WO2023163109A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2023163109A1
WO2023163109A1 PCT/JP2023/006747 JP2023006747W WO2023163109A1 WO 2023163109 A1 WO2023163109 A1 WO 2023163109A1 JP 2023006747 W JP2023006747 W JP 2023006747W WO 2023163109 A1 WO2023163109 A1 WO 2023163109A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
fuel cell
ion capacitor
converter
power
Prior art date
Application number
PCT/JP2023/006747
Other languages
English (en)
French (fr)
Inventor
翔太 山脇
威 下村
剛 佐久間
正高 増野
哲夫 吉田
拓也 佐藤
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2023163109A1 publication Critical patent/WO2023163109A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K8/00Arrangement or mounting of propulsion units not provided for in one of the preceding main groups
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • This disclosure relates to working machines.
  • the driving method of the fuel cell system is roughly divided into the driving method using the fuel cell as the main power source and the driving method using the power storage device as the main power source.
  • a drive system using a fuel cell as a main power source is a system that combines a high-output fuel cell as the main power source and a small power storage device that assists the fuel cell.
  • a driving method using a power storage device as a main power source is a method in which a large-capacity power storage device serving as a main power source and a small fuel cell for supplying power to the power storage device are combined.
  • Patent Document 1 discloses a crane having a fuel cell unit driven by a power storage device as a main power source.
  • the crane disclosed in Patent Document 1 has an electric double layer capacitor (EDLC) called a supercapacitor as an electric storage device.
  • EDLC electric double layer capacitor
  • a drive system that uses a power storage device as the main power source requires a large-capacity power storage device, which increases the volume of the fuel cell system and makes it difficult to mount it on a work machine.
  • the state of charge (SOC) fluctuates greatly.
  • the SOC fluctuates significantly, the power storage device deteriorates more quickly and has a shorter life.
  • it is necessary to reduce the fluctuation of the SOC with respect to the power storage capacity.
  • An object of the present disclosure is to provide a working machine equipped with a fuel cell system that is durable and capable of suppressing an increase in size.
  • a fuel cell a lithium ion capacitor connected in parallel to the fuel cell, an electric motor fed from at least one of the fuel cell and the lithium ion capacitor, and a target section driven by the electric motor.
  • a work machine is provided.
  • a working machine equipped with a fuel cell system that is durable and capable of suppressing an increase in size is provided.
  • FIG. 1 is a perspective view showing a working machine according to the first embodiment.
  • FIG. FIG. 2 is a diagram showing the drive system of the work machine according to the first embodiment.
  • FIG. 3 is a diagram showing a cooling system for a working machine according to the first embodiment.
  • FIG. 4 is a diagram showing the responsiveness of the internal combustion engine.
  • FIG. 5 is a diagram showing responsiveness of the fuel cell.
  • FIG. 6 is a diagram showing a working machine drive system according to the second embodiment.
  • FIG. 7 is a diagram showing a working machine drive system according to the third embodiment.
  • FIG. 8 is a diagram showing a working machine drive system according to a fourth embodiment.
  • FIG. 9 is a diagram showing a working machine drive system according to a fifth embodiment.
  • FIG. 1 is a perspective view showing a working machine 1 according to this embodiment.
  • the working machine 1 is a hydraulic excavator, which is a type of construction machine.
  • the work machine 1 includes a traveling body 2, a revolving body 3 supported by the traveling body 2, a work machine 4 supported by the revolving body 3, and a work machine cylinder for operating the work machine 4. 5.
  • the running body 2 has drive wheels 2A and crawler belts 2B rotated by the drive wheels 2A.
  • the rotation of the crawler belt 2B allows the work machine 1 to travel on the work site.
  • the revolving body 3 revolves while being supported by the traveling body 2 .
  • the work machine 4 includes a boom 4A connected to the revolving body 3, an arm 4B connected to the boom 4A, and a bucket 4C connected to the arm 4B.
  • the work machine cylinder 5 is a hydraulic cylinder that generates power to operate the work machine 4 .
  • the work machine cylinder 5 includes a boom cylinder 5A that operates the boom 4A, an arm cylinder 5B that operates the arm 4B, and a bucket cylinder 5C that operates the bucket 4C.
  • FIG. 2 is a diagram showing the drive system 6A of the work machine 1 according to this embodiment.
  • the drive system 6A includes a drive-type fuel cell system 7 using a fuel cell 8 as a main power source.
  • the driving method using the fuel cell 8 as the main power source is a method in which a large-output fuel cell 8 serving as the main power source and a small power storage device for assisting the fuel cell 8 are combined.
  • the power storage device is a lithium ion capacitor 9 (LiC: Lithium ion Capacitor).
  • the drive system 6A includes a fuel cell 8, a lithium ion capacitor 9 connected in parallel to the fuel cell 8, a pump drive motor 10 and a swing motor 11 powered by at least one of the fuel cell 8 and the lithium ion capacitor 9, Prepare.
  • Each of the pump drive motor 10 and the swing motor 11 is an electric motor.
  • the drive system 6A also includes a power line 13 connected to each of the pump drive motor 10 and the swing motor 11, a first connection line 14 connecting the fuel cell 8 and a first portion 13A of the power line 13, a lithium A DC/DC converter 16 ( a first DC/DC converter);
  • the fuel cell 8 generates electricity by electrochemically reacting hydrogen and oxygen.
  • a fuel cell 8 is arranged on the revolving body 3 .
  • a hydrogen tank 12 is connected to the fuel cell 8 .
  • a hydrogen tank 12 is arranged on the revolving body 3 .
  • At least a portion of the revolving body 3 is provided with an outside air introduction port.
  • the fuel cell 8 generates electric power by causing an electrochemical reaction between the hydrogen supplied from the hydrogen tank 12 and the oxygen contained in the air introduced from the outside air inlet.
  • the lithium ion capacitor 9 stores regenerative energy.
  • the lithium ion capacitor 9 stores regenerated energy of the turning motor 11 .
  • the lithium ion capacitor 9 is charged by one or both of the regenerated voltage of the turning motor 11 and the voltage of the fuel cell 8 .
  • the lithium ion capacitor 9 is charged with regenerated power from the swing motor 11 supplied via the second connection line 15 .
  • the lithium ion capacitor 9 is charged with power from the fuel cell 8 supplied via the DC/DC converter 16 and the second connection line 15 .
  • a lithium ion capacitor 9 is arranged on the revolving body 3 .
  • Lithium ion capacitor 9 has a positive electrode and a negative electrode.
  • the material of the positive electrode and the material of the negative electrode of the lithium ion capacitor 9 are different.
  • the positive electrode of the lithium ion capacitor 9 is often made of the same material as the positive electrode of the electric double layer capacitor (EDLC).
  • the negative electrode of the lithium ion capacitor 9 is often made of the same material as the negative electrode of the lithium ion secondary battery.
  • the positive electrode of the lithium ion capacitor 9 is made of activated carbon, for example, and the negative electrode of the lithium ion capacitor 9 is made of carbon, for example.
  • the lithium ion capacitor 9 has a higher energy density [Wh/L] than the electric double layer capacitor.
  • Energy density refers to the amount of energy that can be extracted per unit volume.
  • the lithium ion capacitor 9 is superior in durability and heat resistance to electric double layer capacitors.
  • the lithium ion capacitor 9 has better responsiveness than the lithium ion secondary battery. That is, the lithium ion capacitor 9 can charge and discharge faster than the lithium ion secondary battery.
  • the pump drive motor 10 operates based on power supplied from one or both of the fuel cell 8 and the lithium ion capacitor 9.
  • the working machine 1 has a hydraulic pump 19 .
  • the pump drive motor 10 generates power to operate the hydraulic pump 19 .
  • the hydraulic pump 19 is operated by a pump drive motor 10 which is an electric motor.
  • the hydraulic pump 19 is an example of a target part of the working machine 1 driven by an electric motor.
  • Hydraulic oil discharged from the hydraulic pump 19 is supplied to the working machine cylinder 5 and the traveling motor 2C of the traveling body 2 via the control valve 20, respectively.
  • the traveling motor 2C is operated by supplying hydraulic oil to the traveling motor 2C.
  • the travel motor 2C is a hydraulic motor that rotates the drive wheels 2A of the travel body 2 .
  • the swing motor 11 operates based on power supplied from one or both of the fuel cell 8 and the lithium ion capacitor 9.
  • the turning motor 11 generates power for turning the turning body 3 .
  • the revolving body 3 is revolved by a revolving motor 11 which is an electric motor.
  • the revolving body 3 is an example of a target portion of the work machine 1 driven by an electric motor.
  • the power line 13 is connected to each of the pump drive motor 10 and the swing motor 11 .
  • a portion of power line 13 is connected to pump drive motor 10 via inverter 17 .
  • Another part of the power line 13 is connected to the swing motor 11 via an inverter 18 .
  • the fuel cell 8 and the lithium ion capacitor 9 are connected in parallel to the power line 13 .
  • the fuel cell 8 and the first portion 13A of the power line 13 are connected via the first connection line 14 .
  • the lithium ion capacitor 9 and the second portion 13B of the power line 13 are connected via the second connection line 15 .
  • the fuel cell 8 supplies power to the pump drive motor 10 and the swing motor 11 through the first connection line 14 and the power line 13, respectively.
  • the lithium ion capacitor 9 can supply power to the pump drive motor 10 and the swing motor 11 via the second connection line 15 and the power line 13, respectively.
  • the DC/DC converter 16 is arranged on the first connection line 14 between the fuel cell 8 and the power line 13 .
  • a DC/DC converter 16 converts the voltage of the fuel cell 8 .
  • Electric power from the fuel cell 8 is supplied to the pump drive motor 10 and the swing motor 11 through a DC/DC converter 16.
  • the DC/DC converter 16 boosts the voltage of the fuel cell 8 at a predetermined boost ratio. .
  • the voltage of the fuel cell 8 boosted by the DC/DC converter 16 is applied to the inverter 17 connected to the pump drive motor 10 and the inverter 18 connected to the swing motor 11 .
