WO2023162409A1 - コード状ヒータと面状ヒータ - Google Patents

コード状ヒータと面状ヒータ Download PDF

Info

Publication number
WO2023162409A1
WO2023162409A1 PCT/JP2022/045613 JP2022045613W WO2023162409A1 WO 2023162409 A1 WO2023162409 A1 WO 2023162409A1 JP 2022045613 W JP2022045613 W JP 2022045613W WO 2023162409 A1 WO2023162409 A1 WO 2023162409A1
Authority
WO
WIPO (PCT)
Prior art keywords
cord
wire
shaped heater
inner layer
thickness
Prior art date
Application number
PCT/JP2022/045613
Other languages
English (en)
French (fr)
Inventor
基行 大場
智也 太田
元宏 森
Original Assignee
株式会社クラベ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022026247A external-priority patent/JP2023122598A/ja
Priority claimed from JP2022186963A external-priority patent/JP2024075526A/ja
Application filed by 株式会社クラベ filed Critical 株式会社クラベ
Publication of WO2023162409A1 publication Critical patent/WO2023162409A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables

Definitions

  • the present invention relates to a cord-shaped heater that can be suitably used for electric blankets, electric carpets, car seat heaters, steering heaters, etc., and has improved end workability, and a planar heater that uses this cord-shaped heater.
  • Cord-shaped heaters are used in electric blankets, electric carpets, car seat heaters, steering heaters, etc.
  • a generally known cord-shaped heater is formed by first spirally winding a heater wire around a core wire and then covering it with an insulating layer.
  • the heater wire is formed by arranging a plurality of conductor strands such as copper wires or nickel-chromium alloy wires, or by twisting a plurality of conductor strands.
  • a heat-sealing member is formed around the heater wire, and the heat-sealing member bonds the heater wire to a base material formed of, for example, nonwoven fabric or aluminum foil (see, for example, Patent Document 1).
  • Patent Documents 4 and 5 have been filed by the applicant as technologies related to the present invention.
  • JP 2003-174952 A Kurabe JP-A-61-47087: Matsushita Electric Industrial Japanese Unexamined Patent Publication No. 2008-311111: Kurabe Japanese Unexamined Patent Publication No. 2010-15691: Kurabe International Publication WO2011/001953: Kurabe
  • Patent Documents 2 and 3 described above describe a plurality of materials for the insulating coating of the conductor wire.
  • Conductor strands that are mainly used are called enameled wires, and the general material for the insulation coating of enameled wires is polyurethane resin.
  • Polyurethane resins have low heat resistance and insufficient flame retardancy.
  • hard materials such as silicone resins and polyimide resins, which are excellent in heat resistance and flame resistance, are used as materials for the insulation film. It is not easy to process the ends of conductor wires using silicone resin or polyimide resin. Silicone resins and polyimide resins have high heat resistance and excellent flame retardancy.
  • an insulating film made of silicone resin or polyimide resin cannot be removed because it does not melt at the melting temperature of solder.
  • silicone resin and polyimide resin are hard, so the pressure of crimping does not destroy the insulating coating, and the conductor wire and the lead wire are not electrically connected. Therefore, it is necessary to remove the insulating film of silicone resin or polyimide resin in a polishing step separate from the connecting step.
  • the conductor wire used for the cord-shaped heater is extremely thin, for example, having an outer diameter of 0.1 mm or less. In order to perform the polishing step, close attention was required to prevent disconnection, resulting in poor productivity.
  • the present invention was made to solve the problems of the prior art, and its object is to provide a cord-like heater with improved terminal workability and a planar heater using the cord-like heater. It is in.
  • a cord-shaped heater according to the present invention is a cord-shaped heater having one or a plurality of conductor strands coated with an insulating coating, wherein the insulating coating covers at least the conductor strands.
  • the thermal decomposition temperature of the material constituting the inner layer is higher than the melting point or the thermal decomposition temperature of the material constituting the outer layer, whichever is lower Low
  • the thickness of the inner layer is 2 ⁇ m or more
  • the thickness of the inner layer is 5 ⁇ m or less, or less than 2/3 of the total thickness of the insulating coating
  • the thickness of the outer layer is 1 ⁇ m
  • the thickness of the outer layer is 5 ⁇ m or less, or less than 3/4 of the total thickness of the insulating coating.
  • the inner layer has a thickness of 7 ⁇ m or less
  • the outer layer has a thickness of 7 ⁇ m or less.
  • the inner layer has a thickness of 4 ⁇ m or more
  • the outer layer has a thickness of 4 ⁇ m or more.
  • the cord-shaped heater is used for the steering heater.
  • the material forming the inner layer is polyurethane resin or polyester resin
  • the material forming the outer layer is polyimide resin, polyamideimide resin or silicone resin.
  • a planar heater according to the present invention is obtained by disposing the above cord-shaped heater on a substrate.
  • the thermal decomposition temperature is the temperature at which the weight starts to decrease when the temperature is gradually increased, and is measured in accordance with JIS-K7120-1997 Thermogravimetric measurement method for plastics (or ISO7111-1997). be done.
  • the inner layer thermally decomposes at a temperature below the temperature at which the outer layer melts or thermally decomposes. Therefore, at a temperature higher than the thermal decomposition temperature of the inner layer and lower than the melting point or thermal decomposition temperature of the outer layer, whichever is lower, only the inner layer thermally decomposes and disappears, creating a space between the conductor wire and the insulating coating. .
  • the outer layer is formed by extrusion or horizontal tape winding, the outer layer is stretched in the longitudinal direction.
  • the outer layer is subject to contraction force during curing.
  • any outer layer has a residual stress in a compressive direction with respect to the length direction. Therefore, when a space is created between the outer layer of the insulating coating and the conductor wire, and heat is applied to the outer layer, the outer layer of the insulating coating contracts. As a result, for example, when the ends of the conductor strands are heated to the above-described predetermined temperature (such as the melting temperature of the solder), the insulating coating is removed and the conductor strands are exposed. In particular, if the thicknesses of the inner layer and the outer layer are within the above ranges, the aforementioned shrinkage of the outer layer becomes more reliable. Therefore, the insulating coating is more reliably removed to expose the conductor wires.
  • the above-described predetermined temperature such as the melting temperature of the solder
  • FIG. 1 is a partially cutaway side view showing the configuration of a cord-shaped heater in an embodiment according to the present invention
  • FIG. 1 is a diagram showing an embodiment according to the present invention, and is a partially cutaway side view showing a configuration of a conductor wire on which an insulating coating is formed.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows embodiment by this invention, and is a figure which shows the structure of a hot press type heater manufacturing apparatus.
  • FIG. 4 is a view showing an embodiment according to the present invention, and is a partial perspective view showing how the cord-shaped heaters are arranged in a predetermined pattern shape.
  • FIG. 1 is a diagram showing an embodiment according to the present invention, and is a plan view showing a structure of a planar heater.
  • FIG. FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 10 is a partially cutaway side view showing the configuration of the cord-shaped heater in another embodiment according to the present invention.
  • FIG. 2 is a partially cutaway perspective view showing how the planar heater according to the present invention is embedded in a vehicle seat;
  • FIG. 3 is a partially cutaway perspective view showing a state in which the planar heater according to the present invention is embedded in the steering wheel; It is a reference diagram for explaining the bending test method.
  • FIG. 1 The configuration of the cord-shaped heater 10 in this embodiment will be described.
  • a cord-shaped heater 10 according to the present embodiment is constructed as shown in FIG.
  • the core wire 3 is made of an aromatic polyamide fiber bundle having an outer diameter of about 0.2 mm.
  • five conductor strands 5a which are hard tin-containing copper alloy wires with a strand diameter of 0.08 mm, are arranged and spirally wound at a pitch of about 1.0 mm.
  • an insulating coating 5b is formed around the conductor wire 5a.
  • the insulating coating 5b is composed of an inner layer 5c made of polyurethane resin and an outer layer 5d made of polyamide-imide resin.
  • the inner layer 5c of the insulating coating 5b was formed to have a thickness of 4 ⁇ m by applying polyurethane varnish around the conductor wire 5a and drying it.
  • the outer layer 5d was formed by coating the outer periphery of the inner layer 5c with polyamide-imide varnish and drying to form a layer having a thickness of 4 ⁇ m.
  • the heating wire 1 is formed by winding a conductor element wire 5 a around a core wire 3 .
  • the cord-shaped heater 10 is formed by covering the outer periphery of the heating wire 1 with an insulating layer 7 .
  • the insulator layer 7 is formed by extruding and covering the outer periphery of the heating wire 1 with a polyethylene resin containing a flame retardant so as to have a thickness of 0.2 mm.
  • the polyethylene resin of the insulator layer 7 functions as a heat-sealing material.
  • the finished outer diameter of the above cord-shaped heater 10 is 0.8 mm.
  • the core wire 3 is effective in that it has high flexibility and tensile strength. It is also possible to form the heating wire 1 by arranging or twisting a plurality of conductor strands without using the core wire 3 .
  • the base material 11 in this embodiment is a non-woven fabric made by mixing 10% heat-fusible fibers having a core-sheath structure with a low-melting-point polyester as a sheath component and 90% flame-retardant fibers made of flame-retardant polyester fibers. (weight per unit area: 100 g/m 2 , thickness: 0.6 mm).
  • This base material 11 is formed into a desired shape by a known technique such as die cutting.
  • FIG. 3 is a diagram showing the configuration of a hot press type heater manufacturing apparatus 13 for adhering and fixing the cord-shaped heater 10 on the base material 11.
  • the hot press jig 15 will be described.
  • a plurality of locking mechanisms 17 are arranged on the upper surface of the hot press jig 15 .
  • the locking mechanism 17 has a pin 19, which is inserted into a hole 21 drilled in the hot press jig 15 from below to above.
  • a locking member 23 is attached to the upper surface of the pin 19 so as to be movable in the axial direction of the pin 19 , and the locking member 23 is constantly biased upward by a coil spring 25 .
  • the cord-shaped heater 10 is engaged with the locking members 23 on the upper surfaces of the plurality of locking mechanisms 17, and is rotated in a predetermined pattern corresponding to the positions of the locking members 23. As shown in FIG. It is arranged to have a shape.
  • a press hot plate 27 is arranged so as to be able to move up and down.
  • the cord-shaped heater 10 is arranged so as to draw a predetermined pattern while being hooked by the locking members 23 of the plurality of locking mechanisms 17 , and then the base material 11 is placed on the cord-shaped heater 10 . be killed.
  • the press hot plate 27 descends to press the substrate 11 against the cord-like heater 10 .
  • the press hot plate 27 heats and presses the substrate 11 and the cord-shaped heater 10 at 230° C./5 seconds.
  • the heat-sealable material of the cord-shaped heater 10 and the heat-sealable fiber of the substrate 11 are both heated and pressurized to be fused together.
  • the cord-shaped heater 10 and the base material 11 are adhered and fixed.
  • the press hot plate 27 moves downward against the urging force of the coil springs 25 of the locking members 23 of the plurality of locking mechanisms 17 .
  • An adhesive layer may be formed on the surface of the base material 11 on which the cord-shaped heater 10 is not arranged, or a double-sided tape may be attached. These adhesive layers and double-sided tape are used when fixing the planar heater 31 to the seat.
  • a planar heater 31 for a vehicle seat heater as shown in FIG. 5 can be obtained.
  • the lead wires 40 are connected to both ends of the cord-shaped heater 10 in the planar heater 31 and to the temperature control device 39 via connection terminals (not shown).
  • the cord-shaped heater 10 , the temperature controller 39 and the connector 35 are connected to each other by lead wires 40 .
  • the connection between the cord-shaped heater 10 and the lead wire 40 by means of this connection terminal will be described in detail.
  • the insulating layer 7 of the heating wire 1 is removed by a stripping machine to expose the heating wire 1. As shown in FIG.
  • the insulation of the lead wires 40 is removed by a stripping machine to expose the conductor wires.
  • the end of the cord-shaped heater 10 with the exposing heating wire 1 and the end of the lead wire 40 with the exposed conductor are soldered to the connection terminals. Thereby, the cord-shaped heater 10, the lead wire 40 and the connection terminal are connected to each other.
  • the insulating coating 5b formed on the conductor element wire 5a of the cord-shaped heater 10 is removed by the heat of soldering, and the conductor element wire 5a and the conductor of the lead wire 40 are electrically connected. This action mechanism will be specifically described below.
  • the soldering temperature is about 360°C.
  • the inner layer 5c Since this temperature is higher than the thermal decomposition of the polyamide resin forming the inner layer 5c, the inner layer 5c is thermally decomposed.
  • the temperature of 360° C. is not higher than the melting point of the polyamide-imide resin forming the outer layer 5d and not higher than the thermal decomposition temperature. That is, when the conductor wire 5a is heated to the soldering temperature, the inner layer 5c of the insulating coating 5b is thermally decomposed, forming a space between the outer layer 5d of the insulating coating 5b and the conductor wire 5a.
  • the outer layer 5d has undergone a drying process after being applied around the inner layer 5c, and is in a stretched state, so residual stress in the compressive direction is generated in the outer layer 5d.
  • the insulating coating 5b is heated and contracts. Therefore, the ends of the conductor wires 5a are naturally exposed. As described above, since the ends of the conductor wires 5a are naturally exposed, there is no need to polish the ends of the conductor wires 5a to remove the insulating coating 5b. As a result, the workability of the ends of the conductor wires 5a is greatly improved.
  • the cord-shaped heater 10 is connected through a connector 35 to an electrical system of the vehicle (not shown).
  • the planar heater 31 is embedded in the vehicle seat 41 in the state shown in FIG. That is, as described above, the planar heater 31 is attached to the skin cover 43 or the seat pad 45 of the vehicle seat 41 .
  • the present invention is not limited to the above embodiments.
  • various known cord-shaped heaters can be used as the cord-shaped heater 10 .
  • the heating wire 1 can have, for example, the following configuration. 1. As in the above-described embodiment shown in FIG. 1, first, a plurality of conductor wires 5a coated with an insulating coating 5b are twisted or aligned and wound around the core wire 3, and further, an insulating coating 7 is provided on the outer periphery thereof. Heating wire 1 formed by covering 2. As shown in FIG. 6, the heating wire 1 is formed by twisting a plurality of conductor wires 5a covered with an insulating coating 5b. 3. As shown in FIG. 7, a heating wire 1 formed by arranging a plurality of conductor wires 5a covered with an insulating coating 5b 4. As shown in FIG.
  • the heating wire 1 is formed by alternately arranging the conductor strands 5a covered with the insulating coating 5b and the conductor strands 5a not covered with the insulating coating 5b. 5. As shown in FIG. 9, the conductor strands 5a covered with the insulating coating 5b are aligned and arranged in a state in which the number of the conductor strands 5a covered with the insulating coating 5b is increased from that shown in FIG. Heating wire 1 formed by As for the heating wire 1, the thing of various structures other than these can be assumed. The heating wire 1 can also be formed by twisting the core wire 3 and the conductor wire 5a.
  • the core wire 3 for example, inorganic fibers such as glass fibers, polyester fibers such as polyethylene terephthalate, monofilaments, multifilaments, spun fibers such as organic fibers such as aliphatic polyamide fibers, aromatic polyamide fibers, and wholly aromatic polyester fibers, or Fibers having a configuration in which these fiber materials or an organic polymer material that constitutes these fiber materials is used as a core material, and the circumference of which is coated with a thermoplastic organic polymer material, is exemplified. Further, when the core wire 3 having heat shrinkability and heat fusibility is used, if the conductor element wire 5a is broken and abnormally heated, the core wire 3 is melted, cut, and shrunk.
