WO2023165606A1 - 一种抗积碳催化剂、其制备方法及应用 - Google Patents

一种抗积碳催化剂、其制备方法及应用 Download PDF

Info

Publication number
WO2023165606A1
WO2023165606A1 PCT/CN2023/079588 CN2023079588W WO2023165606A1 WO 2023165606 A1 WO2023165606 A1 WO 2023165606A1 CN 2023079588 W CN2023079588 W CN 2023079588W WO 2023165606 A1 WO2023165606 A1 WO 2023165606A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
activated carbon
hydrodechlorination
hydrogen
Prior art date
Application number
PCT/CN2023/079588
Other languages
English (en)
French (fr)
Inventor
刘武灿
李玲
马超峰
卢春山
张建君
李小年
金佳敏
Original Assignee
中化蓝天集团有限公司
浙江蓝天环保高科技股份有限公司
浙江省化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中化蓝天集团有限公司, 浙江蓝天环保高科技股份有限公司, 浙江省化工研究院有限公司 filed Critical 中化蓝天集团有限公司
Publication of WO2023165606A1 publication Critical patent/WO2023165606A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the field of catalysis, in particular to an anti-carbon deposition catalyst, its preparation method and application.
  • Chlorotrifluoroethylene is a colorless gas with a slight ether odor and has good reactivity. It is an important fluorine-containing polymer monomer and an important chemical intermediate. It is widely used in pesticides, medicines, high Molecular materials and other fields.
  • Chinese patent CN1110103604A discloses a catalyst for catalytic hydrodechlorination and its preparation method and application.
  • the alloy catalyst is mainly based on the element Ru, and the specified alloy elements Re, Ti, Cr, Ni, Al, Co, Cu, Any one or more of Nb, Ta, Ru, Pt or Ag forms an alloy with Ru;
  • the auxiliary agent is alkali metal or earth metal, and the carrier is activated carbon carrier.
  • the conversion rate of chlorotrifluoroethylene is about 95.7%, and the selectivity is 95.6%.
  • Chinese patent CN1589970A discloses a regeneration method for the dehydrogenation of alkyl aromatics to produce alkenyl aromatics catalysts.
  • this method water vapor and air are introduced, and the catalyst is regenerated by hydrothermal method, but this method requires a higher regeneration temperature. In order to completely burn off the carbon deposits on the catalyst.
  • Chinese patent CN107497420A discloses a regeneration method of a carbon-containing noble metal catalyst.
  • the oxygen content in the regeneration gas is controlled stepwise, and the carbon deposits in the catalyst are removed by step-by-step combustion, and then After chlorination and reduction, the activity of the catalyst is restored.
  • this method needs to strictly control the moisture in the process gas and the maximum value of the operating temperature to ensure the regeneration efficiency. .
  • Chinese patent CN107999057A discloses a regeneration method of a supported noble metal catalyst.
  • the deactivated supported noble metal catalyst is oxidized by a mixed gas of CO2 and O2 , and after oxidation, it is reduced by a reducing agent in a tetrahydrofuran solvent to obtain Catalyst after regeneration.
  • the existing catalysts and their catalytic hydrogenation processes are still unable to completely suppress the formation of carbon deposits, and can only rely on the method of regenerating carbon deposits to remove carbon deposits, that is, using air, CO 2 , H 2 O, etc.
  • the gas reacts chemically with the carbon deposits to remove them.
  • the carbon deposition removal process will definitely damage the carrier carbon, destroy the catalyst particle structure, and cause irreversible deactivation of the catalyst. Therefore, it is difficult to control the carbon deposition removal process.
  • the object of the present invention is to provide a chlorofluoroalkane hydrodechlorination catalyst capable of effectively resisting carbon deposition, its preparation method and application.
  • the present invention adopts the following technical solutions:
  • An anti-carbon deposition catalyst is composed of carbon carrier, metal active component, metal promoter I and metal promoter II, the metal active component is platinum or palladium, and the metal promoter I is zinc or copper or cobalt, Metal additive II is ruthenium or nickel, and there is only one kind of metal in each type of metal component.
  • the metal active component accounts for 0.2-2.0% by mass of the carrier, and the mass ratio of the metal active component, metal additive I and metal additive II is 1:(1-10):(0.01-0.001).
  • the metal active component accounts for 0.2-1.5% by weight of the carrier.
  • the mass ratio of metal active component, metal promoter I and metal promoter II is 1:(1-8):(0.01-0.003).
  • the carbon carrier is activated carbon, preferably granular, with an ash content below 2wt%.
  • the present invention also provides a method for preparing an anti-coking catalyst, specifically comprising the following steps:
  • sodium hydroxide solution with a molar concentration of 1-5mol/L, soak activated carbon at 50-90°C for 2-6 hours, and wash with water until neutral; use hydrochloric acid with a molar concentration of 0.5-3mol/L at 20-60°C Soak activated carbon for 2-6 hours, and wash with water until neutral.
  • the ratio of activated carbon to sodium hydroxide solution/hydrochloric acid is 1:1.5-3.0 (g/mL), and g/mL represents 1 g of activated carbon per mL of sodium hydroxide solution/hydrochloric acid;
  • the purpose of this step is to remove the metal ash in the activated carbon so that the content of a single metal component is not higher than 0.01wt%.
  • metal active component salt metal additive I salt
  • metal additive II salt metal additive II salt
  • the metal active component salt, metal promoter I salt, and metal promoter II salt are all soluble salts.
  • the metal active component salt can be platinum or palladium chloride or nitrate, such as platinum dichloride, platinum tetrachloride, palladium dichloride;
  • the metal promoter I salt can be zinc or copper or cobalt Soluble salts, such as selected from their chlorides, nitrates, sulfates or organic salts, such as zinc chloride, copper chloride, cobalt chloride, copper nitrate, cobalt nitrate, zinc sulfate, copper sulfate, cobalt sulfate, zinc acetate , cobalt acetate, etc.
  • the metal promoter II salt can be a soluble salt of ruthenium or nickel, such as hydrated ruthenium trichloride, ruthenium acetate, nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, etc.;
  • step A1 Add the activated carbon treated in step A1 into the impregnating solution described in step A2, stir at 20-50°C for 2-5 hours, then let it stand for aging for 5-12 hours, take out the activated carbon and dry it; the drying can be air drying or drying dry; the volume of the impregnation solution is 1.5-2 times the pore volume of the activated carbon, which is equal volume impregnation, and the pore volume of the activated carbon is measured by the BET method;
  • the activated carbon loaded with metal components is roasted in an inert atmosphere, and the rate is raised from room temperature to 200-600°C, constant temperature for 2-5 hours to obtain an anti-coking catalyst.
  • the inert gas is nitrogen or argon, and the flow rate is 1-10 mL/min.
  • the metal salt be roasted to form oxides, but also the bonding force between each metal component and between each metal component and the activated carbon carrier can be strengthened to improve the stability of the catalyst.
  • the molar ratio of ammonium citrate to glycolic acid is 1:1-3; the molar ratio of the sum of ammonium citrate and glycolic acid to the total metal is 1:1-3.
