WO2023167097A1 - 基板処理装置及び基板処理システム並びに基板処理方法 - Google Patents

基板処理装置及び基板処理システム並びに基板処理方法 Download PDF

Info

Publication number
WO2023167097A1
WO2023167097A1 PCT/JP2023/006687 JP2023006687W WO2023167097A1 WO 2023167097 A1 WO2023167097 A1 WO 2023167097A1 JP 2023006687 W JP2023006687 W JP 2023006687W WO 2023167097 A1 WO2023167097 A1 WO 2023167097A1
Authority
WO
WIPO (PCT)
Prior art keywords
photographing
unit
substrate processing
substrate
recipe
Prior art date
Application number
PCT/JP2023/006687
Other languages
English (en)
French (fr)
Inventor
進二 清水
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2023167097A1 publication Critical patent/WO2023167097A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention provides a substrate processing apparatus for performing predetermined processing on substrates such as semiconductor substrates, substrates for FPD (Flat Panel Display) such as liquid crystal displays and organic EL (Electroluminescence) display devices, glass substrates for photomasks, and substrates for optical discs. and a substrate processing system and a substrate processing method, and more particularly, to a technique for detecting operating states of components constituting an apparatus.
  • substrates such as semiconductor substrates, substrates for FPD (Flat Panel Display) such as liquid crystal displays and organic EL (Electroluminescence) display devices, glass substrates for photomasks, and substrates for optical discs.
  • a drive arm As a first device of this type, there is one that includes a drive arm, a main control section, a monitoring section, a camera, and an image processing section (see Patent Document 1, for example).
  • the drive arm has a nozzle at the tip.
  • the drive arm moves a nozzle that supplies processing liquid above the substrate.
  • the main control section controls the drive arm.
  • the main control section has first nozzle position information as information indicating the positions of the nozzles.
  • the monitor receives the first nozzle position information.
  • the image processor receives images from a fixed position camera.
  • the image processing section provides the monitoring section with second nozzle position information indicating the arrangement position of the nozzle from the position information of the liquid column image.
  • the monitoring unit compares the first nozzle position information and the second nozzle position information to monitor an abnormality in the nozzle position.
  • a second device of this type there is one that includes a spin chuck, a chuck, a camera, and a control unit (see Patent Document 2, for example).
  • a chuck is provided on the outer peripheral side of the spin chuck.
  • the spin chuck chucks the outer edge of the substrate.
  • the camera is fixed to a casing containing the spin chuck.
  • the camera is oriented with a lens to photograph the periphery of the substrate.
  • a camera photographs the substrate and the chuck.
  • the camera has a zoom function, which can enlarge the chuck and take pictures.
  • the controller detects an abnormality in the holding state of the substrate based on the image captured by the camera.
  • the conventional example having such a configuration has the following problems. That is, according to the first conventional apparatus, the nozzle is small depending on the positional relationship between the nozzle and the camera. Therefore, the photographed image may not provide sufficient resolution to determine whether the nozzle is abnormal. As a result, it may not be possible to accurately detect anomalies. In order to overcome this problem, it is conceivable to use a high-resolution camera, but this is not realistic because the volume of image data becomes too large and the image processing load increases.
  • the conventional second device can accurately detect an abnormality related to the holding state of the substrate from the photographed image enlarged by the camera zoom function.
  • it is necessary to detect an abnormality at a location other than the substrate holder.
  • the zoom function alone cannot capture a good image. Therefore, there is a problem that an abnormality cannot be detected accurately depending on the recipe process.
  • the present invention has the following configuration. That is, the invention according to claim 1 is directed to a substrate processing apparatus that performs a predetermined process on a substrate.
  • a photographing method for photographing parts in which the photographing conditions can be adjusted such as the photographing direction of panning that moves the photographing field of view in the horizontal direction, the tilting photographing direction of moving the photographing field of view in the vertical direction, and the photographing magnification of zooming that enlarges or reduces the photographing field of view. and, when the processing is performed by the processing unit in accordance with a recipe that defines the processing content of the substrate, the imaging conditions are adjusted for each of the target components according to the steps of the recipe, and the photographing unit is caused to photograph. and a control unit for acquiring an adjusted photographed image, and an abnormality detection unit for detecting an abnormality of the target part based on the adjusted photographed image.
  • the control unit causes the photographing unit to acquire the adjusted photographed image.
  • the abnormality detection unit detects an abnormality of the target component based on the adjusted photographed image. Since the adjusted photographed image has the photographing conditions adjusted for each target component according to the process of the recipe, it can be an image suitable for detecting an abnormality for each target component. Therefore, an abnormality can be detected with high accuracy regardless of the recipe process.
  • a photographing condition storage unit that stores the photographing conditions in advance for each step of the recipe, and the control unit causes photographing to be performed based on the photographing conditions (claim 2). ).
  • the control unit can reliably adjust the imaging conditions based on the imaging conditions.
  • a recognition unit for recognizing the specific target part displayed in the photographed image taken by the photographing unit is further provided, and the control unit, according to the recognition result of the recognition unit, Preferably, the photographing direction is adjusted so as to track the specific target part (Claim 3).
  • the photographing condition is such that the photographing magnification is maximized so that the photographing field of view is minimized when a plurality of the target parts are contained in the photographing field of the photographing unit. (Claim 4).
  • the imaging magnification is maximum, even when photographing multiple target parts, sufficient resolution can be obtained for detecting anomalies in individual target parts.
  • a mirror is arranged at a position facing the photographing unit and facing the photographing unit, and reflects the target part in a blind spot from the photographing unit toward the photographing unit. Further, it is preferable that the photographing unit photographs the target part in a blind spot through the mirror (claim 5).
  • the imaging unit can photograph target parts in blind spots via mirrors. Therefore, it is possible to detect an abnormality in a target component in a blind spot without increasing the number of imaging units. As a result, device costs can be suppressed.
  • the control section causes the photographing section to acquire the adjusted photographed image.
  • the abnormality detection unit detects an abnormality of the target component based on the adjusted photographed image. Since the adjusted photographed image has the photographing conditions adjusted for each target component according to the process of the recipe, it can be an image suitable for detecting an abnormality for each target component. Therefore, an abnormality can be detected with high accuracy regardless of the recipe process.
  • FIG. 1 is a plan view of a substrate processing apparatus according to an embodiment
  • FIG. 1 is a block diagram of a substrate processing apparatus according to an embodiment
  • FIG. 10 is a schematic diagram for explaining imaging conditions in confirming the origin position
  • FIG. 5 is a schematic diagram for explaining imaging conditions in delivery confirmation and guard confirmation
  • FIG. 5 is a schematic diagram for explaining imaging conditions in nozzle movement
  • It is a schematic diagram which shows an example of a recipe.
  • 4 is a flow chart showing the flow of processing in the substrate processing apparatus according to the embodiment
  • It is a schematic diagram with which it uses for description of other imaging conditions.
  • FIG. 10 is a schematic diagram for explaining imaging conditions when a mirror is used
  • 1 is a schematic diagram of a substrate processing system according to an embodiment
  • FIG. 1 is a side view showing a substrate processing apparatus according to an embodiment.
  • FIG. 2 is a plan view of the substrate processing apparatus according to the embodiment.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes substrates W one by one.
  • the substrate W has, for example, a circular shape in plan view.
  • the substrate processing apparatus 1 performs a predetermined process on the substrate W by supplying a processing liquid while rotating the substrate W. As shown in FIG.
  • the substrate processing apparatus 1 includes a housing CA.
  • the housing CA isolates the inside from the ambient atmosphere.
  • a substrate processing apparatus 1 includes a spin chuck 3 .
  • the spin chuck 3 has a circular shape with a larger diameter than the substrate W in plan view.
  • the spin chuck 3 has an upper end of the rotary shaft 5 connected to its lower surface.
  • the rotary shaft 5 is connected to the motor 7 at its lower end. When the motor 7 is driven, the spin chuck 3 is rotated around the rotation center P1.
  • the center of rotation P1 extends vertically.
  • the spin chuck 3 has a plurality of chucks 9.
  • the spin chuck 3 has a plurality of spin chucks 9 on the periphery of the upper surface.
  • the spin chuck 3 has four chucks 9 .
  • the number of chucks 9 is not limited to four as long as the substrate W can be stably rotated around the rotation center P1 while being supported in a horizontal posture.
  • the chuck 9 includes a lower surface support portion 11 and a peripheral edge support portion 13 .
  • the lower surface supporting portion 11 supports the lower surface of the substrate W in contact therewith. It is preferable that the lower surface support part 11 is configured so that the contact area with the lower surface of the substrate W is small. By doing so, the degree of mutual contamination can be reduced.
  • the lower surface support portion 11 is attached to the upper surface of the spin chuck 3 so as to be rotatable about a rotation center P2.
  • the center of rotation P2 extends vertically.
  • the peripheral support portion 13 is erected on the upper surface of the lower surface support portion 11 . It is preferable that the peripheral support portion 13 is formed so that the height from the upper surface of the lower surface support portion 11 is higher than the thickness of the substrate W. As shown in FIG.
  • the peripheral edge support portion 13 is provided at a position away from the rotation center P2 toward the outer edge of the lower surface support portion 11 in plan view. In other words, the peripheral support portion 13 is eccentric from the rotation center P2.
  • a rotation magnet 15 is attached to the lower surface of the spin chuck 3 at a position corresponding to the rotation center P2.
  • the rotating magnet 15 is connected to the lower surface support portion 11 .
  • the rotation magnet 15 is rotatably provided around a rotation center P2.
  • a chuck driving mechanism 17 is arranged below the rotating magnet 15 .
  • the chuck driving mechanism 17 is arranged closer to the rotating shaft 5 than the chuck 9 is.
  • the chuck drive mechanism 17 includes, for example, an air cylinder 19 and a drive magnet 21 .
  • the driving magnet 21 has an annular shape in plan view.
  • the air cylinder 19 is arranged with its operating shaft oriented in the vertical direction.
  • a driving magnet 21 is attached to the tip of the operating shaft of the air cylinder 19 .
  • the chuck drive mechanism 17 is operated according to a chuck operation command. When the chuck driving mechanism 17 is activated, the driving magnet 21 rises and approaches the chuck 9 , and when deactivated, the driving magnet 21 descends and leaves the chuck 9 .
  • the chuck 9 has a biasing mechanism (not shown).
  • the chuck 9 becomes the closed position when the driving magnet 21 descends.
  • the chuck 9 is in the open position when the driving magnet 21 is lifted.
  • the peripheral edge support part 13 rotates around the rotation center P2, and the peripheral edge support part 13 approaches the rotation center P1 side and contacts the peripheral edge of the substrate W.
  • the chuck 9 can clamp the substrate W at the closed position.
  • the peripheral edge support portion 13 rotates around the rotation center P2, and the peripheral edge support portion 13 moves away from the rotation center P1. Thereby, the chuck 9 can load and unload the substrate W at the open position.
  • the peripheral support portion 13 moves slightly inward from the outer diameter of the substrate W to reach the origin position.
  • the original position of the chuck 9 is positioned closer to the rotation center P1 than the closed position.
  • An origin sensor Z1 is arranged near the rotation magnet 15 of the chuck 9.
  • the output signal of the origin sensor Z1 changes when the chuck 9 moves to the closed position or the origin position.
  • the origin sensor Z1 turns on the output signal when the chuck 9 moves to the closed position or the origin position.
  • a guard 23 is arranged around the spin chuck 3 .
  • the guard 23 surrounds the sides of the spin chuck 3 .
  • the guard 23 prevents the processing liquid from scattering around.
  • the guard 23 has a tubular shape.
  • the guard 23 has an opening 23a formed in its upper portion. The inner diameter of the opening 23 a is larger than the outer shape of the spin chuck 3 .
  • the guard 23 has a guard moving mechanism 25.
  • the guard moving mechanism 25 has, for example, an air cylinder 27 and a locking piece 29 .
  • the guard moving mechanism 25 is arranged, for example, on the outer peripheral side of the guard 23 .
  • the guard moving mechanism 25 may be arranged on the inner peripheral side of the guard 23 as long as the guard 23 can be moved up and down.
  • the air cylinder 27 is arranged with its operating axis directed vertically.
  • a locking piece 29 is attached to the tip of the operating shaft of the air cylinder 27 .
  • the locking piece 29 is fixed to the outer peripheral surface of the guard 23 .
  • the guard moving mechanism 25 is not limited to such a configuration as long as the guard 23 can be moved up and down.
  • the guard moving mechanism 25 moves the guard 23 between the origin position and the processing position according to the guard operation command.
  • the origin position is a position where the upper end of the guard 23 is low.
  • the origin position is a position lower than the processing position.
  • the processing position is a position higher than the origin position.
  • the upper edge of the guard 23 is lower than the substrate W supported by the spin chuck 3 .
  • the guard 23 is positioned at the processing position, the upper edge of the guard 23 is higher than the substrate W supported by the spin chuck 3 .
  • an origin sensor Z2 is arranged on the inner peripheral side of the guard 23 .
  • the output signal of the origin sensor Z2 changes when the guard 23 moves to the origin position.
  • the origin sensor Z2 turns on the output signal when the guard 23 moves to the origin position.
  • the guard 23 has a plurality of drainage ports (not shown) on the inner peripheral side.
  • the guard 23 is preferably provided with a plurality of guards 23 so as to be moved up and down by the guard moving mechanism 25 to switch between the drainage ports.
  • the drainage port is switched according to the processing liquid, and the guard moving mechanism 25 moves the height of the guard 23 accordingly.
  • a processing liquid supply mechanism 31 is arranged on the outer peripheral side of the guard 23 .
  • the processing liquid supply mechanism 31 includes, for example, a nozzle 33 and a nozzle moving mechanism 35 .
  • the treatment liquid supply mechanism 31 has, for example, two nozzles 33 .
  • the left side in FIG. 2 will be referred to as the nozzle 33A and the right side as the nozzle 33B.
  • the treatment liquid supply mechanism 31 may have one nozzle 33 or three or more nozzles. In this embodiment, it is assumed that the two nozzles 33 have the same configuration.
  • the nozzle 33 includes an extending portion 33a, a hanging portion 33b, and a tip portion 33c.
  • the nozzle 33 is attached to the base portion 37 at one end of the extension portion 33a.
  • the extending portion 33a extends horizontally.
  • the other end side of the extending portion 33a is connected to the drooping portion 33b.
  • the drooping portion 33b extends downward in the vertical direction from the extending portion 33a.
  • the tip portion 33c constitutes the lower end portion of the drooping portion 33b.
  • the tip portion 33c ejects the processing liquid from the lower surface. Examples of processing liquids include photoresist liquids, SOG (Spin-on-Glass) liquids, developing liquids, rinse liquids, pure water, and cleaning liquids.
  • the nozzle moving mechanism 35 includes, for example, a motor 39, a rotary shaft 41, and a position detector 43.
  • the motor 39 is arranged in a vertical posture.
  • the rotating shaft 41 is rotated by the motor 39 around the center of rotation P3.
  • the rotating shaft 41 is connected to the base portion 37 .
  • the base portion 37 is rotated by driving the motor 39 .
  • the nozzle 33 is swung around the rotation center P3 together with the base portion 37 .
  • the position detector 43 detects the rotational position of the rotating shaft 41 .
  • the position detection unit 43 detects the angle around the rotation center P3 of the rotation shaft 41 in plan view.
  • the position detector 43 outputs a pulse according to the rotational position.
  • a standby cup 44 is arranged at a position laterally away from the guard 23 in plan view.
  • the standby cup 44 is arranged on the opposite side of the base portion 37 and on the tip portion 33c side of the nozzle 33 in plan view.
  • the standby cup 44 is arranged at the origin position of the nozzle 33 .
  • the standby cup 44 prevents the tip 33c of the nozzle 33 from drying.
  • the standby cup 44 is used for idle ejection of the nozzle 33 .
  • the nozzle moving mechanism 35 drives the motor 39 to swing the nozzle 33 .
  • the nozzle moving mechanism 35 moves the tip portion 33 c between the origin position and the ejection position above the rotation center P ⁇ b>1 of the spin chuck 3 .
  • an origin sensor Z3 is arranged on the outer circumference of the rotating shaft 41.
  • the output signal of the origin sensor Z3 changes when the nozzle 33 is positioned at the origin position.
  • the origin sensor Z3 turns on the output signal when the nozzle 33 moves to the origin position.
  • the origin sensor Z3 may be omitted to simplify the configuration.