  • the DC/DC converter 16 is a unidirectional DC/DC converter capable of outputting power only from the primary side to the secondary side.
  • the primary side of the DC/DC converter 16 is the low voltage side (fuel cell 8 side).
  • the secondary side of the DC/DC converter 16 is the high voltage side (power line 13 side).
  • the inverter 17 is connected to part of the power line 13 .
  • the inverter 17 converts the DC current from the power line 13 into a three-phase AC current and supplies the pump drive motor 10 with the three-phase AC current.
  • Pump drive motor 10 is driven based on the three-phase AC current supplied from inverter 17 .
  • the inverter 18 is connected to part of the power line 13 .
  • the inverter 18 converts the DC current from the power line 13 into a three-phase AC current and supplies the three-phase AC current to the swing motor 11 .
  • the swing motor 11 is driven based on the three-phase alternating current supplied from the inverter 18 .
  • the fuel cell 8 is the main power source of the drive system 6A.
  • the fuel cell 8 supplies electric power to each of the pump drive motor 10 and the swing motor 11 .
  • Each of the pump drive motor 10 and the swing motor 11 is driven exclusively by electric power supplied from the fuel cell 8 . That is, most of the electric power for driving the pump drive motor 10 and the turning motor 11 is provided by the electric power output from the fuel cell 8 .
  • the power output from the lithium ion capacitor 9 is used when the pump drive motor 10 and the swing motor 11 require instantaneous responsiveness.
  • FIG. 3 is a diagram showing the cooling system 21 of the work machine 1 according to this embodiment.
  • the cooling system 21 cools the first cooling system 23 that cools the hydraulic system 22 of the work machine 1, the lithium ion capacitor 9, the DC/DC converter 16, and the components 24 of the fuel cell system 7. and a third cooling system 27 for cooling the fuel cell 8 of the fuel cell system 7 .
  • An example of the component 24 of the fuel cell system 7 is an air compressor driven to supply air to the fuel cell 8 from the outside air inlet.
  • the first cooling system 23 includes a radiator 23A that cools the refrigerant, a circulation passage 23B that includes the radiator 23A and the hydraulic system 22, and a circulation pump 23C that circulates the refrigerant in the circulation passage 23B.
  • the second cooling system 25 includes a radiator 25A that cools the refrigerant, a circulation passage 25B that includes the radiator 25A, the lithium ion capacitor 9, the DC/DC converter 16, and the component 24, and a circulation that circulates the refrigerant in the circulation passage 25B. and a pump 25C.
  • the third cooling system 27 includes a radiator 27A that cools the coolant, a circulation channel 27B that includes the radiator 27A and the fuel cell 8, and a circulation pump 27C that circulates the coolant in the circulation channel 27B.
  • the lithium ion capacitor 9 has excellent heat resistance compared to, for example, a lithium ion secondary battery and an electric double layer capacitor.
  • the upper limit of usable temperature of the lithium ion secondary battery and the electric double layer capacitor is temperature T1
  • the upper limit of usable temperature of the lithium ion capacitor 9 is temperature T2, which is higher than temperature T1.
  • temperature T1 is approximately 65°C
  • temperature T2 is approximately 80°C. Therefore, it is not necessary to provide a dedicated cooling system for the lithium ion capacitor 9 .
  • the lithium ion capacitor 9 is cooled by a second cooling system 25 for cooling the DC/DC converter 16 and the components 24 of the fuel cell system 7 . That is, the lithium ion capacitor 9 , the DC/DC converter 16 and the components 24 of the fuel cell system 7 share the second cooling system 25 . This prevents the cooling system 21 from increasing in size.
  • the work machine 1 is provided with the fuel cell system 7 that has durability and can suppress an increase in size.
  • the fuel cell system 7 is driven by a fuel cell 8 as a main power source.
  • the fuel cell system 7 that uses the fuel cell 8 as the main power source does not require a large-capacity power storage device. Therefore, an increase in size of the fuel cell system 7 is suppressed.
  • the lithium ion capacitor 9 is superior in durability and heat resistance as compared with the lithium ion secondary battery and the electric double layer capacitor.
  • the energy density [Wh/L] of the lithium ion capacitor 9 is higher than that of the electric double layer capacitor.
  • the power density [W/L] of the lithium ion capacitor 9 is higher than those of the lithium ion secondary battery and the electric double layer capacitor. Therefore, the lithium ion capacitor 9 can ensure a high power storage capacity without being enlarged.
  • the responsiveness of the fuel cell 8 is slower than that of the internal combustion engine.
  • the fuel cell 8 is properly assisted by the lithium ion capacitor 9 by using the lithium ion capacitor 9 as the power storage device.
  • FIG. 4 is a diagram showing the responsiveness of the internal combustion engine.
  • FIG. 5 is a diagram showing responsiveness of the fuel cell. 4 and 5, the horizontal axis indicates time and the vertical axis indicates output.
  • the internal combustion engine or the fuel cell starts outputting energy when an operator operates a control lever arranged in the cab of the working machine 1 .
  • the operating lever is operated at time ta.
  • energy corresponding to the amount of operation of the control lever is output at time tb.
  • energy corresponding to the amount of operation of the control lever is output at time tc.
  • the time from time ta to time tc is longer than the time from time ta to time tb.
  • the response of fuel cells is slower than that of internal combustion engines.
  • the power storage device In a drive system using a fuel cell as a main power source, the power storage device outputs energy so as to assist the fuel cell 8 until the fuel cell 8 outputs energy (electric power) corresponding to the operation amount of the control lever. . That is, the power storage device outputs energy so as to compensate for the shortage of the energy output from the fuel cell 8 with respect to the operation amount of the control lever. As shown in FIGS. 4 and 5, the amount of storage device energy required to assist the fuel cell 8 is greater than the amount of storage device energy required to assist the internal combustion engine.
  • the energy density of the electric double layer capacitor is smaller than the energy density of the lithium ion capacitor 9, so if the volume is equivalent to that when assisting the internal combustion engine, the electric double layer It becomes difficult for the capacitor to fully assist the fuel cell 8 . That is, it is difficult for the electric double layer capacitor to sufficiently make up for the shortage of the energy output from the fuel cell 8 .
  • a lithium ion capacitor 9 is used as the power storage device.
  • the energy density of the lithium ion capacitor 9 is higher than that of the electric double layer capacitor. Therefore, the lithium ion capacitor 9 can sufficiently assist the fuel cell 8 . That is, the lithium ion capacitor 9 can output energy to sufficiently compensate for the shortage of the energy output from the fuel cell 8 .
  • FIG. 6 is a diagram showing the drive system 6B of the working machine 1 according to this embodiment.
  • the difference between the drive system 6A according to the first embodiment described above and the drive system 6B according to the present embodiment is that the drive system 6B has a second capacitor between the lithium ion capacitor 9 and the second portion 13B of the power line 13.
  • the point is that it has a DC/DC converter 28 (second DC/DC converter) arranged on the connection line 15 .
  • DC/DC converter 16 and DC/DC converter 28 are connected in parallel with each other.
  • the power from the lithium ion capacitor 9 is supplied to the pump drive motor 10 and the swing motor 11 via the DC/DC converter 28. supplied to each of the The voltage of the lithium ion capacitor 9 boosted by the DC/DC converter 28 is applied to the inverter 17 connected to the pump drive motor 10 and the inverter 18 connected to the swing motor 11 .
  • DC/DC converter 28 boosts the voltage of lithium ion capacitor 9 at a predetermined boost ratio.
  • the voltage of the lithium ion capacitor 9 boosted by the DC/DC converter 28 is applied to the inverter 17 connected to the pump drive motor 10 and the inverter 18 connected to the swing motor 11 .
  • the DC/DC converter 28 is a bi-directional DC/DC converter capable of outputting power from the primary side to the secondary side and from the secondary side to the primary side.
  • the primary side of the DC/DC converter 28 is the low voltage side (lithium ion capacitor 9 side).
  • the secondary side of the DC/DC converter 28 is the high voltage side (power line 13 side).
  • the DC/DC converter 28 steps down the regenerated voltage of the swing motor 11 at a predetermined step-down ratio.
  • the lithium ion capacitor 9 is charged by applying the regenerated voltage of the swing motor 11 stepped down by the DC/DC converter 28 to the lithium ion capacitor 9 .
  • the lithium ion capacitor 9 is charged by one or both of the regenerative voltage of the turning motor 11 and the voltage of the fuel cell 8.
  • the lithium ion capacitor 9 is charged with regenerated power from the swing motor 11 supplied via the second connection line 15 .
  • the lithium ion capacitor 9 is charged with electric power from the fuel cell 8 supplied via the DC/DC converter 16 , the second connection line 15 and the DC/DC converter 28 .
  • the voltage of the lithium ion capacitor 9 is boosted by the DC/DC converter 28, and the voltage of the lithium ion capacitor 9 boosted by the DC/DC converter 28 is applied to the pump drive motor 10. It is applied to each of the connected inverter 17 and the inverter 18 connected to the turning motor 11 . As a result, even if the voltage of the lithium ion capacitor 9 is low, an appropriate voltage for driving the pump drive motor 10 and the swing motor 11 can be obtained.
  • FIG. 7 is a diagram showing the drive system 6C of the working machine 1 according to this embodiment.
  • the drive system 6C includes a power line 13 connected to each of the pump drive motor 10 and the swing motor 11, a first connection line 14 connecting the fuel cell 8 and a first portion 13A of the power line 13, and a lithium ion capacitor. 9 and the third portion 14A of the first connection line 14, and a DC/DC converter 16A ( a primary side DC/DC converter) and a DC/DC converter 16B (secondary side DC/DC converter) arranged in the first connection line 14 between the third portion 14A and the first portion 13A.
  • a DC/DC converter 16A a primary side DC/DC converter
  • DC/DC converter 16B secondary side DC/DC converter