  • the molar ratio of ammonium citrate to glycolic acid is 1:1.5-2.5; the molar ratio of the sum of ammonium citrate and glycolic acid to the total metal is 1:1.5-2.5.
  • the present invention also provides the application of the anti-carbon deposition catalyst prepared above, specifically, the anti-carbon deposition catalyst is used for hydrodechlorination reaction; more specifically, the anti-carbon deposition catalyst
  • the catalyst is used to prepare trifluorochloroethylene by hydrodechlorination of trifluorotrichloroethane, hydrodechlorination of 1,1,2-trichloroethylene to prepare ethylene, hydrodechlorination of pentafluorochloroethane to prepare pentafluoroethane, Preparation of 1-chloro-tetrafluoroethane and tetrafluoroethane by hydrodechlorination of 1,1-dichlorotetrafluoroethane, 2,3-dichloro-1,1,1,4,4,4-hexafluoro Preparation of 1,1,1,4,4,4-hexafluoro-2-butene by hydrodechlorination of -2-butene.
  • the anti-carbon deposition catalyst of the present invention When the anti-carbon deposition catalyst of the present invention is applied to the hydrodechlorination reaction, the anti-carbon deposition catalyst is reduced and activated before the raw material gas is introduced into the hydrogenation dechlorination reaction, and the reduction and activation step includes:
  • the volume space velocity of hydrogen is 2-8min -1
  • the heating program is 1-3°C/min, from room temperature to 300-400°C, constant temperature 1 -3 hours.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1: (6-10).
  • this application adopts ammonia gas and raw material gas to be fed into the reactor at the same time for hydrodechlorination reaction, the content of ammonia gas matches the hydrogen chloride generated, and the molar ratio of the two is set to 1:1.
  • the present invention also provides a method for preparing chlorotrifluoroethylene by hydrodechlorination of trifluorotrichloroethane, which specifically includes:
  • Ammonia, trifluorotrichloroethane (R113) and hydrogen are simultaneously fed into a tubular reactor for hydrodechlorination reaction, the reaction temperature is 250-350°C, and the space velocity of trifluorotrichloroethane is 40-100h - 1.
  • the molar ratio of R113 and hydrogen is 1: (1-3), preferably 1: (1.5-2.5), and the ammonia content is 1:1 with the generated hydrogen chloride.
  • the flow of ammonia gas is first adjusted by the theoretical hydrogen chloride content obtained by the reaction of R113 and hydrogen.
  • the content of hydrogen chloride in the product stream is monitored to adjust the flow of ammonia.
  • the three metal additives in the anti-carbon deposition catalyst of the present invention form a multifunctional catalytic active center, which can realize the hydrogenation elimination of in-situ carbon deposition while maintaining high dechlorination catalytic performance, without causing macroscopic carbon deposition
  • the accumulation of carbon deposits effectively inhibits the formation of carbon deposits, greatly improving the stability and service life of the catalyst.
  • the basic ammonia gas can be passed through while the raw material gas is passed through, which can reduce the acidity of the active center and suppress acidic hydrogen chloride and chloride in the adsorbed state. Adsorbed on the surface of the catalyst to reduce the formation of carbon deposits. At the same time, an appropriate amount of ammonia can also react with hydrogen chloride to promote the hydrodechlorination reaction to the right and increase the conversion rate.
  • the metal active component salt, metal additive I salt, metal additive II salt, sodium hydroxide, hydrochloric acid, ammonium citrate, and glycolic acid used in the examples are all from Sinopharm Group Chemical Reagent Co., Ltd., and the activated carbon is from Aladdin Chemicals Sourcing Platform.
  • the specific surface area of activated carbon is 1100m 2 /g, the pore volume is 0.7648cc/g, and the ash content is 1.5wt%.
  • step (3) Pour the treated activated carbon granular carrier into the impregnation solution prepared in step (1), the impregnation solution is in a state of slight stirring, and after the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 1 mL/min, then raise the temperature from room temperature to 220 °C at a rate of 1 °C/min and keep the temperature constant for 2 hours to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:6, pass through hydrogen for reduction and activation, and the volume space velocity of hydrogen is 2min -1 , and then from room temperature to 1°C The temperature was raised to 300°C at a rate of 1/min and kept at a constant temperature for 3h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 3 mL/min, then raise the temperature from room temperature to 200 °C at a rate of 3 °C/min and keep the temperature constant for 3 hours to obtain an anti-coking catalyst.
  • reaction temperature is 350°C.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 5 mL/min, then raise the temperature from room temperature to 200 °C at a rate of 5 °C/min and keep the temperature constant for 4 hours to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:8, pass through hydrogen for reduction activation, and the hydrogen space velocity is 6min -1 Min was heated to 350°C and kept at a constant temperature for 2h.
  • reaction temperature is 280 °C.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 7mL/min, then raise the temperature from room temperature to 250°C at a rate of 5°C/min and keep the temperature constant for 5h to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:9, pass through hydrogen for reduction activation, the hydrogen space velocity is 8min -1 , and then from room temperature at 2°C/ The temperature was raised to 320°C at a rate of min and kept at a constant temperature for 2h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 10mL/min, then raise the temperature from room temperature to 250°C at a rate of 5°C/min and keep the temperature constant for 5h to obtain an anti-coking catalyst.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 10mL/min, then raise the temperature from room temperature to 220°C at a rate of 3°C/min and keep the temperature constant for 5h to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:10, pass through hydrogen for reduction activation, and the hydrogen space velocity is 5min -1
  • the temperature was raised to 400°C at a rate of min and kept at a constant temperature for 3h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 1 mL/min, then raise the temperature from room temperature to 200 °C at a rate of 1 °C/min and keep the temperature constant for 2 hours to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:9, pass through hydrogen for reduction activation, and the hydrogen space velocity is 8min -1 , and then from room temperature at 3°C/ The temperature was raised to 300°C at a rate of min for 1h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under nitrogen atmosphere, nitrogen The flow rate was 10mL/min, and then the temperature was raised from room temperature to 250°C at a rate of 1°C/min for 3 hours to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:8, pass through hydrogen for reduction activation, and the hydrogen space velocity is 8min -1 , and then from room temperature at 1°C/ The temperature was raised to 380°C at a rate of min and kept at a constant temperature for 3h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 10mL/min, then raise the temperature from room temperature to 250°C at a rate of 1°C/min and keep the temperature constant for 5h to obtain an anti-coking catalyst.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 8mL/min, then raise the temperature from room temperature to 250°C at a rate of 4°C/min and keep the temperature constant for 3h to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:10, pass through hydrogen for reduction activation, and the hydrogen space velocity is 5min -1