  • inorganic fibers such as glass fibers, polyester fibers such as polyethylene terephthalate, monofilaments, multifilaments, spun fibers such as organic fibers such as aliphatic polyamide fibers, aromatic polyamide fibers, and wholly aromatic polyester fibers, or Fibers having
  • the conductor wire 5a wound around the core wire 3 follows the movement of the core wire 3, so that the ends of the disconnected conductor wire 5a are separated from each other. Therefore, the respective ends of the disconnected conductor wire 5a do not repeatedly contact and separate. Also, the respective ends of the disconnected conductor strands 5a do not come into contact with each other with a small contact area such as point contact. Then, abnormal heat generation is prevented.
  • the core wire 3 need not be made of an insulating material. For example, a stainless steel wire, a titanium alloy wire, or the like can be used as the core wire 3 . However, since there is a possibility that the conductor wire 5a may break, the core wire 3 should preferably be made of an insulating material.
  • the conductor element wire 5a conventionally known ones can be used, and examples thereof include copper wire, copper alloy wire, nickel wire, iron wire, aluminum wire, nickel-chromium alloy wire, iron-chromium alloy wire, and the like.
  • the copper alloy wire include a tin-copper alloy wire, a copper-nickel alloy wire, and a silver-containing copper alloy wire in which a copper solid solution and a copper-silver eutectic are formed into fibers.
  • These copper wires or copper alloy wires include soft ones and hard ones, but from the viewpoint of bending resistance, hard ones are more preferable than soft ones.
  • Hard copper wires and hard copper alloy wires are fibrous structures obtained by stretching individual metal crystal grains in the working direction by cold working such as wire drawing.
  • a hard copper wire or hard copper alloy wire is heated at a recrystallization temperature or higher, the working strain generated in the metal crystal is eliminated, and crystal nuclei that serve as starting points for new metal crystals begin to appear. This crystal nucleus develops, and recrystallization in which the old crystal grains are successively replaced occurs, and the crystal grains grow further.
  • a soft copper wire or a soft copper alloy wire is in a state in which such crystal grains have grown. Compared to hard copper wires and hard copper alloy wires, these soft copper wires and soft copper alloy wires have higher elongation and electrical resistance, but lower tensile strength. Lower than alloy wire.
  • Hard copper wires and hard copper alloy wires become soft copper wires and soft copper alloy wires with low bending resistance by heat treatment, it is preferable to perform processing with as little heat history as possible.
  • Hard copper wire is defined in JIS-C3101 (1994)
  • soft copper wire is defined in JIS-C3102 (1984).
  • a soft copper wire having an elongation of 20% or more with an outer diameter of 29 to 0.70 mm, an elongation of 25% or more with an outer diameter of 0.80 to 1.8 mm, and an elongation of 30% or more with an outer diameter of 2.0 to 7.0 mm is considered a soft copper wire.
  • the copper wire includes a tin-plated one.
  • Tin-plated hard copper wires are defined in JIS-C3151 (1994), and tin-plated soft copper wires are defined in JIS-C3152 (1984).
  • various cross-sectional shapes can be used for the conductor wire 5a, and the cross-sectional shape is not limited to the generally used circular one, and a so-called rectangular wire may be used.
  • the conductor element wire 5a when the conductor element wire 5a is wound around the core wire 3, among the materials of the conductor element wire 5a described above, a material that causes a small amount of springback when wound is preferable, and the recovery rate is 200% or less. things are preferred.
  • a silver-containing copper alloy wire in which a copper solid solution and a copper-silver eutectic are in a fibrous form is excellent in tensile strength, tensile strength and bending strength, but tends to spring back when wound. Therefore, when winding the core wire 3, the conductor strands 5a are likely to float or break due to excessive winding tension.
  • the restoring force is also applied by the insulating coating 5b. Therefore, it is important to select a conductor element wire 5a having a small restoring rate to cover the restoring force of the insulating coating 5b.
  • the conductor wire is wound three or more times around a cylindrical mandrel having a diameter 60 times the diameter of the conductor wire so that the conductor wire does not overlap. After 10 minutes, the load is removed, the conductor wire is removed from the mandrel, the inner diameter of the shape restored by elasticity is measured, and the springback ratio of the conductor wire is calculated by the following formula (I). Evaluate as.
  • R (d2/d1) x 100 --- (I) Explanation of symbols: R: Restoration rate (%) d1: mandrel diameter (mm) used in the winding test d2: inner diameter (mm) of the shape restored by releasing the load after winding the conductor wire around the mandrel
  • the insulating coating 5b covering the conductor wire 5a may be formed of two layers, the inner layer 5c and the outer layer 5d, as in the above embodiment, or may be formed of multiple layers of three or more layers.
  • the thermal decomposition temperature of the material composing the inner layer must be lower than the melting point or the thermal decomposition temperature of the material composing the outer layer, whichever is lower.
  • the inner layer is a layer formed on the conductor wire 5a.
  • the outer layer may be any outer layer outside the inner layer, it is possible to form another outer layer further outside the outer layer, or to form another intermediate layer between the inner layer and the outer layer.
  • Materials for the insulating coating 5b include, for example, polyurethane resin, polyamide resin, polyimide resin, polyamideimide resin, polyesterimide resin, nylon resin, polyester nylon resin, polyethylene resin, polystyrene resin, polypropylene resin, polyester resin, polybenzimidazole resin, Various materials such as vinyl chloride resin, fluororesin, and silicone resin can be used. A plurality of these materials may be used in combination, or various known additives such as flame retardants and anti-aging agents may be blended. Materials from among these resins are combined so that the thermal decomposition temperature of the material forming the inner layer is lower than the melting point or the thermal decomposition temperature of the material forming the outer layer, whichever is lower.
  • Materials for the inner layer can be selected from polyurethane resin, vinyl chloride resin, polyacetal resin, polystyrene resin, polypropylene resin, polyester resin such as polymethyl methacrylate and polyethylene terephthalate, polyvinyl alcohol, and the like.
  • the material of the inner layer is a thermosetting resin
  • the material of the outer layer is a thermosetting resin.
  • thermosetting resins also include crosslinkable materials. From the viewpoint of heat generation characteristics as a cord-shaped heater and ease of terminal processing such as soldering, the material of the inner layer is polyurethane resin or polyester resin, and the material of the outer layer is polyimide resin, polyamideimide resin or silicone resin. Either is preferred.
  • the material of the inner layer is a polyurethane resin and the material of the outer layer is a polyamide-imide resin.
  • the polyurethane resin may be variously modified or compounded, such as an imide-containing polyurethane.
  • the inner layer thermally decomposes below the temperature at which the outer layer melts or thermally decomposes. Therefore, if the end of the conductor wire coated with the insulating coating is set to a temperature higher than the thermal decomposition temperature of the inner layer and lower than the melting point or the thermal decomposition temperature of the outer layer, whichever is lower, only the inner layer is thermally decomposed, A space is created between the conductor wire and the insulating coating.
  • the outer layer is formed by an extrusion method or a horizontal tape winding method, it is formed by stretching in the length direction.
  • a contraction force is generated during curing.
  • the outer layer has a residual stress in a compressive direction with respect to the length direction.
  • the inner layer of the conductor wire coated with the insulating coating is thermally decomposed, a space is generated between the insulating coating and the conductor wire. Furthermore, when heat is applied, the outer layer of the insulating coating shrinks. Due to such action, for example, when the end portion of the conductor wire covered with the insulating coating is heated to a predetermined temperature such as the melting temperature of solder, the insulating coating can be removed and the conductor wire can be exposed. . Thereby, terminal workability can be improved.
  • the conductor wire thermally expands when it comes into contact with solder or the like and is heated.
  • the thermal expansion coefficient of an insulating coating mainly made of a resin material or a rubber material is larger than that of a conductor wire mainly made of a metal material such as a copper wire, a copper alloy wire, or a nickel wire.
  • the insulating coating thermally expands more than the conductor wire, and a force is applied to separate the insulating coating from the conductor wire, causing cracks in the insulating coating.
  • Solder or the like penetrates into these cracks in the insulating coating and promotes thermal decomposition of the inner layer of the insulating coating.
  • the material of the insulating coating has a large coefficient of thermal expansion. Further, if the temperature at which the material of the inner layer thermally decomposes is lower than the glass transition point of the material forming the outer layer, the outer layer will not be in a rubbery state, and cracks will easily occur in the outer layer.
  • the inner layer of the insulating coating thermally decomposes.
  • the decomposable gas generated by thermal decomposition is, for example, a reducing gas such as hydrogen, carbon monoxide, aldehyde, or low-molecular-weight alkane
  • the reducing gas reduces the oxide film on the surface of the conductor wire.
  • the oxide film on the surface of the conductor wire is reduced, wettability with solder or the like is enhanced.
  • the urethane resin used as the material of the inner layer 5c in the above embodiment generates a reducing gas when thermally decomposed. It is also possible to mix a material that generates a reducing gas when thermally decomposed into various resins, rubbers, etc., and use this mixed material as the material constituting the inner layer 5c.
  • the thickness of the inner layer 5c is preferably 2 ⁇ m or more. If the thickness is less than 2 ⁇ m, even if the inner layer 5c is thermally decomposed, a sufficient space cannot be obtained between the conductor wire 5a and the outer layer 5d, and the outer layer 5d may not be removed. Also, the thickness of the inner layer 5c is preferably 5 ⁇ m or less, or less than 2/3 of the total thickness of the insulating coating 5b. When the thickness of the inner layer 5c exceeds 5 ⁇ m and is 2/3 or more of the total thickness of the insulating coating 5b, the amount of gas generated during thermal decomposition of the inner layer 5c increases.
  • the thickness of the inner layer 5c is 7 ⁇ m or less.
  • the thickness of the outer layer 5d is preferably 1 ⁇ m or more.
  • the inner layer 5c is thermally decomposed at a relatively low temperature, so if the thickness of the outer layer 5d is not sufficient, there is a possibility that the insulating performance cannot be maintained especially at high temperatures.
  • the thickness of the outer layer 5d is preferably 5 ⁇ m or less, or less than 3/4 of the total thickness of the insulating coating.
  • the thickness of the outer layer 5d exceeds 5 ⁇ m and is 3/4 or more of the total thickness of the insulating coating, the rigidity of the outer layer 5d becomes too strong, and even if the inner layer 5c is thermally decomposed, the outer layer 5d is removed. may become difficult. It is particularly preferable that the thickness of the outer layer 5d is 7 ⁇ m or less.
  • the thickness of the inner layer 5c is preferably 4 ⁇ m or more, particularly preferably 5 ⁇ m or more. If the thickness is less than 4 ⁇ m, the conductor wire 5a may be corroded when used in an environment where a corrosive liquid or gas exists. necessary.
  • the thickness of the outer layer 5d is preferably 4 ⁇ m or more, and particularly preferably 5 ⁇ m or more. If the thickness is less than 4 ⁇ m, the conductor wire 5a may be corroded when used in an environment where a corrosive liquid or gas exists. necessary. Moreover, when it is necessary to ensure corrosion resistance, the thickness of the insulating coating 5b, which is the sum of the thicknesses of the inner coating 5c and the outer coating 5d, preferably exceeds 8 ⁇ m. If the thickness is 8 ⁇ m or less, the conductor wire 5a may corrode when used in an environment where a corrosive liquid or gas exists.
  • the insulating coating 5b is thin, pinholes may be formed in the insulating coating 5b depending on manufacturing conditions. Moreover, the insulating coating 5b may be worn due to friction during use. In this case, since the inner conductor wire 5a is exposed, the conductor wire 5a may corrode from that portion. In order to prevent such corrosion, when the insulating coating 5b is thin, it is necessary to further form an insulating coating or the like on the outer circumference of the insulating coating 5b. When the cord-shaped heater is used under conditions where the possibility of moisture adhering to it is low, the thickness of the inner layer 5c and the outer layer 5d does not necessarily have to be 4 ⁇ m or more.
  • the insulator layer 7 may be formed by extrusion molding or the like, or the insulator layer 7 previously formed into a tubular shape may be used.
  • a method for forming the insulator layer 7 is not particularly limited. When the insulator layer 7 is formed by extrusion molding, the positions of the conductor wires 5a are fixed, so that the insulator layer 7 and the conductor wires 5a are less likely to be misaligned. As a result, friction and bending of the conductor wires 5a are prevented, and bending resistance is improved, which is preferable.
  • the material of the insulator layer 7 may be appropriately designed according to the type of use and environment of use of the cord-shaped heater, and examples thereof include polyolefin resin, polyester resin, polyurethane resin, aromatic polyamide resin, and aliphatic polyamide resin. , vinyl chloride resin, modified noryl resin (polyphenylene oxide resin), nylon resin, polystyrene resin, fluororesin, synthetic rubber, fluororubber, ethylene thermoplastic elastomer, urethane thermoplastic elastomer, styrene thermoplastic elastomer, polyester thermal Various materials such as plastic elastomers and polyamide-based thermoplastic elastomers can be used.
  • a flame-retardant polymer composition is preferably used.
  • the polymer composition having flame retardancy means one having an oxygen index of 21 or more in the JIS-K7201 (1999) flammability test. Those having an oxygen index of 26 or more are particularly preferred.
  • a suitable flame retardant or the like may be added to the material constituting the insulating layer 7 described above.
  • flame retardants include metal hydrates such as magnesium hydroxide and aluminum hydroxide, antimony oxide, melamine compounds, phosphorus compounds, chlorine flame retardants, and bromine flame retardants. These flame retardants may be appropriately surface-treated by a known method.
  • the cord-like heater 10 can be heat-sealed to the base material 11 by heating and pressurizing.
  • an olefin resin which is excellent in adhesiveness to the substrate 11, is preferable.
  • olefinic resins include high-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, polypropylene, polybutene, ethylene- ⁇ -olefin copolymer, and ethylene-unsaturated ester copolymer. is mentioned.
  • Ethylene-unsaturated ester copolymers include, for example, ethylene-vinyl acetate copolymer, ethylene-methyl (meth)acrylate copolymer, ethylene-ethyl (meth)acrylate copolymer, ethylene-(meth) Examples include butyl acrylate copolymers and the like, and these may be used singly or as a mixture of two or more thereof.
  • (meth)acrylic acid represents both acrylic acid and methacrylic acid. Any material may be selected from these, but it is preferable to use a material that melts at a temperature below the decomposition initiation temperature or below the melting point of the material forming the insulating coating 5b.
  • polyester-based thermoplastic elastomers include those of the polyester-polyester type and the polyester-polyether type, but the polyester-polyether type is preferable because it has higher adhesiveness.
  • the adhesion strength between the cord-shaped heater 10 and the substrate 11 is very important. If this adhesive strength is not sufficient, the base material 11 and the cord-shaped heater 10 will separate during use, and as a result, the cord-shaped heater 10 will be unexpectedly bent. There is a high possibility that the wire 5a will break.
  • the conductor element wire 5a breaks, it not only fails to function as a heater, but also may lead to sparks due to chattering. Further, when the operating temperature of the cord-shaped heater 10 is high, it is preferable to use a polyamide-based thermoplastic elastomer.
  • the materials for the insulating layer 7 as described above may be used in combination of a plurality of types, and various known additives such as flame retardants and anti-aging agents may be blended.