  • a protrusion is provided on a part of the rotary shaft 41 and a protrusion is also provided on the stationary side.
  • the origin position may be set when the position detection unit 43 detects that these come into contact with each other due to the rotation of the rotation shaft 41 and the rotation becomes impossible. In that case, the point at which the pulse of the position detection section 43 becomes unchanged may be treated as the origin position.
  • a camera CM is attached to one part of the housing CA.
  • the camera CM is attached near the center of one side of the nozzle 33 where the standby cup 44 is arranged.
  • the camera CM is attached to the ceiling surface of the housing CA. Due to this arrangement relationship, among the four chucks 9, the chuck 9 farthest from the camera CM is the smallest, the chuck 9 closest to the camera CM is the largest, and the two chucks 9 between them are about the same. is projected to the size of Note that the camera CM may be placed at any position as long as a target component, which will be described later, is within the field of view.
  • the lens of the camera CM has a viewing angle that allows all of the parts described later to fit within the viewing angle.
  • the camera CM includes a camera body CM1 and a camera movement mechanism CM2.
  • the camera CM can adjust the photographing direction by panning and tilting. Panning is to move the field of view in the horizontal direction. Tilt is to move the field of view in the vertical direction.
  • the camera body CM1 is equipped with a zoom that changes the photographing magnification. Zooming is to enlarge or reduce the imaging field of view.
  • the camera body CM1 has an optical zoom.
  • the optical method has the advantage that the image is less degraded than the digital method even if it is enlarged.
  • pan, tilt, and zoom are referred to as shooting conditions. Note that the aspect ratio of the field of view is fixed. It is preferable for the camera CM to always output images within the field of view under the latest shooting conditions at predetermined intervals for the function of tracking, which will be described later. Let this be a real-time image.
  • the camera movement mechanism CM2 rotates the camera body CM1 around the vertical rotation center C1.
  • the camera movement mechanism CM2 is capable of swinging the camera body CM1 in a range of approximately 180° in the horizontal direction around the center of rotation C1.
  • the photographing center CC of the camera body CM1 horizontally swings within a range of about 180°.
  • the camera movement mechanism CM2 rotates the camera body CM1 around a horizontal rotation center C2.
  • the camera movement mechanism CM2 can swing the camera body CM1 about the rotation center C2 in the vertical direction within a range of about 90°.
  • the imaging center CC of the camera body CM1 swings vertically within a range of about 90°.
  • the camera body CM1 can receive a signal from the outside and adjust the photographing conditions.
  • the camera body CM1 and the camera movement mechanism CM2 are operated by a control section 45, which will be described later.
  • the camera body CM1 includes an optical lens and a semiconductor imaging device. Examples of semiconductor imaging devices include CCDs (Charge Coupled Devices).
  • the substrate processing apparatus 1 includes a control section 45 , an instruction section 47 and a notification section 49 . Details of the control unit 45 will be described later.
  • the instruction unit 47 is operated by an operator of the substrate processing apparatus 1 .
  • the instruction unit 47 is, for example, a keyboard or a touch panel.
  • the instruction unit 47 instructs a target component, confirmation timing, allowable range, recipe, start of processing, imaging conditions, and the like, which will be described later.
  • the notification unit 49 notifies the operator of the abnormality when the control unit 45 determines that there is an abnormality. Examples of the notification unit 49 include a display, a lamp, a speaker, and the like.
  • FIG. 3 is a block diagram of the substrate processing apparatus according to the embodiment.
  • the control unit 45 includes a CPU, memory, and the like.
  • the control unit 45 is composed of a plurality of functional blocks.
  • the control unit 45 includes an operation control unit 51, a recipe memory 53, a parameter memory 55, a normal image storage unit 57, an image processing unit 59, an image comparison unit 61, and an abnormality detection unit 63. , and a recognition unit 67 .
  • the operation control unit 51 operates the motors 7 and 39, the air cylinders 19 and 27, and the camera CM.
  • the motion control unit 51 receives signals from the origin sensors Z1 to Z3 and the position detection unit 43 .
  • Operations by the operation control unit 51 are performed according to recipes defined in the recipe memory 53 .
  • the operation control unit 51 outputs various operation commands based on the recipe to operate the motor 7 and the like at predetermined timings.
  • the operation control unit 51 operates the camera CM to perform photographing at a predetermined timing according to the recipe.
  • the operation control unit 51 adjusts shooting conditions of the camera CM according to the recipe.
  • the recipe memory 53 stores various recipes in advance.
  • the recipe defines various procedures for processing the substrate W.
  • the recipe defines the operation content, execution order, execution timing, and the like of the component. A specific example of the recipe and its details will be described later.
  • the operator can operate the instruction unit 47 to designate a desired recipe.
  • the parameter memory 55 stores target parts to be detected for abnormal operation, timing to be confirmed, allowable range, etc., which will be described later.
  • the target part is an abnormality detection target among the elements constituting the substrate processing apparatus 1 .
  • the timing to be confirmed is the timing for confirming the operating state of the component.
  • the confirmation-required timing is one point in time on the time axis of the recipe, which will be described later.
  • the timing to be confirmed is synchronized with recipe execution.
  • the confirmation-required timing corresponds to one normal image, which will be described later.
  • the operator can arbitrarily set the target part, the confirmation timing, the allowable range, and the like by operating the instruction unit 47 .
  • the operator instructs from the instructing unit 47 which element is to be a target part for detecting abnormal operation, which timing is to be confirmed timing, and how much timing error or position error is tolerable. can do.
  • the parameter memory 55 stores in advance the imaging conditions described above. Shooting conditions can be set for each recipe process.
  • the imaging conditions can be set according to the confirmation timing in the process of the recipe and the target component. If the confirmation timing is not set as the imaging condition, nothing is set in the recipe process. If the photographing conditions are not set, photographing by the camera CM is not performed.
  • Target parts are, for example, the chuck 9, the guard 23, the nozzle 33, the processing liquid, and the like.
  • the confirmation timings include, for example, the timing when the chuck 9 is positioned at the origin position, the timing when the chuck 9 is at the closed position, the timing when the guard 23 is positioned at the origin position, the timing when the guard 23 is positioned at the processing position, and the nozzle 33 is at the origin. It is the timing when the nozzle 33 is positioned at the position, the timing when the nozzle 33 is positioned from the origin position to the ejection position, and the like. Note that the confirmation timings are not limited to these. Any timing desired to be set as an abnormality detection target can be set as the confirmation timing.
  • the allowable range indicates the allowable degree of deviation of the position of the target part in the adjusted photographed image from the position (normal image described later) where the target part should normally be in normal operation at the confirmation timing.
  • the allowable range is, for example, the extent to which the target part can deviate from its design-intended position and angle.
  • the permissible range is defined as the tolerance for processing the substrate W, even if the target component deviates from the design-intended position and angle at the confirmation timing. Indicates the range of deviation.
  • the above-described operation control unit 51 notifies the image comparison unit 61 and the camera CM of the timing to be confirmed while executing the recipe based on the timing to be confirmed in the parameter memory 55 .
  • the operation control unit 51 adjusts the photographing conditions for each target part and causes the camera CM to photograph.
  • the normal image storage unit 57 stores normal images in advance.
  • a normal image is, for example, a still image.
  • the normal image is stored in association with the confirmation timing for each recipe stored in the recipe memory 53 .
  • a normal image is an image based on three-dimensional design information relating to the assembly and operation of the substrate processing apparatus 1 .
  • a normal image is obtained by simulating a state of normal operation according to a recipe in a host computer based on the three-dimensional design information of the substrate processing apparatus 1, and arranging the normal image in the same manner as the camera CM. These are images obtained from the viewpoint of the position and under the same photographing conditions.
  • a normal image is an image obtained in association with the confirmation timing on the time axis in the recipe. Multiple confirmation timings can be set during simulation.
  • the design information of the parts is the design information of the parts constituting the substrate processing apparatus 1 and the substrate W to be processed.
  • the design information is, for example, 3D CAD (three-dimensional computer aided design) data.
  • the design information may include physical property information about the processing liquid used for processing and various materials.
  • 3D CAD data is represented by, for example, three orthogonal coordinate axes, and when parts are placed in a three-dimensional space, it is represented by position and angle position information.
  • a host computer (not shown) stores three-dimensional design information as 3D CAD data on all parts and materials of the substrate processing apparatus 1 .
  • the simulator simulates the operation of the substrate processing apparatus 1 .
  • the simulator runs on the host computer.
  • the simulator is given three-dimensional design information of the substrate processing apparatus 1 and recipes.
  • the simulator can operate the substrate processing apparatus 1 according to the recipe.
  • the simulator operates each component at a predetermined timing and order according to the prescription of the recipe. In other words, the simulator can virtually cause the substrate processing apparatus 1 assembled according to the three-dimensional design information to operate normally according to the recipe.
  • the substrate processing apparatus 1 having the same configuration may be operated according to the recipe, and an image captured by the camera CM may be used while the substrate processing apparatus 1 is operating normally. The image is captured at the confirmation timing and under the same shooting conditions.
  • the image processing unit 59 processes the adjusted captured image captured by the camera CM.
  • the image processing unit 59 preferably performs image processing on the adjusted photographed image and extracts an image including the two-dimensional shape of the target part.
  • the image processing unit 59 preferably performs contour extraction, for example, on all parts appearing in the adjusted photographed image.
  • the contour here includes not only the contour of the outer shape but also the edge portion located inside the outer shape.
  • the adjusted photographed image extracted by the image processing section 59 is given to the image comparing section 61 .
  • the image comparison unit 61 performs image comparison processing. Specifically, comparison processing is performed between the adjusted photographed image extracted by the image processing unit 59 and the normal image.
  • a normal image is an image provided from the normal image storage unit 57 .
  • the normal image and the adjusted photographed image are synchronized with the execution of the recipe executed by the operation control section 51 . In other words, the normal image is captured at the confirmation timing in the recipe and under the imaging conditions for each target component when the recipe is executed in the simulator in advance.
  • the adjusted photographed image is photographed by the camera CM by the operation control unit 51 according to the confirmation timing from the parameter memory 53 associated with the recipe and under the photographing conditions for each target part when the recipe is executed.
  • the image comparison unit 61 compares the normal image and the adjusted photographed image, and identifies the target part in the adjusted photographed image and the target part in the actual image. By this identification, even when a plurality of target parts exist in the normal image and the adjusted photographed image, the same parts can be compared with each other.
  • the anomaly detection unit 63 compares the normal image and the adjusted captured image, and detects an anomaly based on the difference between them. Abnormality detection is performed in consideration of the allowable range of the parameter memory 55 . In other words, even if the positions of the target parts shown in the normal image and the adjusted photographed image do not exactly match, it will not be detected as abnormal if it is within the allowable range.
  • the abnormality detection unit 63 causes the notification unit 49 to perform a notification operation according to the detection result. Specifically, the abnormality detection unit 63 causes the notification unit 49 to perform a notification operation only when an abnormality is detected.
  • the notification unit 49 may notify, for example, the target component determined to be abnormal and the degree of difference together with the occurrence of the abnormality. Moreover, the abnormality detection unit 63 preferably calculates the degree of difference as a score.
  • the recognition unit 67 analyzes the real-time image from the camera CM, and outputs the moving direction and moving distance to the motion control unit 51 when the target part moves within the field of view.
  • the operation control unit 51 operates the camera CM by changing the photographing direction (pan and tilt) among the photographing conditions by the same distance as the movement distance in the same direction as the movement direction. That is, the recognition by the recognition unit 67 causes the field of view of the camera CM to move according to the movement of the target part.
  • This tracking function is usually not working. This tracking function is started, for example, when the code as is added to the imaging condition PCxx (xx is a number), and ends when the code ae is added to the imaging condition PCxx. Therefore, when the operation control unit 51 recognizes that the photographing condition corresponding to the process of the recipe is appended with the code "as" in executing the process according to the recipe, the recognition unit 67 detects the real-time image. Start analysis. When the operation control unit 51 recognizes that the code ae is added to the photographing condition as the photographing condition corresponding to the recipe process, the recognition unit 67 stops analyzing the real-time image.
  • FIG. 4 is a schematic diagram for explaining imaging conditions in confirming the origin position.
  • FIG. 5 is a schematic diagram for explaining imaging conditions in delivery confirmation and guard confirmation.
  • FIG. 6 is a schematic diagram for explaining imaging conditions in nozzle movement.
  • each chuck 9 is drawn to have approximately the same size for the sake of illustration. However, especially in the wide-angle state where the camera CM has the maximum field of view and the imaging magnification is the lowest, the chuck 9 on the farthest side is much smaller than the other chucks 9 due to the positional relationship with the camera CM, and the chuck 9 on the frontmost side Chuck 9 is the largest.
  • imaging conditions are set, for example, as shown in FIG.
  • the symbol AR0 represents the maximum field of view in the camera body CM1.
  • the camera body CM1 cannot capture a wider range than this. Assume that this is an image captured under a predetermined shooting condition of 1 for pan, tilt, and zoom. It is assumed that 1 is the smallest zoom magnification, and that the larger the number, the higher the magnification. This default imaging condition is assumed to be PC0. In the following schematic diagrams, the field of view is indicated by a chain double-dashed line, and the smaller the line, the larger the magnification of the zoom. All imaging magnifications under the following imaging conditions are greater than 1.
  • the adjusted photographed images obtained under the photographing conditions described below all have the same number of pixels and the same resolution regardless of the size of the two-dot chain line. That is, the smaller the rectangle indicated by the two-dot chain line, the more enlarged the target part is copied.
  • the photographing condition PC1 is set at the confirmation timing when the nozzle 33 is at the origin position during normal operation.
  • the imaging condition PC1 is set to be smaller than the maximum field of view AR0, and the nozzles 33A and 33B are both located within the field of view.
  • each chuck 9 When confirming that each chuck 9 is at the origin position, the following imaging conditions are set for each chuck 9 at the confirmation timing when each chuck 9 is at the origin position during normal operation.
  • the photographing condition PC2 is set for the chuck 9 located at the 12 o'clock position in FIG. 4, which is the farthest from the camera CM.
  • the photographing magnification of the zoom is set to be the largest because the image is the smallest when viewed in the maximum visual field AR0.
  • the photographing condition PC3 is set to the chuck 9 closest to the camera CM at the 6 o'clock position in FIG.
  • the photographing condition PC3 has a smaller zoom magnification than the photographing condition PC2.
  • the chuck 9 at the 9 o'clock position in FIG. 4 is set with the photographing condition PC4.
  • the photographing magnification of the zoom is about intermediate between the photographing conditions PC2 and PC3.
  • the photographing condition PC5 is set for the chuck 9 located at the 3 o'clock position in FIG.
  • the photographing magnification of the zoom is set to be the same as that of the photographing condition PC4, the tilt is substantially the same, and the pan is set to a different value.
  • the center of the photographing field of view is set to the peripheral support portion 13.
  • the following imaging conditions are set at the confirmation timing when the guard 23 is at the origin position during normal operation.
  • the photographing condition PC6 is set at a position near the camera CM in the entire guard 23 .