  • the temperature was raised to 370°C at a rate of min and kept at a constant temperature for 2h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 5mL/min, then raise the temperature from room temperature to 250°C at a rate of 3°C/min and keep the temperature constant for 3h to obtain an anti-coking catalyst.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 10mL/min, then raise the temperature from room temperature to 230°C at a rate of 5°C/min and keep the temperature constant for 4h to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:7, pass through hydrogen for reduction activation, and the hydrogen space velocity is 6min -1 , and then from room temperature at 3°C/ The temperature was raised to 330°C at a rate of min and kept at a constant temperature for 1h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 10mL/min, then raise the temperature from room temperature to 250°C at a rate of 1°C/min and keep the temperature constant for 5h to obtain an anti-coking catalyst.
  • reaction temperature is 320°C.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 8mL/min, then raise the temperature from room temperature to 250°C at a rate of 5°C/min and keep the temperature constant for 2h to obtain an anti-coking catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:10, pass through hydrogen for reduction activation, and the hydrogen space velocity is 6min -1
  • the temperature was raised to 320°C at a rate of min and kept at a constant temperature for 3h.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight. Dry under a nitrogen atmosphere with a nitrogen flow rate of 1 mL/min, then raise the temperature from room temperature to 250 °C at a rate of 1 °C/min and keep the temperature constant for 2 hours to obtain an anti-coking catalyst.
  • step (3) Pour the activated carbon granular carrier treated in step (2) into the impregnation solution prepared in step (1).
  • the impregnation solution is in a state of slight stirring. After the impregnation is completed, let it stand overnight.
  • Impregnated in a nitrogen atmosphere the nitrogen flow rate is 1mL/min, and then the temperature is raised from room temperature to 250°C at a rate of 5°C/min and kept at a constant temperature for 4 hours to obtain anti-carbon deposition catalyst.
  • the ratio of the particle size of the catalyst to the inner diameter of the reactor is 1:10, pass through hydrogen for reduction activation, and the hydrogen space velocity is 6min -1 , and then from room temperature at 2°C/ The temperature was raised to 400°C at a rate of min and kept at a constant temperature for 2h.
  • Example 2 The operation of this embodiment is the same as that of Example 2, only changing the reaction temperature and feed gas R113 space velocity of Example 2, and comparing the catalyst performance under different reaction conditions, the results are shown in Table 1 below.
  • the ratio of the catalyst particle size to the inner diameter of the reactor is 1:10, the hydrogen volume space velocity is 8min -1 , and then the temperature is raised from room temperature to 400°C at a rate of 3°C/min and kept at a constant temperature for 3h. After the reduction activation is completed, maintain the hydrogen space velocity, and pass through the vaporized R113, and set the ammonia flow rate to be consistent with the generated hydrogen chloride flow rate.
  • Example 2 the life experiment of Example 2 is tested, that is, the reactants under different stable operation times of Example 2 are detected and analyzed, and the results are shown in Table 2 below.
  • the test method is: the ratio of the catalyst particle size to the inner diameter of the reactor is 1:10, the hydrogen space velocity is 8min -1 , and then the temperature is raised from room temperature to 400°C at a rate of 3°C/min and kept at a constant temperature for 3h. After the reduction and activation, maintain the hydrogen space velocity of 8min -1 , feed gasified R113, the volume space velocity of R113 is 100h -1 , and the flow rate of ammonia gas is 3.4min -1 . The reaction temperature was 350°C.
  • Example 2 This comparative example is compared with Example 2 to reflect the importance of the metal active component to the performance of the catalyst.
  • the preparation method is the same as that of Example 2, the only difference is that no metal additive II—nickel is added.
  • the test method is: the ratio of the catalyst particle size to the inner diameter of the reactor is 1:10, the hydrogen space velocity is 8min -1 , and then the temperature is raised from room temperature to 400°C at a rate of 3°C/min and kept at a constant temperature for 3h. After the reduction and activation, maintain the hydrogen space velocity of 8min -1 , feed gasified R113, the volume space velocity of R113 is 100h -1 , and the flow rate of ammonia gas is 3.4min -1 . The reaction temperature was 350°C.
  • Example 2 This comparative example is compared with Example 2 to reflect the importance of the metal active component loading method on the catalyst performance.
  • the preparation method is the same as in Example 2, the only difference lies in the preparation of the dipping solution: ammonium citrate and glycolic acid are not added.
  • Example 2 This comparative example is compared with Example 2 to reflect the importance of ammonia to the performance of the catalyst.
  • the preparation method is the same as that of Example 2, the only difference being that no ammonia gas is passed during the performance test.
  • Example 2 This comparative example is compared with Example 2 to reflect the importance of the metal promoter II and ammonia on the performance of the catalyst.
  • the preparation method is the same as that of Example 2, the only difference is that no metal additive II—nickel and no ammonia gas are added.
  • Example 2 This comparative example is compared with Example 2 to reflect the importance of the metal active component loading method on the catalyst performance.
  • the preparation method is the same as that of Example 2, the only difference lies in the preparation of the dipping solution: only ammonium citrate is added, and glycolic acid is not added.
  • Example 2 This comparative example is compared with Example 2 to reflect the importance of the metal active component loading method on the catalyst performance.
  • the preparation method is the same as that of Example 2, the only difference lies in the preparation of the dipping solution: only glycolic acid is added, and ammonium citrate is not added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种抗积碳催化剂、其制备方法及应用,所述抗积碳催化剂由炭载体、金属活性组分、金属助剂(I)和金属助剂(II)组成,金属活性组分为铂或钯,金属助剂(I)为锌或铜或钴,金属助剂(II)为钌或镍,每类金属组分中有且只有一种金属;金属活性组分占载体质量含量为0.2-2.0%,金属活性组分、金属助剂(I)和金属助剂(II)的质量比例为1:(1-10):(0.01-0.001)。本发明抗积碳催化剂中的三种金属可形成多功能催化活性中心,在保持高脱氯催化性能的同时实现原位积碳的氢化消除,有效抑制积碳生成,大大提升催化剂的稳定性和使用寿命。