  • the insulator layer 7 may be formed not only in one layer but also in multiple layers. For example, a configuration is conceivable in which a layer of fluororesin is formed on the outer periphery of the conductor wire 5a, a layer of polyethylene resin is formed on the outer periphery thereof as a heat-sealing material, and these two layers form the insulator layer 7. . Of course, the number of layers may be three or more. Moreover, the insulator layer 7 is not limited to being formed continuously in the length direction. For example, it may be formed in a straight line or a spiral line along the length direction of the cord-shaped heater 10, formed in a dot pattern, or formed intermittently.
  • the heat-sealing material is not continuous in the longitudinal direction of the cord-shaped heater, even if a portion of the heat-sealing material is ignited, the burning portion will not spread, which is preferable. Also, if the volume of the heat-sealing material is sufficiently small, even if the heat-sealing material is a combustible material, the burning material will soon disappear and the fire will be extinguished, and drips (combustion drops) will also occur. Gone. Therefore, it is preferable that the volume of the heat-sealing material is the minimum that can maintain the adhesiveness with the substrate 11 .
  • the number of bends until at least one conductor wire broke was It is preferably 20,000 times or more.
  • soldering processing may be performed as in the above embodiment, or other methods may be used.
  • the inner layer 5c is thermally decomposed and the insulating coating 5b (outer layer 5d) is formed. It shrinks and the end of the conductor wire 5a is exposed.
  • the predetermined temperature here means a temperature equal to or higher than the thermal decomposition temperature of the inner layer 5c.
  • Examples of the base material 11 include woven fabric, paper, aluminum foil, mica plate, resin sheet, foamed resin sheet, rubber sheet, foamed rubber sheet, stretched porous body, etc., in addition to the nonwoven fabric shown in the above embodiments. , various ones can be used, but FMVSS-No. Those having flame retardant properties that pass the flammability test for 302 automotive inner layer materials are preferred.
  • FMVSS is the Federal Motor Vehicle Safety Standard, that is, the United States Federal Motor Vehicle Safety Standards. 302, flammability testing of automotive interior materials is specified.
  • non-woven fabrics are particularly preferred for use in car seat heaters because of their good texture and softness.
  • a fiber having a core-sheath structure with a low melting point polyester as a sheath component is used as the heat-fusible fiber constituting the nonwoven fabric.
  • a fiber having a core-sheath structure with a low melting point polypropylene as a sheath component or a fiber having a core-sheath structure with polyethylene as a sheath component can be considered.
  • flame-retardant fibers refer to fibers that pass JIS-L1091 (1999). By using such flame-retardant fibers, the base material is endowed with excellent flame-retardant properties.
  • the mixing ratio of heat-fusible fibers is preferably 5% or more, and preferably 20% or less. If the mixing ratio of the heat-fusible fibers is less than 5%, sufficient adhesiveness cannot be obtained. On the other hand, if the mixing ratio of the heat-fusible fibers exceeds 20%, the nonwoven fabric becomes hard, and not only can the seated person complain of discomfort, but conversely, the adhesiveness to the cord-shaped heater is lowered. . Furthermore, there is a possibility that the base material will shrink due to the heat generated during heat-sealing, making it impossible to obtain the dimensions intended in the design.
  • the mixing ratio of the flame-retardant fiber is 70% or more, preferably 70% or more and 95% or less.
  • the mixing ratio of the flame-retardant fiber is less than 70%, sufficient flame retardancy cannot be obtained. Moreover, if the mixing ratio of the flame-retardant fiber exceeds 95%, the mixing ratio of the heat-fusible fiber is relatively insufficient, and sufficient adhesiveness cannot be obtained.
  • the sum of the mixing ratio of the heat-fusible fiber and the mixing ratio of the flame-retardant fiber does not need to be 100%, and other fibers may be mixed as appropriate. Further, even when the heat-fusible fibers are not mixed, for example, the material of the heat-fusible portion and the material of the fibers constituting the base material may be of the same type. Adhesiveness may be obtained, so it is fully conceivable that heat-fusible fibers are not mixed.
  • the size and thickness of the nonwoven fabric may be appropriately changed depending on the intended use, but it is desirable that the thickness (value measured when dried) is, for example, about 0.6 mm to 1.4 mm. . If the non-woven fabric having such a thickness is used, when the cord-shaped heater and the non-woven fabric are adhered and fixed by heating and pressing, the non-woven fabric covers 30% or more, preferably 50% or more of the circumference of the cord-shaped heater. This is because good adhesion can be obtained, and thereby a strong adhesion state can be obtained.
  • the surface on which the cord-shaped heater is arranged (hereinafter referred to as the installation surface) is the surface on which the cord-shaped heater is not arranged (hereinafter, referred to as non-coated substrate). It is preferable that there are more gaps than the mounting surface).
  • the state with many voids means that the basis weight, that is, the state in which the fiber weight per unit volume is small, and in the case of porous bodies such as foamed resin sheets and foamed rubber sheets, the porosity is large.
  • Specific embodiments of the substrate according to the present invention include, for example, woven fabrics or nonwoven fabrics subjected to calendering with different strengths on one side or both sides by adjusting temperature and pressure, and nonwoven fabrics needle-punched from only one side. , pile-formed or raised fabric on one side, foamed resin sheet or foamed rubber sheet whose porosity is controlled to be slanted in the thickness direction, laminated materials with different amounts of voids, etc. mentioned. Moreover, it is particularly preferred that the voids in the base material are continuous. This is because the melted heat-sealable layer permeates into continuous gaps, increasing the anchoring effect and improving the bonding strength.
  • voids examples include cloth bodies such as woven fabrics and nonwoven fabrics that are aggregates of fibers, foamed resin sheets and foamed rubber sheets having continuous pores, and the like. It should be noted that the non-arrangement surface may not have any voids.
  • the cord-shaped heater 10 when the cord-shaped heater 10 is arranged on the base material 11, the cord-shaped heater 10 may be fixed to the base material 11 in another manner instead of being adhered and fixed by fusion bonding by heating and pressurization.
  • the insulator layer 7 made of the heat-sealing material is melted by hot air and adhered and fixed, an electric current is passed through the conductor wire 5a, and the heat generated thereby melts the insulator layer 7 made of the heat-sealing material.
  • Various modes are conceivable, such as a mode of bonding and fixing, and a mode of clamping and fixing between a pair of substrates 11 while heating.
  • a configuration that does not use a heat-sealing material is also conceivable.
  • the cord-shaped heater 10 on the substrate 11 by sewing, or to fix the cord-shaped heater 10 between a pair of substrates 11 . be done. In such a case, it is conceivable not to form the insulator layer 7 as shown in FIGS.
  • the adhesive layer for fixing the planar heater 31 to the seat, from the point of view of the stretchability of the base material 11 and the maintenance of good texture, the adhesive layer consists only of an adhesive on a release sheet or the like. It is preferable to form an adhesive layer by forming an adhesive layer and transferring the adhesive layer from the release sheet to the surface of the substrate 11 .
  • this adhesive layer preferably has flame retardancy, and it alone is FMVSS-No. Those having flame retardancy such as to pass the flammability test for 302 automotive interior materials are preferred.
  • polymer acrylic pressure-sensitive adhesives and the like can be used.
  • the adhesive layer may be formed on the surface on which the base material is provided or may be formed on the surface on which the base material is not provided.
  • planar heater 31 having the above configuration may be installed on the steering wheel 71 in a state as shown in FIG.
  • the steering wheel 71 is composed of a wheel portion 72 , spoke portions 73 and boss portions 74 , and the planar heater 31 is installed between a wheel core material 77 and a coating material 78 of the wheel portion 72 .
  • cord-shaped heater 10 (see FIG. 1) obtained by the above embodiment as Example 1, workability test (confirmation of continuity with connection terminal), insulation test (dielectric breakdown voltage test), flammability test (horizontal difficulty) combustion test) was performed.
  • the workability test was conducted by confirming the continuity after terminal processing.
  • the cord-shaped heater 10 was cut so that the effective length of the conductor element wire 5a was 90 mm, and the insulator layer 7 was stripped at the end portion of 8 mm.
  • the lead wire was cut so that the effective length of the conductor (1.73 mm ⁇ ) was 90 mm, and the insulator was stripped at the end portion of 8 mm.
  • These cord-shaped heaters 10 and lead wires are aligned, connection terminals (commercially available splice terminals) are set at the ends, and soldering is performed using solder containing flux (melting point: 340° C.).
  • the heater 10 was connected to the lead wire.
  • the resistance value between the cord-shaped heater 10 and the lead wire was measured.
  • the average value was calculated assuming that the number of samples was 20 (however, the average value was calculated by excluding samples whose resistance values were too large to be measured).
  • a sample with an average value of less than 1 ⁇ and no unmeasurable samples was accepted, and a sample with an average value of 1 ⁇ or more or with unmeasurable samples was rejected.
  • Table 1 where "O" indicates a pass, and "X" indicates a fail.
  • the dielectric breakdown voltage of the insulation coating 5b was tested. A voltage of 1.5 kV AC was applied to the conductor wire 5a, and those with no dielectric breakdown were evaluated as acceptable, and those with dielectric breakdown were evaluated as unacceptable. The results are shown in Table 1, where "O" indicates a pass, and "X" indicates a fail.
  • the flammability test was measured based on the UL1581 horizontal burning test (4th edition, 2008), and the burning distance (width affected by flame) was measured. Those with a burning distance of 30 mm or less were accepted, and those with a burning distance of over 30 mm were rejected. The results are shown in Table 1, where "O" indicates a pass, and "X" indicates a fail.
  • Comparative Examples 1 to 6 are obtained by changing the material forming the insulating coating 5b from the cord-shaped heater 10 according to the above-described Example 1 (above-described embodiment).
  • the insulation coating 5b is a single layer of polyamide-imide resin.
  • the insulating coating 5b is a single layer of polyurethane resin.
  • the inner layer 5c of the insulating coating 5b is made of urethane resin containing imide, and the outer layer 5d is made of acrylic resin.
  • Example 15 was prepared by changing both the material of the inner layer 5c and the thicknesses of the inner layer 5c and the outer layer 5d.
  • Table 1 shows the test results of the examples, and Table 2 shows the test results of the comparative examples.
  • the thermal decomposition temperature of the material forming the inner layer is lower than the melting point or the thermal decomposition temperature of the material forming the outer layer, whichever is lower.
  • the thermal decomposition temperature of the material forming the inner layer is higher than the melting point of the material forming the outer layer.
  • the cord-shaped heater 10 according to this embodiment has excellent workability of the ends. More than half of the cord-shaped heaters according to Comparative Examples 1, 2, 5, and 6 were unmeasurable, that is, the insulation coating was not removed at all, and the yield as a product was poor. Moreover, the cord-shaped heater 10 according to this example also passed the combustibility test, and the cord-shaped heaters according to Examples 2 and 15 were particularly excellent in combustibility. The cord-shaped heaters according to Comparative Examples 3, 4, 5, and 6 far exceeded the acceptance line in the combustion range, and were inferior in terms of combustibility.
  • the inner layer 5c has a thickness of 2 ⁇ m or more and 5 ⁇ m or less
  • the outer layer 5d has a thickness of 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the inner layer 5c is 2 ⁇ m or more and less than 2/3 of the thickness of the insulating coating 5b
  • the thickness of the outer layer 5d is 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the inner layer 5c is 2 ⁇ m or more and 5 ⁇ m or less, and the thickness of the outer layer 5d is 1 ⁇ m or more and less than 3/4 of the thickness of the insulating coating 5b. be.
  • the thickness of the inner layer 5c is 2 ⁇ m or more and less than 2/3 of the thickness of the insulating coating 5b, and the thickness of the outer layer 5d is 1 ⁇ m or more and the insulating coating less than 3/4 the thickness of 5b. Therefore, excellent results could be obtained in all of the workability test, withstand voltage test, and combustibility test.
  • Comparative Example 7 since the inner layer 5c had a thickness of less than 2 ⁇ m, the outer layer 5d could not be reliably removed, and the workability was rejected.
  • the thickness of the inner layer 5c exceeds 5 ⁇ m and is 2/3 or more of the thickness of the insulating coating 5b, so the combustion range far exceeds the acceptance line. It was an inferior one.
  • Comparative Example 11 since the thickness of the outer layer 5d was less than 1 ⁇ m, dielectric breakdown occurred at some locations, resulting in poor insulation. In Comparative Examples 12 and 13, the thickness of the outer layer 5d exceeds 5 ⁇ m and is 3/4 or more of the thickness of the insulating coating 5b. became.
  • the thickness of the outer layer 5d exceeds 5 ⁇ m, which is two-thirds or more of the thickness of the insulating coating 5b, and exceeds 7.0 ⁇ m, so the outer layer 5d cannot be reliably removed. Therefore, the workability was disqualified.
  • Corrosion resistance tests were conducted because corrosion resistance may be required depending on the part where the cord-shaped heater is used.
  • a cord-shaped heater cut to a length of 0.5 m was sprayed with a 6% sodium hypochlorite aqueous solution 10 times, and the state of corrosion was periodically checked visually. Judgment was made based on the change in the state of the surface of the conductor wire after being left for days. Those in which there was no change in the conductor strands were judged as acceptable, and those in which corrosion such as blackening of the conductor strands was visually observed were judged as unacceptable.
  • a comparison was made by using the same material as in Example 1 and varying the thickness of the inner layer 5c and the outer layer 5d.
  • the thickness of the inner layer 5c or the outer layer 5d should preferably be 4 ⁇ m or more when corrosion resistance is required. Excellent results were obtained in all of the workability test, withstand voltage test, flammability test, and corrosion resistance test when the thickness of the inner layer 5c was 4 ⁇ m or more and 7 ⁇ m or less, and the thickness of the outer layer 5d was 4 ⁇ m. In this case, the thickness of the insulating coating 5b exceeds 8 ⁇ m.
  • the thickness of the inner layer 5c and the outer layer 5d may be less than 4 ⁇ m.
  • the cord-shaped heater 10 according to Example 1 is arranged in a straight line on the base material 11, and the hot-press heater manufacturing apparatus 13 is used as described above to bond the cord-shaped heater 10 onto the base material 11. ⁇ Fixed.
  • the cord-shaped heater 10 adhered and fixed on the base material 11 was also subjected to the flexibility test in the same manner as described above. Further, the cord-shaped heater 10 according to Example 1 was arranged linearly on the substrate 11, and the cord-shaped heater 10 was adhered and fixed on the substrate 11 using an adhesive tape.
  • the cord-shaped heater 10 adhered and fixed on the base material 11 was subjected to a flexibility test in the same manner as described above. All of them show sufficient flex resistance values, and it was confirmed that the cord-shaped heater 10 according to the present embodiment obtains sufficient flex resistance even when it is adhered and fixed on the base material 11 .
  • a cord-shaped heater with improved terminal workability can be obtained.
  • This cord-shaped heater is provided in a predetermined shape such as a meandering shape on a base material such as aluminum foil, foamed resin, non-woven fabric, etc. to form a planar heater. , heating toilet seats, heaters for anti-fogging mirrors, anti-freezing heaters for cameras, heating cooking utensils, and the like.
  • the cord-shaped heater is wound around and adhered to a pipe, a tank, or the like, or arranged inside the pipe.
  • freeze prevention heaters for piping and freezer pipe drains heat retention heaters for air conditioners and dehumidifiers, defrosting heaters for refrigerators and freezers, drying heaters, and floor heating heaters.
  • heat retention heaters for air conditioners and dehumidifiers defrosting heaters for refrigerators and freezers
  • drying heaters drying heaters
  • floor heating heaters can be preferably used as.
  • the cord of the present invention is used as the object to be heated. It is also possible to directly attach or wrap the shaped heater.