  • the photographing condition PC6 is set so that the opening 23a in the vicinity of the central portion of the guard 23 and the edge portion on the front side thereof are enlarged and photographed.
  • each chuck 9 When confirming that each chuck 9 is in the closed position, the following imaging conditions are set for each chuck 9 at the confirmation timing when each chuck 9 is in the closed position during normal operation.
  • the photographing condition PC7 is set for the chuck 9 located at the 12 o'clock position in FIG. 5, which is the farthest from the camera CM.
  • the photographing condition PC8 is set to the chuck 9 closest to the camera CM at the 6 o'clock position in FIG.
  • the photographing condition PC9 is set for the chuck 9 located at the 9 o'clock position in FIG.
  • the photographing condition PC10 is set in the chuck 9 located at the 3 o'clock position in FIG.
  • the following imaging conditions are set at the confirmation timing when the guard 23 is at the processing position during normal operation.
  • the shooting condition PC10 is set in the guard 23 at a position near the camera CM.
  • the photographing condition PC10 is tilt-adjusted with respect to the photographing condition PC6 according to the processing position where the guard 23 is raised.
  • the photographing condition PC10 is set at the front edge of the opening 23a near the center of the guard 23.
  • the photographing conditions for the nozzle 33 will be described using the nozzle 33B as an example.
  • the photographing condition PC12as is set at the confirmation timing when the nozzle 33B is positioned at the origin position during normal operation. This photographing condition PC12as is set so that the lowest portion of the nozzle 33B can be photographed in an enlarged manner. Further, since the symbol as is added, the operation of tracking the tip of the nozzle 33B by the recognition unit 67 is started from this point.
  • the photographing condition PC13ae is set at the confirmation timing when the nozzle 33B is positioned at the ejection position during normal operation. This photographing condition PC13ae is set so that the lowest portion of the nozzle 33B can be photographed in an enlarged manner.
  • the tracking operation has started from the shooting conditions as described above. Therefore, the photographing condition PC12a is set at a predetermined interval between the photographing condition PC12as and the photographing condition PC13ae, and photographing is performed.
  • the imaging condition P12a at this time is set to be the same as the imaging condition PC12as, which is the latest imaging condition, only in the magnification of the zoom.
  • the photographing is performed by moving from the immediately preceding photographing condition PC12a.
  • the imaging field of view is moved from a position closer than the confirmation timing at which the nozzle 33B is positioned at the origin position. More specifically, since the field of view is moved from the last imaging condition PC12a, not from the imaging condition PC12as, it is possible to quickly shift to imaging under the imaging condition PC13ae. As a result, in the case of a moving target component such as the nozzle 33, it is possible to prevent delays in photographing at the destination.
  • FIG. 7 is a schematic diagram showing an example of a recipe.
  • the recipe consists of processes and processing details.
  • the steps define the order of execution.
  • the processing content defines what kind of operation is to be performed.
  • the processing content defines the operation content of the component.
  • recipes are divided into recipe steps that define finer-grained operations.
  • the description of the recipe steps is omitted here to facilitate understanding of the invention.
  • detailed processing performed in actual processing is omitted.
  • this recipe has the following contents.
  • Each imaging condition below is associated with each operation and confirmation timing in each process of the recipe.
  • processing liquid processing preparation oil position confirmation
  • the chuck 9, guard 23, and nozzle 33 are moved to the origin position.
  • the substrate W to be processed is carried in and acceptance is confirmed. Specifically, the chuck 9 is moved to the closed position.
  • a guard raise is performed to move the guard 23 into the processing position.
  • nozzle movement is executed to move the nozzle 33 (33B) to the discharge position.
  • processing liquid processing is started.
  • the tenth step the end of processing with the processing liquid is executed.
  • the rinse process is started.
  • the end of the rinse process is executed.
  • the drying process is started.
  • the eighteenth step the end of the drying process is executed.
  • recipe end processing is executed.
  • the shooting conditions are set as follows. For example, in the first step, as shown in FIG. are set, photographing conditions PC2 to PC5 are set for each of the chucks 9, and photographing condition PC6 is set for the guard .
  • a photographing condition PC11 is set.
  • the photographing conditions PC11 are set as shown in FIG. 5 according to the confirmation timing at which the guard 23 moves to the processing position during normal operation.
  • the photographing condition PC12as and the photographing condition 13ae is set. From the imaging conditions PC12as to the imaging conditions PC13ae, tracking is performed at predetermined intervals according to the imaging conditions PC12as.
  • FIG. 8 is a flow chart showing the flow of processing in the substrate processing apparatus according to the embodiment.
  • step S1 The operator operates the instruction section 47 to designate a desired recipe.
  • step S2 The operation control unit 51 operates each unit according to the recipe to advance the processing. For example, according to the recipe shown in FIG. 7, the first step, preparation for treatment with the treatment liquid, is executed. Specifically, the operation control unit 51 operates the chuck driving mechanism 17 , the guard moving mechanism 25 and the nozzle moving mechanism 35 . Then, each chuck 9, guard 23, and nozzle 33 are moved to the origin position.
  • step S3 Confirm whether or not it is time to confirm, and branch the process.
  • the operation control unit 51 refers to the parameter memory 55 and checks whether or not there is a confirmation timing corresponding to the process in the recipe. As shown in FIG. 7, since the imaging conditions PC1 to PC6 are set in the first step, there are confirmation timings associated with the imaging conditions PC1 to PC6. Since there is a confirmation timing, the process proceeds to step S4. If it is not the confirmation timing, the process proceeds to step S7.
  • step S4 Shoot under the corresponding shooting conditions.
  • the operation control unit 51 performs photographing under the photographing conditions PC1 to PC6 according to the confirmation timing.
  • the nozzle 33 is photographed under the photographing condition PC1
  • the chucks 9 are photographed under the photographing conditions PC2 to PC5
  • the guard 23 is photographed under the photographing condition PC6 by the camera CM in sequence.
  • step S5 Compare images. Specifically, in the image comparison unit 61, each adjusted photographed image photographed under the photographing conditions PC1 to PC6 by the camera CM is compared with the corresponding normal image in the normal image storage unit 57, and the same parts are compared. A comparison is made possible.
  • step S6 Processing branches depending on whether an abnormality is detected. Specifically, the abnormality detection unit 63 compares the same target parts in the normal image and the adjusted photographed image, and detects an abnormality based on the difference between them. At this time, it is preferable to consider the allowable range of the parameter memory 55 . As a result, it is possible to prevent erroneous detection of abnormalities caused by processing errors or assembly errors.
  • step S7 it is assumed that no abnormality has been detected, and the process proceeds to step S7.
  • Step S7 The operation control unit 51 branches the process depending on whether it is the final process of the recipe. Here, since the first process has been executed, the process returns to step S2.
  • step S2 The operation control unit 51 further advances the process according to the recipe. That is, the second step, substrate loading, is executed. It is assumed that the substrate W to be processed has already been transferred to the chuck 9 by a transfer arm (not shown). The motion control unit 51 operates the chuck drive mechanism 17 . Then, each chuck 9 is moved to the closed position. At this time point, confirmation is required, and as shown in FIG.
  • step S3 As shown in FIG. 7, in the second step, the photographing conditions PC7 to PC10 are set at each confirmation timing, so the process proceeds to step S4.
  • step S4 The operation control unit 51 performs photographing under the photographing conditions PC7 to PC10 according to the confirmation timing.
  • each chuck 9 moved to the closed position during normal operation is sequentially photographed by the camera CM under photographing conditions PC7 to PC10.
  • Steps S5 and S6 The images are compared, and the process branches depending on whether or not an abnormality is detected.
  • step S7 it is assumed that no abnormality has been detected, and the process proceeds to step S7.
  • Step S7 Since the operation control unit 51 has already executed the second step, the process returns to step S2.
  • step S2 The operation control unit 51 further advances the process according to the recipe. That is, the third step, guard raising, is executed.
  • the motion control section 51 operates the guard moving mechanism 25 .
  • the guard 23 is moved to the processing position.
  • confirmation is required, and as shown in FIG. 7, the photographing condition PC11 is set in the guard 23 in the third step.
  • step S3 In the third step, the photographing condition PC11 is set at the confirmation timing, so the process proceeds to step S4.
  • step S4 The operation control unit 51 performs photographing under the photographing conditions PC11 according to the confirmation timing.
  • the guard 23 moved upward to the processing position during normal operation is photographed by the camera CM under the photographing condition PC11.
  • Steps S5 and S6 The same target parts in the adjusted photographed image photographed in step S4 and the normal image are compared with each other, and the processing branches depending on whether or not an abnormality is detected.
  • step S7 it is assumed that no abnormality has been detected, and the process proceeds to step S7.
  • Step S7 Since the operation control unit 51 has already executed the third step, the process returns to step S2.
  • step S2 The operation control unit 51 further advances the process according to the recipe. That is, the nozzle movement, which is the fourth step, is executed.
  • the operation control section 51 operates the nozzle moving mechanism 35 . Then, the nozzle 33 is moved to the ejection position.
  • step S3 In the fourth step, since the photographing conditions PC12as and PC13ae are set at each confirmation timing, the process proceeds to step S4.
  • step S4 The operation control unit 51 performs photographing under the photographing conditions PC12as corresponding to the confirmation timing.
  • the camera CM performs photographing under the photographing condition PC12as.
  • the camera CM is used to photograph the nozzle 33 (33B) under the photographing condition PC13ae.
  • the camera CM performs tracking under the photographing condition PC12as. Therefore, at the confirmation timing when the nozzle 33 (33B) should be positioned at the ejection position, the movement of the camera CM is performed without delay when photographing is performed under the photographing condition PC13ae.
  • Steps S5 and S6 The same target parts in the adjusted photographed image photographed in step S4 and the normal image are compared with each other, and the processing branches depending on whether or not an abnormality is detected.
  • step S7 it is assumed that no abnormality has been detected, and the process proceeds to step S7.
  • Step S7 Since the operation control unit 51 has already executed the fourth step, the process returns to step S2. Then, while proceeding with the process according to the recipe, each step S2 to S6 is executed as described above depending on whether or not there is a confirmation timing for each process.
  • step S7 is the final step of the recipe. In this case, the process proceeds to step S8.
  • Step S8 The operation control unit 51 unloads the processed substrate W and ends the process.
  • Step S9 The abnormality detection unit 63 operates the notification unit 45 to notify that an abnormality has occurred in the processing.
  • step S10 the substrate processing apparatus 1 automatically stops the processing of the substrate W.
  • the operator stops the substrate processing apparatus 1 by notification from the notification unit 45 .
  • the control unit 45 causes the camera CM to acquire the adjusted photographed image.
  • the abnormality detection unit 63 detects an abnormality of the target component based on the adjusted photographed image. Since the adjusted photographed image has the photographing conditions adjusted for each target component according to the process of the recipe, it can be an image suitable for detecting an abnormality for each target component. Therefore, an abnormality can be detected with high accuracy regardless of the recipe process.
  • FIG. 9 is a schematic diagram for explaining other imaging conditions.
  • This photographing condition PC21 positions the chuck 9 at the 9 o'clock position and the chuck 9 at the 6 o'clock position within the same photographing field at the confirmation timing when the chuck 9 is in the closed position during normal operation, and
  • the field of view is made to be the minimum (maximum photographing magnification). Therefore, even when photographing a plurality of target parts in this way, sufficient resolution can be obtained for abnormality detection for each target part.
  • the photographing field of view may be set so as to slightly include the periphery of the target part.
  • FIG. 10 is a schematic diagram for explaining imaging conditions when a mirror is used.
  • the mirror 71 has a function of reflecting light.
  • the mirror 71 is arranged to face the camera CM and to face the camera CM, and reflects the rotating magnet 15 in a blind spot from the camera CM toward the camera CM.
  • the mirror 71 is arranged, for example, on the far side of the chuck 9 at the 12 o'clock position.
  • the mirror 71 is arranged slightly upward so that the reflective surface faces the camera CM.
  • the photographing condition PC31 is set.
  • the photographing condition PC31 is set, for example, so that the portion where the rotating magnet 15 arranged on the lower surface side of the spin chuck 3 is projected on the mirror 71 is positioned in the photographing field of view.
  • the camera CM can photograph the rotation magnet 15 on the lower surface of the spin chuck 3 in the blind spot with the mirror 71 . Therefore, it is possible to detect an abnormality in a target component in a blind spot without increasing the number of cameras CM. As a result, device costs can be suppressed.
  • the inside of the housing CA corresponds to the "processing section” of the present invention.
  • Camera CM is equivalent to the "photographing part” in this invention.
  • the parameter memory 55 corresponds to the "imaging condition storage section” in the present invention.
  • Step S2 corresponds to a "processing step” in the present invention.
  • Step S4 corresponds to the “shooting step” in the present invention.
  • Step S6 corresponds to the "abnormality detection step” in the present invention.
  • FIG. 11 is a schematic diagram of a substrate processing system according to an embodiment.
  • This substrate processing system 91 includes the above-described substrate processing apparatuses 1 stacked.
  • the substrate processing system 91 includes, for example, a tower TW having four stages of substrate processing apparatuses 1 in the height direction.
  • the substrate processing system 91 is arranged facing the tower TW with a space therebetween.
  • the substrate processing system 91 has a transport robot TR arranged between towers TW.
  • the transport robot TR is configured to be vertically movable.
  • the transport robot TR is configured such that an arm (not shown) can move back and forth toward the substrate processing apparatus 1 .
  • the transport robot TR transfers substrates W to and from each substrate processing apparatus 1 . Even with such a substrate processing system 91 , each substrate processing apparatus 1 has the above-described effects.
  • the substrate processing system 91 may be equipped with a camera that places the transport robot TR within its field of view. Then, as described above, the arm on which the substrate W is placed is set so as to perform abnormality detection according to the unique photographing conditions at the confirmation timing set so that the origin position of the transport robot TR and the delivery position are set. (not shown) is preferably set as the target part. This makes it possible to detect an abnormality related to the deformation of the arm of the transport robot TR, an abnormality in the movement speed, an abnormality in the drive system, and the like.
  • the present invention is not limited to the above embodiments, and can be modified as follows.
  • the camera CM is arranged on the ceiling surface of the housing CA.
  • the present invention does not limit the arrangement position of the camera CM to this position.
  • the camera CM may be attached to the side surface of the housing CA.
  • a camera CM may be attached to the extending portion 33 a of the nozzle 33 .
  • a configuration may be adopted in which the camera CM is not attached to the nozzle 33, but a dedicated arm is provided and the camera CM is moved to a position where the target part can be easily photographed according to the recipe.
  • This dedicated arm preferably has a turning mechanism and a telescopic mechanism. This can minimize blind spots.
  • the movement of the guard 23, the discharge of the processing liquid from the nozzle 33, and the detection of an abnormality in the operation of the chuck 9 were explained as examples.
  • the invention is not limited to such detection. Any part that can be photographed by the camera CM can be used as the target part, so for example, the operation shaft of the air cylinder 27 or the opening/closing valve may be used as the target part for abnormality detection.
  • the imaging conditions are stored in the parameter memory 55 in advance.
  • the invention is not limited to such a configuration.
  • the imaging conditions may be directly associated with each step of the recipe and stored.
  • the substrate processing apparatus 1 that processes the substrate W with the processing liquid has been described as an example.
  • the present invention is not limited to such a substrate processing apparatus.
  • the present invention can be applied to an apparatus for heat-treating the substrate W, an apparatus for transporting the substrate W, an apparatus for exposing the substrate W, and the like.
  • the present invention is not limited to a single-wafer type apparatus that processes substrates W one by one as described in the embodiment. In other words, the present invention can be applied even to a batch-type apparatus that processes a plurality of substrates simultaneously.