  • the DC/DC converter 16A is a unidirectional DC/DC converter capable of outputting power only from the primary side to the secondary side.
  • the primary side of the DC/DC converter 16A is the low voltage side (fuel cell 8 side).
  • the secondary side of the DC/DC converter 16A is the high voltage side (third portion 14A side).
  • the DC/DC converter 16A boosts the voltage of the fuel cell 8 at a predetermined boost ratio.
  • the DC/DC converter 16B is a bidirectional DC/DC converter capable of outputting power from the primary side to the secondary side and outputting power from the secondary side to the primary side.
  • the primary side of the DC/DC converter 16B is the low voltage side (lithium ion capacitor 9 side).
  • the secondary side of the DC/DC converter 16B is the high voltage side (power line 13 side).
  • the DC/DC converter 16B boosts the voltage of the fuel cell 8 and the voltage of the lithium ion capacitor 9 at a predetermined boost ratio.
  • the DC/DC converter 16B steps down the regenerated voltage of the swing motor 11 at a predetermined step-down ratio.
  • Electric power from the fuel cell 8 is supplied to the pump drive motor 10 and the swing motor 11 via DC/DC converters 16A and 16B, respectively.
  • the voltage of fuel cell 8 boosted by DC/DC converter 16A and DC/DC converter 16B is applied to inverter 17 connected to pump drive motor 10 and inverter 18 connected to swing motor 11, respectively.
  • the power from the lithium ion capacitor 9 is supplied to the pump drive motor 10 and the swing motor 11 via the DC/DC converter 16B.
  • the voltage of the lithium ion capacitor 9 boosted by the DC/DC converter 16B is applied to the inverter 17 connected to the pump drive motor 10 and the inverter 18 connected to the swing motor 11, respectively.
  • the regenerated voltage of the swing motor 11 stepped down by the DC/DC converter 16B is applied to the lithium ion capacitor 9, thereby charging the lithium ion capacitor 9.
  • the lithium ion capacitor 9 is charged with electric power from the fuel cell 8 supplied via the DC/DC converter 16A and the third connection line 29 .
  • a plurality of DC/DC converters (16A, 16B) are arranged on the first connection line 14, even if the step-up ratio of one DC/DC converter is low, Adequate voltage is obtained from the fuel cell 8 to drive the pump drive motor 10 and swing motor 11 .
  • the DC/DC converter 16B even if the voltage of the lithium ion capacitor 9 is low, a proper voltage for driving the pump drive motor 10 and the swing motor 11 can be obtained from the lithium ion capacitor 9.
  • the number of DC/DC converters arranged between the fuel cell 8 and the lithium ion capacitor 9 is only one, the DC/DC converter 16A. Good charging efficiency.
  • FIG. 8 is a diagram showing the drive system 6D of the working machine 1 according to this embodiment.
  • the drive system 6D includes a power line 13 connected to each of the pump drive motor 10 and the swing motor 11, a first connection line 14 connecting the fuel cell 8 and a first portion 13A of the power line 13, and a lithium ion capacitor. 9 and the second portion 13B of the power line 13, and a DC/DC converter 16C (first DC /DC converter).
  • the DC/DC converter 16C is a unidirectional DC/DC converter capable of outputting power only from the primary side to the secondary side.
  • the primary side of the DC/DC converter 16C is the low voltage side (fuel cell 8 side).
  • the secondary side of the DC/DC converter 16C is the high voltage side (power line 13 side).
  • the drive system 6D includes a boosting lithium ion capacitor 90 and a switch device 30 that changes the connection state between the fuel cell 8 and the boosting lithium ion capacitor 90.
  • the switch device 30 has a first state in which the fuel cell 8 and the DC/DC converter 16C are connected in series via a step-up lithium ion capacitor 90, and a state in which the fuel cell 8 and the DC/DC converter 16C are connected in series with each other. It switches to the second state in which it is connected in series without going through 90 .
  • the switch device 30 switches to the third state in which the electric power from the fuel cell 8 is supplied to the boosting lithium ion capacitor 90 so that the boosting lithium ion capacitor 90 is charged.
  • the switch device 30 includes a first switch member 31 connected to the fuel cell 8 and a second switch member 32 connected to the DC/DC converter 16C.
  • the first terminal 41 and the third terminal 43 are connected to the negative electrode of the boosting lithium ion capacitor 90 .
  • the first terminal 41 and the third terminal 43 are connected in parallel to the negative electrode of the boosting lithium ion capacitor 90 .
  • the second terminal 42 is connected to the positive electrode of the boosting lithium ion capacitor 90 .
  • the first switch member 31 is connected to one of the first terminal 41 and the second terminal 42 .
  • the second switch member 32 is connected to one of the second terminal 42 and the third terminal 43 .
  • the fuel cell 8 is connected to one of the first terminal 41 and the second terminal 42 via the first switch member 31 .
  • the DC/DC converter 16C is connected to one of the second terminal 42 and the third terminal 43 via the second switch member 32 .
  • the first state includes a state in which the first switch member 31 is connected to the first terminal 41 and the second switch member 32 is connected to the second terminal 42.
  • the fuel cell 8, the step-up lithium ion capacitor 90 and the DC/DC converter 16C are connected in series.
  • the second state includes a state in which the first switch member 31 is connected to the first terminal 41 and the second switch member 32 is connected to the third terminal 43. Also, the second state includes a state in which both the first switch member 31 and the second switch member 32 are connected to the second terminal 42 . In the second state, the fuel cell 8 and the DC/DC converter 16C are connected in series without the step-up lithium ion capacitor 90 interposed therebetween.
  • the third state includes a state in which the first switch member 31 is connected to the second terminal 42 and the second switch member 32 is connected to the third terminal 43.
  • the power from the fuel cell 8 is supplied to the boosting lithium ion capacitor 90, and the power from the boosting lithium ion capacitor 90 is supplied to the pump drive motor 10 and the swing motor 11 through the DC/DC converter 16C. supplied to The DC/DC converter 16C boosts the voltage of the fuel cell 8 at a predetermined boost ratio.
  • the voltage of the fuel cell 8 is boosted by the boosting lithium ion capacitor 90, and the voltage of the fuel cell 8 boosted by the boosting lithium ion capacitor 90 is further boosted by the DC/DC converter 16C.
  • the voltage of the fuel cell 8 boosted by the boosting lithium ion capacitor 90 and the DC/DC converter 16C is applied to the inverter 17 connected to the pump drive motor 10 and the inverter 18 connected to the swing motor 11, respectively.
  • power from the fuel cell 8 is input to the negative electrode of the boosting lithium ion capacitor 90, and power output from the positive electrode of the boosting lithium ion capacitor 90 is input to the DC/DC converter 16C.
  • power from the fuel cell 8 is input to the positive electrode of the boosting lithium ion capacitor 90, and power output from the negative electrode of the boosting lithium ion capacitor 90 is input to the DC/DC converter 16C.
  • the boosting lithium ion capacitor 90 is charged with power from the fuel cell 8 .
  • the voltage of the fuel cell 8 stepped down by the step-up lithium ion capacitor 90 is input to the DC/DC converter 16C.
  • the lithium ion capacitor 9 is charged by one or both of the regenerative voltage of the turning motor 11 and the voltage of the fuel cell 8.
  • the lithium ion capacitor 9 is charged with regenerated power from the swing motor 11 supplied via the second connection line 15 .
  • the lithium ion capacitor 9 is charged with electric power from the fuel cell 8 supplied via the DC/DC converter 16C and the second connection line 15 .
  • the switch device 30 when the current output from the fuel cell 8 is small, the voltage of the fuel cell 8 is high, and when the current output from the fuel cell 8 is large, the voltage of the fuel cell 8 is low. That is, the voltage of the fuel cell 8 fluctuates.
  • the switch device 30 when the voltage of the fuel cell 8 is low, the switch device 30 operates so as to enter the first state. In the first state, the fuel cell 8 and the step-up lithium ion capacitor 90 are connected in series. The step-up lithium ion capacitor 90 provides an appropriate voltage for driving the pump drive motor 10 and the swing motor 11 without excessively increasing the step-up ratio of the DC/DC converter 16C.
  • the switching device 30 When the voltage of the fuel cell 8 is high, the switching device 30 is activated so as to enter the third state.
  • the fuel cell 8 and the step-up lithium ion capacitor 90 are connected in series in the opposite direction to that in the first state. Since the voltage of the fuel cell 8 is stepped down by the step-up lithium ion capacitor 90, the voltage input to the DC/DC converter 16C is suppressed. When the voltage of the fuel cell 8 is intermediate, the switching device 30 is activated so as to enter the second state.
  • FIG. 9 is a diagram showing the drive system 6E of the work machine 1 according to this embodiment.
  • a drive system 6E according to the present embodiment is a modification of the drive system 6A according to the above-described first embodiment.
  • the electric motors supplied with power from at least one of the fuel cell 8 and the lithium ion capacitor 9 include the pump drive motor 10 and the swing motor 11 .
  • the electric motor supplied with power from at least one of the fuel cell 8 and the lithium ion capacitor 9 may be only the pump drive motor 10 .
  • the swing motor 110 that swings the swing body 3 is a hydraulic motor operated by hydraulic oil discharged from the hydraulic pump 19 .
  • the hydraulic pump 19 discharges hydraulic oil to be supplied to the swing motor 110 .
  • Hydraulic oil discharged from the hydraulic pump 19 is supplied to the swing motor 110 via the control valve 20 .
  • the pump drive motor 10 may be the only electric motor to which power is supplied from.
  • the working machine 1 is a hydraulic excavator.
  • the work machine 1 may be a bulldozer or a wheel loader.
  • Cooling System 22 Hydraulic system 23 First cooling system 23A Radiator 23B Circulation flow path 23C Circulation pump 24 Component 25 Second cooling system 25A Radiator 25B Circulation flow path 25C... circulation pump, 27... third cooling system, 27A... radiator, 27B... circulation flow path, 27C... circulation pump, 28... DC/DC converter (second DC/DC converter), 29... third connection line, 30... Switch device 31... First switch member 32... Second switch member 41... First terminal 42... Second terminal 43... Third terminal 90... Lithium ion capacitor for boosting 110... Turning motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

