact annular spherical raceway or axial contact spherical raceway or tapered ring planar raceway in the axial direction of the outer ring, so that
  • the design scheme is due to the fact that the two sides of the inner ring in the axial direction are not parallel, forming a pair of ball rows in the axial direction that are relatively non-parallel.
  • the pair of ball rows form an included angle in the axial space.
  • the balls of the pair of ball rows are The diameters are different (the ball diameters of the left ball row and the right ball row are different).
  • Its working principle When the inner ring rotates driven by the shaft, a pair of balls roll between the axial raceways of the inner and outer rings, which will drive the outer ring to precess (precession, swing, nutation) The superimposed effect of motion and opposite counter-rotation, which is a continuous and stable pendulum motion around the center of the ball. On the contrary, driving the precession (precession, swing, nutation) motion of the outer ring will drive the rotational motion of the inner ring.
  • the bearing with active precession (precession, oscillation, nutation) motion effect can also be provided with a pair of rolling elements, and the third axial raceway of the third step of the first and second outer rings reaches
  • the two rows of second rolling elements are arranged at a distance (space) between the first and second raceways in the axial direction of the inner ring.
  • the two rows of second rolling elements are arranged as a pair of tapered rollers or a pair of asymmetric spherical surfaces. Roller.
  • the active precession (precession, swing, nutation) bearing is provided with an inclined raceway on one side of the inner ring (the central axis of the raceway on the axial side of the inner ring is inclined relative to the axis of the transmission shaft (provided on the ground) and the other side is provided with an axial contact raceway corresponding to the raceway in the axial direction of the outer ring.
  • the raceway in the axial direction of the active precession bearing is constructed as a tapered roller or an asymmetric spherical roller. Raceway surface.
  • precession screwation
  • general machinery such as vehicles, underground drilling, plunger pumps, reducers, internal combustion engines, wind power, helicopter rotor mechanisms, robotic arm joints, etc. It is the inner ring fixed axis rotation drive
  • the active precession of the outer ring, or the active pendulum (precession) of the outer ring drives the rotation of the inner ring. This is a use of the active precession of the precession bearing.
  • the following introduces the passive (external force applied) precession effect of the precession bearing. Way.
  • This application uses a passive (external force applied) precession effect of another precession (nutation) bearing based on the combined bearing. It integrates the support function of ordinary bearings and the precession function. Precession (nutation) ) bearings may be used on any bearing and bearing installation, the invention and the problem on which it is based are explained in detail below in relation to precession (nutation) bearings.
  • a gyro has stability and precession, and will precess and nutate under the action of external torque.
  • the magnitude of the gyro's precession angular velocity is related to three factors:
  • the stability of the gyroscope means that the gyroscope can resist interference torque and strive to maintain the stability of its rotation axis relative to the direction of inertial space.
  • the stability of the gyro is closely related to its precession. The higher the stability, the smaller the precession angular velocity of the gyro under the action of the interference moment; conversely, the greater the precession angular velocity.
  • the stability of the gyroscope is related to the following factors:
  • the axial raceways of the passive precession (nutation) bearing can be configured to correspond to different rolling elements, and the axial side raceways of the inner and outer rings are configured as thrust angular contact spherical raceways or annular spherical raceways.
  • the other side of the axial raceway is set as a parallel raceway of the inner and outer rings (axial contact spherical raceway, annular spherical raceway, annular plane raceway) and separated inside , in the outer ring; or in the axial direction of the inner and outer rings, the parallel ring plane of the raceway on the left side of the spherical center of the raceway corresponds to the parallel ring plane of the raceway on the right side of the spherical center.
  • the inclination of the track is that the left and right inclinations are parallel to the raceway on the left side and parallel to the raceway on the right side; the axial ball rows can be configured in any combination between the raceways in the axial direction. Point contact rolling motion.
  • One side of the axial end face of the inner ring of the precession (nutation) bearing is set as a ring plane raceway, and the opposite side is set as a cone face raceway.
  • the axial end face of the inner ring rolls relative to the first raceway of the ring plane.
  • the axial conical raceway is on the third raceway of the third step of the first outer ring, and the conical raceway is on the axial second raceway of the inner ring relative to the third raceway on the third step of the second outer ring.
  • the axial annular plane raceway of the inner ring is parallel to the two raceways of the axial annular plane raceway of the second outer ring (the left-right relationship here is relative, and the axial annular raceway of the inner ring is to the left
  • the ring plane raceway is parallel to the right second outer ring ring plane raceway, or the inner ring axial right ring plane raceway is parallel to the left first outer ring ring plane raceway); both the inner and outer rings are axially oriented.
  • the fourth tapered roller is axially held by the fourth annular window cage in the axial direction.
  • the large diameter end of each annular tapered roller faces inward and is held by the fourth annular window cage.
  • the elastic element movably connected to the inner circumference of the window-type pocket contacts the large-diameter end surface of the tapered roller, forming an annular rolling surface of the tapered roller that contacts the axial raceway surfaces of the inner and outer rings.
  • one side of the axial end face of the inner ring of the precession bearing is set as an axial annular spherical raceway (the cross section of the annular spherical raceway is perpendicular to the axis of rotation), and the other opposite side is set as an inclined annular spherical raceway (thrust angular contact Toroidal spherical raceway).
  • the axial first raceway of the inner ring, the axial annular spherical raceway, is relative to the third raceway of the third step of the first outer ring, the tapered annular spherical raceway (thrust angular contact annular spherical raceway ), the inclined annular spherical raceway of the second axial raceway of the inner ring rotates relative to the axial annular spherical raceway of the third stepped third raceway of the second outer ring (the cross-section of the annular spherical raceway rotates relative to axis vertical), the left-right relationship here is relative, that is, the left axial annular spherical raceway of the inner ring is parallel to the right second outer ring axial annular spherical raceway, or the right axial annular spherical raceway of the inner ring is parallel to the left
  • the axial direction of the first outer ring is parallel to the annular spherical raceway.
  • the outer ring When the inner ring of a precessing (nutating) bearing rotates, the outer ring can be fixed relative to the inner ring, just like the bearing device used in machinery. If an external force is applied to the outer ring during the motion of a precessing (nutating) bearing, two rows of relatively parallel tapered rollers or asymmetric spherical rollers in the axial direction of the precessing (nutating) bearing will be relatively non-parallel, and the tapered rollers Or asymmetric spherical rollers, which will perform inertial space orbital motion on the axial raceway and the axial inclined raceway, and the outer ring will undergo precession (precession, oscillation, nutation) motion and rotate in the opposite direction.
  • the precession effect of the outer ring will tend to stop (precession angular velocity attenuation stops), and then return to the relative rotation of the inner and outer rings of the combined bearing, which is the same as the stability and precession of the gyro, that is,
  • the essence of gyro precession is the result of unequal torques on the spin axis of the gyro.
  • the gravity moment of the center of mass provides a continuous torque effect.
  • the gyro precesses, its spin angular velocity will become smaller.
  • the two rows of tapered rollers or asymmetric spherical rollers in the axial direction can be assembled relatively non-parallel.
  • the rolling surfaces of the two rows of rolling elements are aligned with the axial direction of the inner and outer rings.
  • the raceway surfaces are tangent.
  • the rotation axis of one row of rolling elements is parallel to the rotation axis of the inner ring and intersects the rotation axis of the outer ring.
  • the rotation axis of the other row of rolling elements is parallel to the rotation axis of the outer ring and intersects the rotation axis of the inner ring.
  • the rotation axis of the assembled inner ring is not parallel to the rotation axis of the outer ring but intersects.
  • precession (nutation) bearing is started by the motor, two rows of opposite tapered rollers or asymmetric spherical rollers will roll in the axial direction.
  • the track and the inclined raceway in the axial direction perform inertial space orbital motion.
  • a plurality of first balls evenly distributed in the axial direction are arranged in the outer spherical raceway of the inner ring and the first spherical inner cavity spherical raceway of the outer ring.
  • Angular space trajectory point contact motion has a sliding motion in which the outer spherical raceway of the inner ring is in surface contact with the second inner spherical raceway of the outer ring.
  • the outer ring precesses (precesses, nutates)
  • the inner ring precesses (precesses, nutates)
  • the rotating inner ring or outer ring continues to rotate at a high speed, and the precession (nutation) motion effect of the other party will attenuate and stop. At this time, it returns to the relative rotational motion of the inner and outer rings of the combined bearing, and a precession motion effect will occur when external force is applied.
  • the inner ring rotates on a fixed axis and drives the outer ring to precess (nutate) under the action of external torque.
  • the outer ring rotates on a fixed axis and drives the inner ring to precess (nutate) under the action of external torque.
  • This application uses another coupling motion effect of nutation and precession based on the active precession (nutation) bearing.
  • the invention and the problem on which it is based are explained in detail below in relation to Zhangjin bearings.
  • Nutation is an astronomical term. When the rotation angular speed of the gyroscope is not large enough, in addition to rotation and precession, the symmetry axis of the gyroscope will also swing up and down in the vertical plane, which is called nutation.
  • the central axis of the ring plane raceway provided on the first and second raceways on the axial left and right sides of the inner ring is tilted relative to the axis of the transmission shaft, and the first and second raceways are
  • the inclined ring plane raceway is arranged in parallel, and the angle between the central axis of the inclined ring plane raceway and the axis of the transmission shaft is between 1° and 15°.
  • the distance (space) from the axial annular plane raceway of the third raceway of the first and second outer rings of the outer ring to the inclined annular plane raceway of the first and second raceways of the inner ring is set in two rows.
  • the three-slope circumferential rolling element allows it to roll between the axial raceways of the inner and outer rings.
  • the slope (angle) of the two rows of third ramp circumferential rolling elements is 1° to 15°, and the slopes of the two opposite rows of third ramp circumferential rolling elements are the same.
  • the distance from the axial planar raceway of the first outer ring to the inclined planar raceway of the inner ring is the same as the distance from the axial planar raceway of the second outer ring to the second raceway of the inner ring.
  • the distance between the raceways of the inclined ring planes is equal and/or unequal; that is,
  • the axial distance of the third ramp circumferential rolling element in the left column is the same and/or different from the axial distance of the third ramp circumferential rolling element in the right column;
  • the left row of third ramp circumferential rolling elements are tangent to the annular planar raceway surface of the first outer ring and the inclined annular planar raceway surface of the first raceway of the inner ring
  • the right row of third ramp circumferential rolling elements are The element is tangent to the annular planar raceway surface of the second outer ring and the inclined annular planar raceway surface of the second raceway of the inner ring.
  • the opposite third slope circumferential rolling elements form the left column of large-diameter tapered rollers with an upward slope corresponding to the small-diameter tapered rollers of the right column with a downward slope.
  • the rotation axis of the inner ring and the rotation axis of the outer ring are in the bearing.
  • the two rows of third ramp circumferential rolling elements can be guided to roll between the inclined ring planar raceway surface and the axial ring planar raceway surface.
  • the rolling motion of the two rows of third slope circumferential rolling elements in the bearing and the inclined ring plane raceway of the inner ring will produce two motion effects: precession and nutation of the outer ring.
  • the nutation and precession motions move in the opposite direction, that is, the two rows of third ramp circumferential rolling elements rotate at high speed between the raceways in the axial direction of the inner and outer rings, which can form a transmission motion effect. It is applied in the corresponding mechanical field according to the working principle.
  • the precession principle of the gyroscope is the conservation of angular momentum of the gyroscope. According to the rotational inertia of the gyroscope, it has fixed axis and precession properties. There are many gyroscope stabilization platforms that utilize the high-speed rotational inertia of the gyroscope. There are no relevant documents and patents discussing the stable platform of the precession bearing gyro that introduces the precession property and stability of the precession bearing.
  • a gyro precession-type active stabilizing platform device is used to stabilize the platform device by setting a precession bearing gyro with the axial outer middle of one side of the outer ring forming an axial nose cone or hemisphere. .
  • the nose cone or hemisphere on the outer ring of the precession bearing gyro device stands on the bearing platform and moves.
  • the motor drives the fixed axis of the inner ring to rotate to keep the support platform connected to the motor housing vertically stable.
  • the inner ring of the precession bearing gyro device rotates at a high speed, and the outer ring precesses and stands on the bearing platform to keep the support platform vertically stable; if the bearing platform moves in the X and Y directions Movement or rocking motion, the outer ring of the precession bearing gyro device with a nose cone or hemisphere stands on the bearing platform and precesses; if an external torque acts on the outer ring of the precession bearing gyro device, the outer ring with a nose cone or hemisphere The outer ring stands on the bearing platform and precesses.
  • the rigid body When the rigid body rotates at a high speed and matches the high-slope track, When the rigid body's low speed matches the low-slope track, it forms a straight line and low speed; for example, on an inclined slope plane, with the slope facing the person, the rotating rigid body rotates counterclockwise, and the walking direction goes straight to the right, and vice versa. Rotate clockwise, and the walking direction will go straight to the left; if the slope plane is downward relative to the person, the rotating rigid body will rotate counterclockwise, and the walking direction will go straight to the left. Otherwise, the rotating rigid body will rotate clockwise, and the walking direction will go straight to the right.
  • the overrunning clutch Introducing the working principle of the overrunning clutch.
  • the steering direction is the same, and the rotational speed is equal, torque can be transmitted. Otherwise, it is relative sliding.
  • This sliding state without transmitting torque is called overrunning.
  • the outer ring with the nose cone or hemisphere is in precession when the inner ring starts and stops, and the precession bearing gyro device keeps the support platform vertically stable, and the Adding an overrunning clutch transmission torque creates a system and method for a rotating rigid body to walk on a slope track platform, which can be used in road transportation systems.
  • the precession bearing gyro overrunning clutch device will have the same direction of rotation on the same slope surface with the same straight line walking direction. Multiple precession bearing gyro overrunning clutch devices moving at the same speed and in the same direction will not collide when walking on a slope track.
  • the precession bearing gyro overrunning clutch device is set up like this.
  • the device is a radial outer spherical raceway with an inner ring at the center of the bearing. It has a plurality of circumferential centrifugal grooved spherical raceways.
  • the circumferential centrifugal The deep end face of each grooved spherical raceway is equipped with a small connecting magnet.
  • the centrifugal grooved spherical raceway is equipped with a spherical roller and a first step first spherical inner cavity spherical surface that combines the first and second outer rings. The raceways come into contact when transmitting torque.
  • the inner ring rod end of the precession bearing gyro overrunning clutch device is connected to the motor, and the motor casing is connected to the battery-integrated support platform.
  • the motor of the precession bearing gyro overrunning clutch device on the bearing platform is turned on to drive the inner ring to rotate.
  • the spherical roller is adsorbed on the magnet.
  • the nose cone or the side of the hemisphere on the outer ring is tilted and stands on the horizontal load-bearing platform and begins to precess.
  • the spherical roller on the magnet contacts the first spherical inner cavity spherical raceway of the outer ring under the action of centrifugal force, that is, the transfer rotation forms a gyro rigid body that rotates on the load-bearing platform.
  • the load-bearing platform rises and falls.
  • the mechanism is lifted, the bearing platform is in an inclined state, and the precession bearing gyro overrunning clutch device walks straight on the inclined bearing platform. If the lifting mechanism on the load-bearing platform moves, the load-bearing platform is in a horizontal state, and the precession bearing gyro overrunning clutch device stops moving forward and rotates on the spot.
  • the outer ring of the precession bearing gyro overrunning clutch device standing on the horizontal bearing platform is still rotating, and the outer ring rotates away from the tapered roller. Override does not transmit torque.
  • the spherical roller moves to the depth of the grooved spherical raceway and the end surface is attracted by the magnet.
  • the nose cone or hemisphere on the outer ring interacts with the precession bearing gyro overrunning clutch device due to the friction with the platform. Due to its own gravitational moment, the rotation speed of the outer ring attenuates and starts to precess, and then stops.
  • the nose cone or the side of the hemisphere on the outer ring is tilted on the load-bearing platform to keep the battery integrated support platform of the motor connected to the inner ring horizontal.
  • the purpose of the present invention is to propose a combined bearing for use in general machinery, and a combination bearing and a precession (nutation) bearing with external torque principles and stability of the precession characteristics for use in general machinery, and a bearing with an inner ring.
  • Active precession (nutation) bearings with an inclined raceway on one side and a corresponding outer ring configuration of the raceway and rolling elements on the other side are used for general machinery, and active precession bearings with circumferential slope rolling elements.
  • Dynamic (nutation) bearings are used for general machinery, and nutation bearings with coupling motion of active precession and active nutation of circumferential slope rolling elements and the axial raceway tilt of the inner ring are used for general machinery, and
  • An active stabilizing device has a centrifugal grooved spherical raceway in the inner ring, and is equipped with a spherical roller that contacts the outer ring and transfers a rotation to form a rotating rigid body, a system for linear walking on a slope plane, a method and a transportation system.
  • the exemplary devices disclosed in the present invention include improvements to conventional bearings, and the improvements are novel and non-obvious (or inventive).
  • the examples provided in this article are mainly based on the raceway arrangement in the axial direction of the bearing, which is configured to correspond to the raceway contact surfaces of different rolling elements, and form an integral point contact of the first ball row in the radial direction of the bearing.
  • the second rolling element in the axial direction is in line contact and the inner and outer rings are in surface contact.
  • the elastic element has preload in the radial direction and the axial direction.
  • the second rolling element in the axial direction is in contact with the roller in the axial direction.
  • the terms axial and radial are frequently used in this document.
  • the axial direction is defined as the axial direction of the bearing parallel to its axis of rotation, the axial direction of the inner ring parallel to its axis of rotation, the axial direction of the outer ring parallel to its axis of rotation and parallel
  • the radial direction is the direction perpendicular to the corresponding axial direction.
  • precession bearings can also be called nutating bearings.
  • the first outer ring and the second outer ring can be converted to each other (the left and right conversion relationship is convenient for description).
  • the technical solution adopted by the present invention to achieve its purpose is: a combined bearing.
  • the combined bearing can also form a precession (nutation) bearing under different settings. It can be said that it has both a pure rolling bearing and a pure rolling bearing in one structural unit. Function itself as well as high precession (nutation) motion effects.
  • the combined bearing includes an outer ring and an inner ring, multiple rows of rolling elements, cages, connecting bolts, and elastic elements, wherein the inner spherical raceway formed by the concave portion of the outer ring in the radial direction is relative to the convex portion of the inner ring.
  • the outer spherical raceway formed is a spherical raceway with the center of the ball coinciding.
  • Inner ring the inner ring is arranged in the shape of an annular ring with a penetrating center, and an outer spherical raceway is formed on the annular radially convex spherical surface.
  • the left and right sides of the annular inner ring in the axial direction The distance to the bearing ball center is equal, and/or the distance between the two sides relative to the bearing ball center is offset.
  • the inner ring has a first raceway facing generally in one axial direction and a second raceway facing in an opposite axial direction in its annular shape; and/or the inner ring has a first raceway facing generally in one axial direction; and/or the inner ring has in its annular shape and/or the inner ring has a first raceway facing along one axial direction and a second raceway facing along the opposite axial direction; and/or the inner ring has a first raceway facing along one axial direction and/or the inner ring has an annular shape generally along one axial direction.
  • raceways of the inner ring in the annular axial direction are parallel ring plane raceways, concave, convex, concave and convex spherical raceways or conical raceways.
  • one side is formed as a thrust angular contact conical raceway, and the other side is formed as an axial contact annular plane.
  • the raceway, and/or the raceway on the opposite sides of the annular axial direction, one side is formed as a thrust angular contact annular spherical raceway, and the other side is formed as an axial contact annular planar raceway, and/or the annular ring
  • the first and second raceways in the axial direction are both formed into thrust angular contact conical raceways and/or thrust angular contact annular spherical raceways.
  • a plurality of blind holes for retaining solid lubricant are formed in the radial outer spherical raceway surface of the inner ring and the first and second axial raceway surfaces.
  • the creative idea of the present invention is to arrange the outer ring in this way, that is,
  • the outer ring also includes a split first outer ring and a second outer ring, the first outer ring and the second outer ring are arranged in a cover ring shape, wherein the combined first and second outer rings have
  • the outer diameter of the outer ring on one side is slightly smaller than the outer diameter of the outer ring on the other side, and/or the outer diameters of the outer rings on both sides of the first and second outer rings of the combination are the same;
  • the outer ring on the side with the larger outer diameter of the ring has an interference fit with the bearing box, and/or the outer rings on both sides of the combination have the same outer diameter and have an interference fit with the bearing box.
  • the combined cross section of the first outer ring and the second outer ring of the cover annular shape generally forms a concave shape, and each part of the outer ring of the cover annular shape forms a three-level ladder, and the first step of the three-level ladder is the third step.
  • An outer ring and a second outer ring are combined in the middle of the bearing in the axial direction.
  • the second and third steps of the three-step steps extend toward the inner direction of the rotation axis of the bearing.
  • the inside of each step is formed There are two annular end surfaces in the axial direction and the radial direction.
  • the end cover surface in the axial direction of the first step of the combination of the first outer ring and the second outer ring is the adjacent part of the two outer rings and the inner part in the radial direction. It is a spherical first inner cavity spherical raceway, and the end face of the second step in the axial direction is connected to the end face of the first step in the radial direction and forms a chamber of the first step combination (the first spherical inner cavity spherical raceway).
  • the radial direction end surface of the second step forms a spherical second inner spherical raceway and is equal to the diameter of the outer spherical raceway of the inner ring, and the axial direction inner end surface of the third step is connected
  • the end surface of the second step in the radial direction forms a third raceway in the axial direction corresponding to the raceway in the axial direction of the inner ring, and the radial direction of the third step forms an annular end surface and the shaft can pass through it;
  • the outer end surface of the third step in the axial direction is connected to the annular end surface of the third step in the radial direction and forms the outer ring plane.
  • the outer end surface of the first step in the radial direction is the first and third steps.
  • the outer diameter of the second outer ring is connected to the outer end surface of the ring in the axial direction of the third step.
  • the end surfaces of the adjacent portions of the first outer ring and the second outer ring are on the radial extension line of the bearing spherical center and/or are offset relative to the radial extension line of the bearing spherical center, and the first outer ring and the second outer ring are The distances between the third raceway of the second outer ring and the center of the bearing ball are equal and/or unequal.
  • the first spherical inner cavity spherical raceway of the first step of the combined first and second outer ring three-level steps has a larger diameter than the outer spherical raceway of the inner ring, and the first spherical inner cavity spherical raceway and
  • the space between the outer spherical raceways is equipped with multiple first ball rows distributed axially; they are guided by axially distributed cages and allowed to move freely at multiple angles in point contact between the two raceways.
  • Each ball diameter of each pair of ball rows on the left and right of the first ball row distributed axially in the space is the same, wherein at least one pair of ball rows is distributed on the left and right of the radial extension line of the bearing ball center.
  • each row of cages arranged around the spherical outline face the center of the ball, wherein the cage has a plurality of pockets evenly distributed around the circumference to accommodate a plurality of balls to form a bowl shape and the bottom of the bowl is open.
  • the diameter of the large-diameter bowl-shaped pocket opening on the face is slightly larger than the diameter of the ball and faces the outer ring.
  • the second inner spherical raceway of the second step of the three-level steps of the first and second outer rings extends to the outer spherical raceway of the inner ring, and the second opposite second step of the combined first and second outer rings
  • the diameter of the inner spherical raceway passing through the center of the ball is the same as the diameter of the outer spherical raceway surface of the inner ring.
  • the second inner spherical raceway and the outer spherical raceway surface form a sliding motion.
  • the third step of the three steps of the combined first and second outer rings extends to form two left and right raceways (first and second raceways) that partially cover the inner ring in the axial direction.
  • the axial inner end surface of the third step forms a third axial raceway, which is configured differently to correspond to the two axial raceways of the inner ring.
  • the second rolling element is held by an axial cage and is between the axial raceways.
  • the axially outer end surface of the third step is formed into an annular plane.
  • One side of the third axial raceway is provided with a thrust angular contact conical raceway, the other side is provided with an axial contact annular planar raceway, and/or one side is provided with a thrust angular contact annular spherical raceway.
  • the other side is provided with an axial contact annular spherical raceway
  • both sides of the third axial raceway of the first outer ring and the second outer ring are provided with thrust angular contact conical raceways and/or Or both sides are provided with thrust angular contact annular spherical raceways
  • both sides of the axial third raceway of the first outer ring and the second outer ring are parallel ring plane raceways, recessed, Protruding, concave and convex annular spherical raceways or conical raceways.
  • the distance from the third axial raceway of the first outer ring to the first axial raceway of the inner ring is the same as the distance from the third axial raceway of the second outer ring to the second axial raceway of the inner ring.
  • the raceway contact surfaces at equal and/or unequal distances are configured to configure the second rolling elements and the raceways in the axial direction are configured to be in the shape of the second rolling elements.
  • the first inner cavity spherical raceway and the second inner spherical raceway are the upper and lower spherical raceways with the same spherical center step, and together with the third axial raceway, they cover the annular outer ring on each side.
  • the cross-section is generally L-shaped.
  • a plurality of staggered connecting holes are arranged relative to the outer periphery of the axially outer annular plane of the combined first outer ring and the second outer ring, and the connecting holes pass from the annular plane through the axial adjoining side of the first step.
  • a threaded counterbore is formed from one surface to the opposite surface, and an elastic element is placed on the nut head of the connecting bolt.
  • a certain axial preload force is applied through the connection of the connecting bolt to move the outer ring, a plurality of first ball rows, and the shaft.
  • a pair of centrally facing second rolling elements and the inner ring are connected as one body.
  • the outer ring with the larger outer diameter has an interference fit with the bearing box, and multiple connecting bolts on the left and right connect the first and second outer rings on the left and right in two directions respectively.
  • the nuts of the bolts are Put on the elastic element, apply a pre-tightening force, and add elastic elements to the bolts and nuts to automatically tighten the connections between the left and right first and second outer rings, the multi-row first ball, the second rolling element, and the inner ring.
  • the first and second outer rings, the multiple rows of first balls, the second rolling elements, and the inner ring are pre-tightened relative to each other in the opposite direction in the axial direction, and the outer diameter
  • the outer ring on the other side is automatically and flexibly preloaded, especially through a suitable spring mechanism.
  • the bearing is always in a gap-free, flexibly preloaded state, and the bearing operates accurately and stably.
  • the distance from the third axial raceway of the first outer ring to the axial first raceway of the inner ring is equal to the axial distance of the second outer ring.
  • the distances from the third raceway in the axial direction to the second raceway in the axial direction of the inner ring are equal and/or unequal, configured to configure the second rolling element and by the axial direction in the
  • the cage is fixedly arranged on the contact surface of the raceway structure of the second rolling element, forming a circumferential moment of the elastic element on the annular cage to make the second rolling element tangent to the raceway contact surface and roll.
  • the axially inner end surface of the third step of the outer ring forms a third axial raceway and second rolling elements with different configurations corresponding to the axially both sides of the inner ring raceway.
  • the third axial raceway of the outer ring and the axial raceway of the inner ring can be provided with an inclined annular spherical raceway corresponding to the flat raceway, a flat raceway corresponding to the conical raceway, or a conical raceway corresponding to the conical raceway.
  • the raceway can also set the thrust angular contact annular spherical raceway or the axial conical raceway in the axial direction of the outer ring to correspond to the inclined plane raceway of the inner ring (the first of the left and right sides of the axial direction of the inner ring) , the central axis of the ring plane raceway set by the second raceway is inclined relative to the axis of the transmission shaft).
  • the raceways in their corresponding axial directions can be configured with one side convex and the other side flat, or one side recessed and the other side flat, or one side recessed and the other convex, or both sides recessed, or both sides convex.
  • the pair of ball rows in the axial direction are formed by an axial cage.
  • the first ball row is configured to be tangent to the raceway point contact in the axial direction of the bearing, and is guided by the cage in the axial direction. rolling between the raceways.
  • the uniformly distributed pockets of the axial cage guide the rolling motion of the balls between the axial raceways of the inner and outer rings.
  • the cross-section of the annular cage forms a T-shape on the inner and outer sides (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side), one side of the T-shaped upper part extends toward the axial direction of the outer ring, the inner diameter end edge of the shaft hole is spaced at a certain distance, and the other side of the T-shaped upper part extends toward the inner ring There is a certain distance between the axial end faces of the T-shaped upper part.
  • the annular outer diameters on both sides of the T-shaped upper part are covered with rubber sealing rings to contact the axial parts of the inner and outer rings.
  • the T-shaped lower part forms a circumferential pocket.
  • a pair of axial ball rows are tangent to the axial raceway, forming a different angular contact point for each ball.
  • the bearing movement mode is controlled by the angle of point contact between the ball row and the raceway, forming Multi-angle motion with degrees of freedom (coupled motion of nutation and precession).
  • the balls in the axial direction will more or less circumferentially displace in the direction of the larger opening (the corresponding cross section between the raceways in the axial direction).
  • the diameter of each ball in the first ball row is slightly larger than the distance from the first inner cavity spherical raceway to the outer spherical raceway, so that the first and second outer rings are axially connected relative to each other. It is relatively easy, and the manufacturing of balls is also relatively easy.
  • a pair of axial ball rows can also use flexible point contact with the axial raceways of the inner and outer rings.
  • the pockets of the cage can be set into a triangular structure.
  • An elastic element is arranged in the triangular pocket to abut the ball and move in the circumferential direction. The elastic element forms an H-shaped arc-surface steel sheet, and the H-shaped arc-surface elastic steel sheet is preloaded.
  • a two-point clamping device is formed by using two points in the triangular pocket area of the cage. The balls contact the bottom edge of the triangle and the recess of the elastic steel sheet to keep the balls in the pockets.
  • the two-point cassette device allows the insertion of elastically deformed balls into the pockets in the area of one point of the elastic steel plate and one point of the triangular base.
  • the ball displacement direction of the axial annular pair of ball rows is outward, and the elastic elements of annularly distributed triangular pockets are arranged to surround the outer circumference, and the triangular bottom The edge is inward and the circumference is surrounding; if the ball displacement is inward, the elastic element is inward and the base is surrounding in the outer circumference.
  • the two axial rows of balls can be guided to roll between the thrust angular contact conical raceway surface and the axial contact flat raceway surface, and/or the two axial rows of balls can be guided by The rolling motion is guided between the thrust angular contact annular spherical raceway surface and the axial contact annular spherical raceway surface, and/or the axial two rows of balls can be guided for rolling motion between the conical raceway surface and the conical raceway surface. and/or rolling motion between the thrust angular contact annular spherical raceway surface and the thrust angular contact annular spherical raceway surface.
  • the point-contact rolling motion between the axial raceways of the inner and outer rings of a pair of axial ball rows as explained above results in passive precession (precession, oscillation). , nutation) motion effect here, the relationship between left and right is relative.
  • the passive precession (precession, swing) motion effect is described below.
  • the inner ring axial left plane raceway is parallel to the right second outer ring axial plane raceway.
  • or the inner ring axial right plane raceway is parallel to the left first outer ring axial plane raceway, that is, the inner and outer rings have axial ring plane raceways on one side relative to the right Or the one on the left corresponds to the thrust angle contact raceway.
  • the principle of precession bearing under the action of external torque, the precession and stability of a gyroscope will appear.
  • An active precession (precession, oscillation, nutation) motion effect can be provided, and an inclined ring plane is provided on one side of the inner ring of the active precession (precession, oscillation, nutation) bearing.
  • the raceway (the central axis of the ring plane raceway on the axial side of the inner ring is set obliquely relative to the axis of the transmission shaft) and the axial contact ring plane raceway on the other side corresponds to the thrust angle in the axial direction of the outer ring.
  • the pair of ball rows are configured to roll between the raceways in the axial direction of the active precession bearing and are installed together in the bearing in a gap-free manner with the first ball row. This solution is relatively easy to manufacture.
  • a recessed (relative to the outward direction of the bearing) thrust angular contact annular spherical raceway or axial conical raceway or axial spherical raceway can be provided in the axial direction of the outer ring. It is also relatively easy to select the diameter of the balls of the pair of ball rows in the center. It is controlled by the elastic element of the triangular pocket on the cage.
  • the circumferential direction is tangent to the axial direction of the inner and outer rings. between roads.
  • the left side of the spherical center of the raceway corresponds to the parallel ring plane of the raceway
  • the right side of the ball center corresponds to the parallel ring plane of the raceway.
  • the inclination is the relative inclination of the left pair and the right pair, where the left side is parallel to the raceway and the right side is parallel to the raceway.
  • precession precession, oscillation, nutation
  • the transmission use time is shorter than that of friction transmission of line contact rolling motion.
  • the relative support motion of the bearing can also be designed in this way.
  • the third axial raceway of the outer ring and the axial raceways on both sides of the inner ring can be provided with inner and outer bearings.
  • the axial grooves and raceways of the ring correspond to each other.
  • the groove structure of this bearing can be applied to thrust and radial bearings. It can also be made into a miniature combined bearing in terms of size, such as two rows of axial grooves corresponding to the inner and outer rings.
  • the circumferential diameters of the channels (pairing channels) are different.
  • the left row of balls and the right row of balls are two concentric circles with different diameters distributed on the rotation axis of the bearing.
  • a pair of balls are used in the bearing.
  • each row of axial ball rows is evenly distributed with different numbers of balls, which are guided by the axial cage and roll between the raceways of the inner and outer rings, so that the two axial grooves of the inner ring Different channel diameters expand and contract in the radial direction relative to the ball center. Different arrangements of the channels will be beneficial in reducing the axial distance of the bearing. No bolts are needed.
  • the first and second outer rings are fixed by bonding. After the interference fit with the miniature bearing box, the miniature combined bearing will be advantageous.
  • the structure of the pockets of the cage of the combined bearing can form the above-mentioned triangular pockets. In this way, it is relatively easy to install the triangular pockets of the two-point cassette device on the bearing with the balls.
  • the retention of the miniature combined bearing The structure of the pockets of the rack can also adopt a bead-shaped outline.
  • the axially inner end surface of the third step of the outer ring forms an axial third raceway and a second rolling element with a different configuration corresponding to the axially both sides of the inner ring raceway.
  • the rolling element adopts the fifth asymmetric spherical roller, which is a rolling motion with line contact on the rolling surface.
  • the pockets of the axial annular window cage guide each asymmetric spherical roller to roll between the axial raceways of the inner and outer rings without contact.
  • the cross-section of the annular cage forms the inner and outer sides. T-shaped (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side).
  • the third axial raceway of the outer ring and the two axial raceways of the inner ring can be set with spherical raceways corresponding to the spherical raceways, and can be set with inclined spherical raceways and inclined spherical raceways (the central axis of the spherical raceway is inclined to axis of rotation) corresponds.
  • the first and second outer rings have the same outer diameter and an interference fit with the bearing box, which can obtain particularly advantageous mechanical characteristics of the thrust bearing.
  • the bearing can be disassembled and ground on the opposite adjacent surface, and the bearing can continue to be used after assembly.
  • the axially inner end surface of the third step of the outer ring forms an axial third raceway and a second rolling element with a different configuration corresponding to the axially both sides of the inner ring raceway.
  • the rolling element adopts the seventh spherical roller, which is a rolling motion with line contact on the rolling surface.
  • the pockets of the axial annular window cage guide each spherical roller to roll between the axial raceways of the inner and outer rings without contact.
  • the cross-section of the annular cage forms an inner and outer circumferential side. T-shaped (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side).
  • the upper part of the T-shape is the outer circumferential side.
  • the other side of the part extends toward the axial end face of the inner ring, leaving a certain gap.
  • the annular outer diameters of both sides of the T-shaped upper part are covered with rubber sealing rings to contact the axial parts of the inner and outer rings.
  • the T-shaped lower part forms Surrounding window pockets.
  • the third axial raceway of the outer ring and the two axial raceways of the inner ring can be equipped with an axial annular spherical raceway corresponding to the axial annular spherical raceway; an inclined annular spherical raceway and an inclined annular raceway can be set Corresponds to the spherical raceway (the central axis of the annular spherical raceway is inclined to the axis of rotation).
  • the first and second outer rings have the same outer diameter and an interference fit with the bearing box, which can obtain particularly advantageous mechanical characteristics of the thrust bearing.
  • the bearing can be disassembled and ground on the opposite adjacent surface, and the bearing can continue to be used after assembly.
  • the axially inner end surface of the third step of the outer ring forms an axial third raceway and a second rolling element with a different configuration corresponding to the axially both sides of the inner ring raceway.
  • the rolling element adopts the fourth tapered roller, which is a rolling motion with rolling surface line contact.
  • the pockets of the axial annular window cage control each tapered roller from contacting and control the movement of the tapered roller in the circumferential direction and inside. , rolling between the axial raceways of the outer ring.
  • the cross-section of the annular cage forms a T-shape with an inner circumferential side and an outer circumferential side (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side), and an axis extending toward the outer ring extends on one side of the T-shaped upper part.
  • the annular outer diameters on both sides of the T-shaped upper part are There is a rubber sealing ring in contact with the axial parts of the inner and outer rings, and the T-shaped lower part forms a circumferential window-type pocket.
  • the window pockets of the axial cage are configured in the shape of a rolling body, and there are elastic elements movably connected to the pockets.
  • the elastic elements form H-shaped arc-shaped elastic steel sheets and arc-shaped concave portions to connect springs.
  • the grooves at both ends of the H-shaped arc-shaped elastic steel sheet are pre-pressed to join the two sides of the window pocket.
  • the other end of the spring contacts the radial end surface of the window pocket, and the arc-shaped convex portion of the arc-shaped elastic steel sheet contacts The large diameter end face of the tapered roller controls circumferential displacement.
  • the third axial raceway of the outer ring and the two axial raceways of the inner ring can be set with a conical raceway corresponding to the conical raceway; an inclined conical raceway and an inclined conical raceway (conical raceway) can be set
  • the central axis of the roller is inclined to the axis of rotation) corresponding to;
  • a conical raceway (the central axis of the conical raceway coincides with the axis of rotation) can be set to correspond to the axial plane raceway.
  • a two-sided cassette device is formed by using two surfaces in the window-type pocket area of the cage.
  • the two ends of the tapered roller are in contact with the radial end surface of the window-type pocket and the convex part of the elastic steel sheet.
  • the two-sided cassette device allows the passage of the elastically deformed tapered roller into the pocket in the area of one face of the elastic steel sheet and one face of the window pocket. insert.
  • the displacement direction of the conical rollers of a pair of axial annular conical roller rows is outward, and the elastic elements of annularly distributed window pockets are arranged toward the outer circumference. surrounding; if the tapered roller displacement is inward, the elastic element is surrounding inward.
  • the outer diameters of the first and second outer rings are the same and the interference fit with the bearing box can obtain particularly advantageous mechanical characteristics of the thrust bearing.
  • the inner ring For wear caused by the surface contact between the outer spherical raceway of the outer ring and the second inner spherical raceway, the bearing can be disassembled and ground on the opposite adjacent surface, and the bearing can continue to be used after assembly.
  • the axially inner end surface of the third step of the outer ring forms an axial third raceway and a second rolling element with a different configuration corresponding to the axially both sides of the inner ring raceway.
  • the sixth cylindrical roller is used as the rolling element, and the rolling motion is in line contact with the rolling surface.
  • the pockets of the axial annular window cage guide each cylindrical roller without contact between the axial raceways of the inner and outer rings.
  • the cross-section of the rolling, annular cage forms a T-shape with inner and outer peripheral sides (the upper part of the T-shape is the inner peripheral side, and the lower part is the outer peripheral side). The upper part of the T-shape extends in the axial direction of the outer ring.
  • the third axial raceway of the outer ring and the two axial raceways of the inner ring can be equipped with an annular plane raceway corresponding to the annular plane raceway; an inclined annular plane raceway and an inclined annular plane raceway (annular plane raceway) can be set
  • the central axis of is inclined to the rotation axis) corresponding to.
  • the outer diameters of the first and second outer rings are the same and the interference fit with the bearing box can obtain particularly advantageous mechanical characteristics of the thrust bearing.
  • the bearing can be disassembled and ground on the opposite adjacent surface, and the bearing can continue to be used after assembly. It is also possible to set the corresponding raceways on both sides of the inner and outer rings in the axial direction.
  • the concave and convex structures of the conical raceways are parallel to each other, and the pockets of the annular window cage with a generally axial direction control each The cylindrical rollers roll between the axial raceways of the inner and outer rings without contact.
  • the cage forms a conical window cage to control the cylindrical rollers to form a ring-conical structure.
  • the axial direction of the third step of the outer ring The inner end surface forms an outward (recessed) conical raceway, and the two axial raceways of the inner ring form a protruding conical raceway.
  • This structure is beneficial to the corresponding axial conical raceways of the outer ring and the inner ring.
  • the outer diameters of the first and second outer rings are the same and the interference fit with the bearing box can be obtained to obtain particularly advantageous mechanical characteristics of radial bearings and thrust bearings.
  • the space between the axially opposite parallel conical raceways of the inner and outer rings can be configured with needle roller elements.
  • a pair of annular needle roller elements such as the outline of discus equipment, is configured to match the inner and outer rings.
  • the rolling motion is line contact between the conical raceways of the ring.
  • the first ball row forms a pair on both sides of the bearing center in the axial direction.
  • the diameter of the balls of the first ball row is approximately the same as the diameter of the needle roller.
  • the total axially measured distance between the surface contact of the second inner spherical raceway of the ring and the outer spherical raceway of the inner ring is less than the diameter of the needle roller. It will be particularly advantageous to reduce the axial width of such a combined bearing.
  • the needle roller The combined bearing can also achieve greater load-bearing capacity in both directions (axial and radial directions) than the cylindrical roller combined bearing.
  • a passive precession bearing and its installation method such as a gyroscope, have precession and stable motion effects and are used in the mechanical field.
  • the conical raceway provided on the third axial raceway of the first outer ring of the outer ring is axially protruding or recessed
  • the conical raceway provided on the second axial raceway of the inner ring is axially protruding or recessed; that is,
  • the conical raceway of the first outer ring has the same taper angle as the conical raceway of the second raceway of the inner ring, and
  • the annular plane raceway provided by the third axial raceway of the second outer ring of the outer ring and the annular plane raceway provided by the first axial raceway of the inner ring are arranged in parallel;
  • the axial distance from the ring plane raceway of the second outer ring to the cone surface raceway of the second raceway of the inner ring is the same as the axial distance from the cone surface raceway of the first outer ring to the ring plane raceway of the first raceway of the inner ring.
  • the axial distances of the tracks are equal and/or unequal;
  • the row of fourth tapered rollers is tangent to the ring plane raceway surface of the second outer ring and the conical raceway surface of the second axial raceway of the inner ring, and the other row of fourth tapered rollers is tangent to The conical raceway surface of the first outer ring and the annular planar raceway surface of the axial first raceway of the inner ring, the two rows of fourth conical rollers can be guided inwards by being held by axial cages. Rolling motion between the raceway surfaces in the axial direction of the outer ring.
  • the cross-section of the annular cage forms a T-shape with an inner circumferential side and an outer circumferential side (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side), and an axis extending toward the outer ring extends on one side of the T-shaped upper part.
  • Both sides of the T-shaped upper part are covered with annular outer circumferences.
  • the window pockets of the axial cage are configured in the shape of a rolling body, and there are elastic elements movably connected to the pockets.
  • the elastic elements form H-shaped arc-shaped elastic steel sheets and arc-shaped concave portions to connect springs.
  • the grooves at both ends of the H-shaped arc-shaped elastic steel sheet are pre-pressed to join the two sides of the window pocket.
  • the other end of the spring contacts the radial end surface of the window pocket, and the arc-shaped convex portion of the arc-shaped elastic steel sheet contacts The large diameter end face of the tapered roller controls circumferential displacement.
  • a two-sided cassette device is formed by using two surfaces in the window-type pocket area of the cage.
  • the two ends of the tapered roller abut the radial end surface of the window-type pocket and the convex part of the elastic steel sheet to connect the cone to the cage.
  • the rollers are retained in the pockets and the double-sided cassette allows the insertion of tapered rollers into the pockets through elastic deformation in the area of one face of the elastic steel sheet and one face of the window pocket.
  • the two rows of tapered rollers in the axial direction can be assembled relatively non-parallel.
  • the rolling surfaces of the two rows of tapered rollers are tangent to the axial raceway surfaces of the inner and outer rings.
  • One row of conical rollers is The rotation axis of the roller is parallel to the rotation axis of the inner ring and intersects the rotation axis of the outer ring.
  • the rotation axis of the other row of tapered rollers is parallel to the rotation axis of the outer ring and intersects the rotation axis of the inner ring, that is, the rotation axis of the assembled inner ring It is not parallel to the rotation axis of the outer ring but intersects with it.
  • the two rows of opposite conical rollers will perform inertial space orbit rolling motion on the conical surface raceway and the ring plane raceway, and at the same time, the axial direction is uniform.
  • a plurality of first balls are arranged in a free multi-angle spatial trajectory point contact rolling motion between the outer spherical raceway of the inner ring and the first spherical inner cavity spherical raceway of the outer ring, and has the outer spherical raceway of the inner ring and the outer spherical raceway.
  • the second inner spherical raceway of the ring is in surface contact sliding motion.
  • a precession bearing when the fixed axis of the inner ring is driven to rotate, a pair of conical rollers perform non-parallel high-speed rotary motion and the outer ring is driven to precess (precess, nutate) and rotate in the opposite direction; or the fixed axis of the outer ring is driven.
  • the non-parallel high-speed rotation of a pair of conical rollers drives the inner ring to precess (precession, nutation) and rotate in the opposite direction.