Abstract

筐体内にてレシピに応じて基板に対する処理が行われる際に、制御部は、カメラにより調整済撮影画像を取得させる。異常検出部は、調整済撮影画像に基づいて対象部品の異常を検出する。調整済撮影画像は、レシピの工程に応じた対象部品ごとに撮影条件を調整してあるので、対象部品ごとに異常の検出に適した画像にできる。したがって、レシピの工程に関わらず精度よく異常の検出ができる。

Description

基板処理装置及び基板処理システム並びに基板処理方法
 本発明は、半導体基板、液晶表示用や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、フォトマスク用ガラス基板、光ディスク用基板等の基板に所定の処理を行う基板処理装置及び基板処理システム並びに基板処理方法に係り、特に、装置を構成している部品の動作状態を検出する技術に関する。
 従来、この種の第1の装置として、駆動アームと、メインコントロール部と、監視部と、カメラと、画像処理部とを備えたものがある(例えば、特許文献1参照)。
 駆動アームは、先端部にノズルを備える。駆動アームは、処理液を供給するノズルを基板の上方に移動させる。メインコントロール部は、駆動アームの制御を行う。メインコントロール部は、ノズルの位置を示す情報として第1ノズル位置情報を有する。監視部は、第1ノズル位置情報を受け取る。画像処理部は、位置固定のカメラから画像を受信する。画像処理部は、液柱画像の位置情報からノズルの配置位置を示す第2ノズル位置情報を監視部に与える。監視部は、第1ノズル位置情報と第2ノズル位置情報とを比較して、ノズルの位置の異常を監視する。
 また、この種の第2の装置として、スピンチャックと、チャックと、カメラと、制御部とを備えたものがある(例えば、特許文献2参照)。
 スピンチャックの外周側には、チャックが設けられている。スピンチャックは、基板の外周縁をチャックで保持する。カメラは、スピンチャックを収めたケーシングに固定されている。カメラは、基板の周縁部を撮影するようにレンズの向きが設定されている。カメラは、基板とチャックとを撮影する。カメラは、ズーム機能を備え、チャックを拡大して撮影できる。制御部は、カメラでの撮影画像に基づいて、基板の保持状態について異常を検出する。
WO2019/146456号公報 特開2013-110270号公報
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 すなわち、従来の第1の装置は、ノズルとカメラとの位置関係によっては、ノズルが小さく撮影される。したがって、撮影した画像では、ノズルの異常を判断するのに十分な解像度を得られない恐れがある。その結果、精度よく異常の検出ができないことがある。この課題を克服するために、高解像度のカメラを用いることが考えられるが、画像データの容量が大きくなり過ぎ、画像処理の負荷が増大するので、現実的ではない。
 また、従来の第2の装置は、カメラズーム機能により拡大した撮影画像により基板の保持状態に関する異常を精度よく検出できる。しかしながら、レシピの工程によっては、基板保持体とは異なる他の箇所の異常検出を行う必要がある。ところが、カメラがケーシングに固定されているので、ズーム機能だけでは適切な画像を撮影できない。したがって、レシピの工程によっては精度よく異常の検出ができないという問題がある。
 本発明は、このような事情に鑑みてなされたものであって、レシピの工程に関わらず精度よく異常の検出ができる基板処理装置及び基板処理システム並びに基板処理方法を提供することを目的とする。
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、請求項1に記載の発明は、基板に所定の処理を行う基板処理装置において、基板を処理するための処理部と、前記処理部を構成する部品のうち、異常の検出対象である対象部品を撮影するものであって、撮影視野を水平方向に移動するパン及び撮影視野を鉛直方向に移動するチルトの撮影方向と、撮影視野を拡縮するズームの撮影倍率との撮影条件を調整できる撮影部と、基板の処理内容を規定したレシピに応じて前記処理部で処理が行われる際に、前記レシピの工程に応じた前記対象部品ごとに前記撮影条件を調整して前記撮影部に撮影を行わせ、調整済撮影画像を取得させる制御部と、前記調整済撮影画像に基づいて前記対象部品の異常を検出する異常検出部と、を備えていることを特徴とするものである。
 [作用・効果]請求項1に記載の発明によれば、処理部にてレシピに応じて基板に対する処理が行われる際に、制御部は、撮影部により調整済撮影画像を取得させる。異常検出部は、調整済撮影画像に基づいて対象部品の異常を検出する。調整済撮影画像は、レシピの工程に応じた対象部品ごとに撮影条件を調整してあるので、対象部品ごとに異常の検出に適した画像にできる。したがって、レシピの工程に関わらず精度よく異常の検出ができる。
 また、本発明において、前記レシピの工程ごとに、前記撮影条件を予め記憶する撮影条件記憶部をさらに備え、前記制御部は、前記撮影条件に基づいて撮影を行わせることが好ましい(請求項2)。
 撮影条件記憶部に予め撮影条件を記憶させておくので、制御部は、その撮影条件に基づいて撮影条件を確実に調整できる。
 また、本発明において、前記撮影部で撮影された撮影画像の中に映し出された特定の前記対象部品を認識する認識部をさらに備え、前記制御部は、前記認識部の認識結果に応じて、前記特定の対象部品を追跡するように前記撮影方向を調整することが好ましい(請求項3)。
 移動する対象部品を追跡するので、移動先で撮影する際に撮影部の撮影方向の変更を最小限にできる。したがって、移動する対象部品の場合に、移動先における撮影が遅れることを防止できる。
 また、本発明において、前記撮影条件は、複数個の前記対象部品を前記撮影部の撮影視野に収める場合には、前記撮影視野が最小となるように前記撮影倍率を最大倍率にすることが好ましい(請求項4)。
 撮影倍率が最大であるので、複数個の対象部品を撮影する場合であっても、個々の対象部品について異常の検出に十分な解像度を得られる。
 また、本発明において、前記撮影部を臨む位置であって、かつ、前記撮影部に対向して配置され、前記撮影部からの死角にある前記対象部品を前記撮影部に向けて反射するミラーをさらに備え、前記撮影部は、前記ミラーを介して死角にある前記対象部品を撮影することが好ましい(請求項5)。
 撮影部は、ミラーを介して死角にある対象部品を撮影できる。したがって、撮影部の個数を増やすことなく死角にある対象部品の異常を検出できる。その結果、装置コストを抑制できる。
 また、本発明において、上記記載のいずれかの基板処理装置を複数台備えことが好ましい(請求項5)。
 複数台の基板処理装置を備えた基板処理システムであっても、稼働時に精度よく異常を検出できる。
 本発明に係る基板処理装置によれば、処理部にてレシピに応じて基板に対する処理が行われる際に、制御部は、撮影部により調整済撮影画像を取得させる。異常検出部は、調整済撮影画像に基づいて対象部品の異常を検出する。調整済撮影画像は、レシピの工程に応じた対象部品ごとに撮影条件を調整してあるので、対象部品ごとに異常の検出に適した画像にできる。したがって、レシピの工程に関わらず精度よく異常の検出ができる。
実施例に係る基板処理装置を示す側面図である。 実施例に係る基板処理装置の平面図である。 実施例に係る基板処理装置のブロック図である。 原点位置確認における撮影条件の説明に供する模式図である。 受渡確認及びガード確認における撮影条件の説明に供する模式図である。 ノズル移動における撮影条件の説明に供する模式図である。 レシピの一例を示す模式図である。 実施例に係る基板処理装置における処理の流れを示すフローチャートである。 他の撮影条件の説明に供する模式図である。 ミラーを用いた場合における撮影条件の説明に供する模式図である。 実施例に係る基板処理システムの概略図である。
 以下、図面を参照して本発明の一実施例について説明する。
 <1.全体構成>
 図1は、実施例に係る基板処理装置を示す側面図である。図2は、実施例に係る基板処理装置の平面図である。
 基板処理装置1は、基板Wを一枚ずつ処理する枚葉式の装置である。基板Wは、例えば、平面視で円形状を呈する。基板処理装置1は、基板Wを回転させつつ処理液を供給して所定の処理を基板Wに対して行う。
 基板処理装置1は、筐体CAを備えている。筐体CAは、内部を周囲雰囲気から遮断する。基板処理装置1は、スピンチャック3を備えている。スピンチャック3は、平面視で基板Wより大径の円形状を呈する。スピンチャック3は、下面に回転軸5の上端が連結されている。回転軸5は、下端がモータ7に連結されている。モータ7が駆動されると、スピンチャック3が回転中心P1周りに回転される。回転中心P1は、鉛直方向に伸びている。
 スピンチャック3は、複数個のチャック9を備えている。スピンチャック3は、上面の周縁部に複数個のスピンチャック9を備えている。本実施例では、スピンチャック3が4個のチャック9を備えている。基板Wを水平姿勢で支持したまま、安定的に回転中心P1周りに回転させることができれば、チャック9の個数は4個に限定されない。
 チャック9は、下面支持部11と、周縁支持部13とを備えている。下面支持部11は、基板Wの下面を当接して支持する。下面支持部11は、基板Wの下面との接触面積が小さくなるように構成されていることが好ましい。このようにすることで、相互汚染の程度を小さくできる。下面支持部11は、回転中心P2で回転自在にスピンチャック3の上面に取り付けられている。回転中心P2は、鉛直方向に伸びている。周縁支持部13は、下面支持部11の上面に立設されている。周縁支持部13は、下面支持部11の上面からの高さが基板Wの厚みより高く形成されていることが好ましい。このように構成することにより、基板Wの周縁を安定して保持できる。周縁支持部13は、平面視にて、回転中心P2から下面支持部11の外縁に向かって離れた位置に設けられている。換言すると、周縁支持部13は、回転中心P2から偏芯している。
 スピンチャック3の下面には、回転中心P2に対応する位置に回転用磁石15が取り付けられている。回転用磁石15は、下面支持部11に連結されている。回転用磁石15は、回転中心P2周りに回転自在に設けられている。回転用磁石15の下方には、チャック駆動機構17が配置されている。
 チャック駆動機構17は、チャック9より回転軸5側に配置されている。チャック駆動機構17は、例えば、エアシリンダ19と、駆動用磁石21とを備えている。駆動用磁石21は、平面視環状を呈する。エアシリンダ19は、作動軸が鉛直方向に向けられた姿勢で配置されている。エアシリンダ19の作動軸の先端には、駆動用磁石21が取り付けられている。チャック駆動機構17は、チャック動作指令に応じて動作される。チャック駆動機構17は、作動されると駆動用磁石21が上昇してチャック9に接近し、非作動とされると駆動用磁石21が下降してチャック9から離れる。
 チャック9は、図示しない付勢機構を備えている。チャック9は、駆動用磁石21が下降すると、閉止位置となる。チャック9は、駆動用磁石21が上昇すると、開放位置となる。閉止位置では、周縁支持部13が回転中心P2周りに回転し、周縁支持部13が回転中心P1側に近づいて基板Wの周縁に当接する。これによりチャック9は、閉止位置において基板Wを挟持できる。開放位置では、周縁支持部13が回転中心P2周りに回転し、周縁支持部13が回転中心P1から離れる方向に移動する。これによりチャック9は、開放位置において基板Wを搬入出できる。なお、基板Wが載置されていない状態で、駆動用磁石21が下降すると、周縁支持部13が基板Wの外径より若干内側に移動した原点位置となる。換言すると、チャック9の原点位置は、閉止位置よりも周縁支持部13が回転中心P1側に位置する。
 チャック9の回転用磁石15付近には、原点センサZ1が配置されている。原点センサZ1は、チャック9が閉止位置または原点位置に移動すると、出力信号が変化する。例えば、原点センサZ1は、チャック9が閉止位置または原点位置に移動すると、出力信号がオンになる。
 スピンチャック3の周囲には、ガード23が配置されている。ガード23は、スピンチャック3の側方を囲っている。ガード23は、処理液が周囲に飛散することを防止する。ガード23は、筒状を呈する。ガード23は、上部に開口部23aが形成されている。開口部23aの内径は、スピンチャック3の外形より大きい。
 ガード23は、ガード移動機構25を備えている。ガード移動機構25は、例えば、エアシリンダ27と、係止片29とを備えている。ガード移動機構25は、例えば、ガード23の外周側に配置されている。ガード移動機構25は、ガード23を昇降できれば、ガード23の内周側に配置されていてもよい。エアシリンダ27は、作動軸が鉛直方向に向けられた姿勢で配置されている。エアシリンダ27の作動軸の先端には、係止片29が取り付けられている。係止片29は、ガード23の外周面に固定されている。ガード移動機構25は、ガード23を昇降できれば、このような構成に限定されない。
 ガード移動機構25は、ガード動作指令に応じてガード23を原点位置と処理位置とにわたって移動する。原点位置は、ガード23の上端が低い位置である。原点位置は、処理位置より低い位置である。処理位置は、原点位置より高い位置である。原点位置にガード23が位置している状態では、ガード23の上縁がスピンチャック3に支持されている基板Wよりも低い。処理位置にガード23が位置している状態では、ガード23の上縁がスピンチャック3に支持されている基板Wよりも高い。例えば、ガード23の内周側には、原点センサZ2が配置されている。原点センサZ2は、ガード23が原点位置に移動すると、出力信号が変化する。例えば、原点センサZ2は、ガード23が原点位置に移動すると、出力信号がオンになる。