作業機械は、燃料電池と、燃料電池に並列接続されるリチウムイオンキャパシタと、燃料電池及びリチウムイオンキャパシタの少なくとも一方から給電される電動モータと、電動モータにより駆動される対象部と、を備える。

Description

作業機械
 本開示は、作業機械に関する。
 カーボンニュートラルに向けて作業機械のゼロエミッション化が急務である。ゼロエミッション化の手段として燃料電池システムを搭載した作業機械が提案されている。
 燃料電池システムの駆動方式は、燃料電池を主動力源とする駆動方式と、蓄電装置を主動力源とする駆動方式とに大別される。燃料電池を主動力源とする駆動方式は、主動力源となる大出力の燃料電池と燃料電池をアシストする小型の蓄電装置とを組み合わせた方式である。蓄電装置を主動力源とする駆動方式は、主動力源となる大容量の蓄電装置と蓄電装置に電力を供給する小型の燃料電池とを組み合わせた方式である。
 特許文献1には、蓄電装置を主動力源とする駆動方式の燃料電池ユニットを有するクレーンが開示されている。特許文献1に開示されているクレーンは、蓄電器として、スーパーキャパシタと呼ばれる電気二重層キャパシタ(EDLC:Electric Double Layer Capacitor)を有する。
米国特許出願公開第2013/0038249号明細書
 蓄電装置を主動力源とする駆動方式では、大容量の蓄電装置が必要となるため、燃料電池システムの容積が大きくなり、作業機械への搭載性が厳しくなる。また、大容量の蓄電装置を主動力源として用いるため、充電率(SOC:State Of Charge)の変動が大きい。一般に、SOCの変動が大きいと、蓄電装置の劣化が早まり寿命が低下する。蓄電装置の寿命の低下を抑制するためには、蓄電容量に対するSOCの変動を小さくする必要がある。SOCの変動を小さくするためには、蓄電装置を更に大容量にする必要がある。
 本開示は、耐久性を有し大型化を抑制できる燃料電池システムを備える作業機械を提供することを目的とする。
 本開示に従えば、燃料電池と、燃料電池に並列接続されるリチウムイオンキャパシタと、燃料電池及びリチウムイオンキャパシタの少なくとも一方から給電される電動モータと、電動モータにより駆動される対象部と、を備える、作業機械が提供される。
 本開示によれば、耐久性を有し大型化を抑制できる燃料電池システムを備える作業機械が提供される。
図1は、第1実施形態に係る作業機械を示す斜視図である。 図2は、第1実施形態に係る作業機械の駆動システムを示す図である。 図3は、第1実施形態に係る作業機械の冷却システムを示す図である。 図4は、内燃エンジンの応答性を示す図である。 図5は、燃料電池の応答性を示す図である。 図6は、第2実施形態に係る作業機械の駆動システムを示す図である。 図7は、第3実施形態に係る作業機械の駆動システムを示す図である。 図8は、第4実施形態に係る作業機械の駆動システムを示す図である。 図9は、第5実施形態に係る作業機械の駆動システムを示す図である。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示は実施形態に限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[第1実施形態]
 第1実施形態について説明する。
<作業機械>
 図1は、本実施形態に係る作業機械1を示す斜視図である。本実施形態において、作業機械1は、建設機械の一種である油圧ショベルである。
 図1に示すように、作業機械1は、走行体2と、走行体2に支持される旋回体3と、旋回体3に支持される作業機4と、作業機4を動作させる作業機シリンダ5とを備える。
 走行体2は、駆動輪2Aと、駆動輪2Aにより回転される履帯2Bとを有する。履帯2Bが回転することにより、作業機械1は、作業現場を走行することができる。
 旋回体3は、走行体2に支持された状態で旋回する。
 作業機4は、旋回体3に連結されるブーム4Aと、ブーム4Aに連結されるアーム4Bと、アーム4Bに連結されるバケット4Cとを含む。
 作業機シリンダ5は、作業機4を動作させる動力を発生する油圧シリンダである。作業機シリンダ5は、ブーム4Aを動作させるブームシリンダ5Aと、アーム4Bを動作させるアームシリンダ5Bと、バケット4Cを動作させるバケットシリンダ5Cとを含む。
<燃料電池システム>
 図2は、本実施形態に係る作業機械1の駆動システム6Aを示す図である。本実施形態において、駆動システム6Aは、燃料電池8を主動力源とする駆動方式の燃料電池システム7を含む。燃料電池8を主動力源とする駆動方式は、主動力源となる大出力の燃料電池8と、燃料電池8をアシストする小型の蓄電装置とを組み合わせた方式である。本実施形態において、蓄電装置は、リチウムイオンキャパシタ9(LiC:Lithium ion Capacitor)である。
 駆動システム6Aは、燃料電池8と、燃料電池8に並列に接続されるリチウムイオンキャパシタ9と、燃料電池8及びリチウムイオンキャパシタ9の少なくとも一方から給電されるポンプ駆動モータ10及び旋回モータ11と、を備える。ポンプ駆動モータ10及び旋回モータ11のそれぞれは、電動モータである。
 また、駆動システム6Aは、ポンプ駆動モータ10及び旋回モータ11のそれぞれに接続される電力ライン13と、燃料電池8と電力ライン13の第1部分13Aとを接続する第1接続ライン14と、リチウムイオンキャパシタ9と電力ライン13の第2部分13Bとを接続する第2接続ライン15と、燃料電池8と第1部分13Aとの間の第1接続ライン14に配置されるDC/DCコンバータ16(第1DC/DCコンバータ)と、を備える。
 燃料電池8は、水素と酸素とを電気化学反応させて発電する。燃料電池8は、旋回体3に配置される。燃料電池8に水素タンク12が接続される。水素タンク12は、旋回体3に配置される。旋回体3の少なくとも一部に外気導入口が設けられる。燃料電池8は、水素タンク12から供給された水素と、外気導入口から導入された空気に含まれる酸素とを電気化学反応させて発電する。
 リチウムイオンキャパシタ9は、回生エネルギーを蓄える。本実施形態において、リチウムイオンキャパシタ9は、旋回モータ11の回生エネルギーを蓄える。リチウムイオンキャパシタ9は、旋回モータ11の回生電圧及び燃料電池8の電圧の一方又は両方により充電される。リチウムイオンキャパシタ9は、第2接続ライン15を介して供給される旋回モータ11からの回生電力により充電される。リチウムイオンキャパシタ9は、DC/DCコンバータ16及び第2接続ライン15を介して供給される燃料電池8からの電力により充電される。リチウムイオンキャパシタ9は、旋回体3に配置される。リチウムイオンキャパシタ9は、正極と負極とを有する。リチウムイオンキャパシタ9の正極の材料と負極の材料とは、異なる。リチウムイオンキャパシタ9の正極は、電気二重層キャパシタ(EDLC)の正極と同じ材料で形成される場合が多い。リチウムイオンキャパシタ9の負極は、リチウムイオン二次電池の負極と同じ材料で形成される場合が多い。リチウムイオンキャパシタ9の正極は、例えば活性炭により形成され、リチウムイオンキャパシタ9の負極は、例えば炭素により形成される。リチウムイオンキャパシタ9の充放電において、負極で化学反応が発生し、正極で化学反応が実質的に発生しない。
 リチウムイオンキャパシタ9は、電気二重層キャパシタよりも、高いエネルギー密度[Wh/L]を有する。エネルギー密度とは、単位体積当たりに取り出せるエネルギー量をいう。また、リチウムイオンキャパシタ9は、電気二重層キャパシタよりも、耐久性及び耐熱性に優れている。
 リチウムイオンキャパシタ9は、リチウムイオン二次電池よりも、応答性に優れている。すなわち、リチウムイオンキャパシタ9は、リチウムイオン二次電池よりも、高速に充放電できる。
 ポンプ駆動モータ10は、燃料電池8及びリチウムイオンキャパシタ9の一方又は両方から供給される電力に基づいて作動する。作業機械1は、油圧ポンプ19を備える。ポンプ駆動モータ10は、油圧ポンプ19を作動させる動力を発生する。油圧ポンプ19は、電動モータであるポンプ駆動モータ10により作動する。油圧ポンプ19は、電動モータにより駆動される作業機械1の対象部の一例である。
 油圧ポンプ19から吐出された作動油は、制御弁20を介して作業機シリンダ5及び走行体2の走行モータ2Cのそれぞれに供給される。作動油が作業機シリンダ5に供給されることにより、作業機シリンダ5が作動する。作動油が走行モータ2Cに供給されることにより、走行モータ2Cが作動する。走行モータ2Cは、走行体2の駆動輪2Aを回転させる油圧モータである。