Landscapes

  • Resistance Heating (AREA)

Abstract

端末加工性を向上させたコード状ヒータ及びそれを使用した面状ヒータを提供する。コード状ヒータ(10)は、絶縁被膜(5b)により被覆された1本又は複数本の導体素線(5a)を有し、上記絶縁被膜(5b)が、少なくとも、上記導体素線(5a)上に形成された内層と、該内層の外側に形成された外層とからなり、上記内層を構成する材料の熱分解温度が、上記外層を構成する材料の融点または熱分解温度の内の低い方より低く、上記内層の厚さが、2μm以上であり、5μm以下であるか又は絶縁被膜5bの全厚さの2/3未満であり、上記外層の厚さが、1μm以上であり、5μm以下であるか又は絶縁被膜5bの全厚さの3/4未満である。上記コード状ヒータ(10)は、上記内層を構成する材料がポリウレタン樹脂、上記外層を構成する材料がポリアミドイミド樹脂である。面状ヒータは、上記のコード状ヒータを基材に配設した面状ヒータである。

Description

コード状ヒータと面状ヒータ
 本発明は、電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータなどに好適に使用可能で、端末加工性を向上させたコード状ヒータと、このコード状ヒータを使用した面状ヒータに関する。
 コード状ヒータは、電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータ等に使用されている。一般的に知られているコード状ヒータは、まず、芯線にヒータ線を螺旋状に巻き、その上から絶縁体層による外被を被覆して形成されている。ヒータ線は、銅線やニッケルクロム合金線などの導体素線を複数本引き揃えるか、この導体素線を複数本撚合せて形成されている。熱融着部材がヒータ線の外周に形成され、この熱融着部材により、ヒータ線は例えば不織布やアルミ箔で形成された基材に接着される(例えば、特許文献1など参照)。
 導体素線が引張られたり屈曲されたりしたときに、導体素線の一部が断線することがある。従来は、コード状ヒータの各導体素線が接した状態となっているため、導体素線の一部が断線した場合、この断線した部分でヒータ線の径が細くなる。ヒータ線の径が細くなった部分は単位断面積当たりの電流量が増加するため、この部分は通常以上の発熱を起こす可能性がある。別の例で、導体素線の1本ずつを個別に絶縁被膜を形成してヒータ線を形成した場合、それぞれの導体素線が並列回路を形成する。このヒータ線の場合、導体素線の一部に断線が生じたとき、並列回路の一部が断線することになる。このヒータ線の場合、過大な発熱を防止できる(例えば、特許文献2、特許文献3など参照)。
 又、本発明に関連する技術として、当該出願人より特許文献4、5が出願されている。
特開2003-174952公報:クラベ 特開昭61-47087号公報:松下電器産業 特開2008-311111公報:クラベ 特開2010-15691公報:クラベ 国際公開WO2011/001953公報:クラベ
 ここで、上記特許文献2,3には、導体素線の絶縁被膜の複数の材料が記載されている。主に使用されている導体素線は所謂エナメル線と称されており、エナメル線の絶縁被膜の一般的な材料は、ポリウレタン樹脂である。ポリウレタン樹脂は耐熱性が低く、難燃性も十分ではない。絶縁被膜に耐熱や難燃の要求がある場合、耐熱性や難燃性に優れたシリコーン樹脂やポリイミド樹脂などの硬質材料が絶縁被膜の材料として使用される。シリコーン樹脂やポリイミド樹脂を使用した導体素線の端末を加工するのは容易ではない。シリコーン樹脂やポリイミド樹脂は、耐熱性が高く、難燃性に優れている。例えば、導体素線を半田付けによってリード線に接続する場合、シリコーン樹脂やポリイミド樹脂の絶縁被膜は半田の溶融温度では溶融しないので除去できない。端子の圧着によって導体素線をリード線と接続する場合、シリコーン樹脂やポリイミド樹脂は硬質であるため、圧着の圧力では絶縁被膜が破壊されず、導体素線とリード線とが導通しない。従って、接続する工程とは別の研磨する工程でシリコーン樹脂やポリイミド樹脂の絶縁被膜を除去する必要がある。しかし、コード状ヒータに使用される導体素線は、例えば外径0.1mm以下というように極めて細い。研磨する工程を行うためには、断線を防止するために細心の注意が必要であり、生産性が悪かった。
 本発明はこのような従来技術の問題点を解決するためになされたもので、その目的とするところは、端末加工性を向上させたコード状ヒータ及びそれを使用した面状ヒータを提供することにある。
 上記目的を達成するべく、本発明によるコード状ヒータは、絶縁被膜により被覆された1本又は複数本の導体素線を有するコード状ヒータであって、上記絶縁被膜が、少なくとも、上記導体素線上に形成された内層と、該内層の外側に形成された外層とからなり、上記内層を構成する材料の熱分解温度が、上記外層を構成する材料の融点または熱分解温度の内の低い方より低く、上記内層の厚さが2μm以上であり、上記内層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの2/3未満であり、上記外層の厚さが、1μm以上であり、上記外層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの3/4未満であることを特徴とするものである。
 また、上記内層の厚さが、7μm以下であり、上記外層の厚さが、7μm以下であることが考えられる。
 また、上記内層の厚さが、4μm以上であり、上記外層の厚さが、4μm以上であることが考えられる。この場合、コード状ヒータはステアリングヒータに使用されることが考えられる。
 また、上記内層を構成する材料が、ポリウレタン樹脂またはポリエステル樹脂であり、上記外層を構成する材料が、ポリイミド樹脂、ポリアミドイミド樹脂またはシリコーン樹脂の何れかであることが考えられる。
 又、本発明による面状ヒータは、上記のコード状ヒータを基材に配設したものである。
 なお、熱分解温度とは、温度を徐々に上げていった際における重量減少が始まる温度のことであり、JIS-K7120-1997プラスチックの熱重量測定方法(またはISO7111-1997)に準拠して測定される。
 本発明のコード状ヒータは、外層が溶融または熱分解する温度以下で、内層が熱分解する。そのため、内層の熱分解温度以上、外層の融点または熱分解温度の内の低い方の温度以下の温度では、内層のみが熱分解して無くなるため、導体素線と絶縁被膜の間に空間ができる。押出やテープ横巻の工法によって外層が形成されると、その外層は長さ方向に延伸がかけられた状態となる。また、塗布硬化の工法で外層が形成されると、その外層は硬化時に収縮の力が生じる。いずれの外層も、長さ方向に対して圧縮する方向の残留応力が存在する。そのため、絶縁被膜の外層と導体素線との間に空間が生じ、且つ、外層に熱を加えられると、絶縁被膜の外層は収縮する。この結果、例えば、導体素線の端部を、(半田の溶融温度等の)上述した所定の温度に加熱すると、絶縁被膜が除去されて導体素線が露出する。
 特に、内層と外層の厚さが上記の範囲内であれば、上述した外層の収縮がより確実になる。そのため、より確実に、絶縁被膜が除去されて導体素線が露出する。
本発明による実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による実施の形態示す図で、絶縁被膜が形成された導体素線の構成を示す一部切り欠き側面図である。 本発明による実施の形態を示す図で、ホットプレス式ヒータ製造装置の構成を示す図である。 本発明による実施の形態を示す図で、コード状ヒータを所定のパターン形状に配設する様子を示す一部斜視図である。 本発明による実施の形態を示す図で、面状ヒータの構成を示す平面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による面状ヒータを車両用シート内に埋め込んだ様子を一部切り欠いて部示す斜視図である。 本発明による面状ヒータをステアリングホイール内に埋め込んだ様子を一部切り欠いて示す斜視図である。 屈曲試験の方法を説明するための参考図である。
 以下、図面を参照して本発明の実施の形態を説明する。これらの実施の形態は、本発明を面状ヒータとし、車両用シートヒータに適用することを想定した例を示すものである。
 まず、図1~図5を参照して本実施の形態を説明する。この実施の形態におけるコード状ヒータ10の構成から説明する。本実施の形態におけるコード状ヒータ10は図1に示すような構成になっている。芯線3は外径約0.2mmの芳香族ポリアミド繊維束で形成されている。該芯線3の外周に、素線径0.08mmの硬質錫入り銅合金線である5本の導体素線5aを引き揃えて、ピッチ約1.0mmで、螺旋状に巻装されている。図1、図2に示すように、導体素線5aの周囲には、絶縁被膜5bが形成されている。絶縁被膜5bは、ポリウレタン樹脂製の内層5cと、ポリアミドイミド樹脂製の外層5dとから形成されている。絶縁被膜5bの内層5cは、導体素線5aの周囲にポリウレタンワニスを塗布し乾燥させることで厚さ4μmの層となるように形成された。次に、外層5dは、この内層5cの外周にポリアミドイミドワニスを塗布し乾燥して厚さ4μmの層となるように形成された。発熱線1は、芯線3上に導体素線5aを巻装して形成されている。コード状ヒータ10は、発熱線1の外周に絶縁体層7を被覆して形成されている。絶縁体層7は、発熱線1の外周に、難燃剤が配合されたポリエチレン樹脂を0.2mmの厚さとなるように押出被覆して形成されている。この実施の形態では、絶縁体層7のポリエチレン樹脂は、熱融着材として機能する。以上のコード状ヒータ10の仕上外径は0.8mmである。芯線3は屈曲性や引張強度が高くなる点で有効である。芯線3を使用せずに、複数本の導体素線を引き揃えるか或いは撚り合わせて発熱線1とすることも可能である。
 次に、上記構成をなすコード状ヒータ10を接着・固定する基材11の構成について説明する。本実施例における基材11は、低融点ポリエステルを鞘成分とする芯鞘構造を有する熱融着性繊維10%と、難燃性ポリエステル繊維からなる難燃性繊維90%とを混合させた不織布(目付100g/m、厚さ0.6mm)で形成されている。この基材11は、型抜き等の公知の手法によって所望の形状に形成される。
 次に、上記コード状ヒータ10を基材11上に所定のパターン形状で配設して接着・固定する構成について説明する。図3はコード状ヒータ10を基材11上に接着・固定させるためのホットプレス式ヒータ製造装置13の構成を示す図である。まず、ホットプレス治具15について説明する。このホットプレス治具15の上面に、複数個の係り止め機構17が配置されている。図4に示すように、上記係り止め機構17はピン19を備えていて、このピン19はホットプレス冶具15に穿孔された孔21に対して、その下方から上方に向けて挿入されている。このピン19の上面には、係り止め部材23がピン19の軸方向に移動可能に取り付けられ、係り止め部材23はコイルスプリング25によって常時上方に付勢されている。そして、図4中仮想線で示すように、コード状ヒータ10は、複数個の係り止め機構17の上面の係り止め部材23に係止されながら、係り止め部材23の位置に対応した所定のパターン形状となるように配設される。
 図3に戻って、上記複数個の係り止め機構17の上方位置には、プレス熱板27が昇降可能に配置されている。まず、コード状ヒータ10が複数個の係り止め機構17の係り止め部材23に引っ掛けられながら所定のパターン形状を描くように配設され、次に、基材11がコード状ヒータ10の上に置かれる。その状態で上記プレス熱板27が降下して基材11をコード状ヒータ10に押し当てる。このとき、例えば、プレス熱板27は230℃/5秒間の加熱・加圧を基材11とコード状ヒータ10に施す。すると、コード状ヒータ10の熱融着材と基材11の熱融着性繊維はともに加熱・加圧されて互いに融着する。その結果、コード状ヒータ10と基材11が接着されて固定される。上記加熱・加圧時、上記プレス熱板27は複数個の係り止め機構17の係り止め部材23のコイルスプリング25の付勢力に抗して下方に移動する。
 基材11におけるコード状ヒータ10を配設しない面には、接着層を形成したり、或いは、両面テープを貼り付けたりしても良い。これらの接着層や両面テープは、面状ヒータ31を座席に固定する際に利用される。