 ガード23は、内周側に図示しない複数の排液ポート(不図示)を備えている。ガード23は、ガード移動機構25により、昇降されて各排液ポートとの切り換えを行うように、複数のガード23を備えていることが好ましい。この場合には、処理液に応じて排液ポートを切り換え、それに応じてガード移動機構25がガード23の高さを移動する。
 ガード23の外周側には、処理液供給機構31が配置されている。処理液供給機構31は、例えば、ノズル33と、ノズル移動機構35とを備えている。本実施例では、処理液供給機構31は、例えば、2本のノズル33を備えている。以下の説明において、2本のノズル33を区別する必要がある場合には、適宜に図2における左側をノズル33Aと称し、右側をノズル33Bと称する。処理液供給機構31は、ノズル33が1本でもよく、3本以上であってもよい。本実施例では、2本のノズル33が同じ構成であるとする。
 ノズル33は、延出部33aと、垂下部33bと、先端部33cとを備えている。ノズル33は、延出部33aの一端側が基台部37に取り付けられている。延出部33aは、水平方向に延出されている。延出部33aの他端側は、垂下部33bへとつながる。垂下部33bは、延出部33aから鉛直方向の下方に伸びる。先端部33cは、垂下部33bの下端部を構成する。先端部33cは、下面から処理液を吐出する。処理液としては、例えば、フォトレジスト液や、SOG(Spin-on-Glass)液、現像液、リンス液、純水、洗浄液などが挙げられる。
 ノズル移動機構35は、例えば、モータ39と、回転軸41と、位置検出部43とを備えている。モータ39は、鉛直姿勢で配置されている。回転軸41は、モータ39により回転中心P3周りに回転される。回転軸41は、基台部37に連結されている。基台部37は、モータ39の駆動により回転される。ノズル33は、基台部37とともに回転中心P3周りに揺動される。位置検出部43は、回転軸41の回転位置を検出する。位置検出部43は、平面視における回転軸41の回転中心P3周りの角度を検出する。位置検出部43は、回転位置に応じてパルスを出力する。
 平面視でガード23から側方に離れた位置には、待機カップ44が配置されている。待機カップ44は、平面視で、基台部37の反対側であって、ノズル33の先端部33c側に配置されている。待機カップ44は、ノズル33の原点位置に配置されている。待機カップ44は、ノズル33の先端部33cの乾燥を防止する。待機カップ44は、ノズル33の空吐出に利用される。ノズル移動機構35は、モータ39を駆動してノズル33を揺動駆動する。ノズル移動機構35は、原点位置と、スピンチャック3の回転中心P1の上方にあたる吐出位置とにわたって先端部33cを移動する。
 例えば、回転軸41の外周部には、原点センサZ3が配置されている。原点センサZ3は、ノズル33が原点位置に位置すると、出力信号が変化する。例えば、原点センサZ3は、ノズル33が原点位置に移動すると、出力信号がオンになる。なお、原点センサZ3を省略して構成の簡易化を図ってもよい。この場合には、回転軸41の一部に突起を設けておくとともに、固定側にも突起を設けておく。これらが回転軸41の回転で当接して、回転が不可能となったことを位置検出部43が検出することで原点位置とする構成にしてもよい。その場合には、位置検出部43のパルスが不変となった時点で原点位置として取り扱えばよい。
 筐体CAの一部位には、カメラCMが取り付けられている。例えば、カメラCMは、平面視で、ノズル33の待機カップ44が配置された一辺の中央付近に取り付けられている。具体的には、カメラCMは、筐体CAの天井面に取り付けられている。この配置関係により、4個のチャック9のうち、カメラCMに最も遠いチャック9が最も小さく、カメラCMに最も近いチャック9が最も大きく、それらの中間にある2つのチャック9は、それらの中間程度の大きさに映し出される。なお、カメラCMの配置位置は、後述する対象部品が視野に収まればどの箇所であってもよい。カメラCMのレンズは、後述する部品が全て視野内に収まる視野角である。
 カメラCMは、カメラ本体CM1と、カメラ移動機構CM2とを備えている。カメラCMは、パン及びチルトで撮影方向を調整できる。パンは、撮影視野を水平方向に移動することである。チルトは、撮影視野を鉛直方向に移動することである。カメラ本体CM1は、撮影倍率を変えるズームを備えている。ズームは、撮影視野を拡大縮小することである。ズームには、光学式とデジタル式とがある。カメラ本体CM1は、光学式のズームを備えている。光学式は、拡大してもデジタル式に比べて画像に劣化が少ない利点がある。ここでは、パンと、チルトと、ズームとを撮影条件と称する。なお、撮影視野のアスペクト比は固定である。カメラCMは、後述する追跡の機能のため、最新の撮影条件による視野内の画像を所定の間隔で常に出力することが好ましい。これをリアルタイム画像とする。
 カメラ移動機構CM2は、鉛直方向の回転中心C1周りにカメラ本体CM1を回転させる。詳細には、カメラ移動機構CM2は、回転中心C1周りに水平方向に約180°の範囲でカメラ本体CM1を揺動可能である。これにより、カメラ本体CM1の撮影中心CCは、水平方向に約180°の範囲で揺動する。カメラ移動機構CM2は、水平方向の回転中心C2周りにカメラ本体CM1を回転させる。詳細には、カメラ移動機構CM2は、カメラ本体CM1を回転中心C2周りに鉛直方向に約90°の範囲で揺動可能である。これにより、カメラ本体CM1の撮影中心CCは、鉛直方向に約90°の範囲で揺動する。カメラ本体CM1は、外部からの信号を受信して撮影条件を調整できる。カメラ本体CM1及びカメラ移動機構CM2は、後述する制御部45によって操作される。カメラ本体CM1は、光学レンズと半導体撮像素子とを備えている。半導体撮像素子としては、例えば、CCD(Charge Coupled Device)が挙げられる。
 基板処理装置1は、制御部45と、指示部47と、報知部49とを備えている。制御部45の詳細については、後述する。指示部47は、基板処理装置1のオペレータによって操作される。指示部47は、例えば、キーボードやタッチ式パネルである。指示部47は、後述する対象部品、要確認タイミング、許容範囲、レシピ、処理の開始、撮影条件などを指示する。報知部49は、制御部45が異常であると判断した場合に、オペレータに異常を報知する。報知部49としては、例えば、表示器、ランプ、スピーカなどが挙げられる。
 <2.制御系の構成>
 ここで図3を参照する。図3は、実施例に係る基板処理装置のブロック図である。
 制御部45は、CPUやメモリなどを備えている。制御部45は、複数の機能ブロックで構成されている。具体的には、制御部45は、動作制御部51と、レシピメモリ53と、パラメータメモリ55と、正常画像記憶部57と、画像処理部59と、画像比較部61と、異常検出部63と、認識部67とを備えている。
 動作制御部51は、上述したモータ7,39と、エアシリンダ19,27と、カメラCMとを操作する。動作制御部51は、原点センサZ1~Z3、位置検出部43からの信号を与えられる。動作制御部51による操作は、レシピメモリ53に規定されたレシピに応じて行われる。例えば、レシピ及び処理の開始がオペレータによって指示された後、動作制御部51は、レシピに基づいて各種の動作指令を出力して、モータ7等を所定のタイミングで動作させる。動作制御部51は、カメラCMを操作して、レシピに応じた所定のタイミングで撮影を行わせる。動作制御部51は、レシピに応じてカメラCMの撮影条件を調整する。
 レシピメモリ53は、予め各種のレシピを記憶している。レシピは、基板Wを処理する各種の手順を規定している。レシピは、部品の動作内容及び実行順序、実行のタイミングなどを規定する。レシピの具体例とその詳細については、後述する。オペレータは、指示部47を操作して所望のレシピを指示することができる。
 パラメータメモリ55は、後述する異常動作の検出対象となる対象部品と、要確認タイミングと、許容範囲などを記憶している。対象部品は、基板処理装置1を構成する要素のうち、異常の検出対象である。要確認タイミングは、部品の動作状態を確認するためのタイミングである。要確認タイミングは、後述するレシピの時間軸上における一つの時点である。要確認タイミングは、レシピの実行に同期する。要確認タイミングは、後述する一つの正常画像と対応する。対象部品、要確認タイミング、許容範囲などは、オペレータが指示部47を操作して任意に設定することができる。オペレータは、どの要素を異常動作の検出対象となる対象部品とするか、どのタイミングを要確認タイミングとするか、どの程度のタイミング誤差や位置誤差を許容するかなど許容範囲として指示部47から指示することができる。
 パラメータメモリ55は、上述した撮影条件を予め記憶している。撮影条件は、レシピの工程ごとに設定できる。撮影条件は、レシピの工程内における要確認タイミングと、その対象部品とに応じて設定できる。撮影条件は、要確認タイミングが設定されていない場合には、レシピの工程において何も設定されていない。撮影条件が設定されていない場合には、カメラCMによる撮影は行われない。
 対象部品は、例えば、チャック9、ガード23、ノズル33、処理液などである。要確認タイミングは、例えば、チャック9が原点位置に位置するタイミング、チャック9が閉止位置となるタイミング、ガード23が原点位置に位置するタイミング、ガード23が処理位置に位置するタイミング、ノズル33が原点位置に位置するタイミング、ノズル33が原点位置から吐出位置に位置するまでのタイミングなどである。なお、要確認タイミングは、これらに限定されない。異常検出の対象として設定を所望する任意のタイミングを要確認タイミングとして設定できる。
 許容範囲は、要確認タイミングにおいて、正常動作であれば対象部品が本来あるべき位置(後述する正常画像)に対する調整済撮影画像における対象部品の位置のズレのうち、許容できる度合いを示す。許容範囲は、例えば、対象部品が設計的に意図された位置や角度からのズレをどれだけ許容するかを表す度合いである。許容範囲は、基板Wに対する処理を基準として、要確認タイミングにおいて、対象部品が設計的に意図された位置や角度からずれていても、基板Wに対する処理が許容できる、対象部品の要確認タイミングにおけるズレの範囲を示す。
 上述した動作制御部51は、パラメータメモリ55の要確認タイミングに基づいて、レシピを実行しつつ、要確認タイミングであることを画像比較部61やカメラCMに知らせる。動作制御部51は、対象部品ごとに撮影条件を調整してカメラCMに撮影を行わせる。
 正常画像記憶部57は、正常画像を予め記憶している。正常画像は、例えば、静止画である。正常画像は、レシピメモリ53に記憶されているレシピごとに、要確認タイミングとともに関連づけられて記憶されている。正常画像は、この基板処理装置1の組み立てや動作に関わる三次元の設計情報に基づく画像である。正常画像は、この基板処理装置1の三次元の設計情報に基づいて、ホストコンピュータにおいて、レシピに応じて正常に動作する状態をシミュレータで予めシミュレートしておき、その際にカメラCMと同じ配置位置の視点で、かつ、同じ撮影条件で得られた画像である。正常画像は、レシピにおける時間軸上の要確認タイミングに対応付けて得られた画像である。要確認タイミングは、シミュレーション時に複数設定可能である。つまり、正常画像は、一つのレシピにおいて複数とすることができる。設定された要確認タイミングは、レシピと関連付けられている。要確認タイミングは、ホストコンピュータからパラメータメモリ55に転送される。部品の設計情報は、具体的には、この基板処理装置1を構成する部品や、処理対象の基板Wの設計情報である。設計情報は、例えば、3D CAD(three-dimensional Computer Aided Design)のデータである。設計情報には、処理に用いる処理液や各種の材料に関する物性情報などを含めてもよい。
 3D CADデータは、例えば、座標軸が直交する3軸で表現され、3次元空間上に部品を配置した場合に、位置と角度の位置情報で表現される。図示しないホストコンピュータは、基板処理装置1の全ての部品や材料に関する3D CADデータとして三次元の設計情報を記憶している。シミュレータは、基板処理装置1の動作をシミュレートするものである。シミュレータは、ホストコンピュータで実行される。シミュレータは、基板処理装置1の三次元の設計情報と、レシピとを与えられる。シミュレータは、基板処理装置1をレシピに応じて動作させることができる。シミュレータは、レシピの規定に応じて、所定のタイミング及び順序で各部品を動作させる。換言すると、シミュレータは、三次元の設計情報どおりに組み立てられた基板処理装置1を、レシピに応じて仮想的に正常に動作させることができる。
 なお、上述した正常画像としては、シミュレータによるものに代えて、同じ構成の基板処理装置1で実際に撮影したものを採用してもよい。つまり、同じ構成の基板処理装置1でレシピによる動作を行わせ、正常動作している際に、カメラCMにより撮影した画像を採用してもよい。その画像は、要確認タイミングで撮影され、かつ、同じ撮影条件で撮影される。