 旋回モータ11は、燃料電池8及びリチウムイオンキャパシタ9の一方又は両方から供給される電力に基づいて作動する。旋回モータ11は、旋回体3を旋回させる動力を発生する。旋回体3は、電動モータである旋回モータ11により旋回する。旋回体3は、電動モータにより駆動される作業機械1の対象部の一例である。
 電力ライン13は、ポンプ駆動モータ10及び旋回モータ11のそれぞれに接続される。電力ライン13の一部は、インバータ17を介してポンプ駆動モータ10に接続される。電力ライン13の他の一部は、インバータ18を介して旋回モータ11に接続される。
 燃料電池8とリチウムイオンキャパシタ9とは、電力ライン13に対して相互に並列接続される。燃料電池8と電力ライン13の第1部分13Aとは、第1接続ライン14を介して接続される。リチウムイオンキャパシタ9と電力ライン13の第2部分13Bとは、第2接続ライン15を介して接続される。燃料電池8は、第1接続ライン14及び電力ライン13を介して、ポンプ駆動モータ10及び旋回モータ11のそれぞれに給電する。リチウムイオンキャパシタ9は、第2接続ライン15及び電力ライン13を介して、ポンプ駆動モータ10及び旋回モータ11のそれぞれに給電することができる。
 DC/DCコンバータ16は、燃料電池8と電力ライン13との間の第1接続ライン14に配置される。DC/DCコンバータ16は、燃料電池8の電圧を変換する。燃料電池8からの電力がDC/DCコンバータ16を介してポンプ駆動モータ10及び旋回モータ11のそれぞれに供給される、DC/DCコンバータ16は、燃料電池8の電圧を所定の昇圧比で昇圧する。DC/DCコンバータ16により昇圧された燃料電池8の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。
 DC/DCコンバータ16は、一次側から二次側のみに電力を出力可能な単方向DC/DCコンバータである。DC/DCコンバータ16の一次側は、低電圧側(燃料電池8側)である。DC/DCコンバータ16の二次側は、高電圧側(電力ライン13側)である。
 インバータ17は、電力ライン13の一部に接続される。インバータ17は、電力ライン13からの直流電流を三相交流電流に変換して、ポンプ駆動モータ10に供給する。ポンプ駆動モータ10は、インバータ17から供給された三相交流電流に基づいて駆動する。
 インバータ18は、電力ライン13の一部に接続される。インバータ18は、電力ライン13からの直流電流を三相交流電流に変換して、旋回モータ11に供給する。旋回モータ11は、インバータ18から供給された三相交流電流に基づいて駆動する。
 燃料電池8は、駆動システム6Aの主動力源である。燃料電池8は、ポンプ駆動モータ10及び旋回モータ11のそれぞれに電力を供給する。ポンプ駆動モータ10及び旋回モータ11のそれぞれは、専ら燃料電池8から供給された電力により駆動する。すなわち、ポンプ駆動モータ10及び旋回モータ11のそれぞれを駆動させるための電力の大部分は、燃料電池8から出力される電力により担われる。リチウムイオンキャパシタ9から出力される電力は、ポンプ駆動モータ10及び旋回モータ11のそれぞれの瞬時応答性が必要なときに使用される。
<冷却システム>
 図3は、本実施形態に係る作業機械1の冷却システム21を示す図である。図3に示すように、冷却システム21は、作業機械1の油圧システム22を冷却する第1冷却系23と、リチウムイオンキャパシタ9、DC/DCコンバータ16、及び燃料電池システム7のコンポーネント24を冷却する第2冷却系25と、燃料電池システム7の燃料電池8を冷却する第3冷却系27とを有する。燃料電池システム7のコンポーネント24として、上述の外気導入口から燃料電池8に空気が供給されるように駆動するエアコンプレッサが例示される。
 第1冷却系23は、冷媒を冷却するラジエータ23Aと、ラジエータ23A及び油圧システム22を含む循環流路23Bと、循環流路23Bにおいて冷媒を循環させる循環ポンプ23Cとを含む。
 第2冷却系25は、冷媒を冷却するラジエータ25Aと、ラジエータ25A、リチウムイオンキャパシタ9、DC/DCコンバータ16、及びコンポーネント24を含む循環流路25Bと、循環流路25Bにおいて冷媒を循環させる循環ポンプ25Cとを含む。
 第3冷却系27は、冷媒を冷却するラジエータ27Aと、ラジエータ27A、及び燃料電池8を含む循環流路27Bと、循環流路27Bにおいて冷媒を循環させる循環ポンプ27Cとを含む。
 リチウムイオンキャパシタ9は、例えばリチウムイオン二次電池及び電気二重層キャパシタに比べて耐熱性に優れる。リチウムイオン二次電池及び電気二重層キャパシタの使用可能温度の上限値を温度T1とした場合、リチウムイオンキャパシタ9の使用可能温度の上限値は、温度T1よりも高い温度T2である。例えば、温度T1は、約65℃であり、温度T2は、約80℃である。そのため、リチウムイオンキャパシタ9の専用の冷却系を設けなくても済む。図3に示すように、本実施形態において、リチウムイオンキャパシタ9は、DC/DCコンバータ16及び燃料電池システム7のコンポーネント24を冷却するための第2冷却系25により冷却される。すなわち、リチウムイオンキャパシタ9と、DC/DCコンバータ16と、燃料電池システム7のコンポーネント24とは、第2冷却系25を共用する。これにより、冷却システム21の大型化が抑制される。
<効果>
 以上説明したように、本実施形態によれば、耐久性を有し大型化を抑制できる燃料電池システム7を備える作業機械1が提供される。本実施形態において、燃料電池システム7は、燃料電池8を主動力源とする駆動方式である。蓄電装置を主動力源とする駆動方式とは異なり、燃料電池8を主動力源とする駆動方式の燃料電池システム7においては、大容量の蓄電装置が不要である。そのため、燃料電池システム7の大型化が抑制される。また、リチウムイオンキャパシタ9は、リチウムイオン二次電池及び電気二重層キャパシタに比べて、耐久性及び耐熱性に優れている。また、リチウムイオンキャパシタ9のエネルギー密度[Wh/L]は、電気二重層キャパシタのエネルギー密度よりも高い。リチウムイオンキャパシタ9の出力密度[W/L]は、リチウムイオン二次電池及び電気二重層キャパシタの出力密度よりも高い。そのため、リチウムイオンキャパシタ9は、大型化されなくても、高い蓄電容量を確保することができる。
 一般に、燃料電池8の応答性は、内燃エンジンの応答性よりも遅い。本実施形態においては、蓄電装置としてリチウムイオンキャパシタ9が使用されることにより、燃料電池8は、リチウムイオンキャパシタ9に適正にアシストされる。
 図4は、内燃エンジンの応答性を示す図である。図5は、燃料電池の応答性を示す図である。図4及び図5において、横軸は時間を示し、縦軸は出力を示す。内燃エンジン又は燃料電池は、作業機械1の運転室に配置されている操作レバーがオペレータに操作されることにより、エネルギーの出力を開始する。図4及び図5に示す例において、操作レバーが時点taにおいて操作される。図4に示すように、内燃エンジンにおいては、操作レバーの操作量に応じたエネルギーが時点tbにおいて出力される。図5に示すように、燃料電池においては、操作レバーの操作量に応じたエネルギーが時点tcにおいて出力される。時点taから時点tcまでの時間は、時点taから時点tbまでの時間よりも長い。このように、燃料電池の応答性は、内燃エンジンの応答性よりも遅い。
 燃料電池を主動力源とする駆動方式において、蓄電装置は、操作レバーの操作量に応じたエネルギー(電力)が燃料電池8から出力されるまで、燃料電池8をアシストするようにエネルギーを出力する。すなわち、蓄電装置は、操作レバーの操作量に対する燃料電池8から出力されるエネルギーの不足分を補うようにエネルギーを出力する。図4及び図5に示すように、燃料電池8をアシストするために必要な蓄電装置のエネルギー量は、内燃エンジンをアシストするために必要な蓄電装置のエネルギー量よりも大きい。
 仮に、蓄電装置として電気二重層キャパシタが使用される場合、電気二重層キャパシタのエネルギー密度がリチウムイオンキャパシタ9のエネルギー密度よりも小さいので、内燃エンジンをアシストする場合と同等の体積だとすると、電気二重層キャパシタは、燃料電池8を十分にアシストすることが困難となる。すなわち、電気二重層キャパシタでは、燃料電池8から出力されるエネルギーの不足分を十分に補うことが困難となる。