  • the rotating inner ring or outer ring continues to rotate at high speed, and the other side The precession effect will attenuate and stop.
  • a passive precession bearing and its installation method such as a gyro with precession and stability effects, are used in the mechanical field.
  • the first outer ring of the outer ring has an axial third bearing.
  • the raceway is configured as a thrust angular contact annular spherical raceway, and
  • the second axial raceway of the inner ring is provided with a thrust angular contact annular spherical raceway; that is,
  • the thrust angular contact annular spherical raceway of the first outer ring has the same spherical radius as the thrust angular contact annular spherical raceway of the inner ring's second raceway, and
  • the axial contact annular spherical raceway provided by the third axial raceway of the outer ring and the axial contact annular spherical raceway provided by the axial first raceway of the inner ring are arranged in parallel and The spherical radii are the same; that is
  • the thrust angular contact annular spherical raceway on one side of the outer ring has the same spherical radius as the axial contact annular spherical raceway on one side of the inner ring,
  • the axial distance from the axial contact annular spherical raceway of the second outer ring to the thrust angular contact annular spherical raceway of the second outer ring to the inner ring is the same as the thrust angular contact annular spherical raceway of the first outer ring to the inner ring.
  • the axial distance of the first raceway in axial contact with the annular spherical raceway is equal and/or unequal;
  • Two rows of fifth asymmetric spherical rollers are arranged at a distance (space) away from the annular spherical raceway and the thrust angular contact annular spherical raceway);
  • the fifth asymmetric spherical rollers in one row are in tangent contact with the annular spherical raceway surface in the axial direction of the second outer ring and the thrust angular contact with the annular spherical raceway surface in the axial direction of the inner ring.
  • the other row of fifth asymmetric spherical rollers The fifth asymmetric spherical roller is tangent to the thrust angle of the first outer ring and contacts the annular spherical raceway surface and the axial direction of the first raceway of the inner ring contacts the annular spherical raceway surface.
  • the symmetrical spherical rollers are held by an axial cage and can be guided to roll between the axial raceway surfaces of the inner and outer rings.
  • the cross-section of the annular cage forms a T-shape with an inner circumferential side and an outer circumferential side (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side), and an axis extending toward the outer ring extends on one side of the T-shaped upper part.
  • Both sides of the T-shaped upper part are covered with annular outer circumferences.
  • the window pockets of the axial cage are configured in the shape of a rolling body, and there are elastic elements movably connected to the pockets.
  • the elastic elements form H-shaped arc-shaped elastic steel sheets and arc-shaped concave portions to connect springs.
  • the grooves at both ends of the H-shaped arc-shaped elastic steel sheet are pre-pressed to join the two sides of the window pocket.
  • the other end of the spring contacts the radial end surface of the window pocket, and the arc-shaped convex portion of the arc-shaped elastic steel sheet contacts The large-diameter end face of the fifth asymmetric spherical roller controls circumferential displacement.
  • the window pocket area of the cage is provided with two surfaces to form a two-sided cassette device, and the two ends of the fifth asymmetric spherical roller abut the radial end surface of the window pocket and the elastic
  • the convex part of the steel plate is used to hold the asymmetric spherical roller in the pocket.
  • the two-sided clamping device allows elastic deformation in the area of one face of the elastic steel plate and one face of the window pocket. Insertion of asymmetric spherical rollers into pockets.
  • the two rows of asymmetric spherical rollers in the axial direction can be assembled relatively non-parallel.
  • the rolling surfaces of the two rows of rolling elements are tangent to the axial raceway surfaces of the inner and outer rings.
  • One row The rotation axis of the raceway body is parallel to the rotation axis of the inner ring and intersects the rotation axis of the outer ring.
  • the rotation axis of the other row of rolling elements is parallel to the rotation axis of the outer ring and intersects the rotation axis of the inner ring, that is, the rotation axis of the assembled inner ring It is not parallel to the rotation axis of the outer ring but intersects with it.
  • a precession bearing when the fixed axis of the inner ring is driven to rotate, a pair of asymmetric spherical rollers perform non-parallel high-speed rotary motion and the driven outer ring precesses (precesses, nutates) and rotates in the opposite direction; or drives The outer ring rotates on a fixed axis, and the non-parallel high-speed rotation of a pair of asymmetric spherical rollers drives the inner ring to precess (precession, nutation) and rotate in the opposite direction. During this process, the rotating inner ring or outer ring continues to rotate at high speed. When rotating, the precession effect of the other party will attenuate and stop.
  • an active precession bearing is used for the precession (precession, nutation) motion characteristics of the mechanical dynamic system.
  • the ring plane raceway provided by the third stepped axial raceway of the first and second outer rings to the ring plane provided by the axial first and second raceways of the inner ring The two rows of second rolling elements are arranged at a distance (space) from the raceway, and the second rolling elements in the axial direction are arranged as conical rollers and cylindrical rollers in the slope held by the ring-cloth window-type third cage.
  • Each row of the left and right axially opposite third slope circumferential rolling elements is separated by cylindrical rollers at both ends on the annular diameter line into multiple conical rollers on both sides to form slopes distributed on the circumference.
  • the two cylindrical rollers on the straight line are divided into two half-circles on both sides.
  • the slope direction of the tapered roller is half.
  • the small diameter end of each tapered roller faces the center of the cage and the rotation axis of the tapered roller points to the cage.
  • the center of the circle, the large-diameter end of the other half of each tapered roller points toward the center of the cage, and the rotation axis of the tapered roller points toward the center of the cage.
  • the relative relationship between the rolling elements of the combination of tapered rollers and cylindrical rollers in each row is
  • the rolling surface forms a rolling contact surface of two planes with a slope.
  • the plane rolling surface formed by the third ramp circumferential rolling element opposite to the left and right is tangent to the two axial plane raceway surfaces of the inner ring, and the slope rolling surface formed by the third ramp circumferential rolling element on the left side is It is tangent to the third axial plane raceway surface of the first outer ring, and the slope raceway surface formed by the third slope circumferential rolling element on the right side is tangent to the third axial plane raceway of the second outer ring.
  • the raceway surfaces are tangent, that is, the third slope circumferential rolling element on the left side is tangent to the annular plane raceway surface of the first outer ring and the annular plane raceway surface of the first raceway of the inner ring, and the right side
  • the third slope circumferential rolling element is tangent to the annular planar raceway surface of the second outer ring and the annular planar raceway surface of the second raceway of the inner ring.
  • the pockets of the axial ring-cloth window cage prevent each cylindrical roller from contacting the tapered roller and control the tapered roller to move in the circumferential direction and roll between the axial raceways of the inner and outer rings.
  • the cross-section of the annular cage forms a T-shape on the inner and outer circumferential sides (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side), and an axis extending in the axial direction of the outer ring extends from the upper part of the T-shape.
  • the annular outer diameters of both sides of the T-shaped upper part are covered with rubber sealing rings.
  • the T-shaped lower part forms a circumferential window-type pocket.
  • the ring portion on the inner peripheral side of the cage is configured to have the same angle (slope) as the slope rolling element.
  • the window pockets of the axial cage are configured in the shape of rolling elements, and elastic elements are movably connected to the pockets.
  • the elastic elements form H-shaped arc-shaped elastic steel sheets and arc-shaped
  • the concave part is connected to the spring.
  • the grooves at both ends of the H-shaped arc-shaped elastic steel sheet are pre-pressed to join the two sides of the window pocket.
  • the other end of the spring is in contact with the radial end surface of the window pocket.
  • the arc-shaped elastic steel sheet is The convex portion contacts the large-diameter end surface of the tapered roller to control circumferential displacement.
  • a two-sided cassette device is formed by using two surfaces in the window-type pocket area of the cage.
  • the two ends of the tapered roller abut the radial end surface of the window-type pocket and the convex part of the elastic steel sheet to connect the cone to the cage.
  • the rollers are retained in the pockets and the double-sided cassette allows the insertion of tapered rollers into the pockets through elastic deformation in the area of one face of the elastic steel sheet and one face of the window pocket.
  • the left and right opposite third slope circumferential rolling elements form the large-diameter tapered roller on the upper slope corresponding to the small-diameter tapered roller on the downward slope, that is, the rotation axis of the inner ring and the rotation axis of the outer ring.
  • the relative inclination forms an angle ⁇ and the axis of rotation intersects at the center of the ball.
  • the third slope circumferential rolling element rolls between the axial raceways of the inner and outer rings. At the same time, a plurality of first balls are evenly distributed in the axial direction.
  • the outer spherical raceway of the inner ring and the first spherical inner cavity spherical raceway of the outer ring are arranged in free multi-angle spatial trajectory point contact rolling motion, and have the outer spherical raceway of the inner ring and the second inner spherical raceway of the outer ring.
  • Principle and function of active precession bearings When the inner ring is driven to rotate, the high-speed rotational motion of two opposing rows of third-slope circumferential rolling elements will drive the outer ring to actively precess (precession, swing, nutation) in the opposite direction.
  • motion is a stable, continuous active precession (nutation) motion effect and transmission motion effect around the center of the ball, that is, the inner ring rotates on a fixed axis, and the outer ring is dynamically balanced in the opposite direction.
  • the angle of the rolling elements around the third slope slope height
  • the outer ring precesses quickly (angular speed is fast); when the angle is designed to be large, the outer ring precesses slowly (angular speed is slow).
  • driving the outer ring to precess will drive the inner ring to rotate.
  • the high-speed rotational motion of two opposite rows of third ramp circumferential rolling elements will drive the inner ring to actively precess (precess, swing, nutate) in the opposite direction.
  • the angle of the circumferential rolling element slope height
  • the inner ring precesses quickly (angular speed is fast); when the angle is designed to be large, the inner ring precesses slowly (angular speed is slow).
  • driving the inner ring to precess will drive the outer ring to rotate.
  • the active precession of the bearing with the third slope circumferential rolling element will continue to operate stably without stopping.
  • the inner ring or outer ring of one of them precesses, and the fixed axis rotation of the other can be used as the dynamic characteristics of the transmission motion. It is the transmission motion of the friction between the third slope circumferential rolling element and the raceway.
  • the slope (angle) of each row of the two rows of third ramp circumferential rolling elements is 1° to 15°, and the slopes of the two opposite rows of third ramp circumferential rolling elements are the same.
  • the transmission ratio of the inner ring and the outer ring is formed according to the angle of the third slope circumferential rolling element (slope height).
  • the active precession bearing is configured to achieve a change in at least one motion parameter between the drive and the output, which can Used in the field of reducers.
  • the principle of advance dynamics is used in general machinery, such as vehicles, underground drilling, plunger pumps, reducers, internal combustion engines, wind power, helicopter rotor mechanisms, robotic arm joints, etc. It is the inner ring fixed axis rotation that drives the outer ring to actively advance. Movement (nutation), or the active swing (nutation) of the outer ring drives the rotation of the inner ring. This is the use of active, stable, and continuous precession (nutation) of the precession bearing.
  • an active precession bearing is used for the precession (precession, nutation) motion characteristics of the mechanical dynamic system.
  • the bearing with active precession (precession, oscillation, nutation) motion effect can also be provided with a pair of rolling elements, and the third axial raceway of the third step of the first and second outer rings reaches
  • the two rows of second rolling elements are arranged at a distance (space) between the first and second raceways in the axial direction of the inner ring.
  • the two rows of second rolling elements are arranged as a pair of tapered rollers or a pair of asymmetric spherical surfaces. Roller.
  • the active precession (precession, swing, nutation) bearing is provided with an inclined raceway on one side of the inner ring (the central axis of the raceway on the axial side of the inner ring is inclined relative to the axis of the transmission shaft (disposed on the ground) and the other side is provided with an axial contact raceway corresponding to the third raceway in the axial direction of the outer ring.
  • the raceways in the axial direction of the active precession bearing are configured to be installed and matched together as a pair.
  • the raceway surface of a tapered roller or a pair of asymmetric spherical rollers and forms a pair of tapered rollers or a pair of asymmetric spherical rollers tangent to the raceway in the axial direction.
  • the rolling motion is guided by the cage to cooperate with the first A row of balls are mounted together without any play in the bearing.
  • the distance between a pair of tapered rollers or a pair of asymmetric spherical rollers in the axial direction is not equal, that is, the row of rolling elements leaning against the inclined raceway on the axial side of the inner ring is larger than the other row of rolling elements on the axial side. distance from the roller's axis of symmetry.
  • the cross-section of the annular cage forms a T-shape with an inner circumferential side and an outer circumferential side (the upper part of the T-shape is the inner circumferential side, and the lower part is the outer circumferential side), and an axis extending toward the outer ring extends on one side of the T-shaped upper part.
  • Both sides of the T-shaped upper part are covered with annular outer circumferences.
  • the window pockets of the axial cage are configured in the shape of a rolling body, and there are elastic elements movably connected to the pockets.
  • the elastic elements form H-shaped arc-shaped elastic steel sheets and arc-shaped concave portions to connect springs.
  • the grooves at both ends of the H-shaped arc-shaped elastic steel sheet are pre-pressed to join the two sides of the window pocket.
  • the other end of the spring contacts the radial end surface of the window pocket, and the arc-shaped convex portion of the arc-shaped elastic steel sheet contacts The large diameter end surface of the rolling element controls the circumferential displacement.
  • the window pocket area of the cage is provided with two surfaces to form a two-sided cassette device, and the two ends of the rolling element are in contact with the radial end surface of the window pocket and the convex portion of the elastic steel sheet , used to keep the rolling elements in the pockets, the two-sided cassette device allows the insertion of the rolling elements into the pockets through elastic deformation in the area of one side of the elastic steel sheet and one side of the window pocket .
  • the principle and function of the active precession bearing when the inner ring is driven to rotate, the axial raceway surfaces on both sides of the inner ring are not parallel, resulting in relatively non-parallel rolling of the rolling elements, driving the outer ring to make a swing movement and in the opposite direction. Precessional motion.
  • the active precession bearing is configured such that a change of at least one motion parameter is achieved between drive and output.
  • a coupling motion bearing of nutation and precession is used for the nutation motion characteristics of the mechanical dynamic system.
  • the central axis of the ring plane raceway provided on the first and second raceways on the axial left and right sides of the inner ring is tilted relative to the axis of the transmission shaft, and the first and second raceways are
  • the inclined ring plane raceway is arranged in parallel, and the angle between the central axis of the inclined ring plane raceway and the axis of the transmission shaft is between 1° and 15°.
  • Two rows of third slopes are provided in the distance (space) between the ring plane raceway of the third raceway of the first and second outer rings of the outer ring and the inclined ring plane raceway of the first and second raceways of the inner ring. Circumferential rolling element and let it roll between the raceways in the axial direction of the inner and outer rings.
  • the slope (angle) of each row of the two rows of third ramp circumferential rolling elements is 1° to 15°, and the slopes of the two opposite rows of third ramp circumferential rolling elements are the same.
  • the distance from the axial planar raceway of the first outer ring to the inclined planar raceway of the inner ring is the same as the distance from the axial planar raceway of the second outer ring to the second raceway of the inner ring.
  • the distance between the raceways of the inclined ring planes is equal and/or unequal; that is,
  • the axial distance of the third ramp circumferential rolling element in the left column is the same and/or different from the axial distance of the third ramp circumferential rolling element in the right column;
  • the two rows of third ramp circumferential rolling elements are configured to cooperate with the first ball row and be guided for rolling motion between the inclined ring planar raceway surface and the axial ring planar raceway surface.
  • the left row of third ramp circumferential rolling elements are tangent to the annular planar raceway surface of the first outer ring and the inclined annular planar raceway surface of the first raceway of the inner ring
  • the right row of third ramp circumferential rolling elements are The element is tangent to the annular planar raceway surface of the second outer ring and the inclined annular planar raceway surface of the second raceway of the inner ring.
  • the left and right opposite third slope circumferential rolling elements form large-diameter tapered rollers on the upper slope corresponding to small-diameter tapered rollers on the lower slope.
  • the rotation axis of the inner ring and the The rotation axes of the outer ring are relatively inclined to form an angle or the relative angle is 0 and the rotation axes intersect or coincide during the rotation; the two rows of third ramp circumferential rolling elements can be guided on the inclined ring plane raceway surface There is rolling motion between the axial ring plane raceway surface, and at the same time, a plurality of first balls evenly distributed in the axial direction are arranged in the free multi-angle space between the outer spherical raceway of the inner ring and the first spherical inner cavity spherical raceway of the outer ring.
  • the track point contact rolling motion has a sliding motion in which the outer spherical raceway of the inner ring is in surface contact with the second inner spherical raceway of the outer ring.
  • the precession bearing has two rows of third slope circumferential rolling elements and the rolling motion of the inclined annular plane raceway of the inner ring will produce two motion effects: precession and nutation of the outer ring.
  • the combined action of the two motions forms a coupling motion of nutation and precession, which What drives the nutation and precession of the outer ring in the opposite direction is the stable and continuous nutation and precession motion of the outer ring around the center of the ball.
  • the active progressive bearing is configured to achieve a change in at least one motion parameter between drive and output.
  • Two rows of third ramp circumferential rolling elements bring friction and rolling between the inner and outer raceways to bring about the mechanics of transmission motion. The effect can be applied to the machinery as mentioned above.
  • a precession bearing gyro is used in a gyro precession active stabilization device.
  • the first outer ring of the outer ring is arranged in the shape of a dome, the first outer ring of the dome shape is provided with three steps, and the third step of the three steps extends to form a separated and closed covering of the inner ring.
  • the first raceway in the axial direction, the axial inner wall of the third step is formed into a circular plane raceway, and an axially protruding nose cone or hemisphere is provided in the middle of the axial outer side of the third step.
  • the cone angle of the nose cone is 100° to 178°
  • an axial annular plane is set on the outer periphery of the axial outer side of the third step and is connected to the nose cone or hemisphere in the middle
  • the annular plane is arranged with A plurality of connecting holes corresponding to the second outer ring.
  • the connecting holes pass from the annular plane through the axial adjoining portion of the first step to the opposite surface with threaded counterbore.
  • the bolts pass through the connecting holes to connect the opposite connecting holes of the first step.
  • the second step of the first outer ring is provided with a second inner spherical raceway
  • the first step is provided with a first spherical inner cavity spherical raceway, which is the same as the aforementioned arrangement
  • the second outer ring is provided with the same arrangement as the foregoing.
  • the inner ring is configured as an inner ring with a rod end, the first raceway in the axial direction is formed as a concave conical raceway, and the second raceway in the axial direction is formed as an annular planar raceway. It is connected to the middle part as a rod end; and/or the inner ring is connected to an annular center-penetrating shaft, and the first raceway in the annular axial direction is formed as a recessed conical surface roller.
  • the second raceway in the axial direction of the annular ring is formed as an annular planar raceway; and the radial outer spherical raceway of the inner ring is the same as the aforementioned arrangement.
  • Two rows of fourth tapered rollers are provided in the distance (space) between the third raceway in the axial direction of the first and second outer rings of the outer ring and the first and second raceways in the axial direction of the inner ring;
  • the row of tapered rollers on the left is tangent to the circular planar raceway surface of the first outer ring and the conical raceway surface of the first raceway in the axial direction of the inner ring
  • the row of tapered rollers on the right is tangent to The conical raceway surface of the second outer ring and the annular planar raceway surface of the second axial raceway of the inner ring.
  • the two rows of conical rollers can be guided to roll between the conical raceway and the planar raceway. .
  • the rod end of the inner ring of the precession bearing gyro is connected to the motor shaft, the motor housing is connected to the support platform, the motor is powered on, and/or the support platform is configured as an integrated battery support
  • the platform is connected to the motor;
  • the nose cone or hemisphere of the first outer ring of the precession bearing gyro lies on its side on the bearing platform or on a flat ground, and the pair of conical rollers Relatively non-parallel;
  • the starter motor in the initial state, drives the outer ring to precession motion, and when the rotation speed of the inner ring increases, the axial vertex of the nose cone or hemisphere of the outer ring is stable Standing on the load-bearing platform, the external moment is exerted on the load-bearing platform or the support platform, and the precession (nutation) movement of the outer ring keeps the support platform on the inner ring stable.
  • a precession bearing gyro is used in a gyro precession active stabilization device.
  • the first outer ring of the outer ring is arranged in the shape of a dome, the first outer ring of the dome shape is provided with three steps, and the third step of the three steps extends to form a separated and closed covering of the inner ring.
  • the first raceway in the axial direction, the axial inner wall of the third step is formed as an annular spherical raceway, and an axially protruding nose cone or hemisphere is provided in the middle of the axial outer side of the third step , the cone angle of the nose cone is 100° to 178°, an axial annular plane is arranged on the outer periphery of the axial outer side of the third step and is connected to the nose cone or hemisphere in the middle, and the annular plane is arranged with the third step.
  • connecting holes There are a plurality of connecting holes corresponding to the two outer rings.
  • the connecting holes pass from the annular plane through the axial adjoining part of the first step to the opposite surface with threaded counterbore.
  • the bolts pass through the connecting holes to connect the opposite first steps.
  • the second outer ring In addition, the second step of the first outer ring is provided with a second inner spherical raceway, the first step is provided with a first spherical inner cavity spherical raceway, which is the same as the aforementioned arrangement, and the second outer ring is provided with the same arrangement as the foregoing.
  • the inner ring is configured as an inner ring with a rod end, the first raceway in the axial direction is formed as a thrust angular contact annular spherical raceway, and the second raceway in the axial direction is formed as an axial contact annular raceway.
  • the spherical raceway and the middle part are formed as a rod end connected; and/or the inner ring is connected as a circular annular center-penetrating shaft, and the first raceway in the axial direction of the annular ring is formed as a thrust angular contact Annular spherical raceway, the second raceway in the axial direction of the annular ring is formed to axially contact the annular spherical raceway; and the radial outer spherical raceway of the inner ring is the same as the aforementioned arrangement.
  • Two rows of fifth asymmetric spherical rollers are arranged at a distance (space) between the angular contact annular spherical raceway and the axial contact annular spherical raceway);
  • the fifth asymmetric spherical rollers in one row are in tangent contact with the annular spherical raceway surface in the axial direction of the first outer ring and the thrust angular contact with the annular spherical raceway surface in the axial direction of the inner ring.
  • the fifth asymmetric spherical roller is tangent to the thrust angle of the second outer ring and contacts the annular spherical raceway surface and the axial direction of the second raceway of the inner ring contacts the annular spherical raceway surface.
  • Symmetric spherical rollers can be guided to roll between the raceway surfaces in the axial direction of the inner and outer rings;
  • the rod end of the inner ring of the precession bearing gyro is connected to the motor shaft, the motor housing is connected to the support platform, the motor is powered on, and/or the support platform is configured as an integrated battery support
  • the platform is connected to the motor;
  • the nose cone or hemisphere of the first outer ring of the precession bearing gyro lies on its side on the bearing platform or on the flat ground, and the pair of asymmetric spherical surfaces
  • the rollers are relatively non-parallel;
  • the starter motor in the initial state, drives the outer ring to precess, and when the rotation speed of the inner ring increases, the nose cone of the outer ring or the axial vertex of the hemisphere is Standing stably on the load-bearing platform, the external moment is exerted on the load-bearing platform or the support platform, and the precession (nutation) motion of the outer ring keeps the support platform on the inner ring stable.
  • the principle of a rotating rigid body gyroscope moving on a slope plane is that the rotating rigid body gyroscope moves in the same inclined plane slope with the same direction of rotation and the same forward direction.
  • the rotation speed is different, the rotation speed is low.
  • the rotation speed is high, the gyro will move diagonally downward.
  • the rotation speed is high, the gyro will move upward.
  • the rotation speed matches the slope, the gyro will move linearly at that slope height position.
  • the rotation speed of the gyro matches the slope height, the gyro will move linearly.
  • a high-speed linear motion is formed when the gyro is on a sloped track, and a low-speed linear motion is formed when the low rotational speed of the gyro matches the low-slope track; on an inclined slope plane, the slope faces the person, the gyro rotates counterclockwise, and the direction of motion is straight forward to the right.
  • the top rotates clockwise, and the direction of motion goes straight to the left; when the slope plane is downward relative to the person, the top rotates counterclockwise, and the direction of motion goes straight to the left.
  • the top rotates clockwise, and the direction of motion goes straight to the right.
  • a precession bearing gyro overrunning clutch device is used for a system and method of walking on a slope track.
  • the principle and function of the gyro precession active stabilization device based on the precession bearing gyro and the rotating rigid body walking on the slope track.
  • the said includes a slope track, the slope track is constructed as an inclined plane track from a steel plate, a lifting mechanism platform, a controller, a driving motor, and a sensor;
  • the precession bearing gyro overrunning clutch device is configured in such a way that the device is a radial spherical raceway with an inner ring at the center of the bearing and a centrifugal section of grooved spherical raceway with multiple circumferences.
  • the deep end surface of each grooved spherical raceway of the circumferential centrifugal ring is equipped with a small connecting magnet.
  • the centrifugal grooved spherical raceway is equipped with a spherical roller and a first step that combines the first and second outer rings.
  • the first spherical inner cavity spherical raceway will contact when transmitting torque.
  • Balls, tapered rollers, asymmetric spherical rollers, and asymmetric spherical rollers are used between the raceways in the axial direction of the inner and outer rings to form a passive precession bearing for precession motion and stability.
  • the plurality of first ball rows arranged between the radial inner and outer spherical raceways of the outer ring are the same as described above, and the distance between the outer spherical raceways and the second inner spherical raceways of the inner and outer rings is Corresponding settings as mentioned above.
  • the inner ring rod end of the precession bearing gyro overrunning clutch device is connected to the rotating shaft of the drive motor, and the shell of the drive motor is connected to the battery integrated support platform.
  • the device's system and method for walking on a slope track include the following steps:
  • the slope track is in a horizontal state at the beginning, and the side of the nose cone or hemisphere on the outer ring is tilted and lies on the horizontal slope track;
  • the controller of the precession bearing gyro overrunning clutch device controls the drive motor to drive the inner ring to rotate;
  • the spherical roller is adsorbed on the magnet, and the outer ring begins to move in precession;
  • the controller controls the driving motor to continuously increase the rotation speed of the inner ring, the spherical roller adsorbed on the magnet moves and contacts the first spherical inner cavity spherical roller of the outer ring under the action of centrifugal force.
  • Road that is, transmitting torque to realize the rotation of the rigid body gyro on the slope track (horizontal state);
  • the induction sensor on the slope track senses that the rigid body gyroscope (the device) is in stable rotation and feeds it back to the controller.
  • the controller of the lifting mechanism controls the drive motor to start lifting, and the slope track moves to the tilt state
  • the precession bearing gyro overrunning clutch device starts to walk straight on the inclined slope track
  • the slope track receives the instruction controller based on the received instruction.
  • the slope track detects that the rigid body gyro (the device) reaches the designated position; and feeds back to the controller.
  • the controller of the lifting mechanism device controls the drive.
  • the slope track moves to a horizontal state; the device stops advancing and rotates on the slope track in a horizontal state;
  • the controller of the device controls the driving motor to stop and the inner ring to stop rotating
  • the outer ring of the precession bearing gyro overrunning clutch device standing on the horizontal track is still in rotation.
  • the outer ring rotates away from the spherical roller overrunning and does not transmit torque.
  • the spherical roller The end surface that moves to the depth of the grooved spherical raceway is attracted by the magnet; the nose cone or hemisphere on the outer ring interacts with the precession bearing gyro overrunning clutch due to the friction with the track. Due to the gravitational moment of the device itself, the rotation speed of the outer ring attenuates and begins to precess until the outer ring stops precessing;
  • the side of the nose cone or hemisphere on the outer ring is tilted on a horizontal slope track to keep the battery integrated support platform of the motor connected to the inner ring horizontal.
  • a system and method for a precession bearing gyro overrunning clutch device to travel on a slope track are used in transportation systems
  • the slope track is an inclined plane track made of steel plates, and the angle of the track slope is between 1 degree and 20 degrees.
  • the outer ring with the nose cone or hemisphere is in precession when the inner ring starts and stops, and the precession bearing gyro device keeps the support platform vertically stable.
  • an overrunning clutch transmission torque a system and method for rotating a rigid body to walk on a slope track platform can be used in transportation systems.
  • the precession bearing gyro overrunning clutch device rotates in the same direction on the same slope and has the same linear walking direction.
  • multiple precession bearing gyro overrunning clutch devices (vehicles) moving in the same direction at the same speed and at different positions will not collide when walking on a slope track.
  • any combination of the above constituent elements or a mode in which the constituent elements or expressions of the present invention are replaced with each other in methods, systems, etc. are also effective as embodiments of the present invention.
  • the present invention divides the outer ring of the bearing into two parts, in which three steps extending toward the inner ring are provided on the outside of each part of the outer ring.
  • the first balls in each row in the first spherical inner cavity raceway are held in axially opposite positions through the cage of the ball ring.
  • the left and right outer rings are flexibly adjusted by the elastic elements provided by the bolts to adjust the clearance between the outer ring, the first ball row, the second rolling element and the inner ring, which can accurately control the radial clearance of the bearing. and the axial clearance, and the radial clearance and axial clearance can be adjusted to a basically consistent state. Thereby improving the bearing accuracy and reducing the impact of the bearing's motion accuracy on the mechanism's motion accuracy.
  • the ball diameter of the plurality of first ball rows in the bearing is changed and the distance between the axial adjacent portions of the first and second outer rings of the bearing is offset to the outside of the bearing, and the dimensions of the two are replaced. It can be flexibly combined.
  • the first balls in multiple rows are spherical in shape and the distance from the inner ring to the outer ring is controlled by the cage.
  • the bearing rotates with angular freedom
  • the first balls in each row are in contact with the inner and outer rings.
  • the raceway has multi-point rolling angular contact, and the raceway can rotate with adaptive angular degrees of freedom as external forces change.
  • the axial distance of the second pair of axial rolling elements at the back matches the distance between the axial raceways of the inner and outer rings of the bearing and rolls between the axial raceways.
  • the outer ring and multiple rows When the first ball, the second rolling element and the inner ring are fatigued and worn, the contact shapes of the four are changing.
  • the outer diameters of the first and second outer rings of the outer ring combination are different or the same.
  • the outer ring on the side with the larger outer diameter has an interference fit with the bearing box, and the outer ring on the other side with the smaller outer diameter is automatically and flexibly preloaded. It is due to the torque of the elastic element on the bolt head that the bearing is always in zero clearance.
  • the rolling and sliding movement starts at the same time; the second is the rolling and sliding movement at the same time.
  • obvious stress concentration occurs in a part of the contact between the rolling element and the raceway. For example, in the center of the nominal point contact, the end of the line contact, and in bearings where the rolling element does not have precise guidance, initial defects appear on the surface of the rolling element.
  • the present invention uses an elastic element configured in the axial cage of the second axial rolling element to eliminate the impact of the rotary motion on the accuracy of the gap that can provide angular motion.
  • the rolling motion of a pair of axial second rolling elements between the axial raceways of the inner and outer rings can control the bearing motion form, and relative rotational motion and nutation will occur.
  • Movement, precession movement, swing movement, yaw movement, the axial cage adopts different settings for different rolling elements, and the contact shape between the raceways in the axial direction (elastic element) can control the rolling elements.
  • Radial displacement, and the elastic element on the bolt can control the axial distance of the bearing to keep the tightness of the bearing within a reasonable range. It can be used in motion mechanisms with high precision requirements to avoid the impact of the clearance of precession (nutation) bearings on motion accuracy and hysteresis, especially in high-precision spatial pointing mechanisms.
  • the present invention passes through the annular plane raceway, the conical raceway, the spherical raceway, the axial contact annular spherical raceway, and the thrust angular contact in the axial direction of the third step of the first and second outer rings.
  • the annular spherical raceway is arranged with the first and second raceways on the left and right sides of the inner ring in the axial direction, the conical raceway, the spherical raceway, the axial contact annular spherical raceway, and the thrust angular contact annular spherical surface.
  • the setting of raceways and ring plane raceways the setting of multiple first ball rows in the radial direction, the setting of two rows of second rolling elements in the axial direction, the setting of the left and right axial distances between the inner ring and the outer ring ( The distance between the two sides of the inner ring in the axial direction relative to the center of the ball, the distance between the end surface of the adjacent part of the outer ring relative to the center of the ball, the distance between the third raceway in the axial direction of the outer ring relative to the center of the ball), both sides or one side of the inner ring in the axial direction
  • the central axis of the annular end raceway is inclined relative to the axis of the drive shaft.
  • the left and right rows of rolling elements in the axial direction are arranged with different raceways in the opposite axial direction. When installed, the left and right rows of rolling elements can be relatively non-parallel. Each row of rolling elements is tangent to the conical raceway, The rolling of the paired raceways between spherical raceways, axial contact annular spherical raceways, thrust angular contact annular spherical raceways, and annular flat raceways.
  • the relative inclination of the rotation axes of the inner ring and the outer ring is controlled, that is, the annular plane raceway in the axial direction of the inner ring, the annular spherical raceway in axial contact, and the annular plane raceway in the axial direction of the outer ring, and the annular contact ring in the axial direction.
  • nutation motion can be used in nutation transmission. It is a friction transmission motion between rolling elements and raceways, which is different from gear transmission.
  • Figure 1 is a side view of an active precession bearing according to the first embodiment of the present invention (the outer ring is inclined at an angle relative to the inner ring).
  • Figure 2 is a front view of an active precession bearing according to the first embodiment of the present invention (the outer ring is inclined at an angle relative to the inner ring).
  • FIG. 3 shows the A-A cross-sectional view of the active precession bearing of the present invention (the angle ⁇ between the outer ring central axis AF and the inner ring central axis AX) according to FIG. 1 .
  • Figure 4 is an exploded view of an active precession bearing according to the first embodiment of the present invention.
  • FIG. 5 shows a partial view E of the elastic element on the cage of the active precession bearing according to the invention according to FIG. 4 .
  • Figure 6 is a front view of the third ramp circumferential rolling element and cage of the active precession bearing according to the first embodiment of the present invention.
  • FIG. 7 shows a B-B sectional view of the third ramp circumferential rolling element and cage of the invention according to FIG. 6 .
  • Figure 8 is a side view of the third ramp circumferential rolling element and cage of the active precession bearing according to the first embodiment of the present invention.
  • Figure 9 is a side view from another angle of the third ramp circumferential rolling element and cage of the active precession bearing according to the first embodiment of the present invention.
  • Figure 10 is a perspective view of the third ramp circumferential rolling element and cage of the active precession bearing according to the first embodiment of the present invention.
  • FIG. 11 shows a partial view K of the elastic element on the cage of the third ramped circumferential rolling element according to the invention according to FIG. 10 .
  • Figure 12 is a front view of a mating fourth tapered roller in the axial direction of a combination bearing and/or a precession bearing according to a second embodiment of the present invention.
  • FIG. 13 shows a C-C sectional view of the second embodiment of the invention based on FIG. 12 .
  • Figure 14 is an exploded view of a mating fourth tapered roller in the axial direction of a combination bearing and/or a precession bearing according to a second embodiment of the present invention.
  • Figure 15 is a front view of a mating fifth asymmetric spherical roller in the axial direction of a combination bearing and/or a precession bearing according to the third embodiment of the present invention.
  • FIG. 16 shows a D-D cross-sectional view of the third embodiment of the invention based on FIG. 15 .
  • Figure 17 is an exploded view of a mating fifth asymmetric spherical roller in the axial direction of a combination bearing and/or a precession bearing according to a third embodiment of the present invention.
  • Figure 18 is a front view of a cage in which the ball rows in the axial direction of the combined bearing and/or precession bearing are provided with triangular pockets according to the fourth embodiment of the present invention.
  • Figure 19 is a side view of a cage in which the ball rows in the axial direction of the combined bearing and/or precession bearing are provided with triangular pockets according to the fourth embodiment of the present invention.
  • FIG. 20 is a perspective view of a cage in which the ball rows in the axial direction of the combined bearing and/or precession bearing are provided with triangular pockets according to the fourth embodiment of the present invention.
  • Figure 21 shows the elastic element on the triangular pocket according to the fourth embodiment of the present invention according to Figure 20 (the base of the triangle faces the outer circumference, and the groove of the elastic element facing the inner circumference is pre-pressed to engage both sides of the triangle, and the arc shape View with the convex part of the elastic element towards the center of the cage).
  • Figure 22 is a top view of a precession bearing gyro overrunning clutch device according to the fifth embodiment of the present invention.
  • Figure 23 is a bottom view of a precession bearing gyro overrunning clutch device according to the fifth embodiment of the present invention.
  • Figure 24 is a side view of a precession bearing gyro overrunning clutch device according to the fifth embodiment of the present invention.
  • FIG. 25 shows an F-F cross-sectional view of the precession bearing gyro overrunning clutch device according to the fifth embodiment of the present invention based on FIG. 22 .
  • Figure 26 is an exploded view of a precession bearing gyro overrunning clutch device according to a fifth embodiment of the present invention.
  • Figure 27 is a view of the centrifugal groove spherical raceway and spherical rollers of the inner ring of the precession bearing gyro overrunning clutch device according to the fifth embodiment of the present invention.
  • Figure 28 shows a view of a small section magnet on a centrifugal grooved spherical raceway according to the fifth embodiment of the invention according to Figure 27.
  • Figure 29 is a view of a precession bearing gyro overrunning clutch device running on a slope track according to the sixth embodiment of the present invention.
  • the first outer ring The third step of the second outer circle, 106.
  • the second inner spherical raceway (first outer ring), 184.
  • the second inner spherical raceway (second outer ring),
  • the first outer ring (active precession bearing), 12.
  • the second outer ring (active precession bearing),
  • the diameters of the small-diameter tapered rollers in the half circle (the third slope circumferential rolling elements on the left and right) have multiple sizes.
  • the large-diameter tapered rollers in the half circle (the left and right third slope circumferential rolling elements) have multiple diameters
  • Cylindrical rollers (two ends on a straight line of diameter), 950.
  • Elastic element 951.
  • H-shaped arc-shaped steel sheet 952.
  • the first outer ring (combined bearings and/or passive precession bearings match the tapered rollers in the axial direction)
  • the second outer ring (combined bearings and/or passive precession bearings match the tapered rollers in the axial direction)
  • the first outer ring (combined bearing and/or passive precession bearing with asymmetric spherical rollers in the axial direction)
  • the second outer ring (combined bearing and/or passive precession bearing with asymmetric spherical rollers in the axial direction)
  • the second outer ring axially contacts the annular spherical raceway with the third raceway.
  • the inner ring axially contacts the annular spherical raceway with the first raceway.
  • the fifth non-aligning spherical roller cage (left), 502.
  • the fifth non-aligning spherical roller cage (right)
  • the second outer ring (forming the same characteristics as one of the above), 42.
  • the first outer ring (forming a dome shape),
  • Ball row in the axial direction 808.
  • the ring part on the outer circumference of the cage 813.
  • the ring part (the ring part cover on the inner circumference of the cage, the cross section of the cage forms the upper part of a T shape),
  • Precession bearing gyro overrunning clutch device traveling system 88.
  • Precession bearing gyro overrunning clutch device is equipped with motor and support platform,
  • the central axis of the outer ring (inclined at an angle relative to the central axis of the inner ring to form the axis of rotation)
  • a combined bearing and a precession bearing, a precession bearing gyro, a precession bearing gyro device, and a precession bearing gyro overrunning clutch device are proposed, wherein the cage is used for
  • the ball cage is a radial ball ring bowl hole cage, the axial ball hole cage, the axial triangular hole cage, and the roller cage is an axial annular window cage.
  • the cage is made of polymer, metal such as brass, steel or iron, or any other suitable material recognized by those skilled in the art.
  • an active precession bearing 1 is designed in the present invention.
  • Active precession bearings 1 are used in general machinery and vehicles, such as underground drilling, crushers, plunger pumps, internal combustion engines, power tools, wind power equipment, helicopter rotor mechanisms, robotic arm joints, compressors, reducers, and turboprop engines. and other fields.
  • the active precession bearing 1 (hereinafter referred to as the precession bearing) as the first embodiment of the bearing according to Figures 1 to 11 has an outer ring 100 and an inner ring 200 with a coaxial spherical center with the outer ring 100 as rolling elements.
  • the first spherical inner cavity spherical raceways 181 and 182 can be implemented as at least two rows of first balls 141 and 142 arranged left and right across the spherical center ray in the radial direction, and a third raceway on the third steps 105 and 106
  • Two left and right rows of third ramp circumferential rolling elements 301 and 302 in the ring planar raceways 33 and 34 are relatively axially arranged, as well as cages 151, 152, 303 and 304.
  • the inner ring 200 is formed into an annular shape, and an outer spherical raceway 288 is formed on the outer spherical surface in the radial direction.
  • a plurality of blind holes for retaining solid lubricants are formed in the outer spherical raceway 288 of the inner ring 2 .
  • the first raceway on the left side of the axial direction is formed as an axial annular plane raceway 35
  • the second raceway on the right side of the axial direction is formed as an annular plane raceway 36
  • a plurality of blind holes are formed for retaining solid lubricant.
  • the outer ring 100 forms a three-level step divided into the cross-sections of the first outer ring 11 and the second outer ring 12 in the shape of a cover; the outer diameter of one side of the combined first and second outer rings 11 and 12 is smaller than The outer diameter of the outer ring on the other side, or the outer diameters of the outer rings on both sides of the first and second outer rings 11 and 12 of the combination are the same; the third step of the first and second outer rings 11 and 12 is the same.
  • the first steps 101 and 102 are combined to form a spherical space with an inner cavity having an inner diameter larger than the outer diameter spherical raceway 288 of the inner ring 200.
  • the first steps 101 and 102 are formed into a first spherical inner cavity spherical raceway in their spherical spaces.
  • tracks 181, 182; the second steps 103, 104 of the first and second outer rings 11, 12 form an inner spherical shape with the same inner diameter as the outer diameter spherical raceway 288 of the inner ring 200, and the second steps 103, 104
  • the inner spherical shape is formed into second inner spherical raceways 183, 184; the axial inner walls of the third steps 105, 106 of the first and second outer rings 11, 12 of the outer ring 100 are formed into annular planar raceways 33, 184. 34.
  • the axial outer surfaces of the third steps 105 and 106 are formed into annular planes 195 and 196.
  • a plurality of bolt holes 900 are provided on the outer periphery of the annular planes 195 and 196.
  • the connecting holes 900 are connected from the annular planes 195 and 196.
  • a staircase 103, 104, 101, 102 is formed as a connected integrated ring-shaped staircase, and its first spherical inner cavity spherical raceway 181, 182 and second inner spherical raceway 183, 184 are two concentric spherical upper and lower steps.
  • the spherical raceway, along with the axial inner walls of the third steps 105 and 106, are provided with flat raceways 33 and 34;
  • the end faces 191 and 192 of the left and right adjacent parts are on the spherical center ray in the radial direction or offset relative to the spherical center ray in the radial direction;
  • the outer ring 100 is separated from the outer spherical raceway 288 of the inner ring 200 by the first spherical inner ring.
  • Cavity spherical raceways 181, 182 are arranged on the same ball center; multiple rows of first balls 141, 142 and two rows of third slope circumferential rolling elements 301, 302 are axially distributed by cages 151, 152, 303, 304
  • the outer spherical raceway 288 of the inner ring 200 and the annular planar raceways 35 and 36 of the first and second axial raceways and the first spherical inner cavity spherical raceway of the outer ring 100 are disposed so as to be able to roll in a space-maintained state. between the tracks 181 and 182 and between the left and right annular planar raceways 33 and 34 in the axial direction.
  • the centers of the first spherical inner cavity spherical raceways 181, 182, the second inner spherical raceways 183, 184 of the outer ring 100 and the outer spherical raceway 288 of the inner ring 200 coincide with each other.
  • a plurality of blind holes for solid lubricant retention are formed in the second inner spherical raceway 183 and 184 of the second steps 103 and 104 of the first and second outer rings 11 and 12 and the outer spherical raceway of the inner ring 200 288 contact sliding friction fit movement.
  • a space for accommodating multiple rows of first balls 141 and 142 is provided between the first spherical inner cavity spherical raceways 181, 182 of the combination of the first outer ring 11 and the second outer ring 12 and the outer spherical raceway 288 of the inner ring 200.
  • the first spherical inner cavity spherical raceways 181, 182 and the outer spherical raceway 288 can accommodate multiple rows of first balls 141, 142 and allow them to roll freely at multiple angles at the angular contact points between the two spherical raceways.
  • the cages 151 and 152 have pockets in the general radial direction.
  • the pockets of the cages 151 and 152 are biased toward the center of the ball to hold the ball and cooperate with it.
  • the outer ring can be prevented from being lost.
  • the cages 151 and 152 cooperate with the left and right outer rings 11 and 12 to evenly distribute the axial spacing between the two rows of first balls 141 and 142 on the ring surface, which can ensure the stability of each row of balls 141 and 142 during the rolling process.
  • the relative position of each ball does not change; the cages 141 and 142 adopt a polytetrafluoroethylene cage, which has a certain self-lubricating function and can lubricate the balls.
  • the cages 141 and 142 adopt a ball ring structure. During the precession motion of the bearing, the uniformly distributed pockets on it retain the balls.
  • the outer ring on the side with the larger outer diameter can only form a fit with the bearing box, and the other side with the smaller outer diameter
  • the outer ring can only be flexibly tightened axially without any gap through the spring 902 on the bolt 901; each row of balls 141, 142 is tightly tangential to the inner and outer spherical raceways 288, 181, 182, and the cages 151, 152
  • the pockets biased toward the center of the ball cooperate with the first spherical inner cavity spherical raceways 181 and 182 of the outer ring 100 to prevent the balls from being lost.
  • the pockets only serve to control the relative position of each ball, but they must be attached to the ball rows 141, 141. 142 lateral angle.
  • the third raceways described in the third steps 105 and 106 of the first and second outer rings 11 and 12 are provided with axial annular planar raceways 33 and 34 corresponding to the first and second raceways of the inner ring 200.
  • the axial ring plane raceways 35 and 36 have the same axial distance between them.
  • a pair of axial third slope circumferential rolling elements 301 and 302 are arranged between the raceways 35, 33, 36, and 34 at an axial distance (space) between the inner ring 200 and the outer ring 100.
  • the third slope circumferential rolling elements 301, 302 are composed of two cylindrical rollers 39 and a plurality of tapered rollers 31, 32 combined into each row.
  • the two cylindrical rollers 39 on the diameter line of each row divide the semicircles on both sides into conical rollers 31 and 32.
  • the large diameter end faces of the semicircular rollers 31 on one side of the conical roller 31 face the cages 303 and 304.
  • each conical roller 31, 32 and the two cylindrical rollers 39 of the circumference of the rollers 31, 32 are configured as two opposite flat rolling surfaces of a slope at an angle, that is, a third slope in each row of circumferential rolling elements.
  • the angle of the relative rolling surfaces formed by 301 and 302 ranges from 1° to 15°.