Description

一种抗积碳催化剂、其制备方法及应用 技术领域
本发明涉及催化领域,特别涉及一种抗积碳催化剂、其制备方法及应用。
背景技术
三氟氯乙烯为无色,微有乙醚气味的气体,具有很好的反应活性,是一种重要的含氟聚合单体,也是一种重要的化工中间体,广泛应用于农药、医药、高分子材料等领域。
中国专利CN1110103604A公开了一种催化加氢脱氯用催化剂及其制备方法和应用,该方法中合金催化剂以元素Ru为主体,选取指定合金元素Re、Ti、Cr、Ni、Al、Co、Cu、Nb、Ta、Ru、Pt或Ag中的任意一种或多种与Ru形成合金;助剂为碱金属或烯土金属,载体为活性炭载体。将其用于三氟氯乙烯的制备中,三氟氯乙烯的转化率在95.7%左右,选择性为95.6%。
然而,催化加氢法合成CTFE存在一个关键核心问题,即如何抑制积碳。积碳的存在虽然在反应初期不会影响原料转化率和产品选择性,但对催化剂稳定性和使用寿命造成了很大的影响。现有文献报道,积碳主要受催化剂活性位的酸性和反应温度影响。因此,降低活性位酸性或者提高催化活性(降低反应温度)可有效抑制积碳,延长催化剂寿命。
中国专利CN1589970A公开了一种烷基芳烃脱氢生产烷烯基芳烃催化剂的再生方法,该方法中引入水蒸气和空气,利用水热法对催化剂进行再生,但此方法需要较高的再生温度,才能完全烧掉催化剂上积碳。
中国专利CN107497420A公开一种含碳贵金属催化剂的再生方法,该方法在燃烧过程中,对再生气体中的氧含量进行阶梯控制,分步燃烧除去催化剂中的积碳,然后 经过氯化、还原恢复催化剂的活性。在贵金属催化剂的再生过程中,进行氯化操作时,若水分含量过高,则会降低催化剂的活性,因此,该方法需要严格控制工艺气中的水分以及操作温度的最高值,才能保证再生效率。
中国专利CN107999057A公开了一种负载型贵金属催化剂的再生方法,该方法将失活负载型贵金属催化剂由CO2与O2的混合气体氧化处理,氧化后于四氢呋喃溶剂中再经还原剂还原,即得再生后催化剂。
综上所述,现有催化剂及其催化加氢工艺仍然无法完全抑制积碳的生成,仅能依靠生成积碳之后进行再生的方法来除积碳,即采用空气、CO2、H2O等气体与积碳发生化学反应以除去积碳。但积碳消除过程必会伤及载体炭,破坏催化剂颗粒结构,造成催化剂不可恢复性的失活。因此,积碳消除过程调控难度大。
至今为止,未见有效解决催化加氢脱氯催化剂积碳问题的相关报道。
发明内容
本发明的目的在于提供一种能有效抗积碳的氟氯烷烃加氢脱氯催化剂、其制备方法及应用。
根据本发明的一个方面,本发明采用以下技术方案:
一种抗积碳催化剂,所述催化剂由炭载体、金属活性组分、金属助剂I和金属助剂II组成,金属活性组分为铂或钯,金属助剂I为锌或铜或钴,金属助剂II为钌或镍,每类金属组分中有且只有一种金属。
金属活性组分占载体质量含量为0.2-2.0%,金属活性组分、金属助剂I和金属助剂II的质量比例为1:(1-10):(0.01-0.001)。
优选地,金属活性组分占载体质量含量为0.2-1.5%。
优选地,金属活性组分、金属助剂I和金属助剂II的质量比例为1:(1-8):(0.01-0.003)。
所述炭载体为活性炭,优选为颗粒型,灰分在2wt%以下。
根据本发明的第二个方面,本发明还提供一种抗积碳催化剂的制备方法,具体包括以下步骤:
A1、活性炭处理步骤:
采用摩尔浓度为1-5mol/L的氢氧化钠溶液,于50-90℃浸洗活性炭2-6小时,水洗至中性;采用摩尔浓度为0.5-3mol/L的盐酸,于20-60℃浸洗活性炭2-6小时,水洗至中性。活性炭与氢氧化钠溶液/盐酸的比例皆为1:1.5-3.0(g/mL),g/mL代表每mL氢氧化钠溶液/盐酸浸洗1g活性炭;
此步目的是去除活性炭中的金属灰分,使其单个金属组分含量不高于0.01wt%。
A2、配制浸渍溶液:
称取金属活性组分盐、金属助剂I盐、金属助剂II盐,于柠檬酸铵与羟基乙酸的水溶液中混合均匀,形成浸渍溶液;
所述金属活性组分盐、金属助剂I盐、金属助剂II盐均为可溶性盐。具体地,金属活性组分盐可以是铂或钯的氯化盐或硝酸盐,如二氯化铂、四氯化铂、二氯化钯;金属助剂I盐可以是锌或铜或钴的可溶性盐,如选自其氯化盐、硝酸盐、硫酸盐或有机盐,如氯化锌、氯化铜、氯化钴、硝酸铜、硝酸钴、硫酸锌、硫酸铜、硫酸钴、乙酸锌、乙酸钴等。金属助剂II盐可以是钌或镍的可溶性盐,如水合三氯化钌、醋酸钌、氯化镍、硝酸镍、硫酸镍、乙酸镍等;
A3、活性炭浸渍:
将A1步骤处理后的活性炭加入A2步骤所述浸渍溶液中,20-50℃下搅拌2-5小时,之后静置老化5-12小时,取出活性炭并干燥;所述干燥可以是晾干或烘干;浸渍溶液的体积是活性炭孔容的1.5-2倍,为等体积浸渍,活性炭孔容采用BET法测量获得;
A4、催化剂合成步骤:
将负载金属组分的活性炭在惰性气氛中焙烧,以1-5℃/分钟的速率从室温升至 200-600℃,恒温2-5小时,获得抗积碳催化剂。具体地,惰性气体为氮气或氩气,流速为1-10mL/min。
通过焙烧,不仅可以将金属盐焙烧形成氧化物,同时还能加强各金属组分之间,各金属组分与活性炭载体之间的结合力,提高催化剂稳定性。
进一步地,柠檬酸铵与羟基乙酸摩尔比为1:1-3;柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:1-3。优选地,柠檬酸铵与羟基乙酸摩尔比为1:1.5-2.5;柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:1.5-2.5。
根据本发明的第三个方面,本发明还提供了如上制备的抗积碳催化剂的应用,具体地,所述抗积碳催化剂用于加氢脱氯反应;更具体地,所述抗积碳催化剂用于三氟三氯乙烷加氢脱氯制备三氟氯乙烯,1,1,2-三氯乙烯加氢脱氯制备乙烯,五氟氯乙烷加氢脱氯制备五氟乙烷,1,1-二氯四氟乙烷加氢脱氯制备1-氯-四氟乙烷与四氟乙烷,2,3-二氯-1,1,1,4,4,4-六氟-2-丁烯加氢脱氯制备1,1,1,4,4,4-六氟-2-丁烯。
本发明所述抗积碳催化剂应用于加氢脱氯反应中时,在通入原料气进行加氢脱氯反应前,对抗积碳催化剂进行还原活化,所述还原活化步骤包括:
将抗积碳催化剂置入反应器中,通入氢气还原活化,氢气体积空速为2-8min-1,升温程序为1-3℃/min,从室温升至300-400℃,恒温1-3小时。
进一步地,催化剂粒度与反应器内径比为1:(6-10)。
更进一步地,本申请采用氨气与原料气同时通入反应器进行加氢脱氯反应,氨气含量与生成的氯化氢相匹配,两者摩尔比配置成1:1。
本发明还提供一种三氟三氯乙烷加氢脱氯制备三氟氯乙烯的方法,具体包括:
将氨气与三氟三氯乙烷(R113)、氢气同时通入管式反应器进行加氢脱氯反应,反应温度为250-350℃,三氟三氯乙烷空速为40-100h-1,R113和氢气的摩尔配比为1:(1-3),优选1:(1.5-2.5),氨气含量与生成的氯化氢1:1配置。
在实际反应中,氨气流量先通过R113和氢气反应获得的理论氯化氢含量进行配 置,在反应过程中,对产物流中氯化氢含量进行监测,以此调整氨气的流量。
与现有技术相比,本发明优势主要体现在以下几点:
1)本发明的抗积碳催化剂中三种金属助剂形成了多功能催化活性中心,在保持高脱氯催化性能的同时,可实现原位积碳的氢化消除,不会造成宏观上积碳的累积,有效抑制了积碳的生成,大大提升了催化剂的稳定性和使用寿命。
2)本发明的抗积碳催化剂在应用于加氢脱氯反应中时,在通入原料气的同时通入碱性氨气,可降低活性中心的酸性,抑制酸性氯化氢及吸附态的氯化物在催化剂表面吸附,减少积碳的生成。同时,适量的氨气还能与氯化氢反应,促进加氢脱氯反应向右进行,提高转化率。
具体实施方法
下面通过具体的实施例来详细说明本发明中列出的实施方案,但本发明的保护范围并不仅限于以下实施例。
实施例中用到的金属活性组分盐、金属助剂I盐、金属助剂II盐、氢氧化钠、盐酸、柠檬酸铵、羟基乙酸均来自于国药基团化学试剂有限公司,活性炭来自于阿拉丁化学品采购平台。活性炭比表面积1100m2/g,孔容0.7648cc/g,灰分1.5wt%。
实施例1
(1)称取8.0mg PtCl2、8.0mg Cu(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:1,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2,然后加入去离子水配制成总体积为5.0mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有6mL 1mol/L氢氧化钠溶液的烧杯中,在50℃下搅拌2h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有6mL 0.5mol/L盐酸的烧杯中,在20℃下搅拌2h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为1mL/min,然后从室温以1℃/min升温至220℃并恒温2h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:6,通入氢气还原活化,氢气体积空速为2min-1,然后从室温以1℃/min的速率升温至300℃并恒温3h。
(5)还原活化结束后,维持氢气体积空速2min-1,并通入气化的三氟三氯乙烷(R113),R113的体积空速为40h-1,同时通入氨气,流量1.4min-1,与生成的氯化氢流量一致,反应温度为250℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.45%,三氟氯乙烯选择性96.78%。
实施例2
(1)称取8.0mg PtCl2、16.0mg Co(NO3)2以及0.08mg硝酸镍倒入柠檬酸铵与羟基乙酸烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:2,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:1,然后加入去离子水配制成总体积为6.0mL的浸渍溶液,在20℃下搅拌2h。
(2)取4g 10-20目的颗粒活性炭加入到盛有6mL 3mol/L氢氧化钠溶液的烧杯中,在70℃下搅拌4h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有6mL 1mol/L盐酸的烧杯中,在40℃下搅拌4h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为3mL/min,然后从室温以3℃/min升温至200℃并恒温3h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为 1:10,通入氢气还原活化,氢气空速为8min-1,然后从室温以3℃/min的速率升温至400℃并恒温3h。
(5)还原活化结束后,维持氢气空速8min-1,通入气化的R113,R113的空速为100h-1,同时通入氨气,流量3.4min-1,与生成的氯化氢流量一致,反应温度为350℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.95%,三氟氯乙烯选择性96.89%。
实施例3
(1)称取8.0mg PtCl2、40.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:3,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:3,然后加入去离子水配制成总体积为6.5mL的浸渍溶液,在30℃下搅拌3h。