 上記作業を行うことにより、図5に示すような車両用シートヒータの面状ヒータ31を得ることができる。リード線40は接続端子(図示しない)を介して、上記面状ヒータ31におけるコード状ヒータ10の両端と、温度制御装置39とに接続されている。コード状ヒータ10と、温度制御装置39と、コネクタ35は、リード線40によって互いに接続されている。この接続端子によるコード状ヒータ10とリード線40の接続について詳述する。コード状ヒータ10の端部では、ストリップ加工機によって発熱線1の絶縁体層7を除去して発熱線1を露出させる。また、リード線40の端部でも、ストリップ加工機によってリード線40の絶縁体を除去して導線を露出させる。発熱線1を露出させたコード状ヒータ10の端部と導体を露出させたリード線40の端部とを接続端子に半田付けする。これにより、コード状ヒータ10、リード線40及び接続端子が互いに接続される。コード状ヒータ10の導体素線5aに形成された絶縁被膜5bは半田付けの熱により除去されており、導体素線5aと、リード線40の導体とが、電気的接続される。この作用機構について、以下に具体的に説明する。半田付けの温度は約360℃である。この温度は内層5cを構成するポリアミド樹脂の熱分解より高いため、内層5cは熱分解する。一方で、この360℃の温度は、外層5dを構成するポリアミドイミド樹脂の融点以下であり且つ熱分解温度以下でもある。即ち、導体素線5aが半田付けの温度で加熱されると、絶縁被膜5bの内層5cが熱分解し、絶縁被膜5bの外層5dと導体素線5aの間に空間が形成される。また、外層5dは、内層5cの周囲に塗布された後に乾燥工程を経ており、外層5dは延伸された状態となっているので、圧縮方向の残留応力が外層5dに生じている。コード状ヒータ10の端部において、絶縁被膜5bの外層5dと導体素線5aとは密着していない状態となると、絶縁被膜5bは加熱されて収縮する。従って、導体素線5aの端部が自ずと露出する。以上のように、導体素線5aの端部が自ずと露出するため、導体素線5aの端部を研磨して絶縁被膜5bを除去する必要がなくなる。これにより、導体素線5aの端部の加工性は大きく向上する。コード状ヒータ10は、コネクタ35を介して図示しない車両の電気系統に接続される。
 そして、上記面状ヒータ31は、図12に示すような状態で、車両用のシート41内に埋め込まれた状態で配置されることになる。すなわち、上記した通り、車両用シート41の表皮カバー43又は座席パット45に、面状ヒータ31が貼り付けられる。
 尚、本発明は、上記実施の形態に限定されるものではない。まず、従来公知の種々のコード状ヒータをコード状ヒータ10として使用されることができる。
 発熱線1は、例えば、以下の構成とすることができる。
1.図1に示す上記実施の形態のように、まず、絶縁被膜5bにより被覆された導体素線5aを複数本撚り合わせ又は引き揃えて芯線3上に巻装し、さらに、その外周に絶縁被覆7を被覆して形成される発熱線1
2.図6に示すように、絶縁被膜5bにより被覆された導体素線5aを複数本撚り合わせて形成される発熱線1
3.図7に示すように、絶縁被膜5bにより被覆された導体素線5aを複数本引き揃えて形成される発熱線1
4.図8に示すように、絶縁被膜5bによって被覆された導体素線5aと、絶縁被膜5bによって被覆されていない導体素線5aとを、交互に配置して形成される発熱線1
5.図9に示すように、絶縁被膜5bにより被覆された導体素線5aの本数を図8に示すものよりも増やした状態で、絶縁被膜5bにより被覆された導体素線5aを引き揃えて配置して形成される発熱線1
 発熱線1は、これら以外にも様々な構成のものが想定できる。又、発熱線1は、芯線3と導体素線5aを撚り合せて形成することもできる。
 芯線3としては、例えば、ガラス繊維等の無機繊維や、ポリエチレンテレフタレート等のポリエステル繊維、脂肪族ポリアミド繊維、芳香族ポリアミド繊維、全芳香族ポリエステル繊維等の有機繊維のモノフィラメント、マルチフィラメント、スパン、或いはそれらの繊維材料、若しくは、それらの繊維材料を構成する有機高分子材料を芯材とし、その周上に熱可塑性の有機高分子材料が被覆された構成を有する繊維などが挙げられる。又、熱収縮性及び熱溶融性を有する芯線3を使用した場合、導体素線5aが断線して異常加熱すると、芯線3が溶融して切断されるとともに収縮する。芯線3が収縮すると、芯線3に巻装された導体素線5aは芯線3の動作に追従するため、断線した導体素線5aの端部同士が分離する。そのため、断線した導体素線5aのそれぞれの端部が、接したり離れたりすることを繰り返さなくなる。また、断線した導体素線5aのそれぞれの端部が点接触のようなわずかな接触面積で接することがなくなる。すると、異常発熱が防止される。又、導体素線5aが絶縁被膜5bにより絶縁されている場合、芯線3が絶縁材料で形成されている必要はない。例えば、芯線3として、ステンレス鋼線やチタン合金線等を使用できる。しかし、導体素線5aが断線する可能性があるので、芯線3は絶縁材料で形成される方が良い。
 導体素線5aとしては、従来公知のものを使用することができ、例えば、銅線、銅合金線、ニッケル線、鉄線、アルミニウム線、ニッケル-クロム合金線、鉄-クロム合金線、などが挙げられ、銅合金線としては、例えば、錫-銅合金線、銅-ニッケル合金線、銅固溶体と銅銀共晶がファイバー状になった銀入り銅合金線などが挙げられる。このうち、コストと特性のバランスの点から、銅線又は銅合金線を使用することが好ましい。これら銅線又は銅合金線には軟質のものと硬質のものがあるが、耐屈曲性の観点から、軟質のものよりも硬質のものの方が特に好ましい。尚、硬質銅線や硬質銅合金線とは、線引き加工等の冷間加工によって個々の金属結晶粒が加工方向に長く引き伸ばされ繊維状組織となったものである。このような硬質銅線や硬質銅合金線は、再結晶温度以上で加熱すると、金属結晶内に生じた加工歪みが解消されるとともに、新たな金属結晶の基点となる結晶核が出現し始める。この結晶核が発達して、順次旧結晶粒と置換される再結晶が起き、更に結晶粒が成長した状態となる。軟質銅線や軟質銅合金線はこのような結晶粒が成長した状態のものである。この軟質銅線や軟質銅合金線は、硬質銅線や硬質銅合金線と比べて伸びや電気抵抗値は高いものの引張強さが低い性質となるため、耐屈曲性は硬質銅線や硬質銅合金線と比べて低くなる。このように、硬質銅線や硬質銅合金線は、熱処理によって耐屈曲性が低い軟質銅線や軟質銅合金線になるため、できるだけ熱履歴の少ない加工を行うことが好ましい。尚、硬質銅線はJIS-C3101(1994)、軟質銅線はJIS-C3102(1984)においても定義がなされており、外径0.10~0.26mmでは伸び15%以上、外径0.29~0.70mmでは伸び20%以上、外径0.80~1.8mmでは伸び25%以上、外径2.0~7.0mmでは伸び30%以上のものが軟質銅線とされる。また、銅線には錫メッキが施されているものも含まれる。錫メッキ硬質銅線はJIS-C3151(1994)、錫メッキ軟質銅線はJIS-C3152(1984)にて定義がなされている。又、導体素線5aの断面形状についても種々のものが使用でき、通常使用される断面円形のものに限られず、いわゆる平角線と称されるものを使用しても良い。
 但し、芯線3に導体素線5aを巻装する場合は、上記した導体素線5aの材料の中でも、巻付けたときのスプリングバックする量が小さいものが良く、復元率が200%以下となるものが好ましい。例えば、銅固溶体と銅銀共晶がファイバー状になった銀入り銅合金線などは、抗張力性に優れ引張強度や屈曲強度には優れるものの、巻付けたときスプリングバックし易い。そのため、芯線3に巻装する際に、導体素線5aの浮きや、過度の巻付けテンションによる導体素線5aの破断が生じ易く、又加工後には撚り癖が生じ易いため好ましくない。特に、導体素線5aに絶縁被膜5bが被覆される形態とした場合は、この絶縁被膜5bによる復元力も加わることになる。そのため、導体素線5aの復元率が小さいものを選定し、絶縁被膜5bによる復元力をカバーすることが重要となる。
 ここで、本発明で規定する復元率の測定について詳しく記述する。まず、導体素線に一定荷重を掛けながら、導体素線径の60倍の径の円柱形マンドレルに対して、導体素線が重ならないように3回以上巻きつける。10分後、荷重を取り去り、導体素線をマンドレルから外し、弾性により復元した形状の内径を測定して、導体素線のスプリングバックする割合を次の式(I)により算出して、復元率として評価する。
R=(d2/d1)×100―――(I)
記号の説明:
 R:復元率(%)
 d1:巻付試験に用いたマンドレル径(mm)
 d2:導体素線をマンドレルに巻きつけた後、荷重を開放して復元した形状の内径(mm)
 導体素線5aに被覆される絶縁被膜5bは、上記実施の形態のように、内層5cと外層5dの2層によって形成されても良いし、3層以上の複数層によって形成されても良い。但し、内層を構成する材料の熱分解温度は、外層を構成する材料の融点または熱分解温度の内の低い方より低くなければならない。ここで、内層とは、導体素線5a上に形成される層である。また、外層とは、この内層より外側であればよいので、外層のさらに外側に他の外層を形成したり、内層と外層の間に他の中間層を形成したりすることも可能である。
 絶縁被膜5bの材料は、例えば、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ナイロン樹脂、ポリエステルナイロン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリベンゾイミダゾール樹脂、塩化ビニル樹脂、フッ素樹脂、シリコーン樹脂など種々の材料が挙げられる。これらの材料は、複数種類を組み合わせて使用しても良いし、難燃剤や老化防止剤などの公知の添加剤を種々配合しても良い。これらの樹脂の中から材料を組み合わせて、内層を構成する材料の熱分解温度が、外層を構成する材料の融点または熱分解温度の内の低い方より、低くなる材料にする。内層の材料は、ポリウレタン樹脂、塩化ビニル樹脂、ポリアセタール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリメチルメタクリレート、ポリエチレンテレフタレート等のポリエステル樹脂、ポリビニルアルコール等を選択できる。特に、内層の材料が、熱硬化性樹脂であり、外層を構成する材料が、熱硬化性樹脂であることが好ましい。ここで熱硬化性樹脂には、架橋性材料も含まれる。コード状ヒータとしての発熱特性や、半田付け等の端末加工の容易さの観点から、内層の材料は、ポリウレタン樹脂またはポリエステル樹脂であり、外層の材料は、ポリイミド樹脂、ポリアミドイミド樹脂またはシリコーン樹脂の何れかであることが好ましい。特に、内層の材料が、ポリウレタン樹脂であり、外層の材料が、ポリアミドイミド樹脂であることが好ましい。このポリウレタン樹脂は、例えばイミド含有ポリウレタン等、種々の変性や配合をしているようなものであっても良い。
 本発明は、外層が溶融または熱分解する温度以下で、内層が熱分解する。そのため、絶縁被膜により被覆された導体素線の端部を、内層の熱分解温度以上、外層の融点または熱分解温度の内の低い方の温度以下の温度とすると、内層のみが熱分解し、導体素線と絶縁被膜の間に空間ができる。一方、外層は、押出工法またはテープ横巻の工法によって形成されると、長さ方向に延伸がかけられて形成される。また、外層は、塗布硬化の工法で形成されると、硬化時に収縮の力が生じる。即ち、外層には、長さ方向に対して圧縮する方向の残留応力が存在する。絶縁被膜により被覆された導体素線の内層が熱分解すると、絶縁被膜と導体素線との間に空間が生じる。さらに、熱を加えられると、絶縁被膜の外層は収縮する。このような作用により、例えば、絶縁被膜により被覆された導体素線の端部を、半田の溶融温度等の所定の温度に加熱すると、絶縁被膜を除去して導体素線を露出させることができる。これにより、端末加工性を向上させることができる。
 また、端末加工性を向上させる要因は以下のように説明できる。導体素線は、半田等が接触して加熱されると、熱膨張する。銅線、銅合金線、ニッケル線等の金属材料を主体することが多い導体素線よりも、樹脂材料やゴム材料を主体とする絶縁被膜の方が熱膨張係数は大きい。そのため、導体素線よりも絶縁被膜の方が大きく熱膨張し、導体素線から絶縁被膜を剥離させようとする力が加わり、絶縁被膜にクラックが入る。半田等は絶縁被膜のこのクラックに浸入し、絶縁被膜の内層の熱分解を促進する。併せて、内層が熱分解すると分解性ガスが発生し、分解性ガスは外層を導体素線から押し剥がす。以上の考察に基づくと、絶縁被膜の材料は、熱膨張係数が大きいものが好ましい。また、内層の材料が熱分解する温度が、外層を構成する材料のガラス転移点以下であると、外層はゴム状態とならず、外層にクラックが入りやすくなる。