 画像処理部59は、カメラCMで撮影された調整済撮影画像を処理する。画像処理部59は、調整済撮影画像に対して画像処理を施し、対象部品の二次元形状を含む画像を抽出することが好ましい。画像処理部59は、調整済撮影画像に写っている全ての部品について、例えば、輪郭抽出を行うことが好ましい。ここでいう輪郭は、外形の輪郭だけでなく、外形の内側に位置する縁部分も含む。画像処理部59で抽出された調整済撮影画像は、画像比較部61に与えられる。
 画像比較部61は、画像の比較処理を行う。具体的には、画像処理部59で抽出された調整済撮影画像と正常画像との比較処理を行う。正常画像は、正常画像記憶部57から与えられる画像である。正常画像と調整済撮影画像とは、動作制御部51にて実行されるレシピの実行と同期されている。つまり、正常画像は、予めシミュレータでレシピが実行された際に、レシピにおける要確認タイミングで、かつ、対象部品ごとの撮影条件で撮影されている。調整済撮影画像は、レシピが実行される際に、レシピに関連づけられた、パラメータメモリ53からの要確認タイミングに応じて、かつ、対象部品ごとの撮影条件で動作制御部51がカメラCMに撮影を行わせた画像である。画像比較部61は、正常画像と調整済撮影画像との比較を行い、調整済撮影画像における対象部品と、実画像における対象部品との特定を行う。この特定により、正常画像と調整済撮影画像に複数の対象部品が存在する場合であっても、同一の部品同士の比較が可能な状態にする。
 異常検出部63は、正常画像と調整済撮影画像とを比較し、それらの差異に基づいて異常を検出する。異常の検出は、パラメータメモリ55の許容範囲を考慮して行われる。換言すると、正常画像と調整済撮影画像とに映し出されている対象部品の位置などが正確に一致していなくても、許容範囲であれば異常であると検出されない。異常検出部63は、検出結果に応じて報知部49に対して報知動作を行わせる。具体的には、異常検出部63は、異常を検出した場合にのみ、報知部49に報知動作を行わせる。報知部49は、異常の発生とともに、例えば、異常と判定された対象部品や差異の程度を併せて報知してもよい。また、異常検出部63は、差異の程度をスコアとして算出することが好ましい。
 認識部67は、カメラCMからのリアルタイム画像を解析し、対象部品が視野内で移動した場合に、その移動方向や移動距離を動作制御部51に出力する。動作制御部51は、その移動方向と同じ方向に、その移動距離と同じ距離だけ、撮影条件のうち撮影方向(パンとチルト)を変えてカメラCMを操作する。つまり、認識部67による認識により、対象部品の移動に応じてカメラCMの撮影視野が移動する。
 この追跡の機能は、通常は機能していない。この追跡の機能は、例えば、撮影条件PCxx(xxは数字)に符号asが付加された場合に開始され、撮影条件PCxxに符号aeが付加された場合に終了する。したがって、レシピに応じて処理を実行するにあたり、レシピの工程に対応する撮影条件として、撮影条件に符号asが付加されていると動作制御部51が認識した場合に、認識部67がリアルタイム画像の解析を開始する。レシピの工程に対応する撮影条件として、撮影条件に符号aeが付加されていると動作制御部51が認識した場合に、認識部67がリアルタイム画像の解析を停止する。
 <3.撮影条件の例>
 ここで、図4~図6を参照する。図4は、原点位置確認における撮影条件の説明に供する模式図である。図5は、受渡確認及びガード確認における撮影条件の説明に供する模式図である。図6は、ノズル移動における撮影条件の説明に供する模式図である。
 なお、図4~図6では、図示の関係上、各チャック9が同程度の大きさで描いてある。しかしながら、特に、カメラCMが最大視野であって、撮影倍率が最も低い広角の状態では、カメラCMとの位置関係により、最も奥側のチャック9が他のチャック9より極めて小さくなり、最も手前のチャック9が最も大きくなる。
 基板Wを搬入するのに先立って、チャック9と、ガード23と、ノズル33とが原点位置にあることを確認する。この確認のためには、例えば、図4に示すように、撮影条件を設定する。
 なお、符号AR0は、カメラ本体CM1における最大視野を表す。カメラ本体CM1では、これ以上広い範囲を撮影することはできない。これを、既定のパン及びチルト並びにズームの撮影倍率が1の撮影条件で撮影される画像であるとする。ズームの撮影倍率は、1が最小であり、数字が大きいほど撮影倍率が高いものとする。この既定の撮影条件をPC0とする。なお、以下の模式図においては、二点鎖線で撮影視野を示すが、これが小さいほどズームの撮影倍率が大きいことを表す。以下の撮影条件における撮影倍率は、全て1より大きい。以下に説明する撮影条件で得られた調整済撮影画像は、二点鎖線の大きさに関わらず、全て同じ画素数であり、全て同じ解像度である。つまり、二点鎖線の矩形が小さいほど、対象部品が拡大されて写される。
 ノズル33が原点位置にあることを確認する場合には、正常動作時にノズル33が原点位置に位置する要確認タイミングで撮影条件PC1が設定されている。撮影条件PC1は、最大視野AR0より小さくされ、ノズル33A、33Bがともに撮影視野内に位置するように設定されている。
 各チャック9が原点位置にあることを確認する場合には、各チャック9について、正常動作時に各チャック9が原点位置に位置する要確認タイミングで以下の撮影条件設定されている。
 各チャック9のうち、図4において12時の位置にある、カメラCMに最も遠いチャック9には、撮影条件PC2が設定されている。撮影条件PC2は、最大視野AR0で見た場合に最も小さく写るので、最もズームの撮影倍率が大きく設定されている。図4において6時の位置にある、カメラCMに最も近いチャック9には、撮影条件PC3が設定されている。撮影条件PC3は、撮影条件PC2よりズームの撮影倍率が小さい。これらのチャック9との中間位置にあるチャック9のうち、図4において9時の位置にあるチャック9には、撮影条件PC4が設定されている。この撮影条件PC4は、ズームの撮影倍率も撮影条件PC2と撮影条件PC3の中間程度である。図4において3時の位置にあるチャック9には、撮影条件PC5が設定されている。この撮影条件PC5は、ズームの撮影倍率が撮影条件PC4と同じで、チルトはほぼ同じ、パンは異なる値に設定されている。また、各撮影条件PC2~PC5は、撮影視野の中心が周縁支持部13に設定されている。
 ガード23が原点位置にあることを確認する場合には、正常動作時にガード23が原点位置に位置する要確認タイミングで次の撮影条件が設定されている。
 ガード23全体のうち、カメラCMに近い位置に撮影条件PC6が設定されている。撮影条件PC6は、ガード23の中央部付近における開口部23aであって、その手前側の縁部分を拡大して写すように設定されている。
 基板Wを搬入した後、正常動作時にチャック9が閉止位置に移動する要確認タイミングと、正常動作時にガード23が処理位置に移動する要確認タイミングとでは、例えば、図5に示すように、撮影条件を設定する。
 各チャック9が閉止位置にあることを確認する場合には、各チャック9について、正常動作時に各チャック9が閉止位置に位置する要確認タイミングで以下の撮影条件設定されている。
 各チャック9のうち、図5において12時の位置にある、カメラCMに最も遠いチャック9には、撮影条件PC7が設定されている。図5において6時の位置にある、カメラCMに最も近いチャック9には、撮影条件PC8が設定されている。図5において9時の位置にあるチャック9には、撮影条件PC9が設定されている。図5において3時の位置にあるチャック9には、撮影条件PC10が設定されている。これら撮影条件は、原点位置の確認時に比較して、それぞれのチャック9の位置に応じてパンとチルトが調整され、さらにそれぞれのズームの撮影倍率が大きくされている。また、撮影視野の中心は、周縁支持部13に設定されている。
 ガード23が処理位置にあることの確認では、正常動作時にガード23が処理位置に位置する要確認タイミングで次の撮影条件が設定されている。
 ガード23のうち、カメラCMに近い位置に撮影条件PC10が設定されている。撮影条件PC10は、撮影条件PC6に対して、ガード23が上昇した処理位置に応じてチルトが調整されている。撮影条件PC10は、ガード23の中央部付近における開口部23aであって、その手前側の縁部分に設定されている。
 ノズル33の撮影条件については、例えば、ノズル33Bを例にとって説明する。
 ノズル33Bが移動する際の確認では、図6に示すように、正常動作時にノズル33Bが原点位置に位置する要確認タイミングで撮影条件PC12asが設定されている。この撮影条件PC12asは、ノズル33Bの最下部を拡大撮影できるように設定されている。また、符号asが付加されているので、この時点から認識部67によるノズル33Bの先端部を追跡する動作が開始される。
 ノズル33Bが吐出位置に移動したことの確認では、図6に示すように、正常動作時にノズル33Bが吐出位置に位置する要確認タイミングで撮影条件PC13aeが設定されている。この撮影条件PC13aeは、ノズル33Bの最下部を拡大撮影できるように設定されている。
 上述した撮影条件asからは、追跡動作が開始されている。そのため、撮影条件PC12asと撮影条件PC13aeとの間では、所定の間隔で撮影条件PC12aが設定されて撮影が行われる。このときの撮影条件P12aは、最新の撮影条件である撮影条件PC12asとズームの撮影倍率だけが同じに設定されている。正常動作時に吐出位置に位置する要確認タイミングでの撮影条件PC13aeによる撮影の際には、その直前の撮影条件PC12aから移動しての撮影となる。
 つまり、ノズル33Bが原点位置に位置する要確認タイミングよりも近い位置からの撮影視野の移動となる。詳細には、撮影条件PC12asからの撮影視野の移動ではなく、最後の撮影条件PC12aからの移動となるので、撮影条件PC13aeでの撮影に素早く移行できる。その結果、ノズル33のように移動する対象部品の場合に、移動先における撮影が遅れることを防止できる。
 <4.レシピの詳細>
 次に、図7を参照する。図7は、レシピの一例を示す模式図である。
 この例では、レシピが、工程と処理内容とから構成されている。工程は、実行順序を規定する。処理内容は、どのような動作を行うかを規定する。具体的には、処理内容は、部品の動作内容を規定する。詳細には、レシピは、さらに細かい動作を規定したレシピステップに分けられる。但し、ここでは、発明の理解を容易にするためにレシピステップについては説明を省略する。また、実際の処理で行われる細かい処理については省略してある。
 このレシピは、例えば、次のような内容である。以下の各撮影条件は、レシピの各工程において、各動作及び要確認タイミングに関連づけられている。
 第1番目の工程において、処理液処理準備(原点位置確認)を実行し、チャック9と、ガード23と、ノズル33とを原点位置に移動させる。第2番目の工程において、処理対象である基板Wの搬入を実行し、受け入れ確認を行う。具体的には、チャック9を閉止位置に移動させる。第3番目の工程において、ガード上昇を実行し、ガード23を処理位置に移動させる。第4番目の工程において、ノズル移動を実行し、ノズル33(33B)を吐出位置に移動させる。第7番目の工程において、処理液処理開始を実行する。第10番目の工程において、処理液処理終了を実行する。第11番目の工程において、リンス処理開始を実行する。第14番目の工程において、リンス処理終了を実行する。第15番目の工程において、乾燥処理開始を実行する。第18番目の工程において、乾燥処理終了を実行する。第19番目の工程において、レシピ終了処理を実行する。
 このレシピでは、撮影条件が次のように設定されている。例えば、第1番目の工程では、チャック9と、ガード23と、ノズル33とが正常動作時に原点位置に移動する要確認タイミングに応じて、図4に示したように、ノズル33に撮影条件PC1が設定され、チャック9のそれぞれに撮影条件PC2~PC5が設定され、ガード23に撮影条件PC6が設定されている。
 第2番目の工程では、チャック9が正常動作時に閉止位置に移動する要確認タイミングに応じて、図5に示したように、チャック9のそれぞれに撮影条件PC7~PC10が設定され、ガード23に撮影条件PC11が設定されている。
 第3番目の工程では、ガード23が正常動作時に処理位置に移動する要確認タイミングに応じて、図5に示したように、撮影条件PC11が設定されている。
 第4番目の工程では、ノズル33(33B)が正常動作時に原点位置にある要確認タイミングから、正常動作時に吐出位置に移動する要確認タイミングに応じて、図6に示すように、撮影条件PC12asと、撮影条件13aeが設定されている。撮影条件PC12asから撮影条件PC13aeまでの間では、撮影条件PC12asによる所定間隔での追跡が行われる。
 なお、第4番目の工程より後の工程については、発明の理解を容易にするために撮影条件の説明を省略する。
 <5.処理の具体例>
 次に、図8を参照して、処理の具体例について説明する。なお、図8は、実施例に係る基板処理装置における処理の流れを示すフローチャートである。
 ステップS1
 オペレータは、指示部47を操作して所望のレシピを指定する。
 ステップS2
 動作制御部51は、レシピに応じて各部を操作し、処理を進める。例えば、図7に示したレシピにしたがって、第1番目の工程である処理液処理準備を実行する。具体的には、動作制御部51は、チャック駆動機構17と、ガード移動機構25と、ノズル移動機構35を操作する。そして、各チャック9と、ガード23と、ノズル33とを原点位置に移動させる。