  • the pair of third slope circumferential rolling elements 301 and 302 are arranged in the bearing such that the small diameter tapered roller 31 of the rolling element on the left side is relative to the large diameter tapered roller 32 of the rolling element on the right side and the left and right cylindrical rollers are
  • the sub 39 is relatively parallel to the plane space.
  • the circumferential rollers 31, 32, 39 formed by the pair of third slope circumferential rolling elements 301, 302 are held by annular window cages 303, 304.
  • the pockets 306 on the annular outer peripheral side 305 of the cages 303, 304 It is configured in the shape of tapered rollers 31 and 32 and cylindrical roller 39 .
  • an elastic element 950 is provided in the pocket 306 to contact the large-diameter end surface of each conical roller 31, 32, forming an elastic element 950 distributed on each outer periphery of the semicircle (on the large-diameter conical roller 32).
  • the other elastic elements 950 are distributed in each of the semicircles on the inner circumference (on the small diameter tapered roller 31).
  • the elastic element 950 is configured as an H-shaped arc-shaped steel sheet 951.
  • the arc-shaped recess of the H-shaped arc-shaped steel sheet 951 is connected with a spring 952.
  • the grooves at both ends of the H-shaped arc-shaped steel sheet 951 are preloaded.
  • the spring 952 is inserted into the window pocket 306 to form a movable joint as shown in Figure 11.
  • the other end of the spring 952 abuts the radial ends of the inner circumference and the outer circumference of the window pocket 306.
  • the conical rollers 31 and 32 are snap-in type in the pocket 306.
  • the cross-sections of the cages 303 and 304 form a T shape with an inner peripheral side 398 and an outer peripheral side 305 (the upper part of the T shape is the inner peripheral side, and the lower part is the outer peripheral side).
  • the inner peripheral ring portion 398 of the cage (T-shaped The outer diameter of the upper part (the inner circumferential side) is smaller than the through hole 66 of the outer ring 100.
  • the ring portions 398 of the cages 303 and 304 are configured at the same angle (slope) as the third slope circumferential rolling elements 301 and 302 .
  • the outer diameter of the ring portion 398 of the retainers 303 and 304 (the outer diameter of the inner peripheral side of the T-shaped upper part) is covered with an elastic rubber sealing ring 388 and the axial end surfaces 33 and 34 of the inner and outer rings 200 and 100, 35 and 36 are in contact to form a seal.
  • the pair of third slope circumferential rolling elements 302 and 301 are the same.
  • the active precession bearing 1 is assembled in an operable sequence: the second outer ring 12 with the smaller outer diameter of the outer ring 100 is placed flat on the workbench, and the second step is to assemble a row of third slope circumferential rolling elements on the right side of the axial direction. 302 is placed flat on the third step 106 of the second outer ring 12 with a small outer diameter and the annular flat raceway 34 of the third raceway. In the third step, the first row of first balls 142 on the right side of the first spherical inner cavity spherical raceway 182 is assembled. , the fourth step is to assemble the two rows of rolling elements 302 and 142 placed on the right side of the inner ring 200 in the second outer ring 12.
  • the fifth step use a T-shaped round rod to pass through the shaft hole of the inner ring 200, and assemble it.
  • the half of the second outer ring 12, the two rows of rolling elements 142, 302 and the inner ring 200 are inverted in the other half of the assembled first outer ring 11 with a large outer diameter and the two rows of rolling elements 141, 301.
  • the outer ring 100 of the active precession bearing 1 has different or the same outer diameter and an interference fit with the bearing box.
  • a single-sided first outer ring 11 (large outer diameter) is used to fit the bearing box.
  • the second outer ring 11 has an interference fit with the bearing box.
  • Ring 12 (small outer diameter) will automatically and flexibly tighten axially, which is the torque exerted by the elastic element 902 matched on the nut of the bolt 901. According to the principle of manufacturing universality, the distance from the ball center of the bearing to the axial sides of both sides is equal.
  • the spring 952 uses the moment of one direction of the elastic element 950 formed on the cages 303 and 304 for a certain period of time to deform the distance at which the matching ring portion 398 abuts the shaft hole 66 of the outer ring 100 to cause the tapered roller to 31 and 32 move in the direction of the small diameter end surface, and at the same time, the elastic element 902 of the bolt 901 on the first and second outer rings 11 and 12 automatically tightens axially and bidirectionally.
  • the precession bearing 1 is always in close contact with the first and second outer rings 11 and 12 of the assembly, the plurality of first ball rows 141 and 142, a pair of third slope circumferential rolling elements 301, 302 and the inner ring 200. Cooperate.
  • the plurality of first ball rows 141 and 142 are arranged between the first spherical inner cavity spherical raceways 181 and 182 of the first and second outer rings 11 and 12 and the outer spherical raceway 288 of the inner ring 200
  • It is a free multi-angle point contact rolling motion which is formed by a pair of third ramp circumferential rolling elements 301, 302 to form an angular control of the free movement of the first ball rows 141, 142, and a pair of third ramp circumferential rolling elements.
  • the rolling elements 301 and 302 are relatively matched so that the central axis AF of the outer ring and the central axis AX of the inner ring form an included angle ⁇ °.
  • the rolling of the tangential line contact between the axial ring plane raceways 33, 35, 34, 36 is also subject to the moment of the elastic element 950 on the cage 303, 304.
  • the second inner spherical raceway 183, 184 of the outer ring 100 and the outer spherical raceway 288 of the inner ring 200 cooperate with the sliding friction motion.
  • the contact axial distance between the two raceway surfaces 183, 184, 288 starts from
  • the axial transition effect between the first ball rows 141, 142 and the third ramp circumferential rolling elements 301, 302 in the bearing has a stable cooperating effect with the entire bearing, and their raceway surfaces 183, 184 precess,
  • the axial angle of the axial side of the contact of 288° rotates 360° during the movement (the opposite contact raceway surface is formed on both sides of the bearing side with and without contact during precession).
  • the distance between the tracks 288 forms a free rolling movement for a certain period of time, and then the sliding movement of the second inner spherical raceways 183, 184 and the outer spherical raceway surface 288 is added, and the axial torque of the spring 900 on the bolt 901 causes a pair of ball rows 141, 141, 142 is tangent to the inner and outer spherical raceways 288, between 181 and 182.
  • the restriction of the bearing's angular freedom of movement depends on the axial direction of the axial side ring portions 193, 194 of the first spherical inner cavity spherical raceway 181, 182.
  • the pockets of the cages 151 and 152 that are biased towards the ball center cooperate with the first spherical inner cavity spherical raceways 181 and 182 of the outer ring 100 to keep the balls 141 and 142 from falling. lost.
  • the sliding motion will bring a lot of heat and friction.
  • Different design ideas are adopted.
  • the diameter of each ball in the plurality of first ball rows 141 and 142 is slightly larger than the first spherical inner cavity spherical raceway 181 and 182 to the outer spherical raceway. 288 distance, such that the first ball rows 141, 142 and the third ramp circumferential rolling elements 301, 302 are configured to be mounted together and connected in the bearing for rolling motion first. After the rolling motion form (movement in point and line contact) undergoes deformation or wear of approximately half of the torque, the sliding motion form (movement in surface contact) joins to bear approximately half of the torque.
  • the central axis AF of the outer ring 100 rotates and precesses at an angle ⁇ ° around the central axis AX of the inner ring 200 and rotates and precesses 360° with the ball center of the bearing.
  • This is a stable precessive motion, and the bearing is subject to
  • the magnitude of the second torque (friction force of external force) and the rolling friction movement wear time of the multiple rolling elements 141, 142, 301, 302 are different.
  • the elastic elements 950 and 902 in the bearing will always apply a flexible preload of axial force and radial side moment, so that there will be no phenomenon such as rolling motion disengagement.
  • Appropriate elastic elements 950, 902 are used according to the conditions of the second moment magnitude.
  • the central axis AX of the inner ring 200 and the central axis AF of the outer ring 100 are relatively inclined by an angle ⁇ °, if the inner ring 200 rotates and drives the outer ring 100 to precess in the opposite direction, according to the angle of the third slope circumferential rolling elements 301 and 302 (slope height), when the small angle is designed, the outer ring precesses faster (angular velocity block); when designing a large angle, the outer ring precesses slowly (slow angular velocity).
  • This kind of transmission ratio which has its own motion speed ratio and brings effects, is used in the nutation transmission mechanism (the outer end of the precessing outer ring is provided with a bevel gear with few teeth and a multi-tooth bevel gear on one side of the outer ring axially).
  • the dynamic characteristics (principles) brought about by this precession motion are used in related mechanical fields, such as driving the inner ring to rotate 200° and the outer ring to precess (rotate and nutate) at 100°, which can be used in pendulum crushers.
  • Helicopter twin-blade rotor mechanism single-axis, coaxial
  • swing drill bit for underground drilling swash plate axial propulsion system in plunger pump mechanism
  • deflection assembly of swing-type power tools or drill bits used in power tools the inner ring rotates, the outer ring swings and expands, or the outer ring rotates, and the inner ring swings and expands).
  • the driving motion of an internal combustion engine is a 100-degree precession of the outer ring driving a 200-degree rotation of the inner ring (instead of a swashplate reciprocating mechanism engine ), such as in the mechanism of wind power equipment (the outer ring is connected like a pot lid without blades for low-speed precession, and the output shaft is connected to the inner ring for high-speed rotation), mechanical arm joints, and reducers (the nutation of this application is installed) transmission device), reduction direct-drive nutation transmission motor (the motor drive shaft is equipped with the precession bearing of this application), swash plate compressor, single-shaft turboprop engine (with reduction gears between the drive shaft and the propeller) Axle box, precession bearing replaces the reduction gear box to make the direct-drive precession rotation of the propeller equal to the increase of the propeller blade angle in order to maintain a constant speed) and other fields.
  • a swashplate reciprocating mechanism engine such as in the mechanism of wind power equipment (the outer ring is connected like a pot lid without blade
  • Active precession bearings 1 have two forms of rolling motion and sliding motion depending on the design:
  • each ball in the first row of balls 141 and 142 is slightly larger than the distance from the first spherical inner cavity spherical raceway 181 and 182 to the outer spherical raceway 288 . Then, according to the axial clearance of the left and right outer rings 11 and 12, the bolt 901 applies a pre-tightening force to adjust the torque of the elastic element 902, so that the first balls 141 and 142 of the left and right rows can be accurately adjusted to the first ball.
  • the third ramp circumferential rolling elements 301, 302 are configured to cooperate together with the first ball row 141, 142 in the measured distance between the axial circumferential plane raceways 33, 35, 34, 36 in the bearing.
  • the outer ring 100, the multi-row rolling elements 301, 302, 141, 142 and the raceways 33, 35, 34, 36, 181, 181, 288 of the inner ring 200 and the rolling elements 301, 302, 141, 142 are fatigued and worn, The diameters of the three are changing.
  • the outer diameter of the left outer ring 11 of the outer ring 100 combination is slightly larger than the outer diameter of the right outer ring 12.
  • the first outer ring 11 with the larger outer diameter is connected to the bearing box.
  • the second outer ring 12 with small outer diameter is automatically and flexibly pre-tightened.
  • the elastic element 902 on the head of the bolt 901 has elastic force to keep the outer ring 100, the multi-row rolling elements 301, 302, 141, 142 and the inner ring 200 at all times. connected together.
  • the rolling contact of the multi-row rolling elements 301, 302, 141, 142 is prioritized.
  • the multi-row rolling elements 301, 302 can be adjusted automatically through the automatic adjustment of the pre-tightening force of the elastic element 902 of the bolt 901.
  • the second inner spherical raceways 183, 184 and the outer spherical raceway 288 join in sliding motion.
  • the rolling friction of the original bearing is changed to the combination of rolling and sliding friction of the precession bearing 1.
  • Figures 1 to 11 are assembled according to the above form. It is also possible to set the first spherical inner cavity spherical raceways 181, 182 of the outer ring 100 and the outer spherical raceway 288 of the inner ring 200.
  • the diameter is the same as the spherical inner and outer diameters of the distributed left and right rows of first balls 141 and 142 (the diameter of each ball of the two left and right rows of first balls 141 and 142 is equal to the first spherical inner cavity spherical raceway 181 and 182 to the outer spherical surface distance of raceway 288).
  • the second stepped inner spherical raceways 183 and 184 of the outer ring 100 and the outer spherical raceway 288 of the inner ring 200 have the same diameter.
  • the three of the rings 200 are cocentric and tangent to each other, while the third ramp circumferential rolling elements 301, 302 are configured to cooperate with the first ball rows 141, 142 in the distance measured between the axial annular plane raceways in the bearing. .
  • the present invention designs a passive precession bearing 2 and/or a combined bearing 2.
  • Passive precession bearings 2 are used in general machinery, such as underground drilling, plunger pumps, internal combustion engines, power tools, wind power equipment, helicopter rotor mechanisms, robotic arm joints, etc.
  • the second embodiment of the passive precession bearing 2 (hereinafter also called a combination bearing, precession bearing, nutation bearing) has the same characteristics as the first embodiment, and the divided The outer ring 100 forms a cover ring-shaped first outer ring 21 and a second outer ring 22 whose combined cross-section generally forms a concave shape. Each part of the cover ring-shaped outer ring 21 and 22 forms a three-level ladder.
  • the three-level ladder The first steps 101 and 102 are the middle part of the combination of the first outer ring 21 and the second outer ring 22 in the axial direction of the bearing.
  • the second and third steps 103, 104, 105, 106 extends toward the inner rotation axis direction, and the interior of each step forms two annular end surfaces in the axial and radial directions.
  • the end cover surfaces of the first steps 101 and 102 of the combination of the first outer ring 21 and the second outer ring 22 in the axial direction are the adjacent portions 191 and 192 of the two outer rings and the first spherical inner portion in the radial direction.
  • the inner cavity spherical raceways 181 and 182, the axial end faces 193 and 194 of the second steps 103 and 104 are connected to the radial end faces of the first steps 101 and 102 and form the cavity 181 of the first step combination.
  • the radial direction end surfaces of the second steps 103, 104 form spherical second inner spherical raceways 183, 184, and the axial direction of the third steps 105, 106
  • the inner end surface is the end surface that connects the radial direction of the second steps 103 and 104 and forms a third raceway in the axial direction corresponding to the raceway in the axial direction of the inner ring 200.
  • the radial direction of the third steps 105 and 106 is The outer end faces 195 and 196 of the third steps 105 and 106 in the axial direction are connected to the annular end faces 66 of the third steps 105 and 106 in the radial direction and form
  • the outer planes 195 and 196 of the ring, the outer portions of the first steps 101 and 102 in the radial direction are the outer diameters of the two outer rings 21 and 22 and the outer end surfaces of the third steps 105 and 106 in the axial direction.
  • 195, 196 connections are the outer diameters of the two outer rings 21 and 22 and the outer end surfaces of the third steps 105 and 106 in the axial direction.
  • the combined bearing 2 can also form a precession (nutation) bearing 2 under different settings. It can be said that it combines the pure rolling bearing function itself and the high precession (nutation) motion effect in one structural unit.
  • the third steps 105 and 106 of the first and second outer rings 21 and 22 are provided with a ring plane raceway 44 and a tapered raceway 43 (tapered raceway) in the axial direction corresponding to the third raceway of the inner ring 200 .
  • the annular plane raceway 45 and the tapered raceway 46 (tapered raceway) in the axial direction of the second raceway and the axial raceway distance between them are equal or unequal.
  • a pair of fourth axial tapered rollers 403 and 404 are arranged between the raceways 44, 46, 43, and 45 at an axial distance (space) between the inner ring 200 and the outer ring 100, and are generally oriented in the axial direction.
  • the two tapered rollers are configured by the cages 401 and 402 of the fourth window type pocket to be installed together with the first ball rows 141 and 142 so as to be easily tangent to the raceways in the axial direction of the bearing and in the raceways 44 and 44. 46, rolling movement between 43 and 45.
  • the cages 401 and 402 are also equipped with elastic elements.
  • the elastic element 950 which is the same as the first embodiment, contacts the large-diameter end surface of each conical roller, so that the conical rollers 403 and 404 are kept tangent to the axial direction. Between Roads 44 and 46, 43 and 45.
  • the outer diameter of the ring portion (not shown) on the inner periphery of the cages 401 and 402 (the outer diameter of the upper part of the T-shaped cage cross section) is smaller than the through hole 66 of the outer ring 100 and is partially inserted into the through hole 66 on one side.
  • the other side of the inner ring 200 is in contact with the end surfaces of the axial raceways 45 and 46 of the inner ring 200.
  • the ring part is covered with an elastic rubber sealing ring 388 and the axial raceways 44 and 44 of the inner and outer rings 200 and 100.
  • the end faces of 46, 43 and 45 are in contact to form a seal.
  • raceways in the axial direction of the combined bearing 2 are matched in such a way that the conical raceway 43 of the first outer ring 21 is opposite to the annular plane raceway 45 of the first raceway of the inner ring 200, and the second outer ring 22
  • the annular flat raceway 44 is opposite to the conical raceway 46 of the second inner ring raceway. That is, the cone angle of the conical raceway 43 of the first outer ring 21 and the second conical raceway 46 of the inner ring 200 are the same, and the ring plane raceway 44 of the second outer ring 22 is the same as the ring plane of the first raceway of the inner ring 200. Raceway 45 is parallel.
  • the assembly of the precession bearing 2 is somewhat different from that of the first embodiment.
  • the precession bearing 2 is assembled in an operable sequence: the first outer ring 21 with the smaller outer diameter of the outer ring 100 is placed flat on the workbench, and the second step is to assemble a row of conical rollers 403 on the left side of the axial direction and place them obliquely on the outer diameter.
  • the small first outer ring 21 has a conical raceway 43 of the third step 105.
  • the third step is to assemble the left row of first balls 141 of the first spherical inner cavity spherical raceway 181.
  • the fourth step is to assemble the inner ring 200 to the left
  • the ring plane raceway 45 is placed in the two rows of rolling elements 403 and 141 of the first outer ring 21.
  • a T-shaped round rod is passed through the shaft hole of the inner ring 200, and the half of the assembled first outer ring 21 is The components of the two rows of rolling elements 403, 141 and the inner ring 200 are inverted in the other half of the assembled second outer ring 22 with a large outer diameter, a row of balls 142, and a row of tapered rollers 404, so that the two rows of fourth conical rollers are The rollers are non-parallel and are installed together. Finally, bolts 901 are used to connect the first and second outer rings 21 and 22 to pre-tighten the inner ring 200 and tilt relative to each other.
  • the precession bearing 2 is assembled in an operable sequence: the first outer ring 21 with the smaller outer diameter of the outer ring 100 is placed flat on the workbench, and the second step is to assemble the left row of conical rollers in the axial direction.
  • the ball 403 is placed flat on the conical raceway 43 of the first outer ring 21 with a small outer diameter and the third step 105.
  • the third step is to assemble the first row of first balls 141 on the left side of the first spherical inner cavity spherical raceway 181.
  • the fourth step Place the left side ring plane raceway 45 of the inner ring 200 inside the two rows of rolling elements 403 and 141 of the first outer ring 21.
  • the fifth step use a T-shaped round rod to pass through the shaft hole of the inner ring 200, and put the assembled half
  • the components of the first outer ring 21, two rows of rolling elements 403, 141 and the inner ring 200 are inverted in the other half of the assembled second outer ring 22 with a large outer diameter, a row of balls 142 and a row of tapered rollers 404.
  • the two rows of fourth tapered rollers are configured to be parallel and installed together, and finally the first and second outer rings 21 and 22 are connected with bolts 901 to pre-tighten the inner ring 200 to be relatively parallel.
  • the left and right rows of tapered rollers 403 and 404 may be relatively non-parallel in the bearing (non-parallel installation is not shown).
  • the rolling surface of the left row 403 is affected by the axial ring of the first raceway of the inner ring 200.
  • the plane raceway 45 is controlled to be relatively parallel.
  • the central axis of the left column 403 is relatively parallel and does not coincide with the rotation axis of the inner ring 200.
  • the central axis of the left column 403 when rolling is not parallel but intersects with the central axis of the outer ring 100, and they roll simultaneously.
  • the central axis of the left row 403 moves in a circle with the central axis of the inner ring 200.
  • the rolling surface of the right row 404 is controlled by the axial ring plane raceway 44 of the second outer ring 22 and is relatively parallel.
  • the central axis of the right row 404 is parallel to the second outer ring 22.
  • the central axes of the rings 22 are relatively parallel and not coincident.
  • the central axis of the right column 404 when rolling is not parallel but intersects with the rotation axis of the inner ring 200.
  • the central axis of the right column 404 is rolling in a circular motion with the central axis of the outer ring 100.
  • the rotation axes of the inner ring 200 and the outer ring 100 are relatively inclined, that is, the flat raceway 45 of the inner ring 200 and the outer ring 100 are relatively inclined.
  • the flat raceway 44 of the outer ring 100 is not parallel.
  • the left and right rows of fourth conical rollers 403 and 404 roll relatively obliquely on the conical raceway surfaces 43 and 46 in an inertial space orbit.
  • the inner ring 200 of the precession bearing 2 is relatively tilted.
  • the relatively inclined left and right rows of fourth conical rollers 403 and 404 rotate at high speed to drive the outer ring 100 to perform a pendulum motion and the outer ring 100 will rotate in the opposite direction, which is commonly known as precession motion. .
  • the outer ring 100 of the bearing has precession motion while the inner ring 200 is rotating at high speed. If external force is applied, the angle between the central axes of the inner and outer rings 200 and 100 will change at any time, and the angle of the relative central axes will change.
  • the size changes at any time, but the angle between the central axis is within the control range and is the outer diameter of the inner ring portion (not shown) of the cage (the outer diameter of the inner peripheral side of the T-shaped upper part of the cage ) forms a distance from the through hole 66 of the outer ring 100 and controls the precession angle of the bearing. If the inner ring of the precession bearing continues to rotate at a high speed and there is no external force, the precession bearing 2 will return to pure rolling motion, and the pair of tapered rollers 403 and 404 will return to parallel, and the outer ring 100 will move relative to the inner ring. The rotation direction of circle 200 will stop.
  • the inner ring 200 will be driven to rotate in the opposite direction. On the contrary, it can be used as a drive in general machinery.
  • the present invention designs a passive precession bearing 3 and/or a combined bearing 3.
  • Passive precession bearings 3 are used in general machinery, such as underground drilling, plunger pumps, internal combustion engines, power tools, wind power equipment, helicopter rotor mechanisms, robotic arm joints and other fields.
  • the passive precession bearing 3 (hereinafter also called combined bearing, precession bearing, nutation bearing) as the third embodiment of the bearing according to Figures 15 to 17 has the same features as the second embodiment, and there are no differences in the following. Other than the described features, there are the same features. The same features are quoted from the second embodiment. In fact, the same features can be seen from the first, second to third embodiments. The different features are explained below.
  • the combined bearing 3 can also form a precession (nutation) bearing 3 under different settings. It can be said that it combines the pure rolling bearing function itself and the high precession (nutation) motion effect in one structural unit.
  • the third steps 105 and 106 of the first and second outer rings 31 and 32 are provided with an axial contact annular spherical raceway 54 and a thrust angular contact annular spherical raceway 53 corresponding to the inner ring 200 in the axial direction.
  • the axial contact annular spherical raceway 55 in the axial direction of the first and second raceways and the thrust angular contact annular spherical raceway 56 are equal or unequal in axial distance between them.
  • a pair of fifth asymmetric spherical rollers 51 and 52 in the axial direction are arranged between the raceways 53, 55, 54, and 56 at an axial distance (space) between the inner ring 200 and the outer ring 100, with the approximate axial direction facing the center.
  • a plurality of asymmetric spherical rollers 51, 52 are configured by fifth window pocket cages 501, 502 to be installed together and cooperate with the first ball row 141, 142 to easily set the raceway in the axial direction of the bearing 3 Tangential and rolling motion between raceways 53, 55, 54, 56.
  • the pockets of the cages 501 and 502 are configured in the circumferential direction to be installed together with an elastic element 950 (not shown) to contact the large-diameter end surfaces of the fifth asymmetric spherical rollers 51 and 52, so that the asymmetric spherical rollers
  • the rollers 51, 52 are kept tangentially between the raceways 53, 55, 54, 56 in the axial direction.
  • the raceways 53, 55, 54, 56 in the axial direction of the combined bearing 3 are matched in such a way that the thrust angular contact of the annular spherical raceway 53 of the first outer ring 31 and the axial contact of the first raceway of the inner ring 200
  • the annular spherical raceway 55 is opposite, and the axial contact annular spherical raceway 54 of the second outer ring 32 is opposite to the thrust angular contact annular spherical raceway 56 of the second raceway of the inner ring 200 .
  • the thrust angular contact annular spherical raceway 53 of the first outer ring 31 and the thrust angular contact annular spherical raceway 56 of the inner ring 200 have the same spherical radius and the same contact angle (thrust angle), and the second outer ring 32
  • the axial contact annular spherical raceway 54 and the axial contact annular spherical raceway 55 of the first raceway of the inner ring 200 are parallel and have the same spherical radius.
  • the assembly form of the precession bearing 3 is the same as that of the second embodiment, and will not be described again.
  • the working principle of the precession bearing 3 is the same as that of the second embodiment, and will not be described again.
  • a pair of ball rows 888 in the axial direction of a precession bearing and/or combined bearing designed in the present invention As shown in Figures 18 to 20, a pair of ball rows 888 in the axial direction of a precession bearing and/or combined bearing designed in the present invention.
  • a pair of ball rows 888 in the axial direction of a precession bearing (hereinafter also referred to as a combination bearing, a precession bearing, and a nutating bearing) as the fourth embodiment of the bearing.
  • the cage 808 is designed like this.
  • the ball row 888 in the axial direction can be used in a combined bearing.
  • the combined bearing can also form a precession (nutation) bearing under different settings. It can be said that in one structural unit, it has both the pure rolling bearing function itself and High precession (nutation) motion effect.
  • the third steps 105 and 106 of the first and second outer rings of the precession bearing are provided with a third raceway in which the axial contact annular spherical raceway in the axial direction corresponds to the thrust angular contact annular spherical raceway.
  • the axial contact annular spherical raceway in the axial direction of the first and second raceways of the inner ring 200 and the thrust angular contact annular spherical raceway are equal or unequal in the axial direction between them. .
  • a pair of axial ball rows 888 are arranged between the raceways at an axial distance (space) between the inner ring 200 and the outer ring 100.
  • a plurality of balls 809 facing in the axial direction are held by a cage 808 with a triangular pocket 810.
  • the first ball rows 141 and 142 are configured to be mounted together and arranged to facilitate tangent to the raceways in the axial direction of the bearing and rolling movement between the raceways.
  • An H-shaped arc-shaped elastic steel piece 811 is provided in the triangular pocket 810 of the cage 808, and its elastic element 811 is configured in the circumferential direction to be installed together with the ball 809 in the radial direction of the bearing.
  • the elastic element 811 is arranged in a direction with a larger opening (according to the bearing arrangement, relative to the opening of the raceway in the axial direction in the radial direction, the bottom edge of the triangular pocket is in the circumference or toward the inner circumference or toward the outer circumference),
  • the distance in the circumferential direction of the deformation of the circumferentially uniform elastic elements 811 keeps the balls 809 tangential between the raceways in the axial direction.
  • the tensile force in the axial direction causes Due to the circumferential displacement of the ball 809 in the radial direction, the ball 809 deforms the elastic element and leaves the bottom edge of the triangular pocket 810 without contact.
  • an elastic element 811 is set in the triangular pocket 810 to abut the ball and move in the circumferential direction.
  • the elastic element 811 forms an H-shaped arc-surface steel sheet.
  • the H-shaped arc-surface elastic steel sheet 811 is pre-pressed to concave both ends.
  • the slot is inserted into both sides of the triangle 810, and the concave portion forming an arc contacts the ball 809.
  • a two-point cassette device is formed by using two points in the triangular pocket 810 area of the cage 808.
  • the ball 809 abuts the bottom edge of the triangle 810 and the recess of the elastic steel sheet 811 to secure the ball.
  • the two-point cassette allows the insertion of the elastically deformed ball 809 into the pocket 810 by means of an elastically deformed ball 809 in the area of a point on the elastic steel sheet 811 and a point on the base of the triangle 810.
  • the displacement direction of the balls 809 of a pair of annular ball rows 888 in the axial direction is outward, and elastic elements 811 of triangular pockets 810 are arranged in an annular manner. If the ball 809 moves inward, the elastic element 811 will move inward, and the base of the triangle will surround the outer circumference. After the first and second outer ring connections of the bearing force the axial balls 809 to move slightly in the circumferential direction, the elastic elements 811 are relied upon to keep the balls 809 properly positioned between the raceways along which they roll.
  • the two axial rows of balls 888 can be guided to roll between the thrust angular contact conical raceway surface and the axial contact flat raceway surface; and/or the two axial rows of balls 888
  • the rolling motion can be guided between the conical raceway surface and the conical raceway surface; and/or the rolling motion between the thrust angular contact annular spherical raceway surface and the thrust angular contact annular spherical raceway surface.
  • a passive precession occurs due to the point-contact rolling motion between the axial raceways of the inner and outer rings of a pair of ball rows 888 in the axial direction explained above.
  • the motion effect of precession, pendulum, nutation is relative here.
  • the motion effect of the first ring plane raceway on the left side of the inner ring axis and the second outer ring raceway on the right are described below.
  • the axial ring plane raceway of the ring is parallel, or the second ring plane raceway on the right side of the inner ring axial direction is parallel to the axial ring plane raceway of the first left outer ring, that is, both the inner and outer rings have one side.
  • the axial ring plane raceway is on the left or right side to correspond to the thrust angular contact raceway on the other side.
  • the rolling motion of a pair of axial ball rows 888 in point contact between the axial raceways of the inner and outer rings will not cause no contact.
  • the pair of axial ball rows 888 are controlled by the elastic elements 950,
  • the expansion moment in the radial direction of 902 and the relative tightening moment in the axial direction are tangent between the raceways.
  • precession bearing under the action of external torque, the precession and stability of a gyroscope will appear.
  • an external force occurs during pure rolling, the bearing must instantly switch to precession motion smoothly.
  • the bearing can quickly return to pure rolling motion.
  • the raceways corresponding to the point-contact precession motion of a pair of ball rows 888 are relatively easy to produce, and the corresponding raceway transformation forms in the axial direction of the bearing are also diverse. The above content of the invention is described.
  • An active precession (precession, oscillation, nutation) motion effect can be set, and the active precession (precession, oscillation, nutation) movement effect of the inner ring of the bearing (not shown)
  • An inclined ring plane raceway is set on one side (the central axis of the ring plane raceway on the axial side of the inner ring is set obliquely relative to the axis of the transmission shaft) and an axial contact ring plane raceway is set on the other side.
  • the thrust angle of the outer ring in the axial direction contacts the annular spherical raceway or the axial contact spherical raceway or tapered raceway (flat raceway with tapered angle).
  • the size of the balls 809 of the pair of ball rows 888 in the middle is also relatively easy to select. It is controlled by the elastic element 811 of the triangular pocket 810 on the cage, and the circumferential direction is tangent to the axis of the inner and outer rings. between the centering raceways.
  • the relative precession (precession, oscillation, nutation) movement of the inner ring or the outer ring it is subject to the point contact of the rolling surfaces of a pair of ball rows 888. It is used in the mechanical field to use the friction of point contact rolling motion.
  • the transmission use time is shorter than that of friction transmission of line contact rolling motion.
  • the present invention designs a gyro precession active stabilization device with precession bearings and stable precession bearings, and a precession bearing gyro overrunning clutch device with overrunning clutch 4 , a system and method for walking on a sloped plane track.
  • the precession bearing gyro overrunning clutch device 4 as the fifth embodiment of the bearing according to Figures 21 to 28, according to the second, third and fourth embodiments (the fourth embodiment does not include an active precession bearing ) has the same working principle and the same features, except for the features not described below. The different features are explained below.
  • the precession bearing gyro overrunning clutch device 4 described in Figures 21 to 28 can also form a gyro precession active stabilizing device without the features of the overrunning clutch.
  • the design has the characteristics of an overrunning clutch, it can be said that the function of the precession type and stable gyro precession active stabilization device of the precession bearing and the high overrunning clutch function are combined in one structural unit. movement effect.
  • a rotating rigid body moving on a slope plane track a system and method for a rotating rigid body gyroscope (not shown) to walk on a slope plane.
  • the gyroscope of a rotating rigid body on the same inclined plane slope has the same direction of rotation and the same forward direction.
  • the rotating rigid body will move downward at a low rotation speed, and will move upward at a high rotation speed.
  • Walking, when the rotation speed matches the slope the rotating rigid body will walk straight at that slope height position (here refers to the upper and lower positions of the same slope).
  • a straight-line walking height will be formed.
  • the relative discussion is also subject to the radius of the contact angle of the rotating rigid body and the speed of linear motion formed by contact with the slope surface.
  • the radius of the contact angle of the rotating rigid body on the smooth surface of the slope is small (less than 1 mm).
  • the sliding tendency is less than the above; the radius of the contact angle of the rotating rigid body is large (between 1:6 relative to the aforementioned radius), and there will be no downward sliding tendency.
  • the contact angle of the rotating rigid body is different from the angle size (height) of the slope surface that forms the contact angle (lateral position of contact).
  • the gyro precession active stabilization device is explained based on the principles and functions of the precession and stability of the precession bearing (borrowing the drawing of the fifth embodiment).
  • the first outer ring 42 of the outer ring 100 is arranged in a dome shape.
  • the dome-shaped first outer ring 42 is provided with three steps.
  • the third step of the three steps extends to form a closed cover.
  • the first raceway 466 in the axial direction of the inner ring 200 is formed into a circular planar raceway 444 on the axial inner side of the third step, and an axial convex is provided in the middle of the axial outer side of the third step.
  • the nose cone 48 or hemisphere (not shown) has a cone angle of 100° to 178°, preferably a cone angle of 170° to 178°, and the axial outer surface of the third step is
  • An axial annular plane 196 is provided on the outer periphery and is connected to the nose cone 48 or hemisphere (not shown) in the middle.
  • the annular plane 196 is provided with a plurality of connecting holes 900 corresponding to the second outer ring 41.
  • the connecting holes 900 are connected from The annular planes 195 and 196 pass through the axial adjacent portions 191 and 192 of the first step and open to the opposite surface with threaded counterbore, and the nut head of the bolt 901 shown in Figure 26 is equipped with an elastic element 902 and then passes through.
  • the connecting hole 900 relatively connects the first and second outer rings 42 and 41 .
  • the second step of the first outer ring 42 is provided with a second inner spherical raceway 184, and the first step is provided with a first spherical inner cavity spherical raceway 182, which are the same as the above-mentioned settings.
  • the second outer ring 41 is provided with the same as the above-mentioned settings. . Discussing the motion effect, the hemisphere is better than the nose cone 48 (cone), the contact angle of the hemisphere is greater than the contact angle of the cone (the top of the nose cone), and the device is preferably a hemisphere.
  • the inner ring 200 is configured as an inner ring 200 with a rod end 202, the first raceway in the axial direction is formed as a recessed conical raceway 466, and the second raceway in the axial direction is formed into a recessed conical raceway 466.
  • the annular flat raceway 455 and the middle part are formed as a rod end 202; and/or the inner ring is provided with an annular center-penetrating shaft connection (not shown), and the third annular axial direction
  • One raceway is formed as a recessed conical raceway, and the second raceway in the annular axial direction is formed as an annular planar raceway; and the radial outer spherical raceway 288 of the inner ring is in contact with the aforementioned
  • the settings are the same.
  • the row of conical rollers 404 on the right is tangent to the circular planar raceway surface 444 of the first outer ring 42 and the conical raceway surface 466 of the first axial raceway of the inner ring 200.
  • the row of cones on the left is
  • the roller 403 is tangent to the conical raceway surface 43 of the second outer ring 41 and the annular planar raceway surface 455 of the second axial raceway of the inner ring 200.
  • the two rows of conical rollers 403 and 404 can be guided. Rolling motion occurs between the conical raceways 43 and 466 and the flat raceways 455 and 444.
  • the rod end of the inner ring of the precession bearing gyro is connected to the motor shaft (not shown), the motor housing is connected to a support platform, the motor is powered on, and/or the support platform is configured to integrate the battery support platform and the motor. connect.
  • the nose cone 48 or hemisphere of the first outer ring 42 of the outer ring 100 of the precession bearing gyro lies on its side on a bearing platform or flat ground.
  • the outer ring 100 precesses.
  • the nose cone 48 of the outer ring 100 or the axial apex of the hemisphere will stand stably on the load-bearing platform.
  • the outer ring 100 will precess (nutate) to keep the support platform connected to the inner ring 200 stable.
  • a pair of fifth asymmetric spherical rollers 51, 52 (referring to the rolling element expression of the third embodiment) can be provided in the axial direction of the precession bearing of the above-mentioned gyroscopic precession active stabilization device to construct the bearing.
  • the raceways in the axial direction correspond to each other, and the pair of fifth asymmetric spherical rollers 51 and 52 are configured to easily roll between the raceways in the axial direction of the bearing and have a precession motion effect exerted by external force.
  • a precession bearing gyro overrunning clutch device is used as the fifth embodiment according to Figures 21 to 28.
  • the principle and function of the gyro precession active stabilization device based on the precession bearing gyro and the rotating rigid body walking on the slope track.
  • the precession bearing gyro overrunning clutch device 4 is arranged in such a way that the device 4 is a centrifugal type (centrifugal type) with multiple circumferential openings on the radial outer spherical raceway 288 of the inner ring 200 in the center of the bearing.
  • a section of grooved spherical raceway 77, the deep end surface of each centrifugal grooved spherical raceway 77 of the inner ring 200 (the end surface on the inner circumference of the centrifugal type) is provided with a connecting small section of magnet 79 (Fig.
  • the centrifugal grooved spherical raceway 77 is equipped with a spherical roller 78 and the first steps 101 and 102 of the combined first and second outer rings 42 and 41 and the first spherical inner cavity spherical raceways 181 and 182. Contact occurs when transmitting torque.
  • a pair of ball rows 888, tapered roller rows 403, 404, and asymmetric spherical roller rows 51, 52 are provided between the raceways in the axial direction of the inner and outer rings 200 and 100, corresponding to the aforementioned raceways.
  • the plurality of first ball rows 141 and 142 arranged between the inner and outer spherical raceways 288, 181 and 182 of the inner and outer rings 200 and 100 in the radial direction are the same as described above.
  • the rod end 202 of the inner ring 200 of the precession bearing gyro overrunning clutch device 4 is connected to the motor, and the shell of the motor is connected to the battery integrated support platform.
  • the function and principle of the device 4 When the inner ring 200 rotates on the fixed axis, the motor of the precession bearing gyro overrunning clutch device 4 on the load-bearing platform (slope track) is turned on to drive the inner ring 200 to rotate.
  • the spherical roller 78 is adsorbed on the magnet 79.
  • the nose cone 48 or the side of the hemisphere on the outer ring 100 is tilted and lies on the horizontal bearing platform and begins to precess.
  • the rotation speed of the inner ring 200 continues to increase, it is adsorbed on the magnet 79.
  • the spherical roller 78 moves and contacts the first spherical inner cavity spherical raceways 181, 182 of the outer ring 100, that is, the transfer rotation forms a gyro rigid body that rotates on the bearing platform.
  • the bearing platform The lifting mechanism on the bearing is lifted, the bearing platform is in an inclined state, and the precession bearing gyro overrunning clutch device 4 walks straight on the inclined bearing platform. If the lifting mechanism on the load-bearing platform moves, the load-bearing platform is in a horizontal state, and the precession bearing gyro overrunning clutch device 4 stops moving forward and rotates on the spot. For example, the inner ring of the motor of the precession bearing gyro overrunning clutch device 4 stops rotating. At this time, the outer ring 100 of the precession bearing gyro overrunning clutch device 4 standing on the horizontal bearing platform is still rotating, and the outer ring 100 The rotation breaks away from the spherical roller 78 and does not transmit torque.
  • the spherical roller 78 moves to the depth of the grooved spherical raceway 77 and is attracted by the magnet 79.
  • the nose cone 48 or hemisphere on the outer ring 100 moves along with the platform.
  • the friction force and the gravitational moment of the precession bearing gyro override the clutch device 4 itself.
  • the rotation speed of the outer ring 100 attenuates and starts to precess, and then stops.
  • the nose cone 48 on the outer ring 100 or the side of the hemisphere is tilted on the bearing platform to maintain the internal force.
  • Circle 100 connects the motor to the battery integrated support platform level.
  • the present invention designs a gyro precession active stabilization device with precession bearings and a stable precession bearing, and a precession bearing gyro overrunning clutch device 4 with overrunning clutch, which is used in System 8.
  • Method for walking on a sloped plane track As shown in Figure 29, the present invention designs a gyro precession active stabilization device with precession bearings and a stable precession bearing, and a precession bearing gyro overrunning clutch device 4 with overrunning clutch, which is used in System 8.
  • the walking system 8 of the precession bearing gyro overrunning clutch device of the sixth embodiment according to the second, third, fourth and fifth embodiments (the fourth embodiment does not include active precession bearing), the following explains the method and system for walking on a slope track by connecting the motor 818 and the battery 828 to the precession bearing gyro overrunning clutch device 4.
  • a precession bearing gyro overrunning clutch device 4 a system 8 and method for walking on a slope track for transportation.
  • the slope track is made of steel plates or other materials that can form a flat surface.
  • the angle of the track slope is between 1 degree and 20 degrees.
  • the outer ring 100 with the nose cone 48 is in precession when the inner ring 200 starts and stops, and the precession bearing gyro device keeps the support platform 828 vertically stable.
  • the precession bearing gyro overrunning clutch device 4 rotates in the same direction on the same slope and walks in the same straight line. It will be the same. Multiple precession bearing gyro overrunning clutch devices 4 (vehicles) moving in the same direction at the same rotation speed and different up and down positions will not collide when walking on the slope track.
  • the rod end 202 of the inner ring 200 of the precession bearing gyro overrunning clutch device 4 is connected to the drive shaft of the motor 818, and the shell of the motor 818 is connected to the battery integrated support platform 828.
  • the ramp track 855 is divided into an inner ramp track 815 and an outer ramp track 805 for convenience.
  • the precession bearing gyro overrunning clutch device 4 is located on the lifting mechanism platform 866, and the lifting mechanism platform 866 is not lifted and is in a horizontal position.
  • the nose cone 48 or one side of the hemisphere of the outer ring 100 of the precession bearing gyro overrunning clutch device 4 is tilted and lies on the horizontal lifting mechanism platform 866, and the pair of rolling elements in the axial direction are not parallel. among.
  • the nose cone 48 or the top of the hemisphere of the outer ring 100 stands on the horizontal lifting mechanism platform 866, and the rotation axis of the outer ring 100 coincides with the rotation axis of the inner ring 200.
  • the inner ring 200 and the outer ring 100 maintain an overlapping state, and the spherical rollers 78 on the inner ring 200 are still attracted by the magnet 79 .
  • the inner ring 200 rotates at high speed, and the centrifugal force of the spherical roller 78 on the magnet 79 deep in the grooved spherical raceway 77 is greater than the adsorption force, and the spherical roller 78 breaks away from the magnet.
  • the spherical roller 78 driven by the inner ring 200 to run on the grooved spherical raceway 77, the spherical roller 78 runs to the outer circumference of the grooved spherical raceway 77 and contacts the first spherical inner cavity spherical raceways 181, 182 of the outer ring 100 to form transmission torque.
  • the precession bearing gyro overrunning clutch device 4 rotates on the horizontal lifting mechanism platform 866 like a rotating rigid body (gyro).
  • the outer ring 100 is still rotating.
  • the first spherical inner cavity spherical raceways 181 and 182 of the outer ring 100 drive the spherical rollers 78 to run to the depth of the inner circumference of the grooved spherical raceway 77 of the inner ring 200 and are magnetized. 79 sticks.
  • the outer ring 100 stops precessing, the pair of rolling elements in the axial direction return to non-parallel, and the nose cone 48 or one side of the hemisphere of the outer ring 100 lies on the horizontal lifting mechanism platform with an inclination. 866, keep the battery integrated support platform 828 horizontally connected to the motor on the inner ring 200.
  • the active precession bearing as the seventh embodiment has the same features as the second, third, and fourth embodiments (the fourth embodiment does not include the passive precession bearing), except for the features not described below. Characteristics, different characteristics are explained below.
  • an active precession bearing is used for the precession (precession, nutation) motion characteristics of the mechanical dynamic system.
  • the bearing with active precession (precession, oscillation, nutation) motion effect can also be provided with a pair of rolling elements, and the third axial raceway of the third step of the first and second outer rings reaches
  • the two rows of second rolling elements are arranged at a distance (space) between the first and second raceways in the axial direction of the inner ring.
  • the two rows of second rolling elements are arranged as a pair of tapered rollers or a pair of asymmetric spherical surfaces. Roller.
  • the active precession (precession, swing, nutation) bearing is provided with an inclined raceway on one side of the inner ring (the central axis of the raceway on the axial side of the inner ring is inclined relative to the axis of the transmission shaft (provided on the ground) and the other side is provided with an axial contact raceway corresponding to the raceway in the axial direction of the outer ring.
  • the raceway in the axial direction of the active precession bearing is constructed as a tapered roller or an asymmetric spherical roller. Raceway surface.
  • the distance between the pair of tapered rollers or the pair of asymmetric spherical rollers in the axial direction is not equal, that is, the row of rolling elements leaning against the inclined raceway on the axial side of the inner ring is larger than the row of rolling elements on the axial side.
  • the active precession bearing of the eighth embodiment has the same working principle and the same features as the first embodiment, except for features not described below. Different features are explained below.
  • a coupling motion bearing of nutation and precession is used for the nutation motion characteristics of the mechanical dynamic system.
  • the central axis of the ring plane raceway provided on the first and second raceways on the axial left and right sides of the inner ring is tilted relative to the axis of the transmission shaft, and the first and second raceways are
  • the inclined ring plane raceway is arranged in parallel, and the angle between the central axis of the inclined ring plane raceway and the axis of the transmission shaft is between 1° and 15°.
  • Two rows of third slopes are provided in the distance (space) between the ring plane raceway of the third raceway of the first and second outer rings of the outer ring and the inclined ring plane raceway of the first and second raceways of the inner ring. Circumferential rolling element and let it roll between the raceways in the axial direction of the inner and outer rings.
  • the slope (angle) of the two rows of third ramp circumferential rolling elements is 1° to 15°, and the slopes of the two opposite rows of third ramp circumferential rolling elements are the same.
  • the distance from the axial planar raceway of the first outer ring to the inclined planar raceway of the inner ring is the same as the distance from the axial planar raceway of the second outer ring to the second raceway of the inner ring.
  • the distance between the raceways of the inclined ring planes is equal and/or unequal; that is,
  • the axial distance of the third ramp circumferential rolling element in the left column is the same and/or different from the axial distance of the third ramp circumferential rolling element in the right column;
  • the left row of third ramp circumferential rolling elements are tangent to the annular planar raceway surface of the first outer ring and the inclined annular planar raceway surface of the first raceway of the inner ring
  • the right row of third ramp circumferential rolling elements are The element is tangent to the annular planar raceway surface of the second outer ring and the inclined annular planar raceway surface of the second raceway of the inner ring.
  • the left and right opposite third slope circumferential rolling elements form a high slope (large tapered roller) corresponding to a low slope (small tapered roller).
  • the relative inclination of the rotation axis of the inner ring and the rotation axis of the outer ring is that under different settings, the relative angle and slope form an angle and the rotation axis intersects at the center of the ball.
  • the axes of the inner and outer rings overlap during rolling. .
  • the two rows of third ramp circumferential rolling elements can be guided to roll between the inclined ring planar raceway surface and the axial ring planar raceway surface, while a plurality of axially evenly distributed first ball rows are arranged on the inner ring.
  • the outer spherical raceway and the first spherical inner cavity spherical raceway of the outer ring are in free multi-angle spatial trajectory point contact rolling motion, and have surface contact between the outer spherical raceway of the inner ring and the second inner spherical raceway of the outer ring. sliding motion.
  • the precession bearing has two rows of third slope circumferential rolling elements and the rolling motion of the inclined annular plane raceway of the inner ring will produce two motion effects: precession and nutation of the outer ring.
  • the combined action of the two motions forms a coupling motion of nutation and precession, which What drives the nutation and precession of the outer ring in the opposite direction is the stable and continuous nutation and precession motion of the outer ring around the center of the ball.
  • the friction and rolling of two rows of third-slope circumferential rolling elements between the inner and outer raceways brings about the mechanical effect of transmission motion, which can be applied to the machinery as mentioned above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种组合轴承(1、2、3)、进动轴承(1、2、3)及进动轴承陀螺、陀螺进动式主动稳定装置、进动轴承陀螺超越离合式装置(4、88)在斜坡轨道上行走系统(8)、方法和交通运输系统(8);该组合轴承的内圈(200)和外圈(100)的球面滚道(181、182、183、184、288)的重合和隔开与内、外圈轴向中的滚道相对应,并配置有针对不同滚动体(141、142、301、302、403、404、51、52、888)的运动控制方式,组合轴承内圈形成环状的径向球面滚道(288)和轴向中的第一、第二滚道(466、455),外圈形成剖分式的第一、第二外圈(11、21、31、12、22、32)的内部滚道;组合轴承的第一、第二外圈的外径不同,一边外圈与轴承箱过盈配合,另一边外圈通过与螺栓(901)配套的弹性元件(811、902、950)自动在轴向拉紧,同时轴向中一对滚动体通过保持架(151、152、303、304、401、402、501、502、808)上的弹性元件在径向柔性预紧,可以使得轴承游隙自动柔性调整;采用该组合轴承,可以使得相关部件、装置及系统保持稳定、精确的运动。