 本実施形態においては、蓄電装置としてリチウムイオンキャパシタ9が使用される。リチウムイオンキャパシタ9のエネルギー密度は、電気二重層キャパシタのエネルギー密度よりも大きい。そのため、リチウムイオンキャパシタ9は、燃料電池8を十分にアシストすることができる。すなわち、リチウムイオンキャパシタ9は、燃料電池8から出力されるエネルギーの不足分を十分に補うようにエネルギーを出力することができる。
[第2実施形態]
 第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その構成要素の説明を簡略又は省略する。
 図6は、本実施形態に係る作業機械1の駆動システム6Bを示す図である。上述の第1実施形態に係る駆動システム6Aと本実施形態に係る駆動システム6Bとの相違点は、駆動システム6Bが、リチウムイオンキャパシタ9と電力ライン13の第2部分13Bとの間の第2接続ライン15に配置されるDC/DCコンバータ28(第2DC/DCコンバータ)を有する点にある。DC/DCコンバータ16とDC/DCコンバータ28とは、相互に並列接続される。
 本実施形態においては、リチウムイオンキャパシタ9が燃料電池8から出力される電力の不足分を補う場合、リチウムイオンキャパシタ9からの電力がDC/DCコンバータ28を介してポンプ駆動モータ10及び旋回モータ11のそれぞれに供給される。DC/DCコンバータ28により昇圧されたリチウムイオンキャパシタ9の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。DC/DCコンバータ28は、リチウムイオンキャパシタ9の電圧を所定の昇圧比で昇圧する。DC/DCコンバータ28により昇圧されたリチウムイオンキャパシタ9の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。
 DC/DCコンバータ28は、一次側から二次側に電力を出力可能であり、二次側から一次側に電力を出力可能な双方向DC/DCコンバータである。DC/DCコンバータ28の一次側は、低電圧側(リチウムイオンキャパシタ9側)である。DC/DCコンバータ28の二次側は、高電圧側(電力ライン13側)である。DC/DCコンバータ28は、旋回モータ11の回生電圧を所定の降圧比で降圧する。DC/DCコンバータ28により降圧された旋回モータ11の回生電圧がリチウムイオンキャパシタ9に印加されることにより、リチウムイオンキャパシタ9が充電される。
 本実施形態において、リチウムイオンキャパシタ9は、旋回モータ11の回生電圧及び燃料電池8の電圧の一方又は両方により充電される。リチウムイオンキャパシタ9は、第2接続ライン15を介して供給される旋回モータ11からの回生電力により充電される。リチウムイオンキャパシタ9は、DC/DCコンバータ16、第2接続ライン15、及びDC/DCコンバータ28を介して供給される燃料電池8からの電力により充電される。
 以上説明したように、本実施形態によれば、リチウムイオンキャパシタ9の電圧がDC/DCコンバータ28により昇圧され、DC/DCコンバータ28により昇圧されたリチウムイオンキャパシタ9の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。これにより、リチウムイオンキャパシタ9の電圧が低くても、ポンプ駆動モータ10及び旋回モータ11を駆動するための適正な電圧が得られる。
[第3実施形態]
 第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その構成要素の説明を簡略又は省略する。
 図7は、本実施形態に係る作業機械1の駆動システム6Cを示す図である。駆動システム6Cは、ポンプ駆動モータ10及び旋回モータ11のそれぞれに接続される電力ライン13と、燃料電池8と電力ライン13の第1部分13Aとを接続する第1接続ライン14と、リチウムイオンキャパシタ9と第1接続ライン14の第3部分14Aとを接続する第3接続ライン29と、燃料電池8と第3部分14Aとの間の第1接続ライン14に配置されるDC/DCコンバータ16A(一次側DC/DCコンバータ)と、第3部分14Aと第1部分13Aとの間の第1接続ライン14に配置されるDC/DCコンバータ16B(二次側DC/DCコンバータ)と、を備える。
 DC/DCコンバータ16Aは、一次側から二次側のみに電力を出力可能な単方向DC/DCコンバータである。DC/DCコンバータ16Aの一次側は、低電圧側(燃料電池8側)である。DC/DCコンバータ16Aの二次側は、高電圧側(第3部分14A側)である。DC/DCコンバータ16Aは、燃料電池8の電圧を所定の昇圧比で昇圧する。
 DC/DCコンバータ16Bは、一次側から二次側に電力を出力可能であり、二次側から一次側に電力を出力可能な双方向DC/DCコンバータである。DC/DCコンバータ16Bの一次側は、低電圧側(リチウムイオンキャパシタ9側)である。DC/DCコンバータ16Bの二次側は、高電圧側(電力ライン13側)である。DC/DCコンバータ16Bは、燃料電池8の電圧及びリチウムイオンキャパシタ9の電圧を所定の昇圧比で昇圧する。DC/DCコンバータ16Bは、旋回モータ11の回生電圧を所定の降圧比で降圧する。
 燃料電池8からの電力がDC/DCコンバータ16A及びDC/DCコンバータ16Bを介してポンプ駆動モータ10及び旋回モータ11のそれぞれに供給される。DC/DCコンバータ16AとDC/DCコンバータ16Bとにより昇圧された燃料電池8の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。
 リチウムイオンキャパシタ9が燃料電池8から出力される電力の不足分を補う場合、リチウムイオンキャパシタ9からの電力がDC/DCコンバータ16Bを介してポンプ駆動モータ10及び旋回モータ11のそれぞれに供給される。DC/DCコンバータ16Bにより昇圧されたリチウムイオンキャパシタ9の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。
 DC/DCコンバータ16Bにより降圧された旋回モータ11の回生電圧がリチウムイオンキャパシタ9に印加されることにより、リチウムイオンキャパシタ9が充電される。
 また、リチウムイオンキャパシタ9は、DC/DCコンバータ16A及び第3接続ライン29を介して供給された燃料電池8からの電力により充電される。
 以上説明したように、本実施形態によれば、第1接続ライン14に複数のDC/DCコンバータ(16A,16B)が配置されるので、1つのDC/DCコンバータの昇圧比が低くても、ポンプ駆動モータ10及び旋回モータ11を駆動するための適正な電圧が燃料電池8から得られる。また、DC/DCコンバータ16Bにより、リチウムイオンキャパシタ9の電圧が低くても、電圧がポンプ駆動モータ10及び旋回モータ11を駆動するための適正な電圧がリチウムイオンキャパシタ9から得られる。また、燃料電池8の電力によりリチウムイオンキャパシタ9を充電する場合、燃料電池8とリチウムイオンキャパシタ9との間に配置されるDC/DCコンバータの数がDC/DCコンバータ16Aの1つだけなので、充電の効率が良い。
[第4実施形態]
 第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その構成要素の説明を簡略又は省略する。
 図8は、本実施形態に係る作業機械1の駆動システム6Dを示す図である。駆動システム6Dは、ポンプ駆動モータ10及び旋回モータ11のそれぞれに接続される電力ライン13と、燃料電池8と電力ライン13の第1部分13Aとを接続する第1接続ライン14と、リチウムイオンキャパシタ9と電力ライン13の第2部分13Bとを接続する第2接続ライン15と、燃料電池8と第1部分13Aとの間の第1接続ライン14に配置されるDC/DCコンバータ16C(第1DC/DCコンバータ)、を備える。
 本実施形態において、DC/DCコンバータ16Cは、一次側から二次側のみに電力を出力可能な単方向DC/DCコンバータである。DC/DCコンバータ16Cの一次側は、低電圧側(燃料電池8側)である。DC/DCコンバータ16Cの二次側は、高電圧側(電力ライン13側)である。
 本実施形態において、駆動システム6Dは、昇圧用リチウムイオンキャパシタ90と、燃料電池8と昇圧用リチウムイオンキャパシタ90との接続状態を変更するスイッチ装置30とを備える。