(2)取4g 10-20目的颗粒活性炭加入到盛有8mL 5mol/L氢氧化钠溶液的烧杯中,在90℃下搅拌6h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有6mL 3mol/L盐酸的烧杯中,在60℃下搅拌6h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为5mL/min,然后从室温以5℃/min升温至200℃并恒温4h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:8,通入氢气还原活化,氢气空速为6min-1,然后从室温以2℃/min升温至350℃并恒温2h。
(5)还原活化结束后,维持氢气空速6min-1,并通入气化的R113,R113的空速为60h-1,同时通入氨气,流量2.1min-1,与生成的氯化氢流量一致,反应温度为280℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率97.23%,三氟氯乙烯选择性97.18%。
实施例4
(1)称取12.0mg PtCl2、80.0mg Co(NO3)2以及0.012mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:3,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2,然后加入去离子水配制成总体积为7.0mL的浸渍溶液,在50℃下搅拌2h。
(2)取4g 10-20目的颗粒活性炭加入到盛有6mL 4mol/L氢氧化钠溶液的烧杯中,在80℃下搅拌5h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有8mL 1mol/L盐酸的烧杯中,在50℃下搅拌3h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为7mL/min,然后从室温以5℃/min升温至250℃并恒温5h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:9,通入氢气还原活化,氢气空速为8min-1,然后从室温以2℃/min的速率升温至320℃并恒温2h。
(5)还原活化结束后,维持氢气空速为8min-1,并通入气化的R113,R113的体积空速为80h-1,同时通入氨气,流量2.7min-1,与生成的氯化氢流量一致,反应温度为300℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率97.65%,三氟氯乙烯选择性97.09%。
实施例5
(1)称取16.0mg PtCl2、16.0mg Co(NO3)2以及0.012mg硝酸镍倒入盛有柠檬酸 铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:2,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:3,然后加入去离子水配制成总体积为6.0mL的浸渍溶液,在20℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有9mL 1mol/L氢氧化钠溶液的烧杯中,在50℃下搅拌2h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有9mL 0.5mol/L盐酸的烧杯中,在30℃下搅拌3h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为10mL/min,然后从室温以5℃/min的速率升温至250℃并恒温5h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:7,通入氢气还原活化,氢气空速为4min-1,然后从室温以1℃/min的速率升温至400℃并恒温1h。
(5)还原活化结束后,维持氢气空速为4min-1,并通入气化的R113,R113的体积空速为70h-1,同时通入氨气,流量为2.4min-1,与生成的氯化氢流量一致,反应温度为350℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率95.22%,三氟氯乙烯选择性97.82%。
实施例6
(1)称取8.0mg PtCl2、16.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:1,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:1,然后加入去离子水配制成总体积为7.0mL的浸渍溶液,50℃下搅拌3h。
(2)取4g 10-20目的颗粒活性炭加入到盛有9mL 1mol/L氢氧化钠溶液的烧杯中,在50℃下搅拌4h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有6mL 0.5mol/L盐酸的烧杯中,在50℃下搅拌4h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为10mL/min,然后从室温以3℃/min的速率升温至220℃并恒温5h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:10,通入氢气还原活化,氢气空速为5min-1,然后从室温以3℃/min的速率升温至400℃并恒温3h。
(5)还原活化结束后,维持氢气空速5min-1,并通入气化的R113,R113的空速为100h-1,同时通入氨气,流量3.4min-1,与生成的氯化氢流量一致,反应温度为330℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.65%,三氟氯乙烯选择性96.21%。
实施例7
(1)称取8.0mg PtCl2、16.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:3,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:1,然后加入去离子水配制成总体积为5.5mL的浸渍溶液,在30℃下搅拌2h。
(2)取4g 10-20目的颗粒活性炭加入到盛有6mL 3mol/L氢氧化钠溶液的烧杯中,在80℃下搅拌6h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有6mL 3mol/L盐酸的烧杯中,在50℃下搅拌4h,然后用去离子水洗涤活性炭至中性; 自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为1mL/min,然后从室温以1℃/min的速率升温至200℃并恒温2h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:9,通入氢气还原活化,氢气空速为8min-1,然后从室温以3℃/min的速率升温至300℃恒温1h。
(5)还原活化结束后,维持氢气空速8min-1,并通入气化的R113,R113的空速为90h-1,同时通入氨气,流量3.1min-1,与生成的氯化氢流量一致,反应温度为330℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.45%,三氟氯乙烯选择性97.34%。
实施例8
(1)称取8.0mg PdCl2、80.0mg Cu(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:2,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:1,然后加入去离子水配制成总体积为6.0mL的浸渍溶液,在30℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有10mL 1mol/L氢氧化钠溶液的烧杯中,在50℃下搅拌2h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有10mL 0.5mol/L盐酸的烧杯中,在20℃下搅拌2h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气 流速为10mL/min,然后从室温以1℃/min的速率升温至250℃恒温3h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:8,通入氢气还原活化,氢气空速为8min-1,然后从室温以1℃/min的速率升温至380℃并恒温3h。
(5)还原活化结束后,维持氢气空速8min-1,并通入气化的R113,R113的空速为60h-1,同时通入氨气,流量2.1min-1,与生成的氯化氢流量一致,反应温度为350℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率98.75%,三氟氯乙烯选择性95.87%。
实施例9
(1)称取8.0mg PtCl2、16.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:2,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2,然后加入去离子水配制成总体积为7.0mL的浸渍溶液,在30℃下搅拌3h。
(2)取4g 10-20目的颗粒活性炭加入到盛有12mL 1mol/L氢氧化钠溶液的烧杯中,在60℃下搅拌4h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有6mL 0.5mol/L盐酸的烧杯中,在30℃下搅拌4h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为10mL/min,然后从室温以1℃/min的速率升温至250℃并恒温5h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为 1:10,通入氢气还原活化,氢气空速为8min-1,然后从室温以2℃/min的速率升温至400℃并恒温3h。
(5)还原活化结束后,维持氢气空速8min-1,并通入气化的R113,R113空速为100h-1,同时通入氨气,流量3.4min-1,与生成的氯化氢流量一致,反应温度为340℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.35%,三氟氯乙烯选择性96.77%。
实施例10
(1)称取8.0mg PtCl2、80.0mg Cu(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:3,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2.5,然后加入去离子水配制成总体积为5.5mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有12mL 1mol/L氢氧化钠溶液的烧杯中,在90℃下搅拌6h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有12mL 3mol/L盐酸的烧杯中,在60℃下搅拌6h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为8mL/min,然后从室温以4℃/min的速率升温至250℃并恒温3h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:10,通入氢气还原活化,氢气空速为5min-1,然后从室温以3℃/min的速率升温至370℃并恒温2h。