Description

轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统
本申请是分案申请,原申请的申请号是:202010821664.X,申请日是2020年08月15日,发明名称为“一种角运动自由度的滚动关节轴承”针对的分案申请号是:202111007956.0,分案提交日:2021年08月30日,发明名称为“轴承,进动轴承及进动轴承陀螺,以及利用进动轴承陀螺的陀螺进动式主动稳定装置”
技术领域
本发明涉及轴承领域。在第一方面,本发明提供一种组合轴承1、2、3,特征是内、外圈的球面滚道重合与隔开和内、外圈的轴向中的滚道对应并配置不同滚动体的控制运动方式;内圈形成环状的径向球面滚道和轴向中的第一、第二滚道;外圈形成剖分式的第一、第二外圈的内部滚道接触形貌的改动,在轴承的中部、径向隔开的内外圈的球面滚道空间,是轴向分布的保持架保持的角接触的多个滚珠列的点接触的滚动运动,并有在轴承中部的两侧的内、外圈的球面滚道重合的面接触的滑动运动,还有远离轴承中部的控制角运动自由度的配对的轴向中的滚动体在内、外圈的轴向中的滚道之间的滚道构造成滚动体的接触形貌的滚动运动;在轴承的第一、第二外圈的外径不同的一边外圈与轴承箱过盈配合,另一边外圈通过螺栓配套的弹性元件自动轴向拉紧,同时轴向中一对滚动体通过保持架上的弹性元件的径向柔性预紧,可调轴承游隙自动柔性调整,组合轴承始终处于稳定的无间隙的精确运动,用于通用机械,相对稳定的旋转的内圈设置成环状刚体也可以用于陀螺仪的转子。
特别的涉及进动(旋进、旋摆、章动)轴承2、3的陀螺进动效应的技术领域。在第二方面,本发明提供一种进动效应的轴承,它是由内、外圈的对应的轴向中的滚道(环平面滚道、环形球面滚道)与具有大体轴向的锥角的滚道(圆锥面滚道、推力角接触环形球面滚道)配置的一对滚动体控制,是内圈轴向左边平面滚道与右第二外圈轴向的平面滚道平行,或者内圈轴向右平面滚道与左第一外圈轴向的平面滚道平行,即,内、外圈的都有一侧轴向的环形的滚道(平面、球面滚道)分开配置,滚动体相对的滚道的另一侧滚道可以形成凹进或凸出的推力角接触滚道(圆锥面滚道、环形球面滚道),在装配时可以控制相对的轴向中的滚动体不平行,一侧滚动体的旋转轴线受外圈控制平行于外圈的旋转轴线,另一侧滚动体的旋转轴线受内圈控制平行于内圈的旋转轴线,不平行的滚动体的其中一列的旋转轴线都有与内、外圈的旋转轴线相交,即内圈与外圈的旋转轴线相交,由轴向中的一对滚动体滚动运动驱动内圈或外圈进动(章动),这种运动方式称一种被动的进动运动,受时间和速度制约轴承进动(章动)运动衰减会趋于稳定的相对运动(纯滚动运动),有外力施加轴承又会进动运动,即,进动性与稳定性的运动效应。用于通用机械,如车辆、风电、减速器、直升机旋翼机构,机械臂关节等。
在第三方面,本发明还涉及一种主动式的进动(章动)运动效应的进动轴承1领域,是轴承的内、外圈的轴向的平面滚道与轴向中的斜坡的环形的滚动元件(圆锥滚子和圆柱滚子组合成一个角度的不平行的滚动面)配合主动控制进动(章动)运动,即内圈与外圈的旋转轴线相交于球心,即,轴向中的一对环形斜坡滚动元件与内、外圈的轴向平面滚道相切、并滚动运动迫使内圈或外圈的主动式进动(章动)运动,一方旋转运动相对的另一方会向相反方向旋转运动并伴随主动式进动(章动)运动,形成滚动元件与滚道的摩擦的传动运动并形成传动比,是围绕球心稳定的持续的主动式的进动(章动)运动效应与传动运动效应,用于通用机械和该类机械的驱动与传动,如车辆、风电、减速器、直升机旋翼机构,机械臂关节,压缩机,斜盘发动机等。
在第四方面,并且涉及在主动式进动轴承的基础上的另一种的章动和进动的耦合运动效应。是内圈的轴向的左、右侧面的第一、第二滚道设置的环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置,所述第一、第二滚道的倾斜环平面滚道是平行设置。所述当驱动内圈旋转,两列第三斜坡环周滚动元件(圆锥滚子和圆柱滚子组合成一个角度的不平行的滚动面)在内、外圈滚道之间相切并滚动,在轴承中所述两列第三斜坡环周滚动元件具备进动运动与所述内圈的倾斜环平面滚道具备往复直线摆动运动(章动运动),两种运动共同的作用形成章动和进动的耦合运动,将驱动外圈章动和进动。具有章动和进动的耦合运动的动力学特性的章进轴承可以用在机械当中,如章动传动运动的形成传动比。
在第五方面,涉及一种主动式的进动(章动)运动效应的进动轴承领域,设置主动式的进动(旋进、旋摆、章动)运动效应的轴承的轴向中的配置一对滚动体,所述第一、第二外圈的第三阶梯的轴向的第三滚道到所述内圈轴向的第一、第二滚道的距离(空间)配置的所述两列第二滚动体。
所述主动式的进动(旋进、旋摆、章动)轴承的内圈的一侧设置倾斜的滚道(内圈的轴向的一侧环形滚道的中心轴线相对于传动轴的轴线倾斜地设置)和另一侧设置轴向接触的滚道对应外圈的轴向中的滚道(推力角接触环形球面滚道或轴向接触球面滚道或锥面滚道),这样设计的方案,受内圈的轴向中的两侧不平行的形成轴向中的一对滚动体相对不平行,一对滚动体在轴向空间中形成一个夹角,左侧滚动体与右侧滚动体的轴向的距离不同。其工作原理:在内圈由轴驱动的旋转,一对滚动体在内、外圈的轴向中的滚道之间滚动,会驱动外圈出现进动(旋进、旋摆、章动)效应。反之,驱动外圈进动(旋进、旋摆、章动)运动将会带动内圈旋转运动,用于机械领域。
在第六方面,并且涉及一种包括所述进动轴承2、3的进动性与稳定性的进动轴承陀螺装置、及进动轴承陀螺装置的进动式主动稳定平台,它的特征是外圈的一侧外圈的轴向外侧的中部设置鼻锥或半球体,外圈的鼻锥或半球体立在承载平台上保持内圈连接的电机的外壳连接的支撑平台的平衡稳定,用于平衡车,机械装备,大楼减振,光刻机超精密高速工件台、光学、雷达等。
在第七方面,特别的涉及旋转刚体在平面斜坡平台上行走方法、系统的技术领域,引用前述的进动轴承2、3、进动轴承陀螺装置的进动性与稳定性。本发明提供一种利用进动轴承陀螺装置的超越离合式的外圈的鼻锥或半球体在斜坡平面轨道上行走的系统4、方法,它的特征是装置的陀螺轴承的内圈的径向方向外球面滚道的中部设有环周的多个离旋式(离心式)的凹槽球面滚道与配置球面滚子在内圈与外圈的球面滚道的超越离合传递转矩运动形成如旋转刚体在斜坡平台上直线行走运动。
背景技术
目前的组合轴承大部分都是作为支承轴来利用,它可以引导轴的旋转,也可以承受轴传来力的一种机械零件,是内圈与外圈的相对旋转运动,单一的滑动运动或者滚动运动;
本申请实际解决的技术问题是滚动运动与滑动运动结合的点、线、面接触的自由度运动的组合轴承。组合轴承的内圈形成为中心贯通的圆环状,圆环状的内圈径向形成球形外球面滚道和轴向形成第一、第二环形轴向滚道。组合轴承的外圈形成为剖分式的第一外圈、第二外圈,左右的第一外圈、第二外圈每部分外圈是由第一阶梯、第二阶梯和第三阶梯一体成型。每部分外圈的第一阶梯的径向形成有第一球状内腔球面滚道、第二阶梯径向内端部形成有第二内球面滚道、第三阶梯形成与内圈的环形轴向滚道配合放置第二滚动体的第三环形轴向滚道。组合轴承通过轴向分布的具有大体径向的第一保持架保持的多个第一滚珠列可以在内圈的外球面滚道与外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触滚动运动;组合轴承还通过内圈轴向两侧的第二保持架轴向保持第二滚动体与外圈的第三轴向滚道的线或点接触的内、外圈轴向中的滚道之间滚动运动并控制轴承中多个第一滚珠列的自由度;组合轴承还通过外圈的第二内球面滚道与内圈的外球面滚道的滑动的面接触运动。组合轴承通过左右第一、第二外圈的轴向外侧外周的端面相对设置多个错开的连接孔,第一外圈的多个连接孔贯通到第二外圈上带上螺纹,第二外圈的多个连接孔贯通到第一外圈上带上螺纹(第一、第二外圈的每部分由多个通孔和多个螺纹沉孔错开均布)。左边右边的多个连接螺栓分别双向连接左右的第一、第二外圈,同时螺栓的螺帽上套上弹性元件,采用螺栓螺帽上加入弹性元件相对的自动拉紧左右的第一、第二外圈与多列第一滚珠、第二滚动体、内圈的连接。外圈的外径大的一边外圈与轴承箱过盈配合,外径小的另一边外圈自动柔性预紧,轴承无间隙柔性预紧,可调轴承游隙自动柔性调整很好的解决了这个问题,通过改变滚道的相对轴向位置,可以得到一个确定的游隙值。组合轴承基本处于无振动无跳动,轴承精确运转,稳定性高。结合点、线、面运动方式,轴承轴向方向的球心的左右的每列第一滚珠和左右的第二滚动体先滚动运动承载近似一半的力,根据运转负载的不同,载荷超过轴承球心的左右的每列第一滚珠和左右的第二滚动体所受的力矩(载荷),第一滚珠列、第二滚动体有轻微形变,这时外圈的第二内球面滚道与内圈的外球面滚道开始滑动运动承载近似一半的力矩(载荷)。在左右每列第一滚珠和左右的第二滚动体磨损后,轴承上的弹性元件相对自动带紧第一外圈、第二外圈并有轴向保持架上自带的弹性元件的周向力矩,同时设置的小径滚珠(球心中的一列第一滚珠的每个滚珠直径相比轴向中球心的左右每列第一滚珠的每个滚珠 直径要微小)的球心中的一列第一滚珠加入滚动运动,和外圈的第二内球面滚道与内圈的外球面滚道开始滑动运动。根据滚动与滑动运动先后顺序结合,与轴承所受的载荷(力矩)的方向,轴承会出现微动磨损,通过轴承自带的弹性元件相对的轴向拉紧第一、第二外圈的配合,轴承在使用很长时间后不会出现失效。在没有轴向中的一对滚动体的情况下限制轴承角运动自由度取决于外圈第一球形内腔球面滚道的轴向两侧宽度与最外边的左、右每列第一滚珠的距离,在运动角度偏摆、偏转大时最外边的左、右每列第一滚珠的保持架会和外圈第一球形内腔球面滚道的轴向两侧接触。多列第一滚珠是由轴向间隔分布的保持架控制,轴向的左、右每列滚珠是一个独立的由单个的保持架的不同数量的兜孔保持,形成内圈的外球面滚道与外圈的第一球状内腔球面滚道的角接触。轴向分布的每列不同径向直径的保持架保持滚珠是在左右半球空间中相对组合由连接的螺栓自带的弹性元件柔性连接在左右第一、第二外圈与内圈的点接触旋转运动。在外力的作用下轴向分布多列第一滚珠在内外圈的滚道中作自适应的摆动、偏转,倾斜等运动。轴向均布的多个第一滚珠列运动轨迹自由度全向运动,保持架可以柔性组合左右相对的每列第一滚珠的其中一对的滚珠直径微小于另一对的滚珠直径。因此,利用组合轴承稳定的旋转也可以用于陀螺仪的转轴上,或把组合轴承的内圈当成陀螺仪的转子使用。
进动、章动原理,如陀螺具有定轴性。陀螺绕支点进动原理:自旋陀螺有一个重要特性,那就是它受到外力矩作用时会产生回转效应,即进动,而且进动方向与自旋方向始终保持一致性,如我们手持一个自旋陀螺用力向左或右摆动,它们都会产生进动,且进动方向与自旋方向始终保持一致性;逆时针自旋陀螺受力矩后会产生逆时针进动,顺时针自旋陀螺受力矩后会产生顺时针进动。如果我们在进动初始状态对陀螺体质心绘成一个坐标,就可得出这样一个结论:陀螺轴受力F方向与其进动轴Ω方向及进动速度V方向三者之间始终保持相互垂直状态,即具有“三垂性”,如用现在教科书的矢量叉积概念描述就是Ω=F×V.“三垂性”是陀螺产生进动必须遵守的最基本原则,也是陀螺力学使用矢量叉积的物理本义所在;以此原则为基础,以不变应万变,陀螺的其他运动现象就都可以迎刃而解了。
有关介绍进动(旋进、旋摆,章动)运动的进动轴承的相关文献和专利未有论述。本申请的进动(章动)轴承是在组合轴承的基础上轴向中的滚道改动接触形貌配合第二滚动体的形成进动(章动)轴承的没有外力矩的主动式进动运动。所述第一、第二外圈的第三阶梯的轴向的第三滚道设置的所述环平面滚道到所述内圈轴向的第一、第二滚道设置的所述环平面滚道的距离(空间)配置的所述两列第二滚动体,轴向的所述第二滚动体设置成所述环形窗式第三保持架保持的斜坡中的圆锥滚子和圆柱滚子组成的滚动元件,所述左右轴向相对的第三斜坡环周滚动元件由环形直径线上的两头的两个圆柱滚子分隔成的两侧多个圆锥滚子形成坡度分布在圆周上,所述直线上的两个圆柱滚子分成两侧半周的圆锥滚子的坡度朝向是一半的每个圆锥滚子的小径端部朝向保持架的圆心与圆锥滚子的旋转轴线指向保持架的圆心、另一半的每个圆锥滚子大径端部朝向保持架的圆心与圆锥滚子的旋转轴线指向保持架的圆心,所述圆锥滚子和圆柱滚子组合的滚动元件的相对的滚动面形成为坡度的两个平面的滚动接触面。所述左右相对的第三斜坡环周滚动元件形成的平面滚动面与所述内圈的轴向平面两滚道面相切,所述左侧的第三斜坡环周滚动元件形成的坡面滚动面与所述第一外圈的第三轴向平面滚道面相切,所述右侧的第三斜坡环周滚动元件形成的坡面滚道面与所述第二外圈的第三轴向平面滚道面相切,所述左右相对的第三斜坡环周滚动元件的左列的上坡度的大径圆锥滚子对应右列的下坡度的小径圆锥滚子,即,所述内圈的旋转轴线与外圈的旋转轴线相对倾斜形成一个角度并旋转轴线相交于球心,所述第三斜坡环周滚动元件在内、外圈的轴向的滚道之间滚动运动。其工作原理:当驱动内圈旋转,两列相对的第三斜坡环周滚动元件高速回转运动将会驱动外圈朝相反方向主动式进动(旋进、旋摆、章动)运动,是围绕球心的稳定的持续的主动式的进动(章动)运动效应与传动运动效应,即,内圈定轴转动,外圈朝相反反向动平衡。根据第三斜坡环周滚动元件的角度大小(坡度大小),当设计小角度时,外圈进动的速度快(角速度快);当设计大角度时,外圈进动的速度慢(角速度慢)。反之驱动外圈进动将会带动内圈旋转。或当驱动外圈旋转,两列相对的第三斜坡环周滚动元件高速回转运动将会驱动内圈朝相反方向主动式进动(旋进、旋摆、章 动)运动,根据第三斜坡环周滚动元件的角度大小(坡度大小),当设计小角度时,内圈进动的速度快(角速度快);当设计大角度时,内圈进动的速度慢(角速度慢)。反之驱动内圈进动将会带动外圈旋转。具有第三斜坡环周滚动元件的轴承的主动式进动(章动)会持续稳定的运转不停止,并具有传动运动的传动比,是滚动元件与滚道的摩擦的传动。
可以设置主动式的进动(旋进、旋摆、章动)运动效应的轴承配置一对滚珠列,所述第一、第二外圈的第三阶梯的轴向的第三滚道到所述内圈轴向的第一、第二滚道的距离(空间)配置的所述两列第二滚动体,所述两列第二滚动体设置成一对滚珠列。
所述主动式的进动(旋进、旋摆、章动)轴承的内圈的一侧设置倾斜的环平面滚道(内圈的轴向的一侧环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置)和另一侧设置轴向接触环平面滚道对应外圈的轴向中的推力角接触环形球面滚道或轴向接触球面滚道或锥形环平面滚道,这样设计的方案,受内圈的轴向中的两侧不平行的形成轴向中的一对滚珠列相对不平行,一对滚珠列在轴向空间中形成一个夹角,一对滚珠列的滚珠直径不同(左侧滚珠列与右侧滚珠列的滚珠直径不同)。其工作原理:在内圈由轴驱动的旋转,一对滚珠列在内、外圈的轴向中的滚道之间滚动,会驱动外圈出现进动(旋进、旋摆、章动)运动并相反反向旋转的叠加效应,这是持续稳定的围绕球心的旋摆运动。反之,驱动外圈进动(旋进、旋摆、章动)运动将会带动内圈旋转运动。
还可以设置主动式的进动(旋进、旋摆、章动)运动效应的轴承配置一对滚动体,所述第一、第二外圈的第三阶梯的轴向的第三滚道到所述内圈轴向的第一、第二滚道的距离(空间)配置的所述两列第二滚动体,所述两列第二滚动体设置成一对圆锥滚子或一对非对称球面滚子。所述主动式的进动(旋进、旋摆、章动)轴承的内圈的一侧设置倾斜的滚道(内圈的轴向的一侧滚道的中心轴线相对于传动轴的轴线倾斜地设置)和另一侧设置轴向接触滚道对应外圈的轴向中的滚道,所述主动式进动轴承的轴向中的滚道构造成圆锥滚子或非对称球面滚子的滚道面。
因此,利用进动(章动)力学原理用于通用机械当中,如车辆、地下钻探、柱塞泵、减速器、内燃机、风电、直升机旋翼机构,机械臂关节等领域,是内圈定轴旋转驱动外圈主动进动,或外圈主动旋摆(进动)驱动内圈旋转,这是一种进动轴承的主动进动的利用,下面介绍进动轴承的被动(施加外力)进动效应的方式。
本申请在组合轴承的基础上的另一种的进动(章动)轴承的被动式(施加外力)的进动效应,集普通轴承的支承功能和实现进动功能于一体,进动(章动)轴承虽然可以在任意的轴承和轴承设施上使用,但本发明以及本发明基于的问题下面与进动(章动)轴承相关地进行详细阐述。
如陀螺具有稳定性与进动性,在外力矩的作用下会发生进动和章动,陀螺进动角速度的大小与三个因素有关:
1.转子自转角速度越大,进动角速度越小;
2.转子对自转轴的转动惯量越大,进动角速度越小;
3.外力矩越大,进动角速度越大;
陀螺的稳定性,即陀螺能够抵抗干扰力矩,力图保持其自转轴相对惯性空间方向稳定的特性,
陀螺的稳定性与进动性密切相关,稳定性越高,在干扰力矩的作用下,陀螺的进动角速度越小;反之,进动角速度越大,
因此,陀螺的稳定性与下列因素有关:
1.转子自转角速度越大,稳定性越高;
2.转子对自转轴的转动惯量越大,稳定性越高;
3.干扰力矩越小,稳定性越高;
以下讲述本申请的被动式进动(章动)轴承的稳定性与进动性。所述被动式进动(章动)轴承的轴向中的滚道可以设置对应不同滚动体,内、外圈的轴向的一侧滚道设置成推力角接触的球面滚道、环形球面滚道,或圆锥面滚道,轴向的另一侧滚道设置成内、外圈的平行的滚道(轴向接触的球面滚道、环形球面滚道、环平面滚道)并分开的在内、外圈当中;或内、外圈的轴向中的滚道的球心的左侧对应滚道的平行的环平面滚道相对于球心的右侧对应的滚道的平行的环平面滚道的倾斜,即左侧相对滚道平行 的相对于右侧相对滚道平行的左、右相对倾斜;所述的轴向中的滚道之间可以任意的组合来配置轴向的滚珠列的点接触滚动运动。
所述进动(章动)轴承的内圈轴向端面的一面设置成环平面滚道,相对的另一面设置成圆锥面滚道,内圈的轴向第一滚道所述环平面滚动相对于第一外圈第三阶梯的第三滚道所述轴向圆锥面滚道,内圈的轴向第二滚道所述圆锥面滚道相对于第二外圈第三阶梯的第三滚道所述轴向环平面滚道;内圈的轴向环平面滚道与第二外圈轴向环平面滚道的两滚道平行(在这里左右关系是相对讲述,是内圈轴向左边环平面滚道与右第二外圈环平面滚道平行,或者所述内圈轴向右环平面滚道与左第一外圈环平面滚道平行);内、外圈它们轴向两者之间的滚道距离空间配置第四圆锥滚子由轴向的第四环形窗式保持架轴向保持,环形的每个圆锥滚子的大径端面朝内由第四环形窗式保持架的窗式兜孔的内周活动连接的弹性元件抵接圆锥滚子的大径端面,形成环形的圆锥滚子的滚动面与内、外圈的轴向中的滚道面接触。
或者进动轴承的内圈轴向端面的一面设置成轴向的环形球面滚道(环形球面滚道的截面相对旋转轴线垂直),相对的另一面设置成倾斜的环形球面滚道(推力角接触环形球面滚道)。内圈的轴向的第一滚道所述轴向的环形球面滚道相对于第一外圈第三阶梯的第三滚道所述锥角的环形球面滚道(推力角接触环形球面滚道),内圈轴向的第二滚道所述倾斜的环形球面滚道相对于第二外圈第三阶梯的第三滚道所述轴向环形球面滚道(环形球面滚道的截面相对旋转轴线垂直),在这里左右关系是相对讲述,是内圈左边轴向环形球面滚道与右第二外圈轴向环形球面滚道平行,或者所述内圈右轴向环形球面滚道与左第一外圈轴向环形球面滚道平行。内、外圈它们轴向两者之间滚道的距离空间配置第五非对称球面滚子由轴向的第五环形窗式保持架轴向保持。
在进动(章动)轴承的内圈旋转,外圈可以相对内圈固定不动,就如轴承设施用在机械当中一样。如在进动(章动)轴承运动中给外圈施加外力,进动(章动)轴承的轴向中两列相对平行的圆锥滚子或非对称球面滚子会相对不平行,圆锥滚子或非对称球面滚子它们会在轴向滚道与轴向的倾斜滚道作惯性空间轨道运动,外圈就会出现进动(旋进、旋摆、章动)运动并朝相反方向旋转,在内圈持续高速旋转,外圈进动效应会趋于停止(进动角速度衰减停止),这时回归到组合轴承的内外圈相对旋转运动,与陀螺的稳定性与进动性同理,即陀螺进动的本质就是陀螺自旋轴受力矩不相等的结果,质心重力矩提供持续的力矩作用,陀螺产生进动时它的自旋角速度会变小。
进动(章动)轴承在装配当中,可以把轴向中两列的圆锥滚子或非对称球面滚子相对不平行的组装,两列滚动体的滚动面都与内外圈的轴向中的滚道面相切,其中一列滚道体的旋转轴线与内圈的旋转轴线平行与外圈的旋转轴线相交,另一列滚动体的旋转轴线与外圈的旋转轴线平行与内圈的旋转轴线相交,即组装内圈的旋转轴线与外圈的旋转轴线不平行但相交,在进动(章动)轴承由电机启动时,两列相对的圆锥滚子或非对称球面滚子它们会在轴向滚道与轴向中的倾斜滚道作惯性空间轨道运动,同时轴向均布的多个第一滚珠列在内圈的外球面滚道与外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触运动,并具有内圈的外球面滚道与外圈的第二内球面滚道的面接触的滑动运动,当内圈旋转,外圈即进动(旋进,章动),或驱动外圈旋转,内圈即进动(旋进,章动),这个过程当中旋转的内圈或外圈持续高速转动,另一方的进动(章动)运动效应会衰减下来停止,这时回归到组合轴承的内外圈相对旋转运动,有外力施加又会出现进动运动效应。
因此,利用被动式进动轴承的稳定性与进动性的原理用于通用机械当中,如车辆的稳定装置等领域,是内圈定轴旋转,在外力矩作用下驱动外圈进动(章动),或外圈定轴旋转,在外力矩作用下驱动内圈进动(章动)。
本申请在主动式进动(章动)轴承的基础上的另一种的章动和进动的耦合运动效应。本发明以及本发明基于的问题下面与章进轴承相关地进行详细阐述。
章动(nutation),是天文学术语。当陀螺的自转角速度不够大时,则除了自转和进动外,陀螺的对称轴还会在铅垂面内上下摆动,称为章动。
所述内圈的轴向的左、右侧面的第一、第二滚道设置的环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置,所述第一、第二滚道的倾斜环平面滚道是平行设置,所述倾斜环平面滚道的中心轴线与传动轴的轴线的夹角在1°至15°。
所述外圈的第一、第二外圈的第三滚道的轴向环平面滚道到内圈的第一、第二滚道的倾斜环平面滚 道的距离(空间)设置两列第三斜坡环周滚动元件,并让它在内、外圈的轴向中的滚道之间滚动。
所述两列第三斜坡环周滚动元件的坡度(角度)是1°至15°,并且相对的两列第三斜坡环周滚动元件的坡度相同。
所述第一外圈轴向的环平面滚道到内圈的第一滚道的倾斜环平面滚道的距离与第二外圈轴向的环平面滚道到内圈的第二滚道的倾斜环平面滚道的距离的相等和/或不相等;即
所述左列第三斜坡环周滚动元件的轴向距离与右列第三斜坡环周滚动元件的轴向距离的相同和/或不相同;
所述左列第三斜坡环周滚动元件相切于第一外圈的环平面滚道面与内圈的第一滚道的倾斜环平面滚道面,所述右列第三斜坡环周滚动元件相切于第二外圈的环平面滚道面与内圈的第二滚道的倾斜环平面滚道面。所述左右相对的第三斜坡环周滚动元件形成左列的上坡度的大径圆锥滚子对应右列下坡度的小径圆锥滚子,所述内圈的旋转轴线与外圈的旋转轴线在轴承转动时会相对形成夹角并旋转轴线相交于球心,所述两列第三斜坡环周滚动元件可以被引导在倾斜环平面滚道面与轴向环平面滚道面之间滚动运动。在轴承中所述具有的两列第三斜坡环周滚动元件与内圈的倾斜环平面滚道的滚动运动会出现外圈的进动和章动的两种运动效应。其工作原理:当所述第三斜坡环周滚动元件的坡度与所述内圈的倾斜的环平面滚道的夹角(倾斜环平面滚道的中心轴线与传动轴的轴线的夹角)相等时或不等时,在不同设置时,所述当驱动内圈旋转,两列第三斜坡环周滚动元件在内、外圈的轴向中的滚道之间滚动,章进轴承的所述两列第三斜坡环周滚动元件具备进动运动与所述内圈的倾斜环平面滚道具备往复直线摆动运动,两种运动共同的作用形成章动和进动的耦合运动,将驱动外圈的章动和进动运动并朝相反方向运动,即,两列第三斜坡环周滚动元件在内、外圈的轴向中的滚道之间高速回转运动,可以形成传动运动效应。根据工作原理应用在相应的机械领域中。
有关陀螺仪的进动原理是陀螺仪自有的角动量守恒,根据陀螺仪的转动惯量具有定轴性与进动性,利用陀螺仪高速转动惯性的陀螺仪稳定平台很多。有关介绍进动轴承的进动性与稳定性的进动轴承陀螺的稳定平台的相关文献和专利未有论述。通过进动轴承的进动性与稳定性,设置一侧外圈轴向的外侧中部形成轴向的鼻锥或半球体的进动轴承陀螺的陀螺进动式主动稳定平台装置用于稳定平台装置。进动轴承陀螺装置的外圈上的鼻锥或半球体立在承载台上运动是电机带动内圈定轴旋转保持连接在电机外壳上的支撑平台垂直稳定。如外力矩作用在承载台上不规则的倾斜,进动轴承陀螺装置的内圈高速的旋转,外圈进动的立在承载台上保持支撑平台垂直稳定;如承载台作X、Y方向上运动或晃动摇摆运动,进动轴承陀螺装置带有鼻锥或半球体的外圈立在承载台上进动;如外力矩作用在进动轴承陀螺装置的外圈上,带有鼻锥或半球体的外圈立在承载台上进动。
有关介绍进动轴承陀螺带超越离合式在斜坡轨道上行走系统、方法的相关文献未有论述。有关介绍旋转刚体在倾斜的斜坡平面上行走的相关文献没有查阅到,根据实验得知:旋转刚体在同一个倾斜平面坡度上,旋转方向相同前进方向相同,在转速不同的情况下,转速低时旋转刚体会向下斜线行走,转速高时旋转刚体会向上斜线行走,在转速匹配坡度时旋转刚体处在那个斜坡高度上就在那个斜坡高度上直线行走;在刚体高转速匹配高坡度轨道时形成直线行走高速度;在刚体低转速匹配低坡度轨道时形成直线行走低速度;如倾斜的斜坡平面,坡面面对于人,旋转刚体逆时针旋转,行走方向向右直线前进,反之旋转刚体顺时针旋转,行走方向向左直线前进;如斜坡平面相对于人向下,旋转刚体逆时针旋转,行走方向向左直线前进,反之旋转刚体顺时针旋转,行走方向向右直线前进。
介绍超越离合器工作原理,当内环、外环间无相对运动,转向相同,转速相等,才能传递转矩,否则均为相对滑动,这种不传递转矩的滑动状态称为超越。利用本发明的进动轴承的进动性与稳定性,在内圈启动与停止时带有鼻锥或半球体的外圈处在进动当中,进动轴承陀螺装置保持支撑平台垂直稳定,与加入超越离合式的传递转矩形成旋转刚体在斜坡轨道平台上行走系统、方法,可以用于道路运输系统,进动轴承陀螺超越离合式装置在相同坡面上旋转方向相同直线行走方向会相同,在转速相同、同方向运动的多辆进动轴承陀螺超越离合式装置在斜坡轨道上行走运动不会发生相撞事故。
进动轴承陀螺超越离合式装置这样设置,该装置是设置内圈在轴承中心的径向的外球面滚道的开有多个环周的离心式的一段凹槽球面滚道,周向的离心式的每个凹槽球面滚道的深处端面设有连接小段磁铁,离心式的凹槽球面滚道里配置球面滚子与组合第一、第二外圈的第一阶梯第一球状内腔球面滚道传 递转矩时会接触。进动轴承陀螺超越离合式装置的内圈杆端连接电机,电机的外壳连接电池一体支撑平台,当内圈定轴旋转,承载平台上的进动轴承陀螺超越离合式装置的电机开启带动内圈旋转,在初速度下,球面滚子吸附在磁铁上,外圈上的鼻锥或半球体的侧面倾斜的立在水平的承载平台上开始处于进动当中,在内圈旋转速度持续提高下,吸附在磁铁上的球面滚子在离心力的作用下球面滚子运动接触到外圈的第一球状内腔球面滚道,即传递转矩形成陀螺刚体在承载平台上旋转,这时承载平台上的升降机构抬升,承载平台处于倾斜状态,进动轴承陀螺超越离合式装置在倾斜的承载平台上直线行走。如承载平台上的升降机构动作,承载平台处于水平状态,进动轴承陀螺超越离合式装置停止前进在原地上旋转。如进动轴承陀螺超越离合式装置的关电内圈停止旋转,这时立在水平承载平台上的进动轴承陀螺超越离合式装置的外圈还处在旋转当中,外圈旋转脱离圆锥滚子超越不传递转矩,球面滚子运动到凹槽球面滚道的深处端面被磁铁吸附住,外圈上的鼻锥或半球体随着与平台的摩擦力与进动轴承陀螺超越离合式装置本身的重力矩,外圈旋转速度衰减开始进动,然后停止,外圈上的鼻锥或半球体的侧面倾斜在承载平台上保持内圈连接的电机的电池一体支撑平台水平,以下通过发明内容和具体实施方式详细阐述。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的目的是,提出一种组合轴承,用于通用机械,及具有组合轴承和进动(章动)轴承在外力矩的进动特性原理和稳定性用于通用机械当中,及具有内圈的一侧滚道倾斜、另一侧滚道轴向的对应外圈配置的滚道与滚动体的主动式进动(章动)轴承用于通用机械,及具有环周斜坡滚动元件的主动式进动(章动)轴承用于通用机械,及具有环周斜坡滚动元件与内圈的轴向滚道倾斜的主动式进动和主动式章动的耦合运动的章进轴承用于通用机械,及具有进动(章动)轴承的进动性与稳定性的外圈设置鼻锥或半球体的进动轴承陀螺,及利用进动轴承陀螺的陀螺进动式主动稳定装置,及利用陀螺进动式主动稳定装置的具有内圈开有离心式的凹槽球面滚道配置球面滚子与外圈接触传递转矩形成旋转刚体,在斜坡平面上直线行走系统,方法和交通运输系统。
本发明所公开的示例装置包括对传统的轴承的改进,所作的改进具有新颖性和非显而易见性(或说创造性)。本文中所提供的示例主要是基于轴承的轴向中的滚道设置来构造成对应不同滚动体的滚道接触面,并形成整体性的轴承的径向中的第一滚珠列的点接触、轴向中的第二滚动体的线接触和内外圈的面接触的运动,同时弹性元件具有径向方向与轴向方向的预紧,该轴向中的第二滚动体与轴向中的滚道具备创造性的控制轴承的进动(章动、旋摆、旋进)运动的角自由度,以及轴承的进动性与稳定性同时带有超越离合式的形成旋转刚体如陀螺在坡面轨道直线行走运动,以使本发明区别于目前任何已知的现有技术。
这些目的已经通过如在独立权利要求中提出的特征来实现。本发明的有利实施例可以在从属权利要求中以及在下面的描述中找到。
对于本领域技术人员而言,词语轴向和径向本文件中被频繁地使用。如果没有另外说明,轴向方向被定义为平行于其旋转轴线的轴承的轴向方向、平行于其旋转轴线的内圈的轴向方向、平行于其旋转轴线的外圈的轴向方向以及平行于其旋转轴线的保持架的轴向方向。径向方向是垂直于相应轴向方向的方向。并且进动轴承也可以称为章动轴承。并且第一外圈、第二外圈可以相互的转换(左与右转换关系便于描述)。
本发明实现其发明目的所采用的技术方案是:一种组合轴承,所述组合轴承在不同设置下也可以形成进动(章动)轴承,可以这么说,在一个结构单元中兼具纯滚动轴承功能本身以及高的进动(章动)运动效应。所述组合轴承包括外圈和内圈,多列滚动体、保持架、连接螺栓,弹性元件,其中所述在径向方向的外圈的凹部形成的内球面滚道相对于内圈的凸部形成的外球面滚道为球心重合的球面滚道。
内圈,所述内圈设置为中心贯通的圆环状,在其圆环状的径向凸球面形成有外球面滚道,所述圆环状的内圈的轴向方向中的左右两侧到轴承球心的距离相等、和/或两侧相对轴承球心的距离偏置。所述内圈在其圆环状的具有大体沿一个轴向方向面对的第一滚道和沿相反的轴向方向面对的第二滚道;和/或所述内圈在其圆环状的具有沿一个轴向方向面对的第一滚道和沿相反的轴向方向面对的第二滚道;和/或所 述内圈在其圆环状的具有大体沿一个轴向方向面对的第一滚道和大体沿相反的轴向方向面对的第二滚道。
和/或所述内圈在其圆环状的轴向方向的左右两滚道为平行的环平面滚道,凹进的、凸出的、凹凸的球面滚道或圆锥面滚道。
和/或所述在其圆环状的轴向的第一、第二滚道相对的两侧滚道,一侧形成为推力角接触圆锥面滚道,另一侧形成为轴向接触环形平面滚道,和/或所述圆环状轴向左右相对两侧面滚道的一面形成为推力角接触环形球面滚道,另一面形成为轴向接触环形平面滚道,和/或所述圆环状的轴向的第一、第二滚道都形成为推力角接触圆锥面滚道和/或推力角接触环形球面滚道。
所述在内圈的的径向的外球面滚道面中和轴向的第一、第二滚道面中形成有供固体润滑剂保留的多个盲孔。
本发明的创意在于,这样地布置外圈,即,
所述该外圈还包括剖分的第一外圈和第二外圈,所述第一外圈和第二外圈设置成盖环状,其中所述组合的第一和第二外圈的一侧的外圈的外径略小于另一侧的外圈的外径,和/或所述组合的第一和第二外圈的两侧的外圈的外径相同;所述组合的外圈的外径大的一侧外圈与轴承箱过盈配合,和/或所述组合的两侧外圈的外径相同的外圈与轴承箱过盈配合。
所述盖环状的第一外圈和第二外圈组合的截面大体形成凹字形,所述盖环状的每部分外圈形成三级阶梯,所述三级阶梯的第一级阶梯为第一外圈和第二外圈组合的在轴承的轴向方向的中部,所述三级阶梯的第二、第三级阶梯向内部的轴承的旋转轴线方向延伸,所述每一阶梯的内部形成轴向方向和径向方向的两个环形端面,所述第一外圈和第二外圈组合的第一阶梯的轴向方向的端盖面为两外圈的邻接部和径向方向的内部为球形的第一内腔球面滚道,所述第二阶梯的轴向方向的端面是连接第一阶梯的径向方向的端面并形成第一阶梯组合的腔室(第一球状内腔球面滚道),所述第二阶梯的径向方向的端面形成球形的第二内球面滚道并与内圈的外球面滚道的直径相等,所述第三阶梯的轴向方向的内端面是连接第二阶梯的径向方向的端面并形成与内圈轴向中的滚道对应的轴向中的第三滚道,所述第三阶梯的径向方向形成环形端面并且轴可以贯通;所述第三阶梯的轴向方向的所述外端面是连接所述第三阶梯的径向方向的环形端面并形成所述环外平面,所述第一阶梯的径向方向的外部为第一、第二外圈的外径并与第三阶梯的轴向方向的所述环外端面相连。
所述第一外圈和第二外圈的邻接部的端面处在轴承球心的径向延长线上、和/或相对轴承球心的径向延长线偏置,所述第一外圈和第二外圈的第三滚道到轴承球心的距离相等和/或不相等。
所述组合的第一、第二外圈三级阶梯的第一阶梯的第一球状内腔球面滚道具有比内圈的外球面滚道大的直径,所述第一球状内腔球面滚道与外球面滚道之间的空间配置轴向分布多个的第一滚珠列;由轴向分布的保持架引导并让其在两滚道之间点接触多角度自由运动,在左与右的半球空间的轴向分布的第一滚珠列的左边与右边的每对滚珠列的每个滚珠直径相同,其中所述至少有一对滚珠列是分布在轴承球心的径向延长线的左右。所述围绕球形轮廓布置的每列保持架的兜孔和连接筋都面朝球心,其中所述保持架周向均布的多个兜孔容纳多个滚珠形成碗状并且碗底部开口,所述碗状的兜孔的大径的碗面部开口的直径微大于滚珠的直径并面朝外圈。在组装时第一滚珠列放置在外圈的第一内腔球面滚道里,这些碗状的兜孔可以防丢失地保持滚珠。
所述第一、第二外圈的三级阶梯的第二阶梯的第二内球面滚道延伸至内圈的外球面的滚道上,所述组合的第一、第二外圈相对的第二内球面滚道穿过球心的直径与内圈的外球滚道面的直径相同,所述第二内球面滚道与外球滚道面形成为滑动运动。
所述组合的第一、第二外圈的三级阶梯的第三阶梯延伸形成隔开部分包覆住内圈的轴向方向的左右两滚道(第一、第二滚道),所述第三阶梯的轴向内侧端面形成轴向的第三滚道与内圈的轴向两滚道相呼应的配置不同第二滚动体由轴向的保持架保持并在轴向中的滚道之间滚动,所述第三阶梯的轴向外侧端面形成为圆环形平面。所述轴向的第三滚道的一侧设有推力角接触圆锥面滚道,另一侧设有轴向接触环平面滚道,和/或所述一面设有推力角接触环形球面滚道,另一面设有轴向接触环形球面滚道,和/或所述第一外圈和第二外圈的轴向的第三滚道的两侧面都设有推力角接触圆锥面滚道和/或两侧面都设有推力角 接触环形球面滚道;和/或第一外圈和第二外圈的轴向的第三滚道的两侧面都为平行的环平面滚道,凹进的、凸出的、凹凸的环形球面滚道或圆锥面滚道。
所述第一外圈的轴向的第三滚道到内圈轴向的第一滚道的距离与第二外圈的轴向的第三滚道到内圈轴向的第二滚道的距离相等和/或不相等的构造成配置第二滚动体并轴向中的滚道构造成第二滚动体的形状的滚道接触面。