 スイッチ装置30は、燃料電池8とDC/DCコンバータ16Cとが昇圧用リチウムイオンキャパシタ90を介して直列接続される第1状態と、燃料電池8とDC/DCコンバータ16Cとが昇圧用リチウムイオンキャパシタ90を介さずに直列接続される第2状態とを切り換える。
 また、スイッチ装置30は、昇圧用リチウムイオンキャパシタ90が充電されるように燃料電池8からの電力が昇圧用リチウムイオンキャパシタ90に供給される第3状態に切り換える。
 スイッチ装置30は、燃料電池8に接続される第1スイッチ部材31と、DC/DCコンバータ16Cに接続される第2スイッチ部材32とを含む。
 昇圧用リチウムイオンキャパシタ90の負極に第1端子41及び第3端子43が接続される。第1端子41と第3端子43とは、昇圧用リチウムイオンキャパシタ90の負極に対して相互に並列接続される。昇圧用リチウムイオンキャパシタ90の正極に第2端子42が接続される。
 第1スイッチ部材31は、第1端子41及び第2端子42の一方に接続される。第2スイッチ部材32は、第2端子42及び第3端子43の一方に接続される。燃料電池8は、第1スイッチ部材31を介して第1端子41及び第2端子42の一方に接続される。DC/DCコンバータ16Cは、第2スイッチ部材32を介して第2端子42及び第3端子43の一方に接続される。
 第1状態は、第1スイッチ部材31が第1端子41に接続され、第2スイッチ部材32が第2端子42に接続される状態を含む。第1状態において、燃料電池8と昇圧用リチウムイオンキャパシタ90とDC/DCコンバータ16Cとは、直列接続される。
 第2状態は、第1スイッチ部材31が第1端子41に接続され、第2スイッチ部材32が第3端子43に接続される状態を含む。また、第2状態は、第1スイッチ部材31及び第2スイッチ部材32の両方が第2端子42に接続される状態を含む。第2状態において、燃料電池8とDC/DCコンバータ16Cとは、昇圧用リチウムイオンキャパシタ90を介さずに直列接続される。
 第3状態は、第1スイッチ部材31が第2端子42に接続され、第2スイッチ部材32が第3端子43に接続される状態を含む。
 第1状態において、燃料電池8からの電力が昇圧用リチウムイオンキャパシタ90に供給され、昇圧用リチウムイオンキャパシタ90からの電力がDC/DCコンバータ16Cを介してポンプ駆動モータ10及び旋回モータ11のそれぞれに供給される。DC/DCコンバータ16Cは、燃料電池8の電圧を所定の昇圧比で昇圧する。第1状態において、燃料電池8の電圧が昇圧用リチウムイオンキャパシタ90により昇圧され、昇圧用リチウムイオンキャパシタ90により昇圧された燃料電池8の電圧が、DC/DCコンバータ16Cにより更に昇圧される。昇圧用リチウムイオンキャパシタ90及びDC/DCコンバータ16Cにより昇圧された燃料電池8の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。第1状態において、燃料電池8からの電力が昇圧用リチウムイオンキャパシタ90の負極に入力され、昇圧用リチウムイオンキャパシタ90の正極から出力された電力がDC/DCコンバータ16Cに入力される。
 第2状態において、燃料電池8からの電力がDC/DCコンバータ16Cを介してポンプ駆動モータ10及び旋回モータ11のそれぞれに供給される。第2状態において、DC/DCコンバータ16Cにより昇圧された燃料電池8の電圧がポンプ駆動モータ10に接続されたインバータ17及び旋回モータ11に接続されたインバータ18のそれぞれに印加される。
 第3状態において、燃料電池8からの電力が昇圧用リチウムイオンキャパシタ90の正極に入力され、昇圧用リチウムイオンキャパシタ90の負極から出力された電力がDC/DCコンバータ16Cに入力される。昇圧用リチウムイオンキャパシタ90は、燃料電池8からの電力により充電される。昇圧用リチウムイオンキャパシタ90により降圧された燃料電池8の電圧は、DC/DCコンバータ16Cに入力される。
 本実施形態において、リチウムイオンキャパシタ9は、旋回モータ11の回生電圧及び燃料電池8の電圧の一方又は両方により充電される。リチウムイオンキャパシタ9は、第2接続ライン15を介して供給される旋回モータ11からの回生電力により充電される。リチウムイオンキャパシタ9は、DC/DCコンバータ16C及び第2接続ライン15を介して供給される燃料電池8からの電力により充電される。
 一般に、燃料電池8から出力される電流が小さい場合、燃料電池8の電圧が高くなり、燃料電池8から出力される電流が大きい場合、燃料電池8の電圧が低くなる。すなわち、燃料電池8の電圧は、変動する。本実施形態においては、燃料電池8の電圧が低い場合、第1状態になるようにスイッチ装置30が作動する。第1状態においては、燃料電池8と昇圧用リチウムイオンキャパシタ90とが直列接続される。昇圧用リチウムイオンキャパシタ90により、DC/DCコンバータ16Cの昇圧比を過度に高めなくても、ポンプ駆動モータ10及び旋回モータ11を駆動するための適正な電圧が得られる。燃料電池8の電圧が高い場合、第3状態になるようにスイッチ装置30が作動する。第3状態においては、燃料電池8と昇圧用リチウムイオンキャパシタ90とが第1状態とは逆向きに直列接続される。燃料電池8の電圧が昇圧用リチウムイオンキャパシタ90により降圧されるので、DC/DCコンバータ16Cに入力される電圧の電動が抑制される。燃料電池8の電圧が中程度の場合、第2状態になるようにスイッチ装置30が作動する。
[第5実施形態]
 第5実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その構成要素の説明を簡略又は省略する。
 図9は、本実施形態に係る作業機械1の駆動システム6Eを示す図である。本実施形態に係る駆動システム6Eは、上述の第1実施形態に係る駆動システム6Aの変形例である。上述の実施形態においては、燃料電池8及びリチウムイオンキャパシタ9の少なくとも一方から給電される電動モータが、ポンプ駆動モータ10及び旋回モータ11を含むこととした。燃料電池8及びリチウムイオンキャパシタ9の少なくとも一方から給電される電動モータが、ポンプ駆動モータ10のみでもよい。
 本実施形態において、旋回体3を旋回させる旋回モータ110は、油圧ポンプ19から吐出された作動油により作動する油圧モータである。油圧ポンプ19は、旋回モータ110に供給される作動油を吐出する。油圧ポンプ19から吐出された作動油は、制御弁20を介して旋回モータ110に供給される。
 なお、上述の第2実施形態に係る駆動システム6B、第3実施形態に係る駆動システム6C、及び第4実施形態に係る駆動システム6Dのそれぞれにおいても、燃料電池8及びリチウムイオンキャパシタ9の少なくとも一方から給電される電動モータが、ポンプ駆動モータ10のみでもよい。
[その他の実施形態]
 上述の実施形態において、作業機械1が油圧ショベルであることとした。作業機械1は、ブルドーザでもよいし、ホイールローダでもよい。
 1…作業機械、2…走行体、2A…駆動輪、2B…履帯、2C…走行モータ、3…旋回体、4…作業機、4A…ブーム、4B…アーム、4C…バケット、5…作業機シリンダ、5A…ブームシリンダ、5B…アームシリンダ、5C…バケットシリンダ、6A…駆動システム、6B…駆動システム、6C…駆動システム、6D…駆動システム、6E…駆動システム、7…燃料電池システム、8…燃料電池、9…リチウムイオンキャパシタ、10…ポンプ駆動モータ(電動モータ)、11…旋回モータ(電動モータ)、12…水素タンク、13…電力ライン、13A…第1部分、13B…第2部分、14…第1接続ライン、14A…第3部分、15…第2接続ライン、16…DC/DCコンバータ(第1DC/DCコンバータ)、16A…DC/DCコンバータ(一次側DC/DCコンバータ)、16B…DC/DCコンバータ(二次側DC/DCコンバータ)、16C…DC/DCコンバータ(第1DC/DCコンバータ)、17…インバータ、18…インバータ、19…油圧ポンプ、20…制御弁、21…冷却システム、22…油圧システム、23…第1冷却系、23A…ラジエータ、23B…循環流路、23C…循環ポンプ、24…コンポーネント、25…第2冷却系、25A…ラジエータ、25B…循環流路、25C…循環ポンプ、27…第3冷却系、27A…ラジエータ、27B…循環流路、27C…循環ポンプ、28…DC/DCコンバータ(第2DC/DCコンバータ)、29…第3接続ライン、30…スイッチ装置、31…第1スイッチ部材、32…第2スイッチ部材、41…第1端子、42…第2端子、43…第3端子、90…昇圧用リチウムイオンキャパシタ、110…旋回モータ。