(5)还原活化结束后,维持氢气空速5min-1,并通入气化的三氟三氯乙烷(R113), R113的体积空速为80h-1,同时通入氨气,流量2.7min-1,与生成的氯化氢流量一致,反应温度为270℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率97.85%,三氟氯乙烯选择性95.86%。
实施例11
(1)称取8.0mg PdCl2、80.0mg Zn(NO3)2以及0.08mg氯化钌倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:1.5,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:3,然后加入去离子水配制成总体积为6.0mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有10mL 5mol/L氢氧化钠溶液的烧杯中,在80℃下搅拌3h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有12mL 2mol/L盐酸的烧杯中,在50℃下搅拌2h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为5mL/min,然后从室温以3℃/min的速率升温至250℃并恒温3h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:7,通入氢气还原活化,氢气空速为4min-1,然后从室温以2℃/min的速率升温至340℃并恒温2h。
(5)还原活化结束后,维持氢气空速4min-1,并通入气化的R113,R113的空速为90h-1,同时通入氨气,流量为3.1min-1,与生成的氯化氢流量一致,反应温度为260℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率97.15%,三 氟氯乙烯选择性96.45%。
实施例12
(1)称取8.0mg PdCl2、80.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:2,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2.5,然后加入去离子水配制成总体积为5.5mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有10mL 1mol/L氢氧化钠溶液的烧杯中,在50℃下搅拌5h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有12mL 0.5mol/L盐酸的烧杯中,在20℃下搅拌6h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为10mL/min,然后从室温以5℃/min的速率升温至230℃并恒温4h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:7,通入氢气还原活化,氢气空速为6min-1,然后从室温以3℃/min的速率升温至330℃并恒温1h。
(5)还原活化结束后,维持氢气空速6min-1,并通入气化的R113,R113的空速为100h-1,同时通入氨气,流量3.4min-1,与生成的氯化氢流量一致,反应温度为300℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率97.05%,三氟氯乙烯选择性97.09%。
实施例13
(1)称取8.0mg PtCl2、16.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵 与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:3,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2,然后加入去离子水配制成总体积为6.0mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有9mL 1mol/L氢氧化钠溶液的烧杯中,在90℃下搅拌2h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有9mL 0.5mol/L盐酸的烧杯中,在60℃下搅拌2h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为10mL/min,然后从室温以1℃/min的速率升温至250℃并恒温5h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:7,通入氢气还原活化,氢气空速为5min-1,然后从室温以1℃/min的速率升温至400℃并恒温3h。
(5)还原活化结束后,维持氢气空速5min-1,并通入气化的R113,R113空速为60h-1,同时通入氨气,流量2.1min-1,与生成的氯化氢流量一致,反应温度为320℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率97.93%,三氟氯乙烯选择性96.59%。
实施例14
(1)称取8.0mg PtCl2、80.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:3,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2.5,然后加入去离子水配制成总体积为5.0mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有7mL 1mol/L氢氧化钠溶液的烧杯 中,在50℃下搅拌5h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有8mL 0.5mol/L盐酸的烧杯中,在20℃下搅拌5h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为8mL/min,然后从室温以5℃/min的速率升温至250℃并恒温2h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:10,通入氢气还原活化,氢气空速为6min-1,然后从室温以1℃/min的速率升温至320℃并恒温3h。
(5)还原活化结束后,维持氢气空速6min-1,并通入气化的原料气,原料气的空速为50h-1,同时通入氨气,流量1.7min-1,与生成的氯化氢流量一致,反应温度为260℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.90%,三氟氯乙烯选择性96.69%。
实施例15
(1)称取8.0mg PtCl2、16.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:1,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:2,然后加入去离子水配制成总体积为6.5mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有6mL 1mol/L氢氧化钠溶液的烧杯中,在50℃下搅拌2h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有9mL 3mol/L盐酸的烧杯中,在20℃下搅拌5h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行干燥,氮气流速为1mL/min,然后从室温以1℃/min的速率升温至250℃并恒温2h,获得抗积碳催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:10,通入氢气还原活化,氢气空速为3min-1,然后从室温以1℃/min的速率升温至380℃并恒温1h。
(5)还原活化结束后,维持氢气空速3min-1,并通入气化的原料气,原料气的空速为50h-1,同时通入氨气,流量2.7min-1,与生成的氯化氢流量一致,反应温度为310℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.65%,三氟氯乙烯选择性96.45%。
实施例16
(1)称取8.0mg PtCl2、16.0mg Co(NO3)2以及0.08mg硝酸镍倒入盛有柠檬酸铵与羟基乙酸的烧杯中,柠檬酸铵与羟基乙酸摩尔比为1:2,柠檬酸铵与羟基乙酸之和与总金属摩尔比为1:3,然后加入去离子水配制成总体积为6.0mL的浸渍溶液,在50℃下搅拌5h。
(2)取4g 10-20目的颗粒活性炭加入到盛有6mL 1mol/L氢氧化钠溶液的烧杯中,在50℃下搅拌6h,然后用去离子水洗涤活性炭至中性;再将活性炭加入到盛有9mL 3mol/L盐酸的烧杯中,在20℃下搅拌5h,然后用去离子水洗涤活性炭至中性;自然晾干,制得处理好的活性炭载体。
(3)将步骤(2)处理好的活性炭颗粒状载体倒入步骤(1)配制的浸渍溶液中,浸渍溶液处于轻微搅拌状态,浸渍完成后,静置过夜。在氮气氛围下进行浸渍,氮气流速为1mL/min,然后从室温以5℃/min的速率升温至250℃并恒温4h,获得抗积碳 催化剂。
(4)将制备好的催化剂置入管式反应器中,催化剂粒度与反应器内直径比值为1:10,通入氢气还原活化,氢气空速为6min-1,然后从室温以2℃/min的速率升温至400℃并恒温2h。
(5)还原活化结束后,维持氢气空速6min-1,并通入气化的原料气,原料气的空速为80h-1,同时通入氨气,流量2.7min-1,与生成的氯化氢流量一致,反应温度为330℃。
经10小时稳定运行后,色谱测试,面积归一化结果为:R113转化率96.85%,三氟氯乙烯选择性96.08%。
实施例17
本实施例的操作同实施例2,仅改变实施例2的反应温度和原料气R113空速,比较不同反应条件下的催化剂性能,结果如下表1。
表1.实施例2在不同反应条件下的催化性能
注:催化剂粒度与反应器内直径比值为1:10,氢气体积空速为8min-1,然后从室温以3℃/min的速率升温至400℃并恒温3h。还原活化结束后,维持氢气空速,并通入气化的R113,氨气流量设置成与生成的氯化氢流量一致。
实施例18
本实施例测试了实施例2的寿命实验,也即对实施例2不同稳定运行时间下的反应物进行检测分析,结果如下表2。
表2.实施例2的寿命实验
测试方法为:催化剂粒度与反应器内直径比值为1:10,氢气空速为8min-1,然后从室温以3℃/min的速率升温至400℃并恒温3h。还原活化结束后,维持氢气空速8min-1,通入气化的R113,R113体积空速100h-1,氨气流量3.4min-1。反应温度为350℃。
对比例1
该对比例与实施例2进行对比,以体现金属活性组分对于催化剂性能的重要性。制备方法与实施例2相同,唯一不同的地方在于未添加金属助剂II--镍。
表3.对比例1的催化性能结果