 ステップS3
 要確認タイミングであるか否かを確認し、処理を分岐する。具体的には、動作制御部51は、パラメータメモリ55を参照し、レシピ中の工程に対応する要確認タイミングがあるか否かを確認する。図7に示すように、第1番目の工程には、撮影条件PC1~PC6が設定されているので、各々の撮影条件PC1~PC6に関連づけられた要確認タイミングが存在する。要確認タイミングが存在するので、ステップS4に移行する。要確認タイミングでない場合には、ステップS7に処理を移行する。
 ステップS4
 対応する撮影条件で撮影する。具体的には、動作制御部51は、要確認タイミングに応じた撮影条件PC1~PC6で撮影を行う。ここでは、例えば、ノズル33について、撮影条件PC1で撮影し、各チャック9について撮影条件PC2~PC5で撮影し、ガード23について撮影条件PC6で順次にカメラCMによる撮影が行われる。
 ステップS5
 画像を比較する。具体的には、画像比較部61において、カメラCMにより撮影条件PC1~PC6で撮影された各調整済撮影画像と、対応する正常画像記憶部57の正常画像とが比較され、同一の部品同士の比較が可能な状態とされる。
 ステップS6
 異常を検出したか否かに応じて処理を分岐する。具体的には、異常検出部63は、正常画像と調整済撮影画像における同一の対象部品同士を比較し、それらの差異に基づいて異常を検出する。このとき、パラメータメモリ55の許容範囲を考慮することが好ましい。これにより、加工誤差や組み立て誤差に起因する異常の誤検知を防止できる。
 ここでは、異常が検出されなかったとして、ステップS7に処理を移行する。
 ステップS7
 動作制御部51は、レシピの最終工程であるか否かにより処理を分岐する。ここでは、第1番目の工程を実行した状態であるので、ステップS2に戻る。
 ステップS2
 動作制御部51は、レシピに応じてさらに処理を進める。つまり、第2番目の工程である基板搬入を実行する。なお、処理対象である基板Wは、既に図示しない搬送アームによりチャック9に受け渡されたとする。動作制御部51は、チャック駆動機構17を操作する。そして、各チャック9を閉止位置に移動させる。この時点は、要確認タイミングであり、図7に示すように、各チャック9に撮影条件PC7~PC10が設定されている。
 ステップS3
 図7に示すように、第2番目の工程には、各要確認タイミングに撮影条件PC7~PC10が設定されているので、ステップS4に移行する。
 ステップS4
 動作制御部51は、要確認タイミングに応じた撮影条件PC7~PC10で撮影を行う。ここでは、例えば、正常動作時に閉止位置に移動した各チャック9について撮影条件PC7~PC10で順次にカメラCMによる撮影が行われる。
 ステップS5,S6
 画像を比較し、異常を検出したか否かに応じて処理を分岐する。
 ここでは、異常が検出されなかったとして、ステップS7に処理を移行する。
 ステップS7
 動作制御部51は、第2番目の工程を実行した状態であるので、ステップS2に戻る。
 ステップS2
 動作制御部51は、レシピに応じてさらに処理を進める。つまり、第3番目の工程であるガード上昇を実行する。動作制御部51は、ガード移動機構25を操作する。そして、ガード23を処理位置に移動させる。この時点は、要確認タイミングであり、図7に示すように、第3番目の工程にはガード23に撮影条件PC11が設定されている。
 ステップS3
 第3番目の工程には、要確認タイミングに撮影条件PC11が設定されているので、ステップS4に移行する。
 ステップS4
 動作制御部51は、要確認タイミングに応じた撮影条件PC11で撮影を行う。ここでは、例えば、正常動作時に処理位置に上昇移動したガード23について、撮影条件PC11でカメラCMによる撮影が行われる。
 ステップS5,S6
 ステップS4で撮影された調整済撮影画像と正常画像とにおける同一の対象部品同士を比較し、異常を検出したか否かに応じて処理を分岐する。
 ここでは、異常が検出されなかったとして、ステップS7に処理を移行する。
 ステップS7
 動作制御部51は、第3番目の工程を実行した状態であるので、ステップS2に戻る。
 ステップS2
 動作制御部51は、レシピに応じてさらに処理を進める。つまり、第4番目の工程であるノズル移動を実行する。動作制御部51は、ノズル移動機構35を操作する。そして、ノズル33を吐出位置に移動させる。
 ステップS3
 第4番目の工程には、各要確認タイミングに撮影条件PC12as、PC13aeが設定されているので、ステップS4に移行する。
 ステップS4
 動作制御部51は、要確認タイミングに応じた撮影条件PC12asで撮影を行う。ここでは、例えば、正常動作時に原点位置に位置している時点で、ノズル33(33B)について撮影条件PC12asでカメラCMによる撮影が行われる。また、正常動作時に吐出位置に位置している時点で、ノズル33(33B)について撮影条件PC13aeでカメラCMによる撮影が行われる。ノズル33(33B)が原点位置から吐出位置に移動する前までは、カメラCMは、撮影条件PC12asによる追跡を行っている。したがって、ノズル33(33B)が吐出位置に位置しているはずの要確認タイミングにおいて、撮影条件PC13aeによる撮影が行われる際に、カメラCMの移動が遅れることなく行われる。
 ステップS5,S6
 ステップS4で撮影された調整済撮影画像と正常画像とにおける同一の対象部品同士を比較し、異常を検出したか否かに応じて処理を分岐する。
 ここでは、異常が検出されなかったとして、ステップS7に処理を移行する。
 ステップS7
 動作制御部51は、第4番目の工程を実行した状態であるので、ステップS2に戻る。そして、レシピに応じて、処理を進めつつ、各工程に要確認タイミングがあるか否かに応じて、上述したように各ステップS2~S6を実行する。
 ここでは、ステップS7においてレシピの最終の工程であったとする。この場合には、ステップS8に処理を移行する。
 ステップS8
 動作制御部51は、処理済みの基板Wを搬出して処理を終了する。
 次に、上述したステップS6において、異常検出部63が異常を検出した場合について説明する。
 ステップS9
 異常検出部63は、報知部45を操作して処理に異常が生じたことを報知する。
 ステップS10
 例えば、基板処理装置1は、基板Wに対する処理を自動的に停止させる。または、報知部45の報知により、オペレータが基板処理装置1を停止させる。
 本実施例によると、筐体CA内にてレシピに応じて基板Wに対する処理が行われる際に、制御部45は、カメラCMにより調整済撮影画像を取得させる。異常検出部63は、調整済撮影画像に基づいて対象部品の異常を検出する。調整済撮影画像は、レシピの工程に応じた対象部品ごとに撮影条件を調整してあるので、対象部品ごとに異常の検出に適した画像にできる。したがって、レシピの工程に関わらず精度よく異常の検出ができる。
 <6.他の撮影条件>
 ここで、図9を参照する。図9は、他の撮影条件の説明に供する模式図である。
 この撮影条件PC21は、正常動作時にチャック9が閉止位置にある要確認タイミングで、9時の位置のチャック9と、6時の位置のチャック9とを同じ撮影視野内に位置させ、かつ、撮影視野が最小(最大の撮影倍率)となるようにしたものである。そのため、このように複数個の対象部品を撮影する場合であっても、個々の対象部品について異常の検出に十分な解像度を得られる。なお、撮影条件PC21において、対象部品の周辺を僅かに含むように撮影視野を設定するようにしてもよい。
 ここで、図10を参照する。図10は、ミラーを用いた場合における撮影条件の説明に供する模式図である。
 ミラー71は、光を反射する機能を有する。ミラー71は、カメラCMを臨む位置であって、かつ、カメラCMに対向する配置され、カメラCMからの死角にある回転用磁石15をカメラCMに向けて反射する。ミラー71は、例えば、12時の位置にあるチャック9の奥側に配置されている。ミラー71は、反射面がカメラCMに向くように若干上向きに配置されている。この場合には、撮影条件PC31が設定されている。撮影条件PC31は、例えば、スピンチャック3の下面側に配置されている回転用磁石15がミラー71に映し出されている部分を撮影視野に位置させるように設定されている。
 このような構成によると、カメラCMは、死角にあるスピンチャック3の下面の回転用磁石15をミラー71により撮影できる。したがって、カメラCMの個数を増やすことなく死角にある対象部品の異常を検出できる。その結果、装置コストを抑制できる。
 なお、上述した実施例と本発明との対応関係は、次のとおりである。
 筐体CAの内部は、本発明における「処理部」に相当する。カメラCMは、本発明における「撮影部」に相当する。パラメータメモリ55は、本発明における「撮影条件記憶部」に相当する。ステップS2は、本発明における「処理ステップ」に相当する。ステップS4は、本発明における「撮影ステップ」に相当する。ステップS6は、本発明における「異常検出ステップ」に相当する。
 <7.基板処理システム>
 なお、上述した実施例は、基板処理装置1の単体での構成であったが、本発明は、次のような構成にも適用できる。ここで、図11を参照する。図11は、実施例に係る基板処理システムの概略図である。
 この基板処理システム91は、上述した基板処理装置1を積層して備えている。基板処理システム91は、例えば、基板処理装置1を高さ方向に4段備えたタワーTWを備えている。基板処理システム91は、タワーTWを離間して対向して配置されている。基板処理システム91は、タワーTWの間に搬送ロボットTRを配置されている。搬送ロボットTRは、高さ方向に昇降自在に構成されている。搬送ロボットTRは、図示しないアームを基板処理装置1に進退自在に構成されている。搬送ロボットTRは、各基板処理装置1との間で基板Wを受け渡す。このような基板処理システム91であっても、各基板処理装置1において上述した効果を奏する。
 この基板処理システム91では、例えば、搬送ロボットTRを視野内におくカメラを備えるようにしてもよい。そして、上述したようにして搬送ロボットTRの原点位置や、受渡位置となるように設定された要確認タイミングで固有の撮影条件により異常検出を行わせるように設定し、基板Wを載置するアーム(不図示)を対象部品として設定することが好ましい。これにより、搬送ロボットTRのアームの変形に係る異常や、移動速度の異常、駆動系の異常などを検出できる。
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、カメラCMが筐体CAの天井面に配置されている。しかしながら、本発明は、カメラCMの配置位置をこの位置に限定するものではない。例えば、カメラCMを筐体CAの側面に取り付けてもよい。また、ノズル33の延出部33aにカメラCMを取り付けるようにしてもよい。これにより、固定配置のカメラCMでは撮影できない対象部品を撮影できるので、死角を少なくできる。また、カメラCMをノズル33に取り付けず、専用のアームを設け、レシピに応じて対象部品を撮影しやすい位置にカメラCMを移動させる構成を採用してもよい。この専用のアームは、旋回機構や伸縮機構を備えていることが好ましい。これにより、死角を最小限に抑えることができる。
 (2)上述した実施例では、ガード23の移動や、ノズル33からの処理液の吐出、チャック9の動作の異常検出を例にとって説明した。しかしながら、本発明は、このような検出に限定されるものではない。カメラCMで撮影可能な部品であれば対象部品にできるので、例えば、エアシリンダ27の作動軸や、開閉弁などを対象部品として異常検出を行うようにしてもよい。
 (3)上述した実施例では、パラメータメモリ55に撮影条件を予め記憶させている。しかしながら、本発明は、このような構成に限定されない。例えば、レシピメモリ53において、レシピの各工程に直接的に撮影条件を対応付けて記憶させておいてもよい。
 (4)上述した実施例では、基板Wを処理液で処理する基板処理装置1を例にとって説明した。しかしながら、本発明は、そのような構成の基板処理装置に限定されない。例えば、基板Wを熱処理する装置や、基板Wを搬送する装置、基板Wを露光する装置などであっても本発明を適用できる。また、実施例で挙げたような、基板Wを一枚ずつ処理する枚葉式の装置に限定されない。つまり、複数枚の基板を同時に処理するバッチ式の装置であっても本発明を適用できる。
 1 … 基板処理装置
 CA … 筐体
 W … 基板
 3 … スピンチャック
 P1~P3 … 回転中心
 9 … チャック
 11 … 下面支持部
 13 … 周縁支持部
 17 … チャック駆動機構
 Z1,Z2,Z3 … 原点センサ
 23 … ガード
 23a … 開口部
 25 … ガード移動機構
 31 … 処理液供給機構
 33,33A、33B … ノズル
 35 … ノズル移動機構
 CM … カメラ
 CM1 … カメラ本体
 CM2 … カメラ移動機構
 C1,C2 … 回転中心
 C2 … 回転中心
 AR0 … 最大視野
 45 … 制御部
 49 … 報知部
 51 … 動作制御部
 53 … レシピメモリ
 55 … パラメータメモリ
 57 … 正常画像記憶部
 59 … 画像処理部
 61 … 画像比較部
 63 … 異常検出部
 PC0~PC11,PC12as,PC13ae,PC21,PC31 … 撮影条件
 71 … ミラー