 また、端末加工性を向上させる他の要因は以下のように説明できる。半田等が接触して加熱されると、絶縁被膜の内層が熱分解する。熱分解して生じる分解性ガスが、例えば、水素、一酸化炭素、アルデヒド、低分子量アルカン等の還元性ガスである場合、この還元性ガスによって導体素線表面の酸化被膜が還元される。導体素線表面の酸化被膜が還元されると、半田等との濡れ性を高める。導体素線表面の濡れ性が高められると、導体素線と絶縁被膜の間に半田等が浸透浸入しやすくなり、内層の熱分解と絶縁被膜の剥離を進行させるとともに、半田等と導体素線との接合が確実に行われる。上記実施の形態で内層5cの材料として使用したウレタン樹脂は、熱分解時に還元性ガスを発生する。また、熱分解時に還元性ガスを発生する材料を種々の樹脂やゴム等に配合し、内層5cを構成する材料をこの配合した材料とすることもできる。これらの要因は発明者が推測しているものであり、これによって本発明や特許権利の範囲に影響を与えたり制限したりするものではない。
 内層5cの厚さは、2μm以上であることが好ましい。2μm未満であると、内層5cが熱分解したとしても、導体素線5aと外層5dの間に十分な空間が得られず、外層5dが除去できなくなるおそれがある。また、内層5cの厚さが、5μm以下であるか、または、絶縁被膜5bの全厚さの2/3未満であることが好ましい。内層5cの厚さが5μmを超え、且つ、絶縁被膜5bの全厚さの2/3以上となると、内層5cの熱分解時の発生ガス量が多くなる。例えば、この発生ガスが燃焼するものであると難燃性に悪影響を及ぼす可能性があるなど、発生ガスの影響を無視できなくなる。内層5cの厚さは、7μm以下であることが特に好ましい。外層5dの厚さは、1μm以上であることが好ましい。上記のように、内層5cは比較的低温で熱分解するものであるため、外層5dの厚さが十分でないと、特に高温時で絶縁性能を維持できなくなる可能性がある。外層5dの厚さは、5μm以下であるか、または、絶縁被膜の全厚さの3/4未満であることが好ましい。外層5dの厚さが、5μmを越え、且つ、絶縁被膜の全厚さの3/4以上となると、外層5dの剛性が強くなりすぎ、例え内層5cが熱分解したとしても、外層5dの除去が困難となるおそれがある。外層5dの厚さは、7μm以下であることが特に好ましい。
 例えば、コード状ヒータをステアリングヒータに使用する場合は、使用者の手汗等がステアリング表皮を浸透してコード状ヒータに付着する場合がある。この際に、コード状ヒータとして耐食性を有していないと、導体素線が腐食して断線等を起こす可能性がある。上記のように耐食性を確保する必要がある場合、内層5cの厚さは、4μm以上であることが好ましく、5μm以上であることが特に好ましい。4μm未満であると、腐食性を有する液体または気体が存在する環境で使用した場合に、導体素線5aが腐食するおそれがあるので、絶縁被膜5bの外周に更に絶縁被覆等を形成することが必要となる。また、耐食性を確保する必要がある場合、外層5dの厚さは、4μm以上であることが好ましく、5μm以上であることが特に好ましい。4μm未満であると、腐食性を有する液体または気体が存在する環境で使用した場合に、導体素線5aが腐食するおそれがあるので、絶縁被膜5bの外周に更に絶縁被覆等を形成することが必要となる。また、耐食性を確保する必要がある場合、内層被膜5cと外層被膜5dの厚さを加えた絶縁被膜5bの厚さは、8μmを超えることが好ましい。8μm以下であると、腐食性を有する液体または気体が存在する環境で使用した場合に、導体素線5aが腐食するおそれがある。例えば、絶縁被膜5bが薄い場合、製造時の条件によっては、絶縁被膜5bにピンホールが形成される可能性がある。また、使用時の摩擦等により、絶縁被膜5bが摩耗してしまうことがある。この場合、内部の導体素線5aが露出することになるため、その部分から導体素線5aが腐食してしまうことがある。そのような腐食を防止するため、絶縁被膜5bが薄い場合には、絶縁被膜5bの外周に更に絶縁被覆等を形成することが必要となる。なお、コード状ヒータに水分が付着する可能性が低い状況で使用する場合は、内層5cおよび外層5dの厚さを必ずしも4μm以上にする必要はない。
 上記導体素線5aを芯材3の周囲に巻装する場合、撚り合せるよりも、引き揃えた方が好ましい。なぜなら、引き揃えたもののほうが発熱芯4の径が細くなるとともに、表面も平滑になるためである。又、引き揃える方法と、撚り合わせる方法の他に、芯材3の周囲に導体素線5aを編組することもできる。
 絶縁体層7は押出成形等によって形成しても良いし、予めチューブ状に成形した絶縁体層7を使用しても良い。絶縁体層7を形成する方法は特に限定されない。押出成形によって絶縁体層7を形成したときは、導体素線5aの位置が固定されているので、絶縁体層7と導体素線5aとの位置ズレが生じにくい。この結果、導体素線5aの摩擦や屈曲が防止され、耐屈曲性が向上されるため好ましい。絶縁体層7の材料は、コード状ヒータの使用形態や使用環境などによって適宜設計すれば良く、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、芳香族ポリアミド系樹脂、脂肪族ポリアミド系樹脂、塩化ビニル樹脂、変性ノリル樹脂(ポリフェニレンオキサイド樹脂)、ナイロン樹脂、ポリスチレン樹脂、フッ素樹脂、合成ゴム、フッ素ゴム、エチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等、種々のものが挙げられる。特に、難燃性を有する高分子組成物が好ましく使用される。ここでの難燃性を有する高分子組成物とは、JIS-K7201(1999年)燃焼性試験における酸素指数が21以上のものを示す。酸素指数が26以上のものは特に好ましい。このような難燃性を得るため、上記した絶縁体層7を構成する材料に適宜難燃材等を配合してもよい。難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム等の金属水和物、酸化アンチモン、メラミン化合物、リン系化合物、塩素系難燃剤、臭素系難燃剤などが挙げられる。これらの難燃剤には公知の方法で適宜表面処理を施しても良い。
 又、この絶縁体層7を熱融着材で形成することにより、加熱加圧によりコード状ヒータ10を基材11に熱融着することができる。このような場合、上記した絶縁体層7を構成する材料の中でも、基材11との接着性に優れるオレフィン系樹脂が好ましい。オレフィン系樹脂としては、例えば、高密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン、エチレン-α-オレフィン共重合体、エチレン-不飽和エステル共重合体などが挙げられる。エチレン-不飽和エステル共重合体としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-(メタ)アクリル酸ブチル共重合体などが挙げられ、これらの単独又は2種以上の混合物であってもよい。ここで「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の両方を表すものである。これらの内から任意に選択すれば良いが、上記した絶縁被膜5bを構成する材料の分解開始温度以下又は融点以下の温度で溶融する材料である方が良い。又、基材11との接着性に優れる材料として、ポリエステル系熱可塑性エラストマーが挙げられる。ポリエステル系熱可塑性エラストマーとしては、ポリエステル-ポリエステル型、ポリエステル-ポリエーテル型のものがあるが、ポリエステル-ポリエーテル型の方が高い接着性を有するため好ましい。尚、コード状ヒータ10と基材11を熱融着する場合、コード状ヒータ10と基材11との接着強度は非常に重要なものである。この接着強度が充分でないと、使用していくうちに基材11とコード状ヒータ10とが剥離してしまい、それにより、コード状ヒータ10には予期せぬ屈曲が加わることになるため、導体素線5aが断線する可能性が高くなる。導体素線5aが断線すると、ヒータとしての役を果たさなくなるだけでなく、チャタリングによりスパークに至るおそれもある。また、コード状ヒータ10の使用温度が高い場合は、ポリアミド系熱可塑性エラストマーを使用することが好ましい。もちろん、上記したような絶縁体層7の材料は、複数種類を組み合わせて使用しても良いし、難燃剤や老化防止剤などの公知の添加剤を種々配合しても良い。
 絶縁体層7は1層だけでなく、複数層形成してもよい。例えば、導体素線5aの外周にフッ素樹脂による層を形成し、その外周に熱融着材としてポリエチレン樹脂の層を形成し、これら2層により絶縁体層7を構成するような形態も考えられる。もちろん、3層以上となっていても構わない。又、絶縁体層7は、長さ方向に連続して形成することに限定されない。例えば、コード状ヒータ10の長さ方向に沿って直線状やスパイラル線状に形成する、ドット模様に形成する、断続的に形成するなどの態様が考えられる。この際、熱融着材がコード状ヒータの長さ方向に連続していなければ、例え、熱融着材の一部に着火しても、燃焼部が広がらないため好ましい。又、熱融着材の体積が充分に小さければ、熱融着材が燃焼性の材料であっても、すぐに燃焼物がなくなり消火することになるし、ドリップ(燃焼滴下物)も発生しなくなる。従って、熱融着材の体積は、基材11との接着性を保持できる最低限とすることが好ましい。
 また、上記のようにして得られたコード状ヒータ10は、自己径の6倍の曲率半径で90度ずつの屈曲を行う屈曲性試験において、導体素線が少なくとも1本切れるまでの屈曲回数が2万回以上であることが好ましい。
 また、コード状ヒータ10の端末加工に際しては、上記実施の形態のように半田付け加工を行っても良いし、他の方法を用いることもできる。例えば、発熱線1を露出した端部について、所定の温度の熱源を近接させたり、所定の温度の温風を吹きかけたりすることでも、内層5cが熱分解するとともに絶縁被膜5b(外層5d)が収縮し、導体素線5aの端部が露出することになる。なお、ここでの所定の温度とは内層5cの熱分解温度以上の温度のことを示す。
 基材11としては、上記実施の形態で示した不織布の他に、例えば、織布、紙、アルミ箔、マイカ板、樹脂シート、発泡樹脂シート、ゴムシート、発泡ゴムシート、延伸多孔質体等、種々のものが使用できるが、FMVSS-No.302自動車内層材料の燃焼試験に合格する難燃性を有するものが好ましい。ここで、FMVSSとは、Federal Motor Vehicle Safety Standard、即ち、米国連邦自動車安全基準のことであり、そのNo.302として、自動車内装材料の燃焼試験が規定されている。これらの中でも、不織布は、風合いが良く柔軟であるため、特にカーシートヒータの用途において好ましい。又、不織布を使用する場合も、上記実施の形態の場合には、不織布を構成する熱融着性繊維として、低融点ポリエステルを鞘成分とする芯鞘構造を有する繊維を使用しているが、それ以外にも、例えば、低融点ポリプロピレンを鞘成分とする芯鞘構造を有する繊維、又はポリエチレンを鞘成分とする芯鞘構造を有する繊維等の使用が考えられる。このような熱融着性繊維を使用することで、熱融着性繊維の芯部を取り囲んだ状態で、熱融着性繊維の鞘部とコード状ヒータ10の熱融着材とが互いに融着し一体化することとなるため、コード状ヒータ1と不織布との接着は非常に強固なものとなる。又、難燃性繊維としては、例えば、上記の難燃性ポリエステルの他に、種々の難燃性繊維の使用が考えられる。ここで、難燃性繊維とは、JIS-L1091(1999年)に合格する繊維のことを指す。このような難燃性繊維を使用することで、基材は優れた難燃性を付与されることとなる。
 熱融着性繊維の混合割合は、5%以上が好ましく、又、20%以下が好ましい。熱融着性繊維の混合割合が5%未満だと、十分な接着性が得られない。又、熱融着性繊維の混合割合が20%を超えると、不織布が固くなり、着座者が違和感を訴えることになり得るのみでなく、逆にコード状ヒータとの接着性が低下してしまう。更には、熱融着する際の熱によって基材が収縮し、設計で意図した寸法が得られなくなる可能性もある。難燃性繊維の混合割合は、70%以上であり、好ましくは70%以上95%以下である。難燃性繊維の混合割合が70%未満だと、十分な難燃性が得られない。又、難燃性繊維の混合割合が95%を超えると、相対的に熱融着性繊維の混合割合が不足してしまい、十分な接着性が得られない。尚、熱融着性繊維の混合割合と難燃性繊維の混合割合を合算して100%になる必要はなく、他の繊維を適宜混合させても良い。又、熱融着性繊維が混合されていない場合であっても、例えば、上記の熱融着部の材料と基材を構成する繊維の材料を同系統の材料とすることで、必要充分な接着性を得られることもあるので、熱融着性繊維が混合されていないことも充分に考えられる。