测试方法为:催化剂粒度与反应器内直径比值为1:10,氢气空速为8min-1,然后从室温以3℃/min的速率升温至400℃并恒温3h。还原活化结束后,维持氢气空速8min-1,通入气化的R113,R113体积空速100h-1,氨气流量3.4min-1。反应温度为350℃。
对比例2
该对比例与实施例2进行对比,以体现金属活性组分负载方式对于催化剂性能的重要性。制备方法与实施例2相同,唯一不同的地方在于浸渍溶液的配制:未加柠檬酸铵与羟基乙酸。
表4.对比例2的催化性能结果

对比例3
该对比例与实施例2进行对比,以体现氨气对于催化剂性能的重要性。制备方法与实施例2相同,唯一不同的地方在于性能测试时未通氨气。
表5.对比例3的催化性能结果
对比例4
该对比例与实施例2进行对比,以体现金属助剂II和氨气对于催化剂性能的重要性。制备方法与实施例2相同,唯一不同的地方在于未添加金属助剂II——镍和未通氨气。
表6.对比例4的催化性能结果
对比例5
该对比例与实施例2进行对比,以体现金属活性组分负载方式对于催化剂性能的重要性。制备方法与实施例2相同,唯一不同的地方在于浸渍溶液的配制:仅加入柠檬酸铵,未加入羟基乙酸。
表7.对比例5的催化性能结果

对比例6
该对比例与实施例2进行对比,以体现金属活性组分负载方式对于催化剂性能的重要性。制备方法与实施例2相同,唯一不同的地方在于浸渍溶液的配制:仅加入羟基乙酸,未加入柠檬酸铵。
表8.对比例6的催化性能结果

Claims (10)

  1. 一种抗积碳催化剂,其特征在于所述催化剂由炭载体、金属活性组分、金属助剂I和金属助剂II组成,金属活性组分为铂或钯,金属助剂I为锌或铜或钴,金属助剂II为钌或镍,每类金属组分中有且只有一种金属;金属活性组分占载体质量含量为0.2-2.0%,金属活性组分、金属助剂I和金属助剂II的质量比例为1:(1-10):(0.01-0.001)。
  2. 根据权利要求1所述的抗积碳催化剂,其特征在于:金属活性组分占载体质量含量为0.2-1.5%。
  3. 根据权利要求1或2所述的抗积碳催化剂,其特征在于:金属活性组分、金属助剂I和金属助剂II的质量比例为1:(1-8):(0.01-0.003)。
  4. 一种抗积碳催化剂的制备方法,其特征在于:所述制备方法包括以下步骤:
    A1.活性炭处理:
    采用摩尔浓度为1-5mol/L的氢氧化钠溶液,于50-90℃浸洗活性炭2-6小时,水洗至中性;采用摩尔浓度为0.5-3mol/L的盐酸,于20-60℃浸洗活性炭2-6小时,水洗至中性;活性炭与氢氧化钠溶液/盐酸的比例皆为1:1.5-5.0(g/mL);
    A2.配制浸渍溶液:
    称取金属活性组分盐、金属助剂I盐、金属助剂II盐,于柠檬酸铵与羟基乙酸的水溶液中混合均匀,形成浸渍溶液;
    A3.活性炭浸渍:
    将A1步骤处理后的活性炭加入A2步骤的所述浸渍溶液中,20-50℃下搅拌2-5小时,之后静置老化5-12小时,取出活性炭并干燥;浸渍溶液的体积是活性炭孔容的1.5-2倍;
    A4.催化剂合成步骤:
    将负载金属组分的活性炭在惰性气氛中焙烧,以1-5℃/分钟的速率从室温升至 200-600℃,恒温2-5小时,获得抗积碳催化剂。
  5. 根据权利要求4所述的抗积碳催化剂的制备方法,其特征在于:柠檬酸铵和羟基乙酸的摩尔比为1:1-3;柠檬酸铵、羟基乙酸之和与总金属摩尔比为1:1-3;所述惰性气体为氮气或氩气,流速为1-10mL/min。
  6. 权利要求1-3任一所述的抗积碳催化剂在加氢脱氯反应中的应用,其特征在于:所述抗积碳催化剂用于三氟三氯乙烷加氢脱氯制备三氟氯乙烯,1,1,2-三氯乙烯加氢脱氯制备乙烯,五氟氯乙烷加氢脱氯制备五氟乙烷,1,1-二氯四氟乙烷加氢脱氯制备1-氯-四氟乙烷与四氟乙烷,2,3-二氯-1,1,1,4,4,4-六氟-2-丁烯加氢脱氯制备1,1,1,4,4,4-六氟-2-丁烯。
  7. 根据权利要求6所述的抗积碳催化剂在加氢脱氯反应中的应用,其特征在于:在通入原料气进行加氢脱氯反应前,对抗积碳催化剂进行还原活化,所述还原活化步骤包括:
    将抗积碳催化剂置入反应器中,通入氢气还原活化,氢气体积空速为2-8min-1,升温程序为1-3℃/min,从室温升至300-400℃,恒温1-3小时。
  8. 根据权利要求7所述的抗积碳催化剂在加氢脱氯反应中的应用,其特征在于:催化剂粒度与反应器内径比为1:(6-10)。
  9. 根据权利要求8所述的抗积碳催化剂在加氢脱氯反应中的应用,其特征在于:氨气与原料气同时通入反应器进行加氢脱氯反应,氨气含量与生成的氯化氢相匹配,两者摩尔比配置成1:1。
  10. 一种三氟三氯乙烷加氢脱氯制备三氟氯乙烯的方法,其特征在于:氨气与三氟三氯乙烷、氢气同时通入管式反应器进行加氢脱氯反应,反应温度为250-350℃,三氟三氯乙烷空速为40-100h-1,三氟三氯乙烷和氢气的摩尔配比为1:(1-3),氨气含量与生成的氯化氢1:1配置。
PCT/CN2023/079588 2022-03-04 2023-03-03 一种抗积碳催化剂、其制备方法及应用 WO2023165606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210207172.0 2022-03-04
CN202210207172.0A CN114870858B (zh) 2022-03-04 2022-03-04 一种抗积碳催化剂、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2023165606A1 true WO2023165606A1 (zh) 2023-09-07