所述第一内腔球面滚道和第二内球面滚道为同球心的阶梯的上下两球面滚道、和连同所述轴向的第三滚道为盖环状的每侧外圈的截面大体L状。
所述组合的第一外圈和第二外圈的轴向外侧圆环形平面的外周相对设置多个错开的连接孔,所述连接孔从圆环形平面穿过第一阶梯的轴向邻接面通到相对面形成螺纹沉孔,所述连接螺栓螺帽头上套有弹性元件,通过所述连接螺栓的连接施加一定的轴向预紧力将外圈、多个第一滚珠列、轴向中的一对第二滚动体和内圈连接为一体。
在有利的设计方案中,外圈的外径大的一边外圈与轴承箱过盈配合,左边右边的多个连接螺栓分别双向连接左右的第一、第二外圈,同时螺栓的螺帽上套上弹性元件,施加一个预紧力,采用螺栓螺帽上加入弹性元件相对的自动拉紧左右的第一、第二外圈与多列第一滚珠、第二滚动体、内圈的连接。在轴承运转磨损后,对于来自间隙的自由度,在轴向方向第一、第二外圈与多列第一滚珠、第二滚动体、内圈被相对于彼此沿相对方向预紧,外径小的另一边外圈自动柔性预紧,特别是通过合适的弹簧机构来预紧,轴承始终处于无间隙柔性自动预紧,轴承精确稳定运转。
在有利的设计方案中,所述第一外圈的轴向的所述第三滚道到所述内圈轴向的所述第一滚道的所述距离与所述第二外圈的轴向的所述第三滚道到所述内圈轴向的所述第二滚道的所述距离相等和/或不相等的构造成配置所述第二滚动体并由轴向中的所述保持架保持地配置在所述第二滚动体的滚道构造的接触面、形成环形保持架上弹性元件的周向力矩使第二滚动体相切所述滚道接触面并滚动。
在有利的设计方案中,所述外圈第三阶梯的轴向内侧端面形成轴向的第三滚道与内圈的轴向两侧滚道相呼应的配置不同第二滚动体,所述第二滚动体采用滚珠的滚动面点接触运动时。外圈轴向的第三滚道与内圈轴向滚道可以设置倾斜的环形球面滚道与平面滚道对应、设置平面滚道与圆锥面滚道对应、设置圆锥面滚道与圆锥面滚道对应,也可以设置外圈的轴向当中的推力角接触环形球面滚道或轴向圆锥面滚道对应内圈的倾斜平面滚道(内圈的轴向的左、右侧面的第一、第二滚道设置的环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置)。它们相对应的轴向当中的滚道可以设置一边凸出另一边平面、或一边凹进另一边平面、或一边凹进另一边凸出,或两边凹进、或两边凸出。所述轴向中的一对滚珠列由轴向的保持架构造成配合第一滚珠列构造成容易的在轴承的轴向中的滚道点接触的相切,并由保持架引导在轴向中的滚道之间滚动。轴向的保持架均布的兜孔引导滚珠在内、外圈的轴向的滚道之间滚动运动,环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一侧延伸指向外圈的轴向的轴孔内径端面边缘间隔一定距离,和T状的上部分另一侧延伸指向内圈的轴向端面留有一定距离,T状的上部分的两侧环形外径都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的兜孔。在这里一对轴向的滚珠列是与轴向中的滚道之间相切形成每个滚珠不同的角接触点,轴承运动方式受制于滚珠列与滚道之间的点接触的角度、形成自由度多角度运动(章动和进动的耦合运动),轴承运动时轴向中的滚珠多少会向开口大(轴向中的滚道之间对应的截面)的方向的周向位移。在轴承容易加工制造的方式中,所述第一滚珠列的每个滚珠的直径微大于第一内腔球面滚道到外球面滚道的距离,这样第一、第二外圈轴向相对连接是比较容易的,并且滚珠的制造也相对容易,在一对轴向的滚珠列也可以采用柔性的与内、外圈的轴向的滚道之间的点接触。保持架的兜孔可以设置成三角形的构造,在三角形的兜孔中设置弹性元件抵接滚珠向周向位移,弹性元件形成H状的弧面钢片,H状的弧面弹性钢片预压的把两头凹槽插入三角形的两边,形成弧面的凹部抵接滚珠。依据设计方案,在保持架的三角形的兜孔区域内设置利用两个点形成两点卡式装置,滚珠抵接三角形的底边与弹性钢片的凹部中,用于将滚珠保持在兜孔内,该两点卡式装置允许了通过在弹性钢片的一个点和三角形底边的一个点的区域内的弹性变形的滚珠到兜孔内的插入。根据内、外圈的轴向的滚道之间的设置不同,轴向的环形的一对滚珠列的滚珠位移方向朝外,设置环形分布的三角形兜孔的弹性元件向外周的围 绕,三角形底边向内周围绕;如滚珠位移朝内,弹性元件向内周的围绕,三角形底边向外周围绕。轴承的第一、第二外圈连接时迫使轴向的滚珠少许的周向位移后,依赖弹性元件以保持滚珠恰当地定位在它们滚动所沿的滚道之间。进一步的有利设计方案中,所述轴向的两列滚珠可以被引导在推力角接触圆锥滚道面与轴向接触平面滚道面之间滚动运动,和/或轴向的两列滚珠可以被引导在推力角接触环形球面滚道面与轴向接触环形球面滚道面之间滚动运动,和/或轴向的两列滚珠可以被引导在圆锥滚道面与圆锥滚道面之间滚动运动和/或推力角接触环形球面滚道面与推力角接触环形球面滚道面之间滚动运动。
特别的有利设计方案中,引用前面阐释的一对轴向的滚珠列的在内、外圈的轴向的滚道之间的点接触的滚动运动,出现被动式的进动(旋进、旋摆、章动)运动效应在这里左右关系是相对讲述,以下讲述被动式的进动(旋进、旋摆)运动效应是内圈轴向左边平面滚道与右第二外圈轴向平面滚道平行,或者所述内圈轴向右平面滚道与左第一外圈轴向平面滚道平行,即,所述内、外圈的都有在一侧的轴向的环平面滚道相对在右或相对在左的来对应推力角接触滚道。进动轴承的原理:在外力矩作用下会出现如陀螺具有的进动性与稳定性。
既可以设置主动式的进动(旋进、旋摆、章动)运动效应,所述主动式的进动(旋进、旋摆、章动)轴承的内圈的一侧设置倾斜的环平面滚道(内圈的轴向的一侧环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置)和另一侧设置轴向接触环平面滚道对应外圈的轴向中的推力角接触环形球面滚道或轴向接触球面滚道或锥形环平面滚道。主动式进动轴承原理:这样设计的方案,受内圈的轴向中的两侧不平行的形成轴向中的一对滚珠列相对不平行,一对滚珠列在轴向空间中形成一个夹角,所述倾斜侧的内圈的这侧的滚珠列相切于第一外圈的第三滚道与内圈轴向第一滚道并大于另一侧的滚珠列相切于第二外圈的第三滚道与内圈轴向第二滚道的滚珠直径。在内圈由轴驱动的旋转,一对滚珠列在内、外圈的轴向中的滚道之间滚动,会驱动外圈出现进动(旋进、旋摆、章动)与反向旋转效应。反之,驱动外圈进动(旋进、旋摆、章动)运动将会带动内圈旋转运动。所述主动式进动轴承的轴向中的所述滚道之间由所述一对滚珠列构造成滚动并配合第一滚珠列以无间隙的方式构造而成的在轴承一起安装。这种方案在制造中相对容易,外圈轴向中的可以设置凹进(相对轴承的向外方向)的推力角接触环形球面滚道或轴向圆锥面滚道或轴向球面滚道,轴向中的一对滚珠列的滚珠的直径在选择上也是比较容易地,它是由保持架上的三角形兜孔的弹性元件控制周向的方向相切于内、外圈的轴向中的滚道之间。在设计中或内、外圈的轴向中的滚道的球心的左侧对应滚道的平行的环平面滚道相对于球心的右侧对应的滚道的平行的环平面滚道的倾斜,即左侧相对滚道平行的相对于右侧相对滚道平行的左对与右对的相对倾斜。在内圈或外圈相对一方进动(旋进、旋摆、章动)运动当中,受制于一对滚珠列的滚动面的点接触,用在传动运动机构中,点接触的滚动运动的摩擦传动使用时间上要少于线接触的滚动运动的摩擦传动。
也可以这样的设计轴承的相对支承运动,所述第二滚动体采用滚珠的滚动面线接触运动时,外圈轴向的第三滚道与内圈轴向两侧滚道可以设置内、外圈的轴向的沟道滚道对应,这种轴承的沟道结构可以适用推力与向心轴承,在尺寸上也可以做成微型组合轴承,如内、外圈对应的轴向的两列沟道(配对沟道)的环周直径尺寸不同,滚珠的左列沟道与滚珠的右列沟道是两个同心圆、直径不同的分布在轴承的旋转轴线上,采用一对滚珠列在轴承中心的轴向两侧、轴向滚珠列的每列环周均布不同数量滚珠的由轴向保持架引导的在内、外圈的滚道之间滚动运动,这样内圈的轴向两沟道直径不同的相对于球心在径向方向扩大与缩小,沟道的不同布置在轴承的轴向距离减少将是有利的,不用螺栓连接,第一、第二外圈采用粘接的方式固定后与微小轴承箱过盈配合,微型组合轴承这将是有利的。所述组合轴承的保持架的兜孔的构造可以形成上述的所述三角形兜孔,这样两点卡式装置的三角形兜孔配合滚珠安装在轴承上是比较容易的,所述微型组合轴承的保持架的兜孔的构造也可以采用圆珠形的轮廓。
依据一种改进方案,所述外圈第三阶梯的轴向内侧端面形成轴向的第三滚道与内圈的轴向两侧滚道相呼应的配置不同第二滚动体,所述第二滚动体采用第五非对称球面滚子是滚动面线接触的滚动运动。轴向的环形窗式保持架的兜孔引导每个非对称球面滚子不接触的在内,外圈的轴向的滚道之间滚动,环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一边延伸指向外圈的轴向的轴孔内径端面边缘留有一定间隙,和T状的上部分另一边延伸指向内圈的轴向端面留有一定间隙,T状的上部分的两边环形外径都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。外圈轴向的第三滚道与内圈轴向两滚道可以设置球面滚道与球面滚道 对应,可以设置倾斜的球面滚道与倾斜的球面滚道(球面滚道的中心轴线倾斜于旋转轴线)对应。第一、第二外圈外径相同的与轴承箱过盈的配合,可以获得推力轴承特别有利的机械特性,在轴承的滚道与第一滚珠列、第二滚动体的磨损,内圈与外圈的外球面滚道与第二内球面滚道之间的面接触的磨损,轴承可以拆卸下来磨削相对的邻接面,轴承组装后还可以继续使用。
依据一种改进方案,所述外圈第三阶梯的轴向内侧端面形成轴向的第三滚道与内圈的轴向两侧滚道相呼应的配置不同第二滚动体,所述第二滚动体采用第七球面滚子是滚动面线接触的滚动运动。轴向的环形窗式保持架的兜孔引导每个球面滚子不接触的在内,外圈的轴向中的滚道之间滚动,环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一边延伸指向外圈的轴向的轴孔内径端面边缘留有一定间隙,和T状的上部分另一边延伸指向内圈的轴向端面留有一定间隙,T状的上部分的两边环形外径都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。外圈轴向的第三滚道与内圈轴向两滚道可以设置轴向的环形的球面滚道与轴向的环形的球面滚道对应;可以设置倾斜的环形球面滚道与倾斜的环形球面滚道(环形球面滚道的中心轴线倾斜于旋转轴线)对应。第一、第二外圈外径相同的与轴承箱过盈的配合,可以获得推力轴承特别有利的机械特性,在轴承的滚道与第一滚珠列、第二滚动体的磨损,内圈与外圈的外球面滚道与第二内球面滚道之间的面接触的磨损,轴承可以拆卸下来磨削相对的邻接面,轴承组装后还可以继续使用。
依据一种改进方案,所述外圈第三阶梯的轴向内侧端面形成轴向的第三滚道与内圈的轴向两侧滚道相呼应的配置不同第二滚动体,所述第二滚动体采用第四圆锥滚子是滚动面线接触的滚动运动,轴向的环形窗式保持架的兜孔控制每个圆锥滚子不接触与控制圆锥滚子向周向的方向移动并在内,外圈的轴向的滚道之间滚动。所述环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一侧延伸指向外圈的轴向的轴孔(贯通孔)内端面边缘留有一定距离,和T状的上部分另一侧延伸指向内圈的轴向端面留有一定间隙,T状的上部分的两侧环形外径都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。
所述轴向的保持架的窗式兜孔构造成滚动体的形状,所述兜孔上活动连接的弹性元件,所述弹性元件形成H状的弧形弹性钢片和弧形凹部连接弹簧,H状的弧形弹性钢片的两头凹槽预压接合窗式兜孔的两侧,弹簧的另一头抵接窗式兜孔的径向端面,弧形弹性钢片的弧形凸部抵接圆锥滚子的大径端面控制向周向位移。外圈轴向的第三滚道与内圈轴向两滚道可以设置圆锥面滚道与圆锥面滚道对应;可以设置倾斜的圆锥面滚道与倾斜的圆锥面滚道(圆锥面滚道的中心轴线倾斜于旋转轴线)对应;可以设置圆锥面滚道(圆锥面滚道的中心轴线与旋转轴线重合)与轴向平面滚道对应。依据设计方案,在保持架的窗式的兜孔区域内设置利用两个面形成两面卡式装置,圆锥滚子的两端抵接窗式兜孔的径向端面与弹性钢片的凸部,用于将圆锥滚子保持在兜孔内,该两面卡式装置允许了通过在弹性钢片的一个面和窗式兜孔的一个面的区域内的弹性变形的圆锥滚子到兜孔内的插入。根据内、外圈的轴向的滚道之间的设置不同,一对轴向的环形的圆锥滚子列的圆锥滚子位移方向朝外,设置环形分布的窗式兜孔的弹性元件向外周的围绕;如圆锥滚子位移朝内,弹性元件向内周的围绕。第一、第二外圈的外径相同的与轴承箱过盈的配合,可以获得推力轴承特别有利的机械特性,在轴承的滚道与第一滚珠列、第二滚动体的磨损,内圈与外圈的外球面滚道与第二内球面滚道之间的面接触的磨损,轴承可以拆卸下来磨削相对的邻接面,轴承组装后还可以继续使用。
依据一种改进方案,所述外圈第三阶梯的轴向内侧端面形成轴向的第三滚道与内圈的轴向两侧滚道相呼应的配置不同第二滚动体,所述第二滚动体采用第六圆柱滚子是滚动面线接触的滚动运动,轴向的环形窗式保持架的兜孔引导每个圆柱滚子不接触的在内,外圈的轴向的滚道之间滚动,环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一边延伸指向外圈的轴向的轴孔内径端面边缘留有一定间隙,和T状的上部分另一边延伸指向内圈的轴向端面留有一定间隙,T状的上部分的两边环形外径都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。外圈轴向的第三滚道与内圈轴向两滚道可以设置环形平面滚道与环形平面滚道对应;可以设置倾斜的环平面滚道与倾斜的环平面滚道(环平面滚道的中心轴线倾斜于旋转轴线)对应。第一、第二外圈的外径相同的与轴承箱过盈的配合,可以获得推力轴承特别有利的机械特性,在轴承的滚道与第一滚珠列、第二滚动体的磨损,内圈与外圈的外球面滚道与第二内球面滚道之间的面接触的磨 损,轴承可以拆卸下来磨削相对的邻接面,轴承组装后还可以继续使用。还可以设置内、外圈轴向两侧对应的滚道之间为圆锥面滚道的凹凸构造的圆锥面滚道面平行对应,具有大体轴向的环形窗式保持架的兜孔控制每个圆柱滚子不接触的在内,外圈的轴向的滚道之间滚动,保持架构造成圆锥形的窗式保持架控制圆柱滚子形成环锥形的构造,外圈第三阶梯的轴向内侧端面形成向外(凹进)的圆锥面滚道,内圈的轴向两滚道形成凸出的圆锥面滚道,这样构造外圈与内圈的轴向的圆锥面滚道对应有利于加工制造,在第一、第二外圈的外径相同的与轴承箱过盈的配合,可以获得向心轴承与推力轴承特别有利的机械特性。在这里内、外圈的具有轴向的相对的平行的圆锥面滚道之间的空间可以配置滚针元件,环状的一对滚针元件如铁饼器材的外形轮廓的构造成与内、外圈的圆锥面滚道之间的线接触的滚动运动,第一滚珠列形成一对在轴承中心的轴向的两侧,第一滚珠列的滚珠的直径形成与滚针的直径略同,外圈的第二内球面滚道与内圈的外球面滚道的面接触的轴向测量的距离加计小于滚针的直径,这样的组合轴承的轴向宽度减少将是特别有利的,滚针组合的轴承也可以获得比圆柱滚子组合的轴承的两个方向(轴向、径向)的更大的承载力。
依据其他的设计方案,一种被动式的进动轴承,及其安装方法,如陀螺具有的进动性与稳定性的运动效应用于机械领域。
所述外圈的第一外圈轴向的第三滚道设置的圆锥面滚道是轴向的凸出或凹进,和
所述内圈的轴向的第二滚道设置的圆锥面滚道是轴向的凸出或凹进;即
所述第一外圈的圆锥面滚道与内圈的第二滚道的圆锥面滚道的锥角锥度相同,和
所述外圈的第二外圈轴向的第三滚道设置的环平面滚道与内圈的轴向的第一滚道设置的环平面滚道是平行的设置;
所述第二外圈的环平面滚道到内圈的第二滚道的圆锥面滚道的轴向距离与第一外圈的圆锥面滚道到内圈的第一滚道的环平面滚道的轴向距离相等和/或不相等;
所述外圈的第一、第二外圈的第三滚道(平面、锥面滚道)到内圈的轴向的第一、第二滚道(平面、锥面滚道)的距离(空间)设置两列第四圆锥滚子;
所述一列第四圆锥滚子相切于第二外圈的环平面滚道面与内圈轴向的第二滚道的圆锥面滚道面,所述另一列第四圆锥滚子相切于第一外圈的圆锥面滚道面与内圈轴向的第一滚道的环平面滚道面,所述两列第四圆锥滚子由轴向的保持架保持地可以被引导在内、外圈的轴向中的滚道面之间滚动运动。
所述环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一侧延伸指向外圈的轴向的轴孔(贯通孔)内端面边缘留有一定距离,和T状的上部分另一侧延伸指向内圈的轴向端面留有一定距离,T状的上部分的两侧环形外周都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。
所述轴向的保持架的窗式兜孔构造成滚动体的形状,所述兜孔上活动连接的弹性元件,所述弹性元件形成H状的弧形弹性钢片和弧形凹部连接弹簧,H状的弧形弹性钢片的两头凹槽预压接合窗式兜孔的两侧,弹簧的另一头抵接窗式兜孔的径向端面,弧形弹性钢片的弧形凸部抵接圆锥滚子的大径端面控制向周向位移。在保持架的窗式的兜孔区域内设置利用两个面形成两面卡式装置,圆锥滚子的两端抵接窗式兜孔的径向端面与弹性钢片的凸部,用于将圆锥滚子保持在兜孔内,该两面卡式装置允许了通过在弹性钢片的一个面和窗式兜孔的一个面的区域内的弹性变形的圆锥滚子到兜孔内的插入。
进动轴承在装配当中,可以把轴向中两列的圆锥滚子相对不平行的组装,两列圆锥滚子的滚动面都与内、外圈的轴向的滚道面相切,其中一列圆锥滚子的旋转轴线与内圈的旋转轴线平行与外圈的旋转轴线相交,另一列圆锥滚子的旋转轴线与外圈的旋转轴线平行与内圈的旋转轴线相交,即组装内圈的旋转轴线与外圈的旋转轴线不平行但相交,在进动轴承由电机启动时,两列相对的圆锥滚子它们会在圆锥面滚道与环平面滚道作惯性空间轨道滚动运动,同时轴向均布的多个第一滚珠列在内圈的外球面滚道与外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触滚动运动,并具有内圈的外球面滚道与外圈的第二内球面滚道的面接触的滑动运动。
进动轴承的原理与功能:当驱动内圈定轴旋转,一对圆锥滚子不平行的高速回转运动所述驱动外圈 进动(旋进,章动)并朝相反方向旋转;或驱动外圈定轴旋转,一对圆锥滚子不平行的高速回转运动所述驱动内圈进动(旋进,章动)并朝相反方向旋转,这个过程当中旋转的内圈或外圈持续高速转动,另一方的进动效应会衰减下来停止,这时回归到组合轴承的内、外圈相对的纯滚动旋转运动,一对圆锥滚子回归平行中,如施加外力进动轴承又会出现进动(章动)效应,如陀螺具有的稳定性与进动性。
依据其他的设计方案,一种被动式的进动轴承,及其安装方法,如陀螺具有的进动性与稳定性的效应用于机械领域,所述外圈的第一外圈轴向的第三滚道设置的是推力角接触环形球面滚道,和
所述内圈的轴向的第二滚道设置的是推力角接触环形球面滚道;即
所述第一外圈的推力角接触环形球面滚道与内圈的第二滚道的推力角接触环形球面滚道的球面半径相同,和
所述外圈的第二外圈轴向的第三滚道设置的轴向接触环形球面滚道与内圈的轴向的第一滚道设置的轴向接触环形球面滚道是平行的设置并球面半径相同;即
所述外圈其中一侧的推力角接触环形球面滚道与内圈其中一侧的轴向接触环形球面滚道的球面半径相同,
所述第二外圈的轴向接触环形球面滚道到内圈的第二滚道的推力角接触环形球面滚道的轴向距离与第一外圈的推力角接触环形球面滚道到内圈的第一滚道的轴向接触环形球面滚道的轴向距离相等和/或不相等;
所述外圈的第一、第二外圈的第三滚道(推力角接触环形球面滚道、轴向接触环形球面滚道)到内圈的轴向的第一、第二滚道(轴向接触环形球面滚道、推力角接触环形球面滚道)的距离(空间)设置两列第五非对称球面滚子;
所述一列第五非对称球面滚子相切于第二外圈的轴向接触环形球面滚道面与内圈轴向的第二滚道的推力角接触环形球面滚道面,所述另一列第五非对称球面滚子相切于第一外圈的推力角接触环形球面滚道面与内圈轴向的第一滚道的轴向接触环形球面滚道面,所述两列第五非对称球面滚子由轴向的保持架保持地可以被引导在内、外圈的轴向中的滚道面之间滚动运动。所述环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一侧延伸指向外圈的轴向的轴孔(贯通孔)内端面边缘留有一定距离,和T状的上部分另一侧延伸指向内圈的轴向端面留有一定距离,T状的上部分的两侧环形外周都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。
所述轴向的保持架的窗式兜孔构造成滚动体的形状,所述兜孔上活动连接的弹性元件,所述弹性元件形成H状的弧形弹性钢片和弧形凹部连接弹簧,H状的弧形弹性钢片的两头凹槽预压接合窗式兜孔的两侧,弹簧的另一头抵接窗式兜孔的径向端面,弧形弹性钢片的弧形凸部抵接第五非对称球面滚子的大径端面控制向周向位移。在有利的设计方案中,保持架的窗式的兜孔区域内设置利用两个面形成两面卡式装置,第五非对称球面滚子的两端抵接窗式兜孔的径向端面与弹性钢片的凸部,用于将非对称球面滚子保持在兜孔内,该两面卡式装置允许了通过在弹性钢片的一个面和窗式兜孔的一个面的区域内的弹性变形的非对称球面滚子到兜孔内的插入。
进动轴承在装配当中,可以把轴向中两列的非对称球面滚子相对不平行的组装,两列滚动体的滚动面都与内、外圈的轴向的滚道面相切,其中一列滚道体的旋转轴线与内圈的旋转轴线平行与外圈的旋转轴线相交,另一列滚动体的旋转轴线与外圈的旋转轴线平行与内圈的旋转轴线相交,即组装内圈的旋转轴线与外圈的旋转轴线不平行但相交,在进动轴承由电机启动时,两列相对的非对称球面滚子它们会在推力角接触环形球面滚道与轴向接触环形球面滚道作惯性空间轨道滚动运动,同时轴向均布的多个第一滚珠列在内圈的外球面滚道与外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触滚动运动,并具有内圈的外球面滚道与外圈的第二内球面滚道的面接触的滑动运动。进动轴承的原理与功能:当驱动内圈定轴旋转,一对非对称球面滚子不平行的高速回转运动所述驱动外圈进动(旋进,章动)并朝相反方向旋转;或驱动外圈定轴旋转,一对非对称球面滚子不平行的高速回转运动所述驱动内圈进动(旋进,章动)并朝相反方向旋转,这个过程当中旋转的内圈或外圈持续高速转动,另一方的进动效应会衰减下来停止,这时回归到组合轴承的内、外圈相对的纯滚动旋转运动,一对非对称球面滚子回归平行 中,如施加外力进动轴承又会出现进动效应,如陀螺具有的稳定性与进动性。
依据其他的设计方案,一种主动式的进动轴承,用于机械的动力学系统的进动(旋进、章动)运动特性。所述第一、第二外圈的第三阶梯的轴向的第三滚道设置的所述环平面滚道到所述内圈轴向的第一、第二滚道设置的所述环平面滚道的距离(空间)配置的所述两列第二滚动体,轴向的所述第二滚动体设置成所述环布窗式第三保持架保持的斜坡中的圆锥滚子和圆柱滚子组成的滚动元件,所述左右轴向相对的第三斜坡环周滚动元件的每列由环形直径线上的两头的圆柱滚子分隔成的两侧多个圆锥滚子形成坡度分布在圆周上,所述直线上的两个圆柱滚子分成两侧半周的圆锥滚子的坡度朝向是一半的每个圆锥滚子的小径端部朝向保持架的圆心与圆锥滚子的旋转轴线指向保持架的圆心、另一半的每个圆锥滚子大径端部朝向保持架的圆心与圆锥滚子的旋转轴线指向保持架的圆心,所述每列的圆锥滚子和圆柱滚子组合的滚动元件的相对的滚动面形成为坡度的两个平面的滚动接触面。所述左右相对的第三斜坡环周滚动元件形成的平面滚动面与所述内圈的轴向平面两滚道面相切,所述左侧的第三斜坡环周滚动元件形成的坡面滚动面与所述第一外圈的第三轴向平面滚道面相切,所述右侧的第三斜坡环周滚动元件形成的坡面滚道面与所述第二外圈的第三轴向平面滚道面相切,即,所述左侧第三斜坡环周滚动元件相切于第一外圈的环平面滚道面与内圈的第一滚道的环平面滚道面,所述右侧第三斜坡环周滚动元件相切于第二外圈的环平面滚道面与内圈的第二滚道的环平面滚道面。轴向的环布窗式保持架的兜孔控制每个圆柱和圆锥滚子不接触与控制圆锥滚子向周向的方向移动并在内,外圈的轴向的滚道之间滚动。环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一边延伸指向外圈的轴向的轴孔(贯通孔)内端面边缘留有一定间隙,和T状的上部分另一边延伸指向内圈的轴向端面留有一定间隙,T状的上部分的两边环形外径都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。保持架的内周侧的环部构造成与斜坡滚动元件的同样的一个角度(坡度)。
依据设计方案,所述轴向的保持架的窗式兜孔构造成滚动元件的形状,所述兜孔上活动连接的弹性元件,所述弹性元件形成H状的弧形弹性钢片和弧形凹部连接弹簧,H状的弧形弹性钢片的两头凹槽预压接合窗式兜孔的两侧,弹簧的另一头抵接窗式兜孔的径向端面,弧形弹性钢片的弧形凸部抵接圆锥滚子的大径端面控制向周向位移。在保持架的窗式的兜孔区域内设置利用两个面形成两面卡式装置,圆锥滚子的两端抵接窗式兜孔的径向端面与弹性钢片的凸部,用于将圆锥滚子保持在兜孔内,该两面卡式装置允许了通过在弹性钢片的一个面和窗式兜孔的一个面的区域内的弹性变形的圆锥滚子到兜孔内的插入。
所述左右相对的第三斜坡环周滚动元件形成所述在上坡度的大径圆锥滚子对应所述在下坡度的小径圆锥滚子,即,所述内圈的旋转轴线与外圈的旋转轴线相对倾斜形成一个角度α并旋转轴线相交于球心,所述第三斜坡环周滚动元件在内、外圈的轴向的滚道之间滚动运动,同时轴向均布的多个第一滚珠列在内圈的外球面滚道与外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触滚动运动,并具有内圈的外球面滚道与外圈的第二内球面滚道的面接触的滑动运动。主动式进动轴承原理与功能:当驱动内圈旋转,两列相对的第三斜坡环周滚动元件高速回转运动将会驱动外圈朝相反方向主动式进动(旋进、旋摆、章动)运动,是围绕球心的稳定的持续的主动式的进动(章动)运动效应与传动运动效应,即,内圈定轴转动,外圈朝相反反向动平衡。根据第三斜坡环周滚动元件的角度大小(坡度高低),当设计小角度时,外圈进动的速度快(角速度快);当设计大角度时,外圈进动的速度慢(角速度慢)。反之驱动外圈进动将会带动内圈旋转。或当驱动外圈旋转,两列相对的第三斜坡环周滚动元件高速回转运动将会驱动内圈朝相反方向主动式进动(旋进、旋摆、章动)运动,根据第三斜坡环周滚动元件的角度大小(坡度高低),当设计小角度时,内圈进动的速度快(角速度快);当设计大角度时,内圈进动的速度慢(角速度慢)。反之驱动内圈进动将会带动外圈旋转。具有第三斜坡环周滚动元件的轴承的主动式进动会持续稳定的运转不停止,其中一方的内圈或外圈进动,另一方定轴旋转可以当作传动运动的动力学特性利用,是第三斜坡环周滚动元件与滚道的摩擦的传动运动。
所述两列第三斜坡环周滚动元件的每列的坡度(角度)是1°至15°,并且相对的两列第三斜坡环周滚动元件的坡度相同。根据第三斜坡环周滚动元件的角度大小(坡度高低)形成内圈与外圈的传动比,所述主动式进动轴承构造成使得在驱动与输出之间实现至少一个运动参数的变化,可以应用在减速器的领域中。
因此,利用进动力学原理用于通用机械当中,如车辆、地下钻探、柱塞泵、减速器、内燃机、风电、直升机旋翼机构,机械臂关节等领域,是内圈定轴旋转驱动外圈主动进动(章动),或外圈主动旋摆(章动)驱动内圈旋转,这是一种进动轴承的主动的、稳定的、持续的进动(章动)的利用。
依据其他的设计方案,一种主动式进动轴承,用于机械的动力学系统的进动(旋进、章动)运动特性。还可以设置主动式的进动(旋进、旋摆、章动)运动效应的轴承配置一对滚动体,所述第一、第二外圈的第三阶梯的轴向的第三滚道到所述内圈轴向的第一、第二滚道的距离(空间)配置的所述两列第二滚动体,所述两列第二滚动体设置成一对圆锥滚子或一对非对称球面滚子。所述主动式的进动(旋进、旋摆、章动)轴承的内圈的一侧设置倾斜的滚道(内圈的轴向的一侧滚道的中心轴线相对于传动轴的轴线倾斜地设置)和另一侧设置轴向接触滚道对应外圈的轴向中的第三滚道,所述主动式进动轴承的轴向中的所述滚道构造成一起安装与配合一对圆锥滚子或一对非对称球面滚子的滚道面,并形成一对圆锥滚子或一对非对称球面滚子相切于轴向中的滚道之间由保持架引导滚动运动配合第一滚珠列的在轴承中一起以无间隙的安装。一对圆锥滚子或一对非对称球面滚子在轴向方向的距离不相等,即,所述靠在内圈轴向侧倾斜滚道的这列滚动体大于轴向侧的另一列滚动体的滚子对称轴的距离。
所述环形的保持架的截面形成内周侧和外周侧的T状(T状的上部分是内周侧,下部分是外周侧),在T状的上部分一侧延伸指向外圈的轴向的轴孔(贯通孔)内端面边缘留有一定距离,和T状的上部分另一侧延伸指向内圈的轴向端面留有一定距离,T状的上部分的两侧环形外周都套有橡胶密封圈与内、外圈的轴向部位抵接,T状的下部分形成环周的窗式兜孔。
所述轴向的保持架的窗式兜孔构造成滚动体的形状,所述兜孔上活动连接的弹性元件,所述弹性元件形成H状的弧形弹性钢片和弧形凹部连接弹簧,H状的弧形弹性钢片的两头凹槽预压接合窗式兜孔的两侧,弹簧的另一头抵接窗式兜孔的径向端面,弧形弹性钢片的弧形凸部抵接滚动体的大径端面控制向周向位移。在有利的设计方案中,保持架的窗式的兜孔区域内设置利用两个面形成两面卡式装置,滚动体的两端抵接窗式兜孔的径向端面与弹性钢片的凸部,用于将滚动体保持在兜孔内,该两面卡式装置允许了通过在弹性钢片的一个面和窗式兜孔的一个面的区域内的弹性变形的滚动体到兜孔内的插入。
所述主动式进动轴承原理与功能:当驱动内圈旋转,内圈的轴向的两侧滚道面不平行形成滚动体相对不平行的滚动驱动外圈作旋摆运动,并朝相反方向旋进运动。所述主动式进动轴承构造成使得在驱动与输出之间实现至少一个运动参数的变化。
依据其他的设计方案,一种章动和进动的耦合运动的轴承,用于机械的动力学系统的章进运动特性。所述内圈的轴向的左、右侧面的第一、第二滚道设置的环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置,所述第一、第二滚道的倾斜环平面滚道是平行设置,所述倾斜环平面滚道的中心轴线与传动轴的轴线的夹角在1°至15°。
所述外圈的第一、第二外圈的第三滚道的环平面滚道到内圈的第一、第二滚道的倾斜环平面滚道的距离(空间)设置两列第三斜坡环周滚动元件,并让它在内、外圈的轴向当中的滚道之间滚动。
所述两列第三斜坡环周滚动元件的每列坡度(角度)是1°至15°,并且相对的两列第三斜坡环周滚动元件的坡度相同。
所述第一外圈轴向的环平面滚道到内圈的第一滚道的倾斜环平面滚道的距离与第二外圈轴向的环平面滚道到内圈的第二滚道的倾斜环平面滚道的距离的相等和/或不相等;即
所述左列第三斜坡环周滚动元件的轴向距离与右列第三斜坡环周滚动元件的轴向距离的相同和/或不相同;
所述两列第三斜坡环周滚动元件构造成与配合第一滚珠列的可以被引导在所述倾斜环平面滚道面与所述轴向环平面滚道面之间滚动运动。
所述左列第三斜坡环周滚动元件相切于第一外圈的环平面滚道面与内圈的第一滚道的倾斜环平面滚道面,所述右列第三斜坡环周滚动元件相切于第二外圈的环平面滚道面与内圈的第二滚道的倾斜环平面滚道面。所述左右相对的第三斜坡环周滚动元件形成在上坡度的大径圆锥滚子对应在下坡度的小径圆锥滚子,即,所述章进轴承在装配时所述内圈的旋转轴线与所述外圈的旋转轴线相对倾斜形成一个角度或所述相对形成0角度并所述旋转时旋转轴线相交或重合;所述两列第三斜坡环周滚动元件可以被引导在 倾斜环平面滚道面与轴向环平面滚道面之间滚动运动,同时轴向均布的多个第一滚珠列在内圈的外球面滚道与外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触滚动运动,并具有内圈的外球面滚道与外圈的第二内球面滚道的面接触的滑动运动。所述章进轴承具备两列第三斜坡环周滚动元件与内圈的倾斜环平面滚道的滚动运动会出现外圈的进动和章动的两种运动效应。章进轴承原理与功能:当所述第三斜坡环周滚动元件的坡度与所述内圈的倾斜的环平面滚道的夹角(倾斜环平面滚道的中心轴线与传动轴的轴线的夹角)相等时或不等时,在不同设置时,所述当驱动内圈旋转,两列第三斜坡环周滚动元件在内、外圈的轴向中的滚道之间滚动,章进轴承的所述两列第三斜坡环周滚动元件具备进动运动与所述内圈的倾斜环平面滚道具备往复直线摆动运动,两种运动共同的作用形成章动和进动的耦合运动,将驱动外圈的章动和进动的朝相反的方向运动,是外圈围绕球心的稳定持续的章动和进动运动。所述主动式章进轴承构造成使得在驱动与输出之间实现至少一个运动参数的变化,两列第三斜坡环周滚动元件在内、外圈滚道之间摩擦滚动带来传动运动的力学效应,可以应用在如前所述的机械当中。
依据其他的设计方案,一种进动轴承陀螺,用于陀螺进动式主动稳定装置。
所述根据被动式进动轴承的进动性与稳定性的原理与功能。
所述外圈的第一外圈设置成圆盖状,所述圆盖状的第一外圈设有三级阶梯,所述三级阶梯的第三阶梯延伸形成隔开封闭包覆住内圈的轴向中的第一滚道,所述第三阶梯的轴向内侧壁形成为圆形平面滚道,所述第三阶梯的轴向外侧面的中部设置轴向凸出的鼻锥或半球体,所述鼻锥的锥角是100°至178°,所述第三阶梯的轴向外侧面的外周设置轴向的环形平面和中部的鼻锥或半球体相连,所述环形平面设置与第二外圈对应的多个连接孔,所述连接孔从环形平面穿过第一阶梯的轴向的邻接部通到相对面带有螺纹沉孔,所述螺栓穿过连接孔相对的连接第一、第二外圈。并所述第一外圈的第二阶梯设置第二内球面滚道、第一阶梯设置第一球状内腔球面滚道与前述设置相同,所述第二外圈设置与前述相同。
所述内圈设置成带有杆端的内圈,在轴向中的所述第一滚道形成为凹进的圆锥面滚道,轴向中的所述第二滚道形成为环形平面滚道和中部形成为一杆端相连;和/或所述内圈设置成圆环状的中心贯通的轴连接,所述圆环状的轴向中的第一滚道形成为凹进的圆锥面滚道,所述圆环状的轴向当中的第二滚道形成为环形平面滚道;并所述内圈的径向的外球面滚道与前述设置相同。
所述外圈的第一、第二外圈的轴向中的第三滚道到内圈的轴向中的第一、第二滚道的距离(空间)设置两列第四圆锥滚子;
所述左边这列圆锥滚子相切于第一外圈的圆形平面滚道面与内圈轴向的第一滚道的圆锥面滚道面,所述右边这列圆锥滚子相切于第二外圈的圆锥面滚道面与内圈轴向的第二滚道的环形平面滚道面,所述两列圆锥滚子可以被引导在圆锥面滚道与平面滚道之间滚动运动。
所述进动轴承陀螺的所述内圈的杆端连接所述电机转轴,所述电机外壳连接所述支撑平台,所述电机接通电源,和/或所述支撑平台设置成一体的电池支撑平台与所述电机连接;所述进动轴承陀螺的所述外圈的第一外圈的所述鼻锥或半球体侧躺在所述承载平台上或平地上,所述一对圆锥滚子相对不平行;所述启动电机,在初始状态,所述驱动外圈进动运动,所述在内圈的转速提高下,所述外圈的鼻锥或半球体的轴向顶点所述稳定的立在承载平台上,所述外力矩施加在所述承载平台或所述支撑平台上所述外圈进动(章动)运动保持所述内圈上的支撑平台稳定。