 又、不織布の大きさや厚さなどは、使用用途によって適宜に変更するものであるが、その厚さ(乾燥時に測定した値)は、例えば、0.6mm~1.4mm程度とすることが望ましい。このような厚さの不織布を使用すれば、加熱・加圧によりコード状ヒータと不織布とを接着・固定した際、不織布がコード状ヒータの外周の30%以上、好ましくは50%以上の部分と良好に接着することになるからであり、それによって、強固な接着状態を得ることができるからである。
 上記基材の中でも、空隙を有しているものが好ましく、特に、コード状ヒータが配設される面(以下、配設面と記す)が、コード状ヒータが配設されない面(以下、非配設面と記す)よりも空隙が多くなっているように構成されることが好ましい。空隙が多い状態とは、例えば、織布や不織布等の布体の場合、目付け、即ち単位体積当たりの繊維重量が小さい状態、発泡樹脂シートや発泡ゴムシートのような多孔体の場合、気孔率が大きい状態のことを示す。本発明による基材の具体的な態様としては、例えば、温度や圧力を調節するなどして片面のみ又は両面で強弱異なるカレンダー加工を行った織布又は不織布、片面のみからニードルパンチを行った不織布、片面にパイル形成や起毛をさせた布体、厚さ方向で気孔率が傾斜するように発泡制御した発泡樹脂シート又は発泡ゴムシート、空隙の多さが異なる材料を貼り合わせたもの、などが挙げられる。又、特に基材の空隙は連続していることが好ましい。これは、溶融した熱融着層が連続した空隙に浸透していくことで、アンカー効果が増して接着強度が向上するためである。このような空隙が連続している態様としては、繊維の集合体である織布や不織布等の布体、連続気孔を有する発泡樹脂シートや発泡ゴムシートなどが考えられる。尚、非配設面は空隙を有していないものも考えられる。
 又、コード状ヒータ10を基材11に配設する際、加熱加圧による融着によって接着・固定する態様でなく、他の態様によりコード状ヒータ10を基材11に固定しても良い。例えば、温風により熱融着材からなる絶縁体層7を溶融させて接着・固定する態様、導体素線5aに通電してその発熱により熱融着材からなる絶縁体層7を溶融させて接着・固定する態様、加熱しながら一対の基材11で挟持固定する態様など、種々の態様が考えられる。
 又、熱融着材を使用しない形態も考えられ、例えば、縫製によってコード状ヒータ10を基材11上に配置することや、一対の基材11でコード状ヒータ10を挟持固定することも考えられる。このような場合、図10や図11に示すように絶縁体層7を形成しないことが考えられる。
 又、面状ヒータ31を座席に固定するための接着層については、基材11の伸縮性の点や、良質な風合いの保持という点からすると、離型シート等の上に接着剤のみからなる接着層を形成し、該接着層を上記離型シートから上記基材11表面に転写することによって接着層を形成することが好ましい。又、この接着層は、難燃性を有するものが好ましく、それ単独でFMVSS-No.302自動車内装材料の燃焼試験に合格するような難燃性を有するものが好ましい。例えば、高分子アクリル系粘着剤などが挙げられる。接着層は基材の配設面に形成しても良いし非配設面に形成しても良い。
 また、上記構成をなす面状ヒータ31は、図13に示すような状態で、ステアリングホイール71に設置されてもよい。このステアリングホイール71は、ホイール部72、スポーク部73及びボス部74からなり、面状ヒータ31は、ホイール部72のホイール芯材77と被覆材78の間に設置されることになる。
 上記実施の形態によって得られるコード状ヒータ10(図1参照)を実施例1として、加工性試験(接続端子との導通確認)、絶縁性試験(絶縁破壊電圧試験)、燃焼性試験(水平難燃試験)を行った。
 加工性試験は、端子加工後の導通を確認することによって行った。まず、コード状ヒータ10について、導体素線5aの有効長が90mmとなるよう切り出しし、端部8mmについて絶縁体層7をストリップ加工した。また、リード線について、導体(1.73mmφ)の有効長が90mmとなるように切り出し、端部8mmについて絶縁体をストリップ加工した。これらのコード状ヒータ10とリード線とを揃えて配置して、端部に接続端子(市販のスプライス端子)をセットし、フラックス入り半田(融点340℃)を使用して半田付け加工をしコード状ヒータ10とリード線とを接続した。その後、コード状ヒータ10とリード線の間の抵抗値を測定した。試料数は20として平均値を算出した(但し、測定不能なほど抵抗値が大きかった試料は除いて平均値を算出)。平均値が1Ω未満であり、且つ、測定不能の試料が1つもなかったものを合格、平均値が1Ω以上か、または、測定不能の試料があったものを不合格とした。表1に結果を示し、合格のものを「〇」、不合格のものを「×」と示す。
 絶縁性試験は、絶縁被膜5bの絶縁破壊電圧の試験を行った。導体素線5aに、AC1.5kVを印加し、絶縁破壊がなかったものを合格、絶縁破壊があったもの不合格とした。表1に結果を示し、合格のものを「〇」、不合格のものを「×」と示す。
 燃焼性試験は、UL1581水平燃焼試験(2008年、第4版)に基づいて測定し、燃焼距離(炎の影響を受けた幅)を測定した。燃焼距離が30mm以下のものを合格、燃焼距離が30mmを超えていたものを不合格とした。表1に結果を示し、合格のものを「〇」、不合格のものを「×」と示す。
 上記実施例1(上記実施の形態)によるコード状ヒータ10に対し、絶縁被膜5bを構成する材料を変化させたものについて、比較例1~6とした。比較例1,2は、絶縁被膜5bについて、ポリアミドイミド樹脂の単層としたものである。比較例3,4は、絶縁被膜5bについて、ポリウレタン樹脂の単層としたものである。比較例5,6は、絶縁被膜5bの内層5cをイミド含有ウレタン樹脂とし外層5dをアクリル樹脂としたものである。また、上記実施例1(上記実施の形態)によるコード状ヒータ10に対し、内層5cの材料を変化させたものを実施例2、絶縁被膜5bにおける内層5cと外層5dの厚さを変化させたものを実施例3~14、比較例7~14とした。また、内層5cの材料と内層5cと外層5dの厚さをともに変化させたものを実施例15とした。実施例1~15の内層5c及び外層5dの材料及び厚さは、表1に示す。また、比較例1~14の内層5c及び外層5dの材料及び厚さは、表2に示す。これらについても実施例1と同様に試験を行った。実施例の試験結果を表1に、比較例の試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~15におけるコード状ヒータは、何れも、内層を構成する材料の熱分解温度が、外層を構成する材料の融点または熱分解温度の内の低い方より、低いものである。一方、比較例5,6におけるコード状ヒータは、内層を構成する材料の熱分解温度が、外層を構成する材料の融点より、高いものである。これら熱分解温度については、JIS-K7120-1997プラスチックの熱重量測定方法(またはISO7111-1997)に準拠して測定した。また、融点については、JIS-K7121-1987プラスチックの転移温度測定方法に準拠して測定した。
 表1及び表2に示すように、本実施例によるコード状ヒータ10は、端末の加工性に優れていることが確認された。比較例1,2,5,6によるコード状ヒータは、測定不能、即ち、絶縁被膜が全く除去されていない試料が半数以上を占めており、製品としての歩留まりが悪いものであった。また、本実施例によるコード状ヒータ10は、燃焼性の試験にも合格するものであり、実施例2,15によるコード状ヒータは特に燃焼性に優れていた。比較例3,4,5,6によるコード状ヒータは、燃焼範囲が合格ラインをはるかに超えてしまっており、燃焼性の面で劣るものであった。
 また、実施例1~4,6,10,12によるコード状ヒータ10は、内層5cの厚さが2μm以上5μm以下であり、外層5dの厚さが1μm以上5μm以下である。実施例5,13によるコード状ヒータ10は、内層5cの厚さが2μm以上かつ絶縁被膜5bの厚さの2/3未満となっており、外層5dの厚さが1μm以上5μm以下である。実施例7,8,11によるコード状ヒータ10は、内層5cの厚さが2μm以上5μm以下となっており、外層5dの厚さが1μm以上かつ絶縁被膜5bの厚さの3/4未満である。実施例9,14,15によるコード状ヒータ10は、内層5cの厚さが2μm以上かつ絶縁被膜5bの厚さの2/3未満となっており、外層5dの厚さが1μm以上かつ絶縁被膜5bの厚さの3/4未満である。そのため、加工性試験、耐電圧試験、燃焼性試験の何れにおいても、優れた結果を得ることができた。一方、比較例7は、内層5cの厚さが2μm未満であるため、外層5dの除去が確実にはできておらず、加工性が不合格となった。比較例8~10は、内層5cの厚さが5μmを超え且つ絶縁被膜5bの厚さの2/3以上であるため、燃焼範囲が合格ラインをはるかに超えてしまっており、燃焼性の面で劣るものであった。比較例11は、外層5dの厚さが1μm未満であるため、絶縁破壊をした箇所が発生し、絶縁性に劣るものであった。比較例12,13は、外層5dの厚さが5μmを超え且つ絶縁被膜5bの厚さの3/4以上であるため、外層5dの除去が確実にはできておらず、加工性が不合格となった。比較例14は、外層5dの厚さが5μmを超え且つ絶縁被膜5bの厚さの2/3以上であり、かつ7.0μmを超えているため、外層5dの除去が確実にはできておらず、加工性が不合格となった。
 コード状ヒータを使用する部位によっては耐食性を必要とする場合があるため、耐食性試験を行った。耐食性試験は、長さ0.5mに切断したコード状ヒータに対し、6%次亜塩素酸ナトリウム水溶液をスプレーにて10回噴霧塗布し、定期的に腐食状況を目視で確認していき、30日放置後の導体素線表面の状態変化により判定をした。導体素線に変化がなかったものを合格、導体素線が黒色になる等の腐食を目視できたものを不合格とした。実施例1と同様の材料を使用し内層5cと外層5dの厚さを変化させたものを比較した。内層5cまたは外層5dの厚さが4μm未満となった場合に、導体素線に黒色の腐食が見られ、耐食性試験の結果が不合格となった。つまり、耐食性を必要とする場合には、内層5cおよび外層5dの厚さを4μm以上とすることが好ましいことが分かった。加工性試験、耐電圧試験、燃焼性試験、耐食性試験の何れにおいても優れた結果を得ることができたのは、内層5cの厚さが4μm以上7μm以下であり、外層5dの厚さが4μm以上7μm以下であり、絶縁被膜5bの厚さが8μmを超えている場合であった。なお、コード状ヒータに水分が付着する可能性が低い状況で使用する場合は、内層5cおよび外層5dの厚さを4μm未満とすることも可能である。
 上記実施例1によるコード状ヒータ10について、基材11上に直線形状で配設し、上記のようにホットプレス式ヒータ製造装置13を使用して、コード状ヒータ10を基材11上に接着・固定した。この基材11上に接着・固定したコード状ヒータ10についても、上記同様に屈曲性試験を行った。また、上記実施例1によるコード状ヒータ10について、基材11上に直線形状で配設し、粘着テープを使用して、コード状ヒータ10を基材11上に接着・固定した。この基材11上に接着・固定したコード状ヒータ10について、上記同様に屈曲性試験を行った。いずれにおいても、充分な耐屈曲性の値を示しており、本実施例によるコード状ヒータ10は、基材11上に接着・固定した状態でも充分な耐屈曲性を得ることが確認された。
 以上詳述したように本発明によれば、端末加工性を向上されたコード状ヒータを得ることができる。このコード状ヒータは、例えば、アルミ箔、発泡樹脂、不織布等の基材上に蛇行形状等の所定の形状に配設されて面状ヒータとし、電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータ、暖房便座、防曇鏡用ヒータ、カメラ用凍結防止ヒータ、加熱調理器具等に好適に使用可能である。又、コード状ヒータ単体としても、例えば、パイプや槽等に巻き付けて接着したり、パイプ内に配置したりするような態様が考えられる。具体的な用途としては、例えば、配管や冷凍庫のパイプドレーンなどの凍結防止用ヒータ、エアコンや除湿機などの保温用ヒータ、冷蔵庫や冷凍庫などの除霜用ヒータ、乾燥用ヒータ、床暖房用ヒータとして好適に使用することができる。又、上記面状ヒータの用途として例示した電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータ、暖房便座、防曇鏡用ヒータ、加熱調理器具、床暖房等について、加熱対象物に本発明のコード状ヒータを直接貼り付けたり、巻き付けたりすることもできる。
1 発熱線
3 芯材
5a 導体素線
5b 絶縁被膜
5c 内層
5d 外層
7 絶縁体層
10 コード状ヒータ
11 基材
31 面状ヒータ
41 車両用シート