Family

ID=82667562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079588 WO2023165606A1 (zh) 2022-03-04 2023-03-03 一种抗积碳催化剂、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN114870858B (zh)
WO (1) WO2023165606A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870858B (zh) * 2022-03-04 2024-07-16 中化蓝天集团有限公司 一种抗积碳催化剂、其制备方法及应用
CN115957752B (zh) * 2022-12-31 2024-06-11 浙江工业大学 一种活性炭负载高分散双金属粒子催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524297A (zh) * 2007-07-03 2014-01-22 纳幕尔杜邦公司 加氢脱氯制备二氢氟化烯烃的方法
CN106140193A (zh) * 2015-04-01 2016-11-23 浙江蓝天环保高科技股份有限公司 一种用于cfc和hcfc加氢脱氯的催化剂的制备方法
US20170327441A1 (en) * 2014-12-13 2017-11-16 Xi'an Modern Chemistry Research Institute Process for the preparation of 2, 3, 3, 3-tetrafluoropropene
CN112871192A (zh) * 2019-11-29 2021-06-01 浙江蓝天环保高科技股份有限公司 一种氮磷修饰的颗粒炭载双金属催化剂、制备方法及应用
CN114870858A (zh) * 2022-03-04 2022-08-09 中化蓝天集团有限公司 一种抗积碳催化剂、其制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211028B (zh) * 2010-04-08 2014-01-29 中化蓝天集团有限公司 合成三氟乙烯用加氢脱氯催化剂和其载体的新型预处理工艺
CN105457651B (zh) * 2014-09-05 2018-12-11 浙江蓝天环保高科技股份有限公司 一种加氢脱氯催化剂及其在三氟氯乙烯制备中的应用
CN112742409B (zh) * 2019-10-31 2023-07-11 中国石油化工股份有限公司 用于降硫醇的催化剂及其制备方法和应用以及降低汽油中硫醇的方法
CN112876336B (zh) * 2019-11-29 2022-05-06 浙江蓝天环保高科技股份有限公司 一种三氟氯乙烯的制备方法
CN112657508B (zh) * 2020-12-04 2022-07-08 中化蓝天集团有限公司 一种核壳结构的加氢脱氯催化剂、其制备方法及应用
CN112547070B (zh) * 2020-12-10 2022-09-16 中化蓝天集团有限公司 一种制备三氟氯乙烯的催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524297A (zh) * 2007-07-03 2014-01-22 纳幕尔杜邦公司 加氢脱氯制备二氢氟化烯烃的方法
US20170327441A1 (en) * 2014-12-13 2017-11-16 Xi'an Modern Chemistry Research Institute Process for the preparation of 2, 3, 3, 3-tetrafluoropropene
CN106140193A (zh) * 2015-04-01 2016-11-23 浙江蓝天环保高科技股份有限公司 一种用于cfc和hcfc加氢脱氯的催化剂的制备方法
CN112871192A (zh) * 2019-11-29 2021-06-01 浙江蓝天环保高科技股份有限公司 一种氮磷修饰的颗粒炭载双金属催化剂、制备方法及应用
CN114870858A (zh) * 2022-03-04 2022-08-09 中化蓝天集团有限公司 一种抗积碳催化剂、其制备方法及应用

Also Published As

Publication number Publication date
CN114870858A (zh) 2022-08-09
CN114870858B (zh) 2024-07-16

Similar Documents

Publication Publication Date Title
WO2023165606A1 (zh) 一种抗积碳催化剂、其制备方法及应用
Coq et al. Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance
Saadatjou et al. Ruthenium nanocatalysts for ammonia synthesis: a review
Pietrowski Recent developments in heterogeneous selective hydrogenation of halogenated nitroaromatic compounds to halogenated anilines
Babu et al. Characterization and reactivity of alumina-supported Pd catalysts for the room-temperature hydrodechlorination of chlorobenzene
JP4970634B2 (ja) 有機化合物の変換反応において使用可能な担持触媒
EP2081683B1 (en) Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
JP7453924B2 (ja) アンモニア分解触媒及びそれを用いたアンモニアの分解方法
CN105921148A (zh) 一种用于饱和烷烃脱氢制烯烃的催化剂及其制备方法和应用
WO2021164099A1 (zh) 一种选择性加氢催化剂及其制备方法和应用
CN112657508B (zh) 一种核壳结构的加氢脱氯催化剂、其制备方法及应用
CN108290139A (zh) 卤代硝基芳香族化合物的催化氢化方法
JP5706335B2 (ja) アルキンの対応するアルケンへの選択的接触水素化
CN111013604B (zh) 一种催化加氢脱氯用催化剂及其制备方法和应用
WO2018123786A1 (ja) 低温酸化触媒
CN115957752A (zh) 一种活性炭负载高分散双金属粒子催化剂及其制备方法和应用
CN112657507B (zh) 一种高选择性加氢脱氯催化剂、其制备方法及应用
JP5865380B2 (ja) NOx浄化触媒の製造方法
CN114308085A (zh) 临氢脱氯催化合成三氟氯乙烯或三氟乙烯用催化剂及制备方法
WO2024131370A1 (zh) 一种光催化配位锚定一步合成单原子金属催化剂的方法
EP2913105A1 (en) Catalyst for the oxidative conversion of hydrocarbon gases to produce carbon monoxide and hydrogen
CN117643917A (zh) 一种低温协同脱除二噁英和颗粒物的催化滤料、制备方法及其应用
Yang et al. Nano porous PtRu alloy catalyst with enhanced synergic effect for selective hydrogenation of chloronitrobenzene
WO2022116618A1 (zh) 核壳结构的加氢脱氯催化剂、其制备方法及其在三氟氯乙烯连续制备中的应用
Zhao et al. Synthesis of carbon-supported Pd/SnO2 catalyst for highly selective hydrogenation of 2, 4-difluoronitrobenzene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763004

Country of ref document: EP

Kind code of ref document: A1