Claims (18)

  1.  燃料電池と、
     前記燃料電池に並列接続されるリチウムイオンキャパシタと、
     前記燃料電池及び前記リチウムイオンキャパシタの少なくとも一方から給電される電動モータと、
     前記電動モータにより駆動される対象部と、を備える、
     作業機械。
  2.  前記電動モータに接続される電力ラインと、
     前記燃料電池と前記電力ラインの第1部分とを接続する第1接続ラインと、
     前記リチウムイオンキャパシタと前記電力ラインの第2部分とを接続する第2接続ラインと、
     前記燃料電池と前記第1部分との間の前記第1接続ラインに配置される第1DC/DCコンバータと、を備え、
     前記燃料電池からの電力が前記第1DC/DCコンバータを介して前記電動モータに供給される、
     請求項1に記載の作業機械。
  3.  前記リチウムイオンキャパシタと前記第2部分との間の前記第2接続ラインに配置される第2DC/DCコンバータを備え、
     前記リチウムイオンキャパシタからの電力が前記第2DC/DCコンバータを介して前記電動モータに供給される、
     請求項2に記載の作業機械。
  4.  前記リチウムイオンキャパシタは、前記第1DC/DCコンバータ及び前記第2接続ラインを介して供給される前記燃料電池からの電力により充電される、
     請求項2又は請求項3に記載の作業機械。
  5.  前記電動モータに接続される電力ラインと、
     前記燃料電池と前記電力ラインの第1部分とを接続する第1接続ラインと、
     前記リチウムイオンキャパシタと前記第1接続ラインの第3部分とを接続する第3接続ラインと、
     前記燃料電池と前記第3部分との間の前記第1接続ラインに配置される一次側DC/DCコンバータと、
     前記第3部分と前記第1部分との間の前記第1接続ラインに配置される二次側DC/DCコンバータと、を備え、
     前記燃料電池からの電力が前記一次側DC/DCコンバータ及び前記二次側DC/DCコンバータを介して前記電動モータに供給される、
     請求項1に記載の作業機械。
  6.  前記リチウムイオンキャパシタからの電力が前記二次側DC/DCコンバータを介して前記電動モータに供給される、
     請求項5に記載の作業機械。
  7.  前記リチウムイオンキャパシタは、前記一次側DC/DCコンバータ及び前記第3接続ラインを介して供給された前記燃料電池からの電力により充電される、
     請求項5又は請求項6に記載の作業機械。
  8.  昇圧用リチウムイオンキャパシタと、
     前記燃料電池と第1DC/DCコンバータとが前記昇圧用リチウムイオンキャパシタを介して直列接続される第1状態と、前記燃料電池と第1DC/DCコンバータとが前記昇圧用リチウムイオンキャパシタを介さずに直列接続される第2状態とを切り換えるスイッチ装置と、を備える、
     請求項2に記載の作業機械。
  9.  前記第1状態において、前記燃料電池からの電力が前記昇圧用リチウムイオンキャパシタに供給され、前記昇圧用リチウムイオンキャパシタからの電力が前記第1DC/DCコンバータを介して前記電動モータに供給され、
     前記第2状態において、前記燃料電池からの電力が前記第1DC/DCコンバータを介して前記電動モータに供給される、
     請求項8に記載の作業機械。
  10.  前記スイッチ装置は、前記昇圧用リチウムイオンキャパシタが充電されるように前記燃料電池からの電力が前記昇圧用リチウムイオンキャパシタに供給される第3状態に切り換える、
     請求項8又は請求項9に記載の作業機械。
  11.  前記第1状態において、前記燃料電池からの電力が前記昇圧用リチウムイオンキャパシタの負極に入力され、前記昇圧用リチウムイオンキャパシタの正極から出力された電力が前記第1DC/DCコンバータに入力され、
     前記第3状態において、前記燃料電池からの電力が前記昇圧用リチウムイオンキャパシタの正極に入力され、前記昇圧用リチウムイオンキャパシタの負極から出力された電力が前記第1DC/DCコンバータに入力される、
     請求項10に記載の作業機械。
  12.  前記燃料電池の電圧を変換するDC/DCコンバータを冷却する冷却系を備え、
     前記リチウムイオンキャパシタは、前記冷却系により冷却される、
     請求項1に記載の作業機械。
  13.  油圧ポンプを備え、
     前記対象部は、前記電動モータにより作動する前記油圧ポンプを含む、
     請求項1から請求項12のいずれか一項に記載の作業機械。
  14.  作業機と、
     前記作業機を動作させる作業機シリンダと、を備え、
     前記油圧ポンプは、前記作業機シリンダに供給される作動油を吐出する、
     請求項13に記載の作業機械。
  15.  駆動輪を有する走行体と、
     前記駆動輪を回転させる走行モータと、を備え、
     前記油圧ポンプは、前記走行モータに供給される作動油を吐出する、
     請求項13又は請求項14に記載の作業機械。
  16.  前記走行体に支持される旋回体と、
     前記旋回体を旋回させる旋回モータと、を備え、
     前記油圧ポンプは、前記旋回モータに供給される作動油を吐出する、
     請求項15に記載の作業機械。
  17.  走行体と、
     前記走行体に支持される旋回体と、を備え、
     前記対象部は、前記電動モータにより旋回する旋回体を含む、
     請求項1から請求項12のいずれか一項に記載の作業機械。
  18.  前記旋回体を旋回する前記電動モータの回生電圧により前記リチウムイオンキャパシタが充電される、
     請求項17に記載の作業機械。
PCT/JP2023/006747 2022-02-28 2023-02-24 作業機械 WO2023163109A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029190 2022-02-28
JP2022029190A JP2023125211A (ja) 2022-02-28 2022-02-28 作業機械

Publications (1)

Publication Number Publication Date
WO2023163109A1 true WO2023163109A1 (ja) 2023-08-31

Family

ID=87766152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006747 WO2023163109A1 (ja) 2022-02-28 2023-02-24 作業機械

Country Status (2)

Country Link
JP (1) JP2023125211A (ja)
WO (1) WO2023163109A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128485A1 (ja) * 2012-02-29 2013-09-06 株式会社 日立製作所 電源装置
WO2014027527A1 (ja) * 2012-08-16 2014-02-20 日産自動車株式会社 電力供給システム及び電力供給システムの制御方法
KR20200117439A (ko) * 2019-04-04 2020-10-14 울산대학교 산학협력단 선회 에너지 회생 기능을 갖는 수소연료전지 굴삭기
JP2021118064A (ja) * 2020-01-23 2021-08-10 株式会社豊田自動織機 燃料電池システム
JP2021147859A (ja) * 2020-03-18 2021-09-27 住友建機株式会社 ショベル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128485A1 (ja) * 2012-02-29 2013-09-06 株式会社 日立製作所 電源装置
WO2014027527A1 (ja) * 2012-08-16 2014-02-20 日産自動車株式会社 電力供給システム及び電力供給システムの制御方法
KR20200117439A (ko) * 2019-04-04 2020-10-14 울산대학교 산학협력단 선회 에너지 회생 기능을 갖는 수소연료전지 굴삭기
JP2021118064A (ja) * 2020-01-23 2021-08-10 株式会社豊田自動織機 燃料電池システム
JP2021147859A (ja) * 2020-03-18 2021-09-27 住友建機株式会社 ショベル

Also Published As

Publication number Publication date
JP2023125211A (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
CN104340082B (zh) 燃料电池车
JP4480908B2 (ja) ハイブリッドショベル
JP4847043B2 (ja) 燃料電池車両の制御方法
US6678972B2 (en) Hybrid construction equipment
US8119298B2 (en) Fuel cell system and mobile body
JP5370956B2 (ja) 燃料電池電源装置
CN104205454B (zh) 燃料电池系统
US8394517B2 (en) Fuel cell system and control method of the system
KR20080044097A (ko) 수퍼커패시터를 이용한 연료전지 차량의 회생제동 시스템
JP2000295715A (ja) 電気自動車の電源システム
KR20110062606A (ko) 멀티구동시스템을 갖는 연료전지차량의 제어장치 및 방법
US9849805B2 (en) Fuel cell vehicle
JP2007157586A (ja) 燃料電池システムおよびその制御方法
US10364549B2 (en) Hybrid construction machine
JP4240234B1 (ja) 燃料電池システム
JP2021057127A (ja) 燃料電池システム、燃料電池システムの制御方法、およびプログラム
JP4399838B2 (ja) 動力供給装置の運転制御装置
JP2021057128A (ja) 燃料電池システム、燃料電池システムの制御方法、およびプログラム
WO2023163109A1 (ja) 作業機械
JP2015163022A (ja) 作業車両
JP5512423B2 (ja) 燃料電池自動車
JP3719205B2 (ja) 電源装置
JP2021052479A (ja) 車両の電源システム
JP4433671B2 (ja) 2次電池を有する燃料電池システム
CN115476703B (zh) 一种适用于电动车动力系统的复合电源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760107

Country of ref document: EP

Kind code of ref document: A1