Claims (7)

  1.  基板に所定の処理を行う基板処理装置において、
     基板を処理するための処理部と、
     前記処理部を構成する部品のうち、異常の検出対象である対象部品を撮影するものであって、撮影視野を水平方向に移動するパン及び撮影視野を鉛直方向に移動するチルトの撮影方向と、撮影視野を拡縮するズームの撮影倍率との撮影条件を調整できる撮影部と、
     基板の処理内容を規定したレシピに応じて前記処理部で処理が行われる際に、前記レシピの工程に応じた前記対象部品ごとに前記撮影条件を調整して前記撮影部に撮影を行わせ、調整済撮影画像を取得させる制御部と、
     前記調整済撮影画像に基づいて前記対象部品の異常を検出する異常検出部と、
     を備えていることを特徴とする基板処理装置。
  2.  請求項1に記載の基板処理装置において、
     前記レシピの工程ごとに、前記撮影条件を予め記憶する撮影条件記憶部をさらに備え、
     前記制御部は、前記撮影条件に基づいて撮影を行わせることを特徴とする基板処理装置。
  3.  請求項1または2に記載の基板処理装置において、
     前記撮影部で撮影された撮影画像の中に映し出された特定の前記対象部品を認識する認識部をさらに備え、
     前記制御部は、前記認識部の認識結果に応じて、前記特定の対象部品を追跡するように前記撮影方向を調整する基板処理装置。
  4.  請求項1から3のいずれかに記載の基板処理装置において、
     前記撮影条件は、複数個の前記対象部品を前記撮影部の撮影視野に収める場合には、前記撮影視野が最小となるように前記撮影倍率を最大倍率にすることを特徴とする基板処理装置。
  5.  請求項1から4のいずれかに記載の基板処理装置において、
     前記撮影部を臨む位置であって、かつ、前記撮影部に対向して配置され、前記撮影部からの死角にある前記対象部品を前記撮影部に向けて反射するミラーをさらに備え、
     前記撮影部は、前記ミラーを介して死角にある前記対象部品を撮影することを特徴とする基板処理装置。
  6.  請求項1から5のいずれかに記載の基板処理装置を複数台備えたことを特徴とする基板処理システム。
  7.  基板に所定の処理を行う基板処理方法において、
     基板の処理内容を規定したレシピに応じて、基板を処理部で処理する処理ステップと、
     前記処理ステップにおいて、撮影視野を水平方向に移動するパン及び撮影視野を鉛直方向に移動するチルトの撮影方向と、撮影視野を拡縮するズームの撮影倍率との撮影条件を調整できる撮影部により、前記レシピの工程に応じた前記対象部品ごとに前記撮影条件を調整して前記撮影部に撮影を行わせ、調整済撮影画像を取得させる撮影ステップと、
     前記調整済撮影画像に基づいて前記対象部品の異常を検出する異常検出ステップと、
     を備えていることを特徴とする基板処理方法。
PCT/JP2023/006687 2022-03-01 2023-02-24 基板処理装置及び基板処理システム並びに基板処理方法 WO2023167097A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022030897A JP2023127237A (ja) 2022-03-01 2022-03-01 基板処理装置及び基板処理システム並びに基板処理方法
JP2022-030897 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023167097A1 true WO2023167097A1 (ja) 2023-09-07

Family

ID=87883629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006687 WO2023167097A1 (ja) 2022-03-01 2023-02-24 基板処理装置及び基板処理システム並びに基板処理方法

Country Status (3)

Country Link
JP (1) JP2023127237A (ja)
TW (1) TW202338928A (ja)
WO (1) WO2023167097A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110270A (ja) * 2011-11-21 2013-06-06 Tokyo Electron Ltd 基板処理装置及び基板処理方法並びに基板処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
WO2020071206A1 (ja) * 2018-10-05 2020-04-09 株式会社Screenホールディングス 基板処理装置および基板処理方法
WO2021241228A1 (ja) * 2020-05-27 2021-12-02 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110270A (ja) * 2011-11-21 2013-06-06 Tokyo Electron Ltd 基板処理装置及び基板処理方法並びに基板処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
WO2020071206A1 (ja) * 2018-10-05 2020-04-09 株式会社Screenホールディングス 基板処理装置および基板処理方法
WO2021241228A1 (ja) * 2020-05-27 2021-12-02 株式会社Screenホールディングス 基板処理方法および基板処理装置

Also Published As

Publication number Publication date
TW202338928A (zh) 2023-10-01
JP2023127237A (ja) 2023-09-13

Similar Documents

Publication Publication Date Title
US10580163B2 (en) Displacement detecting apparatus, displacement detecting method and substrate processing apparatus
KR101570618B1 (ko) 변위 검출 장치, 기판 처리 장치, 변위 검출 방법 및 기판 처리 방법
US8855402B2 (en) Image creation method, substrate inspection method, non-transitory recording medium having program recorded thereon for executing image creation method or substrate inspection method, and substrate inspection apparatus
EP1914682A1 (en) Image processing system and method for improving repeatability
US20070115355A1 (en) Methods and apparatus for operating a pan tilt zoom camera
JPWO2014069291A1 (ja) 半導体基板の位置検出装置及び位置検出方法
KR102448443B1 (ko) 기판 처리 방법, 기판 처리 장치 및 기판 처리 시스템
JP4461433B2 (ja) 監視カメラシステム及び監視カメラ装置のチルト動作制御方法
KR20150072347A (ko) 검출 시스템 및 검출 방법
WO2023167097A1 (ja) 基板処理装置及び基板処理システム並びに基板処理方法
JP2023122222A (ja) 基板処理装置及び基板処理システム並びに基板処理方法
TWI831610B (zh) 基板處理裝置、基板處理系統以及基板處理方法
JP2005064048A (ja) 電子部品実装装置
KR20210031613A (ko) 기판 처리 장치, 및, 기판 처리 방법
JPH11329912A (ja) 基板処理装置
JP2021044467A (ja) 検知装置、および、検知方法
JP2004056239A (ja) 監視カメラ装置
JP4271874B2 (ja) 真空処理装置のロードロック室での基板位置決め方法とその装置
JP2003243899A (ja) 実装機、実装方法
JP2010233043A (ja) 撮像装置及び撮像方法
JP2022104677A (ja) ロボットシステム及び撮影方法
TW202345211A (zh) 基板處理裝置及基板處理方法
JP2005079398A (ja) 部品搭載装置
JP2010233044A (ja) 撮像装置及び撮像方法
KR20210003985A (ko) 기판 처리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763356

Country of ref document: EP

Kind code of ref document: A1