Claims (7)

  1.  絶縁被膜により被覆された1本又は複数本の導体素線を有するコード状ヒータであって、
    上記絶縁被膜が、少なくとも、上記導体素線上に形成された内層と、該内層の外側に形成された外層とからなり、
    上記内層を構成する材料の熱分解温度が、上記外層を構成する材料の融点または熱分解温度の内の低い方より低く、
    上記内層の厚さが2μm以上であり、
    上記内層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの2/3未満であり、
    上記外層の厚さが、1μm以上であり、
    上記外層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの3/4未満であることを特徴とするコード状ヒータ。
  2.  上記内層の厚さが、7μm以下であり、
    上記外層の厚さが、7μm以下であることを特徴とする請求項1記載のコード状ヒータ。
  3.  上記内層の厚さが、4μm以上であり、
    上記外層の厚さが、4μm以上であることを特徴とする請求項1記載のコード状ヒータ。
  4.  ステアリングヒータに使用されることを特徴とする請求項3記載のコード状ヒータ。
  5.  上記内層を構成する材料が、ポリウレタン樹脂またはポリエステル樹脂であり、上記外層を構成する材料が、ポリイミド樹脂、ポリアミドイミド樹脂またはシリコーン樹脂の何れかである請求項1記載のコード状ヒータ。
  6.  上記内層を構成する材料が、ポリウレタン樹脂であり、上記外層を構成する材料が、ポリアミドイミド樹脂である請求項1記載のコード状ヒータ。
  7.  請求項1~6何れか記載のコード状ヒータを基材に配設した面状ヒータ。
PCT/JP2022/045613 2022-02-23 2022-12-12 コード状ヒータと面状ヒータ WO2023162409A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-026247 2022-02-23
JP2022026247A JP2023122598A (ja) 2022-02-23 2022-02-23 コード状ヒータと面状ヒータ
JP2022186963A JP2024075526A (ja) 2022-11-23 2022-11-23 コード状ヒータと面状ヒータ
JP2022-186963 2022-11-23

Publications (1)

Publication Number Publication Date
WO2023162409A1 true WO2023162409A1 (ja) 2023-08-31

Family

ID=87765569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045613 WO2023162409A1 (ja) 2022-02-23 2022-12-12 コード状ヒータと面状ヒータ

Country Status (1)

Country Link
WO (1) WO2023162409A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147087A (ja) 1984-08-11 1986-03-07 松下電器産業株式会社 シ−トヒ−タの発熱線
JP2003174952A (ja) 2001-09-20 2003-06-24 Kurabe Ind Co Ltd シートヒータとシートヒータの製造方法
JP2004055179A (ja) * 2002-07-17 2004-02-19 Showa Electric Wire & Cable Co Ltd 銅銀合金の撚線導体、これを用いたシート状発熱体、及び銅銀合金の撚線導体の端末加工方法
JP2006164985A (ja) * 2004-12-07 2006-06-22 Imetec Spa 電気毛布/パッド
JP2007134083A (ja) * 2005-11-08 2007-05-31 Swcc Showa Device Technology Co Ltd ヒータ装置及びその製造方法
JP2008311111A (ja) 2007-06-15 2008-12-25 Kurabe Ind Co Ltd コード状ヒータ
JP2010015691A (ja) 2008-06-30 2010-01-21 Kurabe Ind Co Ltd コード状ヒータ
WO2011001953A1 (ja) 2009-07-03 2011-01-06 株式会社クラベ コード状ヒータと面状ヒータ
JP2014209444A (ja) * 2013-03-27 2014-11-06 株式会社クラベ ヒータユニット及びシート
JP2018032486A (ja) * 2016-08-23 2018-03-01 古河電気工業株式会社 フラットケーブル、これを用いた回転コネクタ、及びフラットケーブルの製造方法
JP2020119724A (ja) * 2019-01-23 2020-08-06 株式会社クラベ コード状ヒータと面状ヒータ
WO2022054701A1 (ja) * 2020-09-10 2022-03-17 株式会社クラベ コード状ヒータと面状ヒータ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147087A (ja) 1984-08-11 1986-03-07 松下電器産業株式会社 シ−トヒ−タの発熱線
JP2003174952A (ja) 2001-09-20 2003-06-24 Kurabe Ind Co Ltd シートヒータとシートヒータの製造方法
JP2004055179A (ja) * 2002-07-17 2004-02-19 Showa Electric Wire & Cable Co Ltd 銅銀合金の撚線導体、これを用いたシート状発熱体、及び銅銀合金の撚線導体の端末加工方法
JP2006164985A (ja) * 2004-12-07 2006-06-22 Imetec Spa 電気毛布/パッド
JP2007134083A (ja) * 2005-11-08 2007-05-31 Swcc Showa Device Technology Co Ltd ヒータ装置及びその製造方法
JP2008311111A (ja) 2007-06-15 2008-12-25 Kurabe Ind Co Ltd コード状ヒータ
JP2010015691A (ja) 2008-06-30 2010-01-21 Kurabe Ind Co Ltd コード状ヒータ
WO2011001953A1 (ja) 2009-07-03 2011-01-06 株式会社クラベ コード状ヒータと面状ヒータ
JP2014209444A (ja) * 2013-03-27 2014-11-06 株式会社クラベ ヒータユニット及びシート
JP2018032486A (ja) * 2016-08-23 2018-03-01 古河電気工業株式会社 フラットケーブル、これを用いた回転コネクタ、及びフラットケーブルの製造方法
JP2020119724A (ja) * 2019-01-23 2020-08-06 株式会社クラベ コード状ヒータと面状ヒータ
WO2022054701A1 (ja) * 2020-09-10 2022-03-17 株式会社クラベ コード状ヒータと面状ヒータ

Similar Documents

Publication Publication Date Title
KR101809928B1 (ko) 코드 형상 히터와 면 형상 히터
JP5916385B2 (ja) コード状ヒータと面状ヒータ
JP7360942B2 (ja) コード状ヒータ、面状ヒータおよび面状ヒータの製造方法
JP6351999B2 (ja) ヒータユニット及びシート
JP2011181316A (ja) ヒータユニット
JP2010015691A (ja) コード状ヒータ
WO2022054701A1 (ja) コード状ヒータと面状ヒータ
WO2023162409A1 (ja) コード状ヒータと面状ヒータ
JP2013020951A (ja) コード状ヒータと面状ヒータ
JP7210299B2 (ja) 面状ヒータ
JP2023122598A (ja) コード状ヒータと面状ヒータ
JP6636825B2 (ja) ヒータユニット及び車両用シート
JP2019129112A (ja) ヒータユニット及びステアリングホイール
JP2024075526A (ja) コード状ヒータと面状ヒータ
JP6101480B2 (ja) ヒータユニット
WO2024142835A1 (ja) 線状体を備えた面状ユニット、ステアリングホイール及び面状ユニットの製造方法
JP2019040694A (ja) ヒータユニット及びその製造方法
JP2023160011A (ja) 線状体を備えた面状ユニット及びその応用品
KR20220155270A (ko) 코드 형상 히터와 면 형상 히터
JP2022108228A (ja) ヒータユニット及び車両用シート
JP2022108229A (ja) ヒータユニット及び車両用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928926

Country of ref document: EP

Kind code of ref document: A1