依据其他的设计方案,一种进动轴承陀螺,用于陀螺进动式主动稳定装置。
所述根据被动式进动轴承的进动性与稳定性的原理与功能。
所述外圈的第一外圈设置成圆盖状,所述圆盖状的第一外圈设有三级阶梯,所述三级阶梯的第三阶梯延伸形成隔开封闭包覆住内圈的轴向中的第一滚道,所述第三阶梯的轴向内侧壁形成为环形球面滚道,所述第三阶梯的轴向外侧面的中部设置轴向凸出的鼻锥或半球体,所述鼻锥的锥角是100°至178°,所述第三阶梯的轴向外侧面的外周设置轴向的环形平面和中部的鼻锥或半球体相连,所述环形平面设置与第二外圈对应的多个连接孔,所述连接孔从环形平面穿过第一阶梯的轴向的邻接部通到相对面带有螺纹沉孔,所述螺栓穿过连接孔相对的连接第一、第二外圈。并所述第一外圈的第二阶梯设置第二内球面滚道、第一阶梯设置第一球状内腔球面滚道与前述设置相同,所述第二外圈设置与前述相同。
所述内圈设置成带有杆端的内圈,在轴向当中的所述第一滚道形成为推力角接触环形球面滚道,轴 向当中的所述第二滚道形成为轴向接触环形球面滚道和中部形成为一杆端相连;和/或所述内圈设置成圆环状的中心贯通的轴连接,所述圆环状的轴向当中的第一滚道形成为推力角接触环形球面滚道,所述圆环状的轴向当中的第二滚道形成为轴向接触环形球面滚道;并所述内圈的径向的外球面滚道与前述设置相同。
所述外圈的第一、第二外圈的第三滚道(轴向接触环形球面滚道、推力角接触环形球面滚道)到内圈的轴向的第一、第二滚道(推力角接触环形球面滚道、轴向接触环形球面滚道)的距离(空间)设置两列第五非对称球面滚子;
所述一列第五非对称球面滚子相切于第一外圈的轴向接触环形球面滚道面与内圈轴向的第一滚道的推力角接触环形球面滚道面,所述另一列第五非对称球面滚子相切于第二外圈的推力角接触环形球面滚道面与内圈轴向的第二滚道的轴向接触环形球面滚道面,所述两列第五非对称球面滚子可以被引导在内、外圈的轴向当中的滚道面之间滚动运动;
所述进动轴承陀螺的所述内圈的杆端连接所述电机转轴,所述电机外壳连接所述支撑平台,所述电机接通电源,和/或所述支撑平台设置成一体的电池支撑平台与所述电机连接;所述进动轴承陀螺的所述外圈的第一外圈的所述鼻锥或半球体侧躺在所述承载平台上或平地上,所述一对非对称球面滚子相对不平行;所述启动电机,在初始状态,所述驱动外圈进动运动,所述在内圈的转速提高下,所述外圈的鼻锥或半球体的轴向顶点所述稳定的立在承载平台上,所述外力矩施加在所述承载平台或所述支撑平台上所述外圈进动(章动)运动保持所述内圈上的支撑平台稳定。
依据其他的设计方案,一种旋转刚体的陀螺在斜坡平面上运动的原理,所述旋转刚体的陀螺在同一个倾斜平面坡度上,旋转方向相同前进方向相同,在转速不同的情况下,转速低时陀螺会向下斜线运动,转速高时陀螺会向上斜线运动,在转速匹配坡度时陀螺处在那个斜坡高度位置上就在那个斜坡高度位置上直线运动;所述在陀螺高转速匹配高坡度轨道时形成高速度直线运动,在陀螺低转速匹配低坡度轨道时形成低速度直线运动;所述在倾斜的斜坡平面,坡面面对于人,陀螺逆时针旋转,运动方向向右直线前进,反之陀螺顺时针旋转,运动方向向左直线前进;在斜坡平面相对于人向下,陀螺逆时针旋转,运动方向向左直线前进,反之陀螺顺时针旋转,运动方向向右直线前进。
依据其他的设计方案,一种进动轴承陀螺超越离合式装置,用于在斜坡轨道上行走的系统、方法。
所述根据进动轴承陀螺的陀螺进动式主动稳定装置与旋转刚体在斜坡轨道上行走的原理与功能。
所述包括斜坡轨道,所述斜坡轨道由钢板构造成倾斜的平面轨道,升降机构平台,控制器,驱动马达,传感器;
所述进动轴承陀螺超越离合式装置这样设置,该装置是设置内圈在轴承中心的径向的球面滚道的开有多个环周的离心式的一段凹槽球面滚道,所述内圈的周向的离心式的每个凹槽球面滚道的深处端面设有连接小段磁铁,离心式的凹槽球面滚道里配置球面滚子与组合第一、第二外圈的第一阶梯第一球状内腔球面滚道传递转矩时会接触。所述内、外圈的轴向中的滚道之间采用滚珠、圆锥滚子、非对称球面滚子与前述的滚道对应设置构造成被动式进动轴承的进动运动与稳定性,并内、外圈的径向的内外球面滚道之间配置的多个第一滚珠列与前述相同设置,和所述内、外圈的所述外球面滚道与所述第二内球面滚道的与前述的对应设置。进动轴承陀螺超越离合式装置的内圈杆端连接驱动马达的转轴,驱动马达的外壳连接电池一体支撑平台。
该装置在斜坡轨道行走系统、方法包括以下步骤:
斜坡轨道在开始时是处于水平状态,所述外圈上的鼻锥或半球体的侧面倾斜的躺在水平的斜坡轨道上;
所述进动轴承陀螺超越离合式装置的控制器控制所述驱动马达驱动内圈旋转;
在初速度下,所述球面滚子吸附在磁铁上,所述外圈开始处于进动运动;
在控制器控制所述驱动马达驱动内圈旋转速度持续提高下,所述吸附在磁铁上的球面滚子在离心力的作用下球面滚子运动接触到所述外圈的第一球状内腔球面滚道,即传递转矩实现所述刚体陀螺在斜坡轨道(水平状态)上旋转;
斜坡轨道上的感应传感器感应到刚体陀螺(该装置)处在稳定的旋转当中,并反馈给控制器,
控制器基于接收到的稳定旋转信息,升降机构的控制器控制驱动马达启动抬升,斜坡轨道动作倾斜状态,
所述进动轴承陀螺超越离合式装置在倾斜的斜坡轨道上开始直线行走;
当运行到指定目的地段,并且该段标识有斜坡轨道升降机构装置,发送指令到控制器;
斜坡轨道接收指令控制器基于接收到的指令,斜坡轨道检测到刚体陀螺(该装置)到达指定位置;并反馈给控制器,升降机构装置控制器基于接收到的指令,升降机构的控制器控制驱动马达启动下降,斜坡轨道动作水平状态;所述该装置停止前进在水平状态的斜坡轨道原地上旋转;
在指定时间,所述该装置的控制器控制所述驱动马达停止,所述内圈停止旋转,
立在水平轨道上的所述进动轴承陀螺超越离合式装置的所述外圈还处在旋转运动中,所述外圈旋转脱离所述球面滚子超越不传递转矩,所述球面滚子运动到所述凹槽球面滚道的深处端面被所述磁铁吸附住;所述外圈上的鼻锥或半球体随着与所述轨道的摩擦力与所述进动轴承陀螺超越离合式装置本身的重力矩,所述外圈旋转速度衰减开始进动,直到所述外圈停止进动;
所述外圈上的鼻锥或半球体的侧面倾斜在水平状态的斜坡轨道上保持所述内圈连接的电机的电池一体支撑平台水平。
依据其他的设计方案,一种进动轴承陀螺超越离合式装置在斜坡轨道上行走的系统、方法,用于交通运输系统,
所述根据进动轴承陀螺超越离合式装置与旋转刚体在斜坡轨道上行走的原理与功能。
所述斜坡轨道由钢板建成倾斜的平面轨道,所述轨道坡面的角度在1度至20度,
所述利用本发明的进动轴承的进动性与稳定性,在内圈启动与停止时带有鼻锥或半球体的外圈处在进动当中,进动轴承陀螺装置保持支撑平台垂直稳定,与加入超越离合式的传递转矩形成旋转刚体在斜坡轨道平台上行走系统、方法,可以用于交通运输系统,进动轴承陀螺超越离合式装置在相同坡面上旋转方向相同直线行走方向会相同,在转速相同、处在不同位置上的同方向运动的多辆进动轴承陀螺超越离合式装置(车)在斜坡轨道上行走运动不会发生相撞事故。
另外,以上构成要件的任意组合或将本发明的构成要件或表现在方法、系统等之间互相替换的方式也作为本发明的实施方式而有效。
本发明与现有技术相比有益效果为:
(1)本发明通过将轴承的外圈剖分为两部分,其中每部分外圈的外侧设置有向内圈延伸的三级阶梯。第一球状内腔滚道里的每列第一滚珠通过球环的保持架进行轴向对置的保持位置。左、右两部分外圈通过螺栓自带的弹性元件的柔性调整来实现外圈、第一滚珠列、第二滚动体与内圈之间的游隙调整,可以精确的控制轴承的径向间隙和轴向间隙的吻合度,并且径向间隙和轴向间隙可以调整到基本一致的状态。从而提高轴承精度,降低轴承的运动精度对机构运动精度的影响。
(2)本发明通过轴承中的多个第一滚珠列的滚珠直径改变与轴承的第一、第二外圈的轴向的邻接部向轴承外部偏置的距离改变,通过两者尺寸的置换可以柔性组合,多列第一滚珠配合内圈到外圈的距离的环球形的由保持架控制左右轴向分布,当轴承作角自由度旋转时,每列第一滚珠与内、外圈的滚道多点滚动的角接触,滚道可以随外力的变化做自适应的角自由度旋转。在后的一副轴向的第二滚动体的轴向距离配合轴承的内、外圈轴向的滚道之间的距离设置并在轴向中的滚道之间滚动,外圈、多列第一滚珠、第二滚动体和内圈运动疲劳磨损时,四者的接触形貌在改变,外圈组合的第一、第二外圈的外径不同或相同,通过外圈的外径的柔性组合,外径大的一侧外圈与轴承箱过盈配合,外径小的另一侧外圈自动柔性预紧,它是由螺栓头上的弹性元件的力矩使轴承始终处于零间隙。出现两种运动方式:第一是滚动运动疲劳磨损后就开始滚动和滑动同时运动;第二是滚动和滑动同时运动。在动载荷作用下,滚动体与滚道接触处一部分出现明显的应力集中,例如在公称点接触的中心、线接触的端部、滚动体无精确引导的轴承上,滚动体表面出现初期缺陷,通过结合不同运动方式的加入轴承运转不会失效。
(3)本发明通过一副轴向的第二滚动体的轴向保持架配置的弹性元件消除间隙的可以提供角运动的回转运动对精度的影响。根据运动速度,转动方向与载荷,一副轴向的第二滚动体配对的在内、外圈的轴向中的滚道之间滚动运动可以控制轴承运动形式,会出现相对旋转运动、章动运动、进动运动、摆动运 动、偏摆运动,轴向的保持架针对不同滚动体采用不同方案设置,在轴向中的滚道之间的接触形貌它(弹性元件)可以控制滚动体的径向的位移,同时螺栓上的弹性元件可以控制轴承的轴向的距离使轴承的松紧在合理范围。可以用在精度要求较高的运动机构中,避免进动(章动)轴承的间隙对运动精度影响和回差影响,尤其是高精度的空间指向机构中。
(4)本发明通过外圈的第一、第二外圈的第三阶梯的轴向中的环平面滚道、圆锥面滚道、球面滚道、轴向接触环形球面滚道、推力角接触环形球面滚道的设置与内圈的轴向中的左、右侧面的第一、第二滚道的圆锥面滚道、球面滚道、轴向接触环形球面滚道、推力角接触环形球面滚道、环平面滚道的设置,径向中的多个第一滚珠列、轴向中的两列第二滚动体的设置,内圈与外圈相对的左与右的轴向距离设置(内圈轴向两侧相对球心距离、外圈邻接部端面相对球心距离、外圈轴向中的第三滚道相对球心距离),既有内圈轴向的两侧或一侧的环形端部滚道的中心轴线相对于传动轴的轴线地倾斜。两者相对的轴向中的不同滚道设置的轴向中的左右两列滚动体,在安装时左、右两列滚动体可以相对不平行,每列滚动体相切在圆锥面滚道、球面滚道、轴向接触环形球面滚道、推力角接触环形球面滚道、环平面滚道它们之间的配对的滚道的滚道滚动。即控制内圈与外圈的旋转轴线相对倾斜,即内圈的轴向中的环平面滚道、轴向接触环形球面滚道与外圈的轴向中的环平面滚道、轴向接触环形球面滚道的分开的相对倾斜,在内圈相对于外圈旋转运动时,相对倾斜的左、右两列滚动体带动外圈做旋摆运动,也就是俗称的章动运动,或进动运动、摆动运动、偏摆运动,并一副滚动体在轴向空间中形成一个夹角的高速回转运动带动外圈相反方向运动。利用章动运动原理可以用在章动传动当中,是滚动体与滚道的摩擦传动运动,有别于齿轮传动。
(5)利用旋转刚体在斜坡轨道直线运动的原理,来设置进动轴承陀螺的进与稳的特性,并加入超越离合传递转矩形成如刚体陀螺在斜坡轨道上的直线运动用于交通运输系统。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1根据本发明的第一个实施例的主动式进动轴承的侧视图(外圈相对内圈倾斜一个角度)。
图2根据本发明的第一个实施例的主动式进动轴承的前视图(外圈相对内圈倾斜一个角度)。
图3根据图1示出本发明的主动式进动轴承的A-A剖面视图(外圈中心轴线AF与内圈中心轴线AX的夹角α)。
图4根据本发明的第一个实施例的主动式进动轴承的爆炸视图。
图5根据图4示出本发明的主动式进动轴承的保持架上的弹性元件的局部视图E。
图6根据本发明的第一个实施例的主动式进动轴承的第三斜坡环周滚动元件和保持架的前视图。
图7根据图6示出本发明的第三斜坡环周滚动元件和保持架的B-B剖面视图。
图8根据本发明的第一个实施例的主动式进动轴承的第三斜坡环周滚动元件和保持架的侧视图。
图9根据本发明的第一个实施例的主动式进动轴承的第三斜坡环周滚动元件和保持架的另一角度的侧视图。
图10根据本发明的第一个实施例的主动式进动轴承的第三斜坡环周滚动元件和保持架的立体视图。
图11根据图10示出本发明的第三斜坡环周滚动元件的保持架上的弹性元件的局部视图K。
图12根据本发明的第二个实施例的组合轴承和/或进动轴承的轴向中的配合的第四圆锥滚子的前视图。
图13根据图12示出本发明的第二个实施例的C-C剖面视图。
图14根据本发明的第二个实施例的组合轴承和/或进动轴承的轴向中的配合的第四圆锥滚子的爆炸视图。
图15根据本发明的第三个实施例的组合轴承和/或进动轴承的轴向中的配合第五非对称球面滚子的前视图。
图16根据图15示出本发明的第三个实施例的D-D剖面视图。
图17根据本发明的第三个实施例的组合轴承和/或进动轴承的轴向中的配合第五非对称球面滚子的爆炸视图。
图18根据本发明的第四个实施例的组合轴承和/或进动轴承的轴向中的滚珠列设置三角形的兜孔的保持架 的前视图。
图19根据本发明的第四个实施例的组合轴承和/或进动轴承的轴向中的滚珠列设置三角形的兜孔的保持架的侧视图。
图20根据本发明的第四个实施例的组合轴承和/或进动轴承的轴向中的滚珠列设置三角形的兜孔的保持架的立体视图。
图21根据图20示出本发明的第四个实施例的三角形的兜孔上的弹性元件(三角形的底边朝外周,朝内周的弹性元件的凹槽预压接合三角形的两边,弧形弹性元件的凸部朝向保持架的中心)的视图。
图22根据本发明的第五个实施例的进动轴承陀螺超越离合式装置的俯视图。
图23根据本发明的第五个实施例的进动轴承陀螺超越离合式装置的仰视图。
图24根据本发明的第五个实施例的进动轴承陀螺超越离合式装置的侧视图。
图25根据图22示出本发明的第五个实施例的进动轴承陀螺超越离合式装置的F-F剖面视图。
图26根据本发明的第五个实施例的进动轴承陀螺超越离合式装置的爆炸视图。
图27根据本发明的第五个实施例的进动轴承陀螺超越离合式装置的内圈的离心式凹槽球面滚道、球面滚子的视图。
图28根据图27示出本发明的第五个实施例的离心式凹槽球面滚道上的小段磁铁的视图。
图29根据本发明的第六个实施例的进动轴承陀螺超越离合式装置在斜坡轨道上行走的视图。
在绘画的图中,相同的和功能相同的元件和特征-只要没有另外的说明-设有同一附图标记。
附图标记列表
100.外圈,200.内圈,288.内圈的外球面滚道
101.第一外圈的第一阶梯,102.第二外圈的第一阶梯,103.第一外圈的第二阶梯,104.第二外圈的第二阶梯,105.第一外圈的第三阶梯,106.第二外圈的第三阶梯,
181.第一球状内腔球面滚道(第一外圈),182.第一球状内腔球面滚道(第二外圈),
183.第二内球面滚道(第一外圈),184.第二内球面滚道(第二外圈),
191.第一阶梯轴向的邻接部端面(第一外圈),192.第一阶梯轴向的邻接部端面(第二外圈),
193.第二阶梯轴向的环形端面(第一外圈),194.第二阶梯轴向的环形端面(第二外圈),
195.第三阶梯轴向的环形外端平面(第一外圈),196.第三阶梯轴向的环形外端平面(第二外圈),
141.径向中的第一滚珠列(左) 142.径向中的第一滚珠列(右)
151.径向中的第一滚珠列的保持架(左) 152.径向中的第一滚珠列的保持架(右)
900.连接孔(螺栓孔),901.螺栓,902.弹簧(弹性元件),
66.通孔(外圈的贯通孔,环形端面)
以上标记的是本申请的实施例的相同特征
1.主动式进动轴承,
11.第一外圈(主动式进动轴承),12.第二外圈(主动式进动轴承),
301.第三斜坡环周滚动元件(左) 302.第三斜坡环周滚动元件(右)
303.左保持架(第三斜坡环周滚动元件) 304.右保持架(第三斜坡环周滚动元件)
31.半周中的小径圆锥滚子(左和右的第三斜坡环周滚动元件)直径大小有多个
32.半周中的大径圆锥滚子(左和右的第三斜坡环周滚动元件)直径大小有多个
39.圆柱滚子(在直径的直线上的两端的两个),950.弹性元件,951.H状的弧形钢片,952.弹簧
305.保持架外周的环形部,306.保持架外周上的窗式兜孔(构造成圆锥和圆柱滚子的形状),
388.弹性橡胶密封圈,398.保持架上内周的斜坡环形部(保持架的截面形成T形的上部分的盖板)
33.第一外圈轴向第三滚道的环形平面滚道(主动式进动轴承),34.第二外圈轴向第三滚道的环形平面滚道(主动式进动轴承)
35.内圈轴向第一滚道的环形平面滚道(主动式进动轴承),36.内圈轴向第二滚道的环形平面滚道(主动式进动轴承),
2.组合轴承和/或被动式进动轴承(轴向中的是圆锥滚子)
21.第一外圈(组合轴承和/或被动式的进动轴承配合轴向中的是圆锥滚子)
22.第二外圈(组合轴承和/或被动式的进动轴承配合轴向中的是圆锥滚子)
43.第一外圈轴向第三滚道的环锥面滚道(推力角接触),44.第二外圈轴向第三滚道的环平面滚道
45.内圈轴向第一滚道的环形平面滚道,46.内圈轴向第二滚道的环形锥面滚道(推力角接触)
401.第四圆锥滚子的保持架(左),402.第四圆锥滚子的保持架(右)
403.第四圆锥滚子(左),404.第四圆锥滚子(右)
3.组合轴承和/或被动式进动轴承(轴向中的是非对称球面滚子),
31.第一外圈(组合轴承和/或被动式的进动轴承配合轴向中的是非对称球面滚子)
32.第二外圈(组合轴承和/或被动式的进动轴承配合轴向中的是非对称球面滚子)
53.第一外圈轴向第三滚道的推力角接触环形球面滚道
54.第二外圈轴向第三滚道的轴向接触环形球面滚道
55.内圈轴向第一滚道的轴向接触环形球面滚道
56.内圈轴向第二滚道的推力角接触环形球面滚道
501.第五非对球面滚子的保持架(左),502.第五非对球面滚子的保持架(右)
51.第五非对称球面滚子(左),52.第五非对称球面滚子(右)
4.进动轴承陀螺超越离合式装置,
41.第二外圈(形成以上之一的相同特征),42.第一外圈(形成圆盖状),
43.第二外圈轴向第三滚道的环形锥面滚道,444.第一外圈轴向第三滚道的圆形平面滚道,
48.第一外圈轴向的外侧的鼻锥,
202.内圈杆端,455.内圈轴向第二滚道的环形平面滚道,466.内圈轴向第一滚道的圆锥面滚道,
77.离心式凹槽球面滚道,78.球面滚子,79.小段磁铁
401.第四圆锥滚子的保持架(左),402.第四圆锥滚子的保持架(右)
403.第四圆锥滚子(左),404.第四圆锥滚子(右)
888.轴向中的滚珠列,808.保持架(轴向中的左、右滚珠列的),809.滚珠,
810.三角形的兜孔,811.H状的弧形弹性钢片(弹性元件)
812.保持架的外周的环部,813.环部(保持架的内周的环部盖板,保持架的截面形成T形的上部分),
814.弹性的橡胶密封圈
8.进动轴承陀螺超越离合式装置行走系统,88.进动轴承陀螺超越离合式装置加装电机和支撑平台,
818.电机(马达),828.电池一体支撑平台
855.斜坡轨道(承载平台),805.外侧的斜坡轨道,815.内侧的斜坡轨道,866.升降平台机构
AX.轴向方向和旋转轴线和内圈中心轴线
AF.外圈中心轴线(相对于内圈中心轴线倾斜一个角度形成旋转轴线)
α.角度
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合,便于说明所示的左右关系是针对附图的实施例,所示实施例左右转动180度也可以互相转换左右关系便于描述。下面将参考附图并结合实施例来详细说明本发明。
在本发明的实施例中,提出了一种组合轴承和进动轴承,及进动轴承陀螺,及进动轴承陀螺装置, 及进动轴承陀螺超越离合式装置,其中,所述保持架用于滚珠的是径向球环式碗孔保持架、轴向圆珠孔保持架,轴向三角形孔的保持架,用于滚子的是轴向环形窗式保持架。在实施例中,保持架由聚合物、金属比如黄铜、钢或铁、或者由本领域技术人员公认的任何其他合适的材料制成。
对于本领域技术人员而言,其他实施例和对本文中在权利要求的范围之内提出的当前实施例的修改将是显而易见的。例如,本领域技术人员将理解并认识到,保持架兜孔的几何形状可不同地设计来仍达到相同的效果。
为了促进对本公开原理的理解,现在将参考在附图中示出并且在以下书面说明书中描述的实施例。应当理解,由此并不意图限制本公开的范围。还应当理解,本公开包括对所示出的实施例的任何改变和修改,并且包括本公开所属领域的技术人员通常会想到的本公开原理的进一步应用。
第一个实施例
如图1至图11所示,本发明设计的一种主动式进动轴承1。
主动式进动轴承1应用在通用机械与车辆当中,如地下钻探、破碎机、柱塞泵、内燃机、电动工具、风电设备、直升机旋翼机构,机械臂关节,压缩机,减速机,涡桨发动机等领域。
依据图1至图11作为轴承第一个实施例的主动式进动轴承1(以下称为进动轴承)具备外圈100和与该外圈100同轴球心的内圈200,作为滚动体在第一球状内腔球面滚道181、182中可以实施为至少两列第一滚珠141、142跨过径向中的球心射线左右配置、和在第三阶梯105、106的第三滚道所述环平面滚道33、34中左右两列第三斜坡环周滚动元件301、302相对轴向配置,以及保持架151、152、303、304。
内圈200形成为圆环状,在其径向方向的外球面形成有外球面滚道288,在其内圈2的外球面滚道288面中形成有供固体润滑剂保留的多个盲孔,在其轴向的左侧第一滚道形成为轴向环平面滚道35、轴向的右侧第二滚道形成为环平面滚道36,在其环平面滚道35、36面中形成有供固体润滑剂保留的多个盲孔。
外圈100形成分割为盖环状的第一外圈11和第二外圈12的截面的三级阶梯;组合的第一、第二外圈11、12的一边的外圈的外径微小于另一边的外圈的外径,或者所述组合的第一、第二外圈11、12的两边的外圈的外径相同;第一、第二外圈11、12的三级阶梯的第一阶梯101、102组合形成为具有比内圈200的外径球面滚道288尺寸大的内径尺寸的内腔的球状空间,第一阶梯101、102在其球状空间形成为第一球状内腔球面滚道181、182;第一、第二外圈11、12的第二阶梯的103、104形成与内圈200的外径球面滚道288尺寸相同的内径尺寸的内球状,第二阶梯103、104在其内球状形成为第二内球面滚道183、184;外圈100的第一、第二外圈11、12的第三阶梯105、106的轴向内侧壁形成为环形平面滚道33、34,第三阶梯105、106的轴向外侧面形成为圆环形平面195、196,其圆环形平面195、196的外周设置多个螺栓孔900,连接孔900从圆环形平面195、196通过第一阶梯101、102的轴向邻接部端面191、192到相对面形成螺纹孔;外圈100的第一、第二外圈11、12的第三阶梯105、106和第二、第一阶梯103、104,101、102形成为连接一体的盖环状的阶梯,其第一球状内腔球面滚道181、182和第二内球面滚道183、184为球状同心的上下阶梯的两球面滚道,连同第三阶梯105、106的轴向内侧壁设有平面滚道33、34;外圈100的第一外圈11和第二外圈12组合的第一阶梯11、12的轴向左右邻接部端面191、192处在径向中的球心射线上或相对径向中的球心射线偏置;外圈100并与内圈200的外球面滚道288隔着第一球状内腔球面滚道181、182配设于同一球心上;多列第一滚珠141、142和两列第三斜坡环周滚动元件301、302以被保持架151、152,303、304轴向分布间隔保持的状态能够滚动地配设于内圈200的外球面滚道288和轴向的第一、第二滚道的环平面滚道35、36与外圈100的第一球状内腔球面滚道181、182之间和轴向中的左右的环形平面滚道33、34之间。
外圈100的第一球状内腔球面滚道181、182、第二内球面滚道183、184和内圈200的外球面滚道288的球心重合,在内圈200的外球面滚道288中形成有供固体润滑剂保留的多个盲孔,第一、第二外圈11、12的第二阶梯103、104的第二内球面滚道183、184与内圈200的外球面滚道288接触滑动摩擦配合运动。
第一外圈11和第二外圈12组合的第一球状内腔球面滚道181、182与内圈200的外球面滚道288之 间设有容纳多列第一滚珠141、142的空间。第一球状内腔球面滚道181、182与外球面滚道288可以容纳多列第一滚珠141、142并让其在两球面滚道之间角接触的点接触的自由多角度的滚动,为了保持多列第一滚珠141、142的相对位置,增加了环球面的保持架151、152的大致径向方向的兜孔,保持架151、152的兜孔相对滚珠偏向球心兜住滚珠并配合外圈可以防丢失保持,保持架151、152配合左右外圈11、12使两列第一滚珠141、142环球面的轴向间隔均布,可以确保在滚动过程中每列滚珠141、142的每个滚珠相对位置不发生变化;保持架141、142采用了聚四氟乙烯保持架,该保持架具有一定的自润滑功能,可以对滚珠进行润滑,保持架141、142采用球环结构,在轴承进动运动过程中,其上面均布的兜孔保持滚珠。第一外圈11和第二外圈12组合通过螺栓901螺帽头配上弹簧902的预紧连接后,外径大的一侧外圈只能形成与轴承箱配合,另一侧外径小的外圈只能通过螺栓901上的弹簧902柔性轴向无间隙拉紧;每列滚珠141、142都是紧密的相切于内、外球面滚道288,181、182,保持架151、152的偏向球心的兜孔与外圈100的第一球状内腔球面滚道181、182配合保持滚珠防丢失,兜孔只是起到控制每个滚珠的相对位置,但要依附于滚珠列141、142的侧向角。
第一、第二外圈11、12的第三阶梯105、106所述的第三滚道设置轴向的环平面滚道33、34对应内圈200的第一、第二滚道所述的轴向的环平面滚道35、36并两者之间的轴向距离相等。
内圈200与外圈100的轴向的距离(空间)的滚道35、33,36、34之间配置轴向的一对第三斜坡环周滚动元件301、302。该第三斜坡环周滚动元件301、302由两个圆柱滚子39和多个圆锥滚子31、32组合成每列。其每列的直径线上的两头两个圆柱滚子39分割两侧半圆为圆锥滚子31、32,其圆锥滚子31一边半圆均布的滚子31的大径端面朝向保持架303、304的圆心与旋转轴线指向保持架303、304的圆心,另一边半圆的均布的圆锥滚子32的小径端面朝向保持架303、304的圆心与旋转轴线指向保持架303、304的圆心,并圆锥滚子31、32的环周的每个圆锥滚子31、32和两个圆柱滚子39构造成一个角度的斜坡的相对的两个平面的滚动面,即每列第三斜坡环周滚动元件301、302形成的相对滚动面的角度范围在1°至15°。该一对第三斜坡环周滚动元件301、302在轴承中设置成左侧的滚动元件的小径圆锥滚子31相对于右侧的滚动元件的大径圆锥滚子32并左与右的圆柱滚子39相对在平面空间中与平行。
该一对第三斜坡环周滚动元件301、302形成的圆周的滚子31、32、39是由环形窗式保持架303、304保持,保持架303、304的环形外周侧305的兜孔306构造成圆锥滚子31、32和圆柱滚子39的形状。同时兜孔306里设有弹性元件950抵接每个圆锥滚子31、32的大径端面,形成弹性元件950的分布在半圆中的每个在外周(大径圆锥滚子32上的),弹性元件950另一分布在半圆中的每个在内周(小径圆锥滚子31上的)。同时弹性元件950的构造成H状的弧形的钢片951,图11所示H状的弧形钢片951的弧形凹部中连接弹簧952,H状的钢片951的两头凹槽预压的插入窗式的兜孔306里成活动接合图11所示,弹簧952的另一头抵接窗式兜孔306的内周和外周的径向端部。其圆锥滚子31、32采用卡入式的在兜孔306中,圆锥滚子31、32一端抵接弧形钢片951凸部使弹簧952形变,另一端抵接窗式兜孔306的内周和外周的径向端部。保持架303、304的截面形成内周侧398和外周侧305的T状(T状的上部分是内周侧,下部分是外周侧),保持架的内周的环部398(T状的上部分的内周侧)的外径微小于外圈100的通孔66并环部398一侧深入通孔66一部分,环部398另一侧延伸到内圈200的轴向的端面35、36留有一定间隙。并保持架303、304的环部398构造成与第三斜坡环周滚动元件301、302的同样的一个角度(坡度)。保持架303、304的环部398的外径(T状的上部分的内周侧的外径)上套有弹性橡胶密封圈388与内、外圈200、100的轴向端面33、34、35、36抵接形成密封。并一对第三斜坡环周滚动元件302、301相同。
主动式进动轴承1按照可操作的顺序组装:外圈100的外径小的第二外圈12平放在工作台上,第二步组装轴向的右边的一列第三斜坡环周滚动元件302平放置在外径小的第二外圈12的第三阶梯106第三滚道的环形平面滚道34里,第三步组装第一球状内腔球面滚道182里的右边一列第一滚珠142,第四步组装内圈200的右侧部放置在第二外圈12里的两列滚动体302、142里,第五步用T形圆棒穿过内圈200的轴孔,把组好的一半的第二外圈12,两列滚动体142、302和内圈200的组件倒扣在另一半组好的外径大的第一外圈11和两列滚动体141、301组件里,最后用螺栓901连接第一、第二外圈11、12预紧连接。
主动式进动轴承1的外圈100的外径不同或相同的与轴承箱过盈配合,根据使用场景采用单边第一外圈11(外径大)与轴承箱过盈配合,第二外圈12(外径小)会自动柔性轴向拉紧,它是由螺栓901的螺 帽上配套的弹性元件902施加的力矩。根据制造通用性原则,轴承的球心到两侧的轴向侧的距离相等。
根据主动式进动轴承1运行使用一定时间保持架303、304上形成的弹性元件950的一个方向的力矩的弹簧952变形的距离配合环部398抵接外圈100的轴孔66使圆锥滚子31、32朝小径端面的方向移动,同时第一、第二外圈11、12上的螺栓901的弹性元件902自动轴向双向拉紧。进动轴承1在运行当中始终处于组件的第一、第二外圈11、12与多个第一滚珠列141、142、一对第三斜坡环周滚动元件301、302与内圈200的紧密配合。
进动轴承1在运行时,多个第一滚珠列141、142在第一、第二外圈11、12的第一球状内腔球面滚道181、182与内圈200的外球面滚道288中自由的多角度的点接触滚动运动,它是由一对第三斜坡环周滚动元件301、302所设置形成角度的控制第一滚珠列141、142的自由运动,一对第三斜坡环周滚动元件301、302相对配合的使外圈的中心轴线AF与内圈的中心轴线AX形成一个夹角α°,并一对第三斜坡环周滚动元件301、302在内、外圈200、100的轴向的环平面滚道33、35,34、36之间相切的线接触的滚动,也受制于保持架303、304上弹性元件950的力矩的作用。既有外圈100的第二内球面滚道183、184与内圈200的外球面滚道288配合的滑动摩擦运动,它们两者的滚道面183、184,288的接触的轴向距离起到在轴承中第一滚珠列141、142与第三斜坡环周滚动元件301、302的轴向的过渡作用与轴承整个稳定配合作用,并旋进时它们两者的滚道面183、184,288的接触的轴向侧的轴向角在运动当中接触角360°旋转(旋进时相对的接触滚道面形成在轴承一侧的两边有接触与不接触)。至少有一对滚珠列141、142是分布在内、外球面滚道288,181、182的轴承球心的轴向方向的两侧并且大于第一球状内腔球面滚道181、182到外球面滚道288的距离形成先滚动自由运动一定时间后加入第二内球面滚道183、184与外球滚道面288的滑动运动并由螺栓901上弹簧900的轴向力矩使一对滚珠列141、142相切内、外球面滚道288,181、182之间。在没有配置一对第三斜坡环周滚动元件301、302的情况下限制轴承角运动自由度取决于第一球状内腔球面滚道181、182的轴向两侧环部193、194的轴向宽度与最外边的左、右每列滚珠141、142的距离,在内圈200偏摆角比较大时,形成内圈200的外球滚道面288的侧向角与第二内球面滚道183、184的离开并有部分滚珠141、142离开,由保持架151、152的偏向球心的兜孔与外圈100的第一球状内腔球面滚道181、182配合保持滚珠141、142防丢失。
所述滑动运动会带来大量的热量与摩擦,采用不同设计思路,多个第一滚珠列141、142的每个滚珠的直径微大于第一球状内腔球面滚道181、182到外球面滚道288的距离,这样就是第一滚珠列141、142和第三斜坡环周滚动元件301、302构造成一起安装和连接在轴承中的滚动运动为先。在滚动运动形式(点和线接触的运动)承受近似一半的力矩的形变或磨损后,滑动运动形式(面接触的运动)加入承受近似一半的力矩。
这里讲述进动轴承1的主动进动的原理与功能:受制于一对第三斜坡环周滚动元件301、302的设置的角度(坡度)大小,内圈200的中心轴线AX与外圈100的中心轴线AF相对倾斜一个角度α°,驱动内圈200或外圈100定轴旋转,相对方会出现进动(旋摆、章动)运动效应。一方旋转运动,一对第三斜坡环周滚动元件301、302的高速回转运动带动另一方朝相反方向进动运动。如外圈100的中心轴线AF绕内圈200的中心轴线AX以一个角度α°旋转进动并以轴承的球心360°旋转进动,这是稳定的进动运动,轴承在运行中受制于第二力矩(外力的摩擦力)大小,多个滚动体141、142,301、302滚动摩擦运动磨损时间不一。但轴承中的弹性元件950、902始终会施加轴向力和径向侧的力矩的柔性预紧,这样不会出现如滚动运动脱节的现象。根据第二力矩大小的状况采用适合的弹性元件950、902。
还受制于一对第三斜坡环周滚动元件301、302(每列的滚子角度设置)的设置的角度大小,内圈200的中心轴线AX与外圈100的中心轴线AF相对倾斜一个角度α°,如内圈200旋转驱动外圈100相反方向进动,根据第三斜坡环周滚动元件301、302的角度大小(坡度高低),当设计小角度时,外圈进动的速度快(角速度块);当设计大角度时,外圈进动的速度慢(角速度慢)。这种本身有的运动速比带来效果的传动比用在章动传动机构中(进动的外圈轴向一侧外圈外端设置锥形齿轮少齿与多齿锥形齿轮啮合)。
这种进动运动带来的动力学特性(原理)用在相关机械领域,如驱动内圈200旋转,外圈100进动(旋摆、章动)运动,可以用在旋摆式破碎机,直升机双桨叶旋翼机构(单轴、共轴),地下钻探的旋摆 钻头,柱塞泵机构中的斜盘式轴向推进系统,摆式电动工具的偏摆组件或用在电动工具的钻头上(内圈旋转,外圈旋摆扩钻或反之外圈旋转,内圈旋摆扩钻),如内燃机驱动运动是外圈100进动驱动内圈200旋转运动(代替斜盘式往复机构发动机)、如风电设备的机构中(其一如无桨叶的锅盖状的连接外圈低速进动,输出轴连接内圈高速旋转运动),机械臂关节,减速机(安装本申请的章动传动装置),减速直驱式章动传动电机(是电机驱动轴安装本申请的进动轴承),斜盘式压缩机,单轴式涡桨发动机(在驱动轴与螺旋桨之间配有减速齿轴箱,进动轴承代替减速齿轴箱使螺旋桨直驱式进动旋转运动等同于螺旋桨桨叶角增加,以便维持恒定的速度)等领域。
根据设计方案的不同主动式进动轴承1带有滚动运动和滑动运动两种形式:
第一,滚动→滚动加滑动,图1至图11按照以上形式进行装配,外圈100的第一、第二外圈11、12的相对的第二阶梯103、104的第二内球面滚道183、184穿过球心的直径等于内圈200的外球面滚道288的直径;球心上的径向延长线的左右每列第一滚珠141、142轴向相对左右配置,左右相对的每列第一滚珠141、142的每个滚珠直径微大于第一球状内腔球面滚道181、182到外球面滚道288的距离。然后根据左、右外圈11、12的轴向间隙的情况,螺栓901施加一个预紧力来调整弹性元件902的力矩,这样就可以达到精确调整左右两列第一滚珠141、142到第一球状内腔球面滚道181、182与外球面滚道288的间隙的目的。同时第三斜坡环周滚动元件301、302构造成一起配合第一滚珠列141、142在轴承中的轴向的环平面滚道33、35,34、36之间测量的距离。在外圈100、多列滚动体301、302,141、142和内圈200的滚道33、35,34、36,181、181,288与滚动体301、302,141、142运动疲劳磨损时,三者的直径在改变,外圈100组合的左外圈11的外径微大于右外圈12的外径,通过两个外圈的柔性组合,外径大的第一外圈11与轴承箱过盈配合,外径小的第二外圈12自动柔性预紧,螺栓901头上的弹性元件902有个弹力使外圈100、多列滚动体301、302,141、142和内圈200始终连接在一起。通过上述的调整,以多列滚动体301、302,141、142的滚动接触为先,一方面可以通过螺栓901的弹性元件902的预紧力的力矩自动调整来调节多列滚动体301、302,141、142与内圈200和左外圈11、右外圈12的间隙。在轴向中的左右多列滚动体301、302,141、142运动疲劳磨损后,第二内球面滚道183、184与外球面滚道288加入滑动运动。另一方面将原来的轴承的滚动摩擦改为进动轴承1的滚动和滑动摩擦结合。通过上述的更改一是来实现间隙的精确控制,同时可以施加一定的预紧力来达到无间隙的目的,提高运动的精度;二是改为滚动摩擦和滑动摩擦结合起来,柔性配合的滑动运动提供近似一半的力矩后滑动摩擦系数不会出现剧烈摩擦,同时可以有效降低滚动摩擦的系数,提高轴承的寿命,尤其是在重载高速的情况下的使用寿命。
第二,滑动和滚动同时运动,图1至图11按照以上的形式进行装配,也可以设置外圈100的第一球状内腔球面滚道181、182和内圈200的外球面滚道288的直径与分布的左右两列第一滚珠141、142的环球形内外径相同(左右两列第一滚珠141、142的每个滚珠的直径等于第一球状内腔球面滚道181、182到外球面滚道288的距离)。外圈100的第二阶梯的第二内球面滚道183、184和内圈200的外球面滚道288的直径相同,外圈100、左右球状空间分布的两列第一滚珠141、142和内圈200它们三者同球心并相切,同时第三斜坡环周滚动元件301、302构造成一起配合第一滚珠列141、142在轴承中的轴向的环平面滚道之间测量的距离。给左、右外圈11、12的相对的多个螺栓901施加一个预紧力,使弹性元件902有一定的力矩,这样外圈100、多列滚动体301、302,141、142和内圈200它们连接为一体滑动和滚动同时运动。
第二个实施例
如图12至图14所示,本发明设计的一种被动式进动轴承2和\或组合轴承2。
被动式进动轴承2应用在通用机械当中,如地下钻探、柱塞泵、内燃机、电动工具、风电设备、直升机旋翼机构、机械臂关节等领域。
依据图12至图14作为轴承的第二个实施例被动式进动轴承2(以下也称呼组合轴承、进动轴承、章动轴承)与第一个实施例的具有相同的特征,所述分割的外圈100形成盖环状的第一外圈21和第二外圈22组合的截面大体形成凹字形,所述盖环状的每部分外圈21、22形成三级阶梯,所述三级阶梯的第一级阶梯101、102为第一外圈21和第二外圈22组合的在轴承的轴向方向的中部,所述三级阶梯的第二、第 三级阶梯103、104,105、106向内部的旋转轴线方向延伸,所述每一阶梯的内部形成轴向和径向的两个环形端面。所述第一外圈21和第二外圈22组合的第一阶梯101、102的轴向方向的端盖面为两外圈的邻接部191、192和径向方向的内部为球形的第一内腔球面滚道181、182,所述第二阶梯103、104的轴向方向的端面193、194是连接第一阶梯101、102的径向方向的端面并形成第一阶梯组合的腔室181、182(内腔球面滚道),所述第二阶梯103、104的径向方向的端面形成球形的第二内球面滚道183、184,所述第三阶梯105、106的轴向方向的内端面是连接第二阶梯103、104的径向方向的端面并形成与内圈200轴向中的滚道对应的轴向中的第三滚道,所述第三阶梯105、106的径向方向形成环形端面66并且轴可以贯通;所述第三阶梯105、106的轴向方向的所述外端面195、196是连接所述第三阶梯105、106的径向方向的环形端面66并形成所述环外平面195、196,所述第一阶梯101、102的径向方向的外部为两外圈21、22的外径并与第三阶梯105、106的轴向方向的所述外端面195、196连接。
在以下没有讲述的特征以外是相同特征,相同的特征引用第一实施例的,以下阐释不同特征。
所述组合轴承2在不同设置下也可以形成进动(章动)轴承2,可以这么说,在一个结构单元中兼具纯滚动轴承功能本身以及高的进动(章动)运动效应。
第一、第二外圈21、22的第三阶梯105、106第三滚道设置所述轴向中的环平面滚道44与圆锥滚道43(锥面滚道)对应内圈200的第一、第二滚道所述的轴向中的环平面滚道45与圆锥滚道46(锥面滚道)并两者之间的轴向滚道距离相等或不相等。
内圈200与外圈100的轴向的距离(空间)的滚道44、46,43、45之间配置轴向的一对第四圆锥滚子403、404,大致轴向方向朝向中的多个圆锥滚子由第四窗式兜孔的保持架401、402构造成一起安装与配合第一滚珠列141、142设置的容易在轴承的轴向中的滚道相切并在滚道44、46,43、45之间滚动运动。所述保持架401、402也配置弹性元件与第一实施例同样的弹性元件950抵接每个圆锥滚子的大径端面,使圆锥滚子403、404保持的相切在轴向中的滚道44、46,43、45之间。保持架401、402的内周的环部(未图示)的外径(保持架截面T形的上部分的外径)小于外圈100的通孔66并一侧深入通孔66一部分,环部的另一侧抵接内圈200的轴向中的滚道45、46端面,其环部上套有弹性橡胶密封圈388与内、外圈200、100的轴向中的滚道44、46,43、45端面抵接形成密封。
在组合轴承2的轴向中的所述滚道是这样配合的,第一外圈21的圆锥面滚道43与内圈200第一滚道的环平面滚道45相对,第二外圈22的环平面滚道44与内圈第二滚道的圆锥面滚道46相对。即第一外圈21的圆锥面滚道43与内圈200第二圆锥面滚道46的锥角相同,第二外圈22的环平面滚道44与内圈200第一滚道的环平面滚道45的平行。
进动轴承2的装配与第一实施例的装配形式有些不同。
进动轴承2按照可操作的顺序组装:外圈100的外径小的第一外圈21平放在工作台上,第二步组装轴向的左边的一列圆锥滚子403倾斜的放置在外径小的第一外圈21第三阶梯105的圆锥面滚道43里,第三步组装第一球状内腔球面滚道181里的左边一列第一滚珠141,第四步把内圈200左侧环平面滚道45放置在第一外圈21的两列滚动体403、141里,第五步用T形圆棒穿过内圈200的轴孔,把组好的一半的第一外圈21、两列滚动体403、141和内圈200的组件倒扣在另一半组好的外径大的第二外圈22和一列滚珠142、一列圆锥滚子404组件里,使两列第四圆锥滚子不平行的构造成一起安装,最后用螺栓901连接第一、第二外圈21、22预紧与内圈200相对倾斜。
也可以相对平行的装配,进动轴承2按照可操作的顺序组装:外圈100的外径小的第一外圈21平放在工作台上,第二步组装轴向的左边的一列圆锥滚子403平放置在外径小的第一外圈21第三阶梯105的圆锥面滚道43里,第三步组装第一球状内腔球面滚道181里的左边一列第一滚珠141,第四步把内圈200左侧环平面滚道45放置在第一外圈21的两列滚动体403、141里,第五步用T形圆棒穿过内圈200的轴孔,把组好的一半的第一外圈21、两列滚动体403、141和内圈200的组件倒扣在另一半组好的外径大的第二外圈22和一列滚珠142、一列圆锥滚子404组件里,使两列第四圆锥滚子平行的构造成一起安装,最后用螺栓901连接第一、第二外圈21、22预紧与内圈200相对平行。
以下阐述被动式进动轴承2的作用与原理:
在安装时左、右两列圆锥滚子403、404可以相对的在轴承中不平行(安装不平行未图示),左列403的滚动面受内圈200第一滚道的轴向的环平面滚道45控制相对平行,左列403的中心轴线与内圈200的 旋转轴线相对平行与不重合,左列403滚动时的中心轴线与外圈100的中心轴线不平行但相交,同时滚动地左列403的中心轴线以内圈200的中心轴线按圆周运动,右列404的滚动面受第二外圈22轴向的环平面滚道44控制相对平行,右列404的中心轴线与第二外圈22的中心轴线相对平行与不重合,右列404滚动时的中心轴线与内圈200的旋转轴线不平行但相交,同时滚动地右列404的中心轴线以外圈100的中心轴线按圆周运动。每列圆锥滚子403、404相切圆锥面滚道43、46与平面滚道45、44之间,内圈200与外圈100的旋转轴线相对倾斜,即内圈200的平面滚道45与外圈100的平面滚道44不平行,左右两列第四圆锥滚子403、404在圆锥面滚道面43、46以惯性空间轨道相对倾斜滚动,在进动轴承2的内圈200相对于外圈100旋转运动时,相对倾斜的左、右两列第四圆锥滚子403、404高速回转带动外圈100做旋摆运动并外圈100会朝相反方向旋转,也就是俗称的进动运动。在这个过程中轴承的外圈100有进动运动同时内圈200又在高速旋转,如有外力施加会带动内、外圈200、100的中心轴线的夹角随时改变,相对的中心轴线的角度大小随时变换,但中心轴线的夹角是在控制的范围之内,是保持架的内周的环部(未图示)的外径(保持架截面T状的上部分的内周侧的外部)与外圈100的通孔66形成距离并控制轴承的进动角。如进动轴承的内圈持续高速旋转,同时没有外力的情况下,进动轴承2会回归到纯滚动运动当中,并一对圆锥滚子403、404回归到平行中,外圈100相对于内圈200的旋转方向会停止。
如变换驱动方式,在两列圆锥滚子403、404不平行时驱动外圈100进动,将会驱动内圈200朝相反的方向旋转,反之既然,可以应用在通用机械当中作驱动。
第三个实施例
如图15至图17所示,本发明设计的一种被动式进动轴承3和\或组合轴承3。
被动式进动轴承3应用在通用机械当中,如地下钻探、柱塞泵、内燃机、电动工具、风电设备、直升机旋翼机构、机械臂关节等领域。
依据图15至图17作为轴承的第三个实施例的被动式进动轴承3(以下也称呼组合轴承、进动轴承、章动轴承)与第二个实施例的具有相同的特征,在以下没有讲述的特征以外是相同特征,相同的特征引用第二实施例的,其实从第一、第二到第三实施例的路径下来可以看出相同特征,以下阐释不同特征。
所述组合轴承3在不同设置下也可以形成进动(章动)轴承3,可以这么说,在一个结构单元中兼具纯滚动轴承功能本身以及高的进动(章动)运动效应。
第一、第二外圈31、32的第三阶梯105、106第三滚道设置所述轴向中的轴向接触环形球面滚道54与推力角接触环形球面滚道53对应内圈200的第一、第二滚道所述的轴向中的轴向接触环形球面滚道55与推力角接触环形球面滚道56并两者之间的轴向中的滚道距离相等或不相等。
内圈200与外圈100的轴向的距离(空间)的滚道53、55,54、56之间配置轴向的一对第五非对称球面滚子51、52,大致轴向方向朝向中的多个非对称球面滚子51、52由第五窗式兜孔的保持架501、502构造成一起安装与配合第一滚珠列141、142设置的容易在轴承3的轴向中的滚道相切并在滚道53、55,54、56之间滚动运动。所述保持架501、502的兜孔的周向方向上构造成一起安装与加入弹性元件950(未图示)抵接第五非对称球面滚子51、52的大径端面,使非对称球面滚子51、52保持的相切在轴向中的滚道53、55,54、56之间。
在组合轴承3的轴向中的所述滚道53、55,54、56是这样配合,第一外圈31的推力角接触环形球面滚道53与内圈200第一滚道的轴向接触环形球面滚道55相对,第二外圈32的轴向接触环形球面滚道54与内圈200第二滚道的推力角接触环形球面滚道56相对。即第一外圈31的推力角接触环形球面滚道53与内圈200第二滚道的推力角接触环形球面滚道56的球面半径相同与接触角(推力角)相同,第二外圈32的轴向接触环形球面滚道54与内圈200第一滚道的轴向接触环形球面滚道55的平行与球面半径相同。
进动轴承3的装配与第二实施例的装配形式相同,不再重复讲述。
进动轴承3的工作原理与第二实施例的工作原理相同,不再重复讲述。
第四个实施例
如图18至图20所示,本发明设计的一种进动轴承和\或组合轴承的轴向中的一对滚珠列888。
依据图18至图20作为轴承的第四个实施例的进动轴承(以下也称呼组合轴承、进动轴承、章动轴承)的轴向中的一对滚珠列888,其一对滚珠列888的保持架808这样设计。
所述轴向中的滚珠列888可以应用在组合轴承中,同时组合轴承在不同设置下也可以形成进动(章动)轴承,可以这么说,在一个结构单元中兼具纯滚动轴承功能本身以及高的进动(章动)运动效应。
进动轴承(未图示)的第一、第二外圈的第三阶梯105、106第三滚道设置所述轴向中的轴向接触环形球面滚道与推力角接触环形球面滚道对应内圈200的第一、第二滚道所述的轴向中的轴向接触环形球面滚道与推力角接触环形球面滚道并两者之间的轴向中的滚道距离相等或不相等。
内圈200与外圈100的轴向的距离(空间)的滚道之间配置轴向的一对滚珠列888,轴向方向朝向中的多个滚珠809由三角形的兜孔810的保持架808构造成一起安装与配合第一滚珠列141、142设置的容易在轴承的轴向中的滚道相切并在滚道之间滚动运动。所述保持架808的三角形兜孔810中设有H状的弧形弹性钢片811,其弹性元件811在周向方向上构造成一起安装与抵接滚珠809的在轴承中的径向方向的开口(根据轴承设置不同,相对轴向中的滚道的在径向方向的开口,其三角形的兜孔的底边在圆周中或朝内周或朝外周)大的方向上配置弹性元件811,圆周均布的弹性元件811的形变的周向方向的距离使滚珠809保持的相切在轴向中的滚道之间。在滚珠列888没有装配在轴承时的滚珠809是插入到三角形兜孔810中与弧形钢片811的凹部和三角形810的底边接触,滚珠列888装配在轴承中时轴向方向的拉力使滚珠809径向方向的周向的位移,滚珠809使弹性元件发生形变离开三角形兜孔810的底边不接触。
根据设计思路,在三角形的兜孔810中设置弹性元件811抵接滚珠向周向位移,弹性元件811形成H状的弧面钢片,H状的弧面弹性钢片811预压的把两头凹槽插入三角形810的两边,形成弧面的凹部抵接滚珠809。依据设计方案,在保持架808的三角形的兜孔810区域内设置利用两个点形成两点卡式装置,滚珠809抵接三角形810的底边与弹性钢片811的凹部中,用于将滚珠809保持在兜孔810内,该两点卡式装置允许了通过在弹性钢片811的一个点和三角形810底边的一个点的区域内的弹性变形的滚珠809到兜孔810内的插入。根据内、外圈的轴向中的滚道之间的设置不同,如轴向中的环形的一对滚珠列888的滚珠809位移方向朝外,设置环形分布的三角形兜孔810的弹性元件811向外周的围绕,三角形底边向内周围绕;如滚珠809位移方向朝内,弹性元件811向内周的围绕,三角形底边向外周围绕。轴承的第一、第二外圈连接迫使轴向的滚珠809少许的周向位移后,依赖弹性元件811以保持滚珠809恰当地定位在它们滚动所沿的滚道之间。
进一步的有利设计方案中,所述轴向的两列滚珠888可以被引导在推力角接触圆锥滚道面与轴向接触平面滚道面之间滚动运动;和/或轴向的两列滚珠888可以被引导在圆锥滚道面与圆锥滚道面之间滚动运动;和/或推力角接触环形球面滚道面与推力角接触环形球面滚道面之间滚动运动。
在特别的有利设计方案中,引用前面阐释的轴向中的一对滚珠列888的在内、外圈的轴向中的滚道之间的点接触的滚动运动,出现被动式的进动(旋进、旋摆、章动)运动效应在这里左右关系是相对讲述,以下讲述被动式的进动(旋进、旋摆)运动效应是内圈轴向左边第一环平面滚道与右第二外圈轴向环平面滚道平行,或者所述内圈轴向右边第二环平面滚道与左第一外圈轴向环平面滚道平行,即,所述内、外圈的都有一侧的轴向的环平面滚道是同在左侧或同在右侧的来对应另一侧的推力角接触滚道。一对轴向的滚珠列888在内、外圈的轴向中的滚道之间的点接触的滚动运动不会出现没有接触的情况,一对轴向的滚珠列888受制于弹性元件950、902的径向方向的扩张的力矩和轴向方向相对拉紧的力矩并相切于滚道之间。进动轴承的原理:在外力矩作用下会出现如陀螺具有的进动性与稳定性。在纯滚动过程中有外力出现轴承瞬间的调转到进动运动要顺畅,没外力时轴承也可以快速回归纯滚动运动。一对滚珠列888的点接触的进动运动对应的滚道在生产制造也相对容易,同时轴承的轴向中的对应滚道变换形式也多样。上述发明内容有讲述。
既可以设置主动式的进动(旋进、旋摆、章动)运动效应,所述主动式的进动(旋进、旋摆、章动)轴承(未图示)的内圈轴向方向中的一侧设置倾斜的环平面滚道(内圈的轴向的一侧环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置)和另一侧设置轴向接触环平面滚道对应外圈的轴向中的推力角接触环形球面滚道或轴向接触球面滚道或锥面滚道(锥角的平面滚道)。主动式进动轴承原理:这样设计的方案,受内圈的轴向中的两侧不平行的形成轴向中的一对滚珠列888相对不平行,一对滚珠列888在轴向方向的空间中形成一个夹角,左侧的滚珠列相切于第一外圈的轴向中滚道与内圈轴向中第一滚道 并大于右侧的滚珠列相切于第二外圈的轴向中滚道与内圈轴向中第二滚道的滚珠直径。在内圈由轴驱动的旋转,一对滚珠列888在内、外圈的轴向中的滚道之间滚动,会驱动外圈出现进动(旋进、旋摆、章动)效应并朝相反方向旋进运动。反之,驱动外圈进动(旋进、旋摆、章动)运动将会带动内圈旋转运动。这种方案在制造中相对容易,外圈轴向中的可以设置凹进(相对轴承的向外方向)的推力角接触环形球面滚道或轴向圆锥面滚道或轴向球面滚道,轴向中的一对滚珠列888的滚珠809的大小在选择上也是比较容易地,它是由保持架上的三角形兜孔810的弹性元件811控制周向的方向相切于内、外圈的轴向中的滚道之间。在内圈或外圈相对一方进动(旋进、旋摆、章动)运动当中,受制于一对滚珠列888的滚动面的点接触,用在机械领域中,点接触的滚动运动的摩擦传动使用时间上要少于线接触的滚动运动的摩擦传动。
第五个实施例
如图21至图28所示,本发明设计的一种进动式与稳定式的进动轴承的陀螺进动式主动稳定装置,及带有超越离合式的进动轴承陀螺超越离合式装置4,用在倾斜平面的斜坡平面轨道上行走的系统、方法。
依据图21至图28作为轴承的第五个实施例的进动轴承陀螺超越离合式装置4,根据第二、第三和第四个实施例(第四个实施例不包括主动式进动轴承)的工作原理与相同特征,在以下没有讲述的特征以外是相同特征,以下阐释不同特征。
依据附图21至图28所述进动轴承陀螺超越离合式装置4在不带超越离合式的特征的设置下也可以形成陀螺进动式主动稳定装置。
如设计带有超越离合式的特征,可以这么说,在一个结构单元中兼具进动轴承的进动式和稳定式的陀螺进动式主动稳定装置的功能本身以及高的超越离合式的功能的运动效应。
根据旋转刚体在斜坡平面轨道上运动的工作原理:一种旋转刚体的陀螺(未图示)在斜坡平面上行走的系统、方法。实验所得,旋转刚体的陀螺在同一个倾斜平面坡度上,旋转方向相同前进方向相同,在转速不同的情况下,低转速时旋转刚体会向下斜线行走,高转速时旋转刚体会向上斜线行走,在转速匹配坡度时旋转刚体处在那个斜坡高度位置上就在那个斜坡高度位置上直线行走(这里指同一个坡面的上下位置),在刚体高转速匹配高坡度轨道时形成直线行走高速度,在刚体低转速匹配低坡度轨道时形成直线行走低速度。在倾斜的斜坡平面,坡面面对于人,旋转刚体逆时针旋转,行走方向向右直线前进,反之旋转刚体顺时针旋转,行走方向向左直线前进;在斜坡平面相对于人向下,旋转刚体逆时针旋转,行走方向向左直线前进,反之旋转刚体顺时针旋转,行走方向向右直线前进(这里讲述的是相对而言,在旋转方向确定下,坡面如跷跷板一样的变换会改变前进方向)。相对论述也受制于旋转刚体的接触角的半径大小与坡面接触形成直线运动的快慢。相对论述在坡面的光滑面(粗糙度如瓷砖的光面)上旋转刚体的接触角的半径小(1mm以下),转速快时大概率有出现向下滑动的趋势,转速慢时出现向下滑动的趋势少于前述;旋转刚体的接触角的半径大(相对前述半径大小1:6之间),不会出现向下滑动的趋势。旋转刚体的接触角与坡面的角度大小(高低)形成接触角的接触位置(接触的侧向位置)不同。
所述根据进动轴承的进动性与稳定性的原理与功能来阐释陀螺进动式主动稳定装置(借用第五实施例的附图)。
所述外圈100的第一外圈42设置成圆盖状,所述圆盖状的第一外圈42设有三级阶梯,所述三级阶梯的第三阶梯延伸形成隔开封闭包覆住内圈200的轴向中的第一滚道466,所述第三阶梯的轴向内侧部形成为圆形平面滚道444,所述第三阶梯的轴向外侧面的中部设置轴向凸出的鼻锥48或半球体(未图示),所述鼻锥48的锥角是100°至178°,优选锥角是170°至178°,所述第三阶梯的轴向外侧面的外周设置轴向的环形平面196和中部的鼻锥48或半球体(未图示)相连,所述环形平面196设置与第二外圈41对应的多个连接孔900,所述连接孔900从环形平面195、196穿过第一阶梯的轴向的邻接部191、192通到相对面带有螺纹沉孔,图26所示的所述螺栓901的螺帽头上配套弹性元件902后穿过连接孔900相对的连接第一、第二外圈42、41。并所述第一外圈42的第二阶梯设置第二内球面滚道184、第一阶梯设置第一球状内腔球面滚道182与前述设置相同,所述第二外圈41设置与前述相同。在运动效果上论述,半球体优于鼻锥48(圆锥体),半球体的接触角大于圆锥体的接触角(鼻锥的顶端),装置优选半球体。
所述内圈200设置成带有杆端202的内圈200,在轴向中的所述第一滚道形成为凹进的圆锥面滚道 466,轴向中的所述第二滚道形成为环形平面滚道455和中部形成为一杆端202;和/或所述内圈设置成圆环状的中心贯通的轴连接(未图示),所述圆环状的轴向中的第一滚道形成为凹进的圆锥形滚道,所述圆环状的轴向中的第二滚道形成为环形平面滚道;并所述内圈的径向的外球面滚道288与前述设置相同。
所述外圈100的第一、第二外圈42、41的轴向中的第三滚道43、444到内圈200的轴向中的第一、第二滚道455、466的距离(空间)设置两列第四圆锥滚子403、404;
所述右边这列圆锥滚子404相切于第一外圈42的圆形平面滚道面444与内圈200轴向的第一滚道的圆锥面滚道面466,所述左边这列圆锥滚子403相切于第二外圈41的圆锥面滚道面43与内圈200轴向的第二滚道的环形平面滚道面455,所述两列圆锥滚子403、404可以被引导在圆锥面滚道43、466与平面滚道455、444之间滚动运动。
所述进动轴承陀螺的内圈的杆端连接电机转轴(未图示),所述电机外壳连接支撑平台,所述电机接通电源,和/或支撑平台设置成一体的电池支撑平台与电机连接。所述进动轴承陀螺的外圈100的第一外圈42的鼻锥48或半球体侧躺在承载平台上或平地上。当电机启动,在初始状态,外圈100地进动运动,在内圈200的转速提高下,外圈100的鼻锥48或半球体的轴向顶点会稳定的立在承载平台上,当外力矩作用在承载平台或支撑平台上外圈100会进动(章动)保持内圈200连接的支撑平台稳定。
以上所述的陀螺进动式主动稳定装置的进动轴承的轴向中的可以设置一对第五非对称球面滚子51、52(引用第三实施例的滚动体表述)来构造所述轴承的轴向中的滚道对应,并一对第五非对称球面滚子51、52构造成容易在轴承的轴向中的滚道之间滚动与有外力施加的进动运动效应。
以下阐释进动轴承陀螺超越离合式装置4的原理与功能:用于在斜坡轨道上行走的系统、方法。
所述根据陀螺进动式主动稳定装置的原理与功能,一种进动轴承陀螺超越离合式装置依据图21至图28作为第五个实施例。
所述根据进动轴承陀螺的陀螺进动式主动稳定装置与旋转刚体在斜坡轨道上行走的原理与功能。
所述进动轴承陀螺超越离合式装置4这样设置,该装置4是设置内圈200在轴承中心的径向的外球面滚道288的开有多个环周的离心式(离旋式)的一段凹槽球面滚道77,所述内圈200的周向的离心式的每个凹槽球面滚道77的深处端面(离旋式的内周上的端面)设有连接小段磁铁79图28所示,离心式的凹槽球面滚道77里配置球面滚子78与组合的第一、第二外圈42、41的第一阶梯101、102第一球状内腔球面滚道181、182传递转矩时会接触。所述内、外圈200、100的轴向中的滚道之间采用一对滚珠列888、圆锥滚子列403、404、非对称球面滚子列51、52与前述的滚道对应设置,并内、外圈200、100的径向方向的内、外球面滚道288,181、182之间配置的多个第一滚珠列141、142与前述相同设置。进动轴承陀螺超越离合式装置4的内圈200杆端202连接电机,电机的外壳连接电池一体支撑平台。该装置4的功能与原理:当内圈200定轴旋转,承载平台(斜坡轨道)上的进动轴承陀螺超越离合式装置4的电机开启带动内圈200旋转,在初速度下,球面滚子78吸附在磁铁79上,外圈100上的鼻锥48或半球体的侧面倾斜的躺在水平的承载平台上开始处于进动当中,在内圈200旋转速度持续提高下,吸附在磁铁79上的球面滚子78在离心力的作用下球面滚子78运动接触到外圈100的第一球状内腔球面滚道181、182,即传递转矩形成陀螺刚体在承载平台上旋转,这时承载平台上的升降机构抬升,承载平台处于倾斜状态,进动轴承陀螺超越离合式装置4在倾斜的承载平台上直线行走。如承载平台上的升降机构动作,承载平台处于水平状态,进动轴承陀螺超越离合式装置4停止前进在原地上旋转。如进动轴承陀螺超越离合式装置4的电机关闭的内圈停止旋转,这时立在水平承载平台上的进动轴承陀螺超越离合式装置4的外圈100还处在旋转当中,外圈100旋转脱离球面滚子78超越不传递转矩,球面滚子78运动到凹槽球面滚道77的深处端面被磁铁79吸附住,外圈100上的鼻锥48或半球体随着与平台的摩擦力与进动轴承陀螺超越离合式装置4本身的重力矩,外圈100旋转速度衰减开始进动,然后停止,外圈100上的鼻锥48或半球体的侧面倾斜在承载平台上保持内圈100连接的电机的电池一体支撑平台水平。
第六个实施例
如图29所示,本发明设计的一种进动式与稳定式的进动轴承的陀螺进动式主动稳定装置,及带有超越离合式的进动轴承陀螺超越离合式装置4,用在倾斜平面的斜坡平面轨道上行走的系统8、方法。
依据图29作为第六个实施例的进动轴承陀螺超越离合式装置的行走系统8,根据第二、第三、第 四、第五个实施例(第四个实施例不包括主动式进动轴承)的工作原理与相同特征,以下阐释进动轴承陀螺超越离合式装置4连接电机818、电池828的在斜坡轨道行走的方法、系统。
可以这么说,在一个结构单元中兼具进动轴承的进动式和稳定式的陀螺进动式主动稳定装置的功能本身以及高的超越离合式的功能的运动效应。
引用第五实施例阐释的功能原理与方法。
一种进动轴承陀螺超越离合式装置4,用于交通运输的在斜坡轨道上行走的系统8、方法。
斜坡轨道由钢板或其他能形成的平面的材料制成,所述轨道坡面的角度在1度至20度,
利用本发明的进动轴承的进动性与稳定性,在内圈200启动与停止时带有鼻锥48的外圈100处在进动当中,进动轴承陀螺装置保持支撑平台828垂直稳定,与加入超越离合式的传递转矩形成旋转刚体在斜坡轨道平台上行走系统、方法,可以用于交通运输系统8,进动轴承陀螺超越离合式装置4在相同坡面上旋转方向相同直线行走方向会相同,在转速相同、处在不同上下位置的同方向运动的多辆进动轴承陀螺超越离合式装置4(车)在斜坡轨道上行走运动不会发生相撞事故。
进动轴承陀螺超越离合式装置4的内圈200的杆端202连接电机818的驱动轴,电机818的外壳连接电池一体支撑平台828。
以下讲述系统8运行步骤:
斜坡轨道855,便于表述分内侧斜坡轨道815与外侧斜坡轨道805。进动轴承陀螺超越离合式装置4处在升降机构平台866上,升降机构平台866没有抬升处在水平位置上。
一、进动轴承陀螺超越离合式装置4的外圈100的鼻锥48或半球体的一侧倾斜的侧躺在水平的升降机构平台866上,轴向中的一对滚动体处在不平行当中。
二、当电机818启动带动内圈200旋转,在初始速度下,外圈100的鼻锥48在水平的升降机构平台866上开始处于旋进当中。
三、在电机818的转速提高下,外圈100进动角速度会衰减下来,轴向中的一对滚动体会回归平行当中。
四、此时外圈100的鼻锥48或半球体的顶端立正在水平的升降机构平台866上,外圈100的旋转轴线与内圈200的旋转轴线重合。此处内圈200与外圈100是保持超越状态,内圈200上的球面滚子78还在磁铁79吸附下。
五、在电机818的转速进一步的持续提高下,内圈200在高速转动下,凹槽球面滚道77深处的磁铁79上的球面滚子78在离心力大于吸附力,球面滚子78脱离磁铁79,被内圈200带动在凹槽球面滚道77运行,球面滚子78运行到凹槽球面滚道77的外周上与外圈100的第一球状内腔球面滚道181、182接触形成传递转矩。
六、进动轴承陀螺超越离合式装置4形成如旋转刚体(陀螺)地在水平升降机构平台866上旋转。
七、当升降机构平台866开始抬升处在倾斜当中形成与斜坡轨道855衔接中,进动轴承陀螺超越离合式装置4如旋转刚体的一样开始直线行走。
八、当该装置4行走到升降机构平台866的位置上,如升降机构平台866开始动作回到水平当中,进动轴承陀螺超越离合式装置4在水平升降机构平台866上停止行走,在原地旋转。
九、如电机818关闭,内圈200旋转速度衰减回归到停止当中。
十、外圈100还处在旋转当中,外圈100的第一球状内腔球面滚道181、182带动球面滚子78运行到内圈200的凹槽球面滚道77的内周深处被磁铁79吸附住。
十一、在外圈100的旋转速度衰减下和该装置4本身的自重与轨道855的摩擦下,外圈100开始处于进动当中。
十二、到时间后外圈100停止进动,轴向中的一对滚动体回归到不平行当中,外圈100的鼻锥48或半球体的一侧倾斜的侧躺在水平的升降机构平台866上,保持内圈200上的电机连接的电池一体支撑平台828水平。
第七个实施例
(未附图)
作为第七个实施例的主动式进动轴承,根据第二、第三、第四个实施例(第四个实施例不包括被动 式进动轴承)相同特征,在以下没有讲述的特征以外是相同特征,以下阐释不同特征。
依据其他的设计方案,一种主动式进动轴承,用于机械的动力学系统的进动(旋进、章动)运动特性。还可以设置主动式的进动(旋进、旋摆、章动)运动效应的轴承配置一对滚动体,所述第一、第二外圈的第三阶梯的轴向的第三滚道到所述内圈轴向的第一、第二滚道的距离(空间)配置的所述两列第二滚动体,所述两列第二滚动体设置成一对圆锥滚子或一对非对称球面滚子。所述主动式的进动(旋进、旋摆、章动)轴承的内圈的一侧设置倾斜的滚道(内圈的轴向的一侧滚道的中心轴线相对于传动轴的轴线倾斜地设置)和另一侧设置轴向接触滚道对应外圈的轴向中的滚道,所述主动式进动轴承的轴向中的滚道构造成圆锥滚子或非对称球面滚子的滚道面。所述一对圆锥滚子或所述一对非对称球面滚子在轴向方向的距离不相等,即,所述靠在内圈轴向侧倾斜滚道的这列滚动体大于轴向侧的另一列滚动体的滚子对称轴的距离。所述主动式进动轴承原理与功能:当驱动内圈旋转,内圈的轴向的两侧滚道面不平行形成滚动体相对不平行的滚动运动驱动外圈作旋摆运动并朝相反方向旋进运动。
第八个实施例
(未附图)
作为第八个实施例的主动式进动轴承,根据第一实施例的工作原理与相同特征,在以下没有讲述的特征以外是相同特征,以下阐释不同特征。
依据其他的设计方案,一种章动和进动的耦合运动的轴承,用于机械的动力学系统的章进运动特性。所述内圈的轴向的左、右侧面的第一、第二滚道设置的环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置,所述第一、第二滚道的倾斜环平面滚道是平行设置,所述倾斜环平面滚道的中心轴线与传动轴的轴线的夹角在1°至15°。
所述外圈的第一、第二外圈的第三滚道的环平面滚道到内圈的第一、第二滚道的倾斜环平面滚道的距离(空间)设置两列第三斜坡环周滚动元件,并让它在内、外圈的轴向当中的滚道之间滚动。
所述两列第三斜坡环周滚动元件的坡度(角度)是1°至15°,并且相对的两列第三斜坡环周滚动元件的坡度相同。
所述第一外圈轴向的环平面滚道到内圈的第一滚道的倾斜环平面滚道的距离与第二外圈轴向的环平面滚道到内圈的第二滚道的倾斜环平面滚道的距离的相等和/或不相等;即
所述左列第三斜坡环周滚动元件的轴向距离与右列第三斜坡环周滚动元件的轴向距离的相同和/或不相同;
所述左列第三斜坡环周滚动元件相切于第一外圈的环平面滚道面与内圈的第一滚道的倾斜环平面滚道面,所述右列第三斜坡环周滚动元件相切于第二外圈的环平面滚道面与内圈的第二滚道的倾斜环平面滚道面。所述左右相对的第三斜坡环周滚动元件形成坡度高的(圆锥滚子大的)对应坡度低的(圆锥滚子小的)。所述内圈的旋转轴线与外圈的旋转轴线相对倾斜是在不同设置下的相对于夹角与坡度形成一个角度并旋转轴线相交于球心,内、外圈的轴线在滚动时有重合情况。所述两列第三斜坡环周滚动元件可以被引导在倾斜环平面滚道面与轴向环平面滚道面之间滚动运动,同时轴向均布的多个第一滚珠列在内圈的外球面滚道与外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触滚动运动,并具有内圈的外球面滚道与外圈的第二内球面滚道的面接触的滑动运动。所述章进轴承具备两列第三斜坡环周滚动元件与内圈的倾斜环平面滚道的滚动运动会出现外圈的进动和章动的两种运动效应。章进轴承原理与功能:当所述第三斜坡环周滚动元件的坡度与所述内圈的倾斜的环平面滚道的夹角(倾斜环平面滚道的中心轴线与传动轴的轴线的夹角)相等时或不等时,在不同设置时,所述当驱动内圈旋转,两列第三斜坡环周滚动元件在内、外圈的轴向中的滚道之间滚动,章进轴承的所述两列第三斜坡环周滚动元件具备进动运动与所述内圈的倾斜环平面滚道具备往复直线摆动运动,两种运动共同的作用形成章动和进动的耦合运动,将驱动外圈的章动和进动的朝相反的方向运动,是外圈围绕球心的稳定持续的章动和进动运动。两列第三斜坡环周滚动元件在内、外圈滚道之间摩擦滚动带来传动运动的力学效应,可以应用在如前所述的机械当中。
本发明未细说明部分属于本领域技术人员公知常识。

Claims (14)

  1. 一种组合轴承(1、2、3),所述组合轴承(1、2、3)包括:外圈(100)和内圈(200),多列滚动体(141、142,301、302,403、404,51、52,888),保持架(151、152,303、304,401、402,501、502,808),连接螺栓(900),弹性元件(902,950,811),其中所述在径向方向的所述外圈(100)的凹部形成的所述内球面滚道(181、182,183、184)相对于所述内圈(200)的凸部形成的所述外球面滚道(288)为球心重合的所述球面滚道(181、182,183、184,288);
    内圈(200),所述内圈(200)设置为中心贯通的圆环状,在其圆环状的径向上凸球面形成所述外球面滚道(288),圆环状的所述内圈(200)的轴向方向中的所述左右两侧到所述轴承球心的距离相等、和/或所述两侧相对所述轴承球心的距离偏置;所述内圈(200)在其圆环状的具有大体沿一个轴向方向面对的第一滚道和沿相反的轴向方向面对的第二滚道;和/或所述内圈(200)在其圆环状的具有沿一个轴向方向面对的第一滚道和沿相反的轴向方向面对的第二滚道;和/或所述内圈(200)在其圆环状的具有大体沿一个轴向方向面对的第一滚道和大体沿相反的轴向方向面对的第二滚道;
    所述在内圈(200)的径向的所述外球面滚道面(288)中和轴向的所述第一、第二滚道面中形成有供固体润滑剂保留的多个盲孔;
    所述该外圈(100)还包括剖分的第一外圈(11,21,31)和第二外圈(12,22,32),所述第一外圈(11,21,31)和第二外圈(12,22,32)设置成盖环状,其中所述组合的第一外圈(11,21,31)和第二外圈(12,22,32)的所述一侧的外圈(11,21,31)的外径略小于所述另一侧的外圈(12,22,32)的外径,和/或所述组合的第一外圈(11,21,31)和第二外圈(12,22,32)的两侧的所述外圈(11、12,21、22,31、32)的外径相同;所述组合的第一外圈(11,21,31)和第二外圈(12,22,32)的大外径的所述一侧外圈与轴承箱过盈配合,和/或所述组合的第一外圈(11,21,31)和第二外圈(12,22,32)的两侧外圈的外径相同的所述外圈(11、12,21、22,31、32)与轴承箱过盈配合;
    所述盖环状的第一外圈(11,21,31)和第二外圈(12,22,32)组合的截面大体形成凹字形,所述盖环状的每部分所述外圈(11、12,21、22,31、32)形成三级阶梯,所述三级阶梯的所述第一级阶梯(101、102)为第一外圈(11,21,31)和第二外圈(12,22,32)组合的所述在轴承(1、2、3)的轴向方向的中部,所述三级阶梯的所述第二级阶梯(103、104)、第三级阶梯(105、106)向内部的所述轴承(1、2、3)的旋转轴线方向延伸,所述每一阶梯(101、102,103、104,105、106)的内部形成所述轴向方向和径向方向的两个环形端面,所述第一外圈(11,21,31)和第二外圈(12,22,32)组合的所述第一阶梯(101、102)的轴向方向的端盖面为两外圈(11、12,21、22,31、32)的所述邻接部(191、192)和径向方向的内部为球形的所述第一球状内腔球面滚道(181、182),所述第二阶梯(103、104)的轴向方向的所述端面(192、193)是连接所述第一阶梯(101、102)的径向方向的端面(181、182)并形成所述第一阶梯(101、102)组合的腔室的第一球状内腔球面滚道,所述第二阶梯(103、104)的径向方向的所述端面形成球形的所述第二内球面滚道(183、184)并与内圈(200)所述外球面滚道(288)的直径相等,所述第三阶梯(105、106)的轴向方向的所述内端面是连接所述第二阶梯(103、104)的径向方向的端面(183、184)并形成与内圈(200)轴向中的所述滚道(35、36,45、46,55、56)对应的轴向中的所述第三滚道(33、34,43、44,53、54),所述第三阶梯(105、106)的径向方向形成所述环形端面(66)并且轴可以贯通;所述第三阶梯(105、106)的轴向方向的所述外端面(195、196)是连接所述第三阶梯(105、106)的径向方向的环形端面(66)并形成所述环外平面(195、196),所述第一阶梯(101、102)的径向方向的外部为两外圈(11、12,21、22,31、32)的外径并与第三阶梯(105、106)的轴向方向的所述外端面(195、196)相连;
    所述第一外圈(11,21,31)和第二外圈(12,22,32)的所述邻接部(191、192)的端面处在所述轴承球心的径向延长线上、和/或相对所述轴承球心的径向延长线偏置;所述第一外圈(11,21,31)和第二外圈(12,22,32)的所述第三滚道(33、34,43、44,53、54)到所述轴承球心的距离相等和/或不相等;
    所述组合的第一、第二外圈(11、12,21、22,31、32)的三级阶梯的所述第一阶梯(101、102)的所述第一球状内腔球面滚道(181、182)具有比内圈(200)的所述外球面滚道(288)大的直径,所述第一球状内腔球面滚道(181、182)与所述外球面滚道(288)之间的空间配置轴向分布的多个所述第一滚珠列(141、142);由轴向分布的所述保持架(151、152)引导并让其在所述两滚道(181、182,288)之 间点接触多角度自由运动,在左与右的所述半球空间的轴向分布的所述第一滚珠列(141、142)的左边与右边的每对滚珠列(141、142)的所述每个滚珠直径相同,其中所述至少有一对滚珠列(141、142)是分布在所述轴承球心的径向延长线的左右;所述围绕球形轮廓布置的所述每列保持架(151、152)的兜孔和连接筋都朝向球心,其中所述保持架(151、152)周向均布的所述多个兜孔容纳所述多个滚珠形成所述碗状并且碗底部开口,所述碗状的兜孔的大径的所述碗面部开口的直径微大于所述滚珠的直径并面朝所述外圈(100);在组装时所述第一滚珠列(141、142)放置在所述外圈(100)的所述第一球状内腔球面滚道(181、182)里,这些所述碗状的兜孔可以防丢失地保持所述滚珠;
    所述第一、第二外圈(11、12,21、22,31、32)的三级阶梯的所述第二阶梯(103、104)的所述第二内球面滚道(183、184)延伸至所述内圈(200)的所述外球面的滚道(288)上,所述组合的第一、第二外圈(11、12,21、22,31、32)相对的所述第二内球面滚道(183、184)穿过球心的直径与所述内圈(200)的所述外球面滚道(288)的直径相同,所述第二内球面滚道(183、184)与所述外球面滚道(288)形成所述滑动运动;
    所述第一球状内腔球面滚道(181、182)和所述第二内球面滚道(183、184)为同球心的阶梯的上下两球面滚道(181、182,183、184)、和连同所述轴向中的第三滚道(33、34,43、44,53、54)为盖环状的所述每侧外圈(11、12,21、22,31、32)的截面大体L状;
    所述组合的第一、第二外圈(11、12,21、22,31、32)的三级阶梯的所述第三阶梯(105、106)延伸形成隔开部分包覆住所述内圈(200)的轴向中的左右两滚道(35、36,45、46,55、56),所述第三阶梯的轴向内侧端面形成轴向中的所述第三滚道(33、34,43、44,53、54)与所述内圈的轴向中的两滚道(35、36,45、46,55、56)相呼应的配置所述第二滚动体(301、302,403、404,51、52)由轴向的所述环形保持架(303、304,401、402,501、502)保持并在轴向中的所述滚道之间滚动,所述第三阶梯(105、106)的轴向外侧端面形成所述圆环形平面(195、196);
    所述组合的第一外圈(11,21,31)和第二外圈(12,22,32)的轴向外侧所述圆环形平面(195、196)的外周相对设置多个错开的所述连接孔(900),所述连接孔(900)从所述圆环形平面(195、196)穿过所述第一阶梯(101、102)的轴向邻接面(191、192)通到相对面形成所述螺纹沉孔,所述连接螺栓(901)螺帽头上套有所述弹性元件(902),通过所述连接螺栓(901)的连接施加一定的轴向预紧力将所述外圈(100)、多个第一滚珠列(141、142)、轴向的一对第二滚动体(301、302,403、404,51、52)和内圈(200)连接为一体;
    其特征在于,所述第一外圈(11,21,31)的轴向的所述第三滚道(33,43,53)到所述内圈(200)轴向的所述第一滚道(35,45,55、)的所述距离与所述第二外圈(12,22,32)的轴向的所述第三滚道(34,44,54)到所述内圈(200)轴向的所述第二滚道(36,46,56)的所述距离相等和/或不相等的构造成配置所述第二滚动体(301、302,403、404,51、52)并轴向中的所述滚道构造成所述第二滚动体(301、302,403、404,51、52)的形状的所述滚道接触面。
  2. 根据权利要求1所述的组合轴承,其特征在于,
    所述第一、第二外圈的所述轴向中的第三滚道与所述内圈(200)的轴向中所述第一、第二滚道构造成配置所述一对滚珠列(888)的滚动的所述点接触的所述滚道面;所述轴向中的所述一对滚珠列(888)由所述轴向的保持架(808)构造成配合所述第一滚珠列(141、142)构造成容易的在所述轴承的轴向中的所述滚道点接触的相切,并由所述保持架(808)引导在轴向中的所述滚道之间滚动;
    所述环形的保持架(808)的截面形成内周侧(813)和外周侧(812)的T状,所述T状的上部分是内周侧,下部分是外周侧,在T状的上部分一侧延伸指向外圈(100)的轴向的轴孔(66)内端面边缘间隔一定距离,和T状的上部分另一侧延伸指向内圈(200)的轴向端面留有一定距离,T状的上部分的两侧环形(813)外径都套有橡胶密封圈(814)与内、外圈(200、100)的轴向部位抵接,T状的下部分形成环周的兜孔;
    所述保持架(808)的兜孔(810)设置成三角形的构造,在三角形的兜孔(810)中设置弹性元件(811)抵接滚珠(809)向周向位移,弹性元件(811)形成H状的弧面弹性钢片(811),H状的弧面弹性钢片(811)预压的把两头凹槽插入三角形的两边,形成弧面的凹部抵接滚珠(809);
    所述在保持架(808)的三角形的兜孔(810)区域内设置利用两个点形成两点卡式装置,滚珠(809)抵接三角形的底边与弹性钢片的凹部中,用于将滚珠(809)保持在兜孔(810)内,该两点卡式装置允许了通过在弹性钢片(811)的一个点和三角形底边的一个点的区域内的弹性变形的滚珠(809)到兜孔(808)内的插入。
  3. 根据权利要求1所述的组合轴承,其特征在于,
    所述第一、第二外圈的所述轴向中的第三滚道与所述内圈的轴向中所述第一、第二滚道构造成配置所述一对滚动体的滚动的所述线接触的所述滚道面;所述轴向中的所述一对滚动体由所述轴向的保持架构造成配合所述第一滚珠列(141、142)构造成容易的在所述轴承的轴向中的所述滚道线接触的相切,并由所述保持架引导在轴向中的所述滚道之间滚动;
    所述环形的保持架的截面形成内周侧(398)和外周侧(305)的T状,所述T状的上部分是内周侧(398),下部分是外周侧(305),在T状的上部分一侧延伸指向外圈(100)的轴向的轴孔(66)内端面边缘留有一定距离,和T状的上部分另一侧延伸指向内圈(200)的轴向端面留有一定距离,T状的上部分的两侧环形外径都套有橡胶密封圈(388)与内、外圈(200、100)的轴向部位抵接,T状的下部分形成环周的窗式兜孔;
    所述轴向的保持架的窗式兜孔构造成滚动体的形状,所述兜孔上活动连接弹性元件(950),所述弹性元件(950)包括H状的弧形弹性钢片(951)和弧形凹部连接弹簧(952),H状的弧形弹性钢片(951)的两头凹槽预压接合窗式兜孔的两侧,弹簧(952)的另一头抵接窗式兜孔的径向端面;所述弧形弹性钢片(951)的弧形凸部抵接所述滚动体的一端或所述滚动体的大径端面控制向周向位移;在保持架的窗式的兜孔区域内设置利用两个面形成两面卡式装置,滚动体的两端抵接窗式兜孔的径向端面与弹性钢片(951)的凸部,用于将滚动体保持在兜孔内,该两面卡式装置允许了通过在弹性钢片(951)的一个面和窗式兜孔的一个面的区域内的弹性变形的滚动体到兜孔内的插入。
  4. 一种主动式的进动轴承,其包括根据权利要求1和2所述的组合轴承,其特征在于,
    所述主动式的进动轴承的所述内圈(200)的轴向的一侧环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置和所述另一侧设置所述轴向接触环平面滚道对应所述外圈(100)的轴向中的所述推力角接触环形球面滚道或所述轴向接触球面滚道或所述圆锥面滚道;所述主动式进动轴承的轴向中的所述滚道之间由所述一对滚珠列(888)构造成滚动并配合第一滚珠列(141、142)以无间隙的方式构造而成的在轴承一起安装;
    所述驱动内圈(200)旋转,所述内圈(200)的轴向的两侧滚道不平行的控制一对滚珠列(888)相对不平行的滚动,所述驱动外圈(100)旋摆运动并朝相反方向旋进运动。
  5. 一种被动式进动轴承(2)装配方法,其包括根据权利要求1和3所述的组合轴承,
    其中,所述外圈(100)的第一外圈(21)轴向的第三滚道设置的所述圆锥面滚道(43)是轴向的凸出或凹进,和
    所述内圈(200)的轴向的第二滚道设置的所述圆锥面滚道(46)是轴向的凸出或凹进;即
    所述第一外圈(21)的圆锥面滚道(43)与所述内圈(200)的第二滚道的圆锥面滚道(46)的所述锥角锥度相同,和
    所述外圈的第二外圈(22)轴向的第三滚道设置的所述环平面滚道(44)与所述内圈(200)的轴向的第一滚道设置的所述环平面滚道(45)是平行的设置;
    所述第二外圈(22)的环平面滚道(44)到所述内圈(200)的第二滚道的圆锥面滚道(46)的所述轴向距离与所述第一外圈(21)的圆锥面滚道(43)到所述内圈(200)的第一滚道的环平面滚道(45)的所述轴向距离相等和/或不相等;
    所述外圈的第一、第二外圈(21、22)的所述第三滚道的所述环平面滚道、圆锥面滚道(44、43)到所述内圈(200)的轴向的所述第一、第二滚道的所述环平面滚道、圆锥面滚道(45、46)的距离设置所述两列第四圆锥滚子(403、404);
    所述一列第四圆锥滚子(404)相切于所述第二外圈(22)的环平面滚道面(44)与所述内圈(200) 轴向的第二滚道的圆锥面滚道面(46),所述另一列第四圆锥滚子(403)相切于所述第一外圈(21)的圆锥面滚道面(43)与所述内圈(200)轴向的第一滚道的环平面滚道面(45),所述两列第四圆锥滚子(403、404)由所述轴向的保持架(401、402)保持地可以被引导在所述内、外圈(200、100)的轴向中的滚道面(43、45,44、46)之间滚动运动;
    所述被动式进动轴承装配方法包括以下工序:
    工序一,外圈(100)的外径小的第一外圈(21)平放在工作台上;
    工序二,第二步组装轴向的左边的一列圆锥滚子(403)倾斜的放置在外径小的第一外圈(21)第三阶梯(105)的圆锥面滚道(43)里;
    工序三,第三步组装第一球状内腔球面滚道(181)里的左边一列第一滚珠(141);
    工序四,第四步把内圈(200)左侧环平面滚道(45)放置在第一外圈(21)的两列滚动体(403、141)里;
    工序五,第五步用T形圆棒穿过内圈(200)的轴孔,把组好的一半的第一外圈(21)、两列滚动体(403、141)和内圈(200)的组件倒扣在另一半组好的外径大的第二外圈(22)和一列滚珠(142)、一列圆锥滚子(404)组件里,使两列第四圆锥滚子(403、404)不平行的构造成一起安装;
    工序六,最后用螺栓(901)套上弹性元件(902)连接第一、第二外圈(21、22)预紧与内圈(200)相对倾斜;
    所述被动式进动轴承(2)的运动形式:所述驱动内圈(200)定轴旋转,所述一对圆锥滚子(403、404)不平行的高速回转运动所述驱动外圈(100)进动并朝相反方向旋转;或所述驱动外圈(100)定轴旋转,所述一对圆锥滚子(403、404)不平行的高速回转运动所述驱动内圈(200)进动并朝相反方向旋转,所述旋转的内圈(200)或外圈(100)持续高速转动,所述另一方的进动运动衰减下来停止,所述回归到内、外圈(200、100)相对的纯滚动旋转运动,所述一对圆锥滚子(403、404)回归平行中;所述施加外力被动式进动轴承(2)实现进动运动。
  6. 一种被动式进动轴承(3)装配方法,其包括根据权利要求1和3所述的组合轴承,
    其中,所述外圈(100的第一外圈(31)轴向的第三滚道设置的所述推力角接触环形球面滚道(53),和
    所述内圈(200)的轴向的第二滚道设置的所述推力角接触环形球面滚道(56);即
    所述第一外圈(31)的推力角接触环形球面滚道(53)与所述内圈(200)的第二滚道的推力角接触环形球面滚道(56)的所述球面半径相同,和
    所述外圈的第二外圈(32)轴向的第三滚道设置的所述轴向接触环形球面滚道(54)与所述内圈(200)的轴向的第一滚道设置的所述轴向接触环形球面滚道(56)所述平行的设置并所述球面半径相同;即
    所述外圈(100)其中一侧的所述推力角接触环形球面滚道(53)与所述内圈(200)其中一侧的所述轴向接触环形球面滚道(56)的所述球面半径相同;
    所述第二外圈(32)的轴向接触环形球面滚道(54)到所述内圈(200)的第二滚道的推力角接触环形球面滚道(56)的所述轴向距离与所述第一外圈(31)的推力角接触环形球面滚道(53)到所述内圈(200)的第一滚道的轴向接触环形球面滚道(55)的所述轴向距离相等和/或不相等;
    所述外圈(100)的第一、第二外圈(31、32)的所述第三滚道的所述推力角接触环形球面滚道、轴向接触环形球面滚道(53、54)到所述内圈(200)的轴向的所述第一、第二滚道的所述轴向接触环形球面滚道、推力角接触环形球面滚道(56、55)的距离设置所述两列第五非对称球面滚子(51、52);
    所述一列第五非对称球面滚子(52)相切于所述第二外圈(32)的轴向接触环形球面滚道面(54)与所述内圈(200)轴向的第二滚道的推力角接触环形球面滚道面(56),所述另一列第五非对称球面滚子(51)相切于所述第一外圈(31)的推力角接触环形球面滚道面(53)与所述内圈(200)轴向的第一滚道的轴向接触环形球面滚道面(55),所述两列第五非对称球面滚子(51、52)由所述轴向的保持架(501、502)保持地可以被引导在所述内、外圈(200、100)的轴向中的滚道面(53、55,54、56)之间滚动运动;
    所述被动式进动轴承装配方法包括以下工序:
    工序一,外圈(100)的外径小的第一外圈(31)平放在工作台上;
    工序二,第二步组装轴向的左边的一列非对称球面滚子(51)倾斜的放置在外径小的第一外圈31第三阶梯105的推力角接触环形球面滚道(53)里;
    工序三,第三步组装第一球状内腔球面滚道(181)里的左边一列第一滚珠(141);
    工序四,第四步把内圈(200)左侧轴向接触环形球面滚道面(55)放置在第一外圈(31)的两列滚动体(51、141)里;
    工序五,第五步用T形圆棒穿过内圈(200)的轴孔,把组好的一半的第一外圈(31)、两列滚动体(51、141)和内圈(200)的组件倒扣在另一半组好的外径大的第二外圈(32)和一列滚珠(142)、一列非对称球面滚子(52)组件里,使两列第五非对称球面滚子(51、52)不平行的构造成一起安装;
    工序六,最后用螺栓(901)套上弹性元件(902)连接第一、第二外圈(31、32)预紧与内圈(200)相对倾斜;
    所述被动式进动轴承(3)的运动形式:所述驱动内圈(200)定轴旋转,所述一对非对称球面滚子(51、52)不平行的高速回转运动所述驱动外圈(100)进动并朝相反方向旋转;或所述驱动外圈(100)定轴旋转,所述一对非对称球面滚子(51、52)不平行的高速回转运动所述驱动内圈(200)进动并朝相反方向旋转,所述旋转的内圈(200)或外圈(100)持续高速转动,所述另一方的进动运动衰减下来停止,所述回归到内、外圈(200、100)相对的纯滚动旋转运动,所述一对非对称球面滚子(51、52)回归平行中;所述施加外力被动式进动轴承(3)实现进动运动。
  7. 一种主动式进动轴承(1),其包括根据权利要求1和3所述的组合轴承,
    其特征在于,所述第一、第二外圈(11、12)的第三阶梯(105、106)的轴向的第三滚道设置的所述环平面滚道(33、34)到所述内圈(200)轴向的第一、第二滚道设置的所述环平面滚道(35、36)的距离配置的所述两列第二滚动体(301、302),轴向的所述第二滚动体(301、302)设置成所述环布窗式第三保持架(303、304)保持的所述斜坡中的圆锥滚子(31、32)和所述圆柱滚子(39)组成的滚动元件,所述左右轴向相对的第三斜坡环周滚动元件(301、302)的每列由所述环形直径线上的两头的所述圆柱滚子(39)分隔成的两侧所述多个圆锥滚子(31、32)形成所述坡度分布在圆周上,所述直线上的两个圆柱滚子(39)分成两侧半周的所述圆锥滚子(31、32)的坡度朝向是一半的所述每个圆锥滚子(32)的小径端部朝向保持架(303、304)的圆心与所述圆锥滚子(32)的旋转轴线指向保持架(303、304)的圆心、另一半的所述每个圆锥滚子(31)大径端部朝向保持架(303、304)的圆心与所述圆锥滚子(31)的旋转轴线指向保持架(303、304)的圆心,所述每列的圆锥滚子(31、32)和圆柱滚子(39)组合的滚动元件的相对的滚动面形成所述坡度的两个平面的滚动接触面;
    所述左右相对的第三斜坡环周滚动元件(301、302)形成的所述平面滚动面与所述内圈(200)的轴向平面两滚道面(35、36)相切,所述左侧的第三斜坡环周滚动元件(301)形成的所述坡面滚动面与所述第一外圈(11)的第三轴向平面滚道面(33)相切,所述右侧的第三斜坡环周滚动元件(302)形成的所述坡面滚道面与所述第二外圈(12)的第三轴向平面滚道面(34)相切,即,所述左侧第三斜坡环周滚动元件(301)相切于所述第一外圈(11)的环平面滚道面(33)与所述内圈(200)的第一滚道的环平面滚道面(35),所述右侧第三斜坡环周滚动元件(302)相切于所述第二外圈(12)的环平面滚道面(34)与所述内圈(200)的第二滚道的环平面滚道面(36);
    所述轴向的环布窗式保持架(303、304)的兜孔控制所述每个圆柱(39)和圆锥滚子(31、32)不接触与控制圆锥滚子(31、32)向周向的方向移动并在所述内,外圈(200、100)的轴向的滚道之间滚动;
    所述左右相对的第三斜坡环周滚动元件(301、302)形成所述在上坡度的大径圆锥滚子(32)对应所述在下坡度的小径圆锥滚子(31),即,所述内圈(200)的旋转轴线与所述外圈(100)的旋转轴线相对倾斜形成一个角度α°并旋转轴线相交于球心;
    所述第三斜坡环周滚动元件(301、302)在内、外圈(200、100)的轴向的滚道(33、35,34、36)之间滚动运动,同时所述轴向均布的多个第一滚珠列(141、142)在所述内圈(200)的外球面滚道(288)与所述外圈(100)的第一球状内腔球面滚道(181、182)的自由多角度空间轨迹点接触滚动运动,并具有所述内圈(200)的外球面滚道(28)与所述外圈(100)的第二内球面滚道(183、184)的面接触的滑动运动;
    所述两列第三斜坡环周滚动元件(301、302)的所述每列的坡度是1°至15°,并且相对的两列第三斜坡环周滚动元件(301、302)的所述坡度相同;并保持架(303、304)的内周侧的环部(398)构造成与第三斜坡环周滚动元件(301、302)的相同一个角度;
    所述主动式进动轴承的驱动方式:
    所述驱动内圈(200)旋转,所述两列相对的第三斜坡环周滚动元件(301、302)高速回转运动所述驱动外圈(100)朝相反方向主动式进动运动;所述外圈(100)的中心轴线(AF)围绕所述内圈(200)的旋转轴线(AX)转动,并围绕轴承球心的360°旋进,所述驱动外圈(100)稳定的持续的主动式的进动运动与传动运动;即,所述驱动内圈(200)定轴转动,所述驱动外圈(100)朝相反反向动平衡;所述第三斜坡环周滚动元件(301、302)的角度大小设置,所述设置小角度时,所述外圈(100)进动的角速度快;所述设置大角度时,所述外圈(100)进动的角速度慢;所述反之驱动外圈(100)进动所述带动内圈(200)旋转;
    所述驱动外圈(100)旋转,所述两列相对的第三斜坡环周滚动元件(301、302)高速回转运动所述驱动内圈(200)朝相反方向主动式进动运动;所述内圈(200)的中心轴线(AX)围绕所述外圈(100)的旋转轴线(AF)转动,并围绕轴承球心的360°旋进,所述驱动内圈(200)稳定的持续的主动式的进动运动与传动运动;即,所述驱动外圈(100)定轴转动,所述驱动内圈(200)朝相反反向动平衡;所述设置第三斜坡环周滚动元件(301、302)的角度大小,所述设置小角度时,所述内圈(200)进动的角速度快;所述设置大角度时,所述内圈(200)进动的角速度慢;所述反之驱动内圈(200)进动所述带动外圈(100)旋转;
    所述具有第三斜坡环周滚动元件的轴承的主动式进动运动由马达开启所述驱动带动所述进动运动持续稳定的运转不间歇;所述其中一方的内圈或外圈进动,所述另一方朝另一个方向定轴旋转,所述第三斜坡环周滚动元件与所述滚道之间实现摩擦的传动运动;
    所述第三斜坡环周滚动元件(301、302)的角度大小实现所述内圈(200)与外圈(100)的传动比,所述主动式进动轴承(1)构造成使得在驱动与输出之间实现至少一个运动参数的变化。
  8. 一种主动式进动轴承,其包括根据权利要求1和3所述的组合轴承,其特征在于,
    所述主动式的进动轴承配置所述一对滚动体,所述第一、第二外圈的第三阶梯的轴向的所述第三滚道到所述内圈轴向的所述第一、第二滚道的距离配置的所述两列第二滚动体、所述两列第二滚动体设置成所述一对圆锥滚子或所述一对非对称球面滚子;
    所述主动式的进动轴承的所述内圈的轴向的一侧滚道的中心轴线相对于传动轴的轴线倾斜地设置和所述另一侧设置轴向接触滚道对应所述外圈的轴向中的第三滚道,所述主动式进动轴承的轴向中的所述滚道构造成一起安装与配合所述一对圆锥滚子或所述一对非对称球面滚子的所述滚道面、并形成所述一对圆锥滚子或所述一对非对称球面滚子相切于轴向中的滚道之间由保持架引导滚动运动配合第一滚珠列的在轴承中一起以无间隙的安装;
    所述驱动内圈旋转,所述内圈的轴向的两侧滚道不平行的控制滚动体相对不平行的滚动,所述驱动外圈旋摆运动并朝相反方向旋进运动;所述主动式进动轴承构造成使得在驱动与输出之间实现至少一个运动参数的变化。
  9. 一种章动和进动的耦合运动的轴承,其包括根据权利要求1和3、7之一所述的组合轴承或所述的主动式进动轴承,其特征在于,
    所述内圈的轴向的左、右侧面的所述第一、第二滚道设置的所述环平面滚道的中心轴线相对于传动轴的轴线倾斜地设置,所述第一、第二滚道的倾斜环平面滚道是平行设置,所述倾斜环平面滚道的中心轴线与传动轴的轴线的夹角在1°至15°;
    所述外圈的第一、第二外圈的第三滚道的所述环平面滚道到所述内圈的第一、第二滚道的倾斜环平面滚道的距离设置所述两列第三斜坡环周滚动元件,并让它在所述内、外圈的轴向中的滚道之间滚动;
    所述两列第三斜坡环周滚动元件的每列坡度是1°至15°,并且相对的所述两列第三斜坡环周滚动元件的坡度相同;
    所述第一外圈轴向的环平面滚道到所述内圈的第一滚道的倾斜环平面滚道的所述距离与所述第二外圈轴向的环平面滚道到所述内圈的第二滚道的倾斜环平面滚道的所述距离的相等和/或不相等;即
    所述左列第三斜坡环周滚动元件的轴向距离与所述右列第三斜坡环周滚动元件的轴向距离的相同和/或不相同;
    所述左列第三斜坡环周滚动元件相切于所述第一外圈的环平面滚道面与所述内圈的第一滚道的倾斜 环平面滚道面,所述右列第三斜坡环周滚动元件相切于所述第二外圈的环平面滚道面与所述内圈的第二滚道的倾斜环平面滚道面;
    所述左右相对的第三斜坡环周滚动元件(301、302)形成所述在上坡度的大径圆锥滚子(32)对应所述在下坡度的小径圆锥滚子(31),即,所述章进轴承在装配时所述内圈的旋转轴线与所述外圈的旋转轴线相对倾斜形成一个角度或所述相对形成0角度并所述旋转时旋转轴线相交或重合;
    所述两列第三斜坡环周滚动元件构造成与配合第一滚珠列的可以被引导在所述倾斜环平面滚道面与所述轴向环平面滚道面之间滚动运动;
    同时所述轴向均布的多个第一滚珠列在所述内圈的外球面滚道与所述外圈的第一球状内腔球面滚道的自由多角度空间轨迹点接触滚动运动,并具有所述内圈的外球面滚道与所述外圈的第二内球面滚道的面接触的滑动运动;
    所述章进轴承具备所述两列第三斜坡环周滚动元件与所述内圈的倾斜环平面滚道的滚动运动实现所述外圈的进动和章动的两种运动;
    所述章进轴承的运动形式:所述一对第三斜坡环周滚动元件的坡度与所述内圈的倾斜的环平面滚道的夹角相等时或不等时,所述驱动内圈旋转,所述两列第三斜坡环周滚动元件在所述内、外圈的轴向中的滚道之间滚动,所述章进轴承的所述两列第三斜坡环周滚动元件具备所述进动运动与所述内圈的倾斜环平面滚道具备所述往复直线摆动运动,所述两种运动共同的作用实现所述章动和进动的耦合运动,所述驱动内圈旋转将驱动所述外圈的章动和进动的朝相反的方向运动,所述外圈围绕球心的稳定持续的章动和进动运动;
    所述两列第三斜坡环周滚动元件在所述内、外圈滚道之间摩擦滚动实现所述传动运动与传动比,所述章进轴承构造成使得在驱动与输出之间实现至少一个运动参数的变化。
  10. 一种进动轴承陀螺及陀螺进动式主动稳定装置,其包括根据权利要求5所述的被动式进动轴承,包括:
    所述外圈(100)的第一外圈(42)设置成圆盖状,所述圆盖状的第一外圈(42)设有三级阶梯,所述三级阶梯的第三阶梯(106)延伸形成隔开封闭包覆住所述内圈(200)的轴向中的第一滚道(466),所述第三阶梯(106)的轴向内侧壁形成所述圆形平面滚道(444),所述第三阶梯(106)的轴向外侧面的中部设置所述轴向凸出的鼻锥(48)或半球体,所述鼻锥的锥角是100°至178°,所述第三阶梯(106)的轴向外侧面的外周设置所述轴向的环形平面(196)和所述中部的鼻锥(48)或半球体相连,所述环形平面(196)设置与所述第二外圈(41)对应的多个连接孔(900),所述连接孔(900)从环形平面(196)穿过所述第一阶梯(101、102)的轴向的邻接部(191、192)通到所述相对面带有螺纹沉孔,所述螺栓(901)穿过连接孔(900)相对的连接所述第一、第二外圈(42、41);并所述第一外圈(42)的第二阶梯(104)设置所述第二内球面滚道(184)、第一阶梯(102)设置所述第一球状内腔球面滚道(182);
    所述内圈(200)设置所述杆端(202)的内圈(200),所述轴向中的所述第一滚道形成所述凹进的圆锥面滚道(466),所述轴向中的所述第二滚道形成所述环形平面滚道(455)和所述环形平面中部形成所述一杆端(202)相连;和/或所述内圈(200)设置成圆环状的中心贯通的轴连接,所述圆环状的轴向中的所述第一滚道形成所述凹进的环形锥面滚道,所述圆环状的轴向中的第二滚道形成所述环形平面滚道;并所述内圈(200)的径向方向设置所述外球面滚道(288);
    所述外圈(100)的第一、第二外圈(42、41)的轴向中的第三滚道(444、43)到所述内圈(200)的轴向中的第一、第二滚道(466、455)的距离(空间)设置所述两列第四圆锥滚子(403、404);
    所述右侧这列圆锥滚子(404)相切于所述第一外圈(42)的圆形平面滚道面(444)与所述内圈(200)轴向的第一滚道的圆锥面滚道面(466),所述左侧这列圆锥滚子(403)相切于所述第二外圈(41)的圆锥面滚道面(43)与所述内圈(200)轴向的第二滚道的环形平面滚道面(455),所述两列圆锥滚子(403、403)由保持架(401、402)保持地可以被引导在所述圆锥面滚道(466、43)与所述平面滚道(444、455)之间滚动运动;
    所述进动轴承陀螺的所述内圈(200)的杆端(202)连接所述电机转轴,所述电机外壳连接所述支撑平台,所述电机接通电源,和/或所述支撑平台设置成一体的电池支撑平台与所述电机连接;所述进动轴承 陀螺的所述外圈(100)的第一外圈(42)的所述鼻锥(48)或半球体侧躺在所述承载平台上或平地上,所述一对圆锥滚子(403、404)相对不平行;所述启动电机,在初始状态,所述驱动外圈(100)进动运动,所述在内圈(200)的转速提高下,所述外圈(100)的鼻锥(48)或半球体的轴向顶点所述稳定的立在承载平台上,所述外力矩施加在所述承载平台或所述支撑平台上所述外圈(100)进动运动保持所述内圈(200)上的支撑平台稳定。
  11. 一种进动轴承陀螺及陀螺进动式主动稳定装置,其包括根据权利要求6所述的被动式进动轴承,包括:
    所述外圈的第一外圈设置成圆盖状,所述圆盖状的第一外圈设有三级阶梯,所述三级阶梯的第三阶梯延伸形成隔开封闭包覆住所述内圈的轴向中的第一滚道,所述第三阶梯的轴向内侧壁形成所述环形球面滚道,所述第三阶梯的轴向外侧面的中部设置所述轴向凸出的鼻锥或半球体,所述鼻锥的锥角是100°至178°,所述第三阶梯的轴向外侧面的外周设置所述轴向的环形平面和所述中部的鼻锥或半球体相连,所述环形平面设置与所述第二外圈对应的所述多个连接孔,所述连接孔从环形平面穿过第一阶梯的轴向的所述邻接部通到所述相对面带有螺纹沉孔,所述螺栓穿过连接孔相对的连接所述第一、第二外圈,并所述第一外圈的第二阶梯设置所述第二内球面滚道、第一阶梯设置所述第一球状内腔球面滚道;
    所述内圈设置所述带有杆端的内圈,所述在轴向中的所述第一滚道形成所述推力角接触环形球面滚道,所述轴向中的所述第二滚道形成所述轴向接触环形球面滚道和所述中部形成所述一杆端相连;和/或所述内圈设置所述圆环状的中心贯通的轴连接,所述圆环状的轴向中的所述第一滚道形成所述推力角接触环形球面滚道,所述圆环状的轴向中的所述第二滚道形成所述轴向接触环形球面滚道;并所述内圈的径向方向设置外球面滚道;
    所述外圈的第一、第二外圈的第三滚道的所述轴向接触环形球面滚道、推力角接触环形球面滚道到所述内圈的轴向的第一、第二滚道的所述推力角接触环形球面滚道、轴向接触环形球面滚道的距离设置所述两列第五非对称球面滚子;
    所述一列第五非对称球面滚子相切于所述第一外圈的轴向接触环形球面滚道面与所述内圈轴向的第一滚道的推力角接触环形球面滚道面,所述另一列第五非对称球面滚子相切于所述第二外圈的推力角接触环形球面滚道面与所述内圈轴向的第二滚道的轴向接触环形球面滚道面,所述两列第五非对称球面滚子由保持架保持地可以被引导在所述内、外圈的轴向中的滚道面之间滚动运动;
    所述进动轴承陀螺的所述内圈的杆端连接所述电机转轴,所述电机外壳连接所述支撑平台,所述电机接通电源,和/或所述支撑平台设置成一体的电池支撑平台与所述电机连接;所述进动轴承陀螺的所述外圈的第一外圈的所述鼻锥或半球体侧躺在所述承载平台上或平地上,所述一对非对称球面滚子相对不平行;所述启动电机,在初始状态,所述驱动外圈进动运动,所述在内圈的转速提高下,所述外圈的鼻锥或半球体的轴向顶点所述稳定的立在承载平台上,所述外力矩施加在所述承载平台或所述支撑平台上所述外圈进动运动保持所述内圈上的支撑平台稳定。
  12. 旋转刚体的陀螺在斜坡平面上运动的原理,所述旋转刚体的陀螺在同一个倾斜平面坡度上,旋转方向相同前进方向相同,在转速不同的情况下,转速低时陀螺会向下斜线运动,转速高时陀螺会向上斜线运动,在转速匹配坡度时陀螺处在那个斜坡高度位置上就在那个斜坡高度位置上直线运动;所述在陀螺高转速匹配高坡度轨道时形成高速度直线运动,在陀螺低转速匹配低坡度轨道时形成低速度直线运动;所述在倾斜的斜坡平面,坡面面对于人,陀螺逆时针旋转,运动方向向右直线前进,反之陀螺顺时针旋转,运动方向向左直线前进;在斜坡平面相对于人向下,陀螺逆时针旋转,运动方向向左直线前进,反之陀螺顺时针旋转,运动方向向右直线前进。
  13. 一种进动轴承陀螺超越离合式装置(88)在斜坡轨道上行走系统、方法,
    其包括根据权利要求10、11和12之一所述的进动轴承陀螺及陀螺进动式主动稳定装置或所述的旋转刚体的陀螺在斜坡平面上运动的原理,所述进动轴承陀螺超越离合式装置(88)包括升降机构平台,控制器,驱动马达,传感器,斜坡轨道(855),所述斜坡轨道由钢板构造成倾斜的平面轨道;
    所述进动轴承陀螺超越离合式装置(88)这样设置,所述该装置(88)是设置所述内圈(200)在轴承中心的径向的所述外球面滚道(288)的开有多个环周的离心式的所述一段凹槽球面滚道(77),所述内圈(200)的周向的离心式的所述每个凹槽球面滚道(77)的所述深处端面设有所述连接小段磁铁(79), 所述离心式的凹槽球面滚道(79)里配置所述球面滚子(78)与所述组合的第一、第二外圈(42、41)的第一阶梯(101、102)所述第一球状内腔球面滚道(181、182)所述传递转矩时所述接触;所述内、外圈(200、100)的轴向中的滚道之间所述包括一对滚珠列(888)或一对圆锥滚子403、404或一对非对称球面滚子51、52的对应设置构造成被动式进动轴承的进动性与稳定性;和所述内、外圈(200、100)的径向方向的内、外球面滚道(288,181、182)之间配置所述多个第一滚珠列(141、142);和所述内、外圈(200、100)的所述外球面滚道(288)与所述第二内球面滚道(183、184)的对应设置,所述进动轴承陀螺超越离合式装置(88)的所述内圈(200)杆端(202)连接驱动马达(818)转轴,所述驱动马达(818)的外壳连接所述电池一体支撑平台(828);
    所述该装置(88)在斜坡轨道行走系统、方法包括以下步骤:
    升降机构平台(866)在开始时是处于水平状态,所述外圈(100)上的鼻锥(48)或半球体的侧面倾斜的躺在水平的升降机构平台(866)上;
    所述进动轴承陀螺超越离合式装置(88)的控制器控制所述驱动马达(818)驱动内圈(200)旋转;
    在初速度下,所述球面滚子(78)吸附在磁铁(79)上,所述外圈(100)开始处于进动运动;
    在一定时间内控制器控制所述驱动马达(818)驱动内圈(200)旋转速度持续提高,所述吸附在磁铁(79)上的球面滚子(78)在离心力的作用下球面滚子(78)运动接触到所述外圈(100)的第一球状内腔球面滚道(181、182),即传递转矩实现所述旋转刚体陀螺(88)在水平状态的升降机构平台(866)上旋转;
    升降机构平台(866)上的感应传感器感应到刚体陀螺(88)处在稳定的旋转当中,并反馈给控制器,
    控制器基于接收到的稳定旋转的转速信息,升降机构平台(866)的控制器控制驱动马达启动抬升动作倾斜状态,与斜坡轨道衔接在同一坡度上;
    所述进动轴承陀螺超越离合式装置(88)在斜坡轨道(855)上开始直线行走;
    当运行到指定目的地段,并且该段标识有斜坡轨道升降机构平台(866),发送指令到控制器;
    斜坡轨道升降机构平台(866)控制器基于接收到的指令,斜坡轨道升降机构平台(866)检测到刚体陀螺(88)到达指定位置;并反馈给控制器,升降机构平台(866)控制器基于接收到的指令,升降机构(866)的控制器控制驱动马达启动下降,升降机构(866)轨道动作水平状态;所述该装置(88)停止前进在水平状态的升降机构平台(866)上旋转;
    在指定时间,所述该装置(88)的控制器控制所述驱动马达(818)停止,所述内圈(200)停止旋转,
    立在水平轨道(866)上的所述进动轴承陀螺超越离合式装置(88)的所述外圈(100)还处在旋转运动中,所述外圈(100)旋转脱离所述球面滚子(78)超越不传递转矩,所述球面滚子(78)运动到所述凹槽球面滚道(77)的深处端面被所述磁铁(79)吸附住;所述外圈(100)上的鼻锥(48)或半球体随着与所述轨道(855)的摩擦力与所述进动轴承陀螺超越离合式装置(88)本身的重力矩,所述外圈(100)旋转速度衰减开始进动,直到所述外圈(100)停止进动;
    所述外圈(100)上的鼻锥(48)或半球体的侧面倾斜在水平状态的升降机构平台(866)上保持所述内圈(200)连接的马达(818)上的电池一体支撑平台水平。
  14. 一种交通运输系统,其具有根据权利要求13所述的进动轴承陀螺超越离合式装置(88)在斜坡轨道上行走系统、方法并且具有所述斜坡轨道(855)的坡面的角度在1度至20度。
PCT/CN2022/079443 2022-03-06 2022-03-06 轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统 WO2023168544A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/079443 WO2023168544A1 (zh) 2022-03-06 2022-03-06 轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统
CN202280002318.6A CN117015668A (zh) 2022-03-06 2022-03-06 轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079443 WO2023168544A1 (zh) 2022-03-06 2022-03-06 轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统

Publications (1)

Publication Number Publication Date
WO2023168544A1 true WO2023168544A1 (zh) 2023-09-14

Family

ID=87936914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079443 WO2023168544A1 (zh) 2022-03-06 2022-03-06 轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统

Country Status (2)

Country Link
CN (1) CN117015668A (zh)
WO (1) WO2023168544A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117571322A (zh) * 2023-12-27 2024-02-20 昆山铭驰自动化科技有限公司 一种无动力源的轴承振动检测方法
CN117595560A (zh) * 2024-01-19 2024-02-23 河北亿泰克轴承有限公司 一种轴承组件及电机
CN118049434A (zh) * 2024-04-16 2024-05-17 洛阳洛轴精密轴承有限公司 一种调心球轴承

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB608500A (en) * 1944-01-22 1948-09-16 Svenska Aeroplan Ab Holder for rolling bodies in bearings
GB784693A (en) * 1950-04-24 1957-10-16 Mini Of Supply Improvements in and relating to gyroscope apparatus
GB825917A (en) * 1956-04-19 1959-12-23 Arthur Abbey Improvements in and relating to gyroscopic apparatus
US2983558A (en) * 1958-06-27 1961-05-09 Marion F Rudy Micro-ball joint
GB1260979A (en) * 1970-01-27 1972-01-19 Star Kugelhalter Gmbh Dt Ball-bearing
JP2009008193A (ja) * 2007-06-29 2009-01-15 Hiihaisuto Seiko Kk 球面軸受のリテーナ
DE102007034570A1 (de) * 2007-07-25 2009-01-29 Schaeffler Kg Wälzlager
CN201925338U (zh) * 2010-05-31 2011-08-10 江阴市富贝轴承有限公司 外螺纹式增强防腐型关节轴承
CN104389899A (zh) * 2014-10-13 2015-03-04 北京控制工程研究所 一种带预载滚动式关节轴承
JP2018105458A (ja) * 2016-12-27 2018-07-05 Ntn株式会社 車輪用軸受装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB608500A (en) * 1944-01-22 1948-09-16 Svenska Aeroplan Ab Holder for rolling bodies in bearings
GB784693A (en) * 1950-04-24 1957-10-16 Mini Of Supply Improvements in and relating to gyroscope apparatus
GB825917A (en) * 1956-04-19 1959-12-23 Arthur Abbey Improvements in and relating to gyroscopic apparatus
US2983558A (en) * 1958-06-27 1961-05-09 Marion F Rudy Micro-ball joint
GB1260979A (en) * 1970-01-27 1972-01-19 Star Kugelhalter Gmbh Dt Ball-bearing
JP2009008193A (ja) * 2007-06-29 2009-01-15 Hiihaisuto Seiko Kk 球面軸受のリテーナ
DE102007034570A1 (de) * 2007-07-25 2009-01-29 Schaeffler Kg Wälzlager
CN201925338U (zh) * 2010-05-31 2011-08-10 江阴市富贝轴承有限公司 外螺纹式增强防腐型关节轴承
CN104389899A (zh) * 2014-10-13 2015-03-04 北京控制工程研究所 一种带预载滚动式关节轴承
JP2018105458A (ja) * 2016-12-27 2018-07-05 Ntn株式会社 車輪用軸受装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117571322A (zh) * 2023-12-27 2024-02-20 昆山铭驰自动化科技有限公司 一种无动力源的轴承振动检测方法
CN117571322B (zh) * 2023-12-27 2024-04-30 昆山铭驰自动化科技有限公司 一种无动力源的轴承振动检测方法
CN117595560A (zh) * 2024-01-19 2024-02-23 河北亿泰克轴承有限公司 一种轴承组件及电机
CN118049434A (zh) * 2024-04-16 2024-05-17 洛阳洛轴精密轴承有限公司 一种调心球轴承

Also Published As

Publication number Publication date
CN117015668A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2023168544A1 (zh) 轴承,进动轴承、陀螺及该装置超越离合式形成旋转刚体在轨行走系统、方法和交通系统
EP2787229B1 (en) Rolling bearing with a cage
CN115638186A (zh) 稳定、被动、主动式组合轴承和\或传动装置及保持架,及利用各种传动装置的装备机械
US5536091A (en) Thrust ball bearing for use with power rollers
US20200166075A1 (en) Cageless bearing and transmission
CN108443340A (zh) 一种球环钢球组合型三球销式等速万向节
CN103388619A (zh) 滚动式关节轴承
US20100183256A1 (en) Angular ball bearing
RU2232926C2 (ru) Подшипник качения
CN110566577B (zh) 一种可调预紧力的精密组合轴承
CN208294973U (zh) 一种球环钢球组合型三球销式等速万向节
ES2210552T3 (es) Cojinete de soporte para maquinas de nutacion.
US20080096676A1 (en) Constant Velocity Joint
Pan et al. Study on design and simulation of a novel isolator cylindrical roller bearing
US20020045512A1 (en) Power roller for a toroidal continuously variable transmission
CN113090725B (zh) 一种回转传动装置及传动方法
EP3859189A1 (en) Power transmission device
EP3859190B1 (en) Speed reducer
CN2763616Y (zh) 一种外圈或内圈双挡边引导保持架的角接触球轴承
US11493092B2 (en) Speed-reducing or -increasing apparatus
US1226685A (en) Roller-bearing.
JP3303503B2 (ja) パワーローラ用スラスト玉軸受
JP2020106105A (ja) 等速ジョイント
CN218780626U (zh) 一种具有高承载能力的角接触球轴承
EP4227548A1 (en) Angular contact self-aligning roller bearing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002318.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930193

Country of ref document: EP

Kind code of ref